Sample records for factor-i receptor igf-ir

  1. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.

    PubMed

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2018-04-11

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.

  2. IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling

    PubMed Central

    Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian

    2018-01-01

    Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)−1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. PMID:29661273

  3. The pro-Forms of Insulin-Like Growth Factor I (IGF-I) Are Predominant in Skeletal Muscle and Alter IGF-I Receptor Activation

    PubMed Central

    Durzyńska, Julia; Philippou, Anastassios; Brisson, Becky K.; Nguyen-McCarty, Michelle

    2013-01-01

    IGF-I is a key regulator of muscle development and growth. The pre-pro-peptide produced by the Igf1gene undergoes several posttranslational processing steps to result in a secreted mature protein, which is thought to be the obligate ligand for the IGF-I receptor (IGF-IR). The goals of this study were to determine what forms of IGF-I exist in skeletal muscle, and whether the mature IGF-I protein was the only form able to activate the IGF-IR. We measured the proportion of IGF-I species in murine skeletal muscle and found that the predominant forms were nonglycosylated pro-IGF-I and glycosylated pro-IGF-I, which retained the C-terminal E peptide extension, instead of mature IGF-I. These forms were validated using samples subjected to viral expression of IGF-I combined with furin and glycosidase digestion. To determine whether the larger molecular weight IGF-I forms were also ligands for the IGF-IR, we generated each specific form through transient transfection of 3T3 cells and used the enriched media to perform kinase receptor activation assays. Compared with mature IGF-I, nonglycosylated pro-IGF-I had similar ability to activate the IGF-IR, whereas glycosylation of pro-IGF-I significantly reduced receptor activation. Thus, it is important to understand not only the quantity, but also the proportion of IGF-I forms produced, to evaluate the true biological activity of this growth factor. PMID:23407451

  4. Novel role of cannabinoid receptor 2 in inhibiting EGF/EGFR and IGF-I/IGF-IR pathways in breast cancer.

    PubMed

    Elbaz, Mohamad; Ahirwar, Dinesh; Ravi, Janani; Nasser, Mohd W; Ganju, Ramesh K

    2017-05-02

    Breast cancer is the second leading cause of cancer deaths among women. Cannabinoid receptor 2 (CNR2 or CB2) is an integral part of the endocannabinoid system. Although CNR2 is highly expressed in the breast cancer tissues as well as breast cancer cell lines, its functional role in breast tumorigenesis is not well understood. We observed that estrogen receptor-α negative (ERα-) breast cancer cells highly express epidermal growth factor receptor (EGFR) as well as insulin-like growth factor-I receptor (IGF-IR). We also observed IGF-IR upregulation in ERα+ breast cancer cells. In addition, we found that higher CNR2 expression correlates with better recurrence free survival in ERα- and ERα+ breast cancer patients. Therefore, we analyzed the role of CNR2 specific agonist (JWH-015) on EGF and/or IGF-I-induced tumorigenic events in ERα- and ERα+ breast cancers. Our studies showed that CNR2 activation inhibited EGF and IGF-I-induced migration and invasion of ERα+ and ERα- breast cancer cells. At the molecular level, JWH-015 inhibited EGFR and IGF-IR activation and their downstream targets STAT3, AKT, ERK, NF-kB and matrix metalloproteinases (MMPs). In vivo studies showed that JWH-015 significantly reduced breast cancer growth in ERα+ and ERα- breast cancer mouse models. Furthermore, we found that the tumors derived from JWH-015-treated mice showed reduced activation of EGFR and IGF-IR and their downstream targets. In conclusion, we show that CNR2 activation suppresses breast cancer through novel mechanisms by inhibiting EGF/EGFR and IGF-I/IGF-IR signaling axes.

  5. Phosphatidylinositol 3-Kinase (PI3K) Activity Bound to Insulin-like Growth Factor-I (IGF-I) Receptor, which Is Continuously Sustained by IGF-I Stimulation, Is Required for IGF-I-induced Cell Proliferation*

    PubMed Central

    Fukushima, Toshiaki; Nakamura, Yusaku; Yamanaka, Daisuke; Shibano, Takashi; Chida, Kazuhiro; Minami, Shiro; Asano, Tomoichiro; Hakuno, Fumihiko; Takahashi, Shin-Ichiro

    2012-01-01

    Continuous stimulation of cells with insulin-like growth factors (IGFs) in G1 phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G1 to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G1 phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr1316-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR−/− fibroblasts expressing exogenous mutant IGF-IR in which Tyr1316 was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. PMID:22767591

  6. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

    PubMed

    Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R

    2010-10-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.

  7. Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells.

    PubMed

    Avino, Silvia; De Marco, Paola; Cirillo, Francesca; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; Perri, Maria Grazia; Rigiracciolo, Damiano; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria; Vivacqua, Adele

    2016-08-16

    Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies.

  8. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    PubMed Central

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  9. Stimulatory actions of IGF-I are mediated by IGF-IR cross-talk with GPER and DDR1 in mesothelioma and lung cancer cells

    PubMed Central

    Cirillo, Francesca; Santolla, Maria Francesca; Francesco, Ernestina Marianna De; Perri, Maria Grazia; Rigiracciolo, Damiano; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria; Vivacqua, Adele

    2016-01-01

    Insulin-like growth factor-I (IGF-I)/IGF-I receptor (IGF-IR) system has been largely involved in the pathogenesis and development of various tumors. We have previously demonstrated that IGF-IR cooperates with the G-protein estrogen receptor (GPER) and the collagen receptor discoidin domain 1 (DDR1) that are implicated in cancer progression. Here, we provide novel evidence regarding the molecular mechanisms through which IGF-I/IGF-IR signaling triggers a functional cross-talk with GPER and DDR1 in both mesothelioma and lung cancer cells. In particular, we show that IGF-I activates the transduction network mediated by IGF-IR leading to the up-regulation of GPER and its main target genes CTGF and EGR1 as well as the induction of DDR1 target genes like MATN-2, FBN-1, NOTCH 1 and HES-1. Of note, certain DDR1-mediated effects upon IGF-I stimulation required both IGF-IR and GPER as determined knocking-down the expression of these receptors. The aforementioned findings were nicely recapitulated in important biological outcomes like IGF-I promoted chemotaxis and migration of both mesothelioma and lung cancer cells. Overall, our data suggest that IGF-I/IGF-IR system triggers stimulatory actions through both GPER and DDR1 in aggressive tumors as mesothelioma and lung tumors. Hence, this novel signaling pathway may represent a further target in setting innovative anticancer strategies. PMID:27384677

  10. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    USDA-ARS?s Scientific Manuscript database

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  11. BRCA1 is expressed in uterine serous carcinoma (USC) and controls insulin-like growth factor I receptor (IGF-IR) gene expression in USC cell lines.

    PubMed

    Amichay, Keren; Kidron, Debora; Attias-Geva, Zohar; Schayek, Hagit; Sarfstein, Rive; Fishman, Ami; Werner, Haim; Bruchim, Ilan

    2012-06-01

    The insulin-like growth factor I receptor (IGF-IR) and BRCA1 affect cell growth and apoptosis. Little information is available about BRCA1 activity on the IGF signaling pathway. This study evaluated the effect of BRCA1 on IGF-IR expression. BRCA1 and IGF-IR immunohistochemistry on archival tissues (35 uterine serous carcinomas [USCs] and 17 metastases) were performed. USPC1 and USPC2 cell lines were transiently cotransfected with an IGF-IR promoter construct driving a luciferase reporter gene and a BRCA1 expression plasmid. Endogenous IGF-IR levels were evaluated by Western immunoblotting. We found high BRCA1 and IGF-IR protein expression in primary and metastatic USC tumors. All samples were immunostained for BRCA1-71% strongly stained; and 33/35 (94%) were stained positive for IGF-IR-2 (6%) strongly stained. No difference in BRCA1 and IGF-IR staining intensity was noted between BRCA1/2 mutation carriers and noncarriers. Metastatic tumors stained more intensely for BRCA1 than did the primary tumor site (P = 0.041) and with borderline significance for IGF-IR (P = 0.069). BRCA1 and IGF-IR staining did not correlate to survival. BRCA1 expression led to 35% and 54% reduction in IGF-IR promoter activity in the USPC1 and USCP2 cell lines, respectively. Western immunoblotting showed a decline in phosphorylated IGF-IR and phosphorylated AKT in both transiently and stably transfected cells. BRCA1 and IGF-IR are highly expressed in USC tumors. BRCA1 suppresses IGF-IR gene expression and activity. These findings suggest a possible biological link between the BRCA1 and the IGF-I signaling pathways in USC. The clinical implications of this association need to be explored.

  12. The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling.

    PubMed

    Beitner-Johnson, D; Blakesley, V A; Shen-Orr, Z; Jimenez, M; Stannard, B; Wang, L M; Pierce, J; LeRoith, D

    1996-04-19

    The Crk proto-oncogene product is an SH2 and SH3 domain-containing adaptor protein which we have previously shown to become rapidly tyrosine phosphorylated in response to stimulation with insulin-like growth factor I (IGF-I) in NIH-3T3 cells. In order to further characterize the role of Crk in the IGF-I signaling pathway, NIH-3T3 and 293 cells were stably transfected with an expression vector containing the Crk cDNA. The various resultant 3T3-Crk clones expressed Crk at approximately 2-15-fold higher levels than parental 3T3 cells. In 3T3-Crk cells, Crk immunoreactivity was detected in insulin receptor substrate-1 (IRS-1) immunoprecipitates. Stimulation with IGF-I resulted in a dissociation of Crk protein from IRS-1. In contrast, the association of the related adaptor protein Grb2 with IRS-1 was enhanced by IGF-I stimulation. Similar results were obtained in stably transfected 293-Crk cells, which express both IRS-1 and the IRS-1-related signaling protein 4PS. In these cells, IRS-1 and 4PS both associated with Crk, and this association was also decreased by IGF-I treatment, whereas the association of Grb2 with IRS-1 and 4PS was enhanced by IGF-I. Overexpression of Crk also enhanced IGF-I-induced mitogenesis of NIH-3T3 cells, as measured by [3H]thymidine incorporation. The levels of IGF-I-induced mitogenesis were proportional to the level of Crk expression. These results suggest that Crk is a positive effector of IGF-I signaling, and may mediate its effects via interaction with IRS-1 and/or 4PS.

  13. Structural analysis of the interaction of IGF I with the IGF types 1 and 2 and insulin receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cascieri, M.A.; Chicchi, G.G.; Hayes, N.S.

    1987-05-01

    A synthetic gene for human IGF I has been synthesized which directs the synthesis and secretion of fully active human IGF I (rIGF I) from yeast. rIGF I inhibits binding of /sup 125/I-IGF I to type 1 IGF receptors from human placenta (IGF-R1, IC50 = 4 nM), binding of /sup 125/I-insulin to insulin receptors (IR, IC50 = 881 nM), binding of /sup 125/I-MSA to type 2 IGF receptors from rat liver (IGF-R2, IC50 = 80 nM), and binding of /sup 125/I-IGF I to crude human serum binding protein (hBP, IC50 = 0.42 nM). rIGF I is equipotent to human IGFmore » I in stimulating glucose transport in murine BC3H1 cells and in stimulating DNA synthesis in rat A10 cells. Site directed mutagenesis of the synthetic gene is being used to characterize the structural requirements for binding to these receptors. IGF I (FFY) B(23-25) is equipotent to rIGF I at the IGF-R1 (6.9 nM), the IGF-R2 (36 nM), and the IR (841 nM) and is less potent at the hBP (1.7 nM). In contrast, IGF I(SFY) B(23-25) is 20-fold less potent than rIGF I at the IGF-R1 and is 10-fold less potent than rIGF I at hBP. This peptide is greater than 10-fold less active at the IGF-R2 and the IR. This peptide is a full agonist in the cell assays but 20-50 fold less potent than rIGF I. These data are consistent with the hypothesis that the F to S change destabilizes the tertiary structure of IGF I.« less

  14. Conditional VHL Gene Deletion Causes Hypoglycemic Death Associated with Disproportionately Increased Glucose Uptake by Hepatocytes through an Upregulated IGF-I Receptor

    PubMed Central

    Kurabayashi, Atsushi; Kakinuma, Yoshihiko; Morita, Taku; Inoue, Keiji; Sato, Takayuki; Furihata, Mutsuo

    2013-01-01

    Our conditional VHL knockout (VHL-KO) mice, having VHL gene deletion induced by tamoxifen, developed severe hypoglycemia associated with disproportionately increased storage of PAS-positive substances in the liver and resulted in the death of these mice. This hypoglycemic state was neither due to impaired insulin secretion nor insulin receptor hypersensitivity. By focusing on insulin-like growth factor I (IGF-I), which has a similar effect on glucose metabolism as the insulin receptor, we demonstrated that IGF-I receptor (IGF-IR) protein expression in the liver was upregulated in VHL-KO mice compared to that in the mice without VHL deletion, as was the expression of glucose transporter (GLUT) 1. The interaction of the receptor for activated C kinase (RACK) 1, which predominantly binds to VHL, was enhanced in VHL-KO livers with IGF-IR, because VHL deletion increased free RACK1 and facilitated the IGF-IR-RACKI interaction. An IGF-IR antagonist retarded hypoglycemic progression and sustained an euglycemic state. These IGF-IR antagonist effects on restoring blood glucose levels also attenuated PAS-positive substance storage in the liver. Because the effect of IGF-I on HIF-1α protein synthesis is mediated by IGF-IR, our results indicated that VHL inactivation accelerated hepatic glucose storage through the upregulation of IGF-IR and GLUT1 and that IGF-IR was a key regulator in VHL-deficient hepatocytes. PMID:23874892

  15. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    PubMed

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Molecular Analysis of Non-Small Cell Lung Cancer (NSCLC) Identifies Subsets with Different Sensitivity to Insulin like Growth Factor I Receptor (IGF-IR) Inhibition

    PubMed Central

    Gualberto, Antonio; Dolled-Filhart, Marisa; Gustavson, Mark; Christiansen, Jason; Wang, Yu-Fen; Hixon, Mary L.; Reynolds, Jennifer; McDonald, Sandra; Ang, Agnes; Rimm, David L.; Langer, Corey J.; Blakely, Johnetta; Garland, Linda; Paz-Ares, Luis G.; Karp, Daniel D.; Lee, Adrian V.

    2010-01-01

    Purpose Identify molecular determinants of sensitivity of NSCLC to anti-insulin like growth factor receptor (IGF-IR) therapy. Experimental Design 216 tumor samples were investigated. 165 consisted of retrospective analyses of banked tissue and an additional 51 were from patients enrolled in a phase 2 study of figitumumab (F), a monoclonal antibody against the IGF-IR, in stage IIIb/IV NSCLC. Biomarkers assessed included IGF-IR, EGFR, IGF-2, IGF-2R, IRS-1, IRS-2, vimentin and E-cadherin. Sub-cellular localization of IRS-1 and phosphorylation levels of MAPK and Akt1 were also analyzed. Results IGF-IR was differentially expressed across histological subtypes (P=0.04), with highest levels observed in squamous cell tumors. Elevated IGF-IR expression was also observed in a small number of squamous cell tumors responding to chemotherapy combined with F (p=0.008). Since no other biomarker/response interaction was observed using classical histological sub-typing, a molecular approach was undertaken to segment NSCLC into mechanism-based subpopulations. Principal component analysis and unsupervised Bayesian clustering identified 3 NSCLC subsets that resembled the steps of the epithelial-to-mesenchymal transition: E-cadherin high/IRS-1 low (Epithelial-like), E-cadherin intermediate/IRS-1 high (Transitional) and E-cadherin low/IRS-1 low (Mesenchymal-like). Several markers of the IGF-IR pathway were over-expressed in the Transitional subset. Furthermore, a higher response rate to the combination of chemotherapy and F was observed in Transitional tumors (71%) compared to those in the Mesenchymal-like subset (32%, p=0.03). Only one Epithelial-like tumor was identified in the phase 2 study, suggesting that advanced NSCLC has undergone significant de-differentiation at diagnosis. Conclusion NSCLC comprises molecular subsets with differential sensitivity to IGF-IR inhibition. PMID:20670944

  17. Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Haruna; Yu, Dong; Miura, Masahiko

    2007-11-30

    Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. Asmore » expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo.« less

  18. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation

    PubMed Central

    Shen, Yang; Zeng, Lin; Novosyadlyy, Ruslan; Forest, Amelie; Zhu, Aiping; Korytko, Andrew; Zhang, Haifan; Eastman, Scott W; Topper, Michael; Hindi, Sagit; Covino, Nicole; Persaud, Kris; Kang, Yun; Burtrum, Douglas; Surguladze, David; Prewett, Marie; Chintharlapalli, Sudhakar; Wroblewski, Victor J; Shen, Juqun; Balderes, Paul; Zhu, Zhenping; Snavely, Marshall; Ludwig, Dale L

    2015-01-01

    Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor – type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique “capture-for-degradation” mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions. PMID:26073904

  19. Interactions between IGF-I, estrogen receptor-α (ERα), and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells.

    PubMed

    Mendoza, Rhone A; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E₂) and IGF-I is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating noninterfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions, and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human GH plus epidermal growth factor, but E₂ did not cause an increase in the number of the IGF-IR.low cells compared to controls. The proliferation rate of IGF-IR.low cells was only reduced in response to E₂ compared to controls, whereas their basal and hormone-stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E₂, without affecting control cells. Furthermore, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. In conclusion, suppressing IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK, which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate.

  20. Expression of IGF-I, IGF-I receptor and IGF binding proteins-1, -2, -3, -4 and -5 in human atherectomy specimens.

    PubMed

    Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C

    1996-12-17

    The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P < 0.05, respectively). IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4 and IGFBP-5 localized in the cytoplasm of sSMCs and in the extracellular matrix. Quantitative reverse transcription polymerase chain reaction (QRT-PCR) performed on de novo atherectomy specimens identified mRNA for IGF-I, IGF-I receptor, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5 levels and detected mRNA for IGFBP-3. The expression of IGF-I, IGF-I receptor, and IGFBPs in atherectomy plaques suggests that the development of coronary obstructive lesions may be a result of changes in the IGF system.

  1. Tumor suppressor BRCA1 is expressed in prostate cancer and controls IGF-I receptor (IGF-IR) gene transcription in an androgen receptor-dependent manner

    PubMed Central

    Schayek, Hagit; Haugk, Kathy; Sun, Shihua; True, Lawrence D.; Plymate, Stephen R.; Werner, Haim

    2010-01-01

    Purpose The insulin-like growth factor (IGF) system plays an important role in prostate cancer. The BRCA1 gene encodes a transcription factor with tumor suppressor activity. The involvement of BRCA1 in prostate cancer, however, has not yet been elucidated. The purpose of the present study was to examine the functional correlations between BRCA1 and the IGF system in prostate cancer. Experimental Design An immunohistochemical analysis of BRCA1 was performed on Tissue Microarrays comprising 203 primary prostate cancer specimens. In addition, BRCA1 levels were measured in prostate cancer xenografts and in cell lines representing early stages of the disease (P69 cells) and advanced stages (M12 cells). The ability of BRCA1 to regulate IGF-IR expression was studied by coexpression experiments using a BRCA1 expression vector along with an IGF-IR promoter-luciferase reporter. Results We found significantly elevated BRCA1 levels in prostate cancer in comparison to histologically normal prostate tissue (p < 0.001). In addition, an inverse correlation between BRCA1 and IGF-IR levels was observed in the AR-negative P69 and M12 prostate cancer-derived cell lines. Coexpression experiments in M12 cells revealed that BRCA1 was able to suppress IGF-IR promoter activity and endogenous IGF-IR levels. On the other hand, BRCA1 enhanced IGF-IR levels in LnCaP C4-2 cells expressing an endogenous AR. Conclusions We provide evidence that BRCA1 differentially regulates IGF-IR expression in AR positive and negative prostate cancer cells. The mechanism of action of BRCA1 involves modulation of IGF-IR gene transcription. In addition, immunohistochemical data is consistent with a potential survival role of BRCA1 in prostate cancer. PMID:19223505

  2. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR.

    PubMed

    Yin, Yancun; Chen, Chen; Chen, Jinliang; Zhan, Renhui; Zhang, Qiang; Xu, Xiaoyan; Li, Defang; Li, Minjing

    2017-07-01

    The 78kDa glucose regulated protein (GRP78) is a multifunctional chaperone that is involved in a variety of cellular processes. Insulin like growth factor I receptor (IGF-IR) often aberrant expresses in many types of tumor cells. The IGF-IR signaling plays key roles in carcinogenesis and maintenance of the malignant phenotype. The crosstalk between GRP78 and IGF-IR molecules has not well been illuminated. Here, we demonstrated a reciprocal regulation of GRP78 expression and IGF-IR pathway activation. IGF-I induced GRP78 expression in hepatoma cells. IGF-IR knockdown or IGF-IR inhibitor repressed GRP78 expression. Both phosphatidylinositol 3-kianase (PI3K) and mitogen-activated protein kinase (MAPK) pathways involved in IGF-I induction of GRP78 expression. Interestingly, treatment of hepatoma cells with IGF-I re-distributes GRP78 from endoplasmic reticulum (ER) to cell surface and promotes its physical interaction with IGF-IR. Also, GRP78 promotes IGF-IR phosphorylation and activation. Blocked of GRP78 by small interfering RNA or inhibition of GRP78 function by (-)-epigallocatechin gallate (EGCG) blocks IGF-I induced IGF-IR phosphorylation and its downstream signaling. Further, blocked cell surface GRP78 with antibody inhibits IGF-I stimulated cellular proliferation and migration. These data reveal an essential role for the molecular chaperone GRP78 in IGF-IR signaling and implicate the use of GRP78 inhibitors in blocking IGF-IR signaling in hepatoma cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Type I insulin-like growth factor receptor signaling in hematological malignancies

    PubMed Central

    Vishwamitra, Deeksha; George, Suraj Konnath; Shi, Ping; Kaseb, Ahmed O.; Amin, Hesham M.

    2017-01-01

    The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma. PMID:27661006

  4. Insulin-like growth factor-I receptor activity is essential for Kaposi's sarcoma growth and survival.

    PubMed

    Catrina, S-B; Lewitt, M; Massambu, C; Dricu, A; Grünler, J; Axelson, M; Biberfeld, P; Brismar, K

    2005-04-25

    Kaposi's sarcoma (KS) is a highly vascular tumour and is the most common neoplasm associated with human immunodeficiency virus (HIV-1) infection. Growth factors, in particular vascular endothelial growth factor (VEGF), have been shown to play an important role in its development. The role of insulin-like growth factors (IGFs) in the pathophysiology of different tumours led us to evaluate the role of IGF system in KS. The IGF-I receptors (IGF-IR) were identified by immunohistochemistry in biopsies taken from patients with different AIDS/HIV-related KS stages and on KSIMM cells (an established KS-derived cell line). Insulin-like growth factor-I is a growth factor for KSIMM cells with a maximum increase of 3H-thymidine incorporation of 130 +/- 27.6% (P < 0.05) similar to that induced by VEGF and with which it is additive (281 +/- 13%) (P < 0.05). Moreover, specific blockade of the receptor (either by alpha IR3 antibody or by picropodophyllin, a recently described selective IGF-IR tyrosine phosphorylation inhibitor) induced KSIMM apoptosis, suggesting that IGF-IR agonists (IGF-I and -II) mediate antiapoptotic signals for these cells. We were able to identify an autocrine loop essential for KSIMM cell survival in which IGF-II is the IGF-IR agonist secreted by the cells. In conclusion, IGF-I pathway inhibition is a promising therapeutical approach for KS tumours.

  5. IGF-I Stimulates Cooperative Interaction between the IGF-I Receptor and CSK Homologous Kinase that Regulates SHPS-1 Phosphorylation in Vascular Smooth Muscle Cells

    PubMed Central

    Radhakrishnan, Yashwanth; Shen, Xinchun; Maile, Laura A.; Xi, Gang

    2011-01-01

    IGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain. Because the kinase(s) that phosphorylates these tyrosines in response to IGF-I is unknown, we determined the roles of IGF-I receptor (IGF-IR) and CTK in mediating SHPS-1 phosphorylation. After IGF-I stimulation, CTK was recruited to IGF-IR and subsequently to phospho-SHPS-1. Expression of an IGF-IR mutant that eliminated CTK binding reduced CTK transfer to SHPS-1, SHPS-1 phosphorylation, and cell proliferation. IGF-IR phosphorylated SHPS-1, which provided a binding site for CTK. CTK recruitment to SHPS-1 resulted in a further enhancement of SHPS-1 phosphorylation. CTK knockdown also impaired IGF-I-stimulated SHPS-1 phosphorylation and downstream signaling. Analysis of specific tyrosines showed that mutation of tyrosines 428/452 in SHPS-1 to phenylalanine reduced SHPS-1 phosphorylation but allowed CTK binding. In contrast, the mutation of tyrosines 469/495 inhibited IGF-IR-mediated the phosphorylation of SHPS-1 and CTK binding, suggesting that IGF-IR phosphorylated Y469/495, allowing CTK binding, and that CTK subsequently phosphorylated Y428/452. Based on the above findings, we conclude that after IGF-I stimulation, CTK is recruited to IGF-IR and its recruitment facilitates CTK's subsequent association with phospho-SHPS-1. This results in the enhanced CTK transfer to SHPS-1, and the two kinases then fully phosphorylate SHPS-1, which is necessary for IGF-I stimulated cellular proliferation. PMID:21799000

  6. GSK3 Protein Positively Regulates Type I Insulin-like Growth Factor Receptor through Forkhead Transcription Factors FOXO1/3/4

    PubMed Central

    Huo, Xiaodong; Liu, Shu; Shao, Ting; Hua, Hui; Kong, Qingbin; Wang, Jiao; Luo, Ting; Jiang, Yangfu

    2014-01-01

    Glycogen synthase kinase-3 (GSK3) has either tumor-suppressive roles or pro-tumor roles in different types of human tumors. A number of GSK3 targets in diverse signaling pathways have been uncovered, such as tuberous sclerosis complex subunit 2 and β-catenin. The O subfamily of forkhead/winged helix transcription factors (FOXO) is known as tumor suppressors that induce apoptosis. In this study, we find that FOXO binds to type I insulin-like growth factor receptor (IGF-IR) promoter and stimulates its transcription. GSK3 positively regulates the transactivation activity of FOXO and stimulates IGF-IR expression. Although kinase-dead GSK3β cannot up-regulate IGF-IR, the constitutively active GSK3β induces IGF-IR expression in a FOXO-dependent manner. Serum starvation or Akt inhibition leads to an increase in IGF-IR expression, which could be blunted by GSK3 inhibition. GSK3β knockdown or GSK3 inhibitor suppresses IGF-I-induced IGF-IR, Akt, and ERK1/2 phosphorylation. Moreover, knockdown of GSK3β or FOXO1/3/4 leads to a decrease in cellular proliferation and abrogates IGF-I-induced hepatoma cell proliferation. These results suggest that GSK3 and FOXO may positively regulate IGF-I signaling and hepatoma cell proliferation. PMID:25053419

  7. Increased expression of both insulin receptor substrates 1 and 2 confers increased sensitivity to IGF-1 stimulated cell migration.

    PubMed

    de Blaquière, Gail E; May, Felicity E B; Westley, Bruce R

    2009-06-01

    Insulin-like growth factors (IGFs) are thought to promote tumour progression and metastasis in part by stimulating cell migration. Insulin receptor substrate-1 (IRS-1) and IRS-2 are multisite docking proteins positioned immediately downstream from the type I IGF and insulin receptors. IRS-2 but not IRS-1 has been reported to be involved in the migratory response of breast cancer cells to IGFs. The purpose of this investigation was to determine if IRS-1 is involved in, and to assess the contributions of IRS-1 and IRS-2 to, the migratory response of breast cancer cells to IGFs. The expression of IRS-1 and IRS-2 varied considerably between ten breast cancer cell lines. Oestrogen increases expression of the type I IGF receptor, IRS-1 and IRS-2 in MCF-7 and ZR-75 cells. Oestrogens may control the sensitivity of breast cancer cells to IGFs by regulating the expression of components of the IGF signal transduction pathway. The migratory response to a range of IGF-1 concentrations was measured in MCF-7 and MDA-MB-231 breast cancer cells in which IRS-1 and IRS-2 levels were modulated using a doxycycline-inducible expression system. Induction of both IRS-1 and IRS-2 expression increased the sensitivity of the migratory response to IGF-1 but did not increase the magnitude of the response stimulated at higher concentrations of IGF-1. Knockdown of IRS-1, IRS-2 and the type I IGF receptor in MCF-7 and MDA-MB-2231 cells decreased sensitivity to IGF-1. We conclude that both IRS-1 and IRS-2 control the migratory response of breast cancer cells to IGF-1 and may, therefore, be key molecules in determining breast cancer spread.

  8. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice.

    PubMed

    Li, Lijun; Byrd, Marcus; Doh, Kwame; Dixon, Patrice D; Lee, Hwal; Tiwari, Swasti; Ecelbarger, Carolyn M

    2016-12-01

    The major site of fructose metabolism in the kidney is the proximal tubule (PT). To test whether insulin and/or IGF1 signaling in the PT is involved in renal structural/functional responses to dietary fructose, we bred mice with dual knockout (KO) of the insulin receptor (IR) and the IGF1 receptor (IGF1R) in PT by Cre-lox recombination, using a γ-glutamyl transferase promoter. KO mice had slightly (~10%) reduced body and kidney weights, as well as, a reduction in mean protein-to-DNA ratio in kidney cortex suggesting smaller cell size. Under control diet, IR and IGF1R protein band densities were 30-50% (P < 0.05) lower than WT, and the relative difference was greater in male animals. Male, but not female KO, also had significantly reduced band densities for Akt (protein kinase B), phosphorylated Akt T308 and IR Y 1162/1163 A high-fructose diet (1-month) led to a significant increase in kidney weight in WT males (12%), but not in KO males or in either genotype of female mice. Kidney enlargement in the WT males was accompanied by a small, insignificant fall in protein-to-DNA ratio, supporting hyperplasia rather than hypertrophy. Fructose feeding of male WT mice led to significantly higher sodium bicarbonate exchanger (NBCe1), sodium hydrogen exchanger (NHE3), sodium phosphate co-transporter (NaPi-2), and transforming growth factor-β (TGF-β) abundances, as compared to male KO, suggesting elevated transport capacity and an early feature of fibrosis may have accompanied the renal enlargement. Overall, IR and/or IGF1R appear to have a role in PT cell size and enlargement in response to high-fructose diet. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Epitope mapping of the alpha-chain of the insulin-like growth factor I receptor using antipeptide antibodies.

    PubMed

    Delafontaine, P; Ku, L; Ververis, J J; Cohen, C; Runge, M S; Alexander, R W

    1994-12-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells (VSMC). The IGF I receptor (IGF IR) is a heterotetramer composed of two cross-linked extracellular alpha-chains and two membrane-spanning beta-chains that contain a tyrosine-kinase domain. It has a high degree of sequence similarity to the insulin receptor (IR), and the putative ligand-specific binding site has been localized to a cysteine-rich region (CRR) of the alpha-chain. To obtain insights into antigenic determinants of the IGF IR, we raised a panel of site-specific polyclonal antibodies against short peptide sequences N-terminal to and within the CRR. Several antibodies raised against linear epitopes within the CRR bound to solubilized and native rat and human IGF IR by ELISA, did not cross-react with IR, but unexpectedly failed to inhibit 125I-IGF I binding. A polyclonal antibody directed against a 48-amino acid synthetic peptide, corresponding to a region of the CRR postulated to be essential for ligand binding, failed to react with either solubilized, reduced or intact IGF IR. Three antibodies specific for the N-terminus of the alpha-chain reacted with solubilized and native IGF IR. One of these, RAB 6, directed against amino acids 38-44 of the IGF IR, inhibited 125I-IGF I binding to rat aortic smooth muscle cells (RASM) and to IGF IR/3T3 cells (overexpressing human IGF IR) by up to 45%. Immunohistochemical analysis revealed strong IGF IR staining in the medial smooth muscle cell layer of rat aorta. These findings are consistent with a model wherein conformational epitopes within the CRR and linear epitopes within the N-terminus of the alpha-chain contribute to the IGF I binding pocket. These antibodies should provide a valuable tool to study structure-function relationships and in vivo regulation of the IGF IR.

  10. p53 Regulates insulin-like growth factor-I receptor gene expression in uterine serous carcinoma and predicts responsiveness to an insulin-like growth factor-I receptor-directed targeted therapy.

    PubMed

    Attias-Geva, Zohar; Bentov, Itay; Kidron, Dvora; Amichay, Keren; Sarfstein, Rive; Fishman, Ami; Bruchim, Ilan; Werner, Haim

    2012-07-01

    The role of the insulin-like growth factors (IGF) in endometrial cancer has been well established. The IGF-I receptor (IGF-IR), which mediates the biological actions of IGF-I, is usually overexpressed in endometrial tumours. Uterine serous carcinoma (USC) constitutes a defined histological category among endometrial cancers. Mutation of the p53 gene appears early in the course of the disease and is considered a key event in the initiation of USC. The aim of the present study was to evaluate the potential interactions between p53 and the IGF-IR in USC. In addition, we investigated the role of p53 as a biomarker in IGF-IR targeted therapies. Immunohistochemical analysis in a collection of 35 USC specimens revealed that IGF-IR is highly expressed in primary and metastatic USC. Likewise, p53 was expressed in 85.7% of primary tumours and 100% of metastases. A significant negative correlation between p53 expression and survival was noticed. In addition, using USC-derived cell lines we provide evidence that p53 regulates IGF-IR gene expression via a mechanism that involves repression of the IGF-IR promoter. We show that the mechanism of action of p53 involves interaction with zinc finger protein Sp1, a potent transactivator of the IGF-IR gene. Finally, we demonstrate that USC tumours overexpressing p53 are more likely to benefit from anti-IGF-IR therapies. In summary, we provide evidence that p53 regulates IGF-IR gene expression in USC cells via a mechanism that involves repression of the IGF-IR promoter. The interplay between the p53 and IGF-I signalling pathways is of major basic and translational relevance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Differential regulation of insulin-like growth factor-I receptor gene expression by wild type and mutant androgen receptor in prostate cancer cells.

    PubMed

    Schayek, Hagit; Seti, Hila; Greenberg, Norman M; Sun, Shihua; Werner, Haim; Plymate, Stephen R

    2010-07-29

    The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Differential regulation of insulin-like growth factor-I receptor gene expression by wild type and mutant androgen receptor in prostate cancer cells

    PubMed Central

    Schayek, Hagit; Seti, Hila; Greenberg, Norman M.; Sun, Shihua; Werner, Haim; Plymate, Stephen R.

    2010-01-01

    The progression of prostate cancer from an organ-confined, androgen-sensitive disease to a metastatic one is associated with dysregulation of androgen receptor (AR)-regulated target genes and with a decrease in insulin-like growth factor-I receptor (IGF-IR) expression. To investigate the differential effects of wild type (wt) and mutant AR on IGF-IR levels we employed a series of isogenic prostate-derived cell lines and human xenografts. We show that basal and phosphorylated IGF-IR levels progressively decreased as prostate cancer cells became more tumorigenic and metastatic. In addition, we show that wt, but not mutant, AR along with dihydrotestosterone treatment increased IGF-IR promoter activity and endogenous IGF-IR levels. ChIP analysis show enhanced AR binding to the IGF-IR promoter in AR-overexpressing cells. Finally, wt AR-overexpressing cells display an enhanced proliferation rate. In summary, we provide evidence that activated wt AR enhances IGF-IR transcription in prostate cancer cells via a mechanism that involves AR binding to the IGF-IR promoter. AR mutations alter the ability of the mutated protein to regulate IGF-IR expression. Our results suggest that prostate cancer progression is associated with a decrease in IGF-IR expression that could be the result of impaired ability of AR to stimulate IGF-IR gene expression. PMID:20417685

  13. Interactions between insulin-like growth factor-I, estrogen receptor-α (ERα) and ERβ in regulating growth/apoptosis of MCF-7 human breast cancer cells

    PubMed Central

    Mendoza, Rhone A.; Enriquez, Marlene I; Mejia, Sylvia M; Moody, Emily E; Thordarson, Gudmundur

    2011-01-01

    Understanding of the interactions between estradiol (E2) and insulin-like growth factor-I (IGF-I) is still incomplete. Cell lines derived from the MCF-7 breast cancer cells were generated with suppressed expression of the IGF-I receptor (IGF-IR), termed IGF-IR.low cells, by stable transfection using small interfering RNA (siRNA) expression vector. Vector for control cells carried sequence generating non-interfering RNA. Concomitant with reduction in the IGF-IR levels, the IGF-IR.low cells also showed a reduction in estrogen receptor α (ERα) and progesterone receptor expressions and an elevation in the expression of ERβ. The number of the IGF-IR.low cells was reduced in response to IGF-I and human growth hormone plus epidermal growth factor, but E2 did not cause increase in the number of the IGF-IR.low cells compared to controls. Proliferation rate of IGF-IR.low cells was only reduced in response to E2 compared to controls, whereas their basal and hormone stimulated apoptosis rate was increased. Phosphorylation of p38 mitogen activated protein kinase (p38 MAPK) was increased in the IGF-IR.low cells after treatment with E2, without affecting control cells. Further, phosphorylation of the tumor suppressor protein p53 was elevated in the IGF-IR.low cells compared to the controls. Summary, suppressing the IGF-IR expression decreased the level of ERα but increased the level of ERβ. Overall growth rate of the IGF-IR.low cells was reduced mostly through an increase in apoptosis without affecting proliferation substantially. We hypothesize that a decreased ERα:ERβ ratio triggered a rapid phosphorylation of p38 MAPK which in turn phosphorylated the p53 tumor suppressor and accelerated apoptosis rate. PMID:20974640

  14. The role of selenium in insulin-like growth factor I receptor (IGF-IR) expression and regulation of apoptosis in mouse osteoblasts.

    PubMed

    Ren, Gaixian; Ali, Tariq; Chen, Wei; Han, Dandan; Zhang, Limei; Gu, Xiaolong; Zhang, Shiyao; Ding, Laidi; Fanning, Séamus; Han, Bo

    2016-02-01

    Selenium (Se) is an essential component for animals and human beings. The chemoprotective role of Se, via the regulation of the cell cycle, stimulation of apoptosis and activation of some cytokines among others, is well known; however, the comprehensive effects of Se on the expression of IGF-IR and its regulation of apoptosis have not been investigated. Thus the aim of this study was to report on the effects that different concentrations of Se extert on body weight, blood serum IGF-IR levels and histopathology in mice; and on IGF-IR expression, proliferation and apoptosis in mouse osteoblasts. In vivo experiments showed a significant decrease in body weight, serum levels of IGF-IR and prominent toxicant effects on the liver, kidney, heart and spleen following the administration of defined concentrations of Se for 30 d. However, moderate levels (0.1 mg/kg) of Se gradually improved weight and serum IGF-IR. In vitro osteoblast experiments revealed that at concentrations of 5 × 10(-6) and 10(-5) mol/L Se, MTT activity decreased in comparison with control cells. Cell cycle, TEM and caspase-3 activity supported these observations including an increase in the sub-G1 phase and notable apoptosis in osteoblasts, along with a decrease in the expression of mRNA and protein levels of IGF-IR. Moreover, the MTT activity, mRNA and protein levels of IGF-IR in osteoblasts were decreased and caspase-3 activity was increased in siRNA groups as compared with non-siRNA groups. These data suggest that Se significantly affects IGF-IR expression, and that it contributes to the proliferation and regulation of apoptosis in osteoblasts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR.

    PubMed

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor(+/+) MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor(-/-) MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.

  16. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR

    PubMed Central

    Yin, Yancun; Hua, Hui; Li, Minjing; Liu, Shu; Kong, Qingbin; Shao, Ting; Wang, Jiao; Luo, Yuanming; Wang, Qian; Luo, Ting; Jiang, Yangfu

    2016-01-01

    Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation. PMID:26584640

  17. Combination of two insulin-like growth factor-I receptor inhibitory antibodies targeting distinct epitopes leads to an enhanced antitumor response.

    PubMed

    Dong, Jianying; Demarest, Stephen J; Sereno, Arlene; Tamraz, Susan; Langley, Emma; Doern, Adam; Snipas, Tracey; Perron, Keli; Joseph, Ingrid; Glaser, Scott M; Ho, Steffan N; Reff, Mitchell E; Hariharan, Kandasamy

    2010-09-01

    The insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor tyrosine kinase that mediates cell survival signaling and supports tumor progression in multiple tumor types. We identified a spectrum of inhibitory IGF-IR antibodies with diverse binding epitopes and ligand-blocking properties. By binding distinct inhibitory epitopes, two of these antibodies, BIIB4 and BIIB5, block both IGF-I and IGF-II binding to IGF-IR using competitive and allosteric mechanisms, respectively. Here, we explored the inhibitory effects of combining BIIB4 and BIIB5. In biochemical assays, the combination of BIIB4 and BIIB5 improved both the potency and extent of IGF-I and IGF-II blockade compared with either antibody alone. In tumor cells, the combination of BIIB4 and BIIB5 accelerated IGF-IR downregulation and more efficiently inhibited IGF-IR activation as well as downstream signaling, particularly AKT phosphorylation. In several carcinoma cell lines, the antibody combination more effectively inhibited ligand-driven cell growth than either BIIB4 or BIIB5 alone. Notably, the enhanced tumor growth-inhibitory activity of the BIIB4 and BIIB5 combination was much more pronounced at high ligand concentrations, where the individual antibodies exhibited substantially reduced activity. Compared with single antibodies, the BIIB4 and BIIB5 combination also significantly further enhanced the antitumor activity of the epidermal growth factor receptor inhibitor erlotinib and the mTOR inhibitor rapamycin. Moreover, in osteosarcoma and hepatocellular carcinoma xenograft models, the BIIB4 and BIIB5 combination significantly reduced tumor growth to a greater degree than each single antibody. Taken together, our results suggest that targeting multiple distinct inhibitory epitopes on IGF-IR may be a more effective strategy of affecting the IGF-IR pathway in cancer.

  18. Signal transduction by beta1 integrin receptors in human chondrocytes in vitro: collaboration with the insulin-like growth factor-I receptor.

    PubMed

    Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J

    1999-09-15

    We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.

  19. Crosstalk Between Leptin Receptor and IGF-IR in Breast Cancer: A Potential Mediator of Chemoresistance

    DTIC Science & Technology

    2011-04-01

    were serum-starved overnight, then stimulated with IGF-I (100 ng/mL) for 5 min, and/or treated with the IGF-IR kinase inhibitor I-OMe-AG538 (10 Amol /L...1 mmol/L in PBS and used at 10 Amol /L in culture. Cell Culture MDA-MB-231 (MDA231), MCF7, BT474, and SKBR3 breast cancer cells were purchased from the...were serum starved, treated with the IGF-IR kinase inhibitor I-OMe-AG538 (10 Amol /L overnight), and stimulated with IGF-I (100 ng/mL

  20. IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.

    PubMed

    Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S

    2017-11-01

    The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Customizing the targeting of IGF-1 receptor.

    PubMed

    Baserga, Renato

    2009-02-01

    The type 1 IGF receptor (IGF-IR) is activated by two ligands, IGF-1 and IGF-2, and by insulin at supraphysiological concentrations. It plays a significant role in the growth of normal and abnormal cells, and antibodies against the IGF-IR are now in clinical trials. Targeting of the IGF-IR in cancer cells (by antibodies or other means) can be improved by the appropriate selection of responsive tumors. This review focuses on the optimization of IGF-IR targeting in human cancer.

  2. IGF-II Promotes Stemness of Neural Restricted Precursors

    PubMed Central

    Ziegler, Amber N.; Schneider, Joel S.; Qin, Mei; Tyler, William A.; Pintar, John E.; Fraidenraich, Diego; Wood, Teresa L.; Levison, Steven W.

    2016-01-01

    Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance. PMID:22593020

  3. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Insulin/IGF and sex hormone axes in human endometrium and associations with endometrial cancer risk factors.

    PubMed

    Merritt, Melissa A; Strickler, Howard D; Einstein, Mark H; Yang, Hannah P; Sherman, Mark E; Wentzensen, Nicolas; Brouwer-Visser, Jurriaan; Cossio, Maria Jose; Whitney, Kathleen D; Yu, Herbert; Gunter, Marc J; Huang, Gloria S

    2016-06-01

    Experimental and observational data link insulin, insulin-like growth factor (IGF), and estrogens to endometrial tumorigenesis. However, there are limited data regarding insulin/IGF and sex hormone axes protein and gene expression in normal endometrial tissues, and very few studies have examined the impact of endometrial cancer risk factors on endometrial tissue biology. We evaluated endometrial tissues from 77 premenopausal and 30 postmenopausal women who underwent hysterectomy for benign indications and had provided epidemiological data. Endometrial tissue mRNA and protein levels were measured using quantitative real-time PCR and immunohistochemistry, respectively. In postmenopausal women, we observed higher levels of phosphorylated IGF-I/insulin receptor (pIGF1R/pIR) in diabetic versus non-diabetic women (p value =0.02), while women who reported regular nonsteroidal anti-inflammatory drug use versus no use had higher levels of insulin and progesterone receptors (both p values ≤0.03). We also noted differences in pIGF1R/pIR staining with OC use (postmenopausal women only), and the proportion of estrogen receptor-positive tissues varied by the number of live births and PTEN status (premenopausal only) (p values ≤0.04). Compared to premenopausal proliferative phase women, postmenopausal women exhibited lower mRNA levels of IGF1, but higher IGFBP1 and IGFBP3 expression (all p values ≤0.004), and higher protein levels of the receptors for estrogen, insulin, and IGF-I (all p values ≤0.02). Conversely, pIGF1R/pIR levels were higher in premenopausal proliferative phase versus postmenopausal endometrium (p value =0.01). These results highlight links between endometrial cancer risk factors and mechanistic factors that may contribute to early events in the multistage process of endometrial carcinogenesis.

  5. Effects of omega-3 and omega-6 fatty acids on IGF-I receptor signalling in colorectal cancer cells.

    PubMed

    Seti, Hila; Leikin-Frenkel, Alicia; Werner, Haim

    2009-07-01

    The insulin-like growth factor (IGF) system plays a critical role in normal growth and development as well as in malignant states. Most of the biological activities of the IGFs are mediated by the IGF-IR, which is over-expressed in most tumours and cancer cell lines. Fatty acids have critical roles in both systemic physiological processes (e.g. metabolism) and cellular events (e.g. proliferation, apoptosis, signal transduction, and gene expression). Alpha-linolenic acid (ALA) and linoleic acid (LA) are essential fatty acids of the omega-3 and omega-6 families, respectively. The aim of this study was to investigate the potential interactions between fatty acids and the IGF signal transduction pathways, and to evaluate the impact of this interplay on colon cancer cells survival and proliferation. Results of Western blot analyses revealed that ALA and LA enhanced the ligand-induced IGF-IR phosphorylation and, in addition, increased receptor phosphorylation in an IGF-I independent manner. Furthermore, fatty acid treatment led to phosphorylation of downstream signalling molecules, including Akt and Erk. In addition, FACS analysis and apoptosis measurements indicated that ALA and LA have a potential mitogenic effect on HCT116 cells, as reflected by the number of cells in S phase and by a reduction of PARP cleavage, implying a reduction in apoptotic activity. In summary, our results provide evidence that omega-3 and omega-6 fatty acids modulate IGF-I action in colon cancer cells.

  6. IGF-1 receptor cleavage in hypertension.

    PubMed

    Cirrik, Selma; Schmid-Schönbein, Geert W

    2018-06-01

    Increased protease activity causes receptor dysfunction due to extracellular cleavage of different membrane receptors in hypertension. The vasodilatory effects of insulin-like growth factor-1 (IGF-1) are decreased in hypertension. Therefore, in the present study the association of an enhanced protease activity and IGF-1 receptor cleavage was investigated using the spontaneously hypertensive rats (SHRs) and their normotensive Wistar Kyoto (WKY) controls (n = 4). Matrix metalloproteinase (MMP) activities were determined using gelatin zymography on plasma and different tissue samples. WKY aorta rings were incubated in WKY or SHR plasma with or without MMP inhibitors, and immunohistochemistry was used to quantify the densities of the alpha and beta IGF-1 receptor (IGF-1R) subunits and to determine receptor cleavage. The pAkt and peNOS levels in the aorta were investigated using immunoblotting as a measure of IGF-IR function. Increased MMP-2 and MMP-9 activities were detected in plasma and peripheral tissues of SHRs. IGF-1R beta labeling was similar in both groups without plasma incubation, but the fraction of immunolabeled area for IGF-1R alpha was lower in the endothelial layer of the SHR aorta (p < 0.05). A 24-h incubation of WKY aorta with SHR plasma did not affect the IGF-1R beta labeling density, but reduced the IGF-1R alpha labeling density in the endothelium (p < 0.05). MMP inhibitors prevented this decrease (p < 0.01). Western blot analyses revealed that the pAkt and peNOS levels under IGF-1-stimulated and -unstimulated conditions were lower in SHRs (p < 0.05). A reduced IGF-1 cellular response in the aorta was associated with the decrease in the IGF-1R alpha subunit in the SHR hypertension model. Our results indicate that MMP-dependent receptor cleavage contributed to the reduced IGF-1 response in SHRs.

  7. Insulin-like growth factor (IGF)-I, IGF-II and IGF-binding protein (IGFBP)-3 levels in Arab subjects with coronary heart disease.

    PubMed

    Akanji, A O; Suresh, C G; Al-Radwan, R; Fatania, H R

    2007-01-01

    Insulin-like growth factors (IGF-I, IGF-II) and their binding protein (IGFBP-3) may be risk markers for coronary heart disease (CHD). This study aimed to assess the levels and determinants of the serum levels of IGF-I, IGF-II and IGFBP-3 in Arab patients with established CHD. Two groups of subjects were matched for age, gender, BMI and waist-hip ratio (WHR): (i) CHD (n = 105), median age 51.0 (range 40.0-60.0) years; (ii) controls (n = 97) aged 49.0 (range 37.0-60.0) years. We measured fasting serum levels of glucose and lipoproteins (total cholesterol, triglycerides, LDL, HDL, apo B), insulin, HOMA-IR, IGF-I, IGF-II and IGFBP-3 and compared the results between groups. The effects of body mass and the metabolic syndrome (MS) on IGF levels were also examined, and linear correlations were sought between the various parameters. The levels of IGF-I, IGF-II and IGFBP-3 were significantly lower (all p<0.01) for the CHD group than for the control group. These differences were not influenced by BMI or with the presence of MS. In CHD, there were no significant correlations between levels of IGF-I and IGF-II and age, BMI, WHR, lipoprotein concentrations and insulin sensitivity, although IGFBP-3 had weakly significant relationships with some of the lipoproteins. Levels of IGF-I, IGF-II and IGFBP3 are reduced in male Arab patients with CHD, and did not appear influenced by traditional CHD risk factors such as age, BMI, insulin sensitivity and presence of MS. Perturbations in the IGF/IGFBP-3 axis may be potential additional targets for pharmacological manipulation in CHD.

  8. IGF-II receptors and IGF-II-stimulated glucose transport in human fat cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, M.K.; Buchanan, C.; Raineri-Maldonado, C.

    1990-03-01

    Insulin-like growth factor II (IGF-II) receptors have been described in rat but not in human adipocytes. In both species, IGF-II has been reported to stimulate glucose transport by interacting with the insulin receptor. In this study, we have unequivocally demonstrated the presence of IGF-II receptors in human adipocytes. 125I-labeled IGF-II specifically binds to intact adipocytes, membranes, and lectin-purified detergent solubilized extracts. Through the use of 0.5 mM disuccinimidyl suberate, 125I-IGF-II is cross-linked to a 260-kDa protein that is identified as the IGF-II receptor by displacement experiments with unlabeled IGF-II, IGF-I, and insulin and either by immunoprecipitation or by Western blotmore » analysis with mannose 6-phosphate receptor antibodies. The concentrations of IGF-II required for half-maximal and maximal stimulation of glucose transport in human adipocytes are 35 and 100 times more than that of insulin. The possibility of IGF-II stimulating glucose transport by interacting predominantly with the insulin receptor is suggested by the following: (1) the concentration of IGF-II that inhibits half of insulin binding is only 20 times more than that of insulin; (2) the lack of an additive effect of IGF-II and insulin for maximal stimulation of glucose transport; (3) the ability of monoclonal insulin receptor antibodies to decrease glucose transport stimulated by submaximal concentrations of both IGF-II and insulin; and (4) the ability of IGF-II to stimulate insulin receptor autophosphorylation albeit at a reduced potency when compared with insulin.« less

  9. Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis.

    PubMed

    Saldana, Sandra M; Lee, Heng-Huan; Lowery, Frank J; Khotskaya, Yekaterina B; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of phospho-AKT and phospho-p70s6k, as well as decreased migration and invasion of MDA-MB-231Br brain-seeking cells. In addition, transient ablation of IGFBP3, which is overexpressed in brain-seeking cells, blocks IGF-IR activation. Using an in vivo experimental brain metastasis model, we show that IGF-IR knockdown brain-seeking cells have reduced potential to establish brain metastases. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

  10. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  11. Serum from Chronic Hepatitis B Patients Promotes Growth and Proliferation via the IGF-II/IGF-IR/MEK/ERK Signaling Pathway in Hepatocellular Carcinoma Cells.

    PubMed

    Ji, Yuanyuan; Wang, Zhidong; Chen, Haiyan; Zhang, Lei; Zhuo, Fei; Yang, Qingqing

    2018-05-09

    Chronic hepatitis B virus (HBV) infection (CHB) plays a central role in the etiology of hepatocellular carcinoma (HCC). Emerging evidence implicates insulin-like growth factor (IGF)-II as a major risk factor for the growth and development of HCC. However, the relationship between HBV infection and IGF-II functions remains to be elucidated. Levels of circulating IGF-II and IGF-I receptor (IGF-IR) in healthy donors (HDs) and CHB patients were tested by ELISA. Human HCC cell lines (HepG-2, SMMC-7721, MHCC97-H) were incubated with serum from HDs and CHB patients at various concentrations for 24, 48, and 72 h. MTT and plate colony formation assays, BrdU ELISA, ELISA, small-interfering RNA (siRNA) transfection, quantitative real-time PCR, and western blot were applied to assess the functional and molecular mechanisms in HCC cell lines. Serum levels of IGF-II and IGF-IR were significantly higher in CHB patients than in HDs. Additionally, serum from CHB patients directly induced cell growth, proliferation, IGF-II secretion, and HDGF-related protein-2 (HRP-2) and nuclear protein 1 (NUPR1) mRNA and protein expression in HCC cells. Moreover, serum from CHB patients increased IGF-II-induced cell growth, proliferation, and HRP-2 and NUPR1 mRNA and protein expression in HCC cells. Blockade of IGF-IR clearly inhibited the above effects. Most importantly, interference with IGF-II function markedly repressed the cell proliferation and HRP-2 and NUPR1 mRNA and protein expression induced by serum from CHB patients. Furthermore, serum from CHB patients induced ERK phosphorylation via IGF-IR, with the MEK inhibitor PD98059 significantly decreasing CHB patient serum-induced IGF-II secretion, cell proliferation, and HRP-2 and NUPR1 mRNA and protein expression. Serum from CHB patients increases cell growth and proliferation and enhances HRP-2 and NUPR1 expression in HCC cells via the IGF-II/IGF-IR/MEK/ERK signaling pathway. These findings help to explain the molecular mechanisms

  12. TSH Compensates Thyroid-Specific IGF-I Receptor Knockout and Causes Papillary Thyroid Hyperplasia

    PubMed Central

    Müller, Kathrin; Führer, Dagmar; Mittag, Jens; Klöting, Nora; Blüher, Matthias; Weiss, Roy E.; Many, Marie-Christine; Schmid, Kurt Werner

    2011-01-01

    Although TSH stimulates all aspects of thyroid physiology IGF-I signaling through a tyrosine kinase-containing transmembrane receptor exhibits a permissive impact on TSH action. To better understand the importance of the IGF-I receptor in the thyroid in vivo, we inactivated the Igf1r with a Tg promoter-driven Cre-lox system in mice. We studied male and female mice with thyroidal wild-type, Igf1r+/−, and Igf1r−/− genotypes. Targeted Igf1r inactivation did transiently reduce thyroid hormone levels and significantly increased TSH levels in both heterozygous and homozygous mice without affecting thyroid weight. Histological analysis of thyroid tissue with Igf1r inactivation revealed hyperplasia and heterogeneous follicle structure. From 4 months of age, we detected papillary thyroid architecture in heterozygous and homozygous mice. We also noted increased body weight of male mice with a homozygous thyroidal null mutation in the Igf1r locus, compared with wild-type mice, respectively. A decrease of mRNA and protein for thyroid peroxidase and increased mRNA and protein for IGF-II receptor but no significant mRNA changes for the insulin receptor, the TSH receptor, and the sodium-iodide-symporter in both Igf1r+/− and Igf1r−/− mice were detected. Our results suggest that the strong increase of TSH benefits papillary thyroid hyperplasia and completely compensates the loss of IGF-I receptor signaling at the level of thyroid hormones without significant increase in thyroid weight. This could indicate that the IGF-I receptor signaling is less essential for thyroid hormone synthesis but maintains homeostasis and normal thyroid morphogenesis. PMID:21980075

  13. Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-α activation via the mitogen-activated protein kinase pathway

    PubMed Central

    Thordarson, Gudmundur; Slusher, Nicole; Leong, Harriet; Ochoa, Dafne; Rajkumar, Lakshmanaswamy; Guzman, Raphael; Nandi, Satyabrata; Talamantes, Frank

    2004-01-01

    Introduction Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. Methods Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. Results IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D1 and transforming growth factor-β3 in the mammary gland were lower in the age-matched virgin rats than in the untreated

  14. Insulin-like growth factor (IGF) binding protein from human decidua inhibits the binding and biological action of IGF-I in cultured choriocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritvos, O.; Ranta, T.; Jalkanen, J.

    1988-05-01

    The placenta expresses genes for insulin-like growth factors (IGFs) and possesses IGF-receptors, suggesting that placental growth is regulated by IGFs in an autocrine manner. We have previously shown that human decidua, but not placenta, synthesizes and secretes a 34 K IGF-binding protein (34 K IGF-BP) called placental protein 12. We now used human choriocarcinoma JEG-3 cell monolayer cultures and recombinant (Thr59)IGF-I as a model to study whether the decidual 34 K IGF-BP is able to modulate the receptor binding and biological activity of IGFs in trophoblasts. JEG-3 cells, which possess type I IGF receptors, were unable to produce IGF-BPs. Purifiedmore » 34 K IGF-BP specifically bound (125I)iodo-(Thr59)IGF-I. Multiplication-stimulating activity had 2.5% the potency of (Thr59)IGF-I, and insulin had no effect on the binding of (125I) iodo-(Thr59)IGF-I. 34 K IGF-BP inhibited the binding of (125I) iodo-(Thr59)IGF-I to JEG-3 monolayers in a concentration-dependent manner by forming with the tracer a soluble complex that could not bind to the cell surface as demonstrated by competitive binding and cross-linking experiments. After incubating the cell monolayers with (125I)iodo-(Thr59)IGF-I in the presence of purified binding protein, followed by cross-linking, no affinity labeled bands were seen on autoradiography. In contrast, an intensely labeled band at 40 K was detected when the incubation medium was analyzed, suggesting that (Thr59)IGF-I and 34 K IGF-BP formed a complex in a 1:1 molar ratio. Also, 34 K IGF-BP inhibited both basal and IGF-I-stimulated uptake of alpha-(3H)aminoisobutyric acid in JEG-3 cells. RNA analysis revealed that IGF-II is expressed in JEG-3 cells.« less

  15. Purification of Bone Marrow Clonal Cells from Patients with Myelodysplastic Syndrome via IGF-IR

    PubMed Central

    He, Qi; Chang, Chun-Kang; Xu, Feng; Zhang, Qing-Xia; Shi, Wen-Hui; Li, Xiao

    2015-01-01

    Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells. PMID:26469401

  16. IGF-I receptor 275124A>C (rs1464430) polymorphism and athletic performance.

    PubMed

    Ben-Zaken, Sigal; Meckel, Yoav; Nemet, Dan; Eliakim, Alon

    2015-05-01

    To examine the prevalence of the Insulin-Like Growth Factor-I receptor (IGF-IR) 275124A>C polymorphism, known to be associated with exercise-related cardiac hypertrophy, among elite endurance and power athletes. One hundred and fifty-nine athletes (118 men and 41 women, age: 35.9±12.2 yrs) participated in the study. We hypothesized that presence of the A allele will be significantly more common among endurance athletes (n=77) compared to power athletes (n=82) and non-physically active controls (n=68). Athletes within each group were further divided according to their individual best performance into elite athletes (those who had represented the country in international track-and-field or triathlon competitions or in the Olympic Games) and national-level athletes. The prevalence of the AA genotype was significantly higher (p<0.05) in the endurance athletes group (49%) compared to the power athletes group (33%), but did not differ from the control group (46%). There was no significant difference in the prevalence of the AA genotype between elite and national level endurance athletes (44% versus 52%, respectively). In contrast, among power athletes, the prevalence of the AA genotype was significantly lower in the elite compared to national level athletes (17% versus 42%, respectively; p<0.05). The results of the present study may suggest that the IGF-IR AA polymorphism is beneficial for endurance-type sports, but is not associated with elite endurance performance. In contrast, the presence of the AA genotype may be a disadvantage in power sports. All together the results of the present study suggest that IGF-IR polymorphism may differentiate between the two edges of the endurance-power athletic performance spectrum. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Gastric cancer: the role of insulin-like growth factor 2 (IGF 2) and its receptors (IGF 1R and M6-P/IGF 2R).

    PubMed

    Pavelić, Kresimir; Kolak, Toni; Kapitanović, Sanja; Radosević, Senka; Spaventi, Sime; Kruslin, Bozo; Pavelić, Jasminka

    2003-11-01

    Insulin-like growth factor 2 (IGF 2) appears to be involved in the progression of many tumours. It binds to at least two different types of receptor: IGF type 1 (IGF 1R) and mannose 6-phosphate/IGF type 2 (M6-P/IGF 2R). Ligand binding to IGF 1R provokes mitogenic and anti-apoptotic effects. M6-P/IGF 2R has a tumour suppressor function--it mediates IGF 2 degradation. Mutation of M6-P/IGF 2R causes both diminished growth suppression and augmented growth stimulation. The aim of this study was to investigate the role of IGF 2 and its receptors (IGF 1R and IGF 2R) in human gastric cancer. The expression of IGF 2 and its receptors was measured in order to analyse the possible correlation between the activity of these genes and cell proliferation in two different gastric tumour types: diffuse and intestinal. The effect of IGF 1 receptor blockage on cell proliferation and anchorage-independent cell growth was also examined. Increased expression of IGF 2 and IGF 1R genes (at the mRNA and protein level) was found in gastric cancer when compared with non-tumour tissue. Furthermore, there was a significant difference between IGF 2 expression in the more aggressive diffuse type and that in the intestinal type of gastric cancer. Moreover, the IGF 2 peptide level in the culture media obtained from the diffuse type of cancer cells was significantly higher when compared with the intestinal type. The level of IGF 2 peptide in the conditioned media strongly correlated with [3H]thymidine incorporation and cell proliferation. On the contrary, IGF 2R mRNA expression was much higher in the intestinal type of cancer than in the diffuse type. In addition, IGF 2R protein expression was substantially lower with progression of the diffuse cancer type to a higher stage. The alphaIR3 monoclonal antibody strongly inhibited [3H]thymidine incorporation and decreased the number of colonies in soft agar of cells overexpressing IGF 2. These findings suggest that members of the IGF family are involved

  18. Lycopene Enhances Docetaxel's Effect in Castration-Resistant Prostate Cancer Associated with Insulin-like Growth Factor I Receptor Levels1

    PubMed Central

    Tang, Yaxiong; Parmakhtiar, Basmina; Simoneau, Anne R; Xie, Jun; Fruehauf, John; Lilly, Michael; Zi, Xiaolin

    2011-01-01

    Docetaxel is currently the most effective drug for the treatment of castration-resistant prostate cancer (CRPC), but it only extends life by an average of 2 months. Lycopene, an antioxidant phytochemical, has antitumor activity against prostate cancer (PCa) in several models and is generally safe. We present data on the interaction between docetaxel and lycopene in CRPC models. The growth-inhibitory effect of lycopene on PCa cell lines was positively associated with insulin-like growth factor I receptor (IGF-IR) levels. In addition, lycopene treatment enhanced the growth-inhibitory effect of docetaxel more effectively on DU145 cells with IGF-IR high expression than on those PCa cell lines with IGF-IR low expression. In a DU145 xenograft tumor model, docetaxel plus lycopene caused tumor regression, with a 38% increase in antitumor efficacy (P = .047) when compared with docetaxel alone. Lycopene inhibited IGF-IR activation through inhibiting IGF-I stimulation and by increasing the expression and secretion of IGF-BP3. Downstream effects include inhibition of AKT kinase activity and survivin expression, followed by apoptosis. Together, the enhancement of docetaxel's antitumor efficacy by lycopene supplementation justifies further clinical investigation of lycopene and docetaxel combination for CRPC patients. CRPC patients with IGF-IR-overexpressing tumors may be most likely to benefit from this combination. PMID:21403837

  19. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    PubMed

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  20. Insulin/IGF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans Modulation. An Interplay with E-Cadherin

    PubMed Central

    Dias, Ana M.; Oliveira, Patrícia; Cabral, Joana; Seruca, Raquel; Oliveira, Carla; Morgado-Díaz, José Andrés; Reis, Celso A.; Pinho, Salomé S.

    2013-01-01

    Changes in glycosylation are considered a hallmark of cancer, and one of the key targets of glycosylation modifications is E-cadherin. We and others have previously demonstrated that E-cadherin has a role in the regulation of bisecting GlcNAc N-glycans expression, remaining to be determined the E-cadherin-dependent signaling pathway involved in this N-glycans expression regulation. In this study, we analysed the impact of E-cadherin expression in the activation profile of receptor tyrosine kinases such as insulin receptor (IR) and IGF-I receptor (IGF-IR). We demonstrated that exogenous E-cadherin expression inhibits IR, IGF-IR and ERK 1/2 phosphorylation. Stimulation with insulin and IGF-I in MDA-MD-435 cancer cells overexpressing E-cadherin induces a decrease of bisecting GlcNAc N-glycans that was accompanied with alterations on E-cadherin cellular localization. Concomitantly, IR/IGF-IR signaling activation induced a mesenchymal-like phenotype of cancer cells together with an increased tumor cell invasion capability. Altogether, these results demonstrate an interplay between E-cadherin and IR/IGF-IR signaling as major networking players in the regulation of bisecting N-glycans expression, with important effects in the modulation of epithelial characteristics and tumor cell invasion. Here we provide new insights into the role that Insulin/IGF-I signaling play during cancer progression through glycosylation modifications. PMID:24282611

  1. IR/IGF1R signaling as potential target for treatment of high-grade osteosarcoma

    PubMed Central

    2013-01-01

    Background High-grade osteosarcoma is an aggressive tumor most often developing in the long bones of adolescents, with a second peak in the 5th decade of life. Better knowledge on cellular signaling in this tumor may identify new possibilities for targeted treatment. Methods We performed gene set analysis on previously published genome-wide gene expression data of osteosarcoma cell lines (n=19) and pretreatment biopsies (n=84). We characterized overexpression of the insulin-like growth factor receptor (IGF1R) signaling pathways in human osteosarcoma as compared with osteoblasts and with the hypothesized progenitor cells of osteosarcoma – mesenchymal stem cells. This pathway plays a key role in the growth and development of bone. Since most profound differences in mRNA expression were found at and upstream of the receptor of this pathway, we set out to inhibit IR/IGF1R using OSI-906, a dual inhibitor for IR/IGF1R, on four osteosarcoma cell lines. Inhibitory effects of this drug were measured by Western blotting and cell proliferation assays. Results OSI-906 had a strong inhibitory effect on proliferation of 3 of 4 osteosarcoma cell lines, with IC50s below 100 nM at 72 hrs of treatment. Phosphorylation of IRS-1, a direct downstream target of IGF1R signaling, was inhibited in the responsive osteosarcoma cell lines. Conclusions This study provides an in vitro rationale for using IR/IGF1R inhibitors in preclinical studies of osteosarcoma. PMID:23688189

  2. [Differences in dynamics of insulin and insulin-like growth I (IGF-I) receptors internalization in isolated rat hepatocytes].

    PubMed

    Kolychev, A P; Ternovskaya, E E; Arsenieva, A V; Shapkina, E V

    2013-01-01

    Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is the most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones, the internalization dynamics of 125I-insulin and 125I-IGF-I was traced in isolated rat hepatocytes at 37 and 12 degrees C. There were established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37 degrees C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. However, essential differences in the internalization course of these two related peptide were obvious at the temperature of 12 degrees C. The internalization level of insulin receptors at 12 degrees C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocytes plasma membrane. At 12 degrees C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12 degrees C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar "inhibition mechanism" of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.

  3. Co-localization of TRPV2 and insulin-like growth factor-I receptor in olfactory neurons in adult and fetal mouse.

    PubMed

    Matsui, Hitoshi; Noguchi, Tomohiro; Takakusaki, Kaoru; Kashiwayanagi, Makoto

    2014-01-01

    TRPV2, a member of the transient receptor potential family, has been isolated as a capsaicin-receptor homolog and is thought to respond to noxious heat. Here we show that TRPV2 mRNA is predominantly expressed in the subpopulation of olfactory sensory neurons (OSNs). We carried out histochemical analyses of TRPV2 and insulin-like growth factor-I receptor (IGF-IR) using in situ hybridization and immunofluorescence in the adult olfactory system. In olfactory mucosa, intensive TRPV2 immunostaining was observed at the olfactory axon bundles but not at the soma. TRPV2-positive labeling was preferentially found in the olfactory nerve layer in the olfactory bulb (OB). Furthermore, we demonstrated that a positive signal for IGF-IR mRNA was detected in OSNs expressing TRPV2 mRNA. In embryonic stages, TRPV2 immunoreactivity was observed on axon bundles of developing OSNs in the nasal region starting from 12.5 d of gestation and through fetal development. Observations in this study suggest that TRPV2 coupled with IGF-IR localizes to growing olfactory axons in the OSNs.

  4. Prenatal stress affects insulin-like growth factor-1 (IGF-1) level and IGF-1 receptor phosphorylation in the brain of adult rats.

    PubMed

    Basta-Kaim, Agnieszka; Szczesny, Ewa; Glombik, Katarzyna; Stachowicz, Katarzyna; Slusarczyk, Joanna; Nalepa, Irena; Zelek-Molik, Agnieszka; Rafa-Zablocka, Katarzyna; Budziszewska, Boguslawa; Kubera, Marta; Leskiewicz, Monika; Lason, Wladyslaw

    2014-09-01

    It has been shown that stressful events occurring in early life have a powerful influence on the development of the central nervous system. Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation and survival of both neurons and glial cells and is thought to exert antidepressant-like activity. Thus, it is possible that disturbances in the function of the IGF-1 system may be responsible for disturbances observed over the course of depression. Prenatal stress was used as a valid model of depression. Adult male offspring of control and stressed rat dams were subjected to behavioural testing (forced swim test). The level of IGF-1 in the blood and the expression of IGF-1, IGF-1R, and IRS-1/2 in the hippocampus and frontal cortex using RT-PCR, ELISA and western blotting were measured. In addition the effect of intracerebroventricularly administered IGF-1 and/or the IGF-1R receptor antagonist JB1 in the forced swim test was studied. Prenatally stressed rats showed depressive like behaviour, including increased immobility time as well as decreased mobility and climbing. Intracerebroventricular administration of IGF-1 reversed these effects in stressed animals, whereas concomitant administration of the IGF-1R antagonist JB1 completely blocked the effects. Biochemical analysis of homogenates from the hippocampus and frontal cortex revealed decreases in IGF-1 level and IGF-1R phosphorylation along with disturbances in IRS-1 phosphorylation. These findings reveal that prenatal stress alters IGF-1 signalling, which may contribute to the behavioural changes observed in depression. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  5. The ELAV RNA-stability factor HuR binds the 5′-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation

    PubMed Central

    Meng, Zheng; King, Peter H.; Nabors, L. Burt; Jackson, Nateka L.; Chen, Ching-Yi; Emanuel, Peter D.; Blume, Scott W.

    2005-01-01

    The type I insulin-like growth factor receptor (IGF-IR) is an integral component in the control of cell proliferation, differentiation and apoptosis. The IGF-IR mRNA contains an extraordinarily long (1038 nt) 5′-untranslated region (5′-UTR), and we have characterized a diverse series of proteins interacting with this RNA sequence which may provide for intricate regulation of IGF-IR gene expression at the translational level. Here, we report the purification and identification of one of these IGF-IR 5′-UTR-binding proteins as HuR, using a novel RNA crosslinking/RNase elution strategy. Because HuR has been predominantly characterized as a 3′-UTR-binding protein, enhancing mRNA stability and generally increasing gene expression, we sought to determine whether HuR might serve a different function in the context of its binding the IGF-IR 5′-UTR. We found that HuR consistently repressed translation initiation through the IGF-IR 5′-UTR. The inhibition of translation by HuR was concentration dependent, and could be reversed in trans by addition of a fragment of the IGF-IR 5′-UTR containing the HuR binding sites as a specific competitor, or abrogated by deletion of the third RNA recognition motif of HuR. We determined that HuR repressed translation initiation through the IGF-IR 5′-UTR in cells as well, and that siRNA knockdown of HuR markedly increased IGF-IR protein levels. Interestingly, we also found that HuR potently inhibited IGF-IR translation mediated through internal ribosome entry. Kinetic assays were performed to investigate the mechanism of translation repression by HuR and the dynamic interplay between HuR and the translation apparatus. We found that HuR, occupying a cap-distal position, significantly delayed translation initiation mediated by cap-dependent scanning, but was eventually displaced from its binding site, directly or indirectly, as a consequence of ribosomal scanning. However, HuR perpetually blocked the activity of the IGF-IR IRES

  6. Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate.

    PubMed

    Botusan, Ileana Ruxandra; Zheng, Xiaowei; Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan

    2018-01-01

    IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in diabetes.

  7. Ligand-Binding Affinity at the Insulin Receptor Isoform-A and Subsequent IR-A Tyrosine Phosphorylation Kinetics are Important Determinants of Mitogenic Biological Outcomes

    PubMed Central

    Rajapaksha, Harinda; Forbes, Briony E.

    2015-01-01

    The insulin receptor (IR) is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A) arises from alternative splicing of exon 11 and has different ligand binding and signaling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II) with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival, and migration by activating some unique signaling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signaling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signaling (MAPK and Akt) and receptor internalization rates (related to mitogenic signaling). We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic [(His4, Tyr15, Thr49, Ile51) IGF-I, qIGF-I] or metabolic (S597 peptide) biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signaling through the IR-A. The threefold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316, and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide, it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I. PMID:26217307

  8. Autologous Bone Marrow Stromal Cells Genetically Engineered to Secrete an IGF-I Receptor Decoy Prevent the Growth of Liver Metastases

    PubMed Central

    Wang, Ni; Fallavollita, Lucia; Nguyen, Long; Burnier, Julia; Rafei, Moutih; Galipeau, Jacques; Yakar, Shoshana; Brodt, Pnina

    2009-01-01

    Liver metastases respond poorly to current therapy and remain a frequent cause of cancer-related mortality. We reported previously that tumor cells expressing a soluble form of the insulin-like growth factor-I receptor (sIGFIR) lost the ability to metastasize to the liver. Here, we sought to develop a novel therapeutic approach for prevention of hepatic metastasis based on sustained in vivo delivery of the soluble receptor by genetically engineered autologous bone marrow stromal cells. We found that when implanted into mice, these cells secreted high plasma levels of sIGFIR and inhibited experimental hepatic metastases of colon and lung carcinoma cells. In hepatic micrometastases, a reduction in intralesional angiogenesis and increased tumor cell apoptosis were observed. The results show that the soluble receptor acted as a decoy to abort insulin-like growth factor-I receptor (IGF-IR) functions during the early stages of metastasis and identify sustained sIGFIR delivery by cell-based vehicles as a potential approach for prevention of hepatic metastasis. PMID:19367255

  9. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  10. Skeletal unloading induces resistance to insulin-like growth factor I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E. R.

    1994-01-01

    In previous studies with a hindlimb elevation model, we demonstrated that skeletal unloading transiently inhibits bone formation. This effect is limited to the unloaded bones (the normally loaded humerus does not cease growing), suggesting that local factors are of prime importance. IGF-I is one such factor; it is produced in bone and stimulates bone formation. To determine the impact of skeletal unloading on IGF-I production and function, we assessed the mRNA levels of IGF-I and its receptor (IGF-IR) in the proximal tibia and distal femur of growing rats during 2 weeks of hindlimb elevation. The mRNA levels for IGF-I and IGF-IR rose during hindlimb elevation, returning toward control values during recovery. This was accompanied by a 77% increase in IGF-I levels in the bone, peaking at day 10 of unloading. Changes in IGF binding protein levels were not observed. Infusion of IGF-I (200 micrograms/day) during 1 week of hindlimb elevation doubled the increase in bone mass of the control animals but failed to reverse the cessation of bone growth in the hindlimb-elevated animals. We conclude that skeletal unloading induces resistance to IGF-I, which may result secondarily in increased local production of IGF-I.

  11. Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate

    PubMed Central

    Narayanan, Sampath; Grünler, Jacob; Sunkari, Vivekananda Gupta; Calissendorff, Freja S.; Ansurudeen, Ishrath; Illies, Christopher; Svensson, Johan; Jansson, John-Olov; Ohlsson, Claes; Brismar, Kerstin; Catrina, Sergiu-Bogdan

    2018-01-01

    Objective IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds. However, the contribution of circulating IGF-I to wound healing is unknown. Here we investigated the role of systemic IGF-I on wound healing rate in mice with deficiency of liver-derived IGF-I (LI-IGF-I-/- mice) during normal (normoglycemic) and impaired wound healing (diabetes). Methods LI-IGF-I-/- mice with complete inactivation of the IGF-I gene in the hepatocytes were generated using the Cre/loxP recombination system. This resulted in a 75% reduction of circulating IGF-I. Diabetes was induced with streptozocin in both LI-IGF-I-/- and control mice. Wounds were made on the dorsum of the mice, and the wound healing rate and histology were evaluated. Serum IGF-I and GH were measured by RIA and ELISA respectively. The expression of IGF-I, IGF-II and the IGF-I receptor in the skin were evaluated by qRT-PCR. The local IGF-I protein expression in different cell types of the wounds during wound healing process was analyzed using immunohistochemistry. Results The wound healing rate was similar in LI-IGF-I-/- mice to that in controls. Diabetes significantly delayed the wound healing rate in both LI-IGF-I-/- and control mice. However, no significant difference was observed between diabetic animals with normal or reduced hepatic IGF-I production. The gene expression of IGF-I, IGF-II and IGF-I receptor in skin was not different between any group of animals tested. Local IGF-I levels in the wounds were similar between of LI-IGF-I-/- and WT mice although a transient reduction of IGF-I expression in leukocytes in the wounds of LI-IGF-I-/- was observed seven days post wounding. Conclusion Deficiency in the liver-derived IGF-I does not affect wound healing in mice, neither in normoglycemic conditions nor in

  12. Insulin-like growth factor binding protein-3 induces angiogenesis through IGF-I- and SphK1-dependent mechanisms.

    PubMed

    Granata, R; Trovato, L; Lupia, E; Sala, G; Settanni, F; Camussi, G; Ghidoni, R; Ghigo, E

    2007-04-01

    Angiogenesis is critical for development and repair, and is a prominent feature of many pathological conditions. Based on evidence that insulin-like growth factor binding protein (IGFBP)-3 enhances cell motility and activates sphingosine kinase (SphK) in human endothelial cells, we have investigated whether IGFBP-3 plays a role in promoting angiogenesis. IGFBP-3 potently induced network formation by human endothelial cells on Matrigel. Moreover, it up-regulated proangiogenic genes, such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP)-2 and -9. IGFBP-3 even induced membrane-type 1 MMP (MT1-MMP), which regulates MMP-2 activation. Decreasing SphK1 expression by small interfering RNA (siRNA), blocked IGFBP-3-induced network formation and inhibited VEGF, MT1-MMP but not IGF-I up-regulation. IGF-I activated SphK, leading to sphingosine-1-phosphate (S1P) formation. The IGF-I effect on SphK activity was blocked by specific inhibitors of IGF-IR, PI3K/Akt and ERK1/2 phosphorylation. The disruption of IGF-I signaling prevented the IGFBP-3 effect on tube formation, SphK activity and VEGF release. Blocking ERK1/2 signaling caused the loss of SphK activation and VEGF and IGF-I up-regulation. Finally, IGFBP-3 dose-dependently stimulated neovessel formation into subcutaneous implants of Matrigel in vivo. Thus, IGFBP-3 positively regulates angiogenesis through involvement of IGF-IR signaling and subsequent SphK/S1P activation.

  13. Estradiol regulates the insulin-like growth factor-I (IGF-I) signalling pathway: A crucial role of phosphatidylinositol 3-kinase (PI 3-kinase) in estrogens requirement for growth of MCF-7 human breast carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Laurence; Legay, Christine; Adriaenssens, Eric

    2006-12-01

    Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110more » expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.« less

  14. Role of IGF-I Signaling in Muscle Bone Interactions

    PubMed Central

    Bikle, Daniel D; Tahimic, Candice; Chang, Wenhan; Wang, Yongmei; Philippou, Anastassios; Barton, Elisabeth R.

    2015-01-01

    Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. PMID:26453498

  15. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor.

    PubMed

    Mulvihill, Mark J; Cooke, Andrew; Rosenfeld-Franklin, Maryland; Buck, Elizabeth; Foreman, Ken; Landfair, Darla; O'Connor, Matthew; Pirritt, Caroline; Sun, Yingchaun; Yao, Yan; Arnold, Lee D; Gibson, Neil W; Ji, Qun-Sheng

    2009-09-01

    The IGF-1 receptor (IGF-1R) has been implicated in the promotion of tumorigenesis, metastasis and resistance to cancer therapies. Therefore, this receptor has become a major focus for the development of anticancer agents. Our lead optimization efforts that blended structure-based design and empirical medicinal chemistry led to the discovery of OSI-906, a novel small-molecule dual IGF-1R/insulin receptor (IR) kinase inhibitor. OSI-906 potently and selectively inhibits autophosphorylation of both human IGF-1R and IR, displays in vitro antiproliferative effects in a variety of tumor cell lines and shows robust in vivo anti-tumor efficacy in an IGF-1R-driven xenograft model when administered orally once daily. OSI-906 is a novel, potent, selective and orally bioavailable dual IGF-1R/IR kinase inhibitor with favorable preclinical drug-like properties, which has demonstrated in vivo efficacy in tumor models and is currently in clinical testing.

  16. Insulin-like growth factor (IGF)-I controls prostate fibromuscular development: IGF-I inhibition prevents both fibromuscular and glandular development in eugonadal mice.

    PubMed

    Kleinberg, David L; Ruan, Weifeng; Yee, Douglas; Kovacs, Kalman T; Vidal, Sergio

    2007-03-01

    Although antiandrogen therapy has been shown effective in treating prostatic tumors, it is relatively ineffective in treating benign prostatic hyperplasia (BPH). In an attempt to understand better the role of androgens in the development of the normal prostate and BPH, we studied the relative effects of testosterone and IGF-I on the development of the two compartments of the prostate in castrated IGF-I((-/-)) male mice. Here we report that IGF-I stimulated the development of the fibromuscular compartment, but testosterone inhibited it (stromal epithelial ratio 2.17 vs. 0.83, respectively; P < 0.001). Testosterone also impaired IGF-I induced insulin receptor substrate-1 phosphorylation and cell division, and increased apoptosis in fibromuscular tissue. In sharp contrast IGF-I and testosterone both stimulated the development of the glandular compartment individually and together. The combined effects were either additive or synergistic on compartment size, cell division, insulin receptor substrate-1 phosphorylation, and probasin production. Together they also had a greater inhibitory effect on apoptosis in gland tissue. To determine whether IGF-I inhibition would inhibit both fibromuscular and glandular compartments, we tested the effect of IGF binding protein-1 on prostate development in two different models: castrated Ames dwarf mice and eugonadal normal male mice. IGF binding protein-1 blocked bovine GH-induced fibromuscular and glandular development in both. It also inhibited epithelial cell division and increased apoptosis in both prostate compartments in the eugonadal mice. The observed discordance between IGF-I and testosterone control of prostate compartment development might explain the relative failure of 5alpha-reductase inhibition in BPH and why testosterone inhibition might theoretically reduce gland volume but increase fibromuscular tissue. The work also provides a rationale for considering IGF-I inhibition as therapy for BPH to reduce the size of both

  17. Small-Molecule Inhibition and Activation-Loop Trans-Phosphorylation of the IGF1 Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu,J.; Li, W.; Craddock, B.

    2008-01-01

    The insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase (RTK) that has a critical role in mitogenic signalling during embryogenesis and an antiapoptotic role in the survival and progression of many human tumours. Here, we present the crystal structure of the tyrosine kinase domain of IGF1R (IGF1RK), in its unphosphorylated state, in complex with a novel compound, cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1, 5-a]pyrazin-8-ylamine (PQIP), which we show is a potent inhibitor of both the unphosphorylated (basal) and phosphorylated (activated) states of the kinase. PQIP interacts with residues in the ATP-binding pocket and in the activation loop, which confers specificity for IGF1RK andmore » the highly related insulin receptor (IR) kinase. In this crystal structure, the IGF1RK active site is occupied by Tyr1135 from the activation loop of an symmetry (two-fold)-related molecule. This dimeric arrangement affords, for the first time, a visualization of the initial trans-phosphorylation event in the activation loop of an RTK, and provides a molecular rationale for a naturally occurring mutation in the activation loop of the IR that causes type II diabetes mellitus.« less

  18. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  19. Human conditions of insulin-like growth factor-I (IGF-I) deficiency

    PubMed Central

    2012-01-01

    Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range. PMID:23148873

  20. Estradiol and progesterone regulate the expression of insulin-like growth factor-I receptor and insulin-like growth factor binding protein-2 in the hypothalamus of adult female rats.

    PubMed

    Cardona-Gómez, G P; Chowen, J A; Garcia-Segura, L M

    2000-06-05

    Gonadal hormones interact with insulin-like growthfactor-I (IGF-I) to regulate synaptic plasticity during the estrous cycle in the rat mediobasal hypothalamus. It has been proposed that tanycytes, specialized glial cells lining the ventral region of the third ventricle, may regulate the availability of IGF-I to hypothalamic neurons. IGF-I levels in tanycytes fluctuate during the estrous cycle. Furthermore, estrogen administration to ovariectomized rats increases IGF-I levels in tanycytes, while progesterone, injected simultaneously with estrogen, blocks the estrogen-induced increase of IGF-I levels in tanycytes. To test whether hormonal regulation of IGF-I receptor (IGF-IR) and IGF binding protein-2 (IGFBP-2) may be involved in the accumulation of IGF-I in tanycytes, we assessed the effect of ovarian hormones on the levels of these molecules in the mediobasal hypothalamus of adult female rats. Ovariectomized animals were treated with either oil, estrogen, progesterone, or estrogen and progesterone simultaneously and then killed 6 or 24 h later. Some neurons, some astrocytes, and many tanycytes in the mediobasal hypothalamus were found by confocal microscopy to be immunoreactive for IGF-IR. IGFBP-2 immunoreactivity was restricted almost exclusively to tanycytes and ependymal cells and was colocalized with IGF-IR immunoreactivity in tanycytes. By electron microscope immunocytochemistry using colloidal gold labeling, IGF-IR and IGFBP-2 immunoreactivities were observed in the microvilli of tanycytes in the lumen of the third ventricle. IGF-IR and IGFBP-2 immunoreactive levels on the apical surface of tanycytes were significantly decreased by the administration of progesterone, either alone or in the presence of estradiol. IGF-IR levels in the mediobasal hypothalamus, measured by Western blotting, were not significantly affected by the separate administration of estradiol or progesterone to ovariectomized rats. However, the simultaneous administration of both hormones

  1. Insulin-like growth factor I, IGF-binding protein 3, and lung cancer risk in a prospective study of men in China.

    PubMed

    London, Stephanie J; Yuan, Jian-Min; Travlos, Gregory S; Gao, Yu-Tang; Wilson, Ralph E; Ross, Ronald K; Yu, Mimi C

    2002-05-15

    Insulin-like growth factor I (IGF-I) stimulates cell proliferation and inhibits apoptosis in the lung and other tissues by interacting with the IGF-I receptor. The major binding protein for IGF-I, insulin-like growth factor-binding protein 3 (IGFBP-3), modulates the effects of IGF-I but also inhibits cell growth and induces apoptosis independent of IGF-I and its receptor. In a prospective study of men in Shanghai, China, we examined the association between serum levels of IGF-I and IGFBP-3 and the subsequent risk of lung cancer. From 1986 to 1989, serum was collected from 18,244 men aged 45-64 years living in Shanghai without a history of cancer. We analyzed IGF-I and IGFBP-3 levels in serum from 230 case patients who developed incident lung cancer during follow-up and from 740 control subjects. Among 230 case patients and 659 matched control subjects, increased IGF-I levels were not associated with increased risk of lung cancer. However, for subjects in the highest quartile relative to the lowest quartile of IGFBP-3, the odds ratio (OR) for lung cancer, adjusted for smoking and IGF-I, was 0.50 (95% confidence interval [CI] = 0.25 to 1.02). When the analysis was restricted to ever smokers (184 case patients and 344 matched control subjects), the OR for lung cancer in men in the highest quartile of IGFBP-3 relative to those in the lowest quartile, adjusted for smoking and IGF-I, was 0.41 (95% CI = 0.18 to 0.92). In this prospective study of Chinese men, higher serum levels of IGF-I did not increase the risk of lung cancer. However, subjects with higher serum levels of IGFBP-3 were at reduced risk of lung cancer. This finding is consistent with experimental data that indicate that IGFBP-3 can inhibit cellular proliferation and induce apoptosis independent of IGF-I and the IGF-I receptor.

  2. Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells.

    PubMed

    Li, Zheqi; Levine, Kevin M; Bahreini, Amir; Wang, Peilu; Chu, David; Park, Ben Ho; Oesterreich, Steffi; Lee, Adrian V

    2018-01-01

    Increased evidence suggests that somatic mutations in the ligand-binding domain of estrogen receptor [ER (ERα/ESR1)] are critical mediators of endocrine-resistant breast cancer progression. Insulinlike growth factor-1 (IGF1) is an essential regulator of breast development and tumorigenesis and also has a role in endocrine resistance. A recent study showed enhanced crosstalk between IGF1 and ERα in ESR1 mutant cells, but detailed mechanisms are incompletely understood. Using genome-edited MCF-7 and T47D cell lines harboring Y537S and D538G ESR1 mutations, we characterized altered IGF1 signaling. RNA sequencing revealed upregulation of multiple genes in the IGF1 pathway, including insulin receptor substrate-1 (IRS1), consistent in both Y537S and D538G ESR1 mutant cell line models. Higher IRS1 expression was confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting. ESR1 mutant cells also showed increased levels of IGF-regulated genes, reflected by activation of an IGF signature. IGF1 showed increased sensitivity and potency in growth stimulation of ESR1 mutant cells. Analysis of downstream signaling revealed the phosphoinositide 3-kinase (PI3K)-Akt axis as a major pathway mediating the enhanced IGF1 response in ESR1 mutant cells. Decreasing IRS1 expression by small interfering RNA diminished the increased sensitivity to IGF1. Combination treatment with inhibitors against IGF1 receptor (IGF1R; OSI-906) and ER (fulvestrant) showed synergistic growth inhibition in ESR1 mutant cells, particularly at lower effective concentrations. Our study supports a critical role of enhanced IGF1 signaling in ESR1 mutant cell lines, pointing toward a potential for cotargeting IGF1R and ERα in endocrine-resistant breast tumors with mutant ESR1. Copyright © 2018 Endocrine Society.

  3. Mesenchymal stem cells expressing insulin-like growth factor-I (MSCIGF) promote fracture healing and restore new bone formation in Irs1 knockout mice: analyses of MSCIGF autocrine and paracrine regenerative effects.

    PubMed

    Granero-Moltó, Froilán; Myers, Timothy J; Weis, Jared A; Longobardi, Lara; Li, Tieshi; Yan, Yun; Case, Natasha; Rubin, Janet; Spagnoli, Anna

    2011-10-01

    Failures of fracture repair (nonunions) occur in 10% of all fractures. The use of mesenchymal stem cells (MSC) in tissue regeneration appears to be rationale, safe, and feasible. The contributions of MSC to the reparative process can occur through autocrine and paracrine effects. The primary objective of this study is to find a novel mean, by transplanting primary cultures of bone marrow-derived MSCs expressing insulin-like growth factor-I (MSC(IGF)), to promote these seed-and-soil actions of MSC to fully implement their regenerative abilities in fracture repair and nonunions. MSC(IGF) or traceable MSC(IGF)-Lac-Z were transplanted into wild-type or insulin-receptor-substrate knockout (Irs1(-/-)) mice with a stabilized tibia fracture. Healing was assessed using biomechanical testing, microcomputed tomography (μCT), and histological analyses. We found that systemically transplanted MSC(IGF) through autocrine and paracrine actions improved the fracture mechanical strength and increased new bone content while accelerating mineralization. We determined that IGF-I adapted the response of transplanted MSC(IGF) to promote their differentiation into osteoblasts. In vitro and in vivo studies showed that IGF-I-induced osteoglastogenesis in MSCs was dependent of an intact IRS1-PI3K signaling. Furthermore, using Irs1(-/-) mice as a nonunion fracture model through altered IGF signaling, we demonstrated that the autocrine effect of IGF-I on MSC restored the fracture new bone formation and promoted the occurrence of a well-organized callus that bridged the gap. A callus that was basically absent in Irs1(-/-) left untransplanted or transplanted with MSCs. We provided evidence of effects and mechanisms for transplanted MSC(IGF) in fracture repair and potentially to treat nonunions. Copyright © 2011 AlphaMed Press.

  4. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders.

    PubMed

    Chen, Jianling; Alberts, Ian; Li, Xiaohong

    2014-06-01

    The IGF-I/PI3K/AKT/mTOR signaling pathway plays an important role in the regulation of cell growth, proliferation, differentiation, motility, survival, metabolism and protein synthesis. Insulin-like growth factor-I (IGF-I) is synthesized in the liver and fibroblasts, and its biological actions are mediated by the IGF-I receptor (IGF-IR). The binding of IGF-I to IGF-IR leads to the activation of phosphatidylinositol 3-kinase (PI3K). Activated PI3K stimulates the production of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] and phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3]. The PH domain of AKT (protein kinase B, PKB) (v-AKT murine thymoma viral oncogene homolog) binds to PI(4,5)P2 and PI(3,4,5)P3, followed by phosphorylation of the Thr308 and Ser473 regulatory sites. Tuberous sclerosis complex 1 (TSC1) and TSC2 are upstream regulators of mammalian target of rapamycin (mTOR) and downstream effectors of the PI3K/AKT signaling pathway. The activation of AKT suppresses the TSC1/TSC2 heterodimer, which is an upstream regulator of mTOR. Dysregulated IGF-I/PI3K/AKT/mTOR signaling has been shown to be associated with autism spectrum disorders (ASDs). In this review, we discuss the emerging evidence for a functional relationship between the IGF-I/PI3K/AKT/mTOR pathway and ASDs, as well as a possible role of this signaling pathway in the diagnosis and treatment of ASDs. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  5. Serine Phosphorylation of the Insulin-like Growth Factor I (IGF-1) Receptor C-terminal Tail Restrains Kinase Activity and Cell Growth*

    PubMed Central

    Kelly, Geraldine M.; Buckley, Deirdre A.; Kiely, Patrick A.; Adams, David R.; O'Connor, Rosemary

    2012-01-01

    Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the 1248SFYYS1252 motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling. PMID:22685298

  6. IGF-I binding and receptor signal transduction in primary cell culture of muscle cells of gilthead sea bream: changes throughout in vitro development.

    PubMed

    Montserrat, N; Sánchez-Gurmaches, J; García de la Serrana, D; Navarro, M I; Gutiérrez, J

    2007-12-01

    We examined the possibility of culturing muscle cells of gilthead sea bream in vitro and assessed variations in insulin-like growth factor-I (IGF-I) binding during myocyte development. The viability of the cell culture was determined by fluorescence-activated cell-sorting analysis, which showed that the percentage of dead cells decreased with cell differentiation. The intracellular reduction of MTT into formazan pigment was preferentially carried out as cells differentiated (from day 4) indicating an increase in metabolic activity. IGF-I-binding assays demonstrated that the number of receptors increased from 190 +/- 0.09 fmol/mg protein in myocytes at day 5 to 360 +/- 0.09 fmol/mg protein in myotubes at day 12. The affinity of IGF-I receptors did not change significantly during cell development (from 0.89 +/- 0.09 to 0.98 +/- 0.09 nM). The activation of various kinase (ERK 1/2 MAPK and Akt/PKB) proteins by IGFs and insulin was studied by means of Western blot analysis. Levels of MAPK-P increased after IGF and insulin treatment during the first stages of cell culture, with a low response being observed at day 15, whereas IGFs displayed a stimulatory effect on Akt-P throughout the cell culture period, even on day 15. This study thus shows that (1) gilthead sea bream myocytes can be cultured, (2) they express functional IGF-I receptors that increase in number as they differentiate in vitro; (3) IGF signalling transduction through IGF-I receptors stimulates the MAPK and Akt pathways, depending on the development stage of the muscle cell culture.

  7. Enhancement of doxorubicin cytotoxicity of human cancer cells by tyrosine kinase inhibition of insulin receptor and type I IGF receptor

    PubMed Central

    Zeng, Xianke; Zhang, Hua; Oh, Annabell; Zhang, Yan; Yee, Douglas

    2015-01-01

    The type I insulin-like growth factor receptor (IGF1R) contributes to cancer cell biology. Disruption of IGF1R signaling alone or in combination with cytotoxic agents has emerged as a new therapeutic strategy. Our laboratory has shown that sequential treatment with doxorubicin (DOX) and anti-IGF1R antibodies significantly enhanced the response to chemotherapy. In this study, we examined whether inhibition of the tyrosine kinase activity of this receptor family would also enhance chemotherapy response. Cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1,5-a]pyrazin-8-ylamine (PQIP) inhibited IGF1R and insulin receptor (InsR) kinase activity and downstream activation of ERK1/2 and Akt in MCF-7 and LCC6 cancer cells. PQIP inhibited both monolayer growth and anchorage-independent growth in a dose-dependent manner. PQIP did not induce apoptosis, but rather, PQIP treatment was associated with an increase in autophagy. We examined whether sequential or combination therapy of PQIP with DOX could enhance growth inhibition. PQIP treatment together with DOX or DOX followed by PQIP significantly inhibited anchorage-independent growth in MCF-7 and LCC6 cells compared to single agent alone. In contrast, pre-treatment with PQIP followed by DOX did not enhance the cytotoxicity of DOX in vitro. Furthermore, OSI-906, a PQIP derivative, inhibited IGF-I signaling in LCC6 xenograft tumors in vivo. When given once a week, simultaneous administration of OSI-906 and DOX significantly enhanced the anti-tumor effect of DOX. In summary, these results suggest that timing and duration of the IGF1R/InsR tyrosine kinase inhibitors with chemotherapeutic agents should be evaluated in clinical trials. Long-term disruption of IGF1R/InsR may not be necessary when combined with cytotoxic chemotherapy. PMID:21850397

  8. 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual IGF-1R/IR inhibitor, in preclinical mouse models of lung cancer.

    PubMed

    McKinley, Eliot T; Bugaj, Joseph E; Zhao, Ping; Guleryuz, Saffet; Mantis, Christine; Gokhale, Prafulla C; Wild, Robert; Manning, H Charles

    2011-05-15

    To evaluate 2-deoxy-2-[(18)F]fluoro-d-glucose positron emission tomography imaging ((18)FDG-PET) as a predictive, noninvasive, pharmacodynamic (PD) biomarker of response following administration of a small-molecule insulin-like growth factor-1 receptor and insulin receptor (IGF-1R/IR) inhibitor, OSI-906. In vitro uptake studies of (3)H-2-deoxy glucose following OSI-906 exposure were conducted evaluating correlation of dose with inhibition of IGF-1R/IR as well as markers of downstream pathways and glucose metabolism. Similarly, in vivo PD effects were evaluated in human tumor cell line xenografts propagated in athymic nude mice by (18)FDG-PET at 2, 4, and 24 hours following a single treatment of OSI-906 for the correlation of inhibition of receptor targets and downstream markers. Uptake of (3)H-2-deoxy glucose and (18)FDG was significantly diminished following OSI-906 exposure in sensitive tumor cells and subcutaneous xenografts (NCI-H292) but not in an insensitive model lacking IGF-1R expression (NCI-H441). Diminished PD (18)FDG-PET, collected immediately following the initial treatment agreed with inhibition of pIGF-1R/pIR, reduced PI3K (phosphoinositide 3-kinase) and MAPK (mitogen activated protein kinase) pathway activity, and predicted tumor growth arrest as measured by high-resolution ultrasound imaging. (18)FDG-PET seems to serve as a rapid, noninvasive PD marker of IGF-1R/IR inhibition following a single dose of OSI-906 and should be explored clinically as a predictive clinical biomarker in patients undergoing IGF-1R/IR-directed cancer therapy. ©2011 AACR.

  9. Characterization of insulin-like growth factor I receptor on human erythrocytes.

    PubMed

    Hizuka, N; Takano, K; Tanaka, I; Honda, N; Tsushima, T; Shizume, K

    1985-12-01

    [125I]Insulin-like growth factor I (IGF-I) specifically bound to erythrocytes; the binding was saturable, and time and temperature dependent. Steady state binding was reached at 16 h at 4 C, and specific binding averaged 14.3 +/- 0.7% (+/- SEM) at a concentration of 3.6 X 10(9) cells/ml in seven normal subjects. [125I]IGF-I binding to the cells was displaced by unlabeled IGF-I in a dose-dependent manner. Scatchard analysis indicated a linear plot, and Ka and number of binding sites/cell were 1.43 +/- 0.07 X 10(9) M-1 and 20.7 +/- 2.2, respectively. Compared to IGF-I, the relative potencies of multiplication-stimulating activity and insulin for displacing [125I]IGF-I binding were 20% and 1%, respectively. [125I]IGF-I binding to erythrocytes from patients with acromegaly was lower than binding to cells from pituitary dwarfs. An inverse correlation between plasma IGF-I level and the number of IGF-I-binding sites per cell was found (r = -0.75; P less than 0.005). These results demonstrate that [125I]IGF-I binding to erythrocytes can be used for clinical measurement of the IGF-I receptor.

  10. Recombinant IGF-I: Past, present and future.

    PubMed

    Bright, George M

    2016-06-01

    Normal linear growth in humans requires GH and IGF-I. Diminished GH action resulting in reduced availability of IGF-I and IGF-binding proteins is the hallmarks of GH Insensitivity Syndromes (GHIS). The deficiencies are the perceived mechanisms for the growth failure of affected patients and the therapeutic targets for the restoration of normal growth. Early treatment attempts with pituitary-derived GH had limited effects in GHIS patients. Recombinant human insulin-like growth factor-I (rhIGF-I) treatment initially provides accelerated growth to GHIS children and provides substantial benefit. But, in general, catch up growth is less substantial with rhIGF-I treatment of GHIS than with rhGH treatment of GH Deficiency. Few classic GHIS patients have reached heights in the normal range (height SD score between -2.0 SD and +2.0 SD) with rhIGF-I monotherapy. A potential explanation is that while rhIGF-I treatment increases circulating concentrations of IGF-1 and IGFBP-3, such treatment reduces endogenous GH levels by negative feedback inhibition of pituitary GH release. In as much as both GH and IGF-I are required for good catch up growth, the loss of any residual GH signaling during IGF-I monotherapy in GHIS patients may attenuate possible catch up growth. Consistent with this explanation is the finding that, as predicted by the preclinical studies by Ross Clark, combination of rhGH & rhIGF-1 provides better growth responses than rhIGF-1 monotherapy in prepubertal children with short stature and low IGF-I levels despite normal stimulated GH responses. In the future, rhGH and rhIGF-I combination therapy can potentially improve growth outcomes over that seen with rhIGF-I monotherapy in all GHIS patients except in those with a total lack of functional GH signaling. Future alternative treatments for GHIS subjects may also include the use of post-growth hormone receptor signaling agonists which restore both GH signaling and IGF-I exposures or the addition of long-acting rh

  11. IGF-1R mRNA expression is increased in obese children.

    PubMed

    Ricco, Rafaela Cristina; Ricco, Rubens Garcia; Queluz, Mariangela Carletti; de Paula, Mariana Teresa Sarti; Atique, Patricia Volpon; Custódio, Rodrigo José; Tourinho Filho, Hugo; Del Roio Liberatori, Raphael; Martinelli, Carlos Eduardo

    2018-04-01

    Obese children are often taller than age-matched subjects. Reports on GH and IGF-I levels in obese individuals are controversial, with normal and reduced GH-IGF-I levels having been reported in this group of patients. Thus, the aim of this study was to analyse insulin-like growth factor type 1 receptor (IGF-IR) mRNA expression in obese children. Forty-seven pre-pubertal children were included in this study: 29 were obese and taller than their target height, and 18 were normal eutrophic controls. Fasting blood samples were collected for IGF-IR mRNA expression in isolated lymphocytes and serum IGF-I, ALS, IGFBP-3, and IGFBP-1 concentration analysis. Relative IGF-IR gene expression (2 -ΔΔCT ) was significantly (P=0.025) higher in obese children (median 1.87) than in controls (1.15). Fourteen of the 29 obese subjects showed 2 -ΔΔCT values greater than or equal to 2, while only 2 individuals in the control group showed values above 2 (P=0.01). Obese children showed significantly (P=0.01) higher IGF-I concentrations than the control group (237ng/ml and 144ng/ml, respectively). Among obese patients, 65.5% had IGF-I values above the 75 percentile of the control group (P=0.02). ALS concentration was significantly (P=0.04) higher in the obese group, while IGFBP-3 levels were similar in obese and control children. IGFBP-1 concentration was lower in obese children, while insulin levels and HOMA-IR index were higher than in controls. The higher IGF-IR mRNA expression observed in obese children, associated with the higher IGF-I and ALS and the lower IGFBP-1 levels, suggest that the higher stature observed in these children may be due to increased IGF-I bioactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization of the Igf-II Binding Site of the IGF-II/MAN-6-P Receptor Extracellular Domain.

    NASA Astrophysics Data System (ADS)

    Garmroudi, Farideh

    1995-01-01

    In mammals, insulin-like growth factor II (IGF -II) and glycoproteins bearing the mannose 6-phosphate (Man -6-P) recognition marker bind with high affinity to the same receptor. The functional consequences of IGF-II binding to the receptor at the cell surface are not clear. In these studies, we sought to broaden our understanding of the functional regions of the receptor regarding its IGF -II binding site. The IGF-II binding/cross-linking domain of the IGF-II/Man-6-P receptor was mapped by sequencing receptor fragments covalently attached to IGF-II. Purified rat placental or bovine liver receptors were affinity-labeled, with ^{125}I-IGF-II and digested with endoproteinase Glu-C. Analysis of digests by gel electrophoresis revealed a major radiolabeled band of 18 kDa, which was purified by gel filtration chromatography followed by reverse-phase HPLC and electroblotting. Sequence analysis revealed that, the peptide S(H)VNSXPMF, located within extracellular repeat 10 and beginning with serine 1488 of the bovine receptor, was the best candidate for the IGF-II cross-linked peptide. These data indicated that residues within repeats 10-11 were important for IGF -II binding. To define the location of the IGF-II binding site further, a nested set of six human receptor cDNA constructs was designed to produce epitope-tagged fusion proteins encompassing the region between repeats 8 and 11 of the human IGF-II/Man-6-P receptor extracellular domain. These truncated receptors were transiently expressed in COS-7 cells, immunoprecipitated and analyzed for their abilities to bind and cross-link to IGF-II. All of the constructs were capable of binding/cross-linking to IGF-II, except for the 9.0-11 construct. Displacement curve analysis indicated that the truncated receptors were approximately equivalent in IGF-II binding affinity, but were of 5- to 10-fold lower affinity than full-length receptors. Sequencing of the 9.0-11 construct indicated the presence of a point mutation

  13. Molecular Basis of Signaling Specificity of Insulin and IGF Receptors: Neglected Corners and Recent Advances

    PubMed Central

    Siddle, Kenneth

    2011-01-01

    Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of “metabolic” and “mitogenic” responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to “metabolic” and “mitogenic” responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in “metabolic” or “mitogenic” signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears

  14. IGF-1-dependent subunit communication of the IGF-1 holoreceptor: Interactions between. alpha. beta. heterodimeric receptor halves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilden, P.A.; Treadway, J.L.; Morrison, B.D.

    1989-12-12

    Examination of {sup 125}I-IGF-1 affinity cross-linking and {beta}-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptors into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state, in a similar manner to that observed for the insulin receptor. The formation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 receptor complex from the partially purified {alpha}{beta} heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified {alpha}{beta} heterodimers into an {alpha}{sub 2}{beta}{sub 2} heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulatemore » the protein kinase activity of the purified {alpha}{beta} heterodimeric insulin receptor complex. Incubation of the {alpha}{sub 2}{beta}{sub 2} heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter {sup 125}I-IGF-1 binding or IGF-1 stimulation of protein kinase activity. However, IAN treatment of the {alpha}{beta} heterodimeric IGF-1 receptors inhibited the IGF-1 dependent covalent formation of the disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated {alpha}{beta} heterodimeric IGF-1 receptor complexes into a disulfide-linked {alpha}{sub 2}{beta}{sub 2} heterotetrameric state whereas Mn/MgATP induces a noncovalent association. Therefore, unlike the insulin receptor in which noncovalent association is sufficient for kinase activation, only the covalent assembly of the IGF-1 receptor {alpha}{beta} heterodimers into the {alpha}{sub 2}{beta}{sub 2} heterotetrameric holoreceptor complex is associated with ligand-stimulated protein kinase activation.« less

  15. GPER, IGF-IR, and EGFR transduction signaling are involved in stimulatory effects of zinc in breast cancer cells and cancer-associated fibroblasts.

    PubMed

    Pisano, Assunta; Santolla, Maria Francesca; De Francesco, Ernestina Marianna; De Marco, Paola; Rigiracciolo, Damiano Cosimo; Perri, Maria Grazia; Vivacqua, Adele; Abonante, Sergio; Cappello, Anna Rita; Dolce, Vincenza; Belfiore, Antonino; Maggiolini, Marcello; Lappano, Rosamaria

    2017-02-01

    Zinc (Zn) is an essential trace mineral that contributes to the regulation of several cellular functions; however, it may be also implicated in the progression of breast cancer through different mechanisms. It has been largely reported that the classical estrogen receptor (ER), as well as the G protein estrogen receptor (GPER, previously known as GPR30) can exert a main role in the development of breast tumors. In the present study, we demonstrate that zinc chloride (ZnCl 2 ) involves GPER in the activation of insulin-like growth factor receptor I (IGF-IR)/epidermal growth factor receptor (EGFR)-mediated signaling, which in turn triggers downstream pathways like ERK and AKT in breast cancer cells, and main components of the tumor microenvironment namely cancer-associated fibroblasts (CAFs). Further corroborating these findings, ZnCl 2 stimulates a functional crosstalk of GPER with IGF-IR and EGFR toward the transcription of diverse GPER target genes. Then, we show that GPER contributes to the stimulatory effects induced by ZnCl 2 on cell-cycle progression, proliferation, and migration of breast cancer cells as well as migration of CAFs. Together, our data provide novel insights into the molecular mechanisms through which zinc may exert stimulatory effects in breast cancer cells and CAFs toward tumor progression. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. IGF-1 mediated phosphorylation of specific IRS-1 serines in Ames dwarf fibroblasts is associated with longevity.

    PubMed

    Papaconstantinou, John; Hsieh, Ching-Chyuan

    2015-11-03

    Insulin/IGF-1 signaling involves phosphorylation/dephosphorylation of serine/threonine or tyrosine residues of the insulin receptor substrate (IRS) proteins and is associated with hormonal control of longevity determination of certain long-lived mice. The stimulation of serine phosphorylations by IGF-1 suggests there is insulin/IGF-1 crosstalk that involves the phosphorylation of the same serine residues. By this mechanism, insulin and IGF-1 mediated phosphorylation of specific IRS-1 serines could play a role in longevity determination.We used fibroblasts from WT and Ames dwarf mice to examine whether: (a) IGF-1 stimulates phosphorylation of IRS-1 serines targeted by insulin; (b) the levels of serine phosphorylation differ in WT vs. Ames fibroblasts; and (c) aging affects the levels of these serine phosphorylations which are altered in the Ames dwarf mutant. We have shown that IRS-1 is a substrate for IGF-1 induced phosphorylation of Ser307, Ser612, Ser636/639, and Ser1101; that the levels of phosphorylation of these serines are significantly lower in Ames vs. WT cells; that IGF-1 mediated phosphorylation of these serines increases with age in WT cells. We propose that insulin/IGF-1 cross talk and level of phosphorylation of specific IRS-1 serines may promote the Ames dwarf longevity phenotype.

  17. Biochemical Characterization of Individual Human Glycosylated pro-Insulin-like Growth Factor (IGF)-II and big-IGF-II Isoforms Associated with Cancer

    PubMed Central

    Greenall, Sameer A.; Bentley, John D.; Pearce, Lesley A.; Scoble, Judith A.; Sparrow, Lindsay G.; Bartone, Nicola A.; Xiao, Xiaowen; Baxter, Robert C.; Cosgrove, Leah J.; Adams, Timothy E.

    2013-01-01

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling. PMID:23166326

  18. Biochemical characterization of individual human glycosylated pro-insulin-like growth factor (IGF)-II and big-IGF-II isoforms associated with cancer.

    PubMed

    Greenall, Sameer A; Bentley, John D; Pearce, Lesley A; Scoble, Judith A; Sparrow, Lindsay G; Bartone, Nicola A; Xiao, Xiaowen; Baxter, Robert C; Cosgrove, Leah J; Adams, Timothy E

    2013-01-04

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.

  19. Prostaglandin E(2) and insulin-like growth factor I interact to enhance proliferation of theca externa cells from chicken prehierarchical follicles.

    PubMed

    Jia, Yudong; Lin, Jinxing; Mi, Yuling; Zhang, Caiqiao

    2013-10-01

    The interactive effect of insulin-like growth factor I (IGF-I) and prostaglandin E2 (PGE2) on the proliferation of theca externa cells (TECs) was investigated in the prehierarchical small yellow follicles of laying hens. IGF-I manifested a proliferating effect like PGE2 on TECs, but this stimulating effect was restrained by AG1024 (IGF-IR inhibitor), KP372-1 (PKB/AKT inhibitor) or NS398 (COX-2 inhibitor). AG1024, KP372-1 or NS398 abolished IGF-I-stimulated COX-2 expression and PGE2 production. Meanwhile, KP372-1, NS398 or AG1024 depressed the PGE2-stimulated expression of COX-2 and IGF-IR mRNA. Therefore, the IGF-I receptor pathway up-regulates COX-2 expression and PGE2 synthesis via PKB signaling cascade, and then PGE2 stimulates IGF-IR mRNA expression to promote TEC proliferation in an autocrine pattern. Overall, the reciprocal stimulation of intracellular PGE2 and IGF-I may enhance TEC proliferation and facilitate the development of chicken prehierarchical follicles. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Insulin growth factor-1 (IGF-1) enhances hippocampal excitatory and seizure activity through IGF-1 receptor-mediated mechanisms in the epileptic brain.

    PubMed

    Jiang, Guohui; Wang, Wei; Cao, Qingqing; Gu, Juan; Mi, Xiujuan; Wang, Kewei; Chen, Guojun; Wang, Xuefeng

    2015-12-01

    Insulin-like growth factor-1 (IGF-1) is known to promote neurogenesis and survival. However, recent studies have suggested that IGF-1 regulates neuronal firing and excitatory neurotransmission. In the present study, focusing on temporal lobe epilepsy, we found that IGF-1 levels and IGF-1 receptor activation are increased in human epileptogenic tissues, and pilocarpine- and pentylenetetrazole-treated rat models. Using an acute model of seizures, we showed that lateral cerebroventricular infusion of IGF-1 elevates IGF-1 receptor (IGF-1R) signalling before pilocarpine application had proconvulsant effects. In vivo electroencephalogram recordings and power spectrogram analysis of local field potential revealed that IGF-1 promotes epileptiform activities. This effect is diminished by co-application of an IGF-1R inhibitor. In an in vitro electrophysiological study, we demonstrated that IGF-1 enhancement of excitatory neurotransmission and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor- and N-methyl-D-aspartate receptor-mediated currents is inhibited by IGF-1R inhibitor. Finally, activation of extracellular signal-related kinase (ERK)-1/2 and protein kinase B (Akt) in seizures in rats is increased by exogenous IGF-1 and diminished by picropodophyllin. A behavioural study reveals that the ERK1/2 or Akt inhibitor attenuates seizure activity. These results indicate that increased IGF-1 levels after recurrent hippocampal neuronal firings might, in turn, promote seizure activity via IGF-1R-dependent mechanisms. The present study presents a previously unappreciated role of IGF-1R in the development of seizure activity. © 2015 Authors; published by Portland Press Limited.

  1. Changes of Cerebral and/or Peripheral Adenosine A₁ Receptor and IGF-I Concentrations under Extended Sleep Duration in Rats.

    PubMed

    Chennaoui, Mounir; Arnal, Pierrick J; Dorey, Rodolphe; Sauvet, Fabien; Ciret, Sylvain; Gallopin, Thierry; Leger, Damien; Drogou, Catherine; Gomez-Merino, Danielle

    2017-11-17

    Extended sleep improves sustained attention and reduces sleep pressure in humans. Downregulation of adenosine A₁ receptor (A₁R) and modulation of the neurotrophic factor insulin growth factor-1 (IGF-I) in brain structures controlling attentional capacities could be involved. In the frontal cortex and hippocampus of rats, we measured adenosine A₁R and IGF-I protein concentrations after photoperiod-induced sleep extension. Two groups of twelve rats were adapted over 14 days to a habitual (CON) 12:12 light-dark (LD) schedule and an extended (EXT) 16:8 LD schedule. IGF-I content was also measured in plasma, liver, and skeletal muscle. In EXT, compared to CON rats, A₁R content in the frontal cortex was significantly lower ( p < 0.05), while IGF-I content was higher ( p < 0.001), and no significant change was observed in the hippocampus. IGF-I content in plasma and muscle was higher ( p < 0.001 and p < 0.01), while it was lower in liver ( p < 0.001). The absolute weight and weight gain were higher in EXT rats ( p < 0.01). These data suggest that 14 days under a 16:8 LD photoperiod respectively down- and upregulated cortical A₁R and IGF-I levels. This photoperiod induced an anabolic profile with increased weight gain and circulating and muscular IGF-I levels. An extension of sleep duration might favor cerebral and peripheral anabolism, which may help attentional and physical capacities.

  2. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain

    PubMed Central

    Nieto-Estévez, Vanesa; Defterali, Çağla; Vicario-Abejón, Carlos

    2016-01-01

    The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits. PMID:26941597

  3. PPAR-γ Agonists As Antineoplastic Agents in Cancers with Dysregulated IGF Axis

    PubMed Central

    Vella, Veronica; Nicolosi, Maria Luisa; Giuliano, Stefania; Bellomo, Maria; Belfiore, Antonino; Malaguarnera, Roberta

    2017-01-01

    It is now widely accepted that insulin resistance and compensatory hyperinsulinemia are associated to increased cancer incidence and mortality. Moreover, cancer development and progression as well as cancer resistance to traditional anticancer therapies are often linked to a deregulation/overactivation of the insulin-like growth factor (IGF) axis, which involves the autocrine/paracrine production of IGFs (IGF-I and IGF-II) and overexpression of their cognate receptors [IGF-I receptor, IGF-insulin receptor (IR), and IR]. Recently, new drugs targeting various IGF axis components have been developed. However, these drugs have several limitations including the occurrence of insulin resistance and compensatory hyperinsulinemia, which, in turn, may affect cancer cell growth and survival. Therefore, new therapeutic approaches are needed. In this regard, the pleiotropic effects of peroxisome proliferator activated receptor (PPAR)-γ agonists may have promising applications in cancer prevention and therapy. Indeed, activation of PPAR-γ by thiazolidinediones (TZDs) or other agonists may inhibit cell growth and proliferation by lowering circulating insulin and affecting key pathways of the Insulin/IGF axis, such as PI3K/mTOR, MAPK, and GSK3-β/Wnt/β-catenin cascades, which regulate cancer cell survival, cell reprogramming, and differentiation. In light of these evidences, TZDs and other PPAR-γ agonists may be exploited as potential preventive and therapeutic agents in tumors addicted to the activation of IGF axis or occurring in hyperinsulinemic patients. Unfortunately, clinical trials using PPAR-γ agonists as antineoplastic agents have reached conflicting results, possibly because they have not selected tumors with overactivated insulin/IGF-I axis or occurring in hyperinsulinemic patients. In conclusion, the use of PPAR-γ agonists in combined therapies of IGF-driven malignancies looks promising but requires future developments. PMID:28275367

  4. R1507, an Anti-Insulin-Like Growth Factor-1 Receptor (IGF-1R) Antibody, and EWS/FLI-1 siRNA in Ewing's Sarcoma: Convergence at the IGF/IGFR/Akt Axis

    PubMed Central

    Rodon, Jordi; Sun, Michael; Kuenkele, Klaus-Peter; Parsons, Henrique A.; Trent, Jonathan C.; Kurzrock, Razelle

    2011-01-01

    A subset of patients with Ewing's sarcoma responds to anti-insulin-like growth factor-1 receptor (IGF-1R) antibodies. Mechanisms of sensitivity and resistance are unknown. We investigated whether an anti-IGF-1R antibody acts via a pathway that could also be suppressed by small interfering (si) RNA against the EWS/FLI-1 fusion protein, the hallmark of Ewing's sarcoma. The growth of two Ewing's sarcoma cell lines (TC-32 and TC-71) was inhibited by the fully human anti-IGF-1R antibody, R1507 (clonogenic and MTT assays). TC-32 and TC-71 cells express high levels of IGF-2, while RD-ES and A4573 Ewing's cell lines, which were less responsive to R1507 in our assays, express low or undetectable IGF-2, respectively. TC-71 cells also expressed high levels of IGF-1R, and R1507 decreased steady-state levels of this receptor by internalization/degradation, an effect which was associated with a decrease in p-IGF-1R, p-IRS-1, and p-Akt. EWS/FLI-1 siRNA also decreased p-Akt, due to its ability to increase IGF-BP3 levels and subsequently decrease IGF-1 and IGF-2 levels, thus inhibiting signaling through p-IGF-1R. This inhibition correlated with growth suppression and apoptosis. The attenuation of Akt activation was confirmed in TC-71 and HEK-293 (human embryonic kidney) cells by transfecting them with IGF-1R siRNA. We conclude that antibodies and siRNA to IGF-1R, as well as siRNA to EWS/FLI-1, act via intersecting IGF/IGF-1R signals that suppress a common point in this pathway, namely the phosphorylation of Akt. PMID:22022506

  5. Effects of dietary genistein on GH/IGF-I axis of Nile tilapia Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Wei; Ru, Shaoguo

    2016-09-01

    There is considerable concern that isoflavones, such as genistein in fish feed composed of soybean protein, aff ects somatic growth in fish. Our previous works demonstrated that 30 and 300 μg/g dietary genistein had no significant eff ect on growth performance in Nile tilapia ( Oreochromis niloticus), but the higher level of genistein (3 000 μg/g) significantly depressed growth. This study was conducted to further examine the eff ects of dietary genistein on the endocrine disruption on growth hormone/insulin-like growth factor-I (GH/IGF-I) axis in Nile tilapia ( O. niloticus). Juvenile fish were fed by hand twice daily to satiation with one of four isonitrogenous and isoenergetic diets, each containing either 0, 30, 300 or 3 000 μg/g genistein. Following an 8-week feeding period, plasma GH and IGF-I levels were investigated by radioimmunoassay and gene expression levels of gh, ghrelin, gnrhs, ghr, npy, npyrs, pacap, ghrs, i gf-I, igf-Ir, and igfbp3 were examined by real-time PCR. The results show that no significant change in plasma GH and IGF-I levels in fish fed with diets containing 30 μg/g and 300 μg/g genistein. mRNA expression of genes along the GH/IGF-I axis remained unaff ected, except for igf-Ir, which was stimulated by the 300 μg/g genistein diet. While in fish fed the 3 000 μg/g genistein diet, the plasma GH and IGF-I levels decreased, and mRNA expression of gh, ghr2, npyr1, igf-I, and igf-Ir were also significantly depressed. In contrast, npy and igfbp3 mRNA expression were enhanced. This study provides convincing evidence for growth impediment by genistein by disturbing the GH/IGF-I axis in Nile tilapia O. niloticus.

  6. Insulin-like growth factors (IGF-I, free IGF-I and IGF-II) and insulin-like growth factor binding proteins (IGFBP-2, IGFBP-3, IGFBP-6, and ALS) in blood circulation.

    PubMed

    Yu, H; Mistry, J; Nicar, M J; Khosravi, M J; Diamandis, A; van Doorn, J; Juul, A

    1999-01-01

    Insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) play an important role in cell growth and differentiation. Clinical and epidemiological studies have indicated that measuring IGFs and IGFBPs in blood has potential implications in assessing growth-related abnormalities and risks of certain types of cancer. To facilitate the application, we reported a large collection of reference ranges of IGFs and IGFBPs in normal population and evaluations of these molecules in serum and plasma as well as the impact of freeze-thaw cycles on the measurement. IGF-I, IGFBP-3 andALS showed a similar pattern of change associated with age. Levels of these molecules were low at birth and increased with age through puberty. After puberty the levels declined slowly with age. Overall, IGF-I, IGFBP-3 and ALS were slightly higher in females than in males. Free IGF-I accounted for about 1% of the total IGF-I and its variation with age was similar to total IGF-I. IGF-II levels were also increased with age from birth to puberty, but became stable after puberty. There was little difference in IGF-II levels between genders. IGFBP-2 levels declined with age from birth to puberty. Levels of IGFBP-6 in contrast were increased with age. These IGF binding proteins were higher in males than in females. IGFs, IGFBP-3 and ALS were 5-10% higher in serum than in plasma. IGFBP-2 and IGFBP-6 differed substantially between serum and plasma. Freeze-thaw treatment up to five cycles had little impact on plasma levels of IGFs and IGFBP-3. Our observations suggest that levels of IGFs and their binding proteins are varied with age, gender, and types of specimen and that these variations need to be taken into consideration when IGFs and their binding proteins are utilized in clinic and research.

  7. New advances on the functional cross-talk between insulin-like growth factor-I and estrogen signaling in cancer.

    PubMed

    Bartella, Viviana; De Marco, Paola; Malaguarnera, Roberta; Belfiore, Antonino; Maggiolini, Marcello

    2012-08-01

    There is increasing awareness that estrogens may affect cell functions through the integration with a network of signaling pathways. The IGF system is a phylogenetically highly conserved axis that includes the insulin receptor (IR) and the insulin-like growth factor I receptor (IGF-IR) pathways, which are of crucial importance in the regulation of metabolism and cell growth in relationship to nutrient availability. Numerous studies nowadays document that estrogens cooperate with IGF system at multiple levels both in physiology and in disease. Several studies have focused on this bidirectional cross-talk in central nervous system, in mammary gland development and in cancer. Notably, cancer cells show frequent deregulation of the IGF system with overexpression of IR and/or IGF-IR and their ligands as well as frequent upregulation of the classical estrogen receptor (ER)α and the novel ER named GPER. Recent studies have, therefore, unraveled further mechanisms of cross-talk involving membrane initiated estrogen actions and the IGF system in cancer, that converge in the stimulation of pro-tumoral effects. These studies offer hope for new strategies aimed at the treatment of estrogen related cancers in order to prevent an estrogen-independent and more aggressive tumor progression. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors

    PubMed Central

    Mohammadiarani, Hossein; Vashisth, Harish

    2016-01-01

    The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane–solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane–solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor. PMID

  9. PAPP-A proteolytic activity enhances IGF bioactivity in ascites from women with ovarian carcinoma

    PubMed Central

    Thomsen, Jacob; Hjortebjerg, Rikke; Espelund, Ulrick; Ørtoft, Gitte; Vestergaard, Poul; Magnusson, Nils E.; Conover, Cheryl A.; Tramm, Trine; Hager, Henrik; Høgdall, Claus; Høgdall, Estrid; Oxvig, Claus; Frystyk, Jan

    2015-01-01

    Pregnancy-associated plasma protein-A (PAPP-A) stimulates insulin-like growth factor (IGF) action through proteolysis of IGF-binding protein (IGFBP)-4. In experimental animals, PAPP-A accelerates ovarian tumor growth by this mechanism. To investigate the effect of PAPP-A in humans, we compared serum and ascites from 22 women with ovarian carcinoma. We found that ascites contained 46-fold higher PAPP-A levels as compared to serum (P < 0.001). The majority (80%) of PAPP-A was enzymatically active. This is supported by the finding that ascites contained more cleaved than intact IGFBP-4 (P < 0.03). Ascites was more potent than serum in activating the IGF-I receptor (IGF-IR) in vitro (+31%, P < 0.05); in 8 of 22 patients by more than two-fold. In contrast, ascites contained similar levels of immunoreactive IGF-I, and lower levels of IGF-II (P < 0.001). Immunohistochemistry demonstrated the presence of IGF-IR in all but one tumor, whereas all tumors expressed PAPP-A, IGFBP-4, IGF-I and IGF-II. Addition of recombinant PAPP-A to ascites increased the cleavage of IGFBP-4 and enhanced IGF-IR activation (P < 0.05). In conclusion, human ovarian tumors express PAPP-A, IGFBP-4 and IGFs and these proteins are also present in ascites. We suggest that both soluble PAPP-A in ascites and tissue-associated PAPP-A serve to increase IGF bioactivity and, thereby, to stimulate IGF-IR-mediated tumor growth. PMID:26336825

  10. Postprandial hyperglycemia corrected by IGF-I (Increlex®) in Laron syndrome.

    PubMed

    Latrech, Hanane; Simon, Albane; Beltrand, Jacques; Souberbielle, Jean-Claude; Belmejdoub, Ghizlane; Polak, Michel

    2012-01-01

    Laron syndrome is caused by a mutation in the growth hormone (GH) receptor and manifests as insulin-like growth factor-I (IGF-I) deficiency, severe short stature, and early hypoglycemia. We report a case with postprandial hyperglycemia, an abnormality not reported previously. Postprandial hyperglycemia was due to chronic IGF-I deficiency, and was reversed by IGF-I replacement therapy. A Moroccan girl referred for short stature at 7 years and 8 months of age had dwarfism [height, 78 cm (-9 SDs); weight, 10 kg (-4 SDs)], hypoglycemia, and truncal obesity. Her serum IGF-I level was very low, and her baseline serum GH level was elevated to 47 mIU/l. Molecular analysis showed a homozygous mutation in the GH receptor gene. Continuous glucose monitoring before treatment showed asymptomatic hypoglycemia with postprandial hyperglycemia (2.5 g/l, 13.75 mmol/l). Treatment with recombinant human IGF-I (mecasermin, Increlex®) was started. The blood glucose profile improved with 0.04 µg/kg/day and returned to normal with 0.12 µg/kg/day. Postprandial hyperglycemia is a metabolic consequence of chronic IGF-I deficiency. The beneficial effect of IGF-I replacement therapy may be ascribable to improved postprandial transfer of glucose. Copyright © 2012 S. Karger AG, Basel.

  11. Overexpression of insulin-like growth factor-I receptor as a pertinent biomarker for hepatocytes malignant transformation

    PubMed Central

    Yan, Xiao-Di; Yao, Min; Wang, Li; Zhang, Hai-Jian; Yan, Mei-Juan; Gu, Xing; Shi, Yun; Chen, Jie; Dong, Zhi-Zhen; Yao, Deng-Fu

    2013-01-01

    AIM: To investigate the dynamic features of insulin-like growth factor-I receptor (IGF-IR) expression in rat hepatocarcinogenesis, and the relationship between IGF-IR and hepatocytes malignant transformation at mRNA or protein level. METHODS: Hepatoma models were made by inducing with 2-fluorenylacetamide (2-FAA) on male Sprague-Dawley rats. Morphological changes of hepatocytes were observed by pathological Hematoxylin and eosin staining, the dynamic expressions of liver and serum IGF-IR were quantitatively analyzed by an enzyme-linked immunosorbent assay. The distribution of hepatic IGF-IR was located by immunohistochemistry. The fragments of IGF-IR gene were amplified by reverse transcription-polymerase chain reaction, and confirmed by sequencing. RESULTS: Rat hepatocytes after induced by 2-FAA were changed dynamically from granule-like degeneration, precancerous to hepatoma formation with the progressing increasing of hepatic mRNA or IGF-IR expression. The incidences of liver IGF-IR, IGF-IR mRNA, specific IGF-IR concentration (ng/mg wet liver), and serum IGF-IR level (ng/mL) were 0.0%, 0.0%, 0.63 ± 0.17, and 1.33 ± 0.47 in the control; 50.0%, 61.1%, 0.65 ± 0.2, and 1.51 ± 0.46 in the degeneration; 88.9%, 100%, 0.66 ± 0.14, and 1.92 ± 0.29 in the precancerosis; and 100%, 100%, 0.96 ± 0.09, and 2.43 ± 0.57 in the cancerous group, respectively. IGF-IR expression in the cancerous group was significantly higher (P < 0.01) than that in any of other groups at mRNA or protein level. The closely positive IGF-IR relationship was found between livers and sera (r = 0.91, t = 14.222, P < 0.01), respectively. CONCLUSION: IGF-IR expression may participate in rat hepatocarcinogenesis and its abnormality should be an early marker for hepatocytes malignant transformation. PMID:24106410

  12. Testosterone enables growth and hypertrophy in fusion impaired myoblasts that display myotube atrophy: deciphering the role of androgen and IGF-I receptors.

    PubMed

    Hughes, David C; Stewart, Claire E; Sculthorpe, Nicholas; Dugdale, Hannah F; Yousefian, Farzad; Lewis, Mark P; Sharples, Adam P

    2016-06-01

    We have previously highlighted the ability of testosterone (T) to improve differentiation and myotube hypertrophy in fusion impaired myoblasts that display reduced myotube hypertrophy via multiple population doublings (PD) versus their parental controls (CON); an observation which is abrogated via PI3K/Akt inhibition (Deane et al. 2013). However, whether the most predominant molecular mechanism responsible for T induced hypertrophy occurs directly via androgen receptor or indirectly via IGF-IR/PI3K/Akt pathway is currently debated. PD and CON C2C12 muscle cells were exposed to low serum conditions in the presence or absence of T (100 nM) ± inhibitors of AR (flutamide/F, 40 μm) and IGF-IR (picropodophyllin/PPP, 150 nM) for 72 h and 7 days (early/late muscle differentiation respectively). T increased AR and Akt abundance, myogenin gene expression, and myotube hypertrophy, but not ERK1/2 activity in both CON and PD cell types. Akt activity was not increased significantly in either cell type with T. Testosterone was also unable to promote early differentiation in the presence of IGF-IR inhibitor (PPP) yet still able to promote appropriate later increases in myotube hypertrophy and AR abundance despite IGF-IR inhibition. The addition of the AR inhibitor powerfully attenuated all T induced increases in differentiation and myotube hypertrophy with corresponding reductions in AR abundance, phosphorylated Akt, ERK1/2 and gene expression of IGF-IR, myoD and myogenin with increases in myostatin mRNA in both cell types. Interestingly, despite basally reduced differentiation and myotube hypertrophy, PD cells showed larger T induced increases in AR abundance vs. CON cells, a response abrogated in the presence of AR but not IGF-IR inhibitors. Furthermore, T induced increases in Akt abundance were sustained despite the presence of IGF-IR inhibition in PD cells only. Importantly, flutamide alone reduced IGF-IR mRNA in both cell types across time points, with an observed

  13. Purification, amino acid sequence and characterisation of kangaroo IGF-I.

    PubMed

    Yandell, C A; Francis, G L; Wheldrake, J F; Upton, Z

    1998-01-01

    Insulin-like growth factor-I (IGF-I) and IGF-II have been purified to homogeneity from kangaroo (Macropus fuliginosus) serum, thus this represents the first report of the purification, sequencing and characterisation of marsupial IGFs. N-Terminal protein sequencing reveals that there are six amino acid differences between kangaroo and human IGF-I. Kangaroo IGF-II has been partially sequenced and no differences were found between human and kangaroo IGF-II in the 53 residues identified. Thus the IGFs appear to be remarkably structurally conserved during mammalian radiation. In addition, in vitro characterisation of kangaroo IGF-I demonstrated that the functional properties of human, kangaroo and chicken IGF-I are very similar. In an assay measuring the ability of the proteins to stimulate protein synthesis in rat L6 myoblasts, all IGF-I proteins were found to be equally potent. The ability of all three proteins to compete for binding with radiolabelled human IGF-I to type-1 IGF receptors in L6 myoblasts and in Sminthopsis crassicaudata transformed lung fibroblasts, a marsupial cell line, was comparable. Furthermore, kangaroo and human IGF-I react equally in a human IGF-I RIA using a human reference standard, radiolabelled human IGF-I and a polyclonal antibody raised against recombinant human IGF-I. This study indicates that not only is the primary structure of eutherian and metatherian IGF-I conserved, but also the proteins appear to be functionally similar.

  14. Neutral endopeptidase inhibits neuropeptide-mediated transactivation of the insulin-like growth factor receptor-Akt cell survival pathway.

    PubMed

    Sumitomo, M; Milowsky, M I; Shen, R; Navarro, D; Dai, J; Asano, T; Hayakawa, M; Nanus, D M

    2001-04-15

    G-protein coupled receptor (GPCR) agonists such as neuropeptides activate the insulin-like growth factor-1 receptor (IGF-IR) or the serine-threonine protein kinase Akt, suggesting that neuropeptides-GPCR signaling can cross-communicate with IGF-IR-Akt signaling pathways. Neutral endopeptidase 24.11 (NEP) is a cell-surface peptidase that cleaves and inactivates the neuropeptides endothelin-1 (ET-1) and bombesin, which are implicated in progression to androgen-independent prostate cancer (PC). We investigated the mechanisms of NEP regulation of neuropeptide-mediated cell survival in PC cells, including whether neuropeptide substrates of NEP induce phosphorylations of IGF-IR and Akt in PC cells. Western analyses revealed ET-1 and bombesin treatment induced phosphorylation of IGF-IRbeta and Akt independent of IGF-I in TSU-Pr1, DU145, and PC-3 PC cells, which lack NEP expression, but not in NEP-expressing LNCaP cells. Recombinant NEP and induced NEP expression in TSU-Pr1 cells using a tetracycline-repressive expression system inhibited ET-1-mediated phosphorylation of IGF-IRbeta and Akt, and blocked the protective effects of ET-1 against apoptosis induced by serum starvation. Incubation of TSU-Pr1 cells with specific kinase inhibitors together with ET-1 or bombesin showed that IGF-IR activation is required for neuropeptide-induced Akt phosphorylation, and that neuropeptide-induced Akt activation is predominantly mediated by Src and phosphatidylinositol 3-kinase but not by mitogen-activated protein kinase or protein kinase C. These data show that the neuropeptides ET-1 and bombesin stimulate ligand-independent activation of the IGF-IR, which results in Akt activation, and that this cross-communication between GPCR and IGF-IR signaling is inhibited by NEP.

  15. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, andmore » IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.« less

  16. c-Src, Insulin-Like Growth Factor I Receptor, G-Protein-Coupled Receptor Kinases and Focal Adhesion Kinase are Enriched Into Prostate Cancer Cell Exosomes.

    PubMed

    DeRita, Rachel M; Zerlanko, Brad; Singh, Amrita; Lu, Huimin; Iozzo, Renato V; Benovic, Jeffrey L; Languino, Lucia R

    2017-01-01

    It is well known that Src tyrosine kinase, insulin-like growth factor 1 receptor (IGF-IR), and focal adhesion kinase (FAK) play important roles in prostate cancer (PrCa) development and progression. Src, which signals through FAK in response to integrin activation, has been implicated in many aspects of tumor biology, such as cell proliferation, metastasis, and angiogenesis. Furthermore, Src signaling is known to crosstalk with IGF-IR, which also promotes angiogenesis. In this study, we demonstrate that c-Src, IGF-IR, and FAK are packaged into exosomes (Exo), c-Src in particular being highly enriched in Exo from the androgen receptor (AR)-positive cell line C4-2B and AR-negative cell lines PC3 and DU145. Furthermore, we show that the active phosphorylated form of Src (Src pY416 ) is co-expressed in Exo with phosphorylated FAK (FAK pY861 ), a known target site of Src, which enhances proliferation and migration. We further demonstrate for the first time exosomal enrichment of G-protein-coupled receptor kinase (GRK) 5 and GRK6, both of which regulate Src and IGF-IR signaling and have been implicated in cancer. Finally, Src pY416 and c-Src are both expressed in Exo isolated from the plasma of prostate tumor-bearing TRAMP mice, and those same mice have higher levels of exosomal c-Src than their wild-type counterparts. In summary, we provide new evidence that active signaling molecules relevant to PrCa are enriched in Exo, and this suggests that the Src signaling network may provide useful biomarkers detectable by liquid biopsy, and may contribute to PrCa progression via Exo. J. Cell. Biochem. 118: 66-73, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study.

    PubMed

    Hami, Javad; Kheradmand, Hamed; Haghir, Hossein

    2014-03-01

    Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left-right and male-female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left-right asymmetry in the hippocampus.

  18. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  19. Liver-specific GH receptor gene-disrupted (LiGHRKO) mice have decreased endocrine IGF-I, increased local IGF-I, and altered body size, body composition, and adipokine profiles.

    PubMed

    List, Edward O; Berryman, Darlene E; Funk, Kevin; Jara, Adam; Kelder, Bruce; Wang, Feiya; Stout, Michael B; Zhi, Xu; Sun, Liou; White, Thomas A; LeBrasseur, Nathan K; Pirtskhalava, Tamara; Tchkonia, Tamara; Jensen, Elizabeth A; Zhang, Wenjuan; Masternak, Michal M; Kirkland, James L; Miller, Richard A; Bartke, Andrzej; Kopchick, John J

    2014-05-01

    GH is an important regulator of body growth and composition as well as numerous other metabolic processes. In particular, liver plays a key role in the GH/IGF-I axis, because the majority of circulating "endocrine" IGF-I results from GH-stimulated liver IGF-I production. To develop a better understanding of the role of liver in the overall function of GH, we generated a strain of mice with liver-specific GH receptor (GHR) gene knockout (LiGHRKO mice). LiGHRKO mice had a 90% decrease in circulating IGF-I levels, a 300% increase in circulating GH, and significant changes in IGF binding protein (IGFBP)-1, IGFBP-2, IGFBP-3, IGFBP-5, and IGFBP-7. LiGHRKO mice were smaller than controls, with body length and body weight being significantly decreased in both sexes. Analysis of body composition over time revealed a pattern similar to those found in GH transgenic mice; that is, LiGHRKO mice had a higher percentage of body fat at early ages followed by lower percentage of body fat in adulthood. Local IGF-I mRNA levels were significantly increased in skeletal muscle and select adipose tissue depots. Grip strength was increased in LiGHRKO mice. Finally, circulating levels of leptin, resistin, and adiponectin were increased in LiGHRKO mice. In conclusion, LiGHRKO mice are smaller despite increased local mRNA expression of IGF-I in several tissues, suggesting that liver-derived IGF-I is indeed important for normal body growth. Furthermore, our data suggest that novel GH-dependent cross talk between liver and adipose is important for regulation of adipokines in vivo.

  20. The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity

    PubMed Central

    Lou, Meizhen; Garrett, Thomas P. J.; McKern, Neil M.; Hoyne, Peter A.; Epa, V. Chandana; Bentley, John D.; Lovrecz, George O.; Cosgrove, Leah J.; Frenkel, Maurice J.; Ward, Colin W.

    2006-01-01

    The insulin receptor (IR) and the type-1 insulin-like growth factor receptor (IGF1R) are homologous multidomain proteins that bind insulin and IGF with differing specificity. Here we report the crystal structure of the first three domains (L1–CR–L2) of human IR at 2.3 Å resolution and compare it with the previously determined structure of the corresponding fragment of IGF1R. The most important differences seen between the two receptors are in the two regions governing ligand specificity. The first is at the corner of the ligand-binding surface of the L1 domain, where the side chain of F39 in IR forms part of the ligand binding surface involving the second (central) β-sheet. This is very different to the location of its counterpart in IGF1R, S35, which is not involved in ligand binding. The second major difference is in the sixth module of the CR domain, where IR contains a larger loop that protrudes further into the ligand-binding pocket. This module, which governs IGF1-binding specificity, shows negligible sequence identity, significantly more α-helix, an additional disulfide bond, and opposite electrostatic potential compared to that of the IGF1R. PMID:16894147

  1. Insulin-like growth factor-I regulates GPER expression and function in cancer cells.

    PubMed

    De Marco, P; Bartella, V; Vivacqua, A; Lappano, R; Santolla, M F; Morcavallo, A; Pezzi, V; Belfiore, A; Maggiolini, M

    2013-02-07

    Functional cross talk between insulin-like growth factor-I (IGF-I) system and estrogen signaling has been largely reported, although the underlying molecular mechanisms remain to be fully elucidated. As GPR30/GPER mediates rapid cell responses to estrogens, we evaluated the potential of IGF-I to regulate GPER expression and function in estrogen receptor (ER)α-positive breast (MCF-7) and endometrial (Ishikawa) cancer cells. We found that IGF-I transactivates the GPER promoter sequence and upregulates GPER mRNA and protein levels in both cells types. Similar data were found, at least in part, in carcinoma-associated fibroblasts. The upregulation of GPER expression by IGF-I involved the IGF-IR/PKCδ/ERK/c-fos/AP1 transduction pathway and required ERα, as ascertained by specific pharmacological inhibitors and gene-silencing. In both MCF-7 and Ishikawa cancer cells, the IGF-I-dependent cell migration required GPER and its main target gene CTGF, whereas the IGF-I-induced proliferation required both GPER and cyclin D1. Our data demonstrate that the IGF-I system regulates GPER expression and function, triggering the activation of a signaling network that leads to the migration and proliferation of cancer cells.

  2. G protein-coupled receptors (GPCRs) That Signal via Protein Kinase A (PKA) Cross-talk at Insulin Receptor Substrate 1 (IRS1) to Activate the phosphatidylinositol 3-kinase (PI3K)/AKT Pathway.

    PubMed

    Law, Nathan C; White, Morris F; Hunzicker-Dunn, Mary E

    2016-12-30

    G protein-coupled receptors (GPCRs) activate PI3K/v-AKT thymoma viral oncoprotein (AKT) to regulate many cellular functions that promote cell survival, proliferation, and growth. However, the mechanism by which GPCRs activate PI3K/AKT remains poorly understood. We used ovarian preantral granulosa cells (GCs) to elucidate the mechanism by which the GPCR agonist FSH via PKA activates the PI3K/AKT cascade. Insulin-like growth factor 1 (IGF1) is secreted in an autocrine/paracrine manner by GCs and activates the IGF1 receptor (IGF1R) but, in the absence of FSH, fails to stimulate YXXM phosphorylation of IRS1 (insulin receptor substrate 1) required for PI3K/AKT activation. We show that PKA directly phosphorylates the protein phosphatase 1 (PP1) regulatory subunit myosin phosphatase targeting subunit 1 (MYPT1) to activate PP1 associated with the IGF1R-IRS1 complex. Activated PP1 is sufficient to dephosphorylate at least four IRS1 Ser residues, Ser 318 , Ser 346 , Ser 612 , and Ser 789 , and promotes IRS1 YXXM phosphorylation by the IGF1R to activate the PI3K/AKT cascade. Additional experiments indicate that this mechanism also occurs in breast cancer, thyroid, and preovulatory granulosa cells, suggesting that the PKA-dependent dephosphorylation of IRS1 Ser/Thr residues is a conserved mechanism by which GPCRs signal to activate the PI3K/AKT pathway downstream of the IGF1R. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy

    PubMed Central

    Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-01-01

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. PMID:26219865

  4. Role of IGF-I in follistatin-induced skeletal muscle hypertrophy.

    PubMed

    Barbé, Caroline; Kalista, Stéphanie; Loumaye, Audrey; Ritvos, Olli; Lause, Pascale; Ferracin, Benjamin; Thissen, Jean-Paul

    2015-09-15

    Follistatin, a physiological inhibitor of myostatin, induces a dramatic increase in skeletal muscle mass, requiring the type 1 IGF-I receptor/Akt/mTOR pathway. The aim of the present study was to investigate the role of IGF-I and insulin, two ligands of the IGF-I receptor, in the follistatin hypertrophic action on skeletal muscle. In a first step, we showed that follistatin increases muscle mass while being associated with a downregulation of muscle IGF-I expression. In addition, follistatin retained its full hypertrophic effect toward muscle in hypophysectomized animals despite very low concentrations of circulating and muscle IGF-I. Furthermore, follistatin did not increase muscle sensitivity to IGF-I in stimulating phosphorylation of Akt but, surprisingly, decreased it once hypertrophy was present. Taken together, these observations indicate that increased muscle IGF-I production or sensitivity does not contribute to the muscle hypertrophy caused by follistatin. Unlike low IGF-I, low insulin, as obtained by streptozotocin injection, attenuated the hypertrophic action of follistatin on skeletal muscle. Moreover, the full anabolic response to follistatin was restored in this condition by insulin but also by IGF-I infusion. Therefore, follistatin-induced muscle hypertrophy requires the activation of the insulin/IGF-I pathway by either insulin or IGF-I. When insulin or IGF-I alone is missing, follistatin retains its full anabolic effect, but when both are deficient, as in streptozotocin-treated animals, follistatin fails to stimulate muscle growth. Copyright © 2015 the American Physiological Society.

  5. Can insulin-like growth factor 1 (IGF-1), IGF-1 receptor connective tissue growth factor and Ki-67 labelling index have a prognostic role in pulmonary carcinoids?

    PubMed

    Kanakis, Georgios A; Grimelius, Lars; Papaioannou, Dimitrios; Kaltsas, Gregory; Tsolakis, Apostolos V

    2018-04-27

    Altered expression of Insulin-like Growth Factor-1 (IGF-1), its receptor (IGF-1R), Connective Tissue Growth Factor (CTGF) and Hypoxia Inducible Factor-1 (HIF-1), has been implicated in tumorigenesis. So far, these factors have not been studied systematically in Pulmonary Carcinoids (PCs). To examine IGF-1, IGF-1R, CTGF and HIF-1 expression in PCs, and assess their prognostic value over established factors. Retrospective study of 121 PCs (104 Typical and 17 Atypical). The expression of growth factors was studied immunohistochemically and tumors were considered positive if immunoreactivity appeared in >50% of cells. All studied parameters were expressed in the majority of tumors (IGF-1, IGF-1R, CTGF and HIF-1, in 78.5%, 67%, 72% and 78%, respectively). Their expression tended to be more frequent in TCs and in tumors with Ki-67≤2% (significant only for HIF-1; 82 vs. 53%; p=0.023 and 83 vs. 63%; p=0.025 respectively). CTGF was the only factor correlated with more extensive disease (larger size; presence of lymph node and distant metastases). According to logistic regression analysis, only advanced age, Ki-67≥3.4% and lymph node involvement could predict the development of distant metastases. IGF-1, IGF-1R, CTGF and HIF-1 are avidly expressed in PCs; however, their presence did not appear to be of statistically significant value over established prognostic factors.

  6. The quantitative and functional relation between insulin-like growth factor-I (IGF) and IGF-binding proteins during human osteoarthritis.

    PubMed

    Morales, Teresa I

    2008-04-01

    A previous hypothesis stated that during osteoarthritis (OA) increased insulin-like growth factor (IGF) binding proteins (IGFBPs) sequester IGFs and limit their access to the cell. The objective of this article was to test this by: (1) quantifying IGF and IGFBP-3 as well as their ratios in human OA cartilages, and (2) measuring the metabolic responses of diseased cartilage to IGF-I and its IGFBP-insensitive analogs. Knee or hip OA cartilages were staged for OA by histology. Cartilage slices were either extracted for assays of IGF proteins, or maintained intact as organ cultures. Proteoglycan (PG) metabolism +/- IGFs was measured by use of the (35)S-sulfate precursor. IGFBP-3 (ng/mg protein) was weakly correlated with OA score by regression analysis (R(2) = 0.122; p = 0.040; n = 35). IGF-I (ng/mg protein) was constant across all OA groups (ANOVA; p = .428, n = 18) and the IGF-I/IGFBP-3 ratios were > 1 in most samples. All OA cartilages responded to hrIGF-I by increasing PG synthesis [average 2.29-fold +/- 0.55 (+/-SD) at saturation, n = 12] irrespective of OA score. The des (1-3) IGF-I analog (which lacks the three N-terminal amino acids) had similar maximal effects (average 2.23-fold stimulation +/- 0.71, n = 10), but it was more effective in two out of three samples at suboptimal doses. The effect of hrIGF-I, des (1-3) IGF-I, or the B-chain analog on degradation was minimal. In summary, catabolism was insensitive to IGF-I, and this was probably not due to IGFBPs. By contrast, IGF-I exerted a robust stimulation of anabolism at sufficiently high doses, even though IGFBPs could tone down the ligand effect at low doses. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    PubMed Central

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  8. Assessing skeletal maturity by using blood spot insulin-like growth factor I (IGF-I) testing.

    PubMed

    Masoud, Mohamed; Masoud, Ibrahim; Kent, Ralph L; Gowharji, Nour; Cohen, Laurie E

    2008-08-01

    Accurate determination of skeletal maturity and remaining growth is crucial to many orthodontic, orthognathic, and dental-implant timing decisions. Cervical vertebral stages and hand-wrist radiographs are currently used to identify peak mandibular bone growth. These are highly subjective techniques that not only involve radiographic exposure but also lack the ability to determine the intensity of the growth spurt and the end of growth. Insulin-like growth factor I (IGF-I) is a circulating growth hormone-dependent factor whose level correlates with sexual maturity; it is used to diagnose growth hormone deficiency and excess. We hypothesized that IGF-I levels would also correlate with cervical skeletal maturity and would be highest at the cervical stages that correspond to the greatest amount of facial growth. We measured mean blood spot IGF-I levels in a cross-sectional study of 83 patients (44 female, 39 male) on recall to begin orthodontic treatment, in active treatment, or in posttreatment follow-up. Mean blood spot IGF-I levels were significantly higher in the late pubertal stages than in the prepubertal, early pubertal, and postpubertal stages. Linear correlation showed that IGF-I levels had a significant positive correlation with cervical skeletal maturity from the prepubertal to the late pubertal stages, and a significant negative correlation from the late pubertal to the postpubertal stages. In the postpubertal stage, IGF-I levels had a negative linear correlation with increasing time since the onset of puberty and with chronological age. Blood spot IGF-I could be used as a skeletal maturity indicator and might be useful in detecting residual mandibular growth in young adults.

  9. The association of plasma IGF-I with dietary, lifestyle, anthropometric, and early life factors in postmenopausal women.

    PubMed

    Bradbury, Kathryn E; Balkwill, Angela; Tipper, Sarah J; Crowe, Francesca L; Reeves, Gillian K; Green, Jane; Beral, Valerie; Key, Timothy J

    2015-04-01

    Higher circulating concentrations of insulin like growth factor (IGF-I) are associated with an increased risk of breast cancer. The objective of this study was to investigate associations between circulating IGF-I concentrations and dietary factors (intakes of protein, dairy protein, and alcohol), lifestyle factors (smoking and HT use), anthropometric indices (height and adiposity) and factors in early life (birth weight, having been breastfed, body size at age 10, and at age 20) in postmenopausal women in the UK. An analysis of plasma IGF-I concentrations (measured by immunoassay) in 1883 postmenopausal women. Multivariate analysis was used to examine correlates of plasma IGF-I concentrations. Women in the highest quintile of total protein and dairy protein intakes had, respectively, 7.6% and 5.5% higher plasma IGF-I concentrations than women in the lowest quintile (p trend <0.05 for both). Other factors significantly (p<0.05) associated with reduced IGF-I concentrations were: consuming 14 or more vs 3-7 alcoholic drinks per week (8.8% lower IGF-I); current vs non-current HT users (9.9% lower IGF-I); current use of oestrogen alone vs oestrogen+progestagen (16.9% lower IGF-I); obese vs overweight (6.8% lower IGF-I); and women who reported wearing larger vs smaller clothes sizes at age 20 (4.9% lower IGF-I). This study in post-menopausal women identified several potentially modifiable determinants of circulating IGF-I concentrations. There is now strong evidence from this and other studies that IGF-I concentrations are associated with dietary protein intakes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. IGF-I abuse in sport.

    PubMed

    Guha, Nishan; Dashwood, Alexander; Thomas, Nicholas J; Skingle, Alexander J; Sönksen, Peter H; Holt, Richard I G

    2009-09-01

    It is widely believed that growth hormone (GH) is abused by athletes for its anabolic and lipolytic effects. Many of the physiological effects of GH are mediated by the production of insulin-like growth factor-I (IGF-I). Both GH and IGF-I appear on the World Anti-Doping Agency list of prohibited substances. Little is known, however, about the prevalence of abuse with exogenous IGF-I. IGF-I has effects on carbohydrate, lipid and protein metabolism and some of these actions could prove beneficial to competitive athletes. No studies have demonstrated a positive effect of IGF-I on physical performance in healthy individuals but this has not yet been studied in appropriately designed trials. Two pharmaceutical preparations of IGF-I have recently become available for the treatment of growth disorders in children. This availability is likely to increase the prevalence of IGF-I abuse. Combining IGF-I with its binding protein IGFBP-3 in one preparation has the potential to reduce the side-effect profile but the adverse effects of long term IGF-I abuse are currently unknown. Detection of abuse with IGF-I is a major challenge for anti-doping authorities. It is extremely difficult to distinguish the exogenous recombinant form of the hormone from endogenously-produced IGF-I. One approach currently being investigated is based on measuring markers of GH and IGF-I action. This has already proved successful in the fight against GH abuse and, it is hoped, will subsequently lead to a similar test for detection of IGF-I abuse.

  11. Effect of insulin-like growth factor-I during the early postnatal period in intrauterine growth-restricted rats.

    PubMed

    Ikeda, Naho; Shoji, Hiromichi; Suganuma, Hiroki; Ohkawa, Natsuki; Kantake, Masato; Murano, Yayoi; Sakuraya, Koji; Shimizu, Toshiaki

    2016-05-01

    Insulin-like growth factor-I (IGF-I) is essential for perinatal growth and development; low serum IGF-I has been observed during intrauterine growth restriction (IUGR). We investigated the effects of recombinant human (rh) IGF-I in IUGR rats during the early postnatal period. Intrauterine growth restriction was induced by bilateral uterine artery ligation in pregnant rats. IUGR pups were divided into two groups injected daily with rhIGF-I (2 mg/kg; IUGR/IGF-I, n = 16) or saline (IUGR/physiologic saline solution (PSS), n = 16) from postnatal day (PND) 7 to 13. Maternal sham-operated pups injected with saline were used as controls (control, n = 16). Serum IGF-I and IGF binding proteins (IGFBP) 3 and 5 were measured on PND25. The expression of Igf-i, IGF-I receptor (Igf-ir), Igfbp3, and 5 mRNA in the liver and brain was measured using real-time polymerase chain reaction on PND25. Immunohistochemical staining of the liver for IGF expression was performed. Mean bodyweight on PND3 and PND25 in the IUGR pups (IUGR/IGF-I and IUGR/PSS) was significantly lower than that of the control pups. Serum IGF-I and hepatic Igf-ir mRNA in the IUGR pups were significantly lower than those in the control pups. In the IUGR/IGF-I group, hepatic Igfbp3 mRNA and liver immunohistochemical staining were increased. In the IUGR/PSS and control pups, there were no significant differences between these two groups in serum IGFBP3 and IGFBP5, hepatic Igf-i and Igfbp-5 mRNA, or brain Igf mRNA. No benefits on body and brain weight gain but an effective increase in hepatic IGFBP-3 was observed after treatment with 2 mg/kg rhIGF-I during the early postnatal period. © 2015 Japan Pediatric Society.

  12. Genetic Mutations, Birth Lengths, Weights and Head Circumferences of Children with IGF-I Receptor Defects. Comparison with other Congenital Defects in the GH/IGF-I axis.

    PubMed

    Essakow, Jenna Lee; Lauterpacht, Aharon; Lilos, Pearl; Kauli, Rivka; Laron, Zvi

    2016-09-01

    In recent years more and more genetic defects along the GHRH-GH-IGF-I axis have been reported. Mutations of the IGF-I receptor (R) are a rare abnormality of whom only the heterozygote progenies survive. To summarize, from the literature, data on birth length, weight and head circumference of neonates with IGF-I-R mutations, and to correlate the data with that of other types of mutations in the GH/IGF-I axis. Sixty seven neonates from 24 published articles were included and forty seven different mutations of the IGF-I (R) located on chromosome 15 have been identified. Mean (±SD) birth length (BL), available for 26, (10 M, 16F) neonates with a gestational age of 34-41weeks, was 44.2±4cm; one was premature (30cm at 31 weeks). There was a significant correlation between birth length and gestational age (GA) r=0.71 (p>.001). Mean birth weight (BW) of 41 neonates (18M, 23F) was 2388±743gr. Two premature neonates weighed 650gr and 950gr respectively. The BW correlated significantly with gestational age, (males: r=0.68; p=0.007, females: r=0.49; p=0.024). The BMI of 25 neonates ranged from 6 to 13. In 22 records marked microcephaly was ascertained or stated. Nine of 16 mothers were short (133 -148cm), m±SD = 150.5±7.3cm. Copyright© of YS Medical Media ltd.

  13. Elevated levels of insulin-like growth factor (IGF)-I in serum rescue the severe growth retardation of IGF-I null mice.

    PubMed

    Wu, Yingjie; Sun, Hui; Yakar, Shoshana; LeRoith, Derek

    2009-09-01

    IGF-I plays a vital role in growth and development and acts in an endocrine and an autocrine/paracrine fashion. The purpose of the current study was to clarify whether elevated levels of IGF-I in serum can rescue the severe growth retardation and organ development and function of igf-I null mice. To address that, we overexpressed a rat igf-I transgene specifically in the liver of igf-I null mice. We found that in the total absence of tissue IGF-I, elevated levels of IGF-I in serum can support normal body size at puberty and after puberty but are insufficient to fully support the female reproductive system (evident by irregular estrous cycle, impaired development of ovarian corpus luteum, reduced number of uterine glands and endometrial hypoplasia, all leading to decreased number of pregnancies and litter size). We conclude that most autocrine/paracrine actions of IGF-I that determine organ growth and function can be compensated by elevated levels of endocrine IGF-I. However, in mice, full compensatory responses are evident later in development, suggesting that autocrine/paracrine IGF-I is critical for neonatal development. Furthermore, we show that tissue IGF-I is necessary for the development of the female reproductive system and cannot be compensated by elevated levels of serum IGF-I.

  14. Effect of whole-body vibration and insulin-like growth factor-I on muscle paralysis-induced bone degeneration after botulinum toxin injection in mice.

    PubMed

    Niehoff, Anja; Lechner, Philipp; Ratiu, Oana; Reuter, Sven; Hamann, Nina; Brüggemann, Gert-Peter; Schönau, Eckhard; Bloch, Wilhelm; Beccard, Ralf

    2014-04-01

    Botulinum toxin A (BTX)-induced muscle paralysis results in pronounced bone degradation with substantial bone loss. We hypothesized that whole-body vibration (WBV) and insulin-like growth factor-I (IGF-I) treatment can counteract paralysis-induced bone degradation following BTX injections by activation of the protein kinase B (Akt) signaling pathway. Female C57BL/6 mice (n = 60, 16 weeks) were assigned into six groups (n = 10 each): SHAM, BTX, BTX+WBV, BTX+IGF-I, BTX+WBV+IGF-I, and a baseline group, which was killed at the beginning of the study. Mice received a BTX (1.0 U/0.1 mL) or saline (SHAM) injection in the right hind limb. The BTX+IGF-I and BTX+WBV+IGF-I groups obtained daily subcutaneous injections of human IGF-I (1 μg/day). The BTX+WBV and BTX+WBV+IGF-I groups underwent WBV (25 Hz, 2.1 g, 0.83 mm) for 30 min/day, 5 days/week for 4 weeks. Femora were scanned by pQCT, and mechanical properties were determined. On tibial sections TRAP staining, static histomorphometry, and immunohistochemical staining against Akt, phospho-Akt, IGF-IR (IGF-I receptor), and phospho-IGF-IR were conducted. BTX injection decreased trabecular and cortical bone mineral density. The WBV and WBV+IGF-I groups showed no difference in trabecular bone mineral density compared to the SHAM group. The phospho-IGF-IR and phospho-Akt stainings were not differentially altered in the injected hind limbs between groups. We found that high-frequency, low-magnitude WBV can counteract paralysis-induced bone loss following BTX injections, while we could not detect any effect of treatment with IGF-I.

  15. Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk.

    PubMed

    Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn

    2017-07-01

    Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.

  16. Therapy of Prostate Cancer Using a Human Antibody Targeting the Type 1 Insulin-Like Growth Factor Receptor (IGF-IR)

    DTIC Science & Technology

    2009-09-01

    euthanized, tumors harvested and portions processed for IHC, Western blot, flow cytometry , culture, and RNA analysis. If not enough tissue is available...temperature for 60 minutes. Samples were analyzed by flow cytometry using a BD FACScan. Data were analyzed with CellQuestPRO software. Evaluation of BrdUrd...were approved by the University of Washington Institutional Animal Care and Use Committee (IACUC). Flow cytometry . To measure tumor IGF-IR expression

  17. Influence of insulin-like growth factor-I (IGF-I) on nerve autografts and tissue-engineered nerve grafts.

    PubMed

    Fansa, Hisham; Schneider, Wolfgang; Wolf, Gerald; Keilhoff, Gerburg

    2002-07-01

    To overcome the problems of limited donor nerves for nerve reconstruction, we established nerve grafts made from cultured Schwann cells and basal lamina from acellular muscle and used them to bridge a 2-cm defect of the rat sciatic nerve. Due to their basal lamina and to viable Schwann cells, these grafts allow regeneration that is comparable to autologous nerve grafts. In order to enhance regeneration, insulin-like growth factor (IGF-I) was locally applied via osmotic pumps. Autologous nerve grafts with and without IGF-I served as controls. Muscle weight ratio was significantly increased in the autograft group treated with IGF-I compared to the group with no treatment; no effect was evident in the tissue-engineered grafts. Autografts with IGF-I application revealed a significantly increased axon count and an improved g-ratio as indicator for "maturity" of axons compared to autografts without IGF-I. IGF-I application to the engineered grafts resulted in a decreased axon count compared to grafts without IGF-I. The g-ratio, however, revealed no significant difference between the groups. Local administration of IGF-I improves axonal regeneration in regular nerve grafts, but not in tissue-engineered grafts. Seemingly, in these grafts the interactive feedback mechanisms of neuron, glial cell, and extracellular matrix are not established, and IGF-I cannot exert its action as a pleiotrophic signal. Copyright 2002 Wiley Periodicals, Inc.

  18. Associations of blood levels of insulin-like growth factor (IGF)-I, IGF-II and IGF binding protein (IGFBP)-3 in schizophrenic Arab subjects.

    PubMed

    Akanji, Abayomi O; Ohaeri, Jude U; Al-Shammri, Suhail A; Fatania, Hasmukh R

    2007-01-01

    Insulin-like growth factors (IGFs) are believed to be important in brain development and repair following neuronal damage. It is also speculated that IGFs are involved in the association of foetal and pre-adult growth with schizophrenia (SZ). The aim of this study was to assess levels of IGF-I, IGF-II and IGF binding protein (IGFBP)-3 and their associations in male Arab patients with SZ (n=53) and healthy control subjects (HC; n=52). Anthropometric and demographic data were collected for each subject for whom blood specimens were analysed for serum lipoproteins, apolipoprotein B (apoB), IGF-I, IGF-II and IGFBP-3. The SZ group had lower serum total cholesterol, apoB and uric acid levels than the HC group (p<0.05). IGF-II levels were significantly higher in the SZ group (p=0.02) and correlated positively with levels of atherogenic lipoproteins--total cholesterol, low-density lipoprotein, apoB--and IGFBP-3. The pattern of correlations between the IGFs and the various parameters differed somewhat between the HC and SZ groups. These results demonstrate that IGF-II levels are increased in patients with SZ and show significant associations with atherogenic lipoproteins. We suggest a possible link between IGF-II metabolism and atherogenesis in SZ.

  19. Long-term IGF-I treatment of children with Laron syndrome increases adiposity.

    PubMed

    Laron, Zvi; Ginsberg, Shira; Lilos, Pnina; Arbiv, Mira; Vaisman, Nahum

    2006-02-01

    Laron syndrome (LS) is an autosomal recessive disease caused by deletions or mutations in the GH receptor gene leading to an inability of insulin-like growth factor I (IGF-I) generation. Among the major resulting body changes are dwarfism and obesity. The only effective treatment is daily administration of biosynthetic IGF-I. Body composition determination by DEXA (dual energy X-ray absorptiometry) of three girls with LS treated by IGF-I for 1, 3 and 11 1/2 years, respectively, revealed that concomitantly with the increase in growth there was a significant increase in body adipose tissue to double or triple the normal values. Due to the underdevelopment of the muscular and skeletal systems body mass index (BMI) did not accurately reflect the degree of obesity. In conclusion, IGF-I similar to insulin, exerts an adipogenic effect.

  20. Serum insulin-like growth factor-I (IGF-I) levels during long-term IGF-I treatment of children and adults with primary GH resistance (Laron syndrome).

    PubMed

    Laron, Z; Klinger, B; Silbergeld, A

    1999-01-01

    Serum IGF-I levels were measured in 14 patients (9 children and 5 adults) with Laron syndrome (LS) during long-term treatment by IGF-I. Recombinant IGF-I (FK-780, Fujisawa Pharmaceutical Co. Ltd., Japan) was administered once daily subcutaneously before breakfast for 3-5 years to the children and for 9 months to the adults. The initial daily dose was 150 micrograms/kg for children and 120 micrograms/kg for adults. Before initiation of treatment the mean overnight fasting levels of serum IGF-I in the children was 3.2 +/- 0.8 nmol/l (mean +/- SEM), rising to 10 +/- 1.7 nmol/l during long-term treatment even on a dose of 120 micrograms/kg/day. The serum IGF-I levels 4 hours after injection rose from 31.2 +/- 3.5 to 48 +/- 2 nmol/l. In the adult patients, the initial basal IGF-I was 4.1 +/- 0.7 nmol/l, rising to 16.1 +/- 3.84 nmol/l after 8-9 months treatment. Serum IGF-I levels at 4 hours after injection rose in the adult patients from 24.1 +/- 5.8 up to 66.8 +/- 15.4 nmol/l. A progressively increasing half-life during long term exogenous administration of IGF-I to patients with Laron syndrome was demonstrated by following serum IGF-I dynamics after injection. Based on the fact that no antibodies to IGF-I were detected and on findings in previous studies, it is speculated that the increasing serum IGF-I levels during long-term IGF-I treatment are caused by an increase in serum IGFBP-3 induced by chronic IGF-I administration. It is concluded that treatment with IGF-I necessitates regular monitoring of serum IGF-I levels; in patients in whom the age adjusted maximal levels are exceeded, a reduction of the daily IGF-I dose is indicated to avoid undesirable effects.

  1. Fasting modulates GH/IGF-I axis and its regulatory systems in the mammary gland of female mice: Influence of endogenous cortistatin.

    PubMed

    Villa-Osaba, Alicia; Gahete, Manuel D; Cordoba-Chacon, José; de Lecea, Luis; Castaño, Justo P; Luque, Raúl M

    2016-10-15

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are essential factors in mammary-gland (MG) development and are altered during fasting. However, no studies have investigated the alterations in the expression of GH/IGF-I and its regulatory systems (somatostatin/cortistatin and ghrelin) in MG during fasting. Therefore, this study was aimed at characterizing the regulation of GH/IGF-I/somatostatin/cortistatin/ghrelin-systems expression in MG of fasted female-mice (compared to fed-controls) and the influence of endogenous-cortistatin (using cortistatin-knockouts). Fasting decreased IGF-I while increased IGF-I/Insulin-receptors expression in MGs. Fasting provoked an increase in GH expression that might be associated to enhanced ghrelin-variants/ghrelin-O-acyl-transferase enzyme expression, while an upregulation of somatostatin-receptors was observed. However, cortistatin-knockouts mice showed a decrease in GH and somatostatin receptor-subtypes expression. Altogether, we demonstrate that GH/IGF-I, somatostatin/cortistatin and ghrelin systems expression is altered in MG during fasting, suggesting a relevant role in coordinating its response to metabolic stress, wherein endogenous cortistatin might be essential for an appropriate response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Determination of LongR3-IGF-I, R3-IGF-I, Des1-3 IGF-I and their metabolites in human plasma samples by means of LC-MS.

    PubMed

    Thomas, Andreas; Walpurgis, Katja; Delahaut, Philippe; Fichant, Eric; Schänzer, Wilhelm; Thevis, Mario

    2017-08-01

    According to the regulations of the World Anti-Doping Agency (WADA), growth promoting peptides such as the insulin-like growth factor-I (IGF-I) and its synthetic analogues belong to the class of prohibited compounds. While several assays to quantify endogenous IGF-I have been established, the potential misuse of synthetic analogues such as LongR 3 -IGF-I, R 3 -IGF-I and Des1-3-IGF-I remains a challenge and superior pharmacokinetic properties have been described for these analogues. Within the present study, it was demonstrated that the target peptides can be successfully detected in plasma samples by means of magnetic beads-based immunoaffinity purification and subsequent nanoscale liquid chromatographic separation with high resolution mass spectrometric detection. Noteworthy, the usage of a specific antibody for LongR 3 -IGF-I enables the determination in low ng/mL levels despite the presence of an enormous excess of endogenous human IGF-I. In addition, different metabolism studies (in-vitro and in-vivo) were performed using sophisticated strategies such as incubation with skin tissue microsomes, degradation in biological fluids (for all analogues), and administration to rats (for LongR 3 -IGF-I). Herewith, several C-and N-terminally truncated metabolites were identified and their relevancy was additionally confirmed by in-vivo experiments with rodents. Especially for LongR 3 -IGF-I, a metabolite ((Des1-11)-LongR 3 -IGF-I) was identified that prolonged the detectability in-vivo by a factor of approximately 2. The method was validated for qualitative interpretation considering the parameters specificity, identification capability, recovery (26-60%), limit of detection (0.5ng/mL), imprecision (<25%), linearity, stability, and matrix effects. A stable isotope labelled ( 15 N)-IGF-I was used as internal standard to control all sample preparation steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Circulating levels of insulin-like growth factor-I (IGF-I) correlate with disease status in leprosy

    PubMed Central

    2011-01-01

    Background Caused by Mycobacterium leprae (ML), leprosy presents a strong immune-inflammatory component, whose status dictates both the clinical form of the disease and the occurrence of reactional episodes. Evidence has shown that, during the immune-inflammatory response to infection, the growth hormone/insulin-like growth factor-I (GH/IGF-I) plays a prominent regulatory role. However, in leprosy, little, if anything, is known about the interaction between the immune and neuroendocrine systems. Methods In the present retrospective study, we measured the serum levels of IGF-I and IGBP-3, its major binding protein. These measurements were taken at diagnosis in nonreactional borderline tuberculoid (NR BT), borderline lepromatous (NR BL), and lepromatous (NR LL) leprosy patients in addition to healthy controls (HC). LL and BL patients who developed reaction during the course of the disease were also included in the study. The serum levels of IGF-I, IGFBP-3 and tumor necrosis factor-alpha (TNF-α) were evaluated at diagnosis and during development of reversal (RR) or erythema nodosum leprosum (ENL) reaction by the solid phase, enzyme-labeled, chemiluminescent-immunometric method. Results The circulating IGF-I/IGFBP-3 levels showed significant differences according to disease status and occurrence of reactional episodes. At the time of leprosy diagnosis, significantly lower levels of circulating IGF-I/IGFBP-3 were found in NR BL and NR LL patients in contrast to NR BT patients and HCs. However, after treatment, serum IGF-I levels in BL/LL patients returned to normal. Notably, the levels of circulating IGF-I at diagnosis were low in 75% of patients who did not undergo ENL during treatment (NR LL patients) in opposition to the normal levels observed in those who suffered ENL during treatment (R LL patients). Nonetheless, during ENL episodes, the levels observed in RLL sera tended to decrease, attaining similar levels to those found in NR LL patients. Interestingly, IGF-I

  4. Increased abundance of insulin/insulin-like growth factor-I hybrid receptors in skeletal muscle of obese subjects is correlated with in vivo insulin sensitivity.

    PubMed

    Federici, M; Porzio, O; Lauro, D; Borboni, P; Giovannone, B; Zucaro, L; Hribal, M L; Sesti, G

    1998-08-01

    We reported that in noninsulin-dependent diabetes melitus (NIDDM) patients expression of insulin/insulin-like growth factor I (IGF-I) hybrid receptors is increased in insulin target tissues. Whether this is a defect associated with NIDDM or represents a generalized abnormality associated with insulin resistant states is still unsettled. To address this, we applied a microwell-based immunoassay to measure abundance of insulin receptors, type 1 IGF receptors, and hybrid receptors in muscle of eight normal and eight obese subjects. Maximal insulin binding to insulin receptors was lower in obese than in control subjects (B/T = 1.8 +/- 0.20 and 2.6 +/- 0.30; P < 0.03, respectively) and was negatively correlated with insulinemia (r = -0.60; P < 0.01). Maximal IGF-I binding to type 1 IGF receptors was higher in obese than in controls (B/T = 1.9 +/- 0.20 and 0.86 +/- 0.10; P < 0.0001, respectively) and was negatively correlated with plasma IGF-I levels (r = -0.69; P < 0.003). Hybrid receptor abundance was higher in obese than in normal subjects (B/T = 1.21 +/- 0.14 and 0.44 +/- 0.06; P < 0.0003, respectively) and was negatively correlated with insulin binding (r = -0.60; P < 0.01) and positively correlated with IGF-I binding (r = 0.92; P < 0.0001). Increased abundance of hybrids was correlated with insulinemia (r = 0.70; P < 0.002) and body mass index (r = 0.71; P < 0.0019), whereas it was negatively correlated with in vivo insulin sensitivity measured by ITT (r = -0.67; P < 0.016). These results indicate that downregulation of insulin receptors or upregulation of type 1 IGF receptors because of changes in plasma insulin and IGF-I levels may result in modifications in hybrid receptor abundance.

  5. Insulin, insulin-like growth factor-1, insulin receptor, and insulin-like growth factor-1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus.

    PubMed

    Penha, Alexandra Marcha; Schaeffel, Frank; Feldkaemper, Marita

    2011-01-01

    Insulin stimulates eye growth in chicks and this effect is greatly enhanced if the retinal image is degraded by the defocus of either sign. However, it is unclear whether the insulin receptor (IR) is expressed at all in the chicken retina in animals 1-2 weeks post-hatching. We have investigated IR expression and whether IR transcript abundance varies in the fundal layers. To elucidate the possible role of insulin and insulin-like growth factor (IGF)-1 signaling in eye growth regulation, mRNA (mRNA) levels were measured for insulin, IGF-1, IR, and IGF-1 receptor (IGF-1R) during imposed negative or positive defocus. Chicks were treated binocularly with positive or negative spectacle lenses for 4 or 24 h, or they remained untreated (n=6, for each treatment group). Northern blot analyses were performed to screen for transcription variants in the different fundal layers of untreated animals. Real-time PCR was used to quantify IR, IGF-1R, IGF-1, and insulin mRNA levels in the different fundal layers of the chick eye in the three treatment groups. IR mRNA was found in all the studied tissues, although there is evidence of tissue-specific transcript variations. Three major transcripts were detected for IR. The brain, retina, and choroid showed the longest transcript (4.3 kb), which was not present in the liver. Nevertheless, the liver and brain showed a second transcript (2.6 kb) not present in the retina and choroid. A short transcript (1.3 kb) was the predominant form in the liver and choroid, and it seems to be present in the retinal pigment epithelium (RPE) and sclera as well. In the retina, no significant gene expression changes were found when defocus was imposed. Interestingly, in the RPE, both IR and IGF-1R were already downregulated after short periods (4 h) of positive lens wear. In contrast, IR and IGF-1R were upregulated in the choroid and fibrous sclera during treatment with negative, but not positive, lenses. Differences observed in the IR transcript length

  6. IGF-I stimulates ERβ and aromatase expression via IGF1R/PI3K/AKT-mediated transcriptional activation in endometriosis.

    PubMed

    Zhou, Yan; Zeng, Cheng; Li, Xin; Wu, Pei-Li; Yin, Ling; Yu, Xiao-Lan; Zhou, Ying-Fang; Xue, Qing

    2016-08-01

    Estrogen receptor beta (ERβ, encoded by ESR2 gene) and cytochrome P450 aromatase (encoded by CYP19A1 gene) play critical roles in endometriosis, and the levels of insulin-like growth factor-I (IGF-I) in the peritoneal fluid are significantly higher in patients with endometriosis compared with those in normal women. However, the effects and mechanisms of IGF-I on ERβ and aromatase expression remain to be fully elucidated. In this study, human endometriotic stromal cells (ESCs) and endometrial cells (EMs) derived from ovarian endometriomas and eutopic endometrial tissues. ESCs were cultured with IGF-I, signal pathway inhibitors, and siRNAs. ERβ and aromatase expression were measured by real-time PCR and Western, respectively. The binding of c-Jun and CREB to the ESR2 and CYP19A1 promoters was assessed by chromatin immunoprecipitation assay. Animal experiments were performed in a xenograft mouse model. Levels of IGF-I mRNA in ESCs were markedly higher than those in EMs. IGF-I upregulated ERβ and aromatase expression in ESCs after stimulation of the IGF1R/PI3K/AKT pathway. Following IGF-I treatment, a marked increase in c-Jun and CREB phosphorylation occurred, enhancing binding to the ESR2 and CYP19A1 promoters. An IGF1R inhibitor in vivo reduced IGF-I-induced endometriosis graft growth and ERβ and aromatase expression. In conclusion, this is the first report to describe a mechanistic analysis of ERβ and aromatase expression regulated by IGF-I in ESCs. Moreover, an IGF1R inhibitor impeded ectopic lesion growth in nude mice. These findings suggest that an inhibitor of IGF1R might have therapeutic potential as an antiendometriotic drug. Level of IGF-I mRNA in ESCs is markedly higher than that in EMs. IGF-I up-regulates ERβ and aromatase expression via IGF1R/PI3K/AKT pathway. C-Jun and CREB are recruited to ESR2 or CYP19A1 promoter by IGF-I stimulation. IGF-1R inhibitors in vivo impede the growth of ectopic lesions in nude mice.

  7. Insulin-like growth factor-I gene delivery to astrocytes reduces their inflammatory response to lipopolysaccharide

    PubMed Central

    2011-01-01

    Background Insulin-like growth factor-I (IGF-I) exerts neuroprotective actions in the central nervous system that are mediated at least in part by control of activation of astrocytes. In this study we have assessed the efficacy of exogenous IGF-I and IGF-I gene therapy in reducing the inflammatory response of astrocytes from cerebral cortex. Methods An adenoviral vector harboring the rat IGF-I gene and a control adenoviral vector harboring a hybrid gene encoding the herpes simplex virus type 1 thymidine kinase fused to Aequorea victoria enhanced green fluorescent protein were used in this study. Primary astrocytes from mice cerebral cortex were incubated for 24 h or 72 h with vehicle, IGF-I, the IGF-I adenoviral vector, or control vector; and exposed to bacterial lipopolysaccharide to induce an inflammatory response. IGF-I levels were measured by radioimmunoassay. Levels of interleukin 6, tumor necrosis factor-α, interleukin-1β and toll-like receptor 4 mRNA were assessed by quantitative real-time polymerase chain reaction. Levels of IGF-I receptor and IGF binding proteins 2 and 3 were assessed by western blotting. The subcellular distribution of nuclear factor κB (p65) was assessed by immunocytochemistry. Statistical significance was assessed by one way analysis of variance followed by the Bonferroni pot hoc test. Results IGF-I gene therapy increased IGF-I levels without affecting IGF-I receptors or IGF binding proteins. Exogenous IGF-I, and IGF-I gene therapy, decreased expression of toll-like receptor 4 and counteracted the lipopolysaccharide-induced inflammatory response of astrocytes. In addition, IGF-I gene therapy decreased lipopolysaccharide-induced translocation of nuclear factor κB (p65) to the cell nucleus. Conclusion These findings demonstrate efficacy of exogenous IGF-I and of IGF-I gene therapy in reducing the inflammatory response of astrocytes. IGF-I gene therapy may represent a new approach to reduce inflammatory reactions in glial cells. PMID

  8. The Insulin Receptor: A New Target for Cancer Therapy

    PubMed Central

    Malaguarnera, Roberta; Belfiore, Antonino

    2011-01-01

    A large body of evidences have shown that both the IGF-I receptor (IGF-IR) and the insulin receptor (IR) play a role in cancer development and progression. In particular, IR overactivation by IGF-II is common in cancer cells, especially in dedifferentiated/stem-like cells. In spite of these findings, until very recently, only IGF-IR but not IR has been considered a target in cancer therapy. Although several preclinical studies have showed a good anti-cancer activity of selective anti-IGF-IR drugs, the results of the clinical first trials have been disappointing. In fact, only a small subset of malignant tumors has shown an objective response to these therapies. Development of resistance to anti-IGF-IR drugs may include upregulation of IR isoform A (IR-A) in cancer cells and its overactivation by increased secretion of autocrine IGF-II. These findings have led to the concept that co-targeting IR together with IGF-IR may increase therapy efficacy and prevent adaptive resistance to selective anti-IGF-IR drugs. IR blockade should be especially considered in tumors with high IR-A:IGF-IR ratio and high levels of autocrine IGF-II. Conversely, insulin sensitizers, which ameliorate insulin resistance associated with metabolic disorders and cancer treatments, may have important implications for cancer prevention and management. Only few drugs co-targeting the IR and IGF-IR are currently available. Ideally, future IR targeting strategies should be able to selectively inhibit the tumor promoting effects of IR without impairing its metabolic effects. PMID:22654833

  9. Circulating Insulin-Like Growth Factor I Regulates Its Receptor in the Brain of Male Mice.

    PubMed

    Trueba-Saiz, A; Fernandez, A M; Nishijima, T; Mecha, M; Santi, A; Munive, V; Aleman, I Torres

    2017-02-01

    The role of IGF-1 and its receptor (IGF-1R) in brain pathology is still unclear. Thus, either reduction of IGF-IR or treatment with IGF-1, two apparently opposite actions, has proven beneficial in brain diseases such as Alzheimer's dementia. A possible explanation of this discrepancy is that IGF-1 down-regulates brain IGF-1R levels, as previously seen in a mouse Alzheimer's dementia model. We now explored whether under normal conditions IGF-1 modulates its receptor. We first observed that in vitro, IGF-1 reduced IGF-1R mRNA levels in all types of brain cells including neurons, astrocytes, microglia, endothelial cells, and oligodendrocytes. IGF-1 also inhibited its own expression in neurons and brain endothelium. Next, we analyzed the in vivo actions of IGF-1. Because serum IGF-1 can enter the brain, we injected mice with IGF-1 ip. As soon as 1 hour after the injection, decreased hippocampal IGF-1 levels were observed, followed by increased IGF-1 and IGF-1R mRNAs 6 hours later. Because environmental enrichment (EE) stimulates the entrance of serum IGF-1 into the brain, we analyzed whether a physiological entrance of IGF-1 also produced changes in brain IGF-1R. Stimulation of IGF-1R by EE triggered a gradual decrease in hippocampal IGF-1 levels. After 6 hours of EE exposure, IGF-1 levels reached a significant decrease in parallel with increased IGF-1R expression. After longer times, IGF-1R mRNA levels returned to baseline. Thus, under nonpathological conditions, IGF-1 regulates brain IGF-1R. Because baseline IGF-1R levels are rapidly restored, a tight control of brain IGF-1R expression seems to operate under physiological conditions. Copyright © 2017 by the Endocrine Society.

  10. Insulin-like growth factor I and risk of breast cancer by age and hormone receptor status-A prospective study within the EPIC cohort.

    PubMed

    Kaaks, Rudolf; Johnson, Theron; Tikk, Kaja; Sookthai, Disorn; Tjønneland, Anne; Roswall, Nina; Overvad, Kim; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Dossus, Laure; Rinaldi, Sabina; Romieu, Isabelle; Boeing, Heiner; Schütze, Madlen; Trichopoulou, Antonia; Lagiou, Pagona; Trichopoulos, Dimitrios; Palli, Domenico; Grioni, Sara; Tumino, Rosario; Sacerdote, Carlotta; Panico, Salvatore; Buckland, Genevieve; Argüelles, Marcial; Sánchez, María-José; Amiano, Pilar; Chirlaque, Maria-Dolores; Ardanaz, Eva; Bueno-de-Mesquita, H Bas; van Gils, Carla H; Peeters, Petra H; Andersson, Anne; Sund, Malin; Weiderpass, Elisabete; Gram, Inger Torhild; Lund, Eiliv; Khaw, Kay-Tee; Wareham, Nick; Key, Timothy J; Travis, Ruth C; Merritt, Melissa A; Gunter, Marc J; Riboli, Elio; Lukanova, Annekatrin

    2014-06-01

    Experimental evidence shows cross-talk in mammary cells between estrogen, insulin-like growth factor I (IGF-I) and their respective receptors and possible synergistic effects of estrogen receptor (ER) activation and increased IGF-I signaling with regard to breast tumor development, and epidemiological evidence suggests that circulating IGF-I levels may be related more to the risk of ER-positive than ER-negative breast cancer. Using a case-control study nested within the prospective European EPIC cohort (938 breast cancer cases and 1,394 matched control subjects), we analyzed the relationships of prediagnostic serum IGF-I levels with the risk of estrogen and progesterone receptor-positive and -negative breast tumors. IGF-I levels were positively associated with the risk of ER+ breast tumors overall (pre- and postmenopausal women combined, odds ratio (OR)Q4-Q1 = 1.41 [95% confidence interval (CI) 1.01-1.98] for the highest vs. lowest quartile; OR = 1.17 [95% CI 1.04-1.33] per 1-standard deviation (SD) increase in IGF-I, ptrend = 0.01) and among women who were diagnosed with breast cancer at 50 years or older (ORQ3-Q1 = 1.38 [95% CI 1.01-1.89]; OR = 1.19 [95% CI 1.04-1.36] per 1-SD increase in IGF-I, ptrend = 0.01) but not with receptor-positive disease diagnosed at an earlier age. No statistically significant associations were observed for ER- breast tumors overall and by age at diagnosis. Tests for heterogeneity by receptor status of the tumor were not statistically significant, except for women diagnosed with breast cancer at 50 years or older (phet = 0.03 for ER+/PR+ vs. ER-/PR- disease). Our data add to a global body of evidence indicating that higher circulating IGF-I levels may increase risk specifically of receptor-positive, but not receptor-negative, breast cancer diagnosed at 50 years or older. © 2013 UICC.

  11. Insulin Resistance and the IGF-I-Cortical Bone Relationship in Children Ages 9 to 13 Years.

    PubMed

    Kindler, Joseph M; Pollock, Norman K; Laing, Emma M; Oshri, Assaf; Jenkins, Nathan T; Isales, Carlos M; Hamrick, Mark W; Ding, Ke-Hong; Hausman, Dorothy B; McCabe, George P; Martin, Berdine R; Hill Gallant, Kathleen M; Warden, Stuart J; Weaver, Connie M; Peacock, Munro; Lewis, Richard D

    2017-07-01

    IGF-I is a pivotal hormone in pediatric musculoskeletal development. Although recent data suggest that the role of IGF-I in total body lean mass and total body bone mass accrual may be compromised in children with insulin resistance, cortical bone geometric outcomes have not been studied in this context. Therefore, we explored the influence of insulin resistance on the relationship between IGF-I and cortical bone in children. A secondary aim was to examine the influence of insulin resistance on the lean mass-dependent relationship between IGF-I and cortical bone. Children were otherwise healthy, early adolescent black and white boys and girls (ages 9 to 13 years) and were classified as having high (n = 147) or normal (n = 168) insulin resistance based on the homeostasis model assessment of insulin resistance (HOMA-IR). Cortical bone at the tibia diaphysis (66% site) and total body fat-free soft tissue mass (FFST) were measured by peripheral quantitative computed tomography (pQCT) and dual-energy X-ray absorptiometry (DXA), respectively. IGF-I, insulin, and glucose were measured in fasting sera and HOMA-IR was calculated. Children with high HOMA-IR had greater unadjusted IGF-I (p < 0.001). HOMA-IR was a negative predictor of cortical bone mineral content, cortical bone area (Ct.Ar), and polar strength strain index (pSSI; all p ≤ 0.01) after adjusting for race, sex, age, maturation, fat mass, and FFST. IGF-I was a positive predictor of most musculoskeletal endpoints (all p < 0.05) after adjusting for race, sex, age, and maturation. However, these relationships were moderated by HOMA-IR (p Interaction  < 0.05). FFST positively correlated with most cortical bone outcomes (all p < 0.05). Path analyses demonstrated a positive relationship between IGF-I and Ct.Ar via FFST in the total cohort (β Indirect Effect  = 0.321, p < 0.001). However, this relationship was moderated in the children with high (β Indirect Effect  = 0.200, p

  12. Transcriptional activation of human mu-opioid receptor gene by insulin-like growth factor-I in neuronal cells is modulated by the transcription factor REST.

    PubMed

    Bedini, Andrea; Baiula, Monica; Spampinato, Santi

    2008-06-01

    The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. We investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I up-regulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 signaling pathway and this transcription factor, binding to the signal transducer and activator of transcription-1/3 DNA element located in the promoter, increases OPRM1 transcription. We propose that a reduction in REST is a critical switch enabling IGF-I to up-regulate hMOPr. These findings help clarify how hMOPr expression is regulated in neuronal cells.

  13. SUMO-modified insulin-like growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation.

    PubMed

    Lin, Yingbo; Liu, Hongyu; Waraky, Ahmed; Haglund, Felix; Agarwal, Prasoon; Jernberg-Wiklund, Helena; Warsito, Dudi; Larsson, Olle

    2017-10-01

    Increasing number of studies have shown nuclear localization of the insulin-like growth factor 1 receptor (nIGF-1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF-1R have, however, still not been disclosed. Previously, we reported that IGF-1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple-SUMO-site-mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R-). Cell clones (R-WT and R-TSM) expressing equal amounts of IGF-1R were selected for experiments. Phosphorylation of IGF-1R, Akt, and Erk upon IGF-1 stimulation was equal in R-WT and R-TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R-WT proliferated substantially faster than R-TSM, which did not differ significantly from the empty vector control. Upon IGF-1 stimulation G1-S-phase progression of R-WT increased from 12 to 38%, compared to 13 to 20% of R-TSM. The G1-S progression of R-WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO-IGF-1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO-IGF-1R dependent mechanisms seem important. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.

  14. Determining skeletal maturation using insulin-like growth factor I (IGF-I) test.

    PubMed

    Gupta, Shreya; Jain, Sandhya; Gupta, Puneet; Deoskar, Anuradha

    2012-11-01

    To investigate the validity of Insulin like Growth Factor -1(IGF-1) as a skeletal maturity indicator by comparing serum IGF-1 levels with the stages in cervical vertebral maturation (CVM) and in the middle phalanx of the third finger (MP3). The study population was selected by using simple random sampling technique and consisted of 30 female subjects in the age range of 8-23 years who had blood sample, cephalometric and MP3 radiographs taken on the same day. Serum IGF-I estimation was carried out on the blood samples using chemiluminescence immunoassay (CLIA) method. CVM was evaluated using method by Baccetti et al and MP3 staging was done using Rajagopal & Kansal method. Mean IGF-1 level between the stages was compared by Kruskal-Wallis and Mann Whitney test. Serum IGF-1 levels in females correlate well with skeletal maturity determined by CVM and MP3 stages and increase sharply during early pubertal stages followed by a decrease in late puberty. In addition we hypothesis that serum IGF-1 testing can be undertaken as a preliminary screening test in patients in whom the orthodontist predicts the possibility of using myofunctional appliance but in whom the chronologic age is not suggestive for a growth modification therapy. The finding of the study highlights the fact that the serum IGF-1 estimation can be a valuable tool in assessing skeletal maturation. Copyright © 2012 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.

  15. Insulin-like growth factor (IGF) signaling through type 1 IGF receptor plays an important role in remyelination.

    PubMed

    Mason, Jeffrey L; Xuan, Shouhong; Dragatsis, Ioannis; Efstratiadis, Argiris; Goldman, James E

    2003-08-20

    We examined the role of IGF signaling in the remyelination process by disrupting the gene encoding the type 1 IGF receptor (IGF1R) specifically in the mouse brain by Cre-mediated recombination and then exposing these mutants and normal siblings to cuprizone. This neurotoxicant induces a demyelinating lesion in the corpus callosum that is reversible on termination of the insult. Acute demyelination and oligodendrocyte depletion were the same in mutants and controls, but the mutants did not remyelinate adequately. We observed that oligodendrocyte progenitors did not accumulate, proliferate, or survive within the mutant mice, compared with wild type, indicating that signaling through the IGF1R plays a critical role in remyelination via effects on oligodendrocyte progenitors.

  16. Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation.

    PubMed

    Girnita, Leonard; Worrall, Claire; Takahashi, Shin-Ichiro; Seregard, Stefan; Girnita, Ada

    2014-07-01

    The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R "borrows" components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.

  17. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the presentmore » study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.« less

  18. Maternal insulin-like growth factor-II promotes placental functional development via the type 2 IGF receptor in the guinea pig.

    PubMed

    Sferruzzi-Perri, A N; Owens, J A; Standen, P; Roberts, C T

    2008-04-01

    In guinea pigs, maternal insulin-like growth factor (IGF) infusion in early-pregnancy enhances placental transport near-term, increasing fetal growth and survival. The effects of IGF-II, but not IGF-I, appear due to enhanced placental labyrinthine (exchange) development. To determine if the type-2 IGF receptor (IGF2R) mediates these distinct actions of exogenous IGF-II in the mother, we compared the impact of IGF-II with an IGF-II analogue, Leu(27)-IGF-II, which only binds the IGF2R. IGF-II, Leu(27)-IGF-II (1mg/kg per day.sc) or vehicle were infused from days 20-38 of pregnancy (term = 67 days) and placental structure and uptake and transfer of [(3)H]-methyl-D-glucose (MG) and [(14)C]-amino-isobutyric acid (AIB) and fetal growth and plasma metabolites, were measured on day 62. Both IGF-II and Leu(27)-IGF-II increased the volume of placental labyrinth, trophoblast and maternal blood space within the labyrinth and total surface area of trophoblast for exchange, compared to vehicle. Leu(27)-IGF-II also reduced the barrier to diffusion (trophoblast thickness) compared to vehicle and IGF-II. Both IGF-II and Leu(27)-IGF-II increased fetal plasma amino acid concentrations and placental transfer of MG to the fetus compared to vehicle, with Leu(27)-IGF-II also increasing AIB transport compared with vehicle and IGF-II. In addition, Leu(27)-IGF-II increased fetal weight compared to vehicle. In conclusion, maternal treatment with IGF-II or Leu(27)-IGF-II in early gestation, induce similar placental and fetal outcomes near term. This suggests that maternal IGF-II in early gestation acts in part via the IGF2R to persistently enhance placental functional development and nutrient delivery and promote fetal growth.

  19. Differential roles of MAPK-Erk1/2 and MAPK-p38 in insulin or insulin-like growth factor-I (IGF-I) signaling pathways for progesterone production in human ovarian cells.

    PubMed

    Seto-Young, D; Avtanski, D; Varadinova, M; Park, A; Suwandhi, P; Leiser, A; Parikh, G; Poretsky, L

    2011-06-01

    Insulin and insulin like-growth factor-I (IGF-I) participate in the regulation of ovarian steroidogenesis. In insulin resistant states ovaries remain sensitive to insulin because insulin can activate alternative signaling pathways, such as phosphatidylinositol-3-kinase (PI-3 kinase) and mitogen-activated protein-kinase (MAPK) pathways, as well as insulin receptors and type 1 IGF receptors. We investigated the roles of MAPK-Erk1/2 and MAPK-p38 in insulin and IGF-I signaling pathways for progesterone production in human ovarian cells. Human ovarian cells were cultured in tissue culture medium in the presence of varying concentrations of insulin or IGF-I, with or without PD98059, a specific MAPK-Erk1/2 inhibitor, with or without SB203580, a specific MAPK-p38 inhibitor or with or without a specific PI-3-kinase inhibitor LY294002. Progesterone concentrations were measured using radioimmunoassay. PD98059 alone stimulated progesterone production in a dose-dependent manner by up to 65% (p<0.001). Similarly, LY294002 alone stimulated progesterone production by 13-18% (p<0.005). However, when used together, PD98059 and LY294002 inhibited progesterone production by 17-20% (p<0.001). SB203580 alone inhibited progesterone production by 20-30% (p<0.001). Insulin or IGF-I alone stimulated progesterone production by 40-60% (p<0.001). In insulin studies, PD98059 had no significant effect on progesterone synthesis while SB203580 abolished insulin-induced progesterone production. Either PD98059 or SB203580 abolished IGF-I-induced progesterone production. Both MAPK-Erk1/2 and MAPK-p38 participate in IGF-I-induced signaling pathways for progesterone production, while insulin-induced progesterone production requires MAPK-p38, but not MAPK-Erk1/2. These studies provide further evidence for divergence of insulin and IGF-I signaling pathways for human ovarian cell steroidogenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Increased expression of insulin-like growth factor-1 receptor is correlated with worse survival in canine appendicular osteosarcoma.

    PubMed

    Maniscalco, Lorella; Iussich, Selina; Morello, Emanuela; Martano, Marina; Gattino, Francesca; Miretti, Silvia; Biolatti, Bartolomeo; Accornero, Paolo; Martignani, Eugenio; Sánchez-Céspedes, Raquel; Buracco, Paolo; De Maria, Raffaella

    2015-08-01

    Insulin-like growth factor 1 receptor (IGF-1R) is a cell membrane receptor widely expressed in tissues and involved in different cancers in humans. IGF-1R expression in human osteosarcoma has been associated with the development of tumour metastasis and with prognosis, and represents an attractive therapeutic target. The goal of this study was to investigate the expression of IGF-1R in canine osteosarcoma tissues and cell lines and assess its role and prognostic value. Samples from 34 dogs were examined by immunohistochemistry for IGF-1R expression. IGF-1R/AKT/MAPK signalling was evaluated by western blot and quantitative polymerase chain reaction in the cell lines. In addition, the in vitro inhibition of IGF-1R with pycropodophillin (PPP) was used to evaluate molecular and biological effects. Immunohistochemical data showed that IGF-1R was expressed in 71% of the analysed osteosarcoma samples and that dogs with higher levels of IGF-IR expression (47% of cases) had decreased survival (P < 0.05) when compared to dogs with lower IGF-IR expression. Molecular studies demonstrated that in canine osteosarcoma IGF-IR is activated by IGF-1 mostly in a paracrine or endocrine (rather than autocrine) manner, leading to activation of AKT/MAPK signalling. PPP caused p-IGF-1R dephosphorylation with partial blocking of p-MAPK and p-AKT, as well as apoptosis. It was concluded that IGF-1R is expressed and plays a role in canine osteosarcoma and that its expression is correlated with a poor prognosis. As in humans, IGF-1R may represent a good therapeutic target and a prognostic factor for canine osteosarcoma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Altered expression of IGF-I system in neurons of the inflamed spinal cord during acute experimental autoimmune encephalomyelitis.

    PubMed

    Parvaneh Tafreshi, Azita; Talebi, Farideh; Ghorbani, Samira; Bernard, Claude; Noorbakhsh, Farshid

    2017-10-01

    There is growing evidence that the impaired IGF-I system contributes to neurodegeneration. In this study, we examined the spinal cords of the EAE, the animal model of multiple sclerosis, to see if the expression of the IGF-I system is altered. To induce EAE, C57/BL6 mice were immunized with the Hooke lab MOG kit, sacrificed at the peak of the disease and their spinal cords were examined for the immunoreactivities (ir) of the IGF-I, IGF binding protein-1 (IGFBP-1) and glycogen synthase kinase 3β (GSK3β), as one major downstream molecule in the IGF-I signaling. Although neurons in the non EAE spinal cords did not show the IGF-I immunoreactivity, they were numerously positive for the IGFBP-1. In the inflamed EAE spinal cord however, the patterns of expressions were reversed, that is, a significant increased number of IGF-I expressing neurons versus a reduced number of IGFBP-1 positive neurons. Moreover, while nearly all IGF-I-ir neurons expressed GSK3β, some expressed it more intensely. Considering our previous finding where we showed a significant reduced number of the inactive (phosphorylated) but not that of the total GSK3β expressing neurons in the EAE spinal cord, it is conceivable that the intense total GSK3β expression in the IGF-I-ir neurons belongs to the active form of GSK3β known to exert neuroinflammatory effects. We therefore suggest that the altered expression of the IGF-I system including GSK3β in spinal cord neurons might involve in pathophysiological events during the EAE. © 2017 Wiley Periodicals, Inc.

  2. Association of IGF-I and IGF-II with myofiber regeneration in vivo.

    PubMed

    Keller, H L; St Pierre Schneider, B; Eppihimer, L A; Cannon, J G

    1999-03-01

    This study examined expression of insulinlike growth factor (IGF) in the myofibers and nonmyofibrillar structures of murine soleus muscle following contraction-induced damage. Identifying the cellular sources of this myogenic growth factor could improve muscle rehabilitation strategies. Immunohistochemical analysis of muscle sections indicated that the number of myofibers expressing both IGF-I and IGF-II increased significantly at 4, 7, and 10 days following injury, compared with control. Muscle spindles and vascular tissue expressed only IGF-II, and staining intensity did not change following injury. The number of fibers expressing developmental myosin heavy chain increased significantly at 7 and 10 days postinjury, and these usually coexpressed IGF. No IGF-specific staining of interstitial/inflammatory cells was observed. Therefore, expression of IGF after mechanically induced fiber damage occurs exclusively within regenerating fibers without supplemental delivery of IGF to the tissue by inflammatory cells or changes in constitutive expression of IGF-II in vascular tissue.

  3. Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3, without mediation by growth hormone, in patients with autoimmune thyroid diseases.

    PubMed

    Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y

    1999-10-01

    The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.

  4. Long-term treatment with recombinant insulin-like growth factor (IGF)-I in children with severe IGF-I deficiency due to growth hormone insensitivity.

    PubMed

    Chernausek, Steven D; Backeljauw, Philippe F; Frane, James; Kuntze, Joyce; Underwood, Louis E

    2007-03-01

    Children with severe IGF-I deficiency due to congenital or acquired defects in GH action have short stature that cannot be remedied by GH treatment. The objective of the study was to examine the long-term efficacy and safety of recombinant human IGF-I (rhIGF-I) therapy for short children with severe IGF-I deficiency. Seventy-six children with IGF-I deficiency due to GH insensitivity were treated with rhIGF-I for up to 12 yr under a predominantly open-label design. The study was conducted at general clinical research centers and with collaborating endocrinologists. Entry criteria included: age older than 2 yr, sd scores for height and circulating IGF-I concentration less than -2 for age and sex, and evidence of resistance to GH. rhIGF-I was administered sc in doses between 60 and 120 microg/kg twice daily. Height velocity, skeletal maturation, and adverse events were measured. Height velocity increased from 2.8 cm/yr on average at baseline to 8.0 cm/yr during the first year of treatment (P < 0.0001) and was dependent on the dose administered. Height velocities were lower during subsequent years but remained above baseline for up to 8 yr. The most common adverse event was hypoglycemia, which was observed both before and during therapy. It was reported by 49% of treated subjects. The next most common adverse events were injection site lipohypertrophy (32%) and tonsillar/adenoidal hypertrophy (22%). Treatment with rhIGF-I stimulates linear growth in children with severe IGF-I deficiency due to GH insensitivity. Adverse events are common but are rarely of sufficient severity to interrupt or modify treatment.

  5. Insulin growth factor (IGF) 1, IGF-binding proteins and ovarian cancer risk: A systematic review and meta-analysis.

    PubMed

    Gianuzzi, Ximena; Palma-Ardiles, Gabriela; Hernandez-Fernandez, Wendy; Pasupuleti, Vinay; Hernandez, Adrian V; Perez-Lopez, Faustino R

    2016-12-01

    Insulin resistance (IR) has been implicated in carcinogenesis, but there is no consensus regarding its involvement in ovarian cancer. We performed a systematic review and meta-analysis to evaluate the association between IR and ovarian cancer. Searches were conducted in five databases for studies evaluating IR markers (levels of serum insulin, C peptide, insulin growth factor [IGF] 1 and IGF-binding proteins [IGFBPs], homeostatic model assessment insulin resistance, and quantitative insulin-sensitivity check index) and ovarian cancer risk. Study selection, data extraction and an assessment of risk of bias were performed independently by three researchers. The associations between IR markers and ovarian cancer were quantified as mean differences (MDs) or standardized MDs (SMDs) and their 95% CIs using random-effects models. Fourteen case-control studies satisfied our inclusion criteria (n=8130). There was little information on IR markers with the exception of the IGF system. Ovarian cancer was associated with lower IGF-1 levels (SMD -0.43ng/mL, 95% CI -0.67 to -0.18; p=0.0006), and lower IGFBP-3 levels (SMD -0.11ng/mL, 95% CI -0.21 to -0.00; p=0.04). However, ovarian cancer was associated with higher levels of IGFBP-2 and IGFBP-1 (MD 527.3ng/mL, 95%CI 473.6, 581.0; p<0.00001, and MD 3.47ng/mL, 95%CI 1.42, 5.52; p=0.0009 respectively). Subgroup analyses by menopausal status and age (≤55 vs >55y) for IGF-1 and IGFBP-3 showed the subgroups were similar, although heterogeneity remained high. The evidence suggests that levels of IGF-1 and IGFBP-3 are lower in patients with ovarian cancer. In contrast, higher levels of IGBP-2 and IGBP-1 are found in patients with ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Low serum insulin-like growth factor-I (IGF-I) level is associated with increased risk of vascular dementia.

    PubMed

    Quinlan, Patrick; Horvath, Alexandra; Nordlund, Arto; Wallin, Anders; Svensson, Johan

    2017-12-01

    Insulin-like growth factor-I (IGF-I) is important for the adult brain, but little is known of the role of IGF-I in Alzheimeŕs disease (AD) or vascular dementia (VaD). A prospective study of 342 patients with subjective or objective mild cognitive impairment recruited at a single memory clinic. We determined whether serum IGF-I concentrations at baseline were associated with the risk of all-cause dementia, AD, or VaD. Patients developing mixed forms of AD and VaD were defined as suffering from VaD. The statistical analyses included Cox proportional hazards regression analysis. During the follow-up (mean 3.6 years), 95 (28%) of the patients developed all-cause dementia [AD, n=37 (11%) and VaD, n=42 (12%)]. Low as well as high serum IGF-I (quartile 1 or 4 vs. quartiles 2-3) did not associate with all-cause dementia [crude hazard ratio (HR) 1.30, 95% confidence interval (CI): 0.81-2.08 and crude HR 1.05, 95% CI: 0.63-1.75, respectively] or AD (crude HR 0.79, 95% CI: 0.35-1.79 and crude HR 0.94, 95% CI: 0.43-2.06, respectively]. In contrast, low serum IGF-I concentrations were associated with increased risk of VaD (quartile 1 vs. quartiles 2-3, crude HR 2.22, 95% CI: 1.13-4.36). The latter association remained significant also after adjustment for multiple covariates. In a memory clinic population, low serum IGF-I was a risk marker for subsequent VaD whereas low IGF-I did not associate with the risk of AD. High serum IGF-I was not related to the risk of conversion to dementia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. 18FDG-PET predicts pharmacodynamic response to OSI-906, a dual IGF-1R/IR inhibitor, in preclinical mouse models of lung cancer

    PubMed Central

    McKinley, Eliot T.; Bugaj, Joseph E.; Zhao, Ping; Guleryuz, Saffet; Mantis, Christine; Gokhale, Prafulla C.; Wild, Robert; Manning, H. Charles

    2011-01-01

    Purpose To evaluate 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography imaging (18FDG-PET) as a predictive, non-invasive, pharmacodynamic (PD) biomarker of response following administration of a small-molecule IGF-1R/IR inhibitor, OSI-906. Experimental Design In vitro uptake studies of 3H-2-deoxy glucose following OSI-906 exposure were performed evaluating correlation of dose with inhibition of IGF-1R/IR as well as markers of downstream pathways and glucose metabolism. Similarly, in vivo PD effects were evaluated in human tumor cell line xenografts propagated in athymic nude mice by 18FDG-PET at 2, 4, and 24 hours following a single treatment of OSI-906 for the correlation of inhibition of receptor targets and downstream markers. Results Uptake of 3H-2-deoxy glucose and 18FDG was significantly diminished following OSI-906 exposure in sensitive tumor cells and subcutaneous xenografts (NCIH292) but not in an insensitive model lacking IGF-1R expression (NCI-H441). Diminished pharmacodynamic 18FDG-PET collected immediately following the initial treatment agreed with inhibition of pIGF-1R/pIR, reduced PI3K and MAPK pathway activity, and predicted tumor growth arrest as measured by high-resolution ultrasound imaging. Conclusion 18FDG-PET appears to serve as a rapid, non-invasive, PD marker of IGF-1R/IR inhibition following a single dose of OSI-906 and should be explored clinically as a predictive clinical biomarker in patients undergoing IGF-1R/IR-directed cancer therapy. PMID:21257723

  8. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure.

    PubMed

    Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M

    2014-02-01

    The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. © 2013.

  9. Recombinant insulin-like growth factor (IGF)-I treatment in short children with low IGF-I levels: first-year results from a randomized clinical trial.

    PubMed

    Midyett, L Kurt; Rogol, Alan D; Van Meter, Quentin L; Frane, James; Bright, George M

    2010-02-01

    Short stature in children may be associated with low IGF-I despite normal stimulated GH levels and without other causes. Our objective was to assess the safety and efficacy of recombinant human IGF-I (rhIGF-I) in short children with low IGF-I levels. This was a 1-yr, randomized, open-label trial (MS301). The study was conducted at 30 U.S. pediatric endocrinology clinics. A total of 136 short, prepubertal subjects with low IGF-I (height and IGF-I sd scores <-2, stimulated GH > or =7 ng/ml); 124 completed the study, and six withdrew for adverse events and six for other reasons. rhIGF-I was administered sc, twice daily using weight-based dosing (40, 80, or 120 microg/kg; n = 111) or subjects were observed (n = 25). First-year height velocity (centimeters per year, cm/yr), height sd score, IGF-I, and adverse events were prespecified outcomes. First-year height velocities for subjects completing the trial were increased for the 80- and 120-microg/kg twice-daily vs. the untreated group (7.0 +/- 1.0, 7.9 +/- 1.4, and 5.2 +/- 1.0 cm/yr, respectively; all P < 0.0001) and for the 120- vs. 80-microg/kg group (P = 0.0002) and were inversely related to age. They were not predicted by GH stimulation or IGF-I generation test results and were not correlated with IGF-I antibody status. The most commonly reported adverse events of special interest during treatment were headache (38% of subjects), vomiting (25%), and hypoglycemia (14%). rhIGF-I treatment was associated with age- and dose-dependent increases in first-year height velocity. Adverse events during treatment were less common than in previous studies and were generally transient, easily managed, and without known sequelae.

  10. Gene therapy of murine teratocarcinoma: separate functions for insulin-like growth factors I and II in immunogenicity and differentiation.

    PubMed Central

    Trojan, J; Johnson, T R; Rudin, S D; Blossey, B K; Kelley, K M; Shevelev, A; Abdul-Karim, F W; Anthony, D D; Tykocinski, M L; Ilan, J

    1994-01-01

    Teratocarcinoma is a germ-line carcinoma giving rise to an embryoid tumor with structures derived from the three embryonic layers: mesoderm, endoderm, and ectoderm. Teratocarcinoma is widely used as an in vitro model system to study regulation of cell determination and differentiation during mammalian embryogenesis. Murine embryonic carcinoma (EC) PCC3 cells express insulin-like growth factor I(IGF-I) and its receptor, while all derivative tumor structures express IGF-I and IGF-II and their receptors. Therefore the system lends itself to dissect the role of these two growth factors during EC differentiation. With an episomal antisense strategy, we define a role for IGF-I in tumorigenicity and evasion of immune surveillance. Antisense IGF-I EC transfectants are shown to elicit a curative anti-tumor immune response with tumor regression at distal sites. In contrast, IGF-II is shown to drive determination and differentiation in EC cells. Since IGF-I and IGF-II bind to type I receptor and antisense sequence used for IGF-II cannot form duplex with endogenous IGF-I transcripts, it follows that this receptor is not involved in determination and differentiation. Images PMID:8016120

  11. Human GH Receptor-IGF-1 Receptor Interaction: Implications for GH Signaling

    PubMed Central

    Gan, Yujun; Buckels, Ashiya; Liu, Ying; Zhang, Yue; Paterson, Andrew J.; Jiang, Jing; Zinn, Kurt R.

    2014-01-01

    GH signaling yields multiple anabolic and metabolic effects. GH binds the transmembrane GH receptor (GHR) to activate the intracellular GHR-associated tyrosine kinase, Janus kinase 2 (JAK2), and downstream signals, including signal transducer and activator of transcription 5 (STAT5) activation and IGF-1 gene expression. Some GH effects are partly mediated by GH-induced IGF-1 via IGF-1 receptor (IGF-1R), a tyrosine kinase receptor. We previously demonstrated in non-human cells that GH causes formation of a GHR-JAK2-IGF-1R complex and that presence of IGF-1R (even without IGF-1 binding) augments proximal GH signaling. In this study, we use human LNCaP prostate cancer cells as a model system to further study the IGF-1R's role in GH signaling. GH promoted JAK2 and GHR tyrosine phosphorylation and STAT5 activation in LNCaP cells. By coimmunoprecipitation and a new split luciferase complementation assay, we find that GH augments GHR/IGF-1R complex formation, which is inhibited by a Fab of an antagonistic anti-GHR monoclonal antibody. Short hairpin RNA-mediated IGF-1R silencing in LNCaP cells reduced GH-induced GHR, JAK2, and STAT5 phosphorylation. Similarly, a soluble IGF-1R extracellular domain fragment (sol IGF-1R) interacts with GHR in response to GH and blunts GH signaling. Sol IGF-1R also markedly inhibits GH-induced IGF-1 gene expression in both LNCaP cells and mouse primary osteoblast cells. On the basis of these and other findings, we propose a model in which IGF-1R augments GH signaling by allowing a putative IGF-1R-associated molecule that regulates GH signaling to access the activated GHR/JAK2 complex and envision sol IGF-1R as a dominant-negative inhibitor of this IGF-1R-mediated augmentation. Physiological implications of this new model are discussed. PMID:25211187

  12. Igf-I regulates pheochromocytoma cell proliferation and survival in vitro and in vivo.

    PubMed

    Fernández, María Celia; Venara, Marcela; Nowicki, Susana; Chemes, Héctor E; Barontini, Marta; Pennisi, Patricia A

    2012-08-01

    IGFs are involved in malignant transformation and growth of several tissues, including the adrenal medulla. The present study was designed to evaluate the impact of IGF-I on pheochromocytoma development. We used a murine pheochromocytoma (MPC) cell line (MPC4/30) and an animal model with a reduction of 75% in circulating IGF-I levels [liver-IGF-I-deficient (LID) mice] to perform studies in vitro and in vivo. We found that, in culture, IGF-I stimulation increases proliferation, migration, and anchorage-independent growth, whereas it inhibits apoptosis of MPC cells. When injected to control and to LID mice, MPC cells grow and form tumors with features of pheochromocytoma. Six weeks after cell inoculation, all control mice developed sc tumors. In contrast, in 73% of LID mice, tumor development was delayed to 7-12 wk, and the remaining 27% did not develop tumors up to 12 wk after inoculation. LID mice harboring MPC cells and treated with recombinant human IGF-I (LID+) developed tumors as controls. Tumors developed in control, LID, and LID+ mice had similar histology and were similarly positive for IGF-I receptor expression. The apoptotic index was higher in tumors from LID mice compared with those from control mice, whereas vascular density was decreased. In summary, our work demonstrates that IGF-I has a critical role in maintaining tumor phenotype and survival of already transformed pheochromocytoma cells and is required for the initial establishment of these tumors, providing encouragement to carry on research studies to address the IGF-I/IGF-I receptor system as a target of therapeutic strategies for pheochromocytoma treatment in the future.

  13. Genetic variants and traits related to insulin-like growth factor-I and insulin resistance and their interaction with lifestyles on postmenopausal colorectal cancer risk

    PubMed Central

    Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Zhang, Zuo-Feng; Ho, Gloria; Crandall, Carolyn

    2017-01-01

    Genetic variants and traits in metabolic signaling pathways may interact with lifestyle factors such as obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal colorectal cancer (CRC) risk, but these interrelated pathways are not fully understood. In this case-cohort study, we examined 33 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/ insulin resistance (IR) traits and signaling pathways, using data from 704 postmenopausal women in Women’s Health Initiative Observation ancillary studies. Stratifying by the lifestyle modifiers, we assessed the effects of IGF-I/IR traits (fasting total and free IGF-I, IGF binding protein-3, insulin, glucose, and homeostatic model assessment–insulin resistance) on CRC risk as a mediator or influencing factor. Six SNPs in the INS, IGF-I, and IGFBP3 genes were associated with CRC risk, and those associations differed between non-obese/active and obese/inactive women and between E nonusers and users. Roughly 30% of the cancer risk due to the SNP was mediated by IGF-I/IR traits. Likewise, carriers of 11 SNPs in the IRS1 and AKT1/2 genes (signaling pathway–related genetic variants) had different associations with CRC risk between strata, and the proportion of the SNP–cancer association explained by traits varied from 30% to 50%. Our findings suggest that IGF-I/IR genetic variants interact with obesity, physical activity, and exogenous E, altering postmenopausal CRC risk, through IGF-I/IR traits, but also through different pathways. Unraveling gene–phenotype–lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce CRC risk. PMID:29023587

  14. Effects of fasting on growth hormone, growth hormone receptor, and insulin-like growth factor-I axis in seawater-acclimated tilapia, Oreochromis mossambicus.

    PubMed

    Fox, B K; Riley, L G; Hirano, T; Grau, E G

    2006-09-15

    Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.

  15. Ionotropic receptors (IRs): chemosensory ionotropic glutamate receptors in Drosophila and beyond.

    PubMed

    Rytz, Raphael; Croset, Vincent; Benton, Richard

    2013-09-01

    Ionotropic Receptors (IRs) are a recently characterized family of olfactory receptors in the fruit fly, Drosophila melanogaster. IRs are not related to insect Odorant Receptors (ORs), but rather have evolved from ionotropic glutamate receptors (iGluRs), a conserved family of synaptic ligand-gated ion channels. Here, we review the expression and function of IRs in Drosophila, highlighting similarities and differences with iGluRs. We also briefly describe the organization of the neuronal circuits in which IRs function, comparing and contrasting them with the sensory pathways expressing ORs. Finally, we summarize the bioinformatic identification and initial characterization of IRs in other species, which imply an evolutionarily conserved role for these receptors in chemosensation in insects and other protostomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Insulin-like Growth Factor (IGF) Signaling Requires αvβ3-IGF1-IGF Type 1 Receptor (IGF1R) Ternary Complex Formation in Anchorage Independence, and the Complex Formation Does Not Require IGF1R and Src Activation

    PubMed Central

    Fujita, Masaaki; Takada, Yoko K.; Takada, Yoshikazu

    2013-01-01

    Integrin αvβ3 plays a role in insulin-like growth factor 1 (IGF1) signaling (integrin-IGF1 receptor (IGF1R) cross-talk) in non-transformed cells in anchorage-dependent conditions. We reported previously that IGF1 directly binds to αvβ3 and induces αvβ3-IGF1-IGF1R ternary complex formation in these conditions. The integrin-binding defective IGF1 mutant (R36E/R37E) is defective in inducing ternary complex formation and IGF signaling, whereas it still binds to IGF1R. We studied if IGF1 can induce signaling in anchorage-independent conditions in transformed Chinese hamster ovary cells that express αvβ3 (β3-CHO) cells. Here we describe that IGF1 signals were more clearly detectable in anchorage-independent conditions (polyHEMA-coated plates) than in anchorage-dependent conditions. This suggests that IGF signaling is masked by signals from cell-matrix interaction in anchorage-dependent conditions. IGF signaling required αvβ3 expression, and R36E/R37E was defective in inducing signals in polyHEMA-coated plates. These results suggest that αvβ3-IGF1 interaction, not αvβ3-extracellular matrix interaction, is essential for IGF signaling. Inhibitors of IGF1R, Src, AKT, and ERK1/2 did not suppress αvβ3-IGF-IGF1R ternary complex formation, suggesting that activation of these kinases are not required for ternary complex formation. Also, mutations of the β3 cytoplasmic tail (Y747F and Y759F) that block β3 tyrosine phosphorylation did not affect IGF1R phosphorylation or AKT activation. We propose a model in which IGF1 binding to IGF1R induces recruitment of integrin αvβ3 to the IGF-IGF1R complex and then β3 and IGF1R are phosphorylated. It is likely that αvβ3 should be together with the IGF1-IGF1R complex for triggering IGF signaling. PMID:23243309

  17. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners.

    PubMed

    Sarfstein, Rive; Friedman, Yael; Attias-Geva, Zohar; Fishman, Ami; Bruchim, Ilan; Werner, Haim

    2013-01-01

    Accumulating epidemiological evidence shows that obesity is associated with an increased risk of several types of adult cancers, including endometrial cancer. Chronic hyperinsulinemia, a typical hallmark of diabetes, is one of the leading factors responsible for the obesity-cancer connection. Numerous cellular and circulating factors are involved in the biochemical chain of events leading from hyperinsulinemia and insulin resistance to increased cancer risk and, eventually, tumor development. Metformin is an oral anti-diabetic drug of the biguanide family used for treatment of type 2 diabetes. Recently, metformin was shown to exhibit anti-proliferative effects in ovarian and Type I endometrial cancer, although the mechanisms responsible for this non-classical metformin action remain unclear. The insulin-like growth factors (IGFs) play a prominent role in cancer biology and their mechanisms of action are tightly interconnected with the insulin signaling pathways. Given the cross-talk between the insulin and IGF signaling pathways, the aim of this study was to examine the hypothesis that the anti-proliferative actions of metformin in uterine serous carcinoma (USC) are potentially mediated via suppression of the IGF-I receptor (IGF-IR) pathway. Our results show that metformin interacts with the IGF pathway, and induces apoptosis and inhibition of proliferation and migration of USC cell lines with both wild type and mutant p53. Taken together, our results suggest that metformin therapy could be a novel and attractive therapeutic approach for human USC, a highly aggressive variant of endometrial cancer.

  18. Insulin-like growth factor-I (IGF-1), IGF-binding protein-3 (IGFBP-3) and mammographic features.

    PubMed

    Izzo, L; Meggiorini, M L; Nofroni, I; Pala, A; De Felice, C; Meloni, P; Simari, T; Izzo, S; Pugliese, F; Impara, L; Merlini, G; Di Cello, P; Cipolla, V; Forcione, A R; Paliotta, A; Domenici, L; Bolognese, A

    2012-05-01

    The IGF system has recently been shown to play an important role in the regulation of breast tumor cell proliferation. However, also breast density is currently considered as the strongest breast cancer risk factor. It is not yet clear whether these factors are interrelated and if and how they are influenced by menopausal status. The purpose of this study was to examine the possible effects of IGF-1 and IGFBP-3 and IGF-1/IGFBP-3 molar ratio on mammographic density stratified by menopausal status. A group of 341 Italian women were interviewed to collect the following data: family history of breast cancer, reproductive and menstrual factors, breast biopsies, previous administration of hormonal contraceptive therapy, hormone replacement therapy (HRT) in menopause and lifestyle information. A blood sample was drawn for determination of IGF-1, IGFBP-3 levels. IGF-1/ IGFBP-3 molar ratio was then calculated. On the basis of recent mammograms the women were divided into two groups: dense breast (DB) and non-dense breast (NDB). Student's t-test was employed to assess the association between breast density and plasma level of IGF-1, IGFBP-3 and molar ratio. To assess if this relationship was similar in subgroups of pre- and postmenopausal women, the study population was stratified by menopausal status and Student's t-test was performed. Finally, multivariate analysis was employed to evaluate if there were confounding factors that might influence the relationship between growth factors and breast density. The analysis of the relationship between mammographic density and plasma level of IGF-1, IGFBP-3 and IGF-1/ IGFBP-3 molar ratio showed that IGF-1 levels and molar ratio varied in the two groups resulting in higher mean values in the DB group (IGF-1: 109.6 versus 96.6 ng/ml; p= 0.001 and molar ratio 29.4 versus 25.5 ng/ml; p= 0.001) whereas IGFBP-3 showed similar values in both groups (DB and NDB). Analysis of plasma level of IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio

  19. IGF-1 receptor inhibition by picropodophyllin in medulloblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohshima-Hosoyama, Sachiko; Hosoyama, Tohru; Nelon, Laura D.

    2010-09-03

    Research highlights: {yields} Igf1r is overexpressed and activated in a Sonic Hedgehog driven model of medulloblastoma. {yields} Picropodophyllin targets and abrogates IGF signaling in medulloblastoma. {yields} Picropodophyllin inhibits medulloblastoma tumor cell growth by induction of apoptosis. -- Abstract: The insulin-like growth factor-1 receptor (Igf1r) is a multifunctional membrane-associated tyrosine kinase associated with regulation of transformation, proliferation, differentiation and apoptosis. Increased IGF pathway activity has been reported in human and murine medulloblastoma. Tumors from our genetically-engineered medulloblastoma mouse model over-express Igf1r, and thus this mouse model is a good platform with which to study the role of Igf1r in tumor progression.more » We hypothesize that inhibition of IGF pathway in medulloblastoma can slow or inhibit tumor growth and metastasis. To test our hypothesis, we tested the role of IGF in tumor growth in vitro by treatment with the tyrosine kinase small molecule inhibitor, picropodophyllin (PPP), which strongly inhibits the IGF pathway. Our results demonstrate that PPP-mediated downregulation of the IGF pathway inhibits mouse tumor cell growth and induces apoptotic cell death in vitro in primary medulloblastoma cultures that are most reflective of tumor cell behavior in vivo.« less

  20. Ontogenic and nutritional changes in circulating insulin-like growth factor (IGF)-I, IGF-II and IGF-binding proteins in growing ewe and ram lambs.

    PubMed

    Gatford, K L; Quinn, K J; Walton, P E; Grant, P A; Hosking, B J; Egan, A R; Owens, P C

    1997-10-01

    The ontogeny of the IGF endocrine system was investigated in 15 young lambs before and after weaning at 62 days of age. Before weaning, plasma IGF-I concentrations were higher in rams than ewes, and plasma concentrations of IGF-II and IGF-binding protein-3 (IGFBP-3) also tended to be higher in rams than in ewes. Feed intake of ewes and rams was restricted after weaning to remove sex differences in feed intake. Plasma concentrations of IGF-I and IGFBP-3 did not differ between rams and ewes at 100 days of age, but plasma IGF-II was higher in rams than in ewes at this time. Since circulating concentrations of GH were higher in rams than in ewes at 100 days of age, this implies that the restricted feed intake blocked the IGF-I and IGFBP-3 responses to GH. We conclude that sex differences in circulating IGF-I and IGFBP-3 concentrations in the growing lamb alter with age, and are not present when nutrition is restricted.

  1. Comparisons of mRNA expression for insulin-like growth factor (IGF) type 2 receptor (IGF2R) and IGF-1 in small ovarian follicles between cattle selected and not selected for twin ovulations

    USDA-ARS?s Scientific Manuscript database

    Both IGF-1 and -2 stimulate ovarian follicular cell proliferation and antral follicle development. Actions of IGF-1 and -2 are mediated through the IGF type 1 receptor, whereas binding of IGF-2 to the IGF2R results in its degradation. Information on the role of IGF2R in regulating bovine follicula...

  2. Astrocyte Resilience to Oxidative Stress Induced by Insulin-like Growth Factor I (IGF-I) Involves Preserved AKT (Protein Kinase B) Activity*

    PubMed Central

    Dávila, David; Fernández, Silvia; Torres-Alemán, Ignacio

    2016-01-01

    Disruption of insulin-like growth factor I (IGF-I) signaling is a key step in the development of cancer or neurodegeneration. For example, interference of the prosurvival IGF-I/AKT/FOXO3 pathway by redox activation of the stress kinases p38 and JNK is instrumental in neuronal death by oxidative stress. However, in astrocytes, IGF-I retains its protective action against oxidative stress. The molecular mechanisms underlying this cell-specific protection remain obscure but may be relevant to unveil new ways to combat IGF-I/insulin resistance. Here, we describe that, in astrocytes exposed to oxidative stress by hydrogen peroxide (H2O2), p38 activation did not inhibit AKT (protein kinase B) activation by IGF-I, which is in contrast to our previous observations in neurons. Rather, stimulation of AKT by IGF-I was significantly higher and more sustained in astrocytes than in neurons either under normal or oxidative conditions. This may be explained by phosphorylation of the phosphatase PTEN at the plasma membrane in response to IGF-I, inducing its cytosolic translocation and preserving in this way AKT activity. Stimulation of AKT by IGF-I, mimicked also by a constitutively active AKT mutant, reduced oxidative stress levels and cell death in H2O2-exposed astrocytes, boosting their neuroprotective action in co-cultured neurons. These results indicate that armoring of AKT activation by IGF-I is crucial to preserve its cytoprotective effect in astrocytes and may form part of the brain defense mechanism against oxidative stress injury. PMID:26631726

  3. Insulin-Like Growth Factor-I Regulates LH Release by Modulation of Kisspeptin and NMDA-Mediated Neurotransmission in Young and Middle-Aged Female Rats

    PubMed Central

    Yao, Dachun; Shu, Jun; Sun, Yan; Etgen, Anne M.

    2014-01-01

    This study investigated potential mechanisms by which age and IGF-I receptor (IGF-Ir) signaling in the neuroendocrine hypothalamus affect estradiol-positive feedback effects on GnRH neuronal activation and on kisspeptin and N-methyl-D-aspartate (NMDA)-induced LH release and on the abundance of NMDA receptor subunits Nr1 and Nr2b and Kiss1r transcript and protein in the hypothalamus of young and middle-aged female rats. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-Ir, into the third ventricle of ovariectomized female rats primed with estradiol or vehicle and injected with vehicle, kisspeptin (3 or 30 nmol/kg), or NMDA (15 or 30 mg/kg). Regardless of dose, NMDA and kisspeptin resulted in significantly more LH release, GnRH/c-Fos colabeling, and c-Fos immunoreative cells in young than in middle-aged females. Estradiol priming significantly increased Kiss1r, Nr1, and Nr2b receptor transcript and protein abundance in young but not middle-aged female hypothalamus. JB-1 attenuated kisspeptin and NMDA-induced LH release, numbers of GnRH/c-Fos and c-Fos cells, and Kiss1r, Nr1, and Nr2b transcript and protein abundance in young females to levels observed in middle-aged females. IGF-I significantly enhanced NMDA and kisspeptin-induced LH release in middle-aged females without increasing numbers of GnRH/c-Fos or c-Fos immunoreactive cells. IGF-I infusion in middle-aged females also increased Kiss1r, Nr1, and Nr2b protein and transcript to levels that were equivalent to young estradiol-primed females. These findings indicate that age-related changes in estradiol-regulated responsiveness to excitatory input from glutamate and kisspeptin reflect reduced IGF-Ir signaling. PMID:24617524

  4. Impaired growth in Rabson-Mendenhall syndrome: lack of effect of growth hormone and insulin-like growth factor-I.

    PubMed

    Longo, N; Singh, R; Griffin, L D; Langley, S D; Parks, J S; Elsas, L J

    1994-09-01

    Mutations in the insulin receptor gene cause the severe insulin-resistant syndromes leprechaunism and Rabson-Mendenhall syndrome. There is no accepted therapy for these inherited conditions. Here we report the results of recombinant human GH (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I) treatment of a male patient, Atl-2, with Rabson-Mendenhall syndrome. The patient was small for gestational age, had premature dentition, absence of sc fat, acanthosis nigricans, fasting hypoglycemia and postprandial hyperglycemia, and extremely high concentrations of circulating insulin (up to 8500 microU/mL). Fibroblasts and lymphoblasts established from this patient had reduced insulin binding, which was 20-30% of the control value. Binding of epidermal growth factor, IGF-I, and GH to the patient's fibroblasts was normal. The growth of fibroblasts cultured from patient Atl-2 in vitro was intermediate between that of fibroblasts from patients with leprechaunism and control values. The patient's growth curve in vivo was far below the fifth percentile despite adequate nutrition. To stimulate growth, therapy with rhGH was initiated, the rationale being to stimulate hepatic IGF-I production and IGF-I receptor signaling, and bypass the inherited block in insulin receptor signaling. Therapy with rhGH (up to 0.5 mg/kg.week) did not improve growth and failed to increase the levels of circulating IGF-I and IGF-binding protein-3 over a 14-month period. As rhGH could not stimulate growth, rhIGF-I (up to 100 micrograms/kg.day) was given by daily sc injection. No increase in growth velocity was observed over a 14-month period. These results indicate that both GH and IGF-I fail to correct growth in a patient with severe inherited insulin resistance. The lack of efficacy of IGF-I treatment may be related to multiple factors, such as the poor metabolic state of the patient, the deficiency of serum carrier protein for IGF-I, an increased clearance of the growth factor, IGF-I

  5. Evidence That Graves' Ophthalmopathy Immunoglobulins Do Not Directly Activate IGF-1 Receptors.

    PubMed

    Marcus-Samuels, Bernice; Krieger, Christine C; Boutin, Alisa; Kahaly, George J; Neumann, Susanne; Gershengorn, Marvin C

    2018-05-01

    Graves' ophthalmopathy (GO) pathogenesis involves thyrotropin (TSH) receptor (TSHR)-stimulating autoantibodies. Whether there are autoantibodies that directly stimulate insulin-like growth factor 1 receptors (IGF-1Rs), stimulating insulin-like growth factor receptor antibodies (IGFRAbs), remains controversial. This study attempted to determine whether there are stimulating IGFRAbs in patients with GO. Immunoglobulins (Igs) were purified from normal volunteers (NV-Igs) and patients with GO (GO-Igs). The effects of TSH, IGF-1, NV-Igs, and GO-Igs on pAKT and pERK1/2, members of pathways used by IGF-1R and TSHR, were compared in orbital fibroblasts from GO patients (GOFs) and U2OS-TSHR cells overexpressing TSHRs, and U2OS cells that express TSHRs at very low endogenous levels. U2OS-TSHR and U2OS cells were used because GOFs are not easily manipulated using molecular techniques such as transfection, and U2OS cells because they express TSHRs at levels that do not measurably stimulate signaling. Thus, comparing U2OS-TSHR and U2OS cells permits specifically distinguishing signaling mediated by the TSHR and IGF-1R. In GOFs, all GO-Igs stimulated pERK1/2 formation and 69% stimulated pAKT. In U2OS-TSHR cells, 15% of NV-IGs and 83% of GO-Igs stimulated increases in pERK1/2, whereas all NV-Igs and GO-Igs stimulated increases in pAKT. In U2OS cells, 70% of GO-Igs stimulated small increases in pAKT. Knockdown of IGF-1R caused a 65 ± 6.3% decrease in IGF-1-stimulated pAKT but had no effect on GO-Igs stimulation of pAKT. Thus, GO-Igs contain factor(s) that stimulate pAKT formation. However, this factor(s) does not directly activate IGF-1R. Based on the findings analyzing these two signaling pathways, it is concluded there is no evidence of stimulating IGFRAbs in GO patients.

  6. Postnatally elevated levels of insulin-like growth factor (IGF)-II fail to rescue the dwarfism of IGF-I-deficient mice except kidney weight.

    PubMed

    Moerth, Corinna; Schneider, Marlon R; Renner-Mueller, Ingrid; Blutke, Andreas; Elmlinger, Martin W; Erben, Reinhold G; Camacho-Hübner, Cecilia; Hoeflich, Andreas; Wolf, Eckhard

    2007-01-01

    This study tested whether elevated levels of IGF-II in the postnatal period can rescue the dwarfism in IGF-I-deficient mice. Heterozygous Igf1 mutant mice [I(+/-) II(wt)] were crossed with heterozygous Igf1 mutant, phosphoenolpyruvate carboxykinase promoter IGF-II transgenic mice [I(+/-) II(tg)], and [I(+/+) II(wt)], [I(+/+) II(tg)], [I(-/-) II(wt)], and [I(-/-) II(tg)] offspring were investigated. IGF-II levels were 11- and 6-fold higher in male and female [I(-/-) II(tg)] vs. [I(-/-) II(wt)] animals. Western ligand blot analysis revealed markedly reduced activities of 30- and 32-kDa IGF binding proteins (IGFBPs) (most likely IGFBP-1 and IGFBP-2) and the 39- to 43-kDa IGFBP-3 double band in serum from IGF-I-deficient mice. These binding proteins were partially restored by overexpression of IGF-II. Analysis of weight data from the early postnatal period until d 60 showed that, in the absence of IGF-I, elevated levels of IGF-II have no effect on body weight gain. A detailed analysis of body proportions, bone parameters, and organ weights of 60-d-old mice also failed to show effects of IGF-II with one important exception: in Igf1 mutant and also Igf1 intact male mice, IGF-II overexpression significantly increased absolute (+32.4 and +28.6%; P < 0.01) and relative kidney weights (+29.0 and +22.4%; P < 0.001). These changes in kidney weight were associated with reduced phosphorylation of p38 MAPK. In summary, our genetic model shows that substantial amounts of IGF-II in the circulation do not rescue the postnatal growth deficit of IGF-I-deficient mice but increase absolute and relative kidney weights of normal and IGF-I-deficient male mice, suggesting a gender-specific role of IGF-II for kidney growth.

  7. The effect of economic status on height, insulin-like growth factor (IGF)-I and IGF binding protein-3 concentrations in healthy Turkish children.

    PubMed

    Turan, S; Bereket, A; Furman, A; Omar, A; Berber, M; Ozen, A; Akbenlioglu, C; Haklar, G

    2007-06-01

    The effect of economic status (ES) on growth, insulin-like growth factor (IGF)-I and IGF-binding protein (IGFBP)-3 in healthy children is not well characterized. We aimed to study the interrelationship between height, weight, IGF-I, IGFBP-3, mid-parental height (MPH) and ES. Eight hundred and fourteen healthy children (428 boys, 386 girls; age 3-18 years) were classified according to income of the families as low, middle and high. Standard deviation scores (SDSs) of height, weight, MPH, IGF-I and IGFBP-3 were compared between the groups. The combined effect of these parameters and ES on height SDS was investigated with complex statistical models. There was a significant trend for height and weight SDSs to increase with higher income levels in boys, but not in girls. Body mass index (BMI) SDSs were similar in three groups. There was a general trend for MPH SDS to increase with income levels in both sexes. In boys, IGF-I SDS was significantly higher in high ES group than low ES. In girls, IGFBP-3 SDSs were significantly higher in high ES group than in middle ES group. For both genders, height SDS was highly correlated with weight SDS and moderately correlated with BMI SDS, MPH SDS and IGF-1 SDS. All correlations were significant and positive. Complex models showed that MPH (19%), IGF-I (13%) and ES (3%) in boys, and MPH (16%) and IGF-I (7%) in girls have significant contribution to height SDSs. ES per se, independent of overt malnutrition, affects height, weight, IGF-I and IGFBP-3 with some gender differences in healthy children. Influence of income on height and weight show sexual dimorphism, a slight but significant effect is observed only in boys. MPH is the most prominent variable effecting height in healthy children. Higher height and MPH SDSs observed in higher income groups suggest that secular trend in growth still exists, at least in boys, in a country of favorable economic development.

  8. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1.

    PubMed

    Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Zhang, Ji-Chang; Li, Yang-Xue; Liu, Ning; Yu, Yun-Peng; Wang, Guan; Wang, Jin-Peng; Li, Qian

    2016-06-28

    Insulin-like growth factor-1 (IGF-1) is an important regulator of cardiomyocyte homeostasis and cardiac structure, and the prosurvival and antiapoptotic effects of IGF-1 have been investigated. However, the effect of microRNA-320 (miR-320) in ischemia and reperfusion (I/R) by targeting IGF-1 is rarely discussed. We investigated the role of miR-320 in I/R injury. A total of 192 healthy female Wistar rats were divided into eight groups (n = 24). Rat heart I/R model was established. Hemodynamics, infarct size weight (ISW), heart function, and rat cardiomyocyte apoptosis were measured. Hypoxia-reoxygenation (H/R) in rat cardiomyocyte was used to simulate the I/R process. The mRNA levels of miR-320 and IGF-1, and proteins levels of IGF-1, IGF-1R, p-IGF-1R, p-ASK1, p-JNK, p-p38, Bcl-2, Bax and Caspase-3 were measured. In vivo inhibition of miR-320 expression significantly increased IGF-1 and IGF-1R mRNA levels, elevated the absolute values of SBP, DBP, MAP, ± dp/dtmax, LVEF and LVFS, decreased ISW, LVESD and LVEDd and the number of TUNEL positive cells, lowered the levels of p-ASK1, p-JNK, p-p38, Bax and Caspase-3 and increased expression of Bcl-2 compared to the I/R + NC group. Compared to H/R + NC group in vitro, miR-320 inhibition increased IGF-1 mRNA levels, inhibited cardiomyocyte apoptosis, down-regulated p-ASK, p-JNK, p-p38, Bax and Caspase-3 levels, and up-regulated Bcl-2 level. MiR-320 inhibition target elevated IGF-1 mRNA and protein levels, suppress early cardiomyocyte apoptosis of I/R, and inhibited ASK1-JNK/p38 pathway, which provides a new target for clinical study of I/R injury.

  9. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1

    PubMed Central

    Song, Chun-Li; Liu, Bin; Diao, Hong-Ying; Shi, Yong-Feng; Zhang, Ji-Chang; Li, Yang-Xue; Liu, Ning; Yu, Yun-Peng; Wang, Guan; Wang, Jin-Peng; Li, Qian

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) is an important regulator of cardiomyocyte homeostasis and cardiac structure, and the prosurvival and antiapoptotic effects of IGF-1 have been investigated. However, the effect of microRNA-320 (miR-320) in ischemia and reperfusion (I/R) by targeting IGF-1 is rarely discussed. We investigated the role of miR-320 in I/R injury. A total of 192 healthy female Wistar rats were divided into eight groups (n = 24). Rat heart I/R model was established. Hemodynamics, infarct size weight (ISW), heart function, and rat cardiomyocyte apoptosis were measured. Hypoxia-reoxygenation (H/R) in rat cardiomyocyte was used to simulate the I/R process. The mRNA levels of miR-320 and IGF-1, and proteins levels of IGF-1, IGF-1R, p-IGF-1R, p-ASK1, p-JNK, p-p38, Bcl-2, Bax and Caspase-3 were measured. In vivo inhibition of miR-320 expression significantly increased IGF-1 and IGF-1R mRNA levels, elevated the absolute values of SBP, DBP, MAP, ± dp/dtmax, LVEF and LVFS, decreased ISW, LVESD and LVEDd and the number of TUNEL positive cells, lowered the levels of p-ASK1, p-JNK, p-p38, Bax and Caspase-3 and increased expression of Bcl-2 compared to the I/R + NC group. Compared to H/R + NC group in vitro, miR-320 inhibition increased IGF-1 mRNA levels, inhibited cardiomyocyte apoptosis, down-regulated p-ASK, p-JNK, p-p38, Bax and Caspase-3 levels, and up-regulated Bcl-2 level. MiR-320 inhibition target elevated IGF-1 mRNA and protein levels, suppress early cardiomyocyte apoptosis of I/R, and inhibited ASK1-JNK/p38 pathway, which provides a new target for clinical study of I/R injury. PMID:27175593

  10. Differentiation of rat brown adipocytes during late foetal development: role of insulin-like growth factor I.

    PubMed Central

    Teruel, T; Valverde, A M; Alvarez, A; Benito, M; Lorenzo, M

    1995-01-01

    Rat brown adipocytes at day 22 of foetal development showed greater size, higher mitochondria content and larger amounts of lipids, as determined by flow cytometry, than 20-day foetal cells. Simultaneously, an inhibition on the percentage of brown adipocytes into S+G2/M phases of the cell cycle was observed between days 20 and 22 of foetal development. The expression of several adipogenesis-related genes, such as fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase and insulin-regulated glucose transporter, increased at the end of foetal life in brown adipose tissue. In addition, the lipogenic enzyme activities and the lipogenic flux increased during late foetal development, resulting in mature brown adipocytes showing a multilocular fat droplet phenotype. Concurrently, brown adipocytes induced the expression of the uncoupling protein (UP) mRNA and UP protein, as visualized by immunofluorescence. The three isoforms of CCAAT enhancer-binding proteins (C/EBPs) were expressed at the mRNA level in brown adipose tissue at day 20. C/EBP alpha decreased and C/EBP beta and delta increased their expression between days 20 and 22 of foetal development, respectively. Brown adipose tissue constitutively expressed insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNAs. Moreover, IGF-IR mRNA content increased between days 20 and 22 in parallel with the occurrence of tissue differentiation. Images Figure 2 Figure 3 Figure 4 PMID:7575409

  11. The essential role of IGF-I: lessons from the long-term study and treatment of children and adults with Laron syndrome.

    PubMed

    Laron, Z

    1999-12-01

    Fifty patients with primary GH resistance (Laron syndrome) due to molecular defects of the GH receptor or post-receptor pathways were followed from infancy through adulthood. This condition leading to long-term insulin-like growth factor-I (IGF-I) deprivation caused marked growth retardation (-4 to 8 height SD), acromicia, organomicria, retarded development of the skeletal and muscular systems, a small cranium, slow motor development, and impairment of intellectual development in some of the patients. In addition, there was progressive obesity, insulin resistance, a tendency for hypoglycemia, followed later in life by hypercholesterolemia and by glucose intolerance and even diabetes. IGF-I treatment of children with Laron syndrome, by our and other groups (150-240 microg/day sc), stimulated growth (8 cm in the first year and 4-5 cm in the following years) and normalized the biochemical abnormalities. Overdosage led to adverse effects such as hypoglycemia, edema, swelling of soft tissues, and hyperandrogenism. It is concluded that primary IGF-I deprivation induces severe auxological, biochemical, and hormonal changes, the only treatment being biosynthetic IGF-I administration.

  12. Mature IGF-I excels in promoting functional muscle recovery from disuse atrophy compared with pro-IGF-IA.

    PubMed

    Park, Soohyun; Brisson, Becky K; Liu, Min; Spinazzola, Janelle M; Barton, Elisabeth R

    2014-04-01

    Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy.

  13. Mature IGF-I excels in promoting functional muscle recovery from disuse atrophy compared with pro-IGF-IA

    PubMed Central

    Park, SooHyun; Brisson, Becky K.; Liu, Min; Spinazzola, Janelle M.

    2013-01-01

    Prolonged disuse of skeletal muscle results in atrophy, and once physical activity is resumed, there is increased susceptibility to injury. Insulin-like growth factor-I (IGF-I) is considered a potential therapeutic target to attenuate atrophy during unloading and to enhance rehabilitation upon reloading of skeletal muscles, due to its multipronged actions on satellite cell proliferation, differentiation, and survival, as well as its actions on muscle fibers to boost protein synthesis and inhibit protein degradation. However, the form of IGF-I delivered may alter the success of treatment. Using the hindlimb suspension model of disuse atrophy, we compared the efficacy of two IGF-I forms in protection against atrophy and enhancement of recovery: mature IGF-I (IGF-IS) lacking the COOH-terminal extension, called the E-peptide, and IGF-IA, which is the predominant form retaining the E-peptide. Self-complementary adeno-associated virus harboring the murine Igf1 cDNA constructs were delivered to hindlimbs of adult female C57BL6 mice 3 days prior to hindlimb suspension. Hindlimb muscles were unloaded for 7 days and then reloaded for 3, 7, and 14 days. Loss of muscle mass following suspension was not prevented by either IGF-I construct. However, IGF-IS expression maintained soleus muscle force production. Further, IGF-IS treatment caused rapid recovery of muscle fiber morphology during reloading and maintained muscle strength. Analysis of gene expression revealed that IGF-IS expression accelerated the downregulation of atrophy-related genes compared with untreated or IGF-IA-treated samples. We conclude that mature-IGF-I may be a better option than pro-IGF-IA to promote skeletal muscle recovery following disuse atrophy. PMID:24371018

  14. [Abnormal expression of insulin-like growth factor-I receptor and inhibitory effect of its transcription intervention on nude mice xenograft tumor].

    PubMed

    Yao, M; Yan, X D; Cai, Y; Gu, J J; Yang, X L; Pan, L H; Wang, L; Yao, D F

    2016-11-20

    Objective: To investigate the expression of insulin-like growth factor-I receptor (IGF-IR) in liver cancer and the inhibitory effect of its transcription intervention on nude mice xenograft tumor. Methods: A total of 40 patients with primary liver cancer were enrolled, and 40 samples of cancer lesions, peri-cancerous tissues (with a distance of 2 cm to the margin of cancer lesion), or distal liver tissues (with a distance of 5 cm to the margin of cancer lesion), with a weight of 200 mg, were collected after surgery. Some of these samples were used for pathological examination, and the rest were stored at -85°C. A total of 18 BALB/c nude mice aged 4-6 weeks with a body weight of 18-20 g (9 male and 9 female mice) were randomly divided into control group, negative control group, and co-intervention group, with 6 mice in each group, and fed under specific pathogen-free conditions. The cell line was cultured in the dimethyl sulfoxide complete medium containing 10% fetal bovine serum in a CO 2 incubator at 37°C. When the cell confluence reached 90% after cell inoculation, shRNA was divided into co-intervention group, negative control group, and untreated control group and were transfected to hepatoma cells using PolyJetTM transfection reagent. Stable cell clones obtained by G418 screening and used for the in vivo study. Immunohistochemistry, Western blotting, and quantitative real-time PCR were used to analyze the expression of IGF-IR in the human hepatoma tissue and cell line. The IGF-IR shRNA eukaryotic expression plasmids were established and screened for the most effective sequence; they were transfected to PLC/PRF/5 hepatoma cells, and the CCK-8 assay was used to analyze the changes in cell proliferation. The stable cell line screened out by G418 was inoculated to establish the subcutaneous xenograft tumor in nude mice. The tumor growth curve was plotted and histological examination was performed. Graphpad Prism 5.0 and SPSS 18.0 were used for plotting and data

  15. Saw palmetto extract suppresses insulin-like growth factor-I signaling and induces stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation in human prostate epithelial cells.

    PubMed

    Wadsworth, Teri L; Carroll, Julie M; Mallinson, Rebecca A; Roberts, Charles T; Roselli, Charles E

    2004-07-01

    A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.

  16. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency.

    PubMed

    Rayes, Roni F; Milette, Simon; Fernandez, Maria Celia; Ham, Boram; Wang, Ni; Bourdeau, France; Perrino, Stephanie; Yakar, Shoshana; Brodt, Pnina

    2018-03-20

    The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.

  17. Anticancer effect of genistein on BG-1 ovarian cancer growth induced by 17 β-estradiol or bisphenol A via the suppression of the crosstalk between estrogen receptor alpha and insulin-like growth factor-1 receptor signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Kyung-A; Park, Min-Ah; Kang, Nam-Hee

    The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylationmore » of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2.« less

  18. FOXO1 content is reduced in cystic fibrosis and increases with IGF-I treatment.

    PubMed

    Smerieri, Arianna; Montanini, Luisa; Maiuri, Luigi; Bernasconi, Sergio; Street, Maria E

    2014-10-08

    Cystic fibrosis-related diabetes is to date the most frequent complication in cystic fibrosis (CF). The mechanisms underlying this condition are not well understood, and a possible role of insulin resistance is debated. We investigated insulin signal transduction in CF. Total insulin receptor, IRS1, p85 PI3K, and AKT contents were substantially normal in CF cells (CFBE41o-), whereas winged helix forkhead (FOX)O1 contents were reduced both in baseline conditions and after insulin stimulation. In addition, CF cells showed increased ERK1/2, and reduced β2 arrestin contents. No significant change in SOCS2 was observed. By using a CFTR inhibitor and siRNA, changes in FOXO1 were related to CFTR loss of function. In a CF-affected mouse model, FOXO1 content was reduced in the muscle while no significant difference was observed in liver and adipose tissue compared with wild-type. Insulin-like growth factor 1 (IGF-I) increased FOXO1 content in vitro and in vivo in muscle and adipose tissue. In conclusion; we present the first description of reduced FOXO1 content in CF, which is compatible with reduced gluconeogenesis and increased adipogenesis, both features of insulin insensitivity. IGF-I treatment was effective in increasing FOXO1, thereby suggesting that it could be considered as a potential treatment in CF patients possibly to prevent and treat cystic fibrosis-related diabetes.

  19. Transcriptional regulation of IGF-I expression in skeletal muscle

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Allen, D. L.; Haddad, F.; Baldwin, K. M.

    2003-01-01

    The present study investigated the role of transcription in the regulation of insulin-like growth factor (IGF)-I expression in skeletal muscle. RT-PCR was used to determine endogenous expression of IGF-I pre-mRNA and mRNA in control (Con) and functionally overloaded (FO) rat plantaris. The transcriptional activities of five different-length IGF-I promoter fragments controlling transcription of a firefly luciferase (FLuc) reporter gene were tested in vitro by transfection of myoblasts or in vivo during FO by direct gene transfer into the plantaris. Increased endogenous IGF-I gene transcription during 7 days of plantaris FO was evidenced by an approximately 140-160% increase (P < 0.0001) in IGF-I pre-mRNA (a transcriptional marker). IGF-I mRNA expression also increased by approximately 90% (P < 0.0001), and it was correlated (R = 0.93; P < 0.0001) with the pre-mRNA increases. The three longest IGF-I exon 1 promoters induced reporter gene expression in proliferating C2C12 and L6E9 myoblasts. In differentiated L6E9 myotubes, promoter activity increased approximately two- to threefold over myoblasts. Overexpression of calcineurin and MyoD increased the activity of the -852/+192 promoter in C2C12 myotubes by approximately 5- and approximately 18-fold, respectively. However, FO did not induce these exogenous promoter fragments. Nevertheless, the present findings are consistent with the hypothesis that the IGF-I gene is transcriptionally regulated during muscle hypertrophy in vivo as evidenced by the induction of the endogenous IGF-I pre-mRNA during plantaris FO. The exon 1 promoter region of the IGF-I gene is sufficient to direct inducible expression in vitro; however, an in vivo response to FO may require elements outside the -852/+346 region of the exon 1 IGF-I promoter or features inherent to the endogenous IGF-I gene.

  20. Takifugu rubripes cation independent mannose 6-phosphate receptor: Cloning, expression and functional characterization of the IGF-II binding domain.

    PubMed

    A, Ajith Kumar; Nadimpalli, Siva Kumar

    2018-07-01

    Mannose 6-phosphate/IGF-II receptor mediated lysosomal clearance of insulin-like growth factor-II is significantly associated with the evolution of placental mammals. The protein is also referred to as the IGF-II receptor. Earlier studies suggested relatively low binding affinity between the receptor and ligand in prototherian and metatherian mammals. In the present study, we cloned the IGF-II binding domain of the early vertebrate fugu fish and expressed it in bacteria. A 72000Da truncated receptor containing the IGF-II binding domain was obtained. Analysis of this protein (covering domains 11-13 of the CIMPR) for its affinity to fish and human IGF-II by ligand blot assays and ELISA showed that the expressed receptor can specifically bind to both fish and human IGF-II. Additionally, a peptide-specific antibody raised against the region of the IGF-II binding domain also was able to recognize the IGF-II binding regions of mammalian and non-mammalian cation independent MPR protein. These interactions were further characterized by Surface Plasma resonance support that the receptor binds to fish IGF-II, with a dissociation constant of 548nM. Preliminary analysis suggests that the binding mechanism as well as the affinity of the fish and human receptor for IGF-II may have varied according to different evolutionary pressures. Copyright © 2018. Published by Elsevier B.V.

  1. S-nitrosylation of the IGF-1 receptor disrupts the cell proliferative action of IGF-1.

    PubMed

    Okada, Kazushi; Zhu, Bao-Ting

    2017-09-30

    The insulin-like growth factor 1 receptor (IGF-1R) is a disulfide-linked heterotetramer containing two α-subunits and two β-subunits. Earlier studies demonstrate that nitric oxide (NO) can adversely affect IGF-1 action in the central nervous system. It is known that NO can induce S-nitrosylation of the cysteine residues in proteins, thereby partly contributing to the regulation of protein function. In the present study, we sought to determine whether S-nitrosylation of the cysteine residues in IGF-1R is an important post-translational modification that regulates its response to IGF-1. Using cultured SH-SY5Y human neuroblastoma cells as an in vitro model, we found that treatment of cells with S-nitroso-cysteine (SNOC), a NO donor that can nitrosylate the cysteine residues in proteins, induces S-nitrosylation of the β subunit of IGF-1R but not its α-subunit. IGF-1Rβ S-nitrosylation by SNOC is coupled with increased dissociation of the IGF-1R protein complex. In addition, disruption of the IGF-1R function resulting from S-nitrosylation of the IGF-1Rβ subunit is associated with disruption of the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways. Further, we observed that SNOC-induced IGF-1Rβ S-nitrosylation results in a dose-dependent inhibition of cell proliferation and survival. Together, these results suggest that elevated nitrosative stress may result in dysfunction of cellular IGF-1R signaling through S-nitrosylation of the cysteine residues in the IGF-1Rβ subunit, thereby disrupting the downstream PI3K and MAPK signaling functions and ultimately resulting in inhibition of cell proliferation and survival. Copyright © 2017. Published by Elsevier Inc.

  2. Quantitative phosphoproteomics analysis reveals a key role of insulin growth factor 1 receptor (IGF1R) tyrosine kinase in human sperm capacitation.

    PubMed

    Wang, Jing; Qi, Lin; Huang, Shaoping; Zhou, Tao; Guo, Yueshuai; Wang, Gaigai; Guo, Xuejiang; Zhou, Zuomin; Sha, Jiahao

    2015-04-01

    One of the most important changes during sperm capacitation is the enhancement of tyrosine phosphorylation. However, the mechanisms of protein tyrosine phosphorylation during sperm capacitation are not well studied. We used label-free quantitative phosphoproteomics to investigate the overall phosphorylation events during sperm capacitation in humans and identified 231 sites with increased phosphorylation levels. Motif analysis using the NetworKIN algorithm revealed that the activity of tyrosine phosphorylation kinases insulin growth factor 1 receptor (IGF1R)/insulin receptor is significantly enriched among the up-regulated phosphorylation substrates during capacitation. Western blotting further confirmed inhibition of IGF1R with inhibitors GSK1904529A and NVP-AEW541, which inhibited the increase in tyrosine phosphorylation levels during sperm capacitation. Additionally, sperm hyperactivated motility was also inhibited by GSK1904529A and NVP-AEW541 but could be up-regulated by insulin growth factor 1, the ligand of IGF1R. Thus, the IGF1R-mediated tyrosine phosphorylation pathway may play important roles in the regulation of sperm capacitation in humans and could be a target for improvement in sperm functions in infertile men. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Impact of IGF-I release kinetics on bone healing: a preliminary study in sheep.

    PubMed

    Luginbuehl, Vera; Zoidis, Evangelos; Meinel, Lorenz; von Rechenberg, Brigitte; Gander, Bruno; Merkle, Hans P

    2013-09-01

    Spatiotemporal release of growth factors from a delivery device can profoundly affect the efficacy of bone growth induction. Here, we report on a delivery platform based on the encapsulation of insulin-like growth factor I (IGF-I) in different poly(D,L-lactide) (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) microsphere (MS) formulations to control IGF-I release kinetics. In vitro IGF-I release profiles generally exhibited an initial burst (14-36% of total IGF-I content), which was followed by a more or less pronounced dormant phase with little release (2 to 34 days), and finally, a third phase of re-increased IGF-I release. The osteoinductive potential of these different IGF-I PL(G)A MS formulations was tested in studies using 8-mm metaphyseal drill hole bone defects in sheep. Histomorphometric analysis at 3 and 6 weeks after surgery showed that new bone formation was improved in the defects locally treated with IGF-I PL(G)A MS (n=5) as compared to defects filled with IGF-I-free PL(G)A MS (n=4). The extent of new bone formation was affected by the particular release kinetics, although a definitive relationship was not evident. Local administration of IGF-I resulted in down-regulation of inflammatory marker genes in all IGF-I treated defects. The over-expression of growth factor genes in response to IGF-I delivery was restricted to formulations that produced osteogenic responses. These experiments demonstrate the osteoinductive potential of sustained IGF-I delivery and show the importance of delivery kinetics for successful IGF-I-based therapies. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. IGF-I and GH: potential use in gene doping.

    PubMed

    Harridge, Stephen D R; Velloso, Cristiana P

    2009-08-01

    Gene doping is the term given to the potential misuse of gene therapy for the purposes of enhancing athletic performance. Insulin like growth factor-I (IGF-I), the prime target of growth hormone action, is one candidate gene for improving performance. In recent years a number of transgenic and somatic gene transfer studies on animals have shown that upregulation of IGF-I stimulates muscle growth and improves function. This increase in muscle IGF-I is not reflected in measurable increases in circulating IGF-I. Whilst the responses obtained in the animal studies would appear to give clear benefits for performance, the transfer of such techniques to humans still presents many technical challenges. Further challenges will also be faced by the anti doping authorities in detecting the endogenously produced products of enhanced gene expression.

  5. IGF-I gene variability is associated with an increased risk for AD.

    PubMed

    Vargas, Teo; Martinez-Garcia, Ana; Antequera, Desiree; Vilella, Elisabet; Clarimon, Jordi; Mateo, Ignacio; Sanchez-Juan, Pascual; Rodriguez-Rodriguez, Eloy; Frank, Ana; Rosich-Estrago, Marcel; Lleo, Alberto; Molina-Porcel, Laura; Blesa, Rafael; Gomez-Isla, Teresa; Combarros, Onofre; Bermejo-Pareja, Felix; Valdivieso, Fernando; Bullido, Maria Jesus; Carro, Eva

    2011-03-01

    Insulin-like growth factor I (IGF-I), a neuroprotective factor with a wide spectrum of actions in the adult brain, is involved in the pathogenesis of Alzheimer's disease (AD). Circulating levels of IGF-I change in AD patients and are implicated in the clearance of brain amyloid beta (Aβ) complexes. To investigate this hypothesis, we screened the IGF-I gene for various well known single nucleotide polymorphisms (SNPs) covering % of the gene variability in a population of 2352 individuals. Genetic analysis indicated different distribution of genotypes of 1 single nucleotide polymorphism, and 1 extended haplotype in the AD population compared with healthy control subjects. In particular, the frequency of rs972936 GG genotype was significantly greater in AD patients than in control subjects (63% vs. 55%). The rs972936 GG genotype was associated with an increased risk for disease, independently of apolipoprotein E genotype, and with enhanced circulating levels of IGF-I. These findings suggest that polymorphisms within the IGF-I gene could infer greater risk for AD through their effect on IGF-I levels, and confirm the physiological role IGF-I in the pathogenesis of AD. Copyright © 2011 IBRO. Published by Elsevier Inc. All rights reserved.

  6. Co-targeting the HER and IGF/insulin receptor axis in breast cancer, with triple targeting with endocrine therapy for hormone-sensitive disease.

    PubMed

    Chakraborty, Ashok; Hatzis, Christos; DiGiovanna, Michael P

    2017-05-01

    Interactions between HER2, estrogen receptor (ER), and insulin-like growth factor I receptor (IGF1R) are implicated in resistance to monotherapies targeting these receptors. We have previously shown in pre-clinical studies synergistic anti-tumor effects for co-targeting each pairwise combination of HER2, IGF1R, and ER. Strikingly, synergy for HER2/IGF1R targeting occurred not only in a HER2+ model, but also in a HER2-normal model. The purpose of the current study was therefore to determine the generalizability of synergistic anti-tumor effects of co-targeting HER2/IGF1R, the anti-tumor activity of triple-targeting HER2/IGF1R/ER in hormone-dependent cell lines, and the effect of using the multi-targeting drugs neratinib (pan-HER) and BMS-754807 (dual IGF1R/insulin receptor). Proliferation and apoptosis assays were performed in a large panel of cell lines representing varying receptor expression levels. Mechanistic effects were studied using phospho-protein immunoblotting. Analyses of drug interaction effects were performed using linear mixed-effects regression models. Enhanced anti-proliferative effects of HER/IGF-insulin co-targeting were seen in most, though not all, cell lines, including HER2-normal lines. For ER+ lines, triple targeting with inclusion of anti-estrogen generally resulted in the greatest anti-tumor effects. Double or triple targeting generally resulted in marked increases in apoptosis in the sensitive lines. Mechanistic studies demonstrated that the synergy between drugs was correlated with maximal inhibition of Akt and ERK pathway signaling. Dual HER/IGF-insulin targeting, and triple targeting with inclusion of anti-estrogen drugs, shows striking anti-tumor activity across breast cancer types, and drugs with broader receptor specificity may be more effective than single receptor selective drugs, particularly for ER- cells.

  7. IGF-I levels reflect hypopituitarism severity in adults with pituitary dysfunction.

    PubMed

    Tirosh, Amit; Toledano, Yoel; Masri-Iraqi, Hiba; Eizenberg, Yoav; Tzvetov, Gloria; Hirsch, Dania; Benbassat, Carlos; Robenshtok, Eyal; Shimon, Ilan

    2016-08-01

    To evaluate the utility of Insulin-like growth factor I (IGF-I) standard deviation score (SDS) as a surrogate marker of severity of hypopituitarism in adults with pituitary pathology. We performed a retrospective data analysis, including 269 consecutive patients with pituitary disease attending a tertiary endocrine clinic in 1990-2015. The medical files were reviewed for the complete pituitary hormone profile, including IGF-I, and clinical data. Age-adjusted assay reference ranges of IGF-I were used to calculate IGF-I SDS for each patient. The main outcome measures were positive and negative predictive values of low and high IGF-I SDS, respectively, for the various pituitary hormone deficiencies. IGF-I SDS correlated negatively with the number of altered pituitary axes (p < 0.001). Gonadotropin was affected in 76.6 % of cases, followed by thyrotropin (58.4 %), corticotropin (49.1 %), and prolactin (22.7 %). Positive and negative predictive values yielded a clear trend for the probability of low/high IGF-I SDS for all affected pituitary axes. Rates of diabetes insipidus correlated with IGF-I SDS values both for the full study population, and specifically for patients with non-functioning pituitary adenomas. IGF-I SDS can be used to evaluate the somatotroph function, as a valid substitute to absolute IGF-I levels. Moreover, IGF-I SDS predicted the extent of hypopituitarism in adults with pituitary disease, and thus can serve as a marker of hypopituitarism severity.

  8. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Ho-Keun; Kim, Sun-Young; Hwang, Pyoung-Han

    2005-05-13

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer systemmore » in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells.« less

  9. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3

    PubMed Central

    Chicharro, J; Lopez-Calderon, A; Hoyos, J; Martin-Velasco, A; Villa, G; Villanua, M; Lucia, A

    2001-01-01

    Objectives—To determine whether consecutive bouts of intense endurance exercise over a three week period alters serum concentrations of insulin-like growth factor I (IGF-I) and/or its binding proteins. Methods—Seventeen professional cyclists (mean (SEM) VO2MAX, 74.7 (2.1) ml/kg/min; age, 27 (1) years) competing in a three week tour race were selected as subjects. Blood samples were collected at each of the following time points: t0 (control, before the start of competition), t1 (end of first week), and t3 (end of third week). Serum levels of both total and free IGF-I and IGF binding proteins 1 and 3 (IGFBP-1 and IGFBP-3) were measured in each of the samples. Cortisol levels were measured in nine subjects. Results—A significant (p<0.01) increase was found in total IGF-I and IGFBP-1 at both t1 and t3 compared with to (IGF-I: 110.9 (17.7), 186.8 (12.0), 196.9 (14.7) ng/ml at t0, t1, and t3 respectively; IGFBP-1: 54.6 (6.6), 80.6 (8.0), and 89.2 (7.9) ng/ml at t0, t1, and t3 respectively). A significant (p<0.01) decrease was noted in free IGF-I at t3 compared with both to and t1 (t0: 0.9 (0.1) ng/ml; t1: 0.9 (0.1) ng/ml; t3: 0.7 (0.1) ng/ml); in contrast, IGFBP-3 levels remained stable throughout the race. Conclusions—It would appear that the increase in circulating levels of both IGF-I and its binding protein IGFBP-1 is a short term (one week) endocrine adaptation to endurance exercise. After three weeks of training, total IGF-I and IGFBP-1 remained stable, whereas free IGF-I fell below starting levels. Key Words: cycling; insulin-like growth factor; exercise; endurance; binding proteins PMID:11579061

  10. Update of IGF-1 receptor inhibitor (ganitumab, dalotuzumab, cixutumumab, teprotumumab and figitumumab) effects on cancer therapy.

    PubMed

    Qu, Xiao; Wu, Zhinan; Dong, Wei; Zhang, Tiehong; Wang, Liguang; Pang, Zhaofei; Ma, Wei; Du, Jiajun

    2017-04-25

    Prognostic studies of insulin-like growth factor-1 receptor(IGF-1R) inhibitors in cancer therapy had promising results in infratests, which exhibited that IGF-1R signalling was crucial in cancer cells growth. However, the conclusion of later clinical trials revealed a dim future for IGF-1R inhibitors to treat cancer. We conducted this analysis to figure out how IGF-1R inhibitors acted in clinical cancer therapy. We searched up-to-date studies about the single agent of IGF-1R inhibitors or combination with other therapies in solid tumor. Five IGF-1R anti-agents were involved. The primary endpoint was progression-free survival (PFS). The secondary endpoint was overall survival (OS). 17studies were enrolled. The results was not significant in overall survival (I2=37.1%, P=0.080, HR=1.08, 95% CI=0.97-1.21) and in progression-free survival (I2=0.0%, P=0.637, HR=1.05, 95% CI=0.98-1.12). OS for dalotuzumab, breast cancer, colorectal cancer, and PFS for prostate cancer even indicated harmful effects. So far, anti-IGF-1R mono-antibodies did not make significant differences in solid tumor prognosis. On the contrary, pessimistic effects were shown in the dalotuzumab, breast cancer, colorectal cancer and prostate cancer subgroups. Further studies of IGF-1R anti-agents were needed, but unwarranted in unselected patients by predictive biomarkers.

  11. Prednisolone reduces the ability of serum to activate the IGF1 receptor in vitro without affecting circulating total or free IGF1.

    PubMed

    Frystyk, Jan; Schou, Anders J; Heuck, Carsten; Vorum, Henrik; Lyngholm, Mikkel; Flyvbjerg, Allan; Wolthers, Ole D

    2013-01-01

    End-point bioassays based on thymidine or sulfate incorporation have demonstrated that glucocorticoid (GC) treatment inhibits serum IGF1 action, but the mechanism is unknown as serum IGF1 concentrations have been reported to either increase or remain unchanged. To investigate whether GC treatment affects the ability of serum to activate the IGF1 receptor (IGF1R) in vitro (i.e. bioactive IGF1), using a specific cell-based IGF1 kinase receptor activation assay. Twenty children with stable asthma (age 7.7-13.8 years) treated for 1 week with 5 mg prednisolone in a randomized, double-blind, placebo-controlled crossover study. Non-fasting serum samples were collected in the afternoon after each 7-day period and assayed for bioactive IGF1, free IGF1, total IGFs, IGF-binding proteins (IGFBPs), and insulin. Prednisolone treatment reduced IGF1 bioactivity by 12.6% from 2.22±0.18 to 1.94±0.15 μg/l (P=0.01) compared with placebo. In contrast, no changes were observed for (μg/l; placebo vs prednisolone) total IGF1 (215±27 vs 212±24), free IGF1 (1.50±0.16 vs 1.43±0.17), total IGF2 (815±26 vs 800±31), IGFBP3 (3140±101 vs 3107±95), IGFBP2 (238±21 vs 220±19), IGFBP1 (32±6 vs 42±10), or IGFBP1-bound IGF1 (24±5 vs 26±7). Insulin remained unchanged as did IGFBP levels as estimated by western ligand blotting. Prednisolone had no direct effects on IGF1R phosphorylation. Our study gives evidence that GC treatment induces a circulating substance that is able to inhibit IGF1R activation in vitro without affecting circulating free or total IGF1. This may be one of the mechanisms by which GC inhibits IGF1 action in vivo. However, the nature of this circulating substance remains to be identified.

  12. Genetic variants in IGF-I, IGF-II, IGFBP-3, and adiponectin genes and colon cancer risk in African Americans and Whites

    PubMed Central

    Keku, Temitope O.; Vidal, Adriana; Oliver, Shannon; Hoyo, Catherine; Hall, Ingrid J.; Omofoye, Seun; McDoom, Maya; Worley, Kendra; Galanko, Joseph; Sandler, Robert S.; Millikan, Robert

    2014-01-01

    Purpose Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)n repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. Methods Participants were African Americans (231cases, 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens, and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5′-exonuclease (Taqman) assay. The IGF-I (CA)n repeat was assayed by PCR, and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by logistic regression. Results The IGF-I (CA)19 repeat was higher in White controls (50%) than African American controls (31%). Whites homozygous for the IGF-I (CA)19 repeat had a nearly two fold increase in risk of colon cancer (OR=1.77; 95%CI=1.15–2.73), but not African Americans (OR= 0.73, 95%CI 0.50–1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR= 0.49, 95%CI 0.28–0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p- trend < 0.05). Conclusions These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans. PMID:22565227

  13. Genetic variants in IGF-I, IGF-II, IGFBP-3, and adiponectin genes and colon cancer risk in African Americans and Whites.

    PubMed

    Keku, Temitope O; Vidal, Adriana; Oliver, Shannon; Hoyo, Catherine; Hall, Ingrid J; Omofoye, Oluwaseun; McDoom, Maya; Worley, Kendra; Galanko, Joseph; Sandler, Robert S; Millikan, Robert

    2012-07-01

    Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)( n ) repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor-binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. Participants were African Americans (231 cases and 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5'-exonuclease (Taqman) assay. The IGF-I (CA)(n) repeat was assayed by PCR and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by logistic regression. The IGF-I (CA)( 19 ) repeat was higher in White controls (50 %) than African American controls (31 %). Whites homozygous for the IGF-I (CA)(19) repeat had a nearly twofold increase in risk of colon cancer (OR = 1.77; 95 % CI = 1.15-2.73), but not African Americans (OR = 0.73, 95 % CI 0.50-1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR = 0.49, 95 % CI 0.28-0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p-trend <0.05). These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans.

  14. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline

    PubMed Central

    Talbot, Konrad; Wang, Hoau-Yan; Kazi, Hala; Han, Li-Ying; Bakshi, Kalindi P.; Stucky, Andres; Fuino, Robert L.; Kawaguchi, Krista R.; Samoyedny, Andrew J.; Wilson, Robert S.; Arvanitakis, Zoe; Schneider, Julie A.; Wolf, Bryan A.; Bennett, David A.; Trojanowski, John Q.; Arnold, Steven E.

    2012-01-01

    While a potential causal factor in Alzheimer’s disease (AD), brain insulin resistance has not been demonstrated directly in that disorder. We provide such a demonstration here by showing that the hippocampal formation (HF) and, to a lesser degree, the cerebellar cortex in AD cases without diabetes exhibit markedly reduced responses to insulin signaling in the IR→IRS-1→PI3K signaling pathway with greatly reduced responses to IGF-1 in the IGF-1R→IRS-2→PI3K signaling pathway. Reduced insulin responses were maximal at the level of IRS-1 and were consistently associated with basal elevations in IRS-1 phosphorylated at serine 616 (IRS-1 pS616) and IRS-1 pS636/639. In the HF, these candidate biomarkers of brain insulin resistance increased commonly and progressively from normal cases to mild cognitively impaired cases to AD cases regardless of diabetes or APOE ε4 status. Levels of IRS-1 pS616 and IRS-1 pS636/639 and their activated kinases correlated positively with those of oligomeric Aβ plaques and were negatively associated with episodic and working memory, even after adjusting for Aβ plaques, neurofibrillary tangles, and APOE ε4. Brain insulin resistance thus appears to be an early and common feature of AD, a phenomenon accompanied by IGF-1 resistance and closely associated with IRS-1 dysfunction potentially triggered by Aβ oligomers and yet promoting cognitive decline independent of classic AD pathology. PMID:22476197

  15. Expression and localization of insulin-like growth factor system in corpus luteum during different stages of estrous cycle in water buffaloes (Bubalus bubalis) and the effect of insulin-like growth factor I on production of vascular endothelial growth factor and progesterone in luteal cells cultured in vitro.

    PubMed

    Uniyal, S; Panda, R P; Chouhan, V S; Yadav, V P; Hyder, I; Dangi, S S; Gupta, M; Khan, F A; Sharma, G T; Bag, S; Sarkar, M

    2015-01-01

    This study investigated the expression and localization of insulin-like growth factor (IGF) system at different stages of buffalo CL and the role of IGF-I in stimulating vascular endothelial growth factor (VEGF) and progesterone (P4) production in cultured luteal cells. The mRNA expression of IGF system, VEGF, steroidogenic acute regulatory protein, P450scc, and hydroxysteroid dehydrogenase (HSD) was investigated by quantitative real-time polymerase chain reaction (PCR). Protein expression of IGF was demonstrated by Western blot and localization by immunohistochemistry. Progesterone and VEGF production was assayed using RIA and ELISA. A relatively high mRNA expression of IGF-I and IGF-II in early, mid- and late luteal phases with immunoreactivity mostly restricted to cytoplasm of large luteal cells indicates their autocrine role, whereas very weak immunoreactivity in endothelial cells during the mid-luteal phase indicates their paracrine role. Insulin-like growth factor receptors, IGF-IR and IGF-IIR, were restricted to large luteal cells with high mRNA and protein expressions in the mid-luteal phase. The significantly higher expression of insulin-like growth factor binding protein (IGFBP)-1, -3, -5, and -6 in the early or mid-luteal phase suggested their stimulatory role, whereas that of IGFBP-2 and -4 in mid-, late, and regressive luteal stages implied their inhibitory role. The mRNA expressions of key steroidogenic factors and VEGF were significantly higher (P < 0.05) when the culture medium was supplemented with 100 ng/mL of IGF-I for 72 hours. Moreover, IGF-I at a dose of 100 ng/mL increased P4 and VEGF production (P < 0.05). It can be concluded that IGF family members via their autocrine and paracrine effect play significant roles in promoting angiogenesis through the production of VEGF in luteal cells and steroid synthesis through the production of key steroidogenic factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury

    PubMed Central

    Genis, Laura; Dávila, David; Fernandez, Silvia; Pozo-Rodrigálvarez, Andrea; Martínez-Murillo, Ricardo; Torres-Aleman, Ignacio

    2014-01-01

    Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I) in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H 2O 2). Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H 2O 2 such as stem cell factor (SCF) to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging. PMID:24715976

  17. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hua; Lin, Yingbo; Badin, Margherita

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclearmore » IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to

  18. Circulating IGF-I and IGFBP3 Levels Control Human Colonic Stem Cell Function and Are Disrupted in Diabetic Enteropathy.

    PubMed

    D'Addio, Francesca; La Rosa, Stefano; Maestroni, Anna; Jung, Peter; Orsenigo, Elena; Ben Nasr, Moufida; Tezza, Sara; Bassi, Roberto; Finzi, Giovanna; Marando, Alessandro; Vergani, Andrea; Frego, Roberto; Albarello, Luca; Andolfo, Annapaola; Manuguerra, Roberta; Viale, Edi; Staudacher, Carlo; Corradi, Domenico; Batlle, Eduard; Breault, David; Secchi, Antonio; Folli, Franco; Fiorina, Paolo

    2015-10-01

    The role of circulating factors in regulating colonic stem cells (CoSCs) and colonic epithelial homeostasis is unclear. Individuals with long-standing type 1 diabetes (T1D) frequently have intestinal symptoms, termed diabetic enteropathy (DE), though its etiology is unknown. Here, we report that T1D patients with DE exhibit abnormalities in their intestinal mucosa and CoSCs, which fail to generate in vitro mini-guts. Proteomic profiling of T1D+DE patient serum revealed altered levels of insulin-like growth factor 1 (IGF-I) and its binding protein 3 (IGFBP3). IGFBP3 prevented in vitro growth of patient-derived organoids via binding its receptor TMEM219, in an IGF-I-independent manner, and disrupted in vivo CoSC function in a preclinical DE model. Restoration of normoglycemia in patients with long-standing T1D via kidney-pancreas transplantation or in diabetic mice by treatment with an ecto-TMEM219 recombinant protein normalized circulating IGF-I/IGFBP3 levels and reestablished CoSC homeostasis. These findings demonstrate that peripheral IGF-I/IGFBP3 controls CoSCs and their dysfunction in DE. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    PubMed

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  20. Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding.

    PubMed

    Shi, Shuiliang; Kelly, Brian J; Wang, Congrong; Klingler, Ken; Chan, Albert; Eckert, George J; Trippel, Stephen B

    2018-03-01

    Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Insulin-like growth factor-binding protein-3 (IGFBP-3) but not insulin-like growth factor-I (IGF-I) remains elevated in euthyroid TSH-suppressed Graves' disease.

    PubMed

    Wan Nazaimoon, W M; Khalid, B A

    1998-04-01

    Thyroid hormones have been shown to be involved in the regulation of insulin-like growth factor-I (IGF-I) and IGF binding protein-3 (IGFBP-3) expression. This is a cross-sectional study to look at the effects of thyroid hormone status on the circulating levels of IGF-I and IGFBP-3 in a group of 127 patients, aged 20-80 years, who were hyperthyroid, hypothyroid, rendered euthyroid and clinically euthyroid with normal free thyroxine (fT4), but suppressed thyroid stimulating hormone (TSH) levels. TSH was measured by the IMx (Abbott) ultrasensitive assay, while radioimmunoassays for total T3 and T4 were performed using kits from ICN, USA; fT4 and fT3 using kits from DPC USA; IGF-I and IGFBP-3 using kits from Nichols Institute Diagnostics B.V., Netherlands. Differences in the levels of IGF-I between the 4 groups of patients were significant only in the patients aged 20-40. Mean (+/-SEM) IGF-I levels of hypothyroid patients (169+/-19ng/ml) was significantly lower than hyperthyroid (315+/-26 ng/ml, p=0.003), euthyroid patients (241+/-19 ng/ml, p=0.002) and patients with suppressed TSH (308+/-29 ng/ml, p=0.02). The IGF-I levels of the hyperthyroid and suppressed TSH patients were, however, comparable to age-matched normal subjects (281+/-86 ng/ml). Although there was no difference in mean IGFBP-3 levels between the 4 groups of patients, the levels in the patients aged 20-40 with hyperthyroidism (3.7+/-0.9 microg/ml) and suppressed TSH (3.9+/-1.2 microg/ml) were significantly higher (p=0.02) than age-matched normal subjects (3.1+/-0.8 microg/ml). The IGF-I levels of the thyroid patients aged 20-40 showed significant negative correlation to TSH and positive correlations to the thyroid hormones. Hence, whilst low IGF-I is associated with hypothyroidism, high IGFBP-3 is associated with hyperthyroidism. Our finding that IGFBP-3 remained significantly elevated in patients with suppressed TSH but normalised fT4 and fT3 is important as it suggests a prolonged tissue effect of

  2. Relationship of serum insulin-like growth factor I (IGF-I) with nutritional status in pediatric patients with malignant diseases--a single Romanian center experience.

    PubMed

    Chinceşan, Mihaela Ioana; Mărginean, Oana; Pitea, Ana-Maria; Dobreanu, Minodora

    2013-10-01

    The aim of this study was to analyze insulin-like growth factor I (IGF-I) serum level in pediatric patients with cancer compared with pediatric patients with nononcological diseases and to assess the relationship between IGF-I and nutritional status of oncological patients. From January 2009 to July 2012, we assessed 151 consecutively hospitalized patients in a tertiary emergency pediatric hospital. The patients were divided into two groups: group I, consisting of patients with malignant diseases (64 patients), and group II, the control group, consisting of 87 age- and gender-matched patients with different pediatric diseases. The anthropometric parameters (weight, height, body mass index, middle upper arm circumference (MUAC), and tricipital skinfold thickness (TST) and biochemical parameters (proteins, albumin, and total IGF-I) were comparatively evaluated at the diagnosis and after intensive chemotherapy in the malignant group. Anthropometric and biochemical parameters in group I were significantly different from those in group II for height, MUAC, TST, total proteins, and albumin (p < 0.05). Twenty-five out of 64 patients with malignant diseases and 5 out of 87 patients in the control group had malnutrition. IGF-I in patients with cancer was much lower than in the control group (median 48.3 ng/ml, range 25.00-662.00 ng/ml vs 129.00 ng/ml, range 25.00-745.00 ng/ml) (p = 0.014). We found a positive correlation between IGF-I, MUAC, and TST at the diagnosis of the malignant disease. Also, we identified positive correlations between IGF-I, protein, and albumin. Serum IGF-I levels in cancer patients were significantly lower at diagnosis than after chemotherapy (48.3 ng/ml, range 25.00-662.00 ng/ml vs 110.0 ng/ml, range 25.00-573.00 ng/ml; p = 0.04). IGF-I seems to be an accurate biochemical parameter used in malnutrition assessment of children with cancer. IGF-I correlated with the anthropometric parameters of the arm, serum protein, and albumin. These parameters

  3. Enhanced production of IGF-I in the lungs of fibroproliferative ARDS patients.

    PubMed

    Andonegui, Graciela; Krein, Peter M; Mowat, Connie; Brisebois, Ronald; Doig, Christopher; Green, Francis H Y; Léger, Caroline; Winston, Brent W

    2014-11-01

    Insulin-Like Growth Factor I (IGF-I) has been identified in the lungs of individuals with fibrotic lung diseases. In a previous retrospective study, we showed enhanced IGF-I immunoreactivity in individuals with fibroproliferative acute respiratory distress syndrome (FP-ARDS), but we were unable to determine if this correlation was causative. This study was undertaken to prospectively investigate whether IGF-I expression correlated with the fibroproliferative process and whether IGF-I was induced and made in the lungs. We measured IGF-I and procollagen III peptide (PCP-III) in the epithelial lining fluid (ELF) from controls, early ALI/ARDS patients and FP-ARDS patients. We also measured IGF-I mRNA and immunoreactivity from controls and FP-ARDS patient lung biopsies. We determined the level of lung permeability by measuring albumin and urea levels in ELF and serum. Our data show that IGF-I is significantly increased in the ELF in FP-ARDS patients. A significant correlation between IGF-I and PCP-III in the ELF of FP-ARDS patients is found. IGF-I mRNA is elevated in the FP-ARDS lung biopsies. Our data suggest that IGF-I found in the lungs of FP-ARDS patients results from both increased lung permeability and local production of IGF-I. The role of IGF-I in the fibroproliferative process in the lungs has recently been confirmed in an animal model of lung fibroproliferation. This study importantly suggest that IGF-I protein is made in the lungs of FP-ARDS patients and correlates with increased levels of ELF PCP-III, implicating a role for IGF-I in the fibroproliferative process in humans. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. Nandrolone and stanozolol upregulate aromatase expression and further increase IGF-I-dependent effects on MCF-7 breast cancer cell proliferation.

    PubMed

    Sirianni, Rosa; Capparelli, Claudia; Chimento, Adele; Panza, Salvatore; Catalano, Stefania; Lanzino, Marilena; Pezzi, Vincenzo; Andò, Sebastiano

    2012-11-05

    Several doping agents, such as anabolic androgenic steroids (AAS) and peptide hormones like insulin-like growth factor-I (IGF-I), are employed without considering the potential deleterious effects that they can cause. In addition, androgens are used in postmenopausal women as replacement therapy. However, there are no clear guidelines regarding the optimal therapeutic doses of androgens or long-term safety data. In this study we aimed to determine if two commonly used AAS, nandrolone and stanozolol, alone or in combination with IGF-I, could activate signaling involved in breast cancer cell proliferation. Using a human breast cancer cell line, MCF-7, as an experimental model we found that both nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and, consequently, estradiol production. Moreover, when nandrolone and stanozolol were combined with IGF-I, higher induction in aromatase expression was observed. This increase involved phosphatidylinositol 3-kinase (PI3K)/AKT and phospholipase C (PLC)/protein kinase C (PKC), which are part of IGF-I transductional pathways. Specifically, both AAS were able to activate membrane rapid signaling involving IGF-I receptor, extracellular regulated protein kinases 1/2 (ERK1/2) and AKT, after binding to estrogen receptor (ER), as confirmed by the ability of the ER antagonist ICI182, 780 to block such activation. The estrogenic activity of nandrolone and stanozolol was further confirmed by their capacity to induce the expression of the ER-regulated gene, CCND1 encoding for the cell cycle regulator cyclin D1, which represents a key protein for the control of breast cancer cell proliferation. In fact, when nandrolone and stanozolol were combined with IGF-I, they increased cell proliferation to levels higher than those elicited by the single factors. Taken together these data clearly indicate that the use of high doses of AAS, as occurs in doping practice, may increase the risk of breast cancer. This

  5. Prostate Cancer Risk in Relation to IGF-I and Its Genetic Determinants: A Case Control Study Within the Cancer Prostate Sweden Project (CAPS)

    DTIC Science & Technology

    2005-05-01

    GHR-), and the GHRH receptor (GHRHR). Ghrelin (GHRL), a recently identified new peptide hormone produced by endocrine cells in the stomach, also...pituitary GH release POU1 F1 pituitary-specific transcription factor; crucial for pituitary GH synthesis IGFIR IGF-I receptor GHRL Ghrelin GHSR Growth

  6. IGF-I and mammographic density in four geographic locations: a pooled analysis.

    PubMed

    Maskarinec, Gertraud; Takata, Yumie; Chen, Zhao; Gram, Inger Torhild; Nagata, Chisato; Pagano, Ian; Hayashi, Kentaro; Arendell, Leslie; Skeie, Guri; Rinaldi, Sabina; Kaaks, Rudolph

    2007-10-15

    Insulin-like growth factor (IGF-I) and prolactin have been found to be associated with breast cancer risk and with mammographic density. In a pooled analysis from 4 geographic locations, we investigated the association of percent mammographic density with serum levels of IGF-I, IGFBP-3 and prolactin. The pooled data set included 1,327 pre- and postmenopausal women: Caucasians from Norway, Arizona and Hawaii, Japanese from Hawaii and Japan, Latina from Arizona, and Native Hawaiians from Hawaii. Serum samples were assayed for IGF-I, IGFBP-3 and prolactin levels using ELISA assays. Mammographic density was quantified using a computer-assisted density method. After stratification by menopausal status, multiple regression models estimated the relation between serum analytes and breast density. All serum analytes except prolactin among postmenopausal women differed significantly by location/ethnicity group. Among premenopausal subjects, IGF-I levels and the molar ratio were highest in Hawaii, intermediate in Japan and lowest in Arizona. For IGFBP-3, the order was reversed. Among postmenopausal subjects, Norwegian women had the highest IGF-I levels and women in Arizona had the lowest while women in Japan and Hawaii had intermediate levels. We observed no significant relation between percent density and IGF-I or prolactin levels among pre-and postmenopausal women. The significant differences in IGF-I levels by location but not ethnicity suggest that environmental factors influence IGF-I levels, whereas percent breast density varies more according to ethnic background than by location. Based on this analysis, the influence of circulating levels of IGF-I, IGFBP-3, and prolactin on percent density appears to be very small. (c) 2007 Wiley-Liss, Inc.

  7. Effect of iron deficiency on the expression of insulin-like growth factor-II and its receptor in neuronal and glial cells.

    PubMed

    Morales González, E; Contreras, I; Estrada, J A

    2014-09-01

    Many studies have demonstrated that iron deficiency modifies the normal function of the central nervous system and alters cognitive abilities. When cellular damage occurs in the central nervous system, neuroprotective mechanisms, such as the production of neurotrophic factors, are essential in order for nervous tissue to function correctly. Insulin-like growth factor II (IGF- II) is a neurotrophic factor that was recently shown to be involved in the normal functioning of cognitive processes in animal models. However, the impact of iron deficiency on the expression and function of this molecule has not yet been clarified. Mixed primary cell cultures from the central nervous system were collected to simulate iron deficiency using deferoxamine. The expression of IGF-I, IGF-II, IGF-IR, and IGF-IIR was determined with the western blot test. We observed increased expression of IGF-II, along with a corresponding decrease in the expression of IGF-IIR, in iron-deficient mixed primary cell cultures. We did not observe alterations in the expression of these proteins in isolated microglia or neuronal cultures under the same conditions. We did not detect differences in the expression of IGF-I and IGF-IR in iron-deficient cultures. In vitro iron deficiency increases the expression of IGF-II in mixed glial cell cultures, which may have a beneficial effect on brain tissue homeostasis in a situation in which iron availability is decreased. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  8. Functional properties of an isolated. cap alpha beta. heterodimeric human placenta insulin-like growth factor 1 receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feltz, S.M.; Swanson, M.L.; Wemmie, J.A.

    1988-05-03

    Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment of pH 7.6, resulted in the formation of a functional ..cap alpha beta.. heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state. The membrane-bound ..cap alpha beta.. heterodimeric complex displayed similar curvilinear /sup 125/I-IGF-1 equilibrium binding compared to the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric complex. /sup 125/I-IGF-1 binding to both the isolated ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta..more » heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of ..cap alpha beta.. heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric state. These data demonstrate that (i) a combination of alkaline pH and DTT treatment of human placenta membranes results in the formation of an ..cap alpha beta.. heterodimeric IGF-1 receptor complex, (ii) unlike the insulin receptor, high-affinity homogeneous IGF-1 binding occurs in both the ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric and ..cap alpha beta.. heterodimeric complexes, and (iii) IGF-1-dependent autophosphorylation of the ..cap alpha beta.. heterodimeric IGF-1 receptor complex correlates wit an IGF-1 dependent covalent reassociation into an ..cap alpha../sub 2/..beta../sub 2/ heterotetrameric disulfide-linked state.« less

  9. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids.

    PubMed

    Martín-Montañez, E; Millon, C; Boraldi, F; Garcia-Guirado, F; Pedraza, C; Lara, E; Santin, L J; Pavia, J; Garcia-Fernandez, M

    2017-10-01

    Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc

  10. Bone Growth, Mechanical Stimulus and IGF-I

    DTIC Science & Technology

    2005-10-01

    children, stress fractures in military recruits, and osteoporotic fractures in elderly women. Insulin-like growth factor-I (IGF-I), a major regulator...subjects completed the intervention arm of the study and returned for the short-term post-intervention appointment, which included anthropometrie

  11. Human blood-brain barrier insulin-like growth factor receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffy, K.R.; Pardridge, W.M.; Rosenfeld, R.G.

    1988-02-01

    Insulin-like growth factor (IGF)-1 and IGF-2, may be important regulatory molecules in the CNS. Possible origins of IGFs in brain include either de novo synthesis or transport of circulating IGFs from blood into brain via receptor mediated transcytosis mechanisms at the brain capillary endothelial wall, ie, the blood-brain barrier (BBB). In the present studies, isolated human brain capillaries are used as an in vitro model system of the human BBB and the characteristics of IGF-1 or IGF-2 binding to this preparation were assessed. The total binding of IGF-2 at 37 degrees C exceeded 130% per mg protein and was threefoldmore » greater than the total binding for IGF-1. However, at 37 degrees C nonsaturable binding equaled total binding, suggesting that endocytosis is rate limiting at physiologic temperatures. Binding studies performed at 4 degrees C slowed endocytosis to a greater extent than membrane binding, and specific binding of either IGF-1 or IGF-2 was detectable. Scatchard plots for either peptide were linear and the molar dissociation constant of IGF-1 and IGF-2 binding was 2.1 +/- 0.4 and 1.1 +/- 0.1 nmol/L, respectively. Superphysiologic concentrations of porcine insulin inhibited the binding of both IGF-1 (ED50 = 2 micrograms/mL) and IGF-2 (ED50 = 0.5 microgram/mL). Affinity cross linking of /sup 125/I-IGF-1, /sup 125/I-IGF-2, and /sup 125/I-insulin to isolated human brain capillaries was performed using disuccinimidylsuberate (DSS). These studies revealed a 141 kd binding site for both IGF-1 and IGF-2, and a 133 kd binding site for insulin.« less

  12. WAVE2 targeting to phosphatidylinositol 3,4,5-triphosphate mediated by insulin receptor substrate p53 through a complex with WAVE2.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2010-11-01

    Membrane targeting of WAVE2 along microtubules to phosphatidylinositol 3,4,5-triphosphate (PIP(3)) in response to an extracellular stimulus requires Rac1, Pak1, stathmin, and EB1. However, whether WAVE2 interacts directly with PIP(3) or not remains unclear. We demonstrate that insulin-like growth factor I (IGF-I) induces WAVE2 membrane targeting, accompanied by phosphorylation of Pak1 at serine 199/204 (Ser199/204) and stathmin at Ser38 in the inner cytoplasmic region. This is spatially independent of the membrane region where the IGF-I receptor (IGF-IR) is locally activated. WAVE2, phosphorylated Pak1, and phosphorylated stathmin located at the microtubule ends began to accumulate at the leading edge of cells in close proximity to PIP(3) that was produced in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent manner. The PIP(3)-beads binding assay revealed that insulin receptor substrate p53 (IRSp53) and actin rather than WAVE2 bound to PIP(3). IRSp53 constitutively associated with WAVE2 and these two proteins colocalized with PIP(3) at the leading edge after IGF-I stimulation. Suppression of IRSp53 expression by two independent small interfering RNAs (siRNAs) completely inhibited IGF-I-induced membrane targeting and local accumulation of WAVE2 at the leading edge of cells. We propose that IRSp53 constitutively forms a complex with WAVE2 and is crucial for membrane targeting followed by local accumulation of WAVE2 at the leading edge of cells through linking WAVE2 to PIP(3) that is produced near locally activated IGF-IR in response to IGF-I. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Type 1 IGF Receptor Localization in Paediatric Gliomas: Significant Association with WHO Grading and Clinical Outcome.

    PubMed

    Clément, Florencia; Martin, Ayelen; Venara, Marcela; de Luján Calcagno, Maria; Mathó, Cecilia; Maglio, Silvana; Lombardi, Mercedes García; Bergadá, Ignacio; Pennisi, Patricia A

    2018-06-01

    Nuclear localization of insulin-like growth factor receptor type 1 (IGF-1R) has been described as adverse prognostic factor in some cancers. We studied the expression and localization of IGF-1R in paediatric patients with gliomas, as well as its association with World Health Organization (WHO) grading and survival. We conducted a single cohort, prospective study of paediatric patients with gliomas. Samples were taken at the time of the initial surgery; IGF-1R expression and localization were characterized by immunohistochemistry (IHC), subcellular fractionation and western blotting. Tumours (47/53) showed positive staining for IGF-1R by IHC. IGF-1R nuclear labelling was observed in 10/47 cases. IGF-1R staining was mostly non-nuclear in low-grade tumours, while IGF-1R nuclear labelling was predominant in high-grade gliomas (p = 0.0001). Survival was significantly longer in patients with gliomas having non-nuclear IGF-1R localization than in patients with nuclear IGF-1R tumours (p = 0.016). In gliomas, IGF-1R nuclear localization was significantly associated with both high-grade tumours and increased risk of death. Based on a prospective design, we provide evidence of a potential usefulness of intracellular localization of IGF-1R as prognostic factor in paediatric patients with gliomas.

  14. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation.

    PubMed

    Law, Nathan C; Hunzicker-Dunn, Mary E

    2016-02-26

    The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. IRS2 mutations linked to invasion in pleomorphic invasive lobular carcinoma

    PubMed Central

    Zhu, Sha; Ward, B. Marie; Yu, Jun; Matthew-Onabanjo, Asia N.; Janusis, Jenny; Hsieh, Chung-Cheng; Tomaszewicz, Keith; Hutchinson, Lloyd; Zhu, Lihua Julie; Kandil, Dina; Shaw, Leslie M.

    2018-01-01

    Pleomorphic invasive lobular carcinoma (PILC) is an aggressive variant of invasive lobular breast cancer that is associated with poor clinical outcomes. Limited molecular data are available to explain the mechanistic basis for PILC behavior. To address this issue, targeted sequencing was performed to identify molecular alterations that define PILC. This sequencing analysis identified genes that distinguish PILC from classic ILC and invasive ductal carcinoma by the incidence of their genomic changes. In particular, insulin receptor substrate 2 (IRS2) is recurrently mutated in PILC, and pathway analysis reveals a role for the insulin receptor (IR)/insulin-like growth factor-1 receptor (IGF1R)/IRS2 signaling pathway in PILC. IRS2 mutations identified in PILC enhance invasion, revealing a role for this signaling adaptor in the aggressive nature of PILC. PMID:29669935

  16. Lack of transferability between two automated immunoassays for serum IGF-I measurement.

    PubMed

    Gomez-Gomez, Carolina; Iglesias, Eva M; Barallat, Jaume; Moreno, Fernando; Biosca, Carme; Pastor, Mari-Cruz; Granada, Maria-Luisa

    2014-01-01

    IGF-I is a clinically relevant protein in the diagnosis and monitoring of treatment of growth disor- ders. The Growth Hormone Research Society and the International IGF Research Society have encouraged the adoption of a universal calibration for immunoassays to improve standardization of IGF-I measurements, but currently commercial assays are calibrated either against the old WHO IRR 87/518 or the new WHO 02/254. We compared two IGF-I immunochemiluminescent assays: IMMULITE® 2000 (Siemens) and LIAISON® (DiaSorin), which differ in their standardization, and verified their precision according to quality specifications based on biological variation and their linear range. 62 patient serum samples were analyzed for both assays and compared according to standards of the Clinical and Laboratory Standards Institute (CLSI), EP9-A2-IR. Precision was verified according to CLSI EP15- A2. Optimal coefficient of variation (CVo) and desirable coefficient of variation (CVd) for IGF-I assays were calculated as quality specifications based on the biological variability, in order to assess if the interassay analytical CV (CVa1) in the two methods were appropriate. Two dilution series using the 1st WHO International Standard (WHO IS) for IGF-I 02/254 were used to verify and compare the linearity range. The regression analysis showed constant and proportional differences for serum samples (slope b = 0.8115 (CI 95% CI; 0.7575-0.8556); intercept a = 33.6873 (95% CI: 23.3613-44.0133) between assays and similar pro- portional differences for WHO IS 02/254 standard dilutions series (slope b = 0.8024 (CI 95% CI; 0.7560-0.8616); intercept a = 6.9623 (95% CI: -2.0819-18.4383) between assays. Within-laboratory coefficients of variation for low and high levels were 2.82% and 3.80% for IMMULITE® 2000 and 3.58% and 2.14% for LIAISON®, respecttively. IGF-I concentrations measured by both assays are not transferable. The results emphasize the need to express IGF-I concentrations in standard

  17. Suppression of IGF-I signals in neural stem cells enhances neurogenesis and olfactory function during aging.

    PubMed

    Chaker, Zayna; Aïd, Saba; Berry, Hugues; Holzenberger, Martin

    2015-10-01

    Downregulation of insulin-like growth factor (IGF) pathways prolongs lifespan in various species, including mammals. Still, the cellular mechanisms by which IGF signaling controls the aging trajectory of individual organs are largely unknown. Here, we asked whether suppression of IGF-I receptor (IGF-1R) in adult stem cells preserves long-term cell replacement, and whether this may prevent age-related functional decline in a regenerating tissue. Using neurogenesis as a paradigm, we showed that conditional knockout of IGF-1R specifically in adult neural stem cells (NSC) maintained youthful characteristics of olfactory bulb neurogenesis within an aging brain. We found that blocking IGF-I signaling in neural precursors increased cumulative neuroblast production and enhanced neuronal integration into the olfactory bulb. This in turn resulted in neuro-anatomical changes that improved olfactory function. Interestingly, mutants also displayed long-term alterations in energy metabolism, possibly related to IGF-1R deletion in NSCs throughout lifespan. We explored Akt and ERK signaling cascades and revealed differential regulation downstream of IGF-1R, with Akt phosphorylation preferentially decreased in IGF-1R(-/-) NSCs within the niche, and ERK pathway downregulated in differentiated neurons of the OB. These challenging experimental results were sustained by data from mathematical modeling, predicting that diminished stimulation of growth is indeed optimal for tissue aging. Thus, inhibiting growth and longevity gene IGF-1R in adult NSCs induced a gain-of-function phenotype during aging, marked by optimized management of cell renewal, and enhanced olfactory sensory function. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Challenge with 17alpha-ethinylestradiol (EE2) during early development persistently impairs growth, differentiation, and local expression of IGF-I and IGF-II in immune organs of tilapia.

    PubMed

    Shved, Natallia; Berishvili, Giorgi; Häusermann, Eliane; D'Cotta, Helena; Baroiller, Jean-François; Eppler, Elisabeth

    2009-03-01

    The enormous expansion of world-wide aquaculture has led to increasing interest in the regulation of fish immune system. Estrogen has recently been shown to inhibit the endocrine (liver-derived) and autocrine/paracrine local insulin-like growth factor-I system in fish. In order to address the potential actions of estrogen on the IGF system in immune organs, tilapia were fed with 17alpha-ethinylestradiol (EE2)-enriched food from 10 to 40 days post fertilization (DPF) to induce functional feminization, an approach commonly used in aquaculture. EE2-treated and control fish were sampled at 75 and 165 DPF. The expression levels of ER-alpha, IGF-I, IGF-II and growth hormone receptor (GH-R) mRNA in spleen and head kidney were determined by real-time PCR and the expressing sites of IGF-I mRNA identified by in situ hybridisation. Ratios of spleen length and weight to body length and weight were determined. At 165 DPF, the length (4.9% vs. 7.6%) and weight (0.084% vs. 0.132%) ratios were significantly lowered in EE2-treated fish and number and size of the melanomacrophage centres were considerably reduced. At 75 DPF, both in spleen and head kidney of EE2-treated fish the expression levels of IGF-I and IGF-II mRNA were markedly diminished. The suppression was more pronounced for IGF-I (spleen: -12.071-fold; head kidney: -8.413-fold) than for IGF-II (spleen: -4.102-fold; head kidney: -1.342-fold). In agreement, clearly fewer leucocytes and macrophages in head kidney and spleen of EE2-treated fish contained IGF-I mRNA as shown by in situ hybridisation. ER-alpha mRNA expression in spleen was increased at 75 DPF but unchanged in head kidney. GH-R gene expression showed a mild upregulation at 165 DPF in both tissues. Thus, exposure to EE2 during early development affected distinctly the IGF system in tilapia immune organs. It led to lasting impairment of spleen growth and differentiation that can be attributed to an interaction of EE2 with IGF-I and, less pronouncedly, IGF

  19. TSH/IGF-1 Receptor Cross Talk in Graves' Ophthalmopathy Pathogenesis

    PubMed Central

    Krieger, Christine C.; Place, Robert F.; Bevilacqua, Carmine; Marcus-Samuels, Bernice; Abel, Brent S.; Skarulis, Monica C.; Kahaly, George J.; Neumann, Susanne

    2016-01-01

    Context: The TSH receptor (TSHR) is considered the main target of stimulatory autoantibodies in the pathogenesis of Graves' ophthalmopathy (GO); however, it has been suggested that stimulatory IGF-1 receptor (IGF-1R) autoantibodies also play a role. Objective: We previously demonstrated that a monoclonal stimulatory TSHR antibody, M22, activates TSHR/IGF-1R cross talk in orbital fibroblasts/preadipocytes obtained from patients with GO (GO fibroblasts [GOFs]). We show that cross talk between TSHR and IGF-1R, not direct IGF-1R activation, is involved in the mediation of GO pathogenesis stimulated by Graves' autoantibodies. Design/Setting/Participants: Immunoglobulins were purified from the sera of 57 GO patients (GO-Igs) and tested for their ability to activate TSHR and/or IGF-1R directly and TSHR/IGF-1R cross talk in primary cultures of GOFs. Cells were treated with M22 or GO-Igs with or without IGF-1R inhibitory antibodies or linsitinib, an IGF-1R kinase inhibitor. Main Outcome Measures: Hyaluronan (hyaluronic acid [HA]) secretion was measured as a major biological response for GOF stimulation. IGF-1R autophosphorylation was used as a measure of direct IGF-1R activation. TSHR activation was determined through cAMP production. Results: A total of 42 out of 57 GO-Ig samples stimulated HA secretion. None of the GO-Ig samples exhibited evidence for IGF-1R autophosphorylation. Both anti-IGF-1R antibodies completely inhibited IGF-1 stimulation of HA secretion. By contrast, only 1 IGF-1R antibody partially blocked HA secretion stimulated by M22 or GO-Igs in a manner similar to linsitinib, whereas the other IGF-1R antibody had no effect on M22 or GO-Ig stimulation. These findings show that the IGF-1R is involved in GO-Igs stimulation of HA secretion without direct activation of IGF-1R. Conclusions: IGF-1R activation by GO-Igs occurs via TSHR/IGF-1R cross talk rather than direct binding to IGF-1R, and this cross talk is important in the pathogenesis of GO. PMID:27043163

  20. Design of an Insulin Analog with Enhanced Receptor Binding Selectivity

    PubMed Central

    Zhao, Ming; Wan, Zhu-li; Whittaker, Linda; Xu, Bin; Phillips, Nelson B.; Katsoyannis, Panayotis G.; Ismail-Beigi, Faramarz; Whittaker, Jonathan; Weiss, Michael A.

    2009-01-01

    Insulin binds with high affinity to the insulin receptor (IR) and with low affinity to the type 1 insulin-like growth factor (IGF) receptor (IGFR). Such cross-binding, which reflects homologies within the insulin-IGF signaling system, is of clinical interest in relation to the association between hyperinsulinemia and colorectal cancer. Here, we employ nonstandard mutagenesis to design an insulin analog with enhanced affinity for the IR but reduced affinity for the IGFR. Unnatural amino acids were introduced by chemical synthesis at the N- and C-capping positions of a recognition α-helix (residues A1 and A8). These sites adjoin the hormone-receptor interface as indicated by photocross-linking studies. Specificity is enhanced more than 3-fold on the following: (i) substitution of GlyA1 by d-Ala or d-Leu, and (ii) substitution of ThrA8 by diaminobutyric acid (Dab). The crystal structure of [d-AlaA1,DabA8]insulin, as determined within a T6 zinc hexamer to a resolution of 1.35 Å, is essentially identical to that of human insulin. The nonstandard side chains project into solvent at the edge of a conserved receptor-binding surface shared by insulin and IGF-I. Our results demonstrate that modifications at this edge discriminate between IR and IGFR. Because hyperinsulinemia is typically characterized by a 3-fold increase in integrated postprandial insulin concentrations, we envisage that such insulin analogs may facilitate studies of the initiation and progression of cancer in animal models. Future development of clinical analogs lacking significant IGFR cross-binding may enhance the safety of insulin replacement therapy in patients with type 2 diabetes mellitus at increased risk of colorectal cancer. PMID:19773552

  1. Insulin-like growth factor-I treatment of children with Laron syndrome (primary growth hormone insensitivity).

    PubMed

    Laron, Zvi

    2008-03-01

    Laron syndrome (LS, congenital primary GH insensitivity) is caused by deletions or mutations in the GH receptor gene, resulting in an inability to generate insulin-like growth factor-I (IGF-I). If untreated, the deficiency of IGF-I results in severe dwarfism, as well as skeletal and muscular underdevelopment. The only treatment is the daily administration of recombinant IGF-I. This review summarizes the present experience by several groups worldwide. The main conclusions are: A. The one or two injections regimen result in the same growth velocity; B. The growth velocity obtained with IGF-I administration is smaller than that observed with hGH in children with congenital isolated GH deficiency; C. Overdosage of IGF-I causes a series of adverse effects which can be avoided by carefully monitoring the serum IGF-I and GH levels.

  2. Acute regulation of IGF-I by alterations in post-exercise macronutrients.

    PubMed

    Foster, E B; Fisher, G; Sartin, J L; Elsasser, T H; Wu, G; Cowan, W; Pascoe, D D

    2012-04-01

    This investigation sought to examine the contributions of exercise and nutrient replenishment on in vivo regulation of the insulin-like growth factor-I (IGF-I) axis components. Eight college-aged males completed three high-intensity interval training (HIIT) protocols followed by three post-exercise nutritional protocols: (1) placebo (EX); (2) carbohydrate only (CHO); and (3) essential amino acid/carbohydrate (EAA/CHO). Samples were analyzed for growth hormone (GH), free IGF-I, IGFBP-1, IGFBP-2, insulin, hematocrit, hemoglobin, serum leucine, matrix metalloproteinase-9 (MMP-9) proteolytic activity, and presence of IGFBP-3 protease activity. No evidence for IGFBP-3 proteolysis was observed. Significant increases in [free IGF-I] and [leucine] were observed in the EAA/CHO group only. Significant differences were noted in [IGFBP-1] and [IGFBP-2] across conditions. Significant increases in [GH] and MMP-9 activity were observed in all groups. These results indicate that post-exercise macronutrient ratio is a determinant of [free IGF-I], [IGFBP-1 and -2] and may play a role in modulating the IGF-I axis in vivo.

  3. Association of SNP and STR polymorphisms of insulin-like growth factor 2 receptor (IGF2R) gene with milk traits in Holstein-Friesian cows.

    PubMed

    Dux, Marta; Muranowicz, Magdalena; Siadkowska, Eulalia; Robakowska-Hyżorek, Dagmara; Flisikowski, Krzysztof; Bagnicka, Emilia; Zwierzchowski, Lech

    2018-05-01

    The objective of the study reported in this Research Communication was to investigate the association of polymorphisms in the insulin-like growth factor receptor 2 (IGF2R) gene with milk traits in 283 Polish Holstein-Friesian (PHF) cows from the IGAB PAS farm in Jastrzębiec. IGF2R regulates the availability of biologically active IGF2 which is considered as a genetic marker for milk or meat production in farm animals. Two novel genetic polymorphisms were identified in the bovine IGF2R gene: a polymorphic TG-repeat in intron 23 (g.72389 (TG)15-67), and a g.72479 G > A SNP RFLP-StyI in exon 24. The following milk traits were investigated: milk yield, protein and fat yield, SCC and lactose content. To determine the influence of the IGF2R STR and SNP genotypes on the milk traits, we used the AI-REML (average information restricted maximum likelihood) method with repeatability, multi-trait animal model based on test-day information using DMU package. Statistical analysis revealed that the G/A genotype (P ≤ 0·01) was associated with milk and protein yield, lactose content and somatic cell count (SCC) in Polish HF cows. TGn (29/22, 28/29, 28/22, 28/28) genotypes were associated with high values for milk, (28/22, 28/23) with protein and fat yield, (25/20) with lactose content, and (29/33, 28/28) with low SCC. We suggest that the IGF2R gene polymorphisms could be useful genetic markers for dairy production traits in cattle.

  4. Short stature and decreased insulin-like growth factor I (IGF-I)/growth hormone (GH)-ratio in an adult GH-deficient patient pointing to additional partial GH insensitivity due to a R179C mutation of the growth hormone receptor.

    PubMed

    Meyer, S; Ipek, M; Keth, A; Minnemann, T; von Mach, M A; Weise, A; Ittner, J R; Nawroth, P P; Plöckinger, U; Stalla, G K; Tuschy, U; Weber, M M; Kann, P H

    2007-08-01

    Genetic factors play an expanding role in understanding growth hormone (GH) disorders, therefore the German KIMS Pharmacogenetics Study was initiated with the aim of genotyping various GH-/IGF-I-axis-related genes of GH-deficient adult patients to investigate genotype:phenotype relationships and response to GH therapy. 129 consecutively enrolled GH-deficient adult patients were genotyped for variant 1 (V1) of the alternatively spliced noncoding exons in the 5'-untranslated region and for the nine coding exons of the GH receptor (GHR) gene, which obviously play a striking role in the function of the GH-IGF-I-axis. After detection of a heterozygous, non-synonymous mutation R179C in exon 6 in one single patient with acquired GH-deficiency (GHD) in late adulthood, analysis of her clinical data followed, leading to the diagnosis of mild short stature (-1.5SD). For further endocrine evaluation, five pituitary stimulation tests (arginine) of this patient were statistically compared to stimulation tests (arginine) of ten GH-deficient control patients, retrospectively. The formerly in patients with Laron syndrome and idiopathic short stature reported mutation R179C leads to an amino acid change from an arginine residue (codon CGC) to a cysteine residue (codon TGC) in position 179 of the extracellular domain of the GHR. Statistical analysis revealed significant decreased IGF-I/GH(0) ratio (p=0.004) and IGF-I/GH(max) ratio (p=0.001) of the index patient compared to the control patients, implying growth hormone resistance of the index patient at the level of the GHR, according to the detected R179C mutation. This study reports on the unusual case of a patient with mild short stature, who acquired GHD in late adulthood due to a non-secreting pituitary adenoma and get additionally diagnosed for pre-existing growth hormone insensitivity due to a formerly in two short statured patients described, single, heterozygous, non-synonymous mutation in the GHR. Our findings support the

  5. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 cotreatment versus insulin-like growth factor-I alone in two brothers with growth hormone insensitivity syndrome: effects on insulin sensitivity, body composition and linear growth.

    PubMed

    Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter

    2011-01-01

    Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.

  6. Insulin-Like Growth Factor (IGF) Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes

    PubMed Central

    Assefa, Biruhalem; Mahmoud, Ayman M.; Pfeiffer, Andreas F. H.; Birkenfeld, Andreas L.; Spranger, Joachim

    2017-01-01

    Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism. PMID:29422987

  7. Insulin-Like Growth Factor (IGF) Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes.

    PubMed

    Assefa, Biruhalem; Mahmoud, Ayman M; Pfeiffer, Andreas F H; Birkenfeld, Andreas L; Spranger, Joachim; Arafat, Ayman M

    2017-01-01

    Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKC ζ / λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKC ζ / λ /GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.

  8. Chronic alcohol consumption, type 2 diabetes mellitus, insulin-like growth factor-I (IGF-I), and growth hormone (GH) in ethanol-treated diabetic rats.

    PubMed

    Kim, Soo-Jeong; Ju, Anes; Lim, Seul-Gi; Kim, Dai-Jin

    2013-11-13

    Alcohol has deleterious influences on glucose metabolism which may contribute to the development of type 2 diabetes mellitus (T2DM). Insulin-like growth factor I (IGF-I) and growth hormone (GH), which interact with insulin to modulate metabolic control, have been shown to be related to impaired glucose tolerance. This study was conducted to assess the possibility that altered circulating IGF-I and GH levels contribute to the exacerbation of T2DM by alcohol use in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats and non-diabetic Long-Evans Tokushima Otsuka (LETO) rats. OLETF rats were pair-fed a Lieber-DeCarli Regular Ethanol diet and LETO rats were pair-fed a control diet for 6 weeks. At 6 weeks, an Intraperitoneal Glucose Tolerance Test (IP-GTT) was performed and IGF-I and GH levels were evaluated. Prior to an IP-GTT, OLETF-Ethanol (O-E) group had significantly a decrease in the mean glucose levels compared to OLETF-Control (O-C) group. At 120 min post IP-GTT, the O-E group had significantly an increase in the mean glucose levels compared to O-C group. The serum IGF-I levels were significantly lower and the serum GH levels were significantly higher in the O-E group than in L-C group. These results suggest that IGF-I and GH are prominent in defining the risk and development of T2DM, and may be adversely affected by heavy alcohol use, possibly mediating its diabetogenic effects. Thus, the overall glucose intolerance in the setting of alcoholism may be attributable to inappropriate alteration of IGF-I and GH levels. © 2013. Published by Elsevier Inc. All rights reserved.

  9. Polymorphic CA repeats in the IGF-I gene and breast cancer.

    PubMed

    Yu, H; Li, B D; Smith, M; Shi, R; Berkel, H J; Kato, I

    2001-11-01

    Insulin-like growth factor (IGF)-I is a potent mitogen for breast cancer cells and may play a role in the disease. Although the involvement of IGF-I phenotype in breast cancer has been studied extensively, little is known about IGF-I genotype in relation to the disease. The IGF-I gene contains a polymorphic region composed of multiple cytosine-adenine dinucleotides (CA repeats). Studies of other genes indicate that the CA-repeat region in the promoter of a gene may affect transcription activity and that the length of the repeat is inversely correlated with transactivation. To examine if the IGF-I polymorphism is associated with breast cancer, we compared the length of CA repeats in the IGF-I gene between 53 breast cancer patients and 53 controls. Genomic DNA extracted from peripheral blood was used to determine the number of CA repeats through PCR amplification and DNA sequencing. Associations between CA repeats and breast cancer were assessed using unconditional logistic regression analysis. The results showed that the median number of CA repeats was 19, ranging from 15 to 23, and that compared to women without 19 CA repeats, women with 19 CA repeats were more likely to be breast cancer patients (OR = 2.87, 95%CI: 1.16-7.06) after adjusting for age, race, menopausal status, age at menopause, and alcohol use. The study also suggested possible synergistic interplay between IGF-I genotype and phenotype as women with 19 CA repeats and high plasma IGF-I had a much higher odds ratio for breast cancer (OR = 5.12, 95%CI: 1.42-18.5) than those with only one of the conditions. If our observations can be confirmed in larger studies, the findings will provide further evidence to support the role of IGF-I in breast cancer and the link between genetic polymorphism and cancer susceptibility.

  10. TSH/IGF-1 Receptor Cross-Talk Rapidly Activates Extracellular Signal-Regulated Kinases in Multiple Cell Types.

    PubMed

    Krieger, Christine C; Perry, Joseph D; Morgan, Sarah J; Kahaly, George J; Gershengorn, Marvin C

    2017-10-01

    We previously showed that thyrotropin (TSH)/insulinlike growth factor (IGF)-1 receptor cross-talk appears to be involved in Graves' orbitopathy (GO) pathogenesis and upregulation of thyroid-specific genes in human thyrocytes. In orbital fibroblasts from GO patients, coadministration of TSH and IGF-1 induces synergistic increases in hyaluronan secretion. In human thyrocytes, TSH plus IGF-1 synergistically increased expression of the sodium-iodide symporter that appeared to involve ERK1/2 activation. However, the details of ERK1/2 activation were not known, nor was whether ERK1/2 was involved in this synergism in other cell types. Using primary cultures of GO fibroblasts (GOFs) and human thyrocytes, as well as human embryonic kidney (HEK) 293 cells overexpressing TSH receptors (HEK-TSHRs), we show that simultaneous activation of TSHRs and IGF-1 receptors (IGF-1Rs) causes rapid, synergistic phosphorylation/activation of ERK1 and ERK2 in all three cell types. This effect is partially inhibited by pertussis toxin, an inhibitor of TSHR coupling to Gi/Go proteins. In support of a role for Gi/Go proteins in ERK1/2 phosphorylation, we found that knockdown of Gi(1-3) and Go in HEK-TSHRs inhibited ERK1/2 phosphorylation stimulated by TSH and TSH plus IGF-1. These data demonstrate that the synergistic effects of TSH plus IGF-1 occur early in the TSHR signaling cascade and further support the idea that TSHR/IGF-1R cross-talk is an important mechanism for regulation of human GOFs and thyrocytes.

  11. Insulin and IGF1 Receptors Are Essential for XX and XY Gonadal Differentiation and Adrenal Development in Mice

    PubMed Central

    Romero, Yannick; Conne, Béatrice; Truong, Vy; Papaioannou, Marilena D.; Schaad, Olivier; Docquier, Mylène; Herrera, Pedro Luis; Wilhelm, Dagmar; Nef, Serge

    2013-01-01

    Mouse sex determination provides an attractive model to study how regulatory genetic networks and signaling pathways control cell specification and cell fate decisions. This study characterizes in detail the essential role played by the insulin receptor (INSR) and the IGF type I receptor (IGF1R) in adrenogenital development and primary sex determination. Constitutive ablation of insulin/IGF signaling pathway led to reduced proliferation rate of somatic progenitor cells in both XX and XY gonads prior to sex determination together with the downregulation of hundreds of genes associated with the adrenal, testicular, and ovarian genetic programs. These findings indicate that prior to sex determination somatic progenitors in Insr;Igf1r mutant gonads are not lineage primed and thus incapable of upregulating/repressing the male and female genetic programs required for cell fate restriction. In consequence, embryos lacking functional insulin/IGF signaling exhibit (i) complete agenesis of the adrenal cortex, (ii) embryonic XY gonadal sex reversal, with a delay of Sry upregulation and the subsequent failure of the testicular genetic program, and (iii) a delay in ovarian differentiation so that Insr;Igf1r mutant gonads, irrespective of genetic sex, remained in an extended undifferentiated state, before the ovarian differentiation program ultimately is initiated at around E16.5. PMID:23300479

  12. Diabetic retinopathy in two patients with congenital IGF-I deficiency (Laron syndrome).

    PubMed

    Laron, Zvi; Weinberger, Dov

    2004-07-01

    Animal and clinical studies have shown that excessive amounts of growth hormone or insulin-like growth factor-I (IGF-I) promote the development of diabetes and diabetic retinopathy. Forthwith, we present two patients with congenital IGF-I deficiency who developed type II diabetes and subsequently retinopathy. Eighteen adult patients with classical Laron syndrome (8 males, 10 females, aged 20-62 years) were followed by us since childhood or underwent fundus photography with a Nikon NF 505 instrument. Three had been treated in childhood with IGF-I, the rest were never treated, including the two patients reported. Two never-treated patients were diagnosed with type II diabetes (DM) at ages 39 and 41 respectively. There was no diabetes in the families. Oral treatment was followed by insulin injections. Metabolic control was not optimal and one patient developed proliferative diabetic retinopathy, necessitating laser surgery. He also has nephropathy and severe neuropathy. The other patient has background diabetic retinopathy and has developed, progressively, exudates, microaneurisms, hemorrhages and clinically significant macular edema. He also has subacute ischemic heart disease. Our findings show that congenital IGF-I deficiency, similar to excess, causes vascular complications of DM, denoting also that vascular endothelial growth factor can induce neovascularization in the presence of congenital IGF-I deficiency.

  13. Elevated circulating IGF-I promotes mammary gland development and proliferation.

    PubMed

    Cannata, Dara; Lann, Danielle; Wu, Yingjie; Elis, Sebastien; Sun, Hui; Yakar, Shoshana; Lazzarino, Deborah A; Wood, Teresa L; Leroith, Derek

    2010-12-01

    Animal studies have shown that IGF-I is essential for mammary gland development. Previous studies have suggested that local IGF-I rather than circulating IGF-I is the major mediator of mammary gland development. In the present study we used the hepatic IGF-I transgenic (HIT) and IGF-I knockout/HIT (KO-HIT) mouse models to examine the effects of enhanced circulating IGF-I on mammary development in the presence and absence of local IGF-I. HIT mice express the rat IGF-I transgene under the transthyretin promoter in the liver and have elevated circulating IGF-I and normal tissue IGF-I levels. The KO-HIT mice have no tissue IGF-I and increased circulating IGF-I. Analysis of mammary gland development reveals a greater degree of complexity in HIT mice as compared to control and KO-HIT mice, which demonstrate similar degrees of mammary gland complexity. Immunohistochemical evaluation of glands of HIT mice also suggests an enhanced degree of proliferation of the mammary gland, whereas KO-HIT mice exhibit mammary gland proliferation similar to control mice. In addition, HIT mice have a higher percentage of proliferating myoepithelial and luminal cells than control mice, whereas KO-HIT mice have an equivalent percentage of proliferating myoepithelial and luminal cells as control mice. Thus, our findings show that elevated circulating IGF-I levels are sufficient to promote normal pubertal mammary epithelial development. However, HIT mice demonstrate more pronounced mammary gland development when compared to control and KO-HIT mice. This suggests that both local and endocrine IGF-I play roles in mammary gland development and that elevated circulating IGF-I accelerates mammary epithelial proliferation.

  14. The Effect of Skeletal Unloading on Bone Formation: Role of IGF-I

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Kostenuik, P.; Holton, E. M.; Halloran, B. P.

    1999-01-01

    skeletal unloading. We have focussed on the role of IGF- 1 as the local factor mediating the effects of skeletal unloading on bone formation. IGF-I is produced by bone cells and chondrocytes; these cells have receptors for IGF-I, and respond to IGF-I with an increase in proliferation and function (e.g. collagen, and glycosaminoglycan production, respectively). IGF-I production by bone is under hormonal control, principally by GH and PTH, and IGF-I is thought to mediate some if not all of the effects of GH and PTH on bone growth. Thus, systemic changes in hormones such as GH and PTH may still have effects which vary from bone to bone depending on the loading history.

  15. Mesenchymal Stromal Cells Engineered to Produce IGF-I by Recombinant Adenovirus Ameliorate Liver Fibrosis in Mice

    PubMed Central

    Fiore, Esteban J.; Bayo, Juan M.; Garcia, Mariana G.; Malvicini, Mariana; Lloyd, Rodrigo; Piccioni, Flavia; Rizzo, Manglio; Peixoto, Estanislao; Sola, M. Beatriz; Atorrasagasti, Catalina; Alaniz, Laura; Camilletti, María A.; Enguita, Mónica; Prieto, Jesús; Aquino, Jorge B.

    2015-01-01

    Liver cirrhosis involves chronic wound healing and fibrotic processes. Mesenchymal stromal cells (MSCs) are multipotent adult progenitor cells that are used as vehicles of therapeutic genes. Insulin growth factor like-I (IGF-I) was shown to counteract liver fibrosis. We aimed at analyzing the effect of applying IGF-I overexpressing mouse bone marrow-derived MSCs on hepatic fibrosis. Fibrosis was induced by chronic thioacetamide application or bile duct ligation. MSCs engineered to produce green fluorescent protein (GFP) (AdGFP-MSCs) or IGF-I (AdIGF-I-MSCs) were applied systemically, and changes in collagen deposition and in the expression of key pro-fibrogenic and pro-regenerative genes/proteins were assessed. In addition, immunogenicity of transduced cells was analyzed. Liver fibrosis was further ameliorated after a single-dose application of AdIGF-I-MSCs when compared with AdGFP-MSCs and/or recombinant IGF-I treatments. Interestingly, an early and transitory upregulation in IGF-I and hepatocyte growth factor (HGF) mRNA expression was found in the liver of MSC-treated animals, which was more pronounced in AdIGF-I-MSCs condition. A reduction in hepatic stellate cell activation status was found after incubation with MSCs conditioned media. In addition, the AdIGF-I-MSCs cell-free supernatant induced the expression of IGF-I and HGF in primary cultured hepatocytes. From day 1 after transplantation, the proliferation marker proliferating cell nuclear antigen was upregulated in the liver of AdIGF-I-MSCs group, mainly in hepatocytes. MSCs were in vivo traced till day 14 after injection. In addition, multiple doses of Ad-IGF-I-MSCs likely suppressed antiviral immune response and it further reduced collagen deposition. Our results uncover early events that are likely involved in the anti-fibrogenic effect of genetically modified MSCs and overall would support the use of AdIGF-I-MSCs in treatment of liver fibrosis. PMID:25315017

  16. Role of IRS-2 in insulin and cytokine signalling.

    PubMed

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  17. Placental IGF-I, IGFBP-1, zinc, and iron, and maternal and infant anthropometry at birth.

    PubMed

    Akram, Shahzad K; Carlsson-Skwirut, Christine; Bhutta, Zulfiqar A; Söder, Olle

    2011-11-01

    To correlate placental protein levels of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-1, with previously determined levels of IGF-I and IGF-II mRNA expression, and the micronutrients zinc and iron, and maternal and newborn anthropometry. Placental samples were collected from rural field sites in Pakistan. Samples were divided into small and large for gestational age groups (SGA and LGA, respectively). IGFBP-1 levels were assessed using Western immunoblotting. IGF-I protein levels were assessed using ELISA techniques. IGF mRNA expression, zinc, and iron, were quantified as previously described and were used for comparative purposes only. Thirty-three subjects were included (SGA, n = 12; LGA n = 21). Higher levels of IGFBP-1 were seen in the SGA group (p < 0.01). IGFBP-1 correlated positively with maternal and infant triceps skin-fold thickness in the LGA and SGA groups, respectively (p < 0.05). Significantly lower IGF-I protein levels were seen in the SGA group. IGF-I levels correlated significantly with maternal and newborn anthropometry. IGFBP-1 correlated significantly with IGF-II mRNA expression (p < 0.05). Placental protein levels of IGF-I and IGFBP-1 appear to be associated with maternal anthropometry. Maternal anthropometry may thus influence IGFBP-1 and IGF-I levels and may possibly be used for screening of pregnancies, with the potential for timely identification of these high-risk pregnancies. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  18. Expression of IGF-1, IL-27 and IL-35 Receptors in Adjuvant Induced Rheumatoid Arthritis Model.

    PubMed

    Abdi, Elham; Najafipour, Hamid; Joukar, Siyavash; Dabiri, Shahriar; Esmaeli-Mahani, Saeed; Abbasloo, Elham; Houshmandi, Nasrin; Afsharipour, Abbas

    2018-03-01

    IGF-1 and certain other cytokines have been shown to exert inflammatory/anti-inflammatory roles in chronic joint diseases. To assess the effect of IGF-1, IL-27 and IL-35, their interaction and their receptor expression in a rheumatoid arthritis model. Freund's adjuvant-induced chronic joint inflammation was operated on 160 male rats. Animals were divided into histopathology and receptor expression groups, each composed of 10 subgroups including; control, vehicle, IGF-1, IL-27, IL-35, their antagonists, IGF-1+IL-27 antagonist and IGF-1+IL-35 antagonist. After two weeks, vehicle or agonist/antagonists were injected into the joint space every other day until day 28 where joint histopathology was performed. The expression of IGF-1, IL-27 and IL-35 receptors were assessed by western blot analysis. IGF-1 did not show pro- or anti- inflammatory functions; endogenous IL-27 and IL-35, on the other hand, exerted inflammatory effects. IL-27 and IL-35 antagonists exerted the highest anti-inflammatory effects. The total inflammation scores were 0.55 ± 0.06, 4.63 ± 0.40, 3.63 ± 0.60, 2.50 ± 0.38 and 1.63 ± 0.40 regarding control, vehicle, IGF-1 Ant., IL-27 Ant. and IL-35 Ant., respectively. IGF-1 receptor expression was reduced in chronic joint inflammation and all three antagonists augmented the IGF-1 receptor expression. IL-27 and IL-35 receptors were up-regulated by chronic joint inflammation. Overall, the results demonstrated the pro-inflammatory role of endogenous IL-27 and IL-35 along with the over expression of their receptors in chronic joint inflammation. IL-27 and IL-35 antagonists exerted the most anti-inflammatory effects and increased IGF-1 receptor expression. These two antagonists may be potential agents for new treatment strategies in chronic joint inflammatory diseases.

  19. Nandrolone and stanozolol induce Leydig cell tumor proliferation through an estrogen-dependent mechanism involving IGF-I system.

    PubMed

    Chimento, Adele; Sirianni, Rosa; Zolea, Fabiana; De Luca, Arianna; Lanzino, Marilena; Catalano, Stefania; Andò, Sebastiano; Pezzi, Vincenzo

    2012-05-01

    Several substances such as anabolic androgenic steroids (AAS), peptide hormones like insulin-like growth factor-I (IGF-I), aromatase inhibitors and estrogen antagonists are offered via the Internet, and are assumed without considering the potential deleterious effects that can be caused by their administration. In this study we aimed to determine if nandrolone and stanozolol, two commonly used AAS, could have an effect on Leydig cell tumor proliferation and if their effects could be potentiated by the concomitant use of IGF-I. Using a rat Leydig tumor cell line, R2C cells, as experimental model we found that nandrolone and stanozolol caused a dose-dependent induction of aromatase expression and estradiol (E2) production. When used in combination with IGF-I they were more effective than single molecules in inducing aromatase expression. AAS exhibited estrogenic activity and induced rapid estrogen receptor (ER)-dependent pathways involving IGF1R, AKT, and ERK1/2 phosphorylation. Inhibitors for these kinases decreased AAS-dependent aromatase expression. Up-regulated aromatase levels and related E2 production increased cell proliferation as a consequence of increased cyclin E expression. The observation that ER antagonist ICI182,780 was also able to significantly reduce ASS- and AAS + IGF-induced cell proliferation, confirmed a role for estrogens in AAS-dependent proliferative effects. Taken together these data clearly indicate that the use of high doses of AAS, as it occurs in doping practice, enhances Leydig cell proliferation, increasing the risk of tumor development. This risk is higher when AAS are used in association with IGF-I. To our knowledge this is the first report directly associating AAS and testicular cancer. Copyright © 2011 Wiley Periodicals, Inc.

  20. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    PubMed

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  1. Paracrine Pathways in Uterine Leiomyoma Stem Cells Involve Insulinlike Growth Factor 2 and Insulin Receptor A

    PubMed Central

    Moravek, Molly B.; Yin, Ping; Coon, John S.; Ono, Masanori; Druschitz, Stacy A.; Malpani, Saurabh S.; Dyson, Matthew T.; Rademaker, Alfred W.; Robins, Jared C.; Wei, Jian-Jun; Kim, J. Julie

    2017-01-01

    Context: Uterine leiomyomas (fibroids) are the most common benign tumors in women. Recently, three populations of leiomyoma cells were discovered on the basis of CD34 and CD49b expression, but molecular differences between these populations remain unknown. Objective: To define differential gene expression and signaling pathways in leiomyoma cell populations. Design: Cells from human leiomyoma tissue were sorted by flow cytometry into three populations: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b−. Microarray gene expression profiling and pathway analysis were performed. To investigate the insulinlike growth factor (IGF) pathway, real-time quantitative polymerase chain reaction, immunoblotting, and 5-ethynyl-2′-deoxyuridine incorporation studies were performed in cells isolated from fresh leiomyoma. Setting: Research laboratory. Patients: Eight African American women. Interventions: None Main Outcomes Measures: Gene expression patterns, cell proliferation, and differentiation. Results: A total of 1164 genes were differentially expressed in the three leiomyoma cell populations, suggesting a hierarchical differentiation order whereby CD34+/CD49b+ stem cells differentiate to CD34+/CD49b− intermediary cells, which then terminally differentiate to CD34−/CD49b− cells. Pathway analysis revealed differential expression of several IGF signaling pathway genes. IGF2 was overexpressed in CD34+/CD49b− vs CD34−/CD49b− cells (83-fold; P < 0.05). Insulin receptor A (IR-A) expression was higher and IGF1 receptor lower in CD34+/CD49b+ vs CD34−/CD49b− cells (15-fold and 0.35-fold, respectively; P < 0.05). IGF2 significantly increased cell number (1.4-fold; P < 0.001), proliferation indices, and extracellular signal-regulated kinase (ERK) phosphorylation. ERK inhibition decreased IGF2-stimulated cell proliferation. Conclusions: IGF2 and IR-A are important for leiomyoma stem cell proliferation and may represent paracrine signaling between leiomyoma cell types

  2. Paracrine Pathways in Uterine Leiomyoma Stem Cells Involve Insulinlike Growth Factor 2 and Insulin Receptor A.

    PubMed

    Moravek, Molly B; Yin, Ping; Coon, John S; Ono, Masanori; Druschitz, Stacy A; Malpani, Saurabh S; Dyson, Matthew T; Rademaker, Alfred W; Robins, Jared C; Wei, Jian-Jun; Kim, J Julie; Bulun, Serdar E

    2017-05-01

    Uterine leiomyomas (fibroids) are the most common benign tumors in women. Recently, three populations of leiomyoma cells were discovered on the basis of CD34 and CD49b expression, but molecular differences between these populations remain unknown. To define differential gene expression and signaling pathways in leiomyoma cell populations. Cells from human leiomyoma tissue were sorted by flow cytometry into three populations: CD34+/CD49b+, CD34+/CD49b-, and CD34-/CD49b-. Microarray gene expression profiling and pathway analysis were performed. To investigate the insulinlike growth factor (IGF) pathway, real-time quantitative polymerase chain reaction, immunoblotting, and 5-ethynyl-2'-deoxyuridine incorporation studies were performed in cells isolated from fresh leiomyoma. Research laboratory. Eight African American women. None. Gene expression patterns, cell proliferation, and differentiation. A total of 1164 genes were differentially expressed in the three leiomyoma cell populations, suggesting a hierarchical differentiation order whereby CD34+/CD49b+ stem cells differentiate to CD34+/CD49b- intermediary cells, which then terminally differentiate to CD34-/CD49b- cells. Pathway analysis revealed differential expression of several IGF signaling pathway genes. IGF2 was overexpressed in CD34+/CD49b- vs CD34-/CD49b- cells (83-fold; P < 0.05). Insulin receptor A (IR-A) expression was higher and IGF1 receptor lower in CD34+/CD49b+ vs CD34-/CD49b- cells (15-fold and 0.35-fold, respectively; P < 0.05). IGF2 significantly increased cell number (1.4-fold; P < 0.001), proliferation indices, and extracellular signal-regulated kinase (ERK) phosphorylation. ERK inhibition decreased IGF2-stimulated cell proliferation. IGF2 and IR-A are important for leiomyoma stem cell proliferation and may represent paracrine signaling between leiomyoma cell types. Therapies targeting the IGF pathway should be investigated for both treatment and prevention of leiomyomas. Copyright © 2017 by the

  3. Isolation of an inhibitory insulin-like growth factor (IGF) binding protein from bone cell-conditioned medium: A potential local regulator of IGF action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, S.; Bautista, C.M.; Wergedal, J.

    1989-11-01

    Inhibitory insulin-like growth factor binding protein (In-IGF-BP) has been purified to homogeneity from medium conditioned by TE89 human osteosarcoma cells by two different methods using Sephadex G-100 gel filtration, FPLC Mono Q ion-exchange, HPLC C{sub 4} reverse-phase, HPLC CN reverse-phase and affinity chromatographies. In-IGF-BP thus purified appeared to be homogeneous and unique by the following criteria. (i) N-terminal sequence analysis yielded a unique sequence (Asp-Glu-Ala-Ile-His-Cys-Pro-Pro-Glu-Ser-Glu-Ala-Lys-Leu-Ala). (ii) Amino acid composition of In-IGF-BP revealed marked differences with the amino acid compositions of other known PBs. (iii) In-IGF-BP exhibited a single band with molecular mass of 25 kDa under reducing conditions on sodiummore » dodecyl sulfate/polyacrylamide gels. IGF-I and IGF-II but not insulin displaced the binding of {sup 125}I-labeled IGF-I or {sup 125}I-labeled IGF-II binding to In-IGF-BP. In-IGF-BP inhibited basal, IGF-stimulated bone cell proliferation and serum-stimulated bone cell proliferation. Forskolin increases synthesis of In-IGF-BP in TE85 human osteosarcoma cells in a dose-dependent manner. Based on these findings, the authors conclude that In-IGF-BP is a protein that has a unique sequence and significant biological actions on bone cells.« less

  4. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    PubMed Central

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  5. Longitudinal infusion of a complex of insulin-like growth factor-I and IGF-binding protein-3 in five preterm infants: pharmacokinetics and short-term safety.

    PubMed

    Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E H; Hård, Anna-Lena; Hellström, Ann

    2013-01-01

    In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900-1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47-168) h in dosages between 21 and 111 µg/kg/24 h. Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75-100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe.

  6. IGF-I and NEFA concentrations in fetal fluids of term pregnancy dogs.

    PubMed

    Meloni, Tea; Comin, Antonella; Rota, Alessandro; Peric, Tanja; Contri, Alberto; Veronesi, Maria Cristina

    2014-06-01

    Insulin-like growth factor-I (IGF-I) and non-esterified fatty acids (NEFA) play an essential role in fetal growth and development. To date, fetal fluids IGF-I and NEFA levels at term canine pregnancy are unknown and could be related to the neonatal development and breed size. For these reasons, the aims of the present study were as follows: (1) to evaluate IGF-I and NEFA concentrations in fetal fluids collected from normally developed and viable newborn puppies born at term of normal pregnancies; (2) to assess possible differences between IGF-I and NEFA levels in amniotic compared with allantoic fluid; (3) to detect possible relationship between breed body size and IGF-I and NEFA amniotic and allantoic concentrations; (4) to evaluate possible differences in IGF-I fetal fluids levels between male and female puppies; and (5) to assess possible correlations between the two hormones in each type of fluid. The study enrolled 25 pure breed bitches submitted to elective Cesarean section at term because of the high risk of dystocia or previous troubles at parturition. At surgery, amniotic and allantoic fluids were collected and assayed for IGF-I and NEFA. IGF-I and NEFA amounts in both amniotic and allantoic fluids of different breed size bitches (small: ≤10 kg; medium: 11-25 kg; large: 26-40 kg) were detected, as well as the effect of gender on IGF-I levels. On a total of 73 amniotic and 76 allantoic samples collected by normal, viable, and mature newborns, the mean IGF-I concentration was significantly higher in amniotic than in allantoic fluid in all three groups, but the amniotic IGF-I levels were significantly lower in small and medium size bitches when compared with large ones. No significant differences were found in allantoic IGF-I concentrations among size groups. A significant effect of the puppy gender on IGF-I content in both fetal fluids was not reported. Regarding NEFA, in all the three groups, the mean NEFA concentration did not significantly differ

  7. Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae.

    PubMed

    Zhao, Juan; Harada, Naoaki; Okajima, Kenji

    2011-10-01

    We demonstrated that insulin-like growth factor-I (IGF-I) production in dermal papillae was increased and hair growth was promoted after sensory neuron stimulation in mice. Although the androgen metabolite dihydrotestosterone (DHT) inhibits hair growth by negatively modulating growth-regulatory effects of dermal papillae, relationship between androgen metabolism and IGF-I production in dermal papillae is not fully understood. We examined whether DHT inhibits IGF-I production by inhibiting sensory neuron stimulation, thereby preventing hair growth in mice. Effect of DHT on sensory neuron stimulation was examined using cultured dorsal root ganglion (DRG) neurons isolated from mice. DHT inhibits calcitonin gene-related peptide (CGRP) release from cultured DRG neurons. The non-steroidal androgen-receptor antagonist flutamide reversed DHT-induced inhibition of CGRP release. Dermal levels of IGF-I and IGF-I mRNA, and the number of IGF-I-positive fibroblasts around hair follicles were increased at 6h after CGRP administration. DHT administration for 3weeks decreased dermal levels of CGRP, IGF-I, and IGF-I mRNA in mice. Immunohistochemical expression of IGF-I and the number of proliferating cells in hair follicles were decreased and hair re-growth was inhibited in animals administered DHT. Co-administration of flutamide and CGRP reversed these changes induced by DHT administration. These observations suggest that DHT may decrease IGF-I production in dermal papillae by inhibiting sensory neuron stimulation through interaction with the androgen receptor, thereby inhibiting hair growth in mice. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    PubMed

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  9. IGF-I, IGFBPs, and inflammatory cytokine responses during gender-integrated Israeli Army basic combat training.

    PubMed

    Nindl, Bradley C; Scofield, Dennis E; Strohbach, Cassandra A; Centi, Amanda J; Evans, Rachel K; Yanovich, Ran; Moran, Daniel S

    2012-07-01

    Insulin-like growth factor 1 (IGF-I) is a robust metabolic and anabolic biomarker that has been demonstrated to be reflective of military training-induced body composition changes and influenced by initial aerobic fitness level. Greater mechanistic insight into the IGF-I response to physical training can potentially be gleaned by also examining other regulatory factors that influence IGF-I biological activity (i.e., insulin-like growth factor-binding proteins [IGFBPs] and inflammatory cytokine responses). The purpose of this study was to assess the influence of sex and initial fitness level on the IGF-I and inflammatory cytokine response to gender-integrated Israeli Defense Forces (IDF) basic combat training (BCT). Recruits (29 men, 19.1 ± 1.3 years; 93 women, 18.8 ± 0.6 years) were recruited from a 4-month gender-integrated BCT of the IDF. Blood was drawn and assayed for total IGF-I, free IGF-I, IGFBPs 1-6, tumor necrosis factor alpha (TNF-α), interleukin 6, and interleukin 1 beta. Body composition was determined via a 4-site skinfold (biceps, triceps, suprailiac, and subscapular) equation. Physical performance was assessed via a maximum volume of oxygen consumption (V[Combining Dot Above]O₂max) test using a treadmill protocol. All measures were obtained pre- and posttraining. A 2-way (sex × time) analysis of variance was used to test for statistical differences (p ≤ 0.05). Additionally, subjects were further partitioned (men and women separately) by tertiles of initial V[Combining Dot Above]O₂max to assess the influence of initial fitness level on the IGF-I system and inflammatory cytokine responses to physical training. Pearson product moment correlational analysis was also used to examine relationships between percent changes in blood measures and physical performance and body composition changes. All data are presented as mean ± SE. Time effects were observed only for total IGF-I, IGFBP-2, TNF-α, V[Combining Dot Above]O₂max, fat-free mass, and

  10. [Physiological significance of IGF-I and its binding proteins on fetal growth and maturation].

    PubMed

    Iwashita, M

    1994-08-01

    Insulin-like growth factor-I (IGF-I) is one of growth factors that circulates bound to specific, high affinity binding proteins (IGFBPs). Physiological significance of IGF-I and IGFBPs on fetal growth is investigated in this study. In mother, circulating levels of IGF-I are increased during pregnancy in which placental hormones take the place of pituitary GH to regulate IGF-I during pregnancy and correlates with fetal birth weight. IGFBPs except IGFBP-1 in the maternal circulation are markedly reduced compared to those of non pregnant women due to increased activity of protease(s) while IGFBP-1 gradually increased throughout pregnancy and negatively correlates with fetal weight. IGF-I stimulated 3H-AIB uptake and release by cultured trophoblast cells in a dose dependent manner. Furthermore, fetal growth and the transfer of 3H-AIB to fetus is inhibited when IGF-I is neutralized by polyclonal antibody. These results indicate that maternal IGF-I stimulates fetal growth by activating placental transport of nutrients to fetus. In contrast, IGFBP-1 inhibits both 125I-IGF-I binding to placental membrane and 3H-glycine uptake of trophoblast cells by IGF-I in a dose dependent manner. Moreover, fetal growth and the transfer of 3H-AIB to fetus are accelerated when IGFBP-1 is neutralized by polyclonal antibody, suggesting that maternal IGFBP-1 inhibits fetal growth by inhibiting IGF-I action on the placenta. IGF-I and four IGFBPs including IGFBP-1, -2, -3, and -4 are localized in cytotrophoblast of term placenta. Similarly IGFBP-1, -2, and -4 are detected in medium conditioned by term decidua cells by Western ligand blot in which release of IGFBP-1 and -4 are diminished by IGF-I and all three IGFBPs are increased by progesterone. Thus, there is a complicated autocrine/paracrine regulation between decidua and placenta and IGF-I action on fetal growth is presumed to be modified by this local regulation. Fetal levels of IGF-I and IGFBP-1 are positively and negatively correlate

  11. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways *

    PubMed Central

    Erdem, Cemal; Nagle, Alison M.; Casa, Angelo J.; Litzenburger, Beate C.; Wang, Yu-fen; Taylor, D. Lansing; Lee, Adrian V.; Lezon, Timothy R.

    2016-01-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. PMID:27364358

  12. Impaired Insulin/IGF Signaling in Experimental Alcohol-Related Myopathy

    PubMed Central

    Nguyen, Van Anh; Le, Tran; Tong, Ming; Silbermann, Elizabeth; Gundogan, Fusun; de la Monte, Suzanne M.

    2012-01-01

    Alcohol-related myopathy (Alc-M) is highly prevalent among heavy drinkers, although its pathogenesis is not well understood. We hypothesize that Alc-M is mediated by combined effects of insulin/IGF resistance and oxidative stress, similar to the effects of ethanol on liver and brain. We tested this hypothesis using an established model in which adult rats were pair-fed for 8 weeks with isocaloric diets containing 0% (N = 8) or 35.5% (N = 13) ethanol by caloric content. Gastrocnemius muscles were examined by histology, morphometrics, qRT-PCR analysis, and ELISAs. Chronic ethanol feeding reduced myofiber size and mRNA expression of IGF-1 polypeptide, insulin, IGF-1, and IGF-2 receptors, IRS-1, and IRS-2. Multiplex ELISAs demonstrated ethanol-associated inhibition of insulin, IRS-1, Akt, and p70S6K signaling, and increased activation of GSK-3β. In addition, ethanol-exposed muscles had increased 4-hydroxy-2-nonenal immunoreactivity, reflecting lipid peroxidation, and reduced levels of mitochondrial Complex IV, Complex V, and acetylcholinesterase. These results demonstrate that experimental Alc-M is associated with inhibition of insulin/IGF/IRS and downstream signaling that mediates metabolism and cell survival, similar to findings in alcoholic liver and brain degeneration. Moreover, the increased oxidative stress, which could be mediated by mitochondrial dysfunction, may have led to inhibition of acetylcholinesterase, which itself is sufficient to cause myofiber atrophy and degeneration. PMID:23016132

  13. Longitudinal infusion of a complex of insulin-like growth factor-I and IGF-binding protein-3 in five preterm infants: pharmacokinetics and short-term safety

    PubMed Central

    Ley, David; Hansen-Pupp, Ingrid; Niklasson, Aimon; Domellöf, Magnus; Friberg, Lena E.; Borg, Jan; Löfqvist, Chatarina; Hellgren, Gunnel; Smith, Lois E.H.; Hård, Anna-Lena; Hellström, Ann

    2014-01-01

    BACKGROUND In preterm infants, low levels of insulin-like growth factor-I (IGF-I) and IGF binding protein 3 (IGFBP-3) are associated with impaired brain growth and retinopathy of prematurity (ROP). Treatment with IGF-I/IGFBP-3 may be beneficial for brain development and may decrease the prevalence of ROP. METHODS In a phase II pharmacokinetics and safety study, five infants (three girls) with a median (range) gestational age (GA) of 26 wk + 6 d (26 wk + 0 d to 27 wk + 2 d) and birth weight of 990 (900–1,212) g received continuous intravenous infusion of recombinant human (rh)IGF-I/rhIGFBP-3. Treatment was initiated during the first postnatal day and continued for a median (range) duration of 168 (47–168) h in dosages between 21 and 111 µg/kg/24 h. RESULTS Treatment with rhIGF-I/rhIGFBP-3 was associated with higher serum IGF-I and IGFBP-3 concentrations (P < 0.001) than model-predicted endogenous levels. Of 74 IGF-I samples measured during study drug infusion, 37 (50%) were within the target range, 4 (5%) were above, and 33 (45%) were below. The predicted dose of rhIGF-I/rhIGFBP-3 required to establish circulating levels of IGF-I within the intrauterine range in a 1,000 g infant was 75–100 µg/kg/24 h. No hypoglycemia or other adverse effects were recorded. CONCLUSION In this study, continuous intravenous infusion of rhIGF-I/rhIGFBP-3 was effective in increasing serum concentrations of IGF-I and IGFBP-3, and was found to be safe. PMID:23095978

  14. 5-HT2A receptors in the feline brain: 123I-5-I-R91150 kinetics and the influence of ketamine measured with micro-SPECT.

    PubMed

    Waelbers, Tim; Polis, Ingeborgh; Vermeire, Simon; Dobbeleir, André; Eersels, Jos; De Spiegeleer, Bart; Audenaert, Kurt; Slegers, Guido; Peremans, Kathelijne

    2013-08-01

    Subanesthetic doses of ketamine can be used as a rapid-acting antidepressant in patients with treatment-resistant depression. Therefore, the brain kinetics of (123)I-5-I-R91150 (4-amino-N-[1-[3-(4-fluorophenyl)propyl]-4-methylpiperidin-4-yl]-5-iodo-2-methoxybenzamide) and the influence of ketamine on the postsynaptic serotonin-2A receptor (5-hydroxytryptamine-2A, or 5-HT2A) status were investigated in cats using micro-SPECT. This study was conducted on 6 cats using the radioligand (123)I-5-I-R91150, a 5-HT2A receptor antagonist, as the imaging probe. Anesthesia was induced and maintained with a continuous-rate infusion of propofol (8.4 ± 1.2 mg kg(-1) followed by 0.22 mg kg(-1) min(-1)) 75 min after tracer administration, and acquisition of the first image began 15 min after induction of anesthesia. After this first acquisition, propofol (0.22 mg kg(-1) min(-1)) was combined with ketamine (5 mg kg(-1) followed by 0.023 mg kg(-1) min(-1)), and the second acquisition began 15 min later. Semiquantification, with the cerebellum as a reference region, was performed to calculate the 5-HT2A receptor binding indices (parameter for available receptor density) in the frontal and temporal cortices. The binding indices were analyzed with Wilcoxon signed ranks statistics. The addition of ketamine to the propofol continuous-rate infusion resulted in decreased binding indices in the right frontal cortex (1.25 ± 0.22 vs. 1.45 ± 0.16; P = 0.028), left frontal cortex (1.34 ± 0.15 vs. 1.49 ± 0.10; P = 0.028), right temporal cortex (1.30 ± 0.17 vs. 1.45 ± 0.09; P = 0.046), and left temporal cortex (1.41 ± 0.20 vs. 1.52 ± 0.20; P = 0.046). This study showed that cats can be used as an animal model for studying alterations of the 5-HT2A receptor status with (123)I-5-I-R91150 micro-SPECT. Furthermore, an interaction between ketamine and the 5-HT2A receptors resulting in decreased binding of (123)I-5-I-R91150 in the frontal and temporal cortices was demonstrated. Whether the

  15. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; McCue, S. A.

    1998-01-01

    Insulin-like growth factor I (IGF-I) peptide levels have been shown to increase in overloaded skeletal muscles (G. R. Adams and F. Haddad. J. Appl. Physiol. 81: 2509-2516, 1996). In that study, the increase in IGF-I was found to precede measurable increases in muscle protein and was correlated with an increase in muscle DNA content. The present study was undertaken to test the hypothesis that direct IGF-I infusion would result in an increase in muscle DNA as well as in various measurements of muscle size. Either 0.9% saline or nonsystemic doses of IGF-I were infused directly into a non-weight-bearing muscle of rats, the tibialis anterior (TA), via a fenestrated catheter attached to a subcutaneous miniosmotic pump. Saline infusion had no effect on the mass, protein content, or DNA content of TA muscles. Local IGF-I infusion had no effect on body or heart weight. The absolute weight of the infused TA muscles was approximately 9% greater (P < 0.05) than that of the contralateral TA muscles. IGF-I infusion resulted in significant increases in the total protein and DNA content of TA muscles (P < 0.05). As a result of these coordinated changes, the DNA-to-protein ratio of the hypertrophied TA was similar to that of the contralateral muscles. These results suggest that IGF-I may be acting to directly stimulate processes such as protein synthesis and satellite cell proliferation, which result in skeletal muscle hypertrophy.

  16. Growth Hormone and Insulin-Like Growth Factor-I in the Transition from Normal Mammary Development to Preneoplastic Mammary Lesions

    PubMed Central

    Kleinberg, David L.; Wood, Teresa L.; Furth, Priscilla A.; Lee, Adrian V.

    2009-01-01

    Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer

  17. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor.

    PubMed

    Jang, Donghwan; Kwon, Hayeong; Jeong, Kyuho; Lee, Jaewoong; Pak, Yunbae

    2015-06-01

    Here, we explored flotillin-1-mediated regulation of insulin-like growth factor-1 (IGF-1) signaling. Flotillin-1-deficient cells exhibited a reduction in the activation of IGF-1 receptor (IGF-1R), ERK1/2 and Akt pathways, and the transcriptional activation of Elk-1 and the proliferation in response to IGF-1 were reduced in these cells. We found that IGF-1-independent flotillin-1 palmitoylation at Cys34 in the endoplasmic reticulum (ER) was required for the ER exit and the plasma membrane localization of flotillin-1 and IGF-1R. IGF-1-dependent depalmitoylation and repalmitoylation of flotillin-1 sustained tyrosine kinase activation of the plasma-membrane-targeted IGF-1R. Dysfunction and blocking the turnover of flotillin-1 palmitoylation abrogated cancer cell proliferation after IGF-1R signaling activation. Our data show that flotillin-1 palmitoylation is a new mechanism by which the intracellular localization and activation of IGF-1R are controlled. © 2015. Published by The Company of Biologists Ltd.

  18. The effect of HMB ingestion on the IGF-I and IGF binding protein response to high intensity military training.

    PubMed

    Redd, Michael J; Hoffman, Jay R; Gepner, Yftach; Stout, Jeffrey R; Hoffman, Mattan W; Ben-Dov, Daniel; Funk, Shany; Church, David D; Avital, Guy; Chen, Yacov; Frankel, Hagai; Ostfeld, Ishay

    2017-02-01

    Insulin-like growth factor-I (IGF-I) is a metabolic and anabolic biomarker that has been proposed to reflect physiological adaptations resulting from multistressor environments. The bioactivity of IGF-I is regulated by seven different insulin-like growth factor binding proteins (IGFBPs) which act not only as carriers of IGF-1, but also function as a modulator of IGF-I availability and activity. Supplementing with β-hydroxy-β-methylbutyrate (HMB) has been shown to enhance physiological outcomes associated with intense training, and has been reported to augment the IGF-1 response. The purpose of this study was to examine the effect of 23days of HMB supplementation on circulating levels of IGF-I and IGFBPs in combat soldiers during highly intense military training. Thirteen male soldiers from an elite infantry unit volunteered to participate in this double-blind, parallel design study. Soldiers were provided 3g·day -1 of either HMB (n=6) or placebo (PL; n=7). During the study soldiers performed advanced military training with periods of restricted sleep and severe environmental stressors. Blood samples were obtained prior to (PRE) and approximately 18h following the final supplement consumption (POST). No significant differences were observed for circulating IGF-1 concentrations between HMB and PL (p=0.568). In addition, no differences were seen between the groups for IGFBP-1 (p=1.000), IGFBP-2 (p=0.855), IGFBP-3 (p=0.520), IGFBP-4 (p=0.103), IGFBP-5 (p=0.886), or IGFBP-6 (p=0.775). A significant difference was noted between HMB (169.9±23.0ng·ml -1 ) and PL (207.2±28.0ng·ml -1 ) for IGFBP-7 at POST (p=0.042). Although the results of this study do not support the influence of HMB supplementation on circulating concentrations of IGF-1 or IGFBPs1-6 during high intensity military training, it does present initial evidence that it may lower circulating IGFBP-7 concentrations. This may provide some indication of a reduced stress response, but further investigation on

  19. Expression of a synthetic gene encoding human insulin-like growth factor I in cultured mouse fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayne, M.L.; Cascieri, M.A.; Kelder, B.

    1987-05-01

    A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less

  20. Detection of exogenous gene doping of IGF-I by a real-time quantitative PCR assay.

    PubMed

    Zhang, Jin-Ju; Xu, Jing-Feng; Shen, Yong-Wei; Ma, Shi-Jiao; Zhang, Ting-Ting; Meng, Qing-Lin; Lan, Wen-Jun; Zhang, Chun; Liu, Xiao-Mei

    2017-07-01

    Gene doping can be easily concealed since its product is similar to endogenous protein, making its effective detection very challenging. In this study, we selected insulin-like growth factor I (IGF-I) exogenous gene for gene doping detection. First, the synthetic IGF-I gene was subcloned to recombinant adeno-associated virus (rAAV) plasmid to produce recombinant rAAV2/IGF-I-GFP vectors. Second, in an animal model, rAAV2/IGF-I-GFP vectors were injected into the thigh muscle tissue of mice, and then muscle and blood specimens were sampled at different time points for total DNA isolation. Finally, real-time quantitative PCR was employed to detect the exogenous gene doping of IGF-I. In view of the characteristics of endogenous IGF-I gene sequences, a TaqMan probe was designed at the junction of exons 2 and 3 of IGF-I gene to distinguish it from the exogenous IGF-I gene. In addition, an internal reference control plasmid and its probe were used in PCR to rule out false-positive results through comparison of their threshold cycle (Ct) values. Thus, an accurate exogenous IGF-I gene detection approach was developed in this study. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  1. Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group.

    PubMed

    Lai, E C; Felice, K J; Festoff, B W; Gawel, M J; Gelinas, D F; Kratz, R; Murphy, M F; Natter, H M; Norris, F H; Rudnicki, S A

    1997-12-01

    The objective of this study was to investigate the safety and efficacy of recombinant human insulinlike growth factor-I (rhIGF-I) in the treatment of sporadic ALS. A double-blind, placebo-controlled, randomized study of 266 patients was conducted at eight centers in North America. Placebo or rhIGF-I (0.05 mg/kg/day or 0.10 mg/kg/day) was administered for 9 months. The primary outcome measure was disease symptom progression, assessed by the rate of change (per patient slope) in the Appel ALS rating scale total score. The Sickness Impact Profile (SIP), a patient-perceived, health-related quality of life assessment, was a secondary outcome variable. Progression of functional impairment in patients receiving high-dose (0.10 mg/kg/day) rhIGF-I was 26% slower than in patients receiving placebo (p = 0.01). The high-dose treatment group was less likely to terminate the study due to protocol-defined markers of disease symptom progression, and members in this group exhibited a slower decline in quality of life, as assessed by the SIP. Patients receiving 0.05 mg/kg/day of rhIGF-I exhibited trends similar to those associated with high-dose treatment, suggesting a dose-dependent response. The incidence of clinically significant adverse experiences was comparable among the three treatment groups. Recombinant human insulin-like growth factor-I slowed the progression of functional impairment and the decline in health-related quality of life in patients with ALS with no medically important adverse effects.

  2. Hospicells promote upregulation of the ATP-binding cassette genes by insulin-like growth factor-I via the JAK2/STAT3 signaling pathway in an ovarian cancer cell line.

    PubMed

    Benabbou, Nadia; Mirshahi, Pezhman; Cadillon, Mélodie; Soria, Jeannette; Therwath, Amu; Mirshahi, Massoud

    2013-09-01

    Interaction between tumor cells and their micro-environment has a crucial role in the development, progression and drug resistance of cancer. Our objective was to confirm the role of Hospicells, which are stromal cells from the cancer microenvironment, in drug resistance and tumor cell growth. We demonstrated that soluble factors secreted by Hospicells activate several genes and upregulate the JAK/STAT signaling pathway in ovarian cancer cell lines. Hospicells express all insulin-like growth factor (IGF) family as detected by gene array, RT-PCR, protein array and immunocytochemistry. While focusing attention on the microenvironment, we considered the role of IGF-I in proliferation and survival of ovarian cancer cells. Indeed, IGF-I is a major regulator of different stages of cancer development. We studied the effect of exogenously added IGF-I on the regulation of ATP-binding cassette (ABC) genes (MDR1, MRP1, MRP2, MRP3, MRP5 and BCRP) in the ovarian cancer cell line OVCAR3 and validated the results obtained using the IGF-IR antagonist picropodophyllin. IGF-I regulates the expression of ABC genes in OVCAR3 cells via the PI3-kinase, MEK and JAK2/STAT3 signaling pathways. The OVCAR3 cell line when co-cultured with Hospicells showed a marked degree of drug resistance. The drug resistance observed could be amplified with exogenous IGF-I. Addition of IGF-IR inhibitor, however, reduced the degree of resistance in these exposed cells. Cells that were treated with anticancer drugs and then exposed to IGF-I showed an increase in drug resistance and, thereby, an increase in cell survival. This observation indicates that drug resistance of OVCAR3 cells increases when there is synergy between OVCAR3 cells and Hospicells and it is amplified when IGF-I was exogenously added. In conclusion, inhibition of IGF-IR and targeting of the JAK2/STAT3 signaling pathway can be a target for ovarian cancer therapy.

  3. Hospicells promote upregulation of the ATP-binding cassette genes by insulin-like growth factor-I via the JAK2/STAT3 signaling pathway in an ovarian cancer cell line

    PubMed Central

    BENABBOU, NADIA; MIRSHAHI, PEZHMAN; CADILLON, MÉLODIE; SORIA, JEANNETTE; THERWATH, AMU; MIRSHAHI, MASSOUD

    2013-01-01

    Interaction between tumor cells and their microenvironment has a crucial role in the development, progression and drug resistance of cancer. Our objective was to confirm the role of Hospicells, which are stromal cells from the cancer microenvironment, in drug resistance and tumor cell growth. We demonstrated that soluble factors secreted by Hospicells activate several genes and upregulate the JAK/STAT signaling pathway in ovarian cancer cell lines. Hospicells express all insulin-like growth factor (IGF) family as detected by gene array, RT-PCR, protein array and immunocytochemistry. While focusing attention on the microenvironment, we considered the role of IGF-I in proliferation and survival of ovarian cancer cells. Indeed, IGF-I is a major regulator of different stages of cancer development. We studied the effect of exogenously added IGF-I on the regulation of ATP-binding cassette (ABC) genes (MDR1, MRP1, MRP2, MRP3, MRP5 and BCRP) in the ovarian cancer cell line OVCAR3 and validated the results obtained using the IGF-IR antagonist picropodophyllin. IGF-I regulates the expression of ABC genes in OVCAR3 cells via the PI3-kinase, MEK and JAK2/STAT3 signaling pathways. The OVCAR3 cell line when co-cultured with Hospicells showed a marked degree of drug resistance. The drug resistance observed could be amplified with exogenous IGF-I. Addition of IGF-IR inhibitor, however, reduced the degree of resistance in these exposed cells. Cells that were treated with anticancer drugs and then exposed to IGF-I showed an increase in drug resistance and, thereby, an increase in cell survival. This observation indicates that drug resistance of OVCAR3 cells increases when there is synergy between OVCAR3 cells and Hospicells and it is amplified when IGF-I was exogenously added. In conclusion, inhibition of IGF-IR and targeting of the JAK2/STAT3 signaling pathway can be a target for ovarian cancer therapy. PMID:23857432

  4. Activation of Akt by Advanced Glycation End Products (AGEs): Involvement of IGF-1 Receptor and Caveolin-1

    PubMed Central

    Yang, Su-Jung; Chen, Chen-Yu; Chang, Geen-Dong; Wen, Hui-Chin; Chen, Ching-Yu; Chang, Shi-Chuan; Liao, Jyh-Fei; Chang, Chung-Ho

    2013-01-01

    Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3

  5. Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy

    PubMed Central

    Lindsey, Richard C.; Mohan, Subburaman

    2015-01-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  6. Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: the role of GSK-3beta in the maintenance of steady-state levels of insulin receptor signaling molecules and Na(v)1.7 sodium channel in adrenal chromaffin cells.

    PubMed

    Nemoto, Takayuki; Yanagita, Toshihiko; Kanai, Tasuku; Wada, Akihiko

    2009-02-01

    Glycogen synthase kinase-3 (GSK-3) is constitutively active in nonstimulated cells, where the majority of its substrates undergo inactivation/proteolysis by phosphorylation. Extracellular stimuli (e.g., insulin) catalyze inhibitory Ser(9)-phosphorylation of GSK-3beta, turning on signaling and causing other biological consequences otherwise constitutively suppressed by GSK-3beta. Regulated and dysregulated activities of GSK-3beta are pivotal to health, disease, and therapeutics (e.g., insulin resistance, neurodegeneration, tumorigenesis, inflammation); however, the underlying mechanisms of multifunctional GSK-3beta remain elusive. In cultured bovine adrenal chromaffin cells, 1) constitutive and negatively-regulated activities of GSK-3beta up- and down-regulated insulin receptor, insulin receptor substrate-1 (IRS-1), IRS-2, and Akt levels via controlling proteasomal degradation and protein synthesis; 2) nicotinic receptor/protein kinase C-alpha (PKC-alpha)/extracellular signal-regulated kinase (ERK) pathway up-regulated IRS-1 and IRS-2 levels, enhancing insulin-induced the phosphoinositide 3-kinase (PI3K)/Akt/GSK-3beta pathway; 3) inhibition of calcineurin by cyclosporin A or FK506 down-regulated IRS-2 level, attenuating insulin-like growth factor-I (IGF-I)-induced ERK and GSK-3beta pathways; and 4) insulin, IGF-I or therapeutics (e.g., lithium) up-regulated the voltage-dependent Na(v)1.7 sodium channel.

  7. Can IGF-I polymorphism affect power and endurance athletic performance?

    PubMed

    Ben-Zaken, Sigal; Meckel, Yoav; Nemet, Dan; Eliakim, Alon

    2013-10-01

    Insulin-like growth factor-I (IGF-I) plays a key role in exercise-associated muscle growth and development. The regulatory region of the promoter of the IGF-I gene is labile, but changes in this region were studied mostly in the elderly and in relation to pathological states. C-1245T (rs35767) is a genetic variation in the promoter region of the IGF-I gene. The minor allele T was found to be associated with higher circulating IGF-I levels, and possibly with increased muscle mass. The aim of the current study was to analyze the frequency distribution of C-1245T SNP in athletic and nonathletic Israeli populations. One hundred and sixty-five athletes (78 endurance-type athletes, and 87 power-type athletes) and 159 nonathletic healthy individuals participated in the current study. Genomic DNA was extracted from peripheral EDTA treated anti-coagulated blood using a standard protocol. Genotyping of the IGF1 C-1245T polymorphism was performed using polymerase chain reaction (PCR). We found that the endurance and power athletes' allele and genotype frequencies were significantly different from those of the control group. Only 4.8% of the athletes were TT carriers, but none of the controls carried this genotype. The T allele was found to be more frequent in the top-level power athletes (international and Olympic level) compared to national level athletes, but such a difference was not found in endurance athletes. Our findings suggest a possible contribution for the relatively rare IGF-I TT genotype to endurance performance, and in particular to power sport excellence in Israeli athletes. © 2013.

  8. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  9. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses

    PubMed Central

    Gazit, Neta; Vertkin, Irena; Shapira, Ilana; Helm, Martin; Slomowitz, Edden; Sheiba, Maayan; Mor, Yael; Rizzoli, Silvio; Slutsky, Inna

    2016-01-01

    Summary The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer’s disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca2+ transients, while promoting spontaneous transmission and resting Ca2+ level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca2+ buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer’s disease. Video Abstract PMID:26804996

  10. Proteomic Screening and Lasso Regression Reveal Differential Signaling in Insulin and Insulin-like Growth Factor I (IGF1) Pathways.

    PubMed

    Erdem, Cemal; Nagle, Alison M; Casa, Angelo J; Litzenburger, Beate C; Wang, Yu-Fen; Taylor, D Lansing; Lee, Adrian V; Lezon, Timothy R

    2016-09-01

    Insulin and insulin-like growth factor I (IGF1) influence cancer risk and progression through poorly understood mechanisms. To better understand the roles of insulin and IGF1 signaling in breast cancer, we combined proteomic screening with computational network inference to uncover differences in IGF1 and insulin induced signaling. Using reverse phase protein array, we measured the levels of 134 proteins in 21 breast cancer cell lines stimulated with IGF1 or insulin for up to 48 h. We then constructed directed protein expression networks using three separate methods: (i) lasso regression, (ii) conventional matrix inversion, and (iii) entropy maximization. These networks, named here as the time translation models, were analyzed and the inferred interactions were ranked by differential magnitude to identify pathway differences. The two top candidates, chosen for experimental validation, were shown to regulate IGF1/insulin induced phosphorylation events. First, acetyl-CoA carboxylase (ACC) knock-down was shown to increase the level of mitogen-activated protein kinase (MAPK) phosphorylation. Second, stable knock-down of E-Cadherin increased the phospho-Akt protein levels. Both of the knock-down perturbations incurred phosphorylation responses stronger in IGF1 stimulated cells compared with insulin. Overall, the time-translation modeling coupled to wet-lab experiments has proven to be powerful in inferring differential interactions downstream of IGF1 and insulin signaling, in vitro. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. GH/IGF-I Transgene Expression on Muscle Homeostasis

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1999-01-01

    We propose to test the hypothesis that the growth hormone/ insulin like growth factor-I axis through autocrine/paracrine mechanisms may provide long term muscle homeostasis under conditions of prolonged weightlessness. As a key alternative to hormone replacement therapy, ectopic production of hGH, growth hormone releasing hormone (GHRH), and IGF-I will be studied for its potential on muscle mass impact in transgenic mice under simulated microgravity. Expression of either hGH or IGF-I would provide a chronic source of a growth-promoting protein whose biosynthesis or secretion is shut down in space. Muscle expression of the IGF-I transgene has demonstrated about a 20% increase in hind limb muscle mass over control nontransgenic litter mates. These recent experiments, also establish the utility of hind-limb suspension in mice as a workable model to study atrophy in weight bearing muscles. Thus, transgenic mice will be used in hind-limb suspension models to determine the role of GH/IGF-I on maintenance of muscle mass and whether concentric exercises might act in synergy with hormone treatment. As a means to engineer and ensure long-term protein production that would be workable in humans, gene therapy technology will be used by to monitor muscle mass preservation during hind-limb suspension, after direct intramuscular injection of a genetically engineered muscle-specific vector expressing GHRH. Effects of this gene-based therapy will be assessed in both fast twitch (medial gastrocnemius) and slow twitch muscle (soleus). End-points include muscle size, ultrastructure, fiber type, and contractile function, in normal animals, hind limb suspension, and reambutation.

  12. Clinical implications of the reduced activity of the GH-IGF-I axis in older men.

    PubMed

    Ceda, G P; Dall'Aglio, E; Maggio, M; Lauretani, F; Bandinelli, S; Falzoi, C; Grimaldi, W; Ceresini, G; Corradi, F; Ferrucci, L; Valenti, G; Hoffman, A R

    2005-01-01

    During the last decade, a significant body of evidence has accumulated, indicating that IGF-I might play a role in several pathological conditions commonly seen during aging, such as atherosclerosis and cardiovascular disease (CVD), cognitive decline, dementia, sarcopenia and frailty. A vascular protective role for IGF-I has been suggested because of its ability to stimulate nitric oxide production from endothelial and vascular smooth muscle cells. In cross sectional studies, low IGF-I levels have been associated with unfavorable CVD risk factors profile, such as atherosclerosis, abnormal lipoprotein levels and hypertension, while in prospective studies, lower IGF-I levels predict future development of ischemic heart disease. The fall in IGF-I levels with aging correlates with cognitive decline and it has been suggested that IGF-I plays a role in the development of dementia. IGF-I is highly expressed within the brain and is essential for normal brain development. IGF-I has anti-apoptotic and neuroprotective effects and promotes projection neuron growth, dendritic arborization and synaptogenesis. Collectively, these data are consistent with a causal link between the age-related decline in GH and IGF-I levels and cognitive deficits in older persons. Finally, there is evidence of a relationship between declining GH and IGF-I levels and age-related changes in body composition and physical function. However, few studies have documented a precise role of IGF-I in the development of sarcopenia, frailty and poor mobility. We have recently documented that serum IGF-I is significantly associated with measures of muscle strength and physical performance in men and to a lesser extent in women. In conclusion, IGF-I is a pleiotropic hormone that in older persons may positively affect the cardiovascular system, the central nervous system and physical function.

  13. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  14. Growth hormone, IGF-I and insulin and their abuse in sport

    PubMed Central

    Holt, R I G; Sönksen, P H

    2008-01-01

    There is widespread anecdotal evidence that growth hormone (GH) is used by athletes for its anabolic and lipolytic properties. Although there is little evidence that GH improves performance in young healthy adults, randomized controlled studies carried out so far are inadequately designed to demonstrate this, not least because GH is often abused in combination with anabolic steroids and insulin. Some of the anabolic actions of GH are mediated through the generation of insulin-like growth factor-I (IGF-I), and it is believed that this is also being abused. Athletes are exposing themselves to potential harm by self-administering large doses of GH, IGF-I and insulin. The effects of excess GH are exemplified by acromegaly. IGF-I may mediate and cause some of these changes, but in addition, IGF-I may lead to profound hypoglycaemia, as indeed can insulin. Although GH is on the World Anti-doping Agency list of banned substances, the detection of abuse with GH is challenging. Two approaches have been developed to detect GH abuse. The first is based on an assessment of the effect of exogenous recombinant human GH on pituitary GH isoforms and the second is based on the measurement of markers of GH action. As a result, GH abuse can be detected with reasonable sensitivity and specificity. Testing for IGF-I and insulin is in its infancy, but the measurement of markers of GH action may also detect IGF-I usage, while urine mass spectroscopy has begun to identify the use of insulin analogues. PMID:18376417

  15. Changes in circulating IGF1 receptor stimulating activity do not parallel changes in total IGF1 during GH treatment of GH-deficient adults.

    PubMed

    Varewijck, Aimee J; Lamberts, Steven W J; van der Lely, A J; Neggers, Sebastian J C M M; Hofland, Leo J; Janssen, Joseph A M J L

    2015-08-01

    Previously we demonstrated that IGF1 receptor stimulating activity (IGF1RSA) offers advantages in diagnostic evaluation of adult GH deficiency (GHD). It is unknown whether IGF1RSA can be used to monitor GH therapy. To investigate the value of circulating IGF1RSA for monitoring GH therapy. 106 patients (54 m; 52 f) diagnosed with GHD were included; 22 were GH-naïve, 84 were already on GH treatment and discontinued therapy 4 weeks before baseline values were established. IGF1RSA was determined by the IGF1R kinase receptor activating assay, total IGF1 by immunoassay (Immulite). GH doses were titrated to achieve total IGF1 levels within the normal range. After 12 months, total IGF1 and IGF1RSA increased significantly (total IGF1 from 8.1 (95% CI 7.3-8.9) to 14.9 (95% CI 13.5-16.4) nmol/l and IGF1RSA from 115 (95% CI 104-127) to 181 (95% CI 162-202) pmol/l). After 12 months, total IGF1 normalized in 81% of patients, IGF1RSA in 51% and remained below normal in more than 40% of patients in whom total IGF1 had normalized. During 12 months of GH treatment, changes in IGF1RSA did not parallel changes in total IGF1. Despite normalization of total IGF1, IGF1RSA remained subnormal in a considerable proportion of patients. At present our results have no short-term consequences for GH therapy of GHD patients. However, based on our findings we propose future studies to examine whether titrating GH dose against IGF1RSA results in a better clinical outcome than titrating against total IGF1. © 2015 European Society of Endocrinology.

  16. Insulin, insulin-like growth factor–1, insulin receptor, and insulin-like growth factor–1 receptor expression in the chick eye and their regulation with imposed myopic or hyperopic defocus

    PubMed Central

    Penha, Alexandra Marcha; Schaeffel, Frank

    2011-01-01

    Purpose Insulin stimulates eye growth in chicks and this effect is greatly enhanced if the retinal image is degraded by the defocus of either sign. However, it is unclear whether the insulin receptor (IR) is expressed at all in the chicken retina in animals 1–2 weeks post-hatching. We have investigated IR expression and whether IR transcript abundance varies in the fundal layers. To elucidate the possible role of insulin and insulin-like growth factor (IGF)-1 signaling in eye growth regulation, mRNA (mRNA) levels were measured for insulin, IGF-1, IR, and IGF-1 receptor (IGF-1R) during imposed negative or positive defocus. Methods Chicks were treated binocularly with positive or negative spectacle lenses for 4 or 24 h, or they remained untreated (n=6, for each treatment group). Northern blot analyses were performed to screen for transcription variants in the different fundal layers of untreated animals. Real-time PCR was used to quantify IR, IGF-1R, IGF-1, and insulin mRNA levels in the different fundal layers of the chick eye in the three treatment groups. Results IR mRNA was found in all the studied tissues, although there is evidence of tissue-specific transcript variations. Three major transcripts were detected for IR. The brain, retina, and choroid showed the longest transcript (4.3 kb), which was not present in the liver. Nevertheless, the liver and brain showed a second transcript (2.6 kb) not present in the retina and choroid. A short transcript (1.3 kb) was the predominant form in the liver and choroid, and it seems to be present in the retinal pigment epithelium (RPE) and sclera as well. In the retina, no significant gene expression changes were found when defocus was imposed. Interestingly, in the RPE, both IR and IGF-1R were already downregulated after short periods (4 h) of positive lens wear. In contrast, IR and IGF-1R were upregulated in the choroid and fibrous sclera during treatment with negative, but not positive, lenses. Conclusions Differences

  17. Enhanced actions of insulin-like growth factor-I and interferon-alpha co-administration in experimental cirrhosis.

    PubMed

    Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma

    2009-01-01

    Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.

  18. Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMorris, F.A.; Smith, T.M.; DeSalvo, S.

    1986-02-01

    Cell cultures established from cerebrum of 1-day-old rats were used to investigate hormonal regulation of the development of oligodendrocytes, which synthesize myelin in the central nervous system. The number of oligodendrocytes that developed was preferentially increased by insulin, or by insulin-like growth factor I (IGF-I), also known as somatomedin C. High concentrations of insulin were required for substantial induction of oligodendrocyte development, whereas only 3.3 ng of IGF-I per ml was needed for a 2-fold increase in oligodendrocyte numbers. At an IGF-I concentration of 100 ng/ml, oligodendrocyte numbers were increased 6-fold in cultures grown in the presence of 10% fetalmore » bovine serum, or up to 60-fold in cultures maintained in serum-free medium. IGF-I produced less than a 2-fold increase in the number of nonoligodendroglial cells in the same cultures. Type I IGF receptors were identified on oligodendrocytes and on a putative oligodendrocyte precursor cell population identified by using mouse monoclonal antibody A2B5. Radioligand binding assays were done. These results indicate that IGF-I is a potent inducer of oligodendrocyte development and suggest a possible mechanism based on IGF deficiency for the hypomyelination that results from early postnatal malnutrition.« less

  19. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells.

    PubMed

    Zovko, Ana; Novak, Metka; Hååg, Petra; Kovalerchick, Dimitry; Holmlund, Teresa; Färnegårdh, Katarina; Ilan, Micha; Carmeli, Shmuel; Lewensohn, Rolf; Viktorsson, Kristina

    2016-08-02

    In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rβ but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment.

  20. Compounds from the marine sponge Cribrochalina vasculum offer a way to target IGF-1R mediated signaling in tumor cells

    PubMed Central

    Zovko, Ana; Novak, Metka; Hååg, Petra; Kovalerchick, Dimitry; Holmlund, Teresa; Färnegårdh, Katarina; Ilan, Micha; Carmeli, Shmuel; Lewensohn, Rolf; Viktorsson, Kristina

    2016-01-01

    In this work two acetylene alcohols, compound 1 and compound 2, which were isolated and identified from the sponge Cribrochalina vasculum, and which showed anti-tumor effects were further studied with respect to targets and action mechanisms. Gene expression analyses suggested insulin like growth factor receptor (IGF-1R) signaling to be instrumental in controlling anti-tumor efficacy of these compounds in non-small cell lung cancer (NSCLC). Indeed compounds 1 and 2 inhibited phosphorylation of IGF-1Rβ as well as reduced its target signaling molecules IRS-1 and PDK1 allowing inhibition of pro-survival signaling. In silico docking indicated that compound 1 binds to the kinase domain of IGF-1R at the same binding site as the well known tyrosine kinase inhibitor AG1024. Indeed, cellular thermal shift assay (CETSA) confirmed that C. vasculum compound 1 binds to IGF-1R but not to the membrane localized tyrosine kinase receptor EGFR. Importantly, we demonstrate that compound 1 causes IGF-1Rβ but not Insulin Receptor degradation specifically in tumor cells with no effects seen in normal diploid fibroblasts. Thus, these compounds hold potential as novel therapeutic agents targeting IGF-1R signaling for anti-tumor treatment. PMID:27384680

  1. Targeted Morphoproteomic Profiling of Ewing's Sarcoma Treated with Insulin-Like Growth Factor 1 Receptor (IGF1R) Inhibitors: Response/Resistance Signatures

    PubMed Central

    Subbiah, Vivek; Naing, Aung; Brown, Robert E.; Chen, Helen; Doyle, Laurence; LoRusso, Patricia; Benjamin, Robert; Anderson, Pete; Kurzrock, Razelle

    2011-01-01

    Background Insulin-like growth factor 1 receptor (IGF1R) targeted therapies have resulted in responses in a small number of patients with advanced metastatic Ewing's sarcoma. We performed morphoproteomic profiling to better understand response/resistance mechanisms of Ewing's sarcoma to IGF1R inhibitor-based therapy. Methodology/Principal Findings This pilot study assessed two patients with advanced Ewing's sarcoma treated with IGF1R antibody alone followed by combined IGF1R inhibitor plus mammalian target of rapamycin (mTOR) inhibitor treatment once resistance to single-agent IGF1R inhibitor developed. Immunohistochemical probes were applied to detect p-mTOR (Ser2448), p-Akt (Ser473), p-ERK1/2 (Thr202/Tyr204), nestin, and p-STAT3 (Tyr 705) in the original and recurrent tumor. The initial remarkable radiographic responses to IGF1R-antibody therapy was followed by resistance and then response to combined IGF1R plus mTOR inhibitor therapy in both patients, and then resistance to the combination regimen in one patient. In patient 1, upregulation of p-Akt and p-mTOR in the tumor that relapsed after initial response to IGF1R antibody might explain the resistance that developed, and the subsequent response to combined IGF1R plus mTOR inhibitor therapy. In patient 2, upregulation of mTOR was seen in the primary tumor, perhaps explaining the initial response to the IGF1R and mTOR inhibitor combination, while the resistant tumor that emerged showed activation of the ERK pathway as well. Conclusion/Significance Morphoproteomic analysis revealed that the mTOR pathway was activated in these two patients with advanced Ewing's sarcoma who showed response to combined IGF1R and mTOR inhibition, and the ERK pathway in the patient in whom resistance to this combination emerged. Our pilot results suggests that morphoproteomic assessment of signaling pathway activation in Ewing's sarcoma merits further investigation as a guide to understanding response and resistance signatures. PMID

  2. The GH-IGF1 axis and longevity. The paradigm of IGF1 deficiency.

    PubMed

    Laron, Zvi

    2008-01-01

    Primary or secondary IGF1 deficiency has been implicated in shortening of lifespan. This paper reviews available data on the influence of IGF1 deficiency on lifespan and longevity in animals and man. It has been shown that inactivation of the IGF1 gene or of the GH receptor in both invertebrates (C-elegans, flies-Drosphila) and rodents (mice and rats), leading to IGF1 deficiency, prolong life, particularly in females. In man, evaluation of the 2 largest cohorts of patients with Laron syndrome (inactive GH receptor resulting in IGF1 deficiency) in Israel and Ecuador revealed that despite their dwarfism and marked obesity, patients are alive at the ages of 75-78 years, with some having reached even more advanced ages. It is assumed that a major contributing factor is their protection from cancer, a major cause of death in the general population.

  3. Caloric restriction and IGF-I administration promote rabbit fecundity: Possible interrelationships and mechanisms of action.

    PubMed

    Sirotkin, Alexander V; Florkovičová, Iveta Koničková; Švarcová, Olga Østrup; Rafay, Jan; Laurincik, Jozef; Harrath, Abdel Halim

    2017-03-01

    The aim of these in vivo and in vitro studies was to examine the influence of caloric restriction (CR), and the administration of insulin-like growth factor (IGF-I), on rabbit fecundity and to understand the interrelationships between CR and IGF-I, as well as the endocrine and intracellular mechanisms of their effects. Female rabbits were subjected to 50% CR, injections of IGF-I (20 μg/animal/day) and a combination of the two for 10 d before and 2 d after ovulation induced by 25 IU PMSG and 0.25 IU hCG. On the day of ovulation blood samples were collected and analyzed IGF-I, leptin, progesterone (P 4 ) and estradiol (E 2 ) concentrations by RIA. Some animals from each group were killed in their periovulatory period and weighed, as were their ovaries. Granulosa cells isolated from ovaries of does subjected or not to CR were cultured for 2 d with and without IGF-I (100 ng/mL). Accumulation of markers of cell proliferation (PCNA and cyclin B1), apoptosis (bax), MAP/ERK1,2 kinase (MAPK), protein kinase A (PKA) and IGF-I were evaluated by immunocytochemistry. In addition, E 2 release by cells isolated from ovaries of animals subjected or not to CR and cultured with and without IGF-I (1, 10, 100, 1000 or 10000 ng/mL) was assessed by RIA. The remaining animals were kept until parturition, when the number of pups was recorded. CR did not affect animal and ovarian weight, but significantly increased the number of pups per litter and plasma levels of IGF-I and decreased plasma leptin and P 4 , but not E 2 concentration. Injections of IGF-I did not influence body and ovarian weights, but increased the number of pups per litter and plasma IGF-I and leptin concentration and reduced plasma E 2 but not P 4 level. IGF-I administration did not modify the main effects of CR, although it prevented the CR-induced decrease in plasma P 4 level. CR reduced accumulation of PCNA, bax, promoted accumulation of cyclin B1 but not of MAPK, PKA or IGF-I within ovarian granulosa cells

  4. Cord IGF-I concentrations in Indian newborns: associations with neonatal body composition and maternal determinants.

    PubMed

    Wiley, A S; Lubree, H G; Joshi, S M; Bhat, D S; Ramdas, L V; Rao, A S; Thuse, N V; Deshpande, V U; Yajnik, C S

    2016-04-01

    Indian newborns have been described as 'thin-fat' compared with European babies, but little is known about how this phenotype relates to the foetal growth factor IGF-I (insulin-like growth factor I) or its binding protein IGFBP-3. To assess cord IGF-I and IGFBP-3 concentrations in a sample of Indian newborns and evaluate their associations with neonatal adiposity and maternal factors. A prospective cohort study of 146 pregnant mothers with dietary, anthropometric and biochemical measurements at 28 and 34 weeks gestation. Neonatal weight, length, skin-folds, circumferences, and cord blood IGF-I and IGFBP-3 concentrations were measured at birth. Average cord IGF-I and IGFBP-3 concentrations were 46.6 (2.2) and 1269.4 (41) ng mL(-1) , respectively. Girls had higher mean IGF-I than boys (51.4 ng mL(-1) vs. 42.9 ng mL(-1) ; P < 0.03), but IGFBP-3 did not differ. Cord IGF-I was positively correlated with all birth size measures except length, and most strongly with neonatal sum-of-skin-folds (r = 0.50, P < 0.001). IGFBP-3 was positively correlated with ponderal index, sum-of-skin-folds and placenta weight (r = 0.21, 0.19, 0.16, respectively; P < 0.05). Of maternal demographic and anthropometric characteristics, only parity was correlated with cord IGF-I (r = 0.27, P < 0.001). Among dietary behaviours, maternal daily milk intake at 34 weeks gestation predicted higher cord IGF-I compared to no-milk intake (51.8 ng mL(-1) vs. 36.5 ng mL(-1) , P < 0.01) after controlling for maternal characteristics, placental weight, and newborn gestational age, sex, weight and sum-of-skin-folds. Sum-of-skin-folds were positively associated with cord IGF-I in this multivariate model (57.3 ng mL(-1) vs. 35.1 ng mL(-1) for highest and lowest sum-of skin-fold quartile, P < 0.001). IGFBP-3 did not show significant relationships with these covariates. In this Indian study, cord IGF-I concentration was associated with greater

  5. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    NASA Astrophysics Data System (ADS)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  6. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS

    PubMed Central

    Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva

    2016-01-01

    The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807

  7. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor.

    PubMed

    Gilmore, Andrew P; Valentijn, Anthony J; Wang, Pengbo; Ranger, Ann M; Bundred, Nigel; O'Hare, Michael J; Wakeling, Alan; Korsmeyer, Stanley J; Streuli, Charles H

    2002-08-02

    Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.

  8. Impaired skeletal growth in mice with haploinsufficiency of IGF-I: genetic evidence that differences in IGF-I expression could contribute to peak bone mineral density differences

    PubMed Central

    Mohan, S; Baylink, D J

    2010-01-01

    Although it is well established that there is considerable inter-individual variation in the circulating levels of IGF-I in normal, healthy individuals and that a genetic component contributes substantially to this variation, the direct evidence that inter-individual variation in IGF-I contributes to differences in peak bone mineral density (BMD) is lacking. To examine if differences in IGF-I expression could contribute to peak BMD differences, we measured skeletal changes at days 23 (prepubertal), 31 (pubertal) and 56 (postpubertal) in mice with haploinsufficiency of IGF-I (+/−) and corresponding control mice (+/+). Mice (MF1/DBA) heterozygous for the IGF-I knockout allele were bred to generate +/+ and +/− mice (n=18–20 per group). Serum IGF-I was decreased by 23% (P<0·001) in mice with IGF-I haploinsufficiency (+/−) group at day 56 compared with the control (+/+) group. Femoral bone mineral content and BMD, as determined by dual energy X-ray absorptiometry, were reduced by 20% (P<0·001) and 12% respectively in the IGF-I (+/−) group at day 56 compared with the control group. The peripheral quantitative computed tomography measurements at the femoral mid-diaphysis revealed that periosteal circumference (7%, P<0·01) and total volumetric BMD (5%, P<0·05) were decreased significantly in the +/− group compared with the +/+ group. Furthermore, serum IGF-I showed significant positive correlations with both areal BMD (r=0·55) and periosteal circumference (r=0·66) in the pooled data from the +/+ and +/− groups. Our findings that haploinsufficiency of IGF-I caused significant reductions in serum IGF-I level, BMD and bone size, together with the previous findings, are consistent with the notion that genetic variations in IGF-I expression could, in part, contribute to inter-individual differences in peak BMD among a normal population. PMID:15930167

  9. Sleep extension increases IGF-I concentrations before and during sleep deprivation in healthy young men.

    PubMed

    Chennaoui, Mounir; Arnal, Pierrick J; Drogou, Catherine; Sauvet, Fabien; Gomez-Merino, Danielle

    2016-09-01

    Sleep deprivation is known to suppress circulating trophic factors such as insulin-like growth factor (IGF)-I and brain-derived neurotrophic factor (BDNF). This experiment examined the effect of an intervention involving 6 nights of extended sleep before total sleep deprivation on this catabolic profile. In a randomized crossover design, 14 young men (age range: 26-37 years) were either in an extended (EXT; time in bed: 2100-0700 h) or habitual (HAB: 2230-0700 h) sleep condition, followed by 3 days in the laboratory with blood sampling at baseline (B), after 24 h of sleep deprivation (24h-SD), and after 1 night of recovery sleep (R). In the EXT condition compared with the HAB condition, free IGF-I levels were significantly higher at B, 24h-SD, and R (P < 0.001), and those of total IGF-I at B and 24h-SD (P < 0.05). EXT did not influence growth hormone, IGF binding protein 3, BDNF, insulin, and glucose levels. The only effect of 24 h of sleep deprivation was for insulin levels, which were significantly higher after R compared with B. In a healthy adult, additional sleep over 1 week increased blood concentrations of the anabolic factor IGF-I before and during 24 h of sleep deprivation and after the subsequent recovery night without effects on BDNF. With further research, these findings may prove to be important in guiding effective lifestyle modifications to limit physical or cognitive deficits associated with IGF-I decrease with age.

  10. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells.

    PubMed

    Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A

    1993-05-01

    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1.

  11. Common elements in interleukin 4 and insulin signaling pathways in factor-dependent hematopoietic cells.

    PubMed Central

    Wang, L M; Keegan, A D; Li, W; Lienhard, G E; Pacini, S; Gutkind, J S; Myers, M G; Sun, X J; White, M F; Aaronson, S A

    1993-01-01

    Interleukin 4 (IL-4), insulin, and insulin-like growth factor I (IGF-I) efficiently induced DNA synthesis in the IL-3-dependent murine myeloid cell lines FDC-P1 and FDC-P2. Although these factors could not individually sustain long-term growth of these lines, a combination of IL-4 with either insulin or IGF-I did support continuous growth. The principal tyrosine-phosphorylated substrate observed in FDC cells stimulated with IL-4, previously designated 4PS, was of the same size (170 kDa) as the major substrate phosphorylated in response to insulin or IGF-I. These substrates had phosphopeptides of the same size when analyzed by digestion with Staphylococcus aureus V8 protease, and each tightly associated with the 85-kDa component of phosphatidylinositol 3-kinase after factor stimulation. IRS-1, the principal substrate phosphorylated in response to insulin or IGF-I stimulation in nonhematopoietic cells, is similar in size to 4PS. However, anti-IRS-1 antibodies failed to efficiently precipitate 4PS, and some phosphopeptides generated by V8 protease digestion of IRS-1 were distinct in size from the phosphopeptides of 4PS. Nevertheless, IL-4, insulin, and IGF-I were capable of stimulating tyrosine phosphorylation of IRS-1 in FDC cells that expressed this substrate as a result of transfection. These findings indicate that (i) IL-4, insulin, and IGF-I use signal transduction pathways in FDC lines that have at least one major feature in common, the rapid tyrosine phosphorylation of 4PS, and (ii) insulin and IGF-I stimulation of hematopoietic cell lines leads to the phosphorylation of a substrate that may be related to but is not identical to IRS-1. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7683417

  12. Human antral fluid IGF-I and oocyte maturity: effect of stimulation therapy.

    PubMed

    Roussi, M; Royère, M; GuillonueauM; Lansac, J; Muh, J P

    1989-07-01

    Studies in animals have highlighted a possible role for growth factors, particularly IGF-I on cellular replication and cytodifferentiation in the ovary. At this time, few studies have been performed about IGF-I in the human ovary. From 38 women undergoing in Vitro Fertilization 293 antral antral fluids were collected and assessed for steroids (estradiol and progesterone), FSH and IGF-I. Two induction treatments were compared: clomiphene citrate hMG (group A,N = 15), triptoreline/hMG (group B,N = 23). We also studied relationships between quantitative parameters and oocyte collection or oocyte corona cumulus complex maturity, In group B, the highest antral estradiol levels were found in follicles yielding an oocyte (p less than 0.05). Concerning antral progesterone, higher levels were observed in follicles collected from group A than follicles collected from group B (p less than 0.05): for this parameter, the highest levels were observed when an oocyte was harvested, whatever the treatment (p less than 0.05). Highest antral FSH levels were observed in group B (p less than 0.05). IGF-I levels were higher in follicles collected from group B than in follicles collected from group A (p less than 0.05) and antral IGF-I levels differed between mature and immature oocyte corona cumulus complex in group B (p less than 0.05). These results, which are in keeping with studies about biological action of IGF-I in animal or human follicles or granulosa cells, led us to hypothesize a role for IGF-I in human follicular recruitment and maturation, a role that possible is enhanced during GnRH analogue and gonadotropin therapy.

  13. Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxia–Ischemia

    PubMed Central

    Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523

  14. IGF-I replacement therapy in children with congenital IGF-I deficiency (Laron syndrome) maintains heart dimension and function.

    PubMed

    Scheinowitz, Mickey; Feinberg, Micha S; Laron, Zvi

    2009-06-01

    Untreated patients with congenital growth hormone deficiency (GHD) and IGF-I deficiency are characterized not only by dwarfism but also by acromicria and organomicria, such as the heart. We assessed cardiac dimensions and function in very young patients with Laron syndrome (LS) undergoing IGF-I replacement therapy. Two to seven echocardiographic measurements were performed during IGF-I replacement therapy on male (n=4) and female (n=4) LS -patients, mean+/-SD age of 7.1+/-3.6 years (range 1.6-11.6 years), weight 16.1+/-9.7 kg, and height 89.9+/-18.5 cm. As aged- and gender-matched controls served 44 healthy children, age: 8.7+/-5.5 years, weight: 36.1+/-22.4 kg, and height: 129.7+/-33.1cm. Data of LS patients were normalized to body surface area and compared to the control group as well as nomograms of normal echocardiographic parameters for this age group. Left ventricular diastolic and systolic dimensions (LVDD/ LVSD, mm) and LV mass (gr) were significantly smaller in boys and girls with IGF-I treated LS compared with controls while the shortening fraction (%) and intraventricular septum thickness (mm) were similar. When compared with standard values for this age group, all treated LS patients were within 1 standard deviation of the mean. IGF-I therapy of young patients with Laron syndrome maintain LV dimensions and function within the normal range of aged-matched controls.

  15. IGF-1 receptor haploinsufficiency leads to age-dependent development of metabolic syndrome.

    PubMed

    Thakur, Sachin; Garg, Neha; Zhang, Ning; Hussey, Sophie E; Musi, Nicolas; Adamo, Martin L

    2017-05-13

    Individuals born small for gestational age (SGA) are at a higher risk of developing the metabolic syndrome later in life. IGF-1 resistance has been reported in placentae from SGA births and mutations in the Igf1 receptor gene have been reported in several cohorts of SGA subjects. We have used the Igf1r heterozygous (Igf1r +/- ) male mouse as a model to investigate the mechanisms by which Igf1r haploinsufficiency leads to insulin resistance. Despite exhibiting IGF-1 resistance, insulin signaling is enhanced in young Igf1r +/- mice but is attenuated in the muscle of old Igf1r +/- mice. Although smaller than WT (wild type) mice, old-aged Igf1r +/- had increased adiposity and exhibit increased lipogenesis. We hypothesize that IGF-1 resistance initially causes a transient increase in insulin signaling thereby promoting a lipogenic phenotype, which subsequently leads to insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  16. Cross-talk between IGF-1 and estrogen receptors attenuates intracellular changes in ventral spinal cord 4.1 motoneuron cells due to interferon-gamma exposure

    PubMed Central

    Park, Sookyoung; Nozaki, Kenkichi; Smith, Joshua A.; Krause, James S.; Banik, Naren L.

    2014-01-01

    Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. In order to examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis related proteases (caspase-3 and −12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ. PMID:24188094

  17. 40 YEARS of IGF1: Understanding the tissue-specific roles of IGF1/IGF1R in regulating metabolism using the Cre/loxP system.

    PubMed

    Kineman, Rhonda D; Del Rio-Moreno, Mercedes; Sarmento-Cabral, André

    2018-07-01

    It is clear that insulin-like growth factor-1 (IGF1) is important in supporting growth and regulating metabolism. The IGF1 found in the circulation is primarily produced by the liver hepatocytes, but healthy mature hepatocytes do not express appreciable levels of the IGF1 receptor (IGF1R). Therefore, the metabolic actions of IGF1 are thought to be mediated via extra-hepatocyte actions. Given the structural and functional homology between IGF1/IGF1R and insulin receptor (INSR) signaling, and the fact that IGF1, IGF1R and INSR are expressed in most tissues of the body, it is difficult to separate out the tissue-specific contributions of IGF1/IGF1R in maintaining whole body metabolic function. To circumvent this problem, over the last 20 years, investigators have taken advantage of the Cre/loxP system to manipulate IGF1/IGF1R in a tissue-dependent, and more recently, an age-dependent fashion. These studies have revealed that IGF1/IGF1R can alter extra-hepatocyte function to regulate hormonal inputs to the liver and/or alter tissue-specific carbohydrate and lipid metabolism to alter nutrient flux to liver, where these actions are not mutually exclusive, but serve to integrate the function of all tissues to support the metabolic needs of the organism. © 2018 Society for Endocrinology.

  18. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    PubMed Central

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  19. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model.

    PubMed

    Baquedano, Eva; Burgos-Ramos, Emma; Canelles, Sandra; González-Rodríguez, Agueda; Chowen, Julie A; Argente, Jesús; Barrios, Vicente; Valverde, Angela M; Frago, Laura M

    2016-05-01

    Insulin receptor substrate-2-deficient (IRS2(-/-)) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2(-/-) mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2(-/-) mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2(-/-) mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2(-/-) mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. © 2016. Published by The Company of Biologists Ltd.

  20. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2007-01-01

    In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.

  1. IGF-I and IGFBP-3 concentrations at 2 years: associations with anthropometry and milk consumption in an Indian cohort.

    PubMed

    Wiley, Andrea S; Joshi, Suyog M; Lubree, Himangi G; Bhat, Dattatray S; Memane, Neelam S; Raut, Deepa A; Yajnik, Chittaranjan S

    2018-04-01

    To ascertain associations between plasma insulin-like growth factor I (IGF-I), insulin-like growth factor-binding protein 3 (IGFBP-3) and their molar ratio at 2 y with neonatal size, infant growth, body composition at 2 y, and feeding practices in an Indian cohort. A cohort of 209 newborns, with 122 followed at 2 y. Anthropometry was conducted at birth and 2 y. IGF-I and IGFBP-3 concentrations were measured in cord blood and at 2 y. Maternal and child diet was assessed by food frequency questionnaires and maternal interviews. Multivariate regression was used to test for associations adjusting for confounding factors. Mean 2 y plasma IGF-I and IGFBP-3 concentrations and IGF-I/IGFBP-3 were 49.4 ng/ml (95% CI: 44.1, 54.8), 1953.8 ng/ml (CI: 1870.6, 2036.9) ng/ml, and 0.088 (CI: 0.081, 0.095), respectively. IGF-I and IGF-I/IGFBP-3 were positively associated with current length, but not body mass index or adiposity. IGF-I was higher among those with greater change in length since birth. IGF-I concentrations were higher in children who drank the most milk (>500 vs. <250 ml per day: 65.6 vs. 42.8 ng/ml, p < 0.04), received other milk <6 months compared to ≥6 months (56.3 vs. 44.8 ng/ml, p < 0.05), and in those whose mothers consumed milk daily vs. less frequently in late pregnancy (56.4 vs. 42.7 ng/ml, p < 0.01). In multivariate regression, 2 y IGF-I concentration and IGF-I/IGFBP-3 were each positively associated with current length and milk intake. IGFBP-3 was not related to anthropometry or milk intake. Plasma IGF-I concentrations and IGF-I/IGFBP-3 at 2 y are positively associated with length at 2 y and current milk intake.

  2. Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice

    PubMed Central

    Trueba-Sáiz, A; Cavada, C; Fernandez, A M; Leon, T; González, D A; Fortea Ormaechea, J; Lleó, A; Del Ser, T; Nuñez, A; Torres-Aleman, I

    2013-01-01

    Circulating insulin-like growth factor I (IGF-I) enters the brain and promotes clearance of amyloid peptides known to accumulate in Alzheimer's disease (AD) brains. Both patients and mouse models of AD show decreased level of circulating IGF-I enter the brain as evidenced by a lower ratio of cerebrospinal fluid/plasma IGF-I. Importantly, in presymptomatic AD mice this reduction is already manifested as a decreased brain input of serum IGF-I in response to environmental enrichment. To explore a potential diagnostic use of this early loss of IGF-I input, we monitored electrocorticogram (ECG) responses to systemic IGF-I in mice. Whereas control mice showed enhanced ECG activity after IGF-I, presymptomatic AD mice showed blunted ECG responses. Because nonhuman primates showed identically enhanced electroencephalogram (EEG) activity in response to systemic IGF-I, loss of the EEG signature of serum IGF-I may be exploited as a disease biomarker in AD patients. PMID:24301648

  3. Smoking-associated lung cancer prevention by blockade of the beta-adrenergic receptor-mediated insulin-like growth factor receptor activation.

    PubMed

    Min, Hye-Young; Boo, Hye-Jin; Lee, Ho Jin; Jang, Hyun-Ji; Yun, Hye Jeong; Hwang, Su Jung; Smith, John Kendal; Lee, Hyo-Jong; Lee, Ho-Young

    2016-10-25

    Activation of receptor tyrosine kinases (RTKs) is associated with carcinogenesis, but its contribution to smoking-associated lung carcinogenesis is poorly understood. Here we show that a tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced insulin-like growth factor 1 receptor (IGF-1R) activation via β-adrenergic receptor (β-AR) is crucial for smoking-associated lung carcinogenesis. Treatment with NNK stimulated the IGF-1R signaling pathway in a time- and dose-dependent manner, which was suppressed by pharmacological or genomic blockade of β-AR and the downstream signaling including a Gβγ subunit of β-AR and phospholipase C (PLC). Consistently, β-AR agonists led to increased IGF-1R phosphorylation. The increase in IGF2 transcription via β-AR, signal transducer and activator of transcription 3 (STAT3), and nuclear factor-kappa B (NF-κB) was associated with NNK-induced IGF-1R activation. Finally, treatment with β-AR antagonists suppressed the acquisition of transformed phenotypes in lung epithelial cells and lung tumor formation in mice. These results suggest that blocking β-AR-mediated IGF-1R activation can be an effective strategy for lung cancer prevention in smokers.

  4. Administration of growth hormone and nandrolone decanoate alters mRNA expression of the GABAB receptor subunits as well as of the GH receptor, IGF-1, and IGF-2 in rat brain.

    PubMed

    Grönbladh, Alfhild; Johansson, Jenny; Nyberg, Fred; Hallberg, Mathias

    2014-01-01

    The illicit use of anabolic androgenic steroids (AAS), especially among young adults, is of major concern. Among AAS users it is common to combine the AAS nandrolone decanoate (ND), with intake of growth hormone (GH) and a connection between gonadal steroids and the GH system has been suggested. Both AAS and GH affect functions in the brain, for example those associated with the hypothalamus and pituitary, and several GH actions are mediated by growth factors such as insulin-like growth factor 1 (IGF-1) and insulin-like growth factor 2 (IGF-2). The GABAergic system is implicated in actions induced by AAS and previous studies have provided evidence for a link between GH and GABAB receptors in the brain. Our aim was to examine the impact of AAS administration and a subsequent administration of GH, on the expression of GABAB receptors and important GH mediators in rat brain. The aim was to investigate the CNS effects of a high-dose ND, and to study if a low, but physiological relevant, dose of GH could reverse the ND-induced effects. In the present study, male rats were administered a high dose of ND every third day during three weeks, and subsequently the rats were given recombinant human GH (rhGH) during ten days. Quantitative PCR (qPCR) was used to analyze gene expression in hypothalamus, anterior pituitary, caudate putamen, nucleus accumbens, and amygdala. In the pituitary gland, the expression of GABAB receptor subunits was affected differently by the steroid treatment; the GABAB1 mRNA expression was decreased whereas a distinct elevation of the GABAB2 expression was found. Administration of ND also caused a decrease of GHR, IGF-1, and IGF-2 mRNA expression in the pituitary while the corresponding expression in the hypothalamus, caudate putamen, nucleus accumbens, and amygdala was unaffected. The rhGH administration did not alter the GABAB2 expression but increased the GABAB1 gene expression in the hypothalamus as compared to the AAS treated group. These results

  5. High-intensity interval training (HIIT) increases insulin-like growth factor-I (IGF-I) in sedentary aging men but not masters' athletes: an observational study.

    PubMed

    Herbert, Peter; Hayes, Lawrence D; Sculthorpe, Nicholas; Grace, Fergal M

    2017-03-01

    The aim of this investigation was to examine the impact high-intensity interval training (HIIT) on serum insulin-like growth factor-I (IGF-I) in active compared with sedentary aging men. 22 lifetime sedentary (SED; 62 ± 2 years) and 17 masters' athletes (LEX; 60 ± 5 years) were recruited to the study. As HIIT requires preconditioning exercise in sedentary cohorts, the study required three assessment phases; enrollment (phase A), following preconditioning exercise (phase B), and post-HIIT (phase C). Serum IGF-I was determined by electrochemiluminescent immunoassay. IGF-I was higher in LEX compared to SED at baseline (p = 0.007, Cohen's d = 0.91), and phase B (p = 0.083, Cohen's d = 0.59), with only a small difference at C (p = 0.291, Cohen's d = 0.35). SED experienced a small increase in IGF-I following preconditioning from 13.1 ± 4.7 to 14.2 ± 6.0 μg·dl -1 (p = 0.376, Cohen's d = 0.22), followed by a larger increase post-HIIT (16.9 ± 4.4 μg·dl -1 ), which was significantly elevated compared with baseline (p = 0.002, Cohen's d = 0.85), and post-preconditioning (p = 0.005, Cohen's d = 0.51). LEX experienced a trivial changes in IGF-I from A to B (18.2 ± 6.4 to 17.2 ± 3.7 μg·dl -1 [p = 0.538, Cohen's d = 0.19]), and a small change post-HIIT (18.4 ± 4.1 μg·dl -1 [p = 0.283, Cohen's d = 0.31]). Small increases were observed in fat-free mass in both groups following HIIT (p < 0.05, Cohen's d = 0.32-0.45). In conclusion, HIIT with preconditioning exercise abrogates the age associated difference in IGF-I between SED and LEX, and induces small improvements in fat-free mass in both SED and LEX.

  6. MicroRNA-214 Reduces Insulin-like Growth Factor-1 (IGF-1) Receptor Expression and Downstream mTORC1 Signaling in Renal Carcinoma Cells*

    PubMed Central

    Das, Falguni; Dey, Nirmalya; Bera, Amit; Kasinath, Balakuntalam S.; Ghosh-Choudhury, Nandini; Choudhury, Goutam Ghosh

    2016-01-01

    Elevated IGF-1/insulin-like growth factor-1 receptor (IGF-1R) autocrine/paracrine signaling in patients with renal cell carcinoma is associated with poor prognosis of the disease independent of their von Hippel-Lindau (VHL) status. Increased expression of IGF-1R in renal cancer cells correlates with their potency of tumor development and progression. The mechanism by which expression of IGF-1R is increased in renal carcinoma is not known. We report that VHL-deficient and VHL-positive renal cancer cells possess significantly decreased levels of mature, pre-, and pri-miR-214 than normal proximal tubular epithelial cells. We identified an miR-214 recognition element in the 3′UTR of IGF-1R mRNA and confirmed its responsiveness to miR-214. Overexpression of miR-214 decreased the IGF-1R protein levels, resulting in the inhibition of Akt kinase activity in both types of renal cancer cells. IGF-1 provoked phosphorylation and inactivation of PRAS40 in an Akt-dependent manner, leading to the activation of mTORC1 signal transduction to increase phosphorylation of S6 kinase and 4EBP-1. Phosphorylation-deficient mutants of PRAS40 and 4EBP-1 significantly inhibited IGF-1R-driven proliferation of renal cancer cells. Expression of miR-214 suppressed IGF-1R-induced phosphorylation of PRAS40, S6 kinase, and 4EBP-1, indicating inhibition of mTORC1 activity. Finally, miR-214 significantly blocked IGF-1R-forced renal cancer cell proliferation, which was reversed by expression of 3′UTR-less IGF-1R and constitutively active mTORC1. Together, our results identify a reciprocal regulation of IGF-1R levels and miR-214 expression in renal cancer cells independent of VHL status. Our data provide evidence for a novel mechanism for IGF-1R-driven renal cancer cell proliferation involving miR-214 and mTORC1. PMID:27226530

  7. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    PubMed

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  8. Cross-talk between IGF-1 and estrogen receptors attenuates intracellular changes in ventral spinal cord 4.1 motoneuron cells because of interferon-gamma exposure.

    PubMed

    Park, Sookyoung; Nozaki, Kenkichi; Smith, Joshua A; Krause, James S; Banik, Naren L

    2014-03-01

    Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. To examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis-related proteases (caspase-3 and -12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ. © 2013 International Society for Neurochemistry.

  9. Fetal programming of insulin-like growth factor (IGF)-I and IGF-binding protein-3: evidence for an altered response to undernutrition in late gestation following exposure to periconceptual undernutrition in the sheep.

    PubMed

    Gallaher, B W; Breier, B H; Keven, C L; Harding, J E; Gluckman, P D

    1998-12-01

    It has been demonstrated in several animal models that undernutrition in utero has significant long lasting effects on subsequent fetal and postnatal development. To address the hypothesis that the insulin-like growth factors (IGFs) may mediate such effects, our study examined whether a period of periconceptual maternal undernutrition could have a lasting influence on the IGF axis in the fetal sheep. Ewes were either allowed to feed ad libitum or kept undernourished from day 60 prior to mating until day 30 after conception, and then both groups were allowed to feed ad libitum. These groups were further divided at day 105 of gestation, either being fed ad libitum or undernourished until day 115 of gestation. Fetal and maternal blood samples were obtained at both day 105 and 115 of gestation. We describe the development of a specific homologous RIA to measure ovine IGF-binding protein-3 (IGFBP-3) in fetal and maternal sheep plasma. Fetal plasma IGFBP-3 and IGF-I concentrations were significantly (P<0.05) reduced at day 115 of gestation after maternal undernutrition. The fetal plasma IGFBP-2 levels were unchanged. The degree of reduction in fetal plasma IGFBP-3 and IGF-I between day 105 and 115 of gestation as a response to acute maternal undernutrition was significantly greater (P<0.05) in fetuses of mothers receiving low periconceptual nutrition. The response of maternal plasma IGFBP-3 and IGF-I to undernutrition did not depend on the level of periconceptual nutrition. Western blot data indicate that changes in either maternal or fetal plasma IGFBP-3 concentrations were not the result of increased proteolytic activity. These results suggest that exposure to maternal periconceptual undernutrition reprograms IGFBP-3 and IGF-I regulation in the developing sheep fetus, altering its response to undernutrition in late gestation.

  10. Endocrine and cardiac paracrine actions of insulin-like growth factor-I (IGF-I) during thyroid dysfunction in the rat: is IGF-I implicated in the mechanism of heart weight/body weight change during abnormal thyroid function?

    PubMed

    Thomas, M R; Miell, J P; Taylor, A M; Ross, R J; Arnao, J R; Jewitt, D E; McGregor, A M

    1993-06-01

    Thyroid hormones are essential for the normal growth and development of many tissues. In the rat, hypothyroidism is associated with growth impairment, and hyperthyroidism with the development of a hypercatabolic state and skeletal muscle wasting but, paradoxically, cardiac hypertrophy. The mechanism by which thyroid hormone produces cardiac hypertrophy and myosin isoenzyme changes remains unclear. The role of IGF-I, an anabolic hormone with both paracrine and endocrine actions, in producing cardiac hypertrophy was investigated during this study in hyperthyroid, hypothyroid and control rats. A treated hypothyroid group was also included in order to assess the effect of acute normalization of thyroid function. Body weight was significantly lower in the hyperthyroid (mean +/- S.E.M.; 535.5 +/- 24.9 g, P < 0.05), hypothyroid (245.3 +/- 9.8 g, P < 0.001) and treated hypothyroid (265.3 +/- 9.8 g, P < 0.001) animals when compared with controls (618.5 +/- 28.6 g). Heart weight/body weight ratios were, however, significantly increased in the hyperthyroid (2.74 +/- 0.11 x 10(-3), P < 0.01) and treated hypothyroid (2.87 +/- 0.07 x 10(-3), P < 0.001) animals when compared with controls (2.26 +/- 0.03 x 10(-3). Serum IGF-I concentrations were similar in the control and hyperthyroid rats (0.91 +/- 0.07 vs 0.78 +/- 0.04 U/ml, P = 0.26), but bioactivity was reduced by 70% in hyperthyroid serum, suggesting a circulating inhibitor of IGF. Serum IGF-I levels (0.12 +/- 0.03 U/ml, P < 0.001) and bioactivity (0.12 +/- 0.04 U/ml, P < 0.001) were significantly lower in the hypothyroid group. Liver IGF-I mRNA levels were not statistically different in the control and hyperthyroid animals, but were significantly reduced in the hypothyroid animals (P < 0.05 vs control). Heart IGF-I mRNA levels were similar in the control and hypothyroid rats, but were significantly increased in the hyperthyroid and treated hypothyroid animals (increased by 32% in hyperthyroidism, P < 0.05; increased by 57

  11. Is further evaluation for growth hormone (GH) deficiency necessary in fibromyalgia patients with low serum insulin-like growth factor (IGF)-I levels?

    PubMed

    Yuen, Kevin C J; Bennett, Robert M; Hryciw, Cheryl A; Cook, Marie B; Rhoads, Sharon A; Cook, David M

    2007-02-01

    Fibromyalgia (FM) is characterized by diffuse pain, fatigue, and sleep disturbances; symptoms that resemble the adult growth hormone (GH) deficiency syndrome. Many FM patients have low serum GH levels, with a hypothesized aetiology of dysregulated GH/insulin-like growth factor (IGF)-I axis. The aim of this study was to assess the GH reserve in FM patients with low serum IGF-I levels using the GH-releasing hormone (GHRH)-arginine test. We retrospectively reviewed the GHRH-arginine data of 77 FM patients with low serum IGF-I levels referred to our tertiary unit over a 4-year period. Of the 77 FM patients, 13 patients (17%) failed the GHRH-arginine test. Further evaluation with pituitary imaging revealed normal pituitary glands (n=7), coincident microadenomas (n=4), empty sella (n=1) and pituitary cyst (n=1), and relevant medical histories such as previous head injury (n=4), Sheehan's syndrome (n=1), and whiplash injury (n=1). In contrast, the remaining 64 patients (83%) that responded to the GHRH-arginine test demonstrated higher peak GH levels compared to age and BMI-matched controls (n=24). Our data shows that a subpopulation of FM patients with low serum IGF-I levels will fail the GHRH-arginine test. We, thus, recommend that the GH reserve of these patients should be evaluated further, as GH replacement may potentially improve the symptomatology of those with true GH deficiency. Additionally, the increased GH response rates to GHRH-arginine stimulation in the majority of FM patients with low serum IGF-I levels further supports the hypothesis of a dysregulated GH/IGF-I axis in the pathophysiology of FM.

  12. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  13. Pan-cancer analysis of somatic copy number alterations implicates IRS4 and IGF2 in enhancer hijacking

    PubMed Central

    Weischenfeldt, Joachim; Dubash, Taronish; Drainas, Alexandros P.; Mardin, Balca R.; Chen, Yuanyuan; Stütz, Adrian M.; Waszak, Sebastian M.; Bosco, Graziella; Halvorsen, Ann Rita; Raeder, Benjamin; Efthymiopoulos, Theocharis; Erkek, Serap; Siegl, Christine; Brenner, Hermann; Brustugun, Odd Terje; Dieter, Sebastian M.; Northcott, Paul A.; Petersen, Iver; Pfister, Stefan M.; Schneider, Martin; Solberg, Steinar K.; Thunissen, Erik; Weichert, Wilko; Zichner, Thomas; Thomas, Roman; Peifer, Martin; Helland, Aslaug; Ball, Claudia R.; Jechlinger, Martin; Sotillo, Rocio; Glimm, Hanno; Korbel, Jan O.

    2018-01-01

    Extensive prior research has focused on somatic copy-number alterations (SCNAs) affecting cancer genes, yet the extent to which recurrent SCNAs exert their influence through rearranging cis-regulatory elements remains unclear. Here, we present a framework for inferring cancer-related gene overexpression resulting from cis-regulatory element reorganization (e.g., enhancer hijacking), by integrating SCNAs, gene expression data, and information on chromatin interaction domains. Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate that IRS4 overexpression in lung cancer associates with recurrent deletions in cis, and present evidence supporting a tumor-promoting role. We additionally pursued cancer type-specific analyses, uncovering IGF2 as a target for enhancer hijacking in colorectal cancer. IGF2-containing tandem duplications result in the de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, which mediates high-level gene activation. Our framework enables systematic inference of cis-regulatory element rearrangements mediating dysregulation in cancer. PMID:27869826

  14. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    PubMed

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  15. Insulin-like growth factor 1 (IGF-1): a growth hormone

    PubMed Central

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  16. The immune-endocrine loop during aging: role of growth hormone and insulin-like growth factor-I.

    PubMed

    Burgess, W; Liu, Q; Zhou, J; Tang, Q; Ozawa, A; VanHoy, R; Arkins, S; Dantzer, R; Kelley, K W

    1999-01-01

    Why a primary lymphoid organ such as the thymus involutes during aging remains a fundamental question in immunology. Aging is associated with a decrease in plasma growth hormone (somatotropin) and IGF-I, and this somatopause of aging suggests a connection between the neuroendocrine and immune systems. Several investigators have demonstrated that treatment with either growth hormone or IGF-I restores architecture of the involuted thymus gland by reversing the loss of immature cortical thymocytes and preventing the decline in thymulin synthesis that occurs in old or GH-deficient animals and humans. The proliferation, differentiation and functions of other components of the immune system, including T and B cells, macrophages and neutrophils, also demonstrate age-associated decrements that can be restored by IGF-I. Knowledge of the mechanism by which cytokines and hormones influence hematopoietic cells is critical to improving the health of aged individuals. Our laboratory has recently demonstrated that IGF-I prevents apoptosis in promyeloid cells, which subsequently permits these cells to differentiate into neutrophils. We also demonstrated that IL-4 acts much like IGF-I to promote survival of promyeloid cells and to activate the enzyme phosphatidylinositol 3'-kinase (PI 3-kinase). However, the receptors for IGF-I and IL-4 are completely different, with the intracellular beta chains of the IGF receptor possessing intrinsic tyrosine kinase activity and the alpha and gammac subunit of the heterodimeric IL-4 receptor utilizing the Janus kinase family of nonreceptor protein kinases to tyrosine phosphorylate downstream targets. Both receptors share many of the components of the PI 3-kinase signal transduction pathway, converging at the level of insulin receptor substrate-1 or insulin receptor subtrate-2 (formally known as 4PS, or IL-4 Phosphorylated Substrate). Our investigations with IGF-I and IL-4 suggest that PI 3-kinase inhibits apoptosis by maintaining high levels of

  17. IgA Enhances IGF-1 Mitogenic Activity Via Receptor Modulation in Glomerular Mesangial Cells: Implications for IgA-Induced Nephropathy.

    PubMed

    Al-Eisa, Amal; Dhaunsi, Gursev S

    2017-01-01

    Glomerulonephritis due to mesangial proliferation is responsible for renal dysfunction in IgA nephropathy (IgAN), however molecular mechanisms of pathogenesis are not well known. We examined the effect of IgA on Insulin-like Growth Factor-1 (IGF-1) activity, a potent mitogen with vital role in growth and development of children, and IGF-1 receptor (IGF-1R) in cultures of glomerular mesangial cells (GMC). GMC were isolated from rat kidneys using sieving and enzymatic digestion of tissue homogenates, and cultured in RPMI 1640 medium. GMC cultures were treated with IgA (0-10 µg/ml) in the presence or absence of IGF-1 and fetal bovine serum (FBS), and BrdU incorporation was measured. IGF-1 levels were assayed along with real-time PCR quantification of IGF-1R mRNA. Treatment of GMC with IgA (5 -10 µg/ml) significantly (p < 0.01) increased the BrdU incorporation in the presence or absence of FBS or IGF-1. IgA-mediated effects were more pronounced in IGF-1 treated cells that were significantly (p < 0.01) blocked by pretreatment of cells with IGF-1 receptor antibody or genistein. IgA significantly increased the levels of IGF-1 in culture supernatants and GMC homogenates. IGF-1R mRNA was significantly (p < 0.01) increased in IgA treated cells particularly by co-treatment with IGF-1. These findings show that IgA enhances the IGF-1 activity in GMC via stimulation of IGF-1R gene transcription and suggest a role for IGF-1 in pathogenesis of IgAN. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. The Protective Effects of IGF-I against β-Amyloid-related Downregulation of Hippocampal Somatostatinergic System Involve Activation of Akt and Protein Kinase A.

    PubMed

    Aguado-Llera, David; Canelles, Sandra; Frago, Laura M; Chowen, Julie A; Argente, Jesús; Arilla, Eduardo; Barrios, Vicente

    2018-03-15

    Somatostatin (SRIF), a neuropeptide highly distributed in the hippocampus and involved in learning and memory, is markedly reduced in the brain of Alzheimer's disease patients. The effects of insulin-like growth factor-I (IGF-I) against β amyloid (Aβ)-induced neuronal death and associated cognitive disorders have been extensively reported in experimental models of this disease. Here, we examined the effect of IGF-I on the hippocampal somatostatinergic system in Aβ-treated rats and the molecular mechanisms associated with changes in this peptidergic system. Intracerebroventricular Aβ25-35 administration during 14 days (300 pmol/day) to male rats increased Aβ25-35 levels and cell death and markedly reduced SRIF and SRIF receptor 2 levels in the hippocampus. These deleterious effects were associated with reduced Akt and cAMP response element-binding protein (CREB) phosphorylation and activation of c-Jun N-terminal kinase (JNK). Subcutaneous IGF-I co-administration (50 µg/kg/day) reduced hippocampal Aβ25-35 levels, cell death and JNK activation. In addition, IGF-I prevented the reduction in the components of the somatostatinergic system affected by Aβ infusion. Its co-administration also augmented protein kinase A (PKA) activity, as well as Akt and CREB phosphorylation. These results suggest that IGF-I co-administration may have protective effects on the hippocampal somatostatinergic system against Aβ insult through up-regulation of PKA activity and Akt and CREB phosphorylation. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. The association between insulin-like growth factor 1 (IGF-1), IGF-binding proteins (IGFBPs), and the carboxyterminal propeptide of type I procollagen (PICP) in pre- and postmenopausal women with rheumatoid arthritis.

    PubMed

    Szeremeta, A; Jura-Półtorak, A; Komosińska-Vassev, K; Zoń-Giebel, A; Kapołka, D; Olczyk, K

    2017-05-01

    To assess the association between plasma levels of the insulin-like growth factor (IGF) system including IGF-1, IGF-binding proteins (IGFBPs) including IGFBP-1, total (t-)IGFBP-3 and functional (f-)IGFBP-3, and the carboxyterminal propeptide of type I procollagen (PICP) in pre- and postmenopausal women with rheumatoid arthritis (RA). Plasma concentrations of IGF-1, IGFBP-1, t-IGFBP-3, f-IGFBP-3, and PICP were measured by immunoassay. No significant difference was observed in plasma IGF-1 levels between pre- and postmenopausal subjects. Plasma levels of IGFBP-1 were elevated in RA. PICP and f-IGFBP-3 were greatly affected by menopausal status. Of the three IGFBPs tested, only f-IGFBP-3 plasma levels in RA women correlated negatively with age and disease duration. A positive correlation was demonstrated between PICP and erythrocyte sedimentation rate (ESR) in RA. Moreover, there was no correlation between PICP and IGF-1 and any of the IGFBPs in RA women. Considerable disruption of the IGF system in RA was found to be related to disease activity and duration. Changes in the IGF-IGFBP axis and PICP levels were different in pre- and postmenopausal women with RA. Elevated plasma PICP concentrations may indicate an increased rate of bone formation in postmenopausal RA women. Additionally, the observed changes in the IGF/IGFBP system did not affect bone formation during RA.

  20. Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila.

    PubMed

    Ai, Minrong; Blais, Steven; Park, Jin-Yong; Min, Soohong; Neubert, Thomas A; Suh, Greg S B

    2013-06-26

    Drosophila olfactory sensory neurons express either odorant receptors or ionotropic glutamate receptors (IRs). The sensory neurons that express IR64a, a member of the IR family, send axonal projections to either the DC4 or DP1m glomeruli in the antennal lobe. DC4 neurons respond specifically to acids/protons, whereas DP1m neurons respond to a broad spectrum of odorants. The molecular composition of IR64a-containing receptor complexes in either DC4 or DP1m neurons is not known, however. Here, we immunoprecipitated the IR64a protein from lysates of fly antennal tissue and identified IR8a as a receptor subunit physically associated with IR64a by mass spectrometry. IR8a mutants and flies in which IR8a was knocked down by RNAi in IR64a+ neurons exhibited defects in acid-evoked physiological and behavioral responses. Furthermore, we found that the loss of IR8a caused a significant reduction in IR64a protein levels. When expressed in Xenopus oocytes, IR64a and IR8a formed a functional ion channel that allowed ligand-evoked cation currents. These findings provide direct evidence that IR8a is a subunit that forms a functional olfactory receptor with IR64a in vivo to mediate odor detection.

  1. Expression of the IGF and the aromatase/estrogen receptor systems in human adrenal tissues from early infancy to late puberty: implications for the development of adrenarche.

    PubMed

    Belgorosky, Alicia; Baquedano, María Sonia; Guercio, Gabriela; Rivarola, Marco A

    2009-03-01

    Adrenarche is a process of postnatal sexual maturation occurring in higher primates, in which there is an increase in the secretion of adrenal androgens. It is the consequence of a process of postnatal organogenesis characterized by the development of a new zone in the adrenal cortex, the zona reticularis (ZR). The mechanism of this phenomenon remains poorly understood, suggesting that it might be a multifactorial event. A relationship between circulating IGF-I, insulin sensitivity, and adrenal androgens has been postulated. Boys and girls have different patterns of changes in insulin sensitivity at puberty, perhaps secondary to differences in the estrogen milieu. Estrogen effects may also play a role in premature adrenarche. Peripheral or local IGF-1 actions could regulate adrenal progenitor cell proliferation and migration. Since adrenal progenitor cells as well as IGF-I and the IGF-R1 are located in the outer zone of the adrenal cortex during childhood and adolescence, this peripheral cell layer, below the capsule, may contain undifferentiated progenitor cells. Therefore, the IGF-R1 signaling pathway might positively modulate the proliferation and migration of adrenal progenitor cell to stimulate the development of adrenal zones, including ZR. However, no evidence of a direct action of IGF-I on ZR was found. In addition, a role for estrogens in the ontogenesis of ZR is suggested by the presence of aromatase (CYP19) in the subcapsular zona glomerulosa and in the adrenal medulla. Estrogens produced locally could act on ZR by interacting with estrogen receptor beta (ERbeta), but not alpha, and membrane estrogen receptor GPR-30. An estradiol-induced increase in DHEA/cortisol ratio was indeed seen in cultures of adrenocortical cells from post-adrenarche adrenals. In summary, several lines of evidence point to the action of multiple factors, such as local adrenal maturational changes and peripheral metabolic signals, on postnatal human adrenal gland ZR formation.

  2. Proliferation of NS0 cells in protein-free medium: the role of cell-derived proteins, known growth factors and cellular receptors.

    PubMed

    Spens, Erika; Häggström, Lena

    2009-05-20

    NS0 cells proliferate without external supply of growth factors in protein-free media. We hypothesize that the cells produce their own factors to support proliferation. Understanding the mechanisms behind this autocrine regulation of proliferation may open for the novel approaches to improve animal cell processes. The following proteins were identified in NS0 conditioned medium (CM): cyclophilin A, cyclophilin B (CypB), cystatin C, D-dopachrome tautomerase, IL-25, isopentenyl-diphosphate delta-isomerase, macrophage migration inhibitory factor (MIF), beta(2)-microglobulin, Niemann pick type C2, secretory leukocyte protease inhibitor, thioredoxin-1, TNF-alpha, tumour protein translationally controlled 1 and ubiquitin. Further, cDNA microarray analysis indicated that the genes for IL-11, TNF receptor 6, TGF-beta receptor 1 and the IFN-gamma receptor were transcribed. CypB, IFN-alpha/beta/gamma, IL-11, IL-25, MIF, TGF-beta and TNF-alpha as well as the known growth factors EGF, IGF-I/II, IL-6, leukaemia inhibitory factor and oncostatin M (OSM) were excluded as involved in autocrine regulation of NS0 cell proliferation. The receptors for TGF-beta, IGF and OSM are however present in NS0 cell membranes since TGF-beta(1) caused cell death, and IGF-I/II and OSM improved cell growth. Even though no ligand was found, the receptor subunit gp130, active in signal transduction of the IL-6 like proteins, was shown to be essential for NS0 cells as demonstrated by siRNA gene silencing.

  3. Growth hormone, IGF-I, and exercise effects on non-weight-bearing fast muscles of hypophysectomized rats

    NASA Technical Reports Server (NTRS)

    Grossman, E. J.; Grindeland, R. E.; Roy, R. R.; Talmadge, R. J.; Evans, J.; Edgerton, V. R.

    1997-01-01

    The effects of growth hormone (GH) or insulin-like growth factor I (IGF-I) with or without exercise (ladder climbing) in countering the effects of unweighting on fast muscles of hypophysectomized rats during 10 days of hindlimb suspension were determined. Compared with untreated suspended rats, muscle weights were 16-29% larger in GH-treated and 5-15% larger in IGF-I-treated suspended rats. Exercise alone had no effect on muscle weights. Compared with ambulatory control, the medial gastrocnemius weight in suspended, exercised rats was larger after GH treatment and maintained with IGF-I treatment. The combination of GH or IGF-I plus exercise in suspended rats resulted in an increase in size of each predominant fiber type, i.e., types I, I + IIa and IIa + IIx, in the medial gastrocnemius compared with untreated suspended rats. Normal ambulation or exercise during suspension increased the proportion of fibers expressing embryonic myosin heavy chain in hypophysectomized rats. The phenotype of the medial gastrocnemius was minimally affected by GH, IGF-I, and/or exercise. These results show that there is an IGF-I, as well as a GH, and exercise interactive effect in maintaining medial gastrocnemius fiber size in suspended hypophysectomized rats.

  4. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    PubMed

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  5. The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs

    PubMed Central

    Hoopes, Barbara C.; Rimbault, Maud; Liebers, David; Ostrander, Elaine A.

    2012-01-01

    Domestic dog breeds have undergone intense selection for a variety of morphologic features, including size. Among small-dog breeds, defined as those averaging less than ~15 in. at the withers, there remains still considerable variation in body size. Yet essentially all such dogs are fixed for the same allele at the insulin-like growth factor 1 gene, which we and others previously found to be a size locus of large effect. In this study we sought to identify additional genes that contribute to tiny size in dogs using an association scan with the single nucleotide polymorphism (SNP) dataset CanMap, in which 915 purebred dogs were genotyped at 60,968 SNP markers. Our strongest association for tiny size (defined as breed-average height not more than 10 in. at the withers) was on canine chromosome 3 (p = 1.9 × 10−70). Fine mapping revealed a nonsynonymous SNP at chr3:44,706,389 that changes a highly conserved arginine at amino acid 204 to histidine in the insulin-like growth factor 1 receptor (IGF1R). This mutation is predicted to prevent formation of several hydrogen bonds within the cysteine-rich domain of the receptor’s ligand-binding extracellular subunit. Nine of 13 tiny dog breeds carry the mutation and many dogs are homozygous for it. This work underscores the central importance of the IGF1 pathway in controlling the tremendous size diversity of dogs. PMID:22903739

  6. Growth hormone/IGF-I and/or resistive exercise maintains myonuclear number in hindlimb unweighted muscles

    NASA Technical Reports Server (NTRS)

    Allen, D. L.; Linderman, J. K.; Roy, R. R.; Grindeland, R. E.; Mukku, V.; Edgerton, V. R.

    1997-01-01

    In the present study of rats, we examined the role, during 2 wk of hindlimb suspension, of growth hormone/insulin-like growth factor I (GH/IGF-I) administration and/or brief bouts of resistance exercise in ameliorating the loss of myonuclei in fibers of the soleus muscle that express type I myosin heavy chain. Hindlimb suspension resulted in a significant decrease in mean soleus wet weight that was attenuated either by exercise alone or by exercise plus GH/IGF-I treatment but was not attenuated by hormonal treatment alone. Both mean myonuclear number and mean fiber cross-sectional area (CSA) of fibers expressing type I myosin heavy chain decreased after 2 wk of suspension compared with control (134 vs. 162 myonuclei/mm and 917 vs. 2,076 micron2, respectively). Neither GH/IGF-I treatment nor exercise alone affected myonuclear number or fiber CSA, but the combination of exercise and growth-factor treatment attenuated the decrease in both variables. A significant correlation was found between mean myonuclear number and mean CSA across all groups. Thus GH/IGF-I administration and brief bouts of muscle loading had an interactive effect in attenuating the loss of myonuclei induced by chronic unloading.

  7. Higher Maternal Protein Intake during Pregnancy Is Associated with Lower Cord Blood Concentrations of Insulin-like Growth Factor (IGF)-II, IGF Binding Protein 3, and Insulin, but Not IGF-I, in a Cohort of Women with High Protein Intake.

    PubMed

    Switkowski, Karen M; Jacques, Paul F; Must, Aviva; Hivert, Marie-France; Fleisch, Abby; Gillman, Matthew W; Rifas-Shiman, Sheryl; Oken, Emily

    2017-07-01

    Background: Prenatal exposure to dietary protein may program growth-regulating hormones, consequently influencing early-life growth patterns and later risk of associated chronic diseases. The insulin-like growth factor (IGF) axis is of particular interest in this context given its influence on pre- and postnatal growth and its sensitivity to the early nutritional environment. Objective: Our objective was to examine associations of maternal protein intake during pregnancy with cord blood concentrations of IGF-I, IGF-II, IGF binding protein-3 (IGFBP-3), and insulin. Methods: We studied 938 mother-child pairs from early pregnancy through delivery in the Project Viva cohort. Using multivariable linear regression models adjusted for maternal race/ethnicity, education, income, smoking, parity, height, and gestational weight gain and for child sex, we examined associations of second-trimester maternal protein intake [grams per kilogram (weight before pregnancy) per day], as reported on a food frequency questionnaire, with IGF-I, IGF-II, IGFBP-3, and insulin concentrations in cord blood. We also examined how these associations may differ by child sex and parity. Results: Mothers were predominantly white (71%), college-educated (64%), and nonsmokers (67%). Mean ± SD protein intake was 1.35 ± 0.35 g ⋅ kg -1 ⋅ d -1 Each 1-SD increment in second-trimester protein intake corresponded to a change of -0.50 ng/mL (95% CI: -2.26, 1.26 ng/mL) in IGF-I and -0.91 μU/mL (95% CI: -1.45, -0.37 μU/mL) in insulin. Child sex and parity modified associations of maternal protein intake with IGF-II and IGFBP-3: protein intake was inversely associated with IGF-II in girls ( P -interaction = 0.04) and multiparous mothers ( P -interaction = 0.05), and with IGFBP-3 in multiparous mothers ( P -interaction = 0.04). Conclusions: In a cohort of pregnant women with relatively high mean protein intakes, higher intake was associated with lower concentrations of growth-promoting hormones in cord

  8. [Impact of acupuncture to IGF-I expression in spared dorsal root ganglion of cats].

    PubMed

    Liu, Fen; Wang, Ting-Hua; Zhang, Yi; Hong, Sun-quan; Song, Xin-bo

    2006-05-01

    To explore the relationship between Insulin-like growth factor-I (IGF-I) and acupuncture promoting the spinal cord plasticity, the changes of IGF- I expressing in spared dorsal root ganglia (DRG,L6) after operation and acupuncture were investigated. 25 adult cats were divided into 5 groups: normal control group; 7th day and 14th day group after unilateral partial rhizotomy (unilateral L1-L5,L7-S2 DRG Were transected, but L6 DRG was spared); 7th day and 14th day group of acupuncture stimulating the spared DRG (electro-needle stimulation was performed by following unilateral partial root rhizotomy). Animals survived for 7 or 14 days after operation respectively. Unilateral L6 dorsal root ganglia of each group were made into 20 microm frozen sections. By immunohistochemistry ABC method, the sections were stained with specific IGF-I (1:200) antibody. The distribution and the number of IGF-I positive neurons in spared DRG (L6) that located the operated/acupuncture side of each animal were observed and counted. For 7th day group after acupuncture stiumlation, the number of IGF-I positive neurons of spared DRG of acupuncture side showed significantly more than that of 7th day operation group (P<0.05), but still less than that of normal group (P < 0.05); In 14th day group, IGF- I expression in neuron of L6 DRG also increased apparently more than that of 14th day operation group, with coming back to normal level. After acupuncture stimulating the spared DRG for 14 days, the numbers of IGF- I positive neurons in spared DRG increased significantly more than that of 7th day group after acupuncture (P<0.05). Acupuncture can significantly increase the number of IGF- I positive neurons. Our results indicate that the expression changes of IGF-I in spared DRG associate with acupuncture promoting the spinal cord plasticity.

  9. IGFBP-1 and IGF-I as markers for advanced fibrosis in NAFLD - a pilot study.

    PubMed

    Hagström, Hannes; Stål, Per; Hultcrantz, Rolf; Brismar, Kerstin; Ansurudeen, Ishrath

    2017-12-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease globally. Advanced fibrosis (stage 3-4) is the most robust marker for future mortality, but diagnosis requires liver biopsy. Current non-invasive scoring systems aimed to identify advanced fibrosis are imperfect. Insulin-like growth factor I (IGF-I) and its binding protein IGFBP-1 are liver derived proteins, that are involved in various liver disorders. The aim of this study was to examine the possible association between advanced fibrosis and IGF-I and IGFBP-1 in NAFLD. Fasting blood samples were obtained from 52 patients diagnosed with NAFLD by liver biopsy. Total IGF-I and IGFBP-1 concentrations were determined in serum by in-house radio-immuno-assays. IGF-I levels were age-standardized (IGF-SD). A logistic regression model was used to investigate the association of IGF-SD and IGFBP-1 with advanced fibrosis (stage 3-4). Patients with advanced fibrosis (stage 3-4 vs. 0-2) had lower IGF-SD (-1.17 vs. 0.11, p = .01) and higher mean levels of IGFBP-1 (29.9 vs. 18.8 µg/l, p = .02). IGFBP-1 was associated with presence of advanced fibrosis (OR 1.04 per unit increase, 95%CI 1.0-1.07, p = .05), while IGF-1 was negatively associated with advanced fibrosis (OR 0.63 per standard deviation, 95%CI 0.44-0.92, p = .02). This pilot study suggests an association between serum IGFBP-1 and IGF-I levels with advanced fibrosis in NAFLD patients. IGFBP1 and IGF-1 could be of interest as future biomarkers. Similar studies in larger cohorts are needed.

  10. β-Cell Hyperplasia Induced by Hepatic Insulin Resistance

    PubMed Central

    Escribano, Oscar; Guillén, Carlos; Nevado, Carmen; Gómez-Hernández, Almudena; Kahn, C. Ronald; Benito, Manuel

    2009-01-01

    OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A. PMID:19136656

  11. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes.

    PubMed

    Yang, Yong; Wu, Zhihong; Zhao, Taimao; Wang, Hai; Zhao, Dong; Zhang, Jianguo; Wang, Yipeng; Ding, Yaozhong; Qiu, Guixing

    2009-06-01

    The etiology of adolescent idiopathic scoliosis is undetermined despite years of research. A number of hypotheses have been postulated to explain its development, including growth abnormalities. The irregular expression of growth hormone and insulin-like growth factor-1 (IGF-1) may disturb hormone metabolism, result in a gross asymmetry, and promote the progress of adolescent idiopathic scoliosis. Initial association studies in complex diseases have demonstrated the power of candidate gene association. Prior to our study, 1 study in this field had a negative result. A replicable study is vital for reliability. To determine the relationship of growth hormone receptor and IGF-1 genes with adolescent idiopathic scoliosis, a population-based association study was performed. Single nucleotide polymorphisms with potential function were selected from candidate genes and a distribution analysis was performed. A conclusion was made confirming the insufficiency of an association between adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes in Han Chinese.

  12. Role of G protein-coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor-like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate-stimulated bovine satellite cell proliferation.

    PubMed

    Thornton, K J; Kamange-Sollo, E; White, M E; Dayton, W R

    2015-09-01

    Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment

  13. A moderate elevation of circulating levels of IGF-I does not alter ErbB2 induced mammary tumorigenesis

    PubMed Central

    2011-01-01

    Background Epidemiological evidence suggests that moderately elevated levels of circulating insulin-like growth factor-I (IGF-I) are associated with increased risk of breast cancer in women. How circulating IGF-I may promote breast cancer incidence is unknown, however, increased IGF-I signaling is linked to trastuzumab resistance in ErbB2 positive breast cancer. Few models have directly examined the effect of moderately high levels of circulating IGF-I on breast cancer initiation and progression. The purpose of this study was to assess the ability of circulating IGF-I to independently initiate mammary tumorigenesis and/or accelerate the progression of ErbB2 mediated mammary tumor growth. Methods We crossed heterozygous TTR-IGF-I mice with heterozygous MMTV-ErbB2 mice to generate 4 different genotypes: TTR-IGF-I/MMTV-ErbB2 (bigenic), TTR-IGF-I only, MMTV-ErbB2 only, and wild type (wt). Virgin females were palpated twice a week and harvested when tumors reached 1000 mm3. For study of normal development, blood and tissue were harvested at 4, 6 and 9 weeks of age in TTR-IGF-I and wt mice. Results TTR-IGF-I and TTR-IGF-I/ErbB2 bigenic mice showed a moderate 35% increase in circulating total IGF-I compared to ErbB2 and wt control mice. Elevation of circulating IGF-I had no effect upon pubertal mammary gland development. The transgenic increase in IGF-I alone wasn't sufficient to initiate mammary tumorigenesis. Elevated circulating IGF-I had no effect upon ErbB2-induced mammary tumorigenesis or metastasis, with median time to tumor formation being 30 wks and 33 wks in TTR-IGF-I/ErbB2 bigenic and ErbB2 mice respectively (p = 0.65). Levels of IGF-I in lysates from ErbB2/TTR-IGF-I tumors compared to ErbB2 was elevated in a similar manner to the circulating IGF-I, however, there was no effect on the rate of tumor growth (p = 0.23). There were no morphological differences in tumor type (solid adenocarcinomas) between bigenic and ErbB2 mammary glands. Conclusion Using the first

  14. Insulin-Like Growth Factor I (IGF-1) Ec/Mechano Growth Factor – A Splice Variant of IGF-1 within the Growth Plate

    PubMed Central

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828

  15. Novel Aspects Concerning the Functional Cross-Talk between the Insulin/IGF-I System and Estrogen Signaling in Cancer Cells

    PubMed Central

    De Marco, Paola; Cirillo, Francesca; Vivacqua, Adele; Malaguarnera, Roberta; Belfiore, Antonino; Maggiolini, Marcello

    2015-01-01

    The insulin/IGF system plays an important role in cancer progression. Accordingly, elevated levels of circulating insulin have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes. Numerous studies have documented that estrogens cooperate with the insulin/IGF system in multiple pathophysiological conditions. The biological responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as transcription factors; however, several studies have recently demonstrated that a member of the G protein-coupled receptors, named GPR30/G-protein estrogen receptor (GPER), is also involved in the estrogen signaling in normal and malignant cells as well as in cancer-associated fibroblasts (CAFs). In this regard, novel mechanisms linking the action of estrogens through GPER with the insulin/IGF system have been recently demonstrated. This review recapitulates the relevant aspects of this functional cross-talk between the insulin/IGF and the estrogenic GPER transduction pathways, which occurs in various cell types and may account for cancer progression. PMID:25798130

  16. Novel Aspects Concerning the Functional Cross-Talk between the Insulin/IGF-I System and Estrogen Signaling in Cancer Cells.

    PubMed

    De Marco, Paola; Cirillo, Francesca; Vivacqua, Adele; Malaguarnera, Roberta; Belfiore, Antonino; Maggiolini, Marcello

    2015-01-01

    The insulin/IGF system plays an important role in cancer progression. Accordingly, elevated levels of circulating insulin have been associated with an increased cancer risk as well as with aggressive and metastatic cancer phenotypes. Numerous studies have documented that estrogens cooperate with the insulin/IGF system in multiple pathophysiological conditions. The biological responses to estrogens are mainly mediated by the estrogen receptors (ER)α and ERβ, which act as transcription factors; however, several studies have recently demonstrated that a member of the G protein-coupled receptors, named GPR30/G-protein estrogen receptor (GPER), is also involved in the estrogen signaling in normal and malignant cells as well as in cancer-associated fibroblasts (CAFs). In this regard, novel mechanisms linking the action of estrogens through GPER with the insulin/IGF system have been recently demonstrated. This review recapitulates the relevant aspects of this functional cross-talk between the insulin/IGF and the estrogenic GPER transduction pathways, which occurs in various cell types and may account for cancer progression.

  17. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human renal cell carcinoma cell growth.

    PubMed

    Su, Ying; Zhao, An; Cheng, Guoping; Xu, Jingjing; Ji, Enming; Sun, Wenyong

    2017-07-04

    Renal cell carcinoma (RCC) is the highest mortality rate of the genitourinary cancers, and the treatment options are very limited. Thus, identification of molecular mechanisms underlying RCC tumorigenesis, is critical for identifying biomarkers for RCC diagnosis and prognosis. To validate whether the IGF-I/JAK2-STAT3/miR-21 signaling pathway is associated with human RCC cell growth. qRT-PCR and Western blotting were used to detect the mRNA and protein expression levels, respectively. The MTT assay was performed to determine cell survival rate. The Annexin V-FITC/PI apoptosis detection kit was used to detect cell apoptosis. We employed RCC tissues and cell lines (A498; ACHN; Caki-1; Caki-2 and 786-O) in the study. IGF-I, and its inhibitor (NT-157) were administrated to detect the effects of IGF-I on the expression of miR-21 and p-JAK2. JAK2 inhibitor (AG490), and si-STAT3 were used to detect the effects of JAK2/STAT3 signaling pathway on the expression of miR-21. In our study, we firstly showed that the expression levels of IGF-I and miR-21 were up-regulated in RCC tissues and cell lines. After exogenous IGF-I treatment, the expression levels of miR-21, p-IGF-IR and p-JAK2 were significantly increased, whereas NT-157 treatment showed the reversed results. Further study indicated that JAK2 inhibitor or si-STAT3 significantly reversed the IGF-I-induced miR-21 expression level. Finally, we found that IGF-I treatment significantly prompted human RCC cell survival and inhibited cell apoptosis, and NT-157 treatment showed the reversed results. The IGF-I/JAK2-STAT3/miR-21 signaling pathway may be associated with human RCC cell growth.

  18. Inhibiting thyrotropin/insulin-like growth factor 1 receptor crosstalk to treat Graves' ophthalmopathy: studies in orbital fibroblasts in vitro.

    PubMed

    Place, Robert F; Krieger, Christine C; Neumann, Susanne; Gershengorn, Marvin C

    2017-02-01

    Crosstalk between thyrotropin (TSH) receptors and insulin-like growth factor 1 (IGF-1) receptors initiated by activation of TSH receptors could be important in the development of Graves' ophthalmopathy (GO). Specifically, TSH receptor activation alone is sufficient to stimulate hyaluronic acid (HA) secretion, a major component of GO, through both IGF-1 receptor-dependent and -independent pathways. Although an anti-IGF-1 receptor antibody is in clinical trials, its effectiveness depends on the relative importance of IGF-1 versus TSH receptor signalling in GO pathogenesis. TSH and IGF-1 receptor antagonists were used to probe TSH/IGF-1 receptor crosstalk in primary cultures of Graves' orbital fibroblasts (GOFs) following activation with monoclonal TSH receptor antibody, M22. Inhibition of HA secretion following TSH receptor stimulation was measured by modified HA elisa. TSH receptor antagonist, ANTAG3 (NCGC00242364), inhibited both IGF-1 receptor -dependent and -independent pathways at all doses of M22; whereas IGF-1 receptor antagonists linsitinib and 1H7 (inhibitory antibody) lost efficacy at high M22 doses. Combining TSH and IGF-1 receptor antagonists exhibited Loewe additivity within the IGF-1 receptor-dependent component of the M22 concentration-response. Similar effects were observed in GOFs activated by autoantibodies from GO patients' sera. Our data support TSH and IGF-1 receptors as therapeutic targets for GO, but reveal putative conditions for anti-IGF-1 receptor resistance. Combination treatments antagonizing both receptors yield additive effects by inhibiting crosstalk triggered by TSH receptor stimulatory antibodies. Combination therapy may be an effective strategy for dose reduction and/or compensate for any loss of anti-IGF-1 receptor efficacy. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Serum IGF-1 is insufficient to restore skeletal size in the total absence of the growth hormone receptor

    PubMed Central

    Wu, Yingjie; Sun, Hui; Basta-Pljakic, Jelena; Cardoso, Luis; Kennedy, Oran D; Jasper, Hector; Domené, Horacio; Karabatas, Liliana; Guida, Clara; Schaffler, Mitchell B; Rosen, Clifford J; Yakar, Shoshana

    2013-01-01

    States of growth hormone (GH) resistance, such those observed in Laron’s dwarf patients, are characterized by mutations in the GH receptor (GHR), decreased serum and tissue IGF-1 levels, impaired glucose tolerance, and impaired skeletal acquisition. IGF-1 replacement therapy in such patients increases growth velocity but does not normalize growth. Herein we combined the GH-resistant (GHR knockout, GHRKO) mouse model with mice expressing the hepatic Igf-1 transgene (HIT) to generate the GHRKO-HIT mouse model. In GHRKOHIT mice, serum IGF-1 levels were restored via transgenic expression of Igf-1 allowing us to study how endocrine IGF-1 affects growth, metabolic homeostasis, and skeletal integrity. We show that in a GH-resistant state, normalization of serum IGF-1 improved body adiposity and restored glucose tolerance but was insufficient to support normal skeletal growth, resulting in an osteopenic skeletal phenotype. The inability of serum IGF-1 to restore skeletal integrity in the total absence of GHR likely resulted from reduced skeletal Igf-1 gene expression, blunted GH-mediated effects on the skeleton that are independent of serum or tissue IGF-1, and from poor delivery of IGF-1 to the tissues. These findings are consistent with clinical data showing that IGF-I replacement therapy in patients with Laron’s syndrome does not achieve full skeletal growth. PMID:23456957

  20. Acute regulation of IGF-I by alterations in post-exercise macronutrients

    USDA-ARS?s Scientific Manuscript database

    This investigation sought to examine the contributions of exercise and nutrient replenishment on in vivo regulation of the insulin-like growth factor-I (IGF-I) axis components. Eight college-aged males completed three high-intensity interval training (HIIT) protocols followed by three post-exercise ...

  1. Short-term estradiol administration in aging ovariectomized rats provides lasting benefits for memory and the hippocampus: a role for insulin-like growth factor-I.

    PubMed

    Witty, Christine F; Gardella, Layne P; Perez, Maria C; Daniel, Jill M

    2013-02-01

    We previously demonstrated that aged ovariectomized rats that had received prior estradiol treatment in middle age exhibited enhanced spatial memory and increased levels of estrogen receptor (ER)-α in the hippocampus long after estradiol treatment was terminated. The implication for cognition of increased levels of ERα resulting from prior estradiol exposure is unknown. In the absence of estrogens, growth factors, including IGF-I, can induce ERα-mediated transcription through ligand-independent mechanisms. Our current goal was to determine whether IGF-I mediates the ability of short-term exposure to estradiol to exert long-term effects on cognition and the hippocampus of aging females. Ovariectomized middle-aged rats were implanted with estradiol or cholesterol vehicle capsules. After 40 days, all capsules were removed and drug treatments were initiated. Half of each hormone treatment group received chronic intracerebroventricular delivery of the IGF-I receptor antagonist JB1, and the other half received artificial cerebrospinal fluid vehicle. Rats were tested on a spatial memory radial-arm maze task and hippocampi were immunostained for proteins of interest by Western blotting. As expected, previous treatment with estradiol enhanced spatial memory and increased levels of ERα in the hippocampus. JB1 reversed these effects. Previous treatment with estradiol resulted in lasting increases in levels of IGF-I receptors and phosphorylation of ERK/MAPK, a downstream signaling molecule of both ERα and IGF-I receptors, and increased levels of the ERα-regulated protein, choline acetyltransferase. JB1 blocked effects on ERK/MAPK and choline acetyltransferase. Results indicate that activation of IGF-I receptors is necessary for prior estradiol exposure to exert lasting impact on the hippocampus and memory.

  2. Endocrine and Local IGF-I in the Bony Fish Immune System.

    PubMed

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D'Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-26

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  3. Cross-talk between insulin and IGF-1 receptors in the cortical collecting duct principal cells: implication for ENaC-mediated Na+ reabsorption

    PubMed Central

    Ilatovskaya, Daria V.; Levchenko, Vladislav; Brands, Michael W.; Pavlov, Tengis S.

    2015-01-01

    Insulin and IGF-1 are recognized as powerful regulators of the epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron. As previously described, these hormones both acutely increase ENaC activity in freshly isolated split open tubules and cultured principal cortical collecting duct cells. The present study was aimed at differentiating the effects of insulin and IGF-1 on Na+ transport in immortalized mpkCCDcl4 cells and defining their interrelations. We have shown that both insulin and IGF-1 applied basolaterally, but not apically, enhanced transepithelial Na+ transport in the mpkCCDcl4 cell line with EC50 values of 8.8 and 14.5 nM, respectively. Insulin treatment evoked phosphorylation of both insulin and IGF-1 receptors, whereas the effects of IGF-1 were more profound on its own receptor rather than the insulin receptor. AG-1024 and PPP, inhibitors of IGF-1 and insulin receptor tyrosine kinase activity, diminished insulin- and IGF-1-stimulated Na+ transport in mpkCCDcl4 cells. The effects of insulin and IGF-1 on ENaC-mediated currents were found to be additive, with insulin likely stimulating both IGF-1 and insulin receptors. We hypothesize that insulin activates IGF-1 receptors in addition to its own receptors, making the effects of these hormones interconnected. PMID:25651558

  4. Polymorphisms of genes coding for ghrelin and its receptor in relation to anthropometry, circulating levels of IGF-I and IGFBP-3, and breast cancer risk: a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC).

    PubMed

    Dossus, Laure; McKay, James D; Canzian, Federico; Wilkening, Stefan; Rinaldi, Sabina; Biessy, Carine; Olsen, Anja; Tjønneland, Anne; Jakobsen, Marianne U; Overvad, Kim; Clavel-Chapelon, Françoise; Boutron-Ruault, Marie-Christine; Fournier, Agnes; Linseisen, Jakob; Lukanova, Annekatrin; Boeing, Heiner; Fisher, Eva; Trichopoulou, Antonia; Georgila, Christina; Trichopoulos, Dimitrios; Palli, Domenico; Krogh, Vittorio; Tumino, Rosario; Vineis, Paolo; Quirós, José Ramon; Sala, Núria; Martínez-García, Carmen; Dorronsoro, Miren; Chirlaque, Maria-Dolores; Barricarte, Aurelio; van Duijnhoven, Fränzel J B; Bueno-de-Mesquita, H B; van Gils, Carla H; Peeters, Petra H M; Hallmans, Göran; Lenner, Per; Bingham, Sheila; Khaw, Kay Tee; Key, Tim J; Travis, Ruth C; Ferrari, Pietro; Jenab, Mazda; Riboli, Elio; Kaaks, Rudolf

    2008-07-01

    Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, has two major functions: the stimulation of the growth hormone production and the stimulation of food intake. Accumulating evidence also suggests a role of ghrelin in cancer development. We conducted a case-control study on 1359 breast cancer cases and 2389 matched controls, nested within the European Prospective Investigation into Cancer and Nutrition, to examine the association of common genetic variants in the genes coding for ghrelin (GHRL) and its receptor (GHSR) with anthropometric measures, circulating insulin growth factor I (IGF-I) and insulin-like growth factor-binding protein 3 and breast cancer risk. Pair-wise tagging was used to select the 15 polymorphisms that represent the majority of common genetic variants across the GHRL and GHSR genes. A significant increase in breast cancer risk was observed in carriers of the GHRL rs171407-G allele (odds ratio: 1.2; 95% confidence interval: 1.0-1.4; P = 0.02). The GHRL single-nucleotide polymorphism rs375577 was associated with a 5% increase in IGF-I levels (P = 0.01). A number of GHRL and GHSR polymorphisms were associated with body mass index (BMI) and height (P between <0.01 and 0.04). The false-positive report probability (FPRP) approach suggests that these results are noteworthy (FPRP < 0.20). The results presented here add to a growing body of evidence that GHRL variations are associated with BMI. Furthermore, we have observed evidence for association of GHRL polymorphisms with circulating IGF-I levels and with breast cancer risk. These associations, however, might also be due to chance findings and further large studies are needed to confirm our results.

  5. A phase I trial of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer

    PubMed Central

    Suman, Vera J.; Goetz, Matthew; Haluska, Paul; Moynihan, Timothy; Nanda, Rita; Olopade, Olufunmilayo; Pluard, Timothy; Guo, Zhanfang; Chen, Helen X.; Erlichman, Charles; Ellis, Matthew J.; Fleming, Gini F.

    2015-01-01

    The mammalian target of rapamycin (mTOR) plays a critical role in promoting tumor cell growth and is frequently activated in breast cancer. In preclinical studies, the antitumor activity of mTOR inhibitors is attenuated by feedback up-regulation of AKT mediated in part by Insulin-like growth factor type 1 receptor (IGF-1R). We designed a phase I trial to determine the maximum-tolerated dose (MTD) and pharmacodynamic effects of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer refractory to standard therapies. A 3 + 3 Phase I design was chosen. Temsirolimus and Cixutumumab were administered intravenously on days 1, 8, 15, and 22 of a 4-week cycle. Of the 26 patients enrolled, four did not complete cycle 1 because of disease progression (n = 3) or comorbid condition (n = 1) and were replaced. The MTD was determined from the remaining 22 patients, aged 34–72 (median 48) years. Most patients (86 %) had estrogen receptor positive cancer. The median number of prior chemotherapy regimens for metastatic disease was 3. The MTD was determined to be Cixutumumab 4 mg/kg and temsirolimus 15 mg weekly. Dose-limiting toxicities (DLTs) included mucositis, neutropenia, and thrombocytopenia. Other adverse events included grade 1/2 fatigue, anemia, and hyperglycemia. No objective responses were observed, but four patients experienced stable disease that lasted for at least 4 months. Compared with baseline, there was a significant increase in the serum levels of IGF-1 (p < 0.001) and IGFBP-3 (p = 0.019) on day 2. Compared with day 2, there were significant increases in the serum levels of IGF-1 (p < 0.001), IGF-2 (p = 0.001), and IGFBP-3 (p = 0.019) on day 8. A phase II study in women with metastatic breast cancer is ongoing. PMID:23605083

  6. Effects of GH/IGF-I Axis on Retinal Vascular Morphology: Retinal Vascular Characteristics in a Clinical Setting with Severe IGF-I Deficiency.

    PubMed

    Sekeroglu, Hande Taylan; Kadayıfcılar, Sibel; Kasım, Burcu; Arslan, Umut; Ozon, Alev

    2016-01-01

    The purpose of this study was to assess retinal vascular characteristics of patients with Laron syndrome (LS) as a genetic model of IGF-I deficiency before and after rhIGF1/IGFBP3 treatment and to compare them with healthy controls. A total of 28 subjects (11 LS, and 17 controls) were enrolled. Patients with LS received combined rhIGF1/rhIGFBP3 1-2 mg/kg/d in a single dose and digital fundus imaging was performed. The number of branching points and tortuosity of retinal vessels were studied. Pre- and post-treatment findings were compared with each other and with controls. The number of branching points was significantly lower in patients with LS in comparison to controls (12.73 ± 3.41, and 17.47 ± 5.82 respectively, p = 0.012). This difference persisted after treatment (12.09 ± 2.66 post-treatment LS versus controls, p = 0.017). Tortuosity indices of nasal arteries (NA) were significantly less in LS than that of controls (upper NA 1.07 ± 0.04 and 1.12 ± 0.06 respectively p = 0.022; lower NA 1.07 ± 0.03 and 1.13 ± 0.07 respectively, p = 0.004). This difference also persisted following treatment (p < 0.05). Remaining vessels did not differ in tortuosity index. There was no significant difference of tortuosity index and number of branching points before and after treatment in patients with LS. Retinal vascular development may be adversely affected in the setting of severe IGF-I deficiency confirming a major role for GH/IGF-I axis during retinal vascular development in humans antenatally. Resolution of IGF-I deficiency following birth using rhIGF1, however, may not reverse these changes, suggesting that IGF-I may be necessary but insufficient by itself for postnatal angiogenesis.

  7. Overcoming IGF1R/IR Resistance Through Inhibition of MEK Signaling in Colorectal Cancer Models

    PubMed Central

    Flanigan, Sara A.; Pitts, Todd M.; Newton, Timothy P.; Kulikowski, Gillian N.; Tan, Aik Choon; McManus, Martine C.; Spreafico, Anna; Kachaeva, Maria I.; Selby, Heather M.; Tentler, John J.; Eckhardt, S. Gail; Leong, Stephen

    2013-01-01

    Purpose Results from clinical trials involving resistance to molecularly targeted therapies have revealed the importance of rational single agent and combination treatment strategies. In this study, we tested the efficacy of a type 1 insulin-like growth factor receptor (IGF1R)/insulin receptor (IR) tyrosine kinase inhibitor (TKI), OSI-906, in combination with a MEK 1/2 inhibitor based on evidence that the MAPK pathway was upregulated in colorectal cancer (CRC) cell lines that were resistant to OSI-906. Experimental Design The antiproliferative effects of OSI-906 and the MEK 1/2 inhibitor U0126, were analyzed both as single agents and in combination in 13 CRC cell lines in vitro. Apoptosis, downstream effector proteins, and cell cycle were also assessed. Additionally, the efficacy of OSI-906 combined with the MEK 1/2 inhibitor selumetinib (AZD6244, ARRY-142886), was evaluated in vivo using human CRC xenograft models. Results The combination of OSI-906 and U0126 resulted in synergistic effects in 11 out of 13 CRC cell lines tested. This synergy was variably associated with apoptosis or cell cycle arrest in addition to molecular effects on pro-survival pathways. The synergy was also reflected in the in vivo xenograft studies following treatment with the combination of OSI-906 and selumetinib. Conclusions Results from this study demonstrate synergistic antiproliferative effects in response to the combination of OSI-906 with a MEK 1/2 inhibitor in CRC cell line models both in vitro and in vivo, which supports the rational combination of OSI-906 with a MEK inhibitor in patients with CRC. PMID:24045180

  8. Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells

    PubMed Central

    Tominaga, K; Shimamura, T; Kimura, N; Murayama, T; Matsubara, D; Kanauchi, H; Niida, A; Shimizu, S; Nishioka, K; Tsuji, E-i; Yano, M; Sugano, S; Shimono, Y; Ishii, H; Saya, H; Mori, M; Akashi, K; Tada, K-i; Ogawa, T; Tojo, A; Miyano, S; Gotoh, N

    2017-01-01

    The transcription factor nuclear factor-κB (NF-κB) has important roles for tumorigenesis, but how it regulates cancer stem cells (CSCs) remains largely unclear. We identified insulin-like growth factor 2 (IGF2) is a key target of NF-κB activated by HER2/HER3 signaling to form tumor spheres in breast cancer cells. The IGF2 receptor, IGF1 R, was expressed at high levels in CSC-enriched populations in primary breast cancer cells. Moreover, IGF2-PI3K (IGF2-phosphatidyl inositol 3 kinase) signaling induced expression of a stemness transcription factor, inhibitor of DNA-binding 1 (ID1), and IGF2 itself. ID1 knockdown greatly reduced IGF2 expression, and tumor sphere formation. Finally, treatment with anti-IGF1/2 antibodies blocked tumorigenesis derived from the IGF1Rhigh CSC-enriched population in a patient-derived xenograft model. Thus, NF-κB may trigger IGF2-ID1-IGF2-positive feedback circuits that allow cancer stem-like cells to appear. Then, they may become addicted to the circuits. As the circuits are the Achilles' heels of CSCs, it will be critical to break them for eradication of CSCs. PMID:27546618

  9. The IGF-I/IGFBP-3 system in gingival crevicular fluid and dependence on application of fixed force.

    PubMed

    Toia, M; Galazzo, R; Maioli, C; Granata, R; Scarlatti, F

    2005-12-01

    During application of orthodontic force on the tooth, various molecular parameters associated with tissue remodeling are changed. IGF-I is a regulatory protein produced during periodontal regeneration. IGF binding proteins-3 (IGFBP-3), a specific IGF-I binding protein, is the major regulatory factor of IGF-I activity. We tested the hypothesis that changes in the IGF-I/ IGFBP-3 system occur during fixed force application to the tooth and that these changes are detectable in the gingival crevicular fluid (GCF). IGFBP-3 and IGF-I secretion into gingival crevicular fluid (GCF) was analyzed by Western blotting and immunoradiometric assay (IRMA), respectively, in GCF of 6 healthy subjects just prior to and during orthodontics treatment using fixed appliances. We observed a significant time-dependent decrease of IGFBP-3 content in GCF during orthodontic treatment (4 h and 10 days). Reduction in levels of intact, glycosylated 47 kDa form of IGFBP-3 was associated with its degradation and the appearance of intermediate breakdown products. IGF-I levels were significantly increased 4 h after application of orthodontic force, while they were significantly reduced 10 days after the start of treatment. IGFBP-3 secretion into GCF and its molecular structure are modified by the fixed force of orthodontic treatment. Alterations in IGFBP-3 appear to be unrelated to the binding to IGF-I, suggesting an IGF-independent role of this binding protein in tooth movement.

  10. The Fyn tyrosine kinase binds Irs-1 and forms a distinct signaling complex during insulin stimulation.

    PubMed

    Sun, X J; Pons, S; Asano, T; Myers, M G; Glasheen, E; White, M F

    1996-05-03

    Irs-proteins link the receptors for insulin/IGF-1, growth hormones, and several interleukins and interferons to signaling proteins that contain Src homology-2 (SH2). To identify new Irs-1-binding proteins, we screened a mouse embryo expression library with recombinant [32P]Irs-1, which revealed a specific association between p59fyn and Irs-1. The SH2 domain in p59fyn bound to phosphorylated Tyr895 and Tyr1172, which are located in YXX(L/I) motifs. Mutation of p59fyn at the COOH-terminal tyrosine phosphorylation site (Tyr531) enhanced its binding to Irs-1 during insulin stimulation. Binding experiments with various SH2 protein revealed that Grb-2 was largely excluded from Irs-1 complexes containing p59fyn, whereas Grb-2 and p85 occurred in the same Irs-1 complex. By comparison with the insulin receptor, p59fyn kinase phosphorylated a unique cohort of tyrosine residues in Irs-1. These results outline a role for p59fyn or other related Src-kinases during insulin and cytokine signaling.

  11. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    PubMed

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  12. A kinome-wide screen identifies the Insulin/IGF-1 receptor pathway as a mechanism of escape from hormone dependence in breast cancer

    PubMed Central

    Fox, Emily M.; Miller, Todd W.; Balko, Justin M.; Kuba, Maria G.; Sánchez, Violeta; Smith, R. Adam; Liu, Shuying; González-Angulo, Ana María; Mills, Gordon B.; Ye, Fei; Shyr, Yu; Manning, H. Charles; Buck, Elizabeth; Arteaga, Carlos L.

    2011-01-01

    Estrogen receptor α (ER)-positive breast cancers adapt to hormone deprivation and become resistant to antiestrogens. In this study, we sought to identify kinases essential for growth of ER+ breast cancer cells resistant to long term estrogen deprivation (LTED). A kinome-wide siRNA screen showed that the insulin receptor (InsR) is required for growth of MCF7/LTED cells. Knockdown of InsR and/or insulin-like growth factor-1 receptor (IGF-1R) inhibited growth of 3/4 LTED cell lines. Inhibition of InsR and IGF-1R with the dual tyrosine kinase inhibitor OSI-906 prevented the emergence of hormone-independent cells and tumors in vivo, inhibited parental and LTED cell growth and PI3K/AKT signaling, and suppressed growth of established MCF-7 xenografts in ovariectomized mice, whereas treatment with the neutralizing IGF-1R monoclonal antibody MAB391 was ineffective. Combined treatment with OSI-906 and the ER downregulator fulvestrant more effectively suppressed hormone-independent tumor growth than either drug alone. Finally, an insulin/IGF-1 gene expression signature predicted recurrence-free survival in patients with ER+ breast cancer treated with the antiestrogen tamoxifen. We conclude that therapeutic targeting of both InsR and IGF-1R should be more effective than targeting IGF-1R alone in abrogating resistance to endocrine therapy in breast cancer. PMID:21908557

  13. IGF-I Polymorphism is Associated with Lean Mass, Exercise Economy and Performance Among Premenopausal Women

    PubMed Central

    López-Alarcón, Mardya; Hunter, Gary R.; Gower, Barba A.; Fernández, José R.

    2007-01-01

    Background We undertook this study to investigate the association of a genetic polymorphism of the insulin-like growth factor, IGF-I189, on body composition, exercise performance and exercise economy, after controlling for the independent effect of race as assessed by African genetic admixture (AFADM). Methods A total of 114 premenopausal sedentary women were genotyped for IGF-I189, obtaining measures of fat mass, lean body mass, VO2 during cycling and stairclimbing, time on treadmill and leg strength. A quantitative value for AFADM was derived from genotypic information of approximately 40 ancestry informative markers and used as covariate in statistical models. Results After adjusting for AFADM, IGF-I189 was negatively associated with lean body mass (p = 0.029) and lean leg mass (p = 0.050). Leg strength was not associated with the presence/absence of IGF-I189 (p = 0.380), but carriers of the allele demonstrated a longer time on the treadmill (p = 0.015) after adjusting for AFADM. There was also a negative relationship between oxygen uptake during cycling and presence of the IGF-I189 independent of AFADM (p = 0.010). Conclusion Independent of AFADM, individuals with IGF-I189 are more likely to have low leg lean mass and to perform better in activities requiring exercise economy and endurance performance. PMID:17174724

  14. IGF-I deficiency, longevity and cancer protection of patients with Laron syndrome.

    PubMed

    Laron, Zvi; Kauli, Rivka; Lapkina, Lena; Werner, Haim

    Laron syndrome (LS) is a unique model of congenital IGF-I deficiency. It is characterized by dwarfism and obesity, and is caused by deletion or mutations of the growth hormone receptor (GH-R) gene. It is hypothesized that LS is an old disease originating in Indonesia and that the mutated gene spread to South Asia, the Middle East, the Mediterranean region and South America. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. IGF-1/IGF-1R/hsa-let-7c axis regulates the committed differentiation of stem cells from apical papilla

    PubMed Central

    Ma, Shu; Liu, Genxia; Jin, Lin; Pang, Xiyao; Wang, Yanqiu; Wang, Zilu; Yu, Yan; Yu, Jinhua

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) and its receptor IGF-1R play a paramount role in tooth/bone formation while hsa-let-7c actively participates in the osteogenic differentiation of mesenchymal stem cells. However, the interaction between IGF-1/IGF-1R and hsa-let-7c on the committed differentiation of stem cells from apical papilla (SCAPs) remains unclear. In this study, human SCAPs were isolated and treated with IGF-1 and hsa-let-7c over/low-expression viruses. The odonto/osteogenic differentiation of these stem cells and the involvement of mitogen-activated protein kinase (MAPK) pathway were subsequently investigated. Alizarin red staining showed that hsa-let-7c low-expression can significantly promote the mineralization of IGF-1 treated SCAPs, while hsa-let-7c over-expression can decrease the calcium deposition of IGF-1 treated SCAPs. Western blot assay and real-time reverse transcription polymerase chain reaction further demonstrated that the expression of odonto/osteogenic markers (ALP, RUNX2/RUNX2, OSX/OSX, OCN/OCN, COL-I/COL-I, DSPP/DSP, and DMP-1/DMP-1) in IGF-1 treated SCAPs were significantly upregulated in Let-7c-low group. On the contrary, hsa-let-7c over-expression could downregulate the expression of these odonto/osteogenic markers. Moreover, western blot assay showed that the JNK and p38 MAPK signaling pathways were activated in Let-7c-low SCAPs but inhibited in Let-7c-over SCAPs. Together, the IGF-1/IGF-1R/hsa-let-7c axis can control the odonto/osteogenic differentiation of IGF-1-treated SCAPs via the regulation of JNK and p38 MAPK signaling pathways. PMID:27833148

  16. Interaction between nuclear insulin receptor substrate-2 and NF-κB in IGF-1 induces response in breast cancer cells.

    PubMed

    Wu, Shufang; Zhou, Bo; Xu, Lin; Sun, Hongzhi

    2010-12-01

    Despite significant homology between IRS-1 and IRS-2, recent studies have revealed distinct functions for these adaptor proteins in regulating breast cancer progression. Thus far, most of the studies on breast cancer have focused upon IRS-1, the biological pattern of IRS-2 is limited. We demonstrated that depletion of endogenous IRS-2 by antisense strategies impaired cell proliferation after serum withdrawal, blunted PI3K/Akt and NF-κB activation in IGF-1 induced response in MCF-7 and BT-20 breast cancer cells. In addition, IGF-1 promote nuclear translocation of IRS-2 and NF-κB in MCF-7 and BT-20 cells. Nuclear IRS-2 interaction with NF-κB-p65 and PI3K binding tyrosine residues of IRS-2 are crucial for the NF-κB activities. Moreover, nuclear IRS-2 is recruited to the cyclin D1 promoter both in MCF-7 and BT-20 cells. The selective inhibition of NF-κB-65 abolished the occupancy of IRS-2 to the cyclin D1 promoters. Our studies suggest that IRS-2 plays a significant role by activating, at least in part, NF-κB via PI3K/Akt pathway in IGF-1-induced responses in breast cancer cells and the crosstalk between nuclear IRS-2 and NF-κB might be responsible for transcriptional progression of the breast cancer cells.

  17. IGF-1 facilitates thrombopoiesis primarily through Akt activation.

    PubMed

    Chen, Shilei; Hu, Mengjia; Shen, Mingqiang; Wang, Song; Wang, Cheng; Chen, Fang; Tang, Yong; Wang, Xinmiao; Zeng, Hao; Chen, Mo; Gao, Jining; Wang, Fengchao; Su, Yongping; Xu, Yang; Wang, Junping

    2018-05-25

    It is known that insulin-like growth factor-1 (IGF-1) also functions as a hematopoietic factor, while its direct effect on thrombopoiesis remains unclear. In this study, we show that IGF-1 is able to promote CD34+ cell differentiation toward megakaryocytes (MKs), as well as the facilitation of proplatelet formation (PPF) and platelet production from cultured MKs. The in vivo study demonstrates that IGF-1 administration accelerates platelet recovery in mice after 6.0Gy of irradiation and in mice that received bone marrow transplantation (BMT) following 10.0Gy of lethal irradiation. Subsequent investigations reveal that ERK1/2 and Akt activation mediate the effect of IGF-1 on thrombopoiesis. Notably, Akt activation induced by IGF-1 is more apparent than that of ERK1/2, compared with that of thrombopoietin (TPO) treatment. Moreover, the effect of IGF-1 on thrombopoiesis is independent of TPO signaling, because IGF-1 treatment can also lead to a significant increase of platelet counts in homozygous TPO receptor mutant mice. Further analysis indicates that the activation of Akt triggered by IGF-1 requires the assistance of steroid receptor coactivator-3 (SRC-3). Therefore, our data reveal a distinct role of IGF-1 in regulating thrombopoiesis, providing new insights into TPO-independent regulation of platelet generation. Copyright © 2018 American Society of Hematology.

  18. GH indirectly enhances the regeneration of transgenic zebrafish fins through IGF2a and IGF2b.

    PubMed

    Nornberg, Bruna Félix; Almeida, Daniela Volcan; Figueiredo, Márcio Azevedo; Marins, Luis Fernando

    2016-10-01

    The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.

  19. Gender and age influence the relationship between serum GH and IGF-I in patients with acromegaly.

    PubMed

    Parkinson, C; Renehan, A G; Ryder, W D J; O'Dwyer, S T; Shalet, S M; Trainer, P J

    2002-07-01

    In patients with acromegaly serum IGF-I is increasingly used as a marker of disease activity. As a result, the relationship between serum GH and IGF-I is of profound interest. Healthy females secrete three times more GH than males but have broadly similar serum IGF-I levels, and women with GH deficiency require 30-50% more exogenous GH to maintain the same serum IGF-I as GH-deficient men. In a selected cohort of patients with active acromegaly, studied off medical therapy using a single fasting serum GH and IGF-I measurement, we have reported previously that, for a given GH level, women have significantly lower circulating IGF-I. To evaluate the influence of age and gender on the relationship between serum GH and IGF-I in an unselected cohort of patients with acromegaly independent of disease control and medical therapy. Sixty (34 male) unselected patients with acromegaly (median age 51 years (range 24-81 years) attending a colonoscopy screening programme were studied. Forty-five had previously received pituitary radiotherapy. Patients had varying degrees of disease control and received medical therapy where appropriate. Mean serum GH was calculated from an eight-point day profile (n = 45) and values obtained during a 75-g oral glucose tolerance test (n = 15). Serum IGF-I, IGFBP-3 and acid-labile subunit were measured and the dependency of these factors on covariates such as log10 mean serum GH, sex, age and prior radiotherapy was assessed using regression techniques. The median calculated GH value was 4.7 mU/l (range 1-104). A significant linear association was observed between serum IGF-I and log10 mean serum GH for the cohort (R = 0.5, P < 0.0001). After simultaneous adjustment of the above covariates a significant difference in the relationship between mean serum GH and IGF-I was observed for males and females. On average, women had serum IGF-I levels 11.44 nmol/l lower than men with the same mean serum GH (P = 0.03, 95% CI 1.33-21.4 nmol/l). Age significantly

  20. Altered skeletal pattern of gene expression in response to spaceflight and hindlimb elevation

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Morey-Holton, E.

    1994-01-01

    Spaceflight leads to osteopenia, in part by inhibiting bone formation. Using an animal model (hindlimb elevation) that simulates the weightlessness of spaceflight, we and others showed a reversible inhibition of bone formation and bone mineralization. In this study, we have measured the mRNA levels of insulin-like growth factor I (IGF-I), IGF-I receptor (IGF-IR), alkaline phosphatase, and osteocalcin in the tibiae of rats flown aboard National Aeronautics and Space Administration Shuttle Flight STS-54 and compared the results with those obtained from their ground-based controls and from the bones of hindlimb-elevated animals. Spaceflight and hindlimb elevation transiently increase the mRNA levels for IGF-I, IGF-IR, and alkaline phosphatase but decrease the mRNA levels for osteocalcin. The changes in osteocalcin and alkaline phosphatase mRNA levels are consistent with a shift toward decreased maturation, whereas the rise in IGF-I and IGF-IR mRNA levels may indicate a compensatory response to the fall in bone formation. We conclude that skeletal unloading during spaceflight or hindlimb elevation resets the pattern of gene expression in the osteoblast, giving it a less mature profile.

  1. Effect of the association of IGF-I, IGF-II, bFGF, TGF-beta1, GM-CSF, and LIF on the development of bovine embryos produced in vitro.

    PubMed

    Neira, J A; Tainturier, D; Peña, M A; Martal, J

    2010-03-15

    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the

  2. Serum IGF-I and IGFBP-3 levels of Turkish children during childhood and adolescence: establishment of reference ranges with emphasis on puberty.

    PubMed

    Bereket, Abdullah; Turan, Serap; Omar, Anjumanara; Berber, Mustafa; Ozen, Ahmet; Akbenlioglu, Cengiz; Haklar, Goncagul

    2006-01-01

    We established age- and sex-related reference ranges for serum insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) levels in 807 healthy Turkish children (428 boys, 379 girls), and constructed a model for calculation of standard deviation scores of IGF-I and IGFBP-3 according to age, sex and pubertal stage. Serum IGF-I and IGFBP-3 concentrations tended to be higher in girls compared to boys of the same ages, but the differences were statistically significant only in pubertal ages (9-14 years) for IGF-I and only in prepubertal ages for IGFBP-3 (6-8 years) (p < 0.05). Peak IGF-I concentrations were observed earlier in girls than boys (14 vs. 15 years, Tanner stage IV vs. V) starting to decline thereafter. IGFBP-3 levels peaked at age 13 and at Tanner stage IV in both sexes with a subsequent fall. Serum levels of IGF-I and IGFBP-3 increased steadily with age in the prepubertal stage followed by a rapid increase in IGF-I in the early pubertal stages. A relatively steeper increase in IGF-I but not in IGFBP-3 levels was observed at age 10-11 years in girls and at 12-13 years in boys which preceded the reported age of pubertal growth spurt. At late pubertal stages, both IGF-I and IGFBP-3 either did not change or decreased by increasing age. Interrelationships between growth factors and anthropometric measurements have been described, and the physiologic consequences of these have been discussed in detail. Differences in the pattern of IGF-I and IGFBP-3 in the present paper and those reported in other studies emphasize the importance of locally established reference ranges. Establishment of this reference data and a standard deviation score prediction model based on age, sex and puberty will enhance the diagnostic power and utility of IGF-I and IGFBP-3 in evaluating growth disorders in our population. Copyright 2006 S. Karger AG, Basel

  3. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    PubMed

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  4. Serum insulin-like growth factor (IGF)-I and IGF binding protein-3 in relation to terminal duct lobular unit involution of the normal breast in Caucasian and African American women: The Susan G. Komen Tissue Bank.

    PubMed

    Oh, Hannah; Pfeiffer, Ruth M; Falk, Roni T; Horne, Hisani N; Xiang, Jackie; Pollak, Michael; Brinton, Louise A; Storniolo, Anna Maria V; Sherman, Mark E; Gierach, Gretchen L; Figueroa, Jonine D

    2018-08-01

    Lesser degrees of terminal duct lobular unit (TDLU) involution, as reflected by higher numbers of TDLUs and acini/TDLU, are associated with elevated breast cancer risk. In rodent models, the insulin-like growth factor (IGF) system regulates involution of the mammary gland. We examined associations of circulating IGF measures with TDLU involution in normal breast tissues among women without precancerous lesions. Among 715 Caucasian and 283 African American (AA) women who donated normal breast tissue samples to the Komen Tissue Bank between 2009 and 2012 (75% premenopausal), serum concentrations of IGF-I and binding protein (IGFBP)-3 were quantified using enzyme-linked immunosorbent assay. Hematoxilyn and eosin-stained tissue sections were assessed for numbers of TDLUs ("TDLU count"). Zero-inflated Poisson regression models with a robust variance estimator were used to estimate relative risks (RRs) for association of IGF measures (tertiles) with TDLU count by race and menopausal status, adjusting for potential confounders. AA (vs. Caucasian) women had higher age-adjusted mean levels of serum IGF-I (137 vs. 131 ng/mL, p = 0.07) and lower levels of IGFBP-3 (4165 vs. 4684 ng/mL, p < 0.0001). Postmenopausal IGFBP-3 was inversely associated with TDLU count among AA (RR T3vs.T1  = 0.49, 95% CI = 0.28-0.84, p-trend = 0.04) and Caucasian (RR T3vs.T1 =0.64, 95% CI = 0.42-0.98, p-trend = 0.04) women. In premenopausal women, higher IGF-I:IGFBP-3 ratios were associated with higher TDLU count in Caucasian (RR T3vs.T1 =1.33, 95% CI = 1.02-1.75, p-trend = 0.04), but not in AA (RR T3vs.T1 =0.65, 95% CI = 0.42-1.00, p-trend = 0.05), women. Our data suggest a role of the IGF system, particularly IGFBP-3, in TDLU involution of the normal breast, a breast cancer risk factor, among Caucasian and AA women. © 2018 UICC.

  5. Effects of the Insulin-like Growth Factor Pathway on the Regulation of Mammary Gland Development.

    PubMed

    Ha, Woo Tae; Jeong, Ha Yeon; Lee, Seung Yoon; Song, Hyuk

    2016-09-01

    The insulin-like growth factor (IGF) pathway is a key signal transduction pathway involved in cell proliferation, migration, and apoptosis. In dairy cows, IGF family proteins and binding receptors, including their intracellular binding partners, regulate mammary gland development. IGFs and IGF receptor interactions in mammary glands influence the early stages of mammogenesis, i.e., mammary ductal genesis until puberty. The IGF pathway includes three major components, IGFs (such as IGF-I, IGF-II, and insulin), their specific receptors, and their high-affinity binding partners (IGF binding proteins [IGFBPs]; i.e., IGFBP1-6), including specific proteases for each IGFBP. Additionally, IGFs and IGFBP interactions are critical for the bioactivities of various intracellular mechanisms, including cell proliferation, migration, and apoptosis. Notably, the interactions between IGFs and IGFBPs in the IGF pathway have been difficult to characterize during specific stages of bovine mammary gland development. In this review, we aim to describe the role of the interaction between IGFs and IGFBPs in overall mammary gland development in dairy cows.

  6. ERK phosphorylation is predictive of resistance to IGF-1R inhibition in small cell lung cancer.

    PubMed

    Zinn, Rebekah L; Gardner, Eric E; Marchionni, Luigi; Murphy, Sara C; Dobromilskaya, Irina; Hann, Christine L; Rudin, Charles M

    2013-06-01

    New therapies are critically needed to improve the outcome for patients with small cell lung cancer (SCLC). Insulin-like growth factor 1 receptor (IGF-1R) inhibition is a potential treatment strategy for SCLC: the IGF-1R pathway is commonly upregulated in SCLC and has been associated with inhibition of apoptosis and stimulation of proliferation through downstream signaling pathways, including phosphatidylinositol-3-kinase-Akt and mitogen-activated protein kinase. To evaluate potential determinants of response to IGF-1R inhibition, we assessed the relative sensitivity of 19 SCLC cell lines to OSI-906, a small molecule inhibitor of IGF-1R, and the closely related insulin receptor. Approximately one third of these cell lines were sensitive to OSI-906, with an IC50 < 1 μmol/L. Cell line expression of IGF-1R, IR, IGF-1, IGF-2, IGFBP3, and IGFBP6 did not correlate with sensitivity to OSI-906. Interestingly, OSI-906 sensitive lines expressed significantly lower levels of baseline phospho-ERK relative to resistant lines (P = 0.006). OSI-906 treatment resulted in dose-dependent inhibition of phospho-IGF-1R and phospho-Akt in both sensitive and resistant cell lines, but induced apoptosis and cell-cycle arrest only in sensitive lines. We tested the in vivo efficacy of OSI-906 using an NCI-H187 xenograft model and two SCLC patient xenografts in mice. OSI-906 treatment resulted in 50% tumor growth inhibition in NCI-H187 and 30% inhibition in the primary patient xenograft models compared with mock-treated animals. Taken together our data support IGF-1R inhibition as a viable treatment strategy for a defined subset of SCLC and suggest that low pretreatment levels of phospho-ERK may be indicative of sensitivity to this therapeutic approach. ©2013 AACR

  7. Maintenance of myonuclear domain size in rat soleus after overload and growth hormone/IGF-I treatment

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Allen, D. L.; Linderman, J. K.; Grindeland, R. E.; Roy, R. R.; Mukku, V. R.; Edgerton, V. R.

    1998-01-01

    The purpose of this study was to determine the effects of functional overload (FO) combined with growth hormone/insulin-like growth factor I (GH/IGF-I) administration on myonuclear number and domain size in rat soleus muscle fibers. Adult female rats underwent bilateral ablation of the plantaris and gastrocnemius muscles and, after 7 days of recovery, were injected three times daily for 14 days with GH/IGF-I (1 mg/kg each; FO + GH/IGF-I group) or saline vehicle (FO group). Intact rats receiving saline vehicle served as controls (Con group). Muscle wet weight was 32% greater in the FO than in the Con group: 162 +/- 8 vs. 123 +/- 16 mg. Muscle weight in the FO + GH/IGF-I group (196 +/- 14 mg) was 59 and 21% larger than in the Con and FO groups, respectively. Mean soleus fiber cross-sectional area of the FO + GH/IGF-I group (2,826 +/- 445 microm2) was increased compared with the Con (2,044 +/- 108 microm2) and FO (2,267 +/- 301 microm2) groups. The difference in fiber size between the FO and Con groups was not significant. Mean myonuclear number increased in FO (187 +/- 15 myonuclei/mm) and FO + GH/IGF-I (217 +/- 23 myonuclei/mm) rats compared with Con (155 +/- 12 myonuclei/mm) rats, although the difference between FO and FO + GH/IGF-I animals was not significant. The mean cytoplasmic volume per myonucleus (myonuclear domain) was similar across groups. These results demonstrate that the larger mean muscle weight and fiber cross-sectional area occurred when FO was combined with GH/IGF-I administration and that myonuclear number increased concomitantly with fiber volume. Thus there appears to be some mechanism(s) that maintains the myonuclear domain when a fiber hypertrophies.

  8. Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.

    PubMed

    Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf

    2017-04-28

    Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).

  9. Secondary IGF-I deficiency as a prognostic factor of growth hormone (GH) therapy effectiveness in children with isolated, non-acquired GH deficiency.

    PubMed

    Smyczyńska, J; Stawerska, R; Hilczer, M; Lewiński, A

    2015-04-01

    Growth hormone (GH) deficiency (GHD) has recently been classified as secondary IGF-I deficiency but the significance of IGF-I measurement in diagnosing GHD is still discussed. The aim of the study was to assess the relationships between IGF-I secretion and GH therapy effectiveness in children with GHD. The analysis comprised 300 children with isolated, non-acquired GHD (GH peak below 10 μg/l) who completed GH therapy and attained final height (FH). In all patients IGF-I concentration was measured before the treatment and IGF-I deficiency was diagnosed if IGF-I SDS for age and sex was below -1.0. The following auxological indices were assessed: patients' height SDS before treatment (H₀SDS), FH SDS and improvement of FHSDS vs. H₀SDS (ΔHSDS). In the patients with IGF-I deficiency when compared with those with normal IGF-I secretion before treatment, significantly better FH SDS (-1.42±0.90 vs. -1.74±0.86, p=0.004) and ΔHSDS (1.64±1.01 vs. 1.32±1.05, p=0.010) were observed, despite similar H₀SDS (- 3.07±0.78 vs. - 3.11±0.77, p=0.63) and GH peak (7.0±3.1 μg/l vs. 6.8±2.1 μg/l, p=0.55). The patients who achieved FH over 10(th) centile had significantly lower IGF-I SDS before treatment than those with FH below 10(th) centile (- 1.59±1.54 vs. - 1.20±1.64, p=0.04), despite similar GH peak (7.0±2.3 μg/l vs. 6.7±3.1 μg/l, p=0.45). The patients with ΔHSDS over the median value had significantly lower IGF-I SDS than those with ΔHSDS below the median value (- 1.59±1.71 vs. - 1.09±1.47, p<0.0001), despite similar GH peak (6.8±2.5 μg/l vs. 7.0±2.7 μg/l, p=0.86). In children with isolated, non-acquired GHD, secondary IGF-I deficiency is an important predictor of better GH therapy effectiveness. © Georg Thieme Verlag KG Stuttgart · New York.

  10. The relationship between IGF-I concentration, cognitive function and quality of life in adults with Prader-Willi syndrome.

    PubMed

    van Nieuwpoort, I C; Deijen, J B; Curfs, L M G; Drent, M L

    2011-04-01

    Mental retardation is one of the clinical characteristics of Prader-Willi syndrome (PWS) and in part of the patients growth hormone deficiency is demonstrable. Cognitive function seems to be influenced by insulin-like growth factor I (IGF-I); however, little is known about cognitive function in relation to IGF-I levels in PWS adults. The aim of the present study was to evaluate cognitive function in adult PWS patients in comparison to healthy siblings and to investigate whether there is a correlation between cognitive function and IGF-I levels. Anthropometric measurements, IGF-I levels, quality of life (QoL), Appetite Assessment Score, IQ (GIT and Raven) and cognitive function (by four subtests of the Cambridge Neuropsychological Automated Testing Battery, CANTAB) were evaluated in PWS patients and their healthy siblings served as control group. PWS patients had significantly lower IGF-I levels, IQ and QoL when compared to controls. Reaction times were longer and performance was worse on CANTAB subtests in PWS adults. IGF-I on one hand and IQ, Appetite Assessment Score and cognitive performance on the other hand seem to be correlated in PWS patients. In conclusion, IGF-I levels, IQ and QoL are significantly lower in PWS subjects when compared to healthy siblings. In PWS adults, temporal as well as prefrontal cognitive functions are impaired. Higher IGF-I levels appear to be related to better intellectual skills and faster temporal memory processing in PWS patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Irs2 and Irs4 synergize in non-LepRb neurons to control energy balance and glucose homeostasis.

    PubMed

    Sadagurski, Marianna; Dong, X Charlie; Myers, Martin G; White, Morris F

    2014-02-01

    Insulin receptor substrates (Irs1, 2, 3 and Irs4) mediate the actions of insulin/IGF1 signaling. They have similar structure, but distinctly regulate development, growth, and metabolic homeostasis. Irs2 contributes to central metabolic sensing, partially by acting in leptin receptor (LepRb)-expressing neurons. Although Irs4 is largely restricted to the hypothalamus, its contribution to metabolic regulation is unclear because Irs4-null mice barely distinguishable from controls. We postulated that Irs2 and Irs4 synergize and complement each other in the brain. To examine this possibility, we investigated the metabolism of whole body Irs4(-/y) mice that lacked Irs2 in the CNS (bIrs2(-/-)·Irs4(-/y)) or only in LepRb-neurons (Lepr (∆Irs2) ·Irs4 (-/y) ). bIrs2(-/-)·Irs4(-/y) mice developed severe obesity and decreased energy expenditure, along with hyperglycemia and insulin resistance. Unexpectedly, the body weight and fed blood glucose levels of Lepr (∆Irs2) ·Irs4 (-/y) mice were not different from Lepr (∆Irs2) mice, suggesting that the functions of Irs2 and Irs4 converge upon neurons that are distinct from those expressing LepRb.

  12. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  13. The Protective Effects of Exclusive Enteral Nutrition Formulas on Growth Factor Expression and the Proximal Tibial Epiphyseal Growth Plate in a TNBS-Induced IBD Rat Model.

    PubMed

    Shi, Jieru; Huang, Zhiheng; Wang, Yuhuan; Huang, Ying

    2015-07-01

    This study aimed to evaluate the effectiveness of different types of nutritional formulas in a rat model of TNBS-induced IBD. IBD was induced with TNBS in 4-week-old rats that were then fed different exclusive enteral nutrition diets for 7 days. The length of the tibia and the number of chondrocytes in the proximal tibias were analyzed at 7 days after supplementation. Immunohistochemical analysis, ELISA and real-time PCR were performed to evaluate the levels of growth hormone receptor (GHR) and insulin-like growth factor-I receptor (IGF-IR), the growth factors IGF-I and insulin-like growth factor-binding protein-3 (IGFBP3) , bone morphogenetic protein (BMP)-2 and BMP-6 respectively. The results demonstrated that the tibia length of the peptide formula group was longer than that of the IBD-Modulen(®) formula and normal diet groups (P < 0.05). Furthermore, the number of chondrocytes of the proximal tibial was more pronounced in the peptide formula group compared to the other groups (P < 0.05). The peptide formula was also more effective in increasing the expression of GHR compared to the other groups (P < 0.05), while the expression of IGF-IR was not significantly different (P > 0.05). In addition, the IGF-I and IGFBP3 levels were more pronounced in the peptide formula supplement group (P < 0.05), and the expression of BMP-2 and BMP-6 mRNA in the proximal tibia growth plate from the peptide formula group was higher than that in the ordinary formula and normal diet groups (P < 0.05). EEN, and particularly a peptide formula, exerted protective effects on the proximal tibial epiphyseal growth plate in a TNBS-induced IBD model.

  14. Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.

    PubMed

    Kobayashi, S; Clemmons, D R; Venkatachalam, M A

    1991-07-01

    We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.

  15. Cross-talk between GPER and growth factor signaling.

    PubMed

    Lappano, Rosamaria; De Marco, Paola; De Francesco, Ernestina Marianna; Chimento, Adele; Pezzi, Vincenzo; Maggiolini, Marcello

    2013-09-01

    G protein-coupled receptors (GPCRs) and growth factor receptors mediate multiple physio-pathological responses to a diverse array of extracellular stimuli. In this regard, it has been largely demonstrated that GPCRs and growth factor receptors generate a multifaceted signaling network, which triggers relevant biological effects in normal and cancer cells. For instance, some GPCRs transactivate the epidermal growth factor receptor (EGFR), which stimulates diverse transduction pathways leading to gene expression changes, cell migration, survival and proliferation. Moreover, it has been reported that a functional interaction between growth factor receptors and steroid hormones like estrogens is involved in the growth of many types of tumors as well as in the resistance to endocrine therapy. This review highlights recent findings on the cross-talk between a member of the GPCR family, the G protein-coupled estrogen receptor 1 (GPER, formerly known as GPR30) and two main growth factor receptors like EGFR and insulin-like growth factor-I receptor (IGF-IR). The biological implications of the functional interaction between these important mediators of cell responses particularly in cancer are discussed. This article is part of a Special Issue entitled 'CSR 2013'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The Alzheimer's disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons.

    PubMed

    George, Caroline; Gontier, Géraldine; Lacube, Philippe; François, Jean-Christophe; Holzenberger, Martin; Aïd, Saba

    2017-07-01

    Seminal studies using post-mortem brains of patients with Alzheimer's disease evidenced aberrant insulin-like growth factor 1 receptor (IGF1R) signalling. Addressing causality, work in animal models recently demonstrated that long-term suppression of IGF1R signalling alleviates Alzheimer's disease progression and promotes neuroprotection. However, the underlying mechanisms remain largely elusive. Here, we showed that genetically ablating IGF1R in neurons of the ageing brain efficiently protects from neuroinflammation, anxiety and memory impairments induced by intracerebroventricular injection of amyloid-β oligomers. In our mutant mice, the suppression of IGF1R signalling also invariably led to small neuronal soma size, indicative of profound changes in cellular homeodynamics. To gain insight into transcriptional signatures leading to Alzheimer's disease-relevant neuronal defence, we performed genome-wide microarray analysis on laser-dissected hippocampal CA1 after neuronal IGF1R knockout, in the presence or absence of APP/PS1 transgenes. Functional analysis comparing neurons in early-stage Alzheimer's disease with IGF1R knockout neurons revealed strongly convergent transcriptomic signatures, notably involving neurite growth, cytoskeleton organization, cellular stress response and neurotransmission. Moreover, in Alzheimer's disease neurons, a high proportion of genes responding to Alzheimer's disease showed a reversed differential expression when IGF1R was deleted. One of the genes consistently highlighted in genome-wide comparison was the neurofilament medium polypeptide Nefm. We found that NEFM accumulated in hippocampus in the presence of amyloid pathology, and decreased to control levels under IGF1R deletion, suggesting that reorganized cytoskeleton likely plays a role in neuroprotection. These findings demonstrated that significant resistance of the brain to amyloid-β can be achieved lifelong by suppressing neuronal IGF1R and identified IGF

  17. Effects of age and insulin-like growth factor-1 on rat neurotrophin receptor expression after nerve injury.

    PubMed

    Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu

    2016-10-01

    Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.

  18. Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor

    PubMed Central

    Hanif, Rumeza; Jabeen, Ishrat; Mansoor, Qaisar; Ismail, Muhammad

    2018-01-01

    Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R. PMID:29787591

  19. Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor.

    PubMed

    Khalid, Samra; Hanif, Rumeza; Jabeen, Ishrat; Mansoor, Qaisar; Ismail, Muhammad

    2018-01-01

    Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R.

  20. Mechanical stretch augments insulin-induced vascular smooth muscle cell proliferation by insulin-like growth factor-1 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Gang; Department of Anesthesiology, First Affiliated Hospital of China Medical University, Shenyang; Hitomi, Hirofumi, E-mail: hitomi@kms.ac.jp

    Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation,more » whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia. -- Highlights: {yields} Mechanical stretch augments insulin-induced VSMC proliferation via IGF-1 receptor. {yields} Src/EGFR-mediated ERK and Akt phosphorylation are augmented in stretched VSMCs. {yields} Similar to in vitro experiment, IGF-1 receptor is increased in hypertensive rats. {yields} Results provide possible mechanisms of vascular remodeling in hypertension with DM.« less

  1. Directional control of WAVE2 membrane targeting by EB1 and phosphatidylinositol 3,4,5-triphosphate.

    PubMed

    Takahashi, Kazuhide; Tanaka, Tacu; Suzuki, Katsuo

    2010-03-01

    Membrane targeting of WAVE2 along microtubules is mediated by a motor protein kinesin and requires Pak1, a downstream effector of Rac1. However, the mechanism by which WAVE2 targeting to the leading edge is directionally controlled remains largely unknown. Here we demonstrate that EB1, a microtubule plus-end-binding protein, constitutively associates with stathmin, a microtubule-destabilizing protein, in human breast cancer cells. Stimulation of the cells with insulin-like growth factor I (IGF-I) induced Pak1-dependent binding of the EB1-stathmin complex to microtubules that bear WAVE2 and colocalization of the complex with WAVE2 at the leading edge. Depletion of EB1 by small interfering RNA (siRNA) abrogated the IGF-I-induced WAVE2 targeting and stathmin binding to microtubules. On the other hand, chemotaxis chamber assays indicated that the IGF-I receptor (IGF-IR) was locally activated in the region facing toward IGF-I. In addition, IGF-I caused phosphatidylinositol 3-kinase (PI 3-kinase)-dependent production of phosphatidylinositol 3,4,5-triphosphate (PIP3) near activated IGF-IR and WAVE2 colocalization with it. Collectively, WAVE2-membrane targeting is directionally controlled by binding of the EB1-stathmin complex to WAVE2-bearing microtubules and by the interaction between WAVE2 and PIP3 produced near IGF-IR that is locally activated by IGF-I.

  2. Dynamics of liver GH/IGF axis and selected stress markers in juvenile gilthead sea bream (Sparus aurata) exposed to acute confinement: differential stress response of growth hormone receptors.

    PubMed

    Saera-Vila, Alfonso; Calduch-Giner, Josep Alvar; Prunet, Patrick; Pérez-Sánchez, Jaume

    2009-10-01

    The time courses of liver GH/IGF axis and selected stress markers were analyzed in juvenile gilthead sea bream (Sparus aurata) sampled at zero time and at fixed intervals (1.5, 3, 6, 24, 72 and 120 h) after acute confinement (120 kg/m(3)). Fish remained unfed throughout the course of the confinement study, and the fasting-induced increases in plasma growth hormone (GH) levels were partially masked by the GH-stress inhibitory tone. Hepatic mRNA levels of growth hormone receptor-I (GHR-I) were not significantly altered by confinement, but a persistent 2-fold decrease in GHR-II transcripts was found at 24 and 120 h. A consistent decrease in circulating levels of insulin-like growth factor-I (IGF-I) was also found through most of the experimental period, and the down-regulated expression of GHR-II was positively correlated with changes in hepatic IGF-I and IGF-II transcripts. This stress-specific response was concurrent with plasma increases in cortisol and glucose levels, reflecting the cortisol peak (60-70 ng/mL), the intensity and duration of the stressor when data found in the literature were compared. Adaptive responses against oxidative damage were also found, and a rapid enhanced expression was reported in the liver tissue for mitochondrial heat-shock proteins (glucose regulated protein 75). At the same time, the down-regulated expression of proinflammatory cytokines (tumour necrosis factor-alpha) and detoxifying enzymes (cytochrome P450 1A1) might dictate the hepatic depletion of potential sources of reactive oxygen species. These results provide suitable evidence for a functional partitioning of hepatic GHRs under states of reduced IGF production and changing cellular environment resulting from acute confinement.

  3. Children with severe Osteogenesis imperfecta and short stature present on average with normal IGF-I and IGFBP-3 levels.

    PubMed

    Hoyer-Kuhn, Heike; Höbing, Laura; Cassens, Julia; Schoenau, Eckhard; Semler, Oliver

    2016-07-01

    Osteogenesis imperfecta (OI) is characterized by bone fragility and short stature. Data about IGF-I/IGFBP-3 levels are rare in OI. Therefore IGF-I/IGFBP-3 levels in children with different types of OI were investigated. IGF-I and IGFBP-3 levels of 60 children (male n=38) were assessed in a retrospective cross-sectional setting. Height/weight was significant different [height z-score type 3 versus type 4: p=0.0011 and weight (p≤0.0001)] between OI type 3 and 4. Mean IGF-I levels were in the lower normal range (mean±SD level 137.4±109.1 μg/L). Mean IGFBP-3 measurements were in the normal range (mean±SD 3.105±1.175 mg/L). No significant differences between OI type 3 and 4 children have been observed (IGF-I: p=0.0906; IGFBP-3: p=0.2042). Patients with different severities of OI have IGF-I and IGFBP-3 levels in the lower normal range. The type of OI does not significantly influence these growth factors.

  4. Insulin receptor substrates 1 and 2 but not Shc can activate the insulin receptor independent of insulin and induce proliferation in CHO-IR cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niessen, Markus; Jaschinski, Frank; Item, Flurin

    2007-02-15

    Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the {beta}-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH andmore » PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.« less

  5. Activation of phosphatidylinositol-3-kinase by platelet-derived growth factor and insulin-like growth factor-1 is inhibited by a transmembrane phosphotyrosine phosphatase.

    PubMed

    Way, B A; Mooney, R A

    1993-12-15

    Expression of the transmembrane phosphotyrosine phosphatase (PTPase) CD45 has been shown to inhibit hormone-dependent tyrosine phosphorylation and mitogenesis (Mooney, R. A., Freund, G. G., Way, B. A., and Bordwell, K. L. (1992) J. Biol. Chem. 267, 23443-23446). Here the impact of PTPase expression on insulin-like growth factor-1 (IGF-1) and platelet-derived growth factor- (PDGF) dependent activation of PI-3-K was investigated. In PTPase+ cells, IGF-1 and PDGF-dependent PI-3-K activity in antiphosphotyrosine immunoprecipitates was decreased by 62 +/- 13 and 46 +/- 17%, respectively, compared to control cells. Similar decreases in PI-3-K activity associated with anti-PDGF receptor and anti-insulin receptor substrate-1 (IRS-1) immunoprecipitates were also observed. Association of PI-3-K with the hormone-activated PDGF receptor decreased approximately 55%, paralleling its loss of activation in PTPase+ cells. Tyrosine phosphorylation of the 85-kDa subunit of PI-3-K was also inhibited. Similarly, IGF-1 dependent tyrosine phosphorylation of IRS-1 was decreased by 45%, and its association with PI-3-K was decreased by 65% in PTPase+ cells. Finally, PDGF-dependent tyrosine phosphorylation of phospholipase C-gamma 1 and GTPase-activating protein was reduced by 60-70% in the PTPase+ cells as was tyrosine phosphorylation of the PDGF receptor associated with these proteins. In summary, expression of a transmembrane PTPase decreased hormone-dependent PI-3-K activation, tyrosine phosphorylation of receptor substrates, and their association with signaling complexes. These data support a role for transmembrane PTPases in the regulation of receptor signal transduction pathways.

  6. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila.

    PubMed

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan Dt; Garrity, Paul A

    2016-04-29

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.

  7. Yak IGF2 Promotes Fibroblast Proliferation Via Suppression of IGF1R and PI3KCG Expression

    PubMed Central

    Wang, Qi; Gong, Jishang; Du, Jiaxing; Zhang, Yong; Zhao, Xingxu

    2018-01-01

    Insulin-like growth factor 2 (IGF2) recapitulates many of the activities of insulin and promotes differentiation of myoblasts and osteoblasts, which likely contribute to genetic variations of growth potential. However, little is known about the functions and signaling properties of IGF2 variants in yaks. The over-expression vector and knockdown sequence of yak IGF2 were transfected into yak fibroblasts, and the effects were detected by a series of assays. IGF2 expression in yak muscle tissues was significantly lower than that of other tissues. In yak fibroblasts, the up-regulated expression of IGF2 inhibits expression of IGF1 and insulin-like growth factor 2 receptor (IGF2R) and significantly up-regulates expression of IGF1R. Inhibition of IGF2 expression caused the up-regulates expression of IGF1, IGF1R and IGF2R. Both over-expression and knockdown of IGF2 resulted in up-regulation of threonine protein kinase 1 (Akt1) expression and down-regulation of phosphatidylinositol 3-kinase, catalytic subunit gamma (PIK3CG). Cell cycle and cell proliferation assays revealed that over-expression of IGF2 enhanced the DNA synthesis phase and promoted yak fibroblasts proliferation. Conversely, knockdown of IGF2 decreased DNA synthesis and inhibited proliferation. These results suggested that IGF2 was negatively correlated with IGF1R and PIK3CG and demonstrated an association with the IGFs-PI3K-Akt (IGFs-phosphatidylinositol 3-kinase- threonine protein kinase) pathway in cell proliferation and provided evidence supporting the functional role of IGF2 for use in improving the production performance of yaks. PMID:29558395

  8. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  9. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity.

    PubMed

    Dyer, Adam H; Vahdatpour, Cyrus; Sanfeliu, Albert; Tropea, Daniela

    2016-06-14

    Insulin-Like Growth Factor 1 (IGF-1) is a phylogenetically ancient neurotrophic hormone with crucial roles to play in CNS development and maturation. Recently, IGF-1 has been shown to have potent effects on cellular neuroplasticity. Neuroplasticty refers to the adaptive changes made by the CNS in the face of changing functional demands and is crucial in processes such as learning and memory. IGF-1, signaling through its glycoprotein receptor (IGF-1R), and canonical signaling pathways such as the PI3K-Akt and Ras-Raf-MAP pathways, has potent effects on cellular neuroplasticity in the CNS. In the present review, the role of IGF-1 in brain development is reviewed, followed by a detailed discussion of the role played by IGF in cellular neuroplasticity in the CNS. Findings from models of perturbed and reparative plasticity detailing the role played by IGF-1 are discussed, followed by the electrophysiological, structural and functional evidence supporting this role. Finally, the post-lesion and post-injury roles played by IGF-1 are briefly evaluated. We discuss the putative neurobiology underlying these changes, reviewing recent evidence and highlighting areas for further research. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  11. IGF-1 receptor targeted nanoparticles for image-guided therapy of stroma-rich and drug resistant human cancer

    NASA Astrophysics Data System (ADS)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M.; Zhou, Zhiyang; Wang, Liya; Wang, Andrew; Mao, Hui; Yang, Lily

    2016-05-01

    Low drug delivery efficiency and drug resistance from highly heterogeneous cancer cells and tumor microenvironment represent major challenges in clinical oncology. Growth factor receptor, IGF-1R, is overexpressed in both human tumor cells and tumor associated stromal cells. The level of IGF-1R expression is further up-regulated in drug resistant tumor cells. We have developed IGF-1R targeted magnetic iron oxide nanoparticles (IONPs) carrying multiple anticancer drugs into human tumors. This IGF-1R targeted theranostic nanoparticle delivery system has an iron core for non-invasive MR imaging, amphiphilic polymer coating to ensure the biocompatibility as well as for drug loading and conjugation of recombinant human IGF-1 as targeting molecules. Chemotherapy drugs, Doxorubicin (Dox), was encapsulated into the polymer coating and/or conjugated to the IONP surface by coupling with the carboxyl groups. The ability of IGF1R targeted theranostic nanoparticles to penetrate tumor stromal barrier and enhance tumor cell killing has been demonstrated in human pancreatic cancer patient tissue derived xenograft (PDX) models. Repeated systemic administrations of those IGF-1R targeted theranostic IONP carrying Dox led to breaking the tumor stromal barrier and improved therapeutic effect. Near infrared (NIR) optical and MR imaging enabled noninvasive monitoring of nanoparticle-drug delivery and therapeutic responses. Our results demonstrated that IGF-1R targeted nanoparticles carrying multiple drugs are promising combination therapy approaches for image-guided therapy of stroma-rich and drug resistant human cancer, such as pancreatic cancer.

  12. A chimeric receptor of the insulin-like growth factor receptor type 1 (IGFR1) and a single chain antibody specific to myelin oligodendrocyte glycoprotein activates the IGF1R signalling cascade in CG4 oligodendrocyte progenitors.

    PubMed

    Annenkov, Alexander; Rigby, Anne; Amor, Sandra; Zhou, Dun; Yousaf, Nasim; Hemmer, Bernhard; Chernajovsky, Yuti

    2011-08-01

    In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional. 2011 Elsevier B.V. All rights reserved.

  13. Cloning, characterization and tissue specific expression of Amur tiger (Panthera tigris altaica) IGF-I.

    PubMed

    Hu, Xi-Lian; Zhu, Mu-Yuan; Zhang, Zhi-He; Hou, Rong; Shen, Fu-Jun; Li, Fu-Zhen; Zhang, An-Ju

    2006-08-01

    Insulin-like growth factor I (IGF-I) plays an important role in regulating gonad function, which is essential for normal reproduction in animals, especially in sexual receptivity and reproductive behavior. In this study, a cDNA encoding Amur tiger (Panthera tigris altaica) IGF-I was isolated from liver total RNA using RT-PCR. The IGF-I cDNA of Amur tiger (ATIGF-I) was highly homologous to that of other animals, 84.8% to rat, 93.7% to human and horse. Alignment analysis showed that the cysteine residues and many amino acid residues of putative mature ATIGF-I are highly conserved in mammalian species, confirming the high sequence homology observed in other species. DNA encoding the mature ATIGF-I peptide was ligated with pET-DsbA expression vector and highly expressed in Escherichia coli BL21 with IPTG induction. The recombinant proteins expressed existed mostly in the soluble protein fraction, and were purified with metal affinity resins. Western blotting confirmed that the recombinant proteins reacted with antibodies against IGF-I. The results obtained here should be useful for large-scale production of biological active ATIGF-I protein, as well as for further research on growth, development, and reproduction in the Amur tiger. Tissue specific expression of ATIGF-I mRNA in the Amur tiger was examined by reverse transcription-polymerase chain reaction (RT-PCR), The major ATIGF-I mRNA expression tissue was the liver, while medium signals were found in the uterus, ovary, and pituitary, and minor signals were detected in various tissues including the heart, spleen, pancreas, and kidney. The results indicate that IGF-I might play an important role in the reproductive system and in cub development in the Amur tiger.

  14. NFIL3 suppresses hypoxia-induced apoptotic cell death by targeting the insulin-like growth factor 2 receptor.

    PubMed

    Lin, Kuan-Ho; Kuo, Chia-Hua; Kuo, Wei-Wen; Ho, Tsung-Jung; Pai, Peiying; Chen, Wei-Kung; Pan, Lung-Fa; Wang, Chien-Cheng; Padma, V Vijaya; Huang, Chih-Yang

    2015-06-01

    The insulin-like growth factor-II/mannose 6-phosphate receptor (IGF2R) over-expression correlates with heart disease progression. The IGF2R is not only an IGF2 clearance receptor, but it also triggers signal transduction, resulting in cardiac hypertrophy, apoptosis and fibrosis. The present study investigated the nuclear factor IL-3 (NFIL3), a transcription factor of the basic leucine zipper superfamily, and its potential pro-survival effects in cardiomyocytes. NFIL3 might play a key role in heart development and act as a survival factor in the heart, but the regulatory mechanisms are still unclear. IGF2 and IGF2R protein expression were highly increased in rat hearts subjected to hemorrhagic shock. IGF2R protein expression was also up-regulated in H9c2 cells exposed to hypoxia. Over-expression of NFIL3 in H9c2 cardiomyoblast cells inhibited the induction of hypoxia-induced apoptosis and down-regulated IGF2R expression levels. Gel shift assay, double-stranded DNA pull-down assay and chromatin immune-precipitation analyses indicated that NFIL3 binds directly to the IGF2R promoter region. Using a luciferase assay, we further observed NFIL3 repress IGF2R gene promoter activity. Our results demonstrate that NFIL3 is an important negative transcription factor, which through binding to the promoter of IGF2R, suppresses the apoptosis induced by IGF2R signaling in H9c2 cardiomyoblast cells under hypoxic conditions. © 2015 Wiley Periodicals, Inc.

  15. Genomewide meta-analysis identifies loci associated with IGF-I and IGFBP-3 levels with impact on age-related traits.

    PubMed

    Teumer, Alexander; Qi, Qibin; Nethander, Maria; Aschard, Hugues; Bandinelli, Stefania; Beekman, Marian; Berndt, Sonja I; Bidlingmaier, Martin; Broer, Linda; Cappola, Anne; Ceda, Gian Paolo; Chanock, Stephen; Chen, Ming-Huei; Chen, Tai C; Chen, Yii-Der Ida; Chung, Jonathan; Del Greco Miglianico, Fabiola; Eriksson, Joel; Ferrucci, Luigi; Friedrich, Nele; Gnewuch, Carsten; Goodarzi, Mark O; Grarup, Niels; Guo, Tingwei; Hammer, Elke; Hayes, Richard B; Hicks, Andrew A; Hofman, Albert; Houwing-Duistermaat, Jeanine J; Hu, Frank; Hunter, David J; Husemoen, Lise L; Isaacs, Aaron; Jacobs, Kevin B; Janssen, Joop A M J L; Jansson, John-Olov; Jehmlich, Nico; Johnson, Simon; Juul, Anders; Karlsson, Magnus; Kilpelainen, Tuomas O; Kovacs, Peter; Kraft, Peter; Li, Chao; Linneberg, Allan; Liu, Yongmei; Loos, Ruth J F; Lorentzon, Mattias; Lu, Yingchang; Maggio, Marcello; Magi, Reedik; Meigs, James; Mellström, Dan; Nauck, Matthias; Newman, Anne B; Pollak, Michael N; Pramstaller, Peter P; Prokopenko, Inga; Psaty, Bruce M; Reincke, Martin; Rimm, Eric B; Rotter, Jerome I; Saint Pierre, Aude; Schurmann, Claudia; Seshadri, Sudha; Sjögren, Klara; Slagboom, P Eline; Strickler, Howard D; Stumvoll, Michael; Suh, Yousin; Sun, Qi; Zhang, Cuilin; Svensson, Johan; Tanaka, Toshiko; Tare, Archana; Tönjes, Anke; Uh, Hae-Won; van Duijn, Cornelia M; van Heemst, Diana; Vandenput, Liesbeth; Vasan, Ramachandran S; Völker, Uwe; Willems, Sara M; Ohlsson, Claes; Wallaschofski, Henri; Kaplan, Robert C

    2016-10-01

    The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30 884 adults of European ancestry from 21 studies, we confirmed and extended the list of previously identified loci associated with circulating IGF-I and IGFBP-3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3, ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex interactions, which were characterized by different genotype-phenotype associations between men and women, were found only for associations of IGFBP-3 concentrations with SNPs at the loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and protein levels suggested that interplay between IGFBP3 and genes within the NUBP2 locus (IGFALS and HAGH) may affect circulating IGF-I and IGFBP-3 concentrations. The IGF-I-decreasing allele of SNP rs934073, which is an eQTL of ASXL2, was associated with lower adiposity and higher likelihood of survival beyond 90 years. The known longevity-associated variant rs2153960 (FOXO3) was observed to be a genomewide significant SNP for IGF-I concentrations. Bioinformatics analysis suggested enrichment of putative regulatory elements among these IGF-I- and IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In conclusion, this study identified several loci associated with circulating IGF-I and IGFBP-3 concentrations and provides clues to the potential role of the IGF axis in mediating effects of known (FOXO3) and novel (ASXL2) longevity-associated loci. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Decreased IGF-I bioavailability after ethanol abuse in alcoholics: partial restitution after short-term abstinence.

    PubMed

    Röjdmark, S; Brismar, K

    2001-01-01

    IGF-I stimulates protein synthesis, lowers blood glucose, and affects cell differentiation. The main production site of IGF-I is the liver. One of its binding proteins, IGFBP-1, is also produced by the liver. It is well known that ethanol affects the function of the human liver. Long-term alcohol abuse may therefore not only cause considerable IGF-I and IGFBP-1 production changes, but also changes in IGF-I bioavailability, which at least in part is determined by the IGF-I/IGFBP-1 ratio. Not much is known about how the bioavailability of IGF-I is changed in alcohol abusers. Therefore, the objective of this investigation was to study that matter, and to elucidate how abstinence affects IGF-I bioavailability in man. Three study groups were formed: group N including normal non-addicted subjects, group E ethanol abusers without gross liver insufficiency, and group C alcohol abusers with liver cirrhosis and ascites. Serum concentrations of insulin, GH, IGF-1, and IGFBP-1 were determined in the morning in all participants, and the IGF-I/IGFBP-1 ratios were calculated. These values were compared in the three study groups. In group E comparison was also made between values recorded in the ethanol intoxicated and in the detoxicated states. Patients in group C had low IGF-I levels, high IGFBP-1 levels, and low IGF-I bioavailability as reflected by the IGF-I/IGFBP-1 ratios, which were several-fold reduced compared with subjects in group N (0.6+/-0.2 vs 10.2+/-2.3; p<0.001). Patients in group E had also a low IGF-I/IGFBP-1 ratio in the acute ethanol intoxicated state, which increased after detoxication (from 1.5+/-0.4 to 5.6+/-1.2; p<0.01). It is concluded that alcohol abuse lowers the hepatic production of IGF-I and increases the production of IGFBP-1. This results in a reduced IGF-I bioavailability. However, in patients with not yet clinically apparent liver damage the IGF-I bioavailability increases if the alcohol abuse is stopped. These findings could reflect an important

  17. A novel, non-invasive transdermal fluid sampling methodology: IGF-I measurement following exercise

    USDA-ARS?s Scientific Manuscript database

    This study tested the hypothesis that transdermal fluid (TDF) provides a more sensitive and accurate measure of exercise-induced increases in insulin-like growth factor-I (IGF-I) than serum, and that these increases are detectable proximal, but not distal, to the exercising muscle. A novel, noninvas...

  18. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata

    PubMed Central

    Shi, Yu; He, Mao-xian

    2016-01-01

    The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism. PMID:26911653

  19. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.

    PubMed

    Ye, Ping; Hu, Qichen; Liu, Hedi; Yan, Yun; D'ercole, A Joseph

    2010-07-01

    By promoting cell proliferation, survival and maturation insulin-like growth factor (IGF)-I is essential to the normal growth and development of the central nervous system. It is clear that IGF-I actions are primarily mediated by the type I IGF receptor (IGF1R), and that phosphoinositide 3 (PI3)-Akt kinases and MAP kinases signal many of IGF-I-IGF1R actions in neural cells, including oligodendrocyte lineage cells. The precise downstream targets of these signaling pathways, however, remain to be defined. We studied oligodendroglial cells to determine whether beta-catenin, a molecule that is a downstream target of glycogen synthase kinase-3beta (GSK3beta) and plays a key role in the Wnt canonical signaling pathway, mediates IGF-I actions. We found that IGF-I increases beta-catenin protein abundance within an hour after IGF-I-induced phosphorylation of Akt and GSK3beta. Inhibiting the PI3-Akt pathway suppressed IGF-I-induced increases in beta-catenin and cyclin D1 mRNA, while suppression of GSK3beta activity simulated IGF-I actions. Knocking-down beta-catenin mRNA by RNA interference suppressed IGF-I-stimulated increases in the abundance of cyclin D1 mRNA, cell proliferation, and cell survival. Our data suggest that beta-catenin is an important downstream molecule in the PI3-Akt-GSK3beta pathway, and as such it mediates IGF-I upregulation of cyclin D1 mRNA and promotion of cell proliferation and survival in oligodendroglial cells. Copyright 2010 Wiley-Liss, Inc.

  20. Methodology for Anti-Gene Anti-IGF-I Therapy of Malignant Tumours

    PubMed Central

    Trojan, Jerzy; Pan, Yuexin X.; Wei, Ming X.; Ly, Adama; Shevelev, Alexander; Bierwagen, Maciej; Ardourel, Marie-Yvonne; Trojan, Ladislas A.; Alvarez, Alvaro; Andres, Christian; Noguera, Maria C.; Briceno, Ignacio; Aristizabal, Beatriz H.; Kasprzak, Heliodor; Duc, Huynh T.; Anthony, Donald D.

    2012-01-01

    The aim of this study was to establish the criteria for methodology of cellular “anti-IGF-I” therapy of malignant tumours and particularly for glioblastoma multiforme. The treatment of primary glioblastoma patients using surgery, radiotherapy, and chemotherapy was followed by subcutaneous injection of autologous cancer cells transfected by IGF-I antisense/triple helix expression vectors. The prepared cell “vaccines” should it be in the case of glioblastomas or other tumours, have shown a change of phenotype, the absence of IGF-I protein, and expression of MHC-I and B7. The peripheral blood lymphocytes, PBL cells, removed after each of two successive vaccinations, have demonstrated for all the types of tumour tested an increasing level of CD8+ and CD8+28+ molecules and a switch from CD8+11b+ to CD8+11. All cancer patients were supervised for up to 19 months, the period corresponding to minimum survival of glioblastoma patients. The obtained results have permitted to specify the common criteria for “anti-IGF-I” strategy: characteristics sine qua non of injected “vaccines” (cloned cells IGF-I(−) and MHC-I(+)) and of PBL cells (CD8+ increased level). PMID:22400112

  1. The IGF-1 Receptor Identifies a Pool of Human Cardiac Stem Cells with Superior Therapeutic Potential for Myocardial Regeneration

    PubMed Central

    D’Amario, Domenico; Cabral-Da-Silva, Mauricio; Zheng, Hanqiao; Fiorini, Claudia; Goichberg, Polina; Steadman, Elisabeth; Ferreira-Martins, João; Sanada, Fumihiro; Piccoli, Marco; Cappetta, Donato; D’Alessandro, David A.; Michler, Robert E.; Hosoda, Toru; Anastasia, Luigi; Rota, Marcello; Leri, Annarosa; Anversa, Piero; Kajstura, Jan

    2012-01-01

    Rationale Age and coronary artery disease may negatively affect the function of human cardiac stem cells (hCSCs) and their potential therapeutic efficacy for autologous cell transplantation in the failing heart. Objective Insulin-like growth factor 1 (IGF-1) and 2 (IGF-2), and angiotensin II (Ang II) and their receptors, IGF-1R, IGF-2R and AT1R, were characterized in c-kit-positive-hCSCs to establish whether these systems would allow us to separate hCSC classes with different growth reserve in the aging and diseased myocardium. Methods and Results C-kit-positive-hCSCs were collected from myocardial samples obtained from 24 patients, 48 to 86 years of age, undergoing elective cardiac surgery for coronary artery disease. The expression of IGF-1R in hCSCs recognized a young cell phenotype defined by long telomeres, high telomerase activity, enhanced cell proliferation and attenuated apoptosis. In addition to IGF-1, IGF-1R-positive-hCSCs secreted IGF-2 that promoted myocyte differentiation. Conversely, the presence of IGF-2R and AT1R, in the absence of IGF-1R, identified senescent hCSCs with impaired growth reserve and increased susceptibility to apoptosis. The ability of IGF-1R-positive-hCSCs to regenerate infarcted myocardium was then compared with that of unselected c-kit-positive-hCSCs. IGF-1R-positive-hCSCs improved cardiomyogenesis and vasculogenesis. Pretreatment of IGF-1R-positive-hCSCs with IGF-2 resulted in the formation of more mature myocytes and superior recovery of ventricular structure. Conclusions hCSCs expressing only IGF-1R synthesize both IGF-1 and IGF-2, which are potent modulators of stem cell replication, commitment to the myocyte lineage and myocyte differentiation, pointing to this hCSC subset as the ideal candidate cell for the management of human heart failure. PMID:21546606

  2. Expressions of IGF-1, ERK, GLUT4, IRS-1 in metabolic syndrome complicated with colorectal cancer and their associations with the clinical characteristics of CRC.

    PubMed

    Hu, Jianxia; Liu, Xiaoyi; Chi, Jingwei; Che, Kui; Feng, Yan; Zhao, Shihua; Wang, Zhongchao; Wang, Yangang

    2018-01-01

    Epidemiological data have revealed that colorectal cancer (CRC) risk is increased in patients with Metabolic syndrome. To explore the expressions of IGF-1, ERK, GLUT4, IRS-1 in MS patients with CRC and their associations with the clinical characteristics of CRC. We investigated the expressions of IGF-1, ERK, GLUT4 and IRS-1 in greater omental adipose tissues of 168 MS patients with/without CRC, 85 CRC patients without MS and 98 healthy controls by RT-PCR, and analyzed the relationships between their expressions and clinical characteristics of CRC. The expression levels of IGF-1 and ERK in MS patients with/without CRC were higher while the expression levels of GLUT4 were lower compared with CRC patients without MS and healthy controls (P< 0.01). The expression levels of IGF-1 and ERK in MS patients with CRC were higher while expression levels of GLUT4 were lower compared to MS patients without CRC (P< 0.01). Expression levels of ERK, IGF-1, GLUT4 were associated with clinical characteristics of CRC, including tumor size, distant metastasis and advanced stages (III/IV) (P< 0.05). Expressions of IGF-1, ERK and GLUT4 in greater omental adipose tissues might be useful biomarkers and predictive targets in the diagnosis of CRC.

  3. Inhibition of HSF2 SUMOylation via MEL18 upregulates IGF-IIR and leads to hypertension-induced cardiac hypertrophy.

    PubMed

    Huang, Chih-Yang; Kuo, Chia-Hua; Pai, Pei-Ying; Ho, Tsung-Jung; Lin, Yueh-Min; Chen, Ray-Jade; Tsai, Fuu-Jen; Vijaya Padma, V; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-04-15

    Cardiac hypertrophy is a major characteristic of early-stage hypertension-related heart failure. We have found that the insulin-like growth factor receptor II (IGF-IIR) signaling was critical for hypertensive angiotensin II-induced cardiomyocyte hypertrophy and apoptosis. Moreover, this IGF-IIR signaling was elegantly modulated by the heat shock transcription factors (HSFs) during heart failure. However, the detailed mechanism by which HSFs regulates IGF-IIR during hypertension-induced cardiac hypertrophy remains elusive. In this study, we found that heat shock transcription factor 2 (HSF2) activated IGF-IIR to induce cardiac hypertrophy for hypertension-induced heart failure. The transcriptional activity of HSF2 appeared to be primarily mediated by SUMOylation via conjugation with small ubiquitin-like modifier-1 (SUMO-1). The SUMOylation of HSF2 was severely attenuated by MEL18 (also known as polycomb group ring finger 2 or PCGF2) in the heart of spontaneously hypertensive rats (SHR). Inhibition of HSF2 SUMOylation severely induced cardiac hypertrophy via IGF-IIR-mediated signaling in hypertensive rats. Angiotensin II receptor type I blocker (ARB) treatment in spontaneously hypertensive rats restored HSF2 SUMOylation and alleviated the cardiac defects. Thus, our study uncovered a novel MEL18-SUMO-1-HSF2-IGF-IIR pathway in the heart that profoundly influences cardiac hypertrophy for hypertension-induced heart failure. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Persistent IGF-I overexpression in skeletal muscle transiently enhances DNA accretion and growth.

    PubMed

    Fiorotto, Marta L; Schwartz, Robert J; Delaughter, M Craig

    2003-01-01

    Adult transgenic mice with muscle-specific overexpression of insulin-like growth factor (IGF)-I have enlarged skeletal muscles. In this study, we; 1) characterized the development of muscle hypertrophy with respect to fiber type, age, and sex; 2) determined the primary anabolic process responsible for development of hypertrophy; and 3) identified secondary effects of muscle hypertrophy on body composition. Transgene expression increased with age and was present only in fibers expressing type IIB fast myosin heavy chain. Muscle masses were greater by 5 wk of age, and by 10 wk of age the differences were maximal despite continued transgene expression. Total DNA and RNA contents of the gastrocnemius muscle were greater for transgenic mice than for nontransgenic littermates. The differences were maximal by 5 wk of age and preceded the increase in protein mass. The accelerated protein deposition ceased when the protein/DNA ratio attained the same value as in nontransgenic controls. Despite localization of IGF-I expression to muscle without changes in plasma IGF-I concentrations, genotype also modified the normal age and sex effects on fat deposition and organ growth. Thus, enhanced DNA accretion by IGF-I was primarily responsible for stimulating muscle growth. In turn, secondary effects on body composition were incurred that likely reflect the impact of muscle mass on whole body metabolism.

  5. IGF-1 and insulin as growth hormones.

    PubMed

    Laron, Zvi

    2004-01-01

    IGF-1 generated in the liver is the anabolic effector and linear growth promoting hormone of the pituitary growth hormone (GH). This is evidenced by dwarfism in states of congenital IGF-1 deficiency, Igf1 gene mutation/deletions or knockouts, and in Laron syndrome (LS), due to GH receptor gene mutations/deletions or IGF-1 receptor blocking. In a positive way, daily IGF-1 administration to stunted patients with LS or hGH gene deletion accelerates linear growth velocity. IGF-1 acts on the proliferative cells of the epiphyseal cartilage. IGF-1 also induces organ and tissue growth; its absence causing organomicria. Insulin shares a common ancestry with IGF-1 and with 45% amino acid homology, as well as very close relationships in the structure of its receptors and post-receptor cascade, also acts as a growth hormone. It has protein anabolic activity and stimulates IGF-1 synthesis. Pancreas agenesis causes short babies, and obese children with hyperinsulinism, with or without pituitary GH, have an accelerated growth rate and skeletal maturation; so do babies with macrosomia. Whether the insulin growth effect is direct, or mediated by IGF-1 or leptin is controversial.

  6. High protein diets do not attenuate decrements in testosterone and IGF-I during energy deficit.

    PubMed

    Henning, Paul C; Margolis, Lee M; McClung, James P; Young, Andrew J; Pasiakos, Stefan M

    2014-05-01

    Energy deficit (ED) diminishes fat-free mass (FFM) with concomitant reductions in anabolic hormone secretion. A modest increase in protein to recommended dietary allowance (RDA) levels during ED minimally attenuates decrements in insulin-like growth factor-I (IGF-I). The impact of dietary protein above the RDA on circulating anabolic hormones and their relationships with FFM in response to ED are not well described. Thirty-three adults were assigned diets providing protein at 0.8 (RDA), 1.6 (2×-RDA), and 2.4 (3×-RDA) g/kg/d for 31days. Testosterone, sex-hormone binding globulin (SHBG) and IGF-I system components were assessed after a 10-day period of weight-maintenance (WM) and after a 21-day period of ED (40%) achieved by an increase in energy expenditure and decreased energy intake. Associations between the change in FFM and anabolic hormone levels were determined. As compared to WM and regardless of dietary protein intake, total and free testosterone, total IGF-I, and acid-labile subunit decreased (P<0.05), whereas SHBG and IGF binding proteins-1, -2, and -3 increased (P<0.05) during ED. There were no energy-by-protein interactions on any hormones or IGF-I system components measured. Changes in FFM in response to ED were negatively associated with acid-labile subunit (ALS) (r=-0.62, P<0.05) in 2×-RDA; however, no other relationships were observed. Consuming a high protein diet does not impact the androgenic and IGF-I system response to ED. These data suggest that the protective effects of high protein diets on FFM during ED are likely not influenced by anabolic hormone concentrations. Published by Elsevier Inc.

  7. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila

    PubMed Central

    Ni, Lina; Klein, Mason; Svec, Kathryn V; Budelli, Gonzalo; Chang, Elaine C; Ferrer, Anggie J; Benton, Richard; Samuel, Aravinthan DT; Garrity, Paul A

    2016-01-01

    Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity. DOI: http://dx.doi.org/10.7554/eLife.13254.001 PMID:27126188

  8. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Insulin-Like Growth Factor I (IGF-1) Deficiency Ameliorates Sex Difference in Cardiac Contractile Function and Intracellular Ca2+ Homeostasis

    PubMed Central

    Ceylan-Isik, Asli F.; Li, Qun; Ren, Jun

    2011-01-01

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca2+ properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (± dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR90), fura-fluorescence intensity (FFI) and intracellular Ca2+ clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ± dL/dt, longer TPS, TR90 and intracellular Ca2+ clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na+-Ca2+ exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca2+ regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca2+ regulation. PMID:21763763

  10. Insulin-like growth factor I (IGF-1) deficiency ameliorates sex difference in cardiac contractile function and intracellular Ca(2+) homeostasis.

    PubMed

    Ceylan-Isik, Asli F; Li, Qun; Ren, Jun

    2011-10-10

    Sex difference in cardiac contractile function exists which may contribute to the different prevalence in cardiovascular diseases between genders. However, the precise mechanisms of action behind sex difference in cardiac function are still elusive. Given that sex difference exists in insulin-like growth factor I (IGF-1) cascade, this study is designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on sex difference in cardiac function. Echocardiographic, cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including ventricular geometry, fractional shortening, peak shortening, maximal velocity of shortening/relengthening (±dL/dt), time-to-peak shortening (TPS), time-to-90% relengthening (TR(90)), fura-fluorescence intensity (FFI) and intracellular Ca(2+) clearance. Female C57 mice exhibited significantly higher plasma IGF-1 levels than their male counterpart. LID mice possessed comparably low IGF-1 levels in both sexes. Female C57 and LID mice displayed lower body, heart and liver weights compared to male counterparts. Echocardiographic analysis revealed larger LV mass in female C57 but not LID mice without sex difference in other cardiac geometric indices. Myocytes from female C57 mice exhibited reduced peak shortening, ±dL/dt, longer TPS, TR(90) and intracellular Ca(2+) clearance compared with males. Interestingly, this sex difference was greatly attenuated or abolished by IGF-1 deficiency. Female C57 mice displayed significantly decreased mRNA and protein levels of Na(+)-Ca(2+) exchanger, SERCA2a and phosphorylated phospholamban as well as SERCA activity compared with male C57 mice. These sex differences in Ca(2+) regulatory proteins were abolished or overtly attenuated by IGF-1 deficiency. In summary, our data suggested that IGF-1 deficiency may significantly attenuated or mitigate the sex difference in cardiomyocyte contractile function associated with intracellular Ca(2+) regulation. Copyright © 2011 Elsevier Ireland

  11. 17beta-estradiol potently suppresses cAMP-induced insulin-like growth factor-I gene activation in primary rat osteoblast cultures

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Shu, H.; Casinghino, S.; Crothers, K.; Rotwein, P.; Centrella, M.

    1997-01-01

    Insulin-like growth factor-I (IGF-I) is a key factor in bone remodeling. In osteoblasts, IGF-I synthesis is enhanced by parathyroid hormone and prostaglandin E2 (PGE2) through cAMP-activated protein kinase. In rats, estrogen loss after ovariectomy leads to a rise in serum IGF-I and an increase in bone remodeling, both of which are reversed by estrogen treatment. To examine estrogen-dependent regulation of IGF-I expression at the molecular level, primary fetal rat osteoblasts were co-transfected with the estrogen receptor (hER, to ensure active ER expression), and luciferase reporter plasmids controlled by promoter 1 of the rat IGF-I gene (IGF-I P1), used exclusively in these cells. As reported, 1 microM PGE2 increased IGF-I P1 activity by 5-fold. 17beta-Estradiol alone had no effect, but dose-dependently suppressed the stimulatory effect of PGE2 by up to 90% (ED50 approximately 0.1 nM). This occurred within 3 h, persisted for at least 16 h, required ER, and appeared specific, since 17alpha-estradiol was 100-300-fold less effective. By contrast, 17beta-estradiol stimulated estrogen response element (ERE)-dependent reporter expression by up to 10-fold. 17beta-Estradiol also suppressed an IGF-I P1 construct retaining only minimal promoter sequence required for cAMP-dependent gene activation, but did not affect the 60-fold increase in cAMP induced by PGE2. There is no consensus ERE in rat IGF-I P1, suggesting novel downstream interactions in the cAMP pathway that normally enhances IGF-I expression in skeletal cells. To explore this, nuclear extract from osteoblasts expressing hER were examined by electrophoretic mobility shift assay using the atypical cAMP response element in IGF-I P1. Estrogen alone did not cause DNA-protein binding, while PGE2 induced a characteristic gel shift complex. Co-treatment with both hormones caused a gel shift greatly diminished in intensity, consistent with their combined effects on IGF-I promoter activity. Nonetheless, hER did not bind

  12. Inhibition of insulin-like growth factor receptor-1 reduces necroptosis-related markers and attenuates LPS-induced lung injury in mice.

    PubMed

    Lee, Su Hwan; Shin, Ju Hye; Song, Joo Han; Leem, Ah Young; Park, Moo Suk; Kim, Young Sam; Chang, Joon; Chung, Kyung Soo

    2018-04-15

    Insulin-like growth factor-1 (IGF-1) levels are known to increase in the bronchoalveolar lavage fluid (BALF) of patients with acute respiratory distress syndrome. Herein, we investigated the role of IGF-1 in lipopolysaccharide (LPS)-induced lung injury. In LPS-treated cells, expressions of receptor-interacting protein 3 (RIP3) and phosphorylated mixed lineage kinase domain-like protein (MLKL) were decreased in IGF-1 receptor small interfering RNA (siRNA)-treated cells compared to control cells. The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-10, tumour necrosis factor-α, and macrophage inflammatory protein 2/C-X-C motif chemokine ligand 2 in the supernatant were significantly reduced in IGF-1 receptor siRNA-treated cells compared to control cells. In LPS-induced murine lung injury model, total cell counts, polymorphonuclear leukocytes counts, and pro-inflammatory cytokine levels in the BALF were significantly lower and histologically detected lung injury was less common in the group treated with IGF-1 receptor monoclonal antibody compared to the non-treated group. On western blotting, RIP3 and phosphorylated MLKL expressions were relatively decreased in the IGF-1 receptor monoclonal antibody group compared to the non-treated group. IGF-1 may be associated with RIP3-mediated necroptosis in vitro, while blocking of the IGF-1 pathway may reduce LPS-induced lung injuries in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Granulosa cells of the cumulus oophorus are different from mural granulosa cells in their response to gonadotrophins and IGF-I.

    PubMed

    Khamsi, F; Roberge, S

    2001-09-01

    There are two types of granulosa cells: those which surround the oocyte are cumulus cells (CC) and those which surround the antrum are mural granulosa cells (MGC). These cells are under the influence of several hormones and growth factors, the most important of which are gonadotrophins and IGF-I. In this article, we report novel observations on the differences between these two types of granulosa cells and their interaction with gonadotrophins and IGF-I. We were able to conduct physiological studies on the role of IGF-I by using an analogue of IGF-I which does not bind to IGF-I-binding proteins (LR3-IGF-I). Immature rats received saline, equine chorionic gonadotrophin (eCG), LR3-IGF-I or eCG plus LR3-IGF-I by infusion using a pump from 24-29 days of age. The rats were killed and the ovaries removed. Surface follicles were punctured and MGC and oocyte cumulus complexes were removed. These were cultured in saline (control) and in three different doses of FSH. Cell replication was assessed by 3H-thymidine incorporation and differentiation was evaluated by the measurement of progesterone secretion. It was noted that CC replicated ten times more than MGC. Similarly, progesterone secretion by CC was six times more than by MGC. In vivo exposure to gonadotrophins (eCG) positively influenced in vitro treatment with FSH in both cell types. This phenomenon was observed in both cell replication and progesterone secretion. The IGF-I analogue had a positive effect on cell replication of MGC but a negative effect on the cell replication of CC. With respect to progesterone secretion, the IGF-I analogue had a negative effect on CC but a positive effect on MGC. In conclusion, CC behaved differently from MGC in response to gonadotrophins and the IGF-I analogue. IGF-I and FSH acted additively, synergistically or antagonistically in different circumstances.

  14. Addition of IGF-I to storage-cooled boar semen and its effect on sperm quality.

    PubMed

    Silva, D M; Zangeronimo, M G; Murgas, L D S; Rocha, L G P; Chaves, B R; Pereira, B A; Cunha, E C P

    2011-12-01

    To evaluate in vitro IGF-I treatment during warming of storage-cooled boar semen and its effect on seminal quality parameters and metabolism in spermatic cells. Semen samples (n=7) warmed after stored at 15°C for 24 or 72h were divided into four equal parts. Different IGF-I concentrations (0, 50, 100 and 150ng/mL) were added to the semen samples. The samples were incubated at 37°C, and assessments were made after 0 and 120min of incubation. For semen samples that were stored for 24h, the addition of IGF-I had no effect (p>0.05) on the total motility and intensity of movements by spermatic cells, osmotic resistance, live:dead cell ratio or total spermatic abnormalities. However, incubation with 150ng/mL IGF-I did decrease glutathione peroxidase activity (p<0.05) and reduce lipid peroxidation after 120min of incubation. For semen samples stored for 72h and incubated with IGF-I for 120min, there was a linear relationship between the IGF-I concentration and the live:dead ratio (p<0.05). There was a quadratic relationship between the IGF-I concentration and both the osmotic resistance (peak results at IGF-I=62.4ng/mL) and glutathione peroxidase activity (peak results at IGF-I=77.8ng/mL). There was no effect on lipid peroxidation (p>0.05) after 120min of incubation. Addition of IGF-I also decreased fructose utilization by spermatic cells regardless of semen storage time (p<0.05). This study suggests that IGF-I may be beneficial to semen stored for longer periods of time. Adding 150ng/mL IGF-I improved the quality of semen stored for 24h, and adding 78ng/mL IGF-I improved the quality of semen stored for 72h. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Normal growth and development in the absence of hepatic insulin-like growth factor I

    PubMed Central

    Yakar, Shoshana; Liu, Jun-Li; Stannard, Bethel; Butler, Andrew; Accili, Domenici; Sauer, Brian; LeRoith, Derek

    1999-01-01

    The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I. PMID:10377413

  16. IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells.

    PubMed

    Strömberg, Thomas; Ekman, Simon; Girnita, Leonard; Dimberg, Lina Y; Larsson, Olle; Axelson, Magnus; Lennartsson, Johan; Hellman, Ulf; Carlson, Kristina; Osterborg, Anders; Vanderkerken, Karin; Nilsson, Kenneth; Jernberg-Wiklund, Helena

    2006-01-15

    Emerging evidence suggests the insulin-like growth factor-1 receptor (IGF-1R) to be an important mediator of tumor-cell survival and resistance to cytotoxic therapy in multiple myeloma (MM). Recently, members of the cyclolignan family have been shown to selectively inhibit the receptor tyrosine kinase (RTK) activity of the IGF-1R beta-chain. The effects of the cyclolignan picropodophyllin (PPP) were studied in vitro using a panel of 13 MM cell lines and freshly purified tumor cells from 10 patients with MM. PPP clearly inhibited growth in all MM cell lines and primary MM samples cultured in the presence or absence of bone marrow stromal cells. PPP induced a profound accumulation of cells in the G(2)/M-phase and an increased apoptosis. Importantly, IGF-1, IGF-2, insulin, or IL-6 did not reduce the inhibitory effects of PPP. As demonstrated by in vitro kinase assays, PPP down-regulated the IGF-1 RTK activity without inhibiting the insulin RTK activity. This conferred decreased phosphorylation of Erk1/2 and reduced cyclin dependent kinase (CDK1) activity. In addition, the expression of mcl-1 and survivin was reduced. Taken together, we suggest that interfering with the IGF-1 RTK by using the cyclolignan PPP offers a novel and selective therapeutic strategy for MM.

  17. Possible role of IGF2 receptors in regulating selection of 2 dominant follicles in cattle selected for twin ovulations and births

    USDA-ARS?s Scientific Manuscript database

    Abundance of IGF-2 receptor (IGF2R), FSH receptor (FSHR), and LH receptor (LHCGR) mRNA in granulosa cells (GCs) or theca cells (TCs) or both cells as well as estradiol (E2), progesterone (P4), and androstenedione concentrations in follicular fluid were compared in cows genetically selected (Twinner)...

  18. The effect of growth hormone on bioactive IGF in overweight/obese women.

    PubMed

    Dichtel, Laura E; Bjerre, Mette; Schorr, Melanie; Bredella, Miriam A; Gerweck, Anu V; Russell, Brian M; Frystyk, Jan; Miller, Karen K

    2018-03-10

    Overweight/obesity is characterized by decreased growth hormone (GH) secretion whereas circulating IGF-I levels are less severely reduced. Yet, the activity of the circulating IGF-system appears to be normal in overweight/obese subjects, as estimated by the ability of serum to activate the IGF-I receptor in vitro (bioactive IGF). We hypothesized that preservation of bioactive IGF in overweight/obese women is regulated by an insulin-mediated suppression of IGF-binding protein-1 (IGFBP-1) and IGFBP-2, and by suppression of IGFBP-3, mediated by low GH. We additionally hypothesized that increases in bioactive IGF would drive changes in body composition with low-dose GH administration. Cross-sectional analysis and 3-month interim analysis of a 6-month randomized, placebo-controlled study of GH administration in 50 overweight/obese women without diabetes mellitus. Bioactive IGF (kinase receptor activation assay) and body composition (DXA) were measured. Prior to treatment, IGFBP-3 (r = -0.33, p = 0.02), but neither IGFBP-1 nor IGFBP-2, associated inversely with bioactive IGF. In multivariate analysis, lower IGFBP-3 correlated with lower peak stimulated GH (r = 0.45, p = 0.05) and higher insulin sensitivity (r = -0.74, p = 0.003). GH administration resulted in an increase in mean serum IGF-I concentrations (144 ± 56 to 269 ± 66 μg/L, p < 0.0001) and bioactive IGF (1.29 ± 0.39 to 2.60 ± 1.12 μg/L, p < 0.0001). The treatment-related increase in bioactive IGF, but not total IGF-I concentration, predicted an increase in lean mass (r = 0.31, p = 0.03) and decrease in total adipose tissue/BMI (r = -0.43, p = 0.003). Our data suggest that in overweight/obesity, insulin sensitivity and GH have opposing effects on IGF bioactivity through effects on IGFBP-3. Furthermore, increases in bioactive IGF, rather than IGF-I concentration, predicted GH administration-related body composition changes. NCT00131378

  19. Molecular and Structural Traits of Insulin Receptor Substrate 1/LC3 Nuclear Structures and Their Role in Autophagy Control and Tumor Cell Survival.

    PubMed

    Lassak, Adam; Dean, Mathew; Wyczechowska, Dorota; Wilk, Anna; Marrero, Luis; Trillo-Tinoco, Jimena; Boulares, A Hamid; Sarkaria, Jann N; Del Valle, Luis; Peruzzi, Francesca; Ochoa, Augusto; Reiss, Krzysztof

    2018-05-15

    Insulin receptor substrate 1 (IRS-1) is a common cytosolic adaptor molecule involved in signal transduction from insulin and insulin-like growth factor I (IGF-I) receptors. IRS-1 can also be found in the nucleus. We report here a new finding of unique IRS-1 nuclear structures, which we observed initially in glioblastoma biopsy specimens and glioblastoma xenografts. These nuclear structures can be reproduced in vitro by the ectopic expression of IRS-1 cDNA cloned in frame with the nuclear localization signal (NLS-IRS-1). In these structures, IRS-1 localizes at the periphery, while the center harbors a key autophagy protein, LC3. These new nuclear structures are highly dynamic, rapidly exchange IRS-1 molecules with the surrounding nucleoplasm, disassemble during mitosis, and require a growth stimulus for their reassembly and maintenance. In tumor cells engineered to express NLS-IRS-1, the IRS-1/LC3 nuclear structures repress autophagy induced by either amino acid starvation or rapamycin treatment. In this process, IRS-1 nuclear structures sequester LC3 inside the nucleus, possibly preventing its cytosolic translocation and the formation of new autophagosomes. This novel mechanism provides a quick and reversible way of inhibiting autophagy, which could counteract autophagy-induced cancer cell death under severe stress, including anticancer therapies. Copyright © 2018 American Society for Microbiology.

  20. The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1997-01-01

    Exposure to reduced gravity during space travel profoundly alters the loads placed on bone and muscle. Astronauts suffer significant losses of muscle and bone strength during weightlessness. Exercise as a countermeasure is only partially effective in remedying severe muscle atrophy and bone demineralization. Similar wasting of muscles and bones affects people on Earth during prolonged bed rest or immobilization due to injury. In the absence of weight bearing activity, atrophy occurs primarily in the muscles that act in low power, routine movements and in maintaining posture. Hormonal disfunction could contribute in part to the loss of muscle and bone during spaceflight. Reduced levels of human Growth Hormone (hGH) were found in astronauts during space flight, as well as reduced GH secretory activity was observed from the anterior pituitary in 7-day space flight rats. Growth hormone has been shown to be required for maintenance of muscle mass and bone mineralization, in part by mediating the biosynthesis IGF-I, a small polypeptide growth factor. IGF biosynthesis and secretion plays an important role in potentiating muscle cell differentiation and has been shown to drive the expression of myogenin, a myogenic specific basic helix-loop-helix factor. IGF-I has also been shown to have an important role in potentiating muscle regeneration, repair and adult muscle hypertrophy.

  1. DA Negatively Regulates IGF-I Actions Implicated in Cognitive Function via Interaction of PSD95 and nNOS in Minimal Hepatic Encephalopathy

    PubMed Central

    Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan

    2017-01-01

    Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95–nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95–nNOS interactions in MHE. PMID:28932186

  2. DA Negatively Regulates IGF-I Actions Implicated in Cognitive Function via Interaction of PSD95 and nNOS in Minimal Hepatic Encephalopathy.

    PubMed

    Ding, Saidan; Zhuge, Weishan; Wang, Xuebao; Yang, Jianjing; Lin, Yuanshao; Wang, Chengde; Hu, Jiangnan; Zhuge, Qichuan

    2017-01-01

    Insulin-like growth factor I (IGF-I) has been positively correlated with cognitive ability. Cognitive decline in minimal hepatic encephalopathy (MHE) was shown to be induced by elevated intracranial dopamine (DA). The beneficial effect of IGF-I signaling in MHE remains unknown. In this study, we found that IGF-I content was reduced in MHE rats and that IGF-I administration mitigated cognitive decline of MHE rats. A protective effect of IGF-I on the DA-induced interaction between postsynaptic density protein 95 (PSD95) and neuronal nitric oxide synthase (nNOS) was found in neurons. Ribosomal S6 protein kinase (RSK) phosphorylated nNOS in response to IGF-I by recruiting extracellular signal-regulated kinase (ERK1/2). In turn, DA inactivated the ERK1/2/RSK pathway and stimulated the PSD95-nNOS interaction by downregulating IGF-I. Inhibition of the interaction between PSD95 and nNOS ameliorated DA-induced memory impairment. As DA induced deficits in the ERK1/2/RSK pathway and the interaction between PSD95 and nNOS in MHE brains, IGF-I administration exerted a protective effect via interruption of the interaction between PSD95 and nNOS. These results suggest that IGF-I antagonizes DA-induced cognitive loss by disrupting PSD95-nNOS interactions in MHE.

  3. Low circulating IGF-I levels in hyperthyroidism are associated with decreased GH response to GH-releasing hormone.

    PubMed

    Ramos-Dias, J C; Yateman, M; Camacho-Hübner, C; Grossman, A; Lengyel, A M

    1995-11-01

    in the blunted GH response to GHRH in hyperthyroid patients. Our data suggest that the blunted GH response to GHRH in hyperthyroidism is apparently not related to circulating IGF-I levels. It is possible that nutritional factors could play a role in the reduced circulating IGF-I levels found in these patients.

  4. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence.

    PubMed

    Matsumoto, Ryusaku; Fukuoka, Hidenori; Iguchi, Genzo; Odake, Yukiko; Yoshida, Kenichi; Bando, Hironori; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Yamada, Shozo; Ogawa, Wataru; Takahashi, Yutaka

    2015-01-01

    Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases. We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts. Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence. Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I.

  5. The effects of milking frequency on insulin-like growth factor I signaling within the mammary gland of dairy cows.

    PubMed

    Murney, R; Stelwagen, K; Wheeler, T T; Margerison, J K; Singh, K

    2015-08-01

    In dairy cows, short-term changes in milking frequency (MF) in early lactation have been shown to produce both an immediate and a long-term effect on milk yield. The effect of MF on milk yield is controlled locally within mammary glands and could be a function of changes in either number or activity of secretory mammary epithelial cells (MEC). Insulin-like growth factor I (IGF-I) signaling is one candidate factor that could mediate these effects, as it can be controlled locally within mammary glands. Both MEC number and activity can be affected by IGF-I signaling by activating the phosphoinositide 3-kinase (PI3K)/Akt and extracellular-signal-regulated kinase (ERK)1/2 pathways. To investigate the relationship between MF and IGF-I signaling, udder halves of 17 dairy cows were milked either 4 times a day (4×) or once a day (1×) for 14 d in early lactation. On d 14, between 3 and 5 h following milking, mammary biopsies were obtained from 10 cows from both udder halves, and changes in the expression of genes associated with IGF-I signaling and the activation of the PI3K/Akt and ERK1/2 pathways were measured. The mRNA abundance of IGF type I receptor, IGF binding protein (IGFBP)-3, and IGFBP-5 were lower following 4× milking relative to 1× milking. However, the mRNA abundance of IGF-I was not affected by MF. Both IGFBP3 and IGFBP5 are thought to inhibit IGF-I; therefore, decreases in their mRNA abundance may serve to stimulate the IGF-I signal in the 4×-milked mammary gland. The activation of PI3K/Akt pathway was lower in response to 4× milking relative to 1×, and the activation of the ERK1/2 was unaffected by MF, suggesting that they do not mediate the effects of MF. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Insulin Resistance Negatively Influences the Muscle-Dependent IGF-1-Bone Mass Relationship in Premenarcheal Girls.

    PubMed

    Kindler, J M; Pollock, N K; Laing, E M; Jenkins, N T; Oshri, A; Isales, C; Hamrick, M; Lewis, R D

    2016-01-01

    IGF-1 promotes bone growth directly and indirectly through its effects on skeletal muscle. Insulin and IGF-1 share a common cellular signaling process; thus, insulin resistance may influence the IGF-1-muscle-bone relationship. We sought to determine the effect of insulin resistance on the muscle-dependent relationship between IGF-1 and bone mass in premenarcheal girls. This was a cross-sectional study conducted at a university research center involving 147 girls ages 9 to 11 years. Glucose, insulin, and IGF-1 were measured from fasting blood samples. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated from glucose and insulin. Fat-free soft tissue (FFST) mass and bone mineral content (BMC) were measured by dual-energy x-ray absorptiometry. Our primary outcome was BMC/height. In our path model, IGF-1 predicted FFST mass (b = 0.018; P = .001), which in turn predicted BMC/height (b = 0.960; P < .001). IGF-1 predicted BMC/height (b = 0.001; P = .002), but not after accounting for the mediator of this relationship, FFST mass. The HOMA-IR by IGF-1 interaction negatively predicted FFST mass (b = -0.044; P = .034). HOMA-IR had a significant and negative effect on the muscle-dependent relationship between IGF-1 and BMC/height (b = -0.151; P = .047). Lean body mass is an important intermediary factor in the IGF-1-bone relationship. For this reason, bone development may be compromised indirectly via suboptimal IGF-1-dependent muscle development in insulin-resistant children.

  7. Superoxide anion radicals induce IGF-1 resistance through concomitant activation of PTP1B and PTEN

    PubMed Central

    Singh, Karmveer; Maity, Pallab; Krug, Linda; Meyer, Patrick; Treiber, Nicolai; Lucas, Tanja; Basu, Abhijit; Kochanek, Stefan; Wlaschek, Meinhard; Geiger, Hartmut; Scharffetter-Kochanek, Karin

    2015-01-01

    The evolutionarily conserved IGF-1 signalling pathway is associated with longevity, metabolism, tissue homeostasis, and cancer progression. Its regulation relies on the delicate balance between activating kinases and suppressing phosphatases and is still not very well understood. We report here that IGF-1 signalling in vitro and in a murine ageing model in vivo is suppressed in response to accumulation of superoxide anions () in mitochondria, either by chemical inhibition of complex I or by genetic silencing of -dismutating mitochondrial Sod2. The -dependent suppression of IGF-1 signalling resulted in decreased proliferation of murine dermal fibroblasts, affected translation initiation factors and suppressed the expression of α1(I), α1(III), and α2(I) collagen, the hallmarks of skin ageing. Enhanced led to activation of the phosphatases PTP1B and PTEN, which via dephosphorylation of the IGF-1 receptor and phosphatidylinositol 3,4,5-triphosphate dampened IGF-1 signalling. Genetic and pharmacologic inhibition of PTP1B and PTEN abrogated -induced IGF-1 resistance and rescued the ageing skin phenotype. We thus identify previously unreported signature events with , PTP1B, and PTEN as promising targets for drug development to prevent IGF-1 resistance-related pathologies. PMID:25520316

  8. A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk

    PubMed Central

    Travis, Ruth C.; Appleby, Paul N.; Martin, Richard M.; Holly, Jeff M.P.; Albanes, Demetrius; Black, Amanda; Bueno-de-Mesquita, H.B(as).; Chan, June M.; Chen, Chu; Chirlaque, Maria-Dolores; Cook, Michael B.; Deschasaux, Mélanie; Donovan, Jenny L.; Ferrucci, Luigi; Galan, Pilar; Giles, Graham G.; Giovannucci, Edward L.; Gunter, Marc J.; Habel, Laurel A.; Hamdy, Freddie C.; Helzlsouer, Kathy J.; Hercberg, Serge; Hoover, Robert N.; Janssen, Joseph A.M.J.L.; Kaaks, Rudolf; Kubo, Tatsuhiko; Le Marchand, Loic; Metter, E. Jeffrey; Mikami, Kazuya; Morris, Joan K.; Neal, David E.; Neuhouser, Marian L.; Ozasa, Kotaro; Palli, Domenico; Platz, Elizabeth A.; Pollak, Michael; Price, Alison J.; Roobol, Monique J.; Schaefer, Catherine; Schenk, Jeannette M.; Severi, Gianluca; Stampfer, Meir J.; Stattin, Pär; Tamakoshi, Akiko; Tangen, Catherine M.; Touvier, Mathilde; Wald, Nicholas J.; Weiss, Noel S.; Ziegler, Regina G.

    2016-01-01

    The role of insulin-like growth factors (IGFs) in prostate cancer development is not fully understood. To investigate the association between circulating concentrations of IGFs (IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3) and prostate cancer risk, we pooled individual participant data from 17 prospective and two cross-sectional studies, including up to 10,554 prostate cancer cases and 13,618 control participants. Conditional logistic regression was used to estimate the odds ratios (ORs) for prostate cancer based on the study-specific fifth of each analyte. Overall, IGF-I, IGF-II, IGFBP-2, and IGFBP-3 concentrations were positively associated with prostate cancer risk (Ptrend all ≤ 0.005), and IGFBP-1 was weakly inversely associated with risk (Ptrend = 0.05). However, heterogeneity between the prospective and cross-sectional studies was evident (Pheterogeneity = 0.03), unless the analyses were restricted to prospective studies (with the exception of IGF-II, Pheterogeneity = 0.02). For prospective studies, the OR for men in the highest versus the lowest fifth of each analyte was 1.29 (95% confidence interval=1.16-1.43) for IGF-I, 0.81 (0.68-0.96) for IGFBP-1, and 1.25 (1.12-1.40) for IGFBP-3. These associations did not differ significantly by time-to-diagnosis or tumor stage or grade. After mutual adjustment for each of the other analytes, only IGF-I remained associated with risk. Our collaborative study represents the largest pooled analysis of the relationship between prostate cancer risk and circulating concentrations of IGF-I, providing strong evidence that IGF-I is highly likely to be involved in prostate cancer development. PMID:26921328

  9. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice.

    PubMed

    Xing, Weirong; Govoni, Kristen E; Donahue, Leah Rae; Kesavan, Chandrasekhar; Wergedal, Jon; Long, Carlin; Bassett, J H Duncan; Gogakos, Apostolos; Wojcicka, Anna; Williams, Graham R; Mohan, Subburaman

    2012-05-01

    Understanding how bone growth is regulated by hormonal and mechanical factors during early growth periods is important for optimizing the attainment of peak bone mass to prevent or postpone the occurrence of fragility fractures later in life. Using genetic mouse models that are deficient in thyroid hormone (TH) (Tshr(-/-) and Duox2(-/-)), growth hormone (GH) (Ghrhr(lit/lit)), or both (Tshr(-/-); Ghrhr(lit/lit)), we demonstrate that there is an important period prior to puberty when the effects of GH are surprisingly small and TH plays a critical role in the regulation of skeletal growth. Daily administration of T3/T4 during days 5 to 14, the time when serum levels of T3 increase rapidly in mice, rescued the skeletal deficit in TH-deficient mice but not in mice lacking both TH and GH. However, treatment of double-mutant mice with both GH and T3/T4 rescued the bone density deficit. Increased body fat in the TH-deficient as well as TH/GH double-mutant mice was rescued by T3/T4 treatment during days 5 to 14. In vitro studies in osteoblasts revealed that T3 in the presence of TH receptor (TR) α1 bound to a TH response element in intron 1 of the IGF-I gene to stimulate transcription. In vivo studies using TRα and TRβ knockout mice revealed evidence for differential regulation of insulin-like growth factor (IGF)-I expression by the two receptors. Furthermore, blockade of IGF-I action partially inhibited the biological effects of TH, thus suggesting that both IGF-I-dependent and IGF-I-independent mechanisms contribute to TH effects on prepubertal bone acquisition. Copyright © 2012 American Society for Bone and Mineral Research.

  10. Accelerated Telomere Shortening in Acromegaly; IGF-I Induces Telomere Shortening and Cellular Senescence

    PubMed Central

    Matsumoto, Ryusaku; Fukuoka, Hidenori; Iguchi, Genzo; Odake, Yukiko; Yoshida, Kenichi; Bando, Hironori; Suda, Kentaro; Nishizawa, Hitoshi; Takahashi, Michiko; Yamada, Shozo; Ogawa, Wataru; Takahashi, Yutaka

    2015-01-01

    Objective Patients with acromegaly exhibit reduced life expectancy and increased prevalence of age-related diseases, such as diabetes, hypertension, and cardiovascular disease. However, the underlying mechanism has not been fully elucidated. Telomere shortening is reportedly associated with reduced life expectancy and increased prevalence of these age-related diseases. Methods We measured telomere length in patients with acromegaly using quantitative PCR method. The effect of GH and IGF-I on telomere length and cellular senescence was examined in human skin fibroblasts. Results Patients with acromegaly exhibited shorter telomere length than age-, sex-, smoking-, and diabetes-matched control patients with non-functioning pituitary adenoma (0.62 ± 0.23 vs. 0.75 ± 0.35, respectively, P = 0.047). In addition, telomere length in acromegaly was negatively correlated with the disease duration (R 2 = 0.210, P = 0.003). In vitro analysis revealed that not GH but IGF-I induced telomere shortening in human skin fibroblasts. Furthermore, IGF-I-treated cells showed increased senescence-associated β-galactosidase activity and expression of p53 and p21 protein. IGF-I-treated cells reached the Hayflick limit earlier than GH- or vehicle-treated cells, indicating that IGF-I induces cellular senescence. Conclusion Shortened telomeres in acromegaly and cellular senescence induced by IGF-I can explain, in part, the underlying mechanisms by which acromegaly exhibits an increased morbidity and mortality in association with the excess secretion of IGF-I. PMID:26448623

  11. [Association between IGF system and PAPP-A in coronary atherosclerosis].

    PubMed

    Fierro-Macías, Alfonso Eduardo; Floriano-Sánchez, Esaú; Mena-Burciaga, Victoria Michelle; Gutiérrez-Leonard, Hugo; Lara-Padilla, Eleazar; Abarca-Rojano, Edgar; Fierro-Almanzán, Alfonso Edmundo

    2016-01-01

    Atherosclerosis is a condition that involves multiple pathophysiological mechanisms and whose knowledge has not been fully elucidated. Often, scientific advances on the atherogenic pathophysiology generate that molecules not previously considered in the scene of this disease, were attributed actions on the onset or progression of it. A representative example is the study of a new mechanism involved in the atherogenic process, consisting of the association between the insulin-like growth factor (IGF) system and pregnancy-associated plasma protein-A (PAPP-A). Insulin-like growth factor system is a family of peptides that include 3 peptide hormones, 4 transmembrane receptors and 6 binding proteins. Insulin-like growth factor-1 (IGF-1) is the main ligand of the IGF system involved in coronary atherosclerosis. IGF-1 exerts its effects via activation of the IGF-1R receptor on vascular smooth muscle cells or macrophages. In vascular smooth muscle cells promotes migration and prevents apoptosis which increases plaque stability while in macrophages reduces reverse cholesterol transport leading to the formation of foam cells. Regulation of IGF-1 endothelial bioavailability is carried out by IGFBP proteases, mainly by PAPP-A. In this review, we address the mechanisms between IGF system and PAPP-A in atherosclerosis with emphasis on molecular effects on vascular smooth muscle cells and macrophages. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  12. Insulin-like growth factor (IGF) signalling is required for early dorso-anterior development of the zebrafish embryo.

    PubMed

    Eivers, Edward; McCarthy, Karena; Glynn, Catherine; Nolan, Catherine M; Byrnes, Lucy

    2004-12-01

    The insulin-like growth factor (IGF) signalling pathway has been highly conserved in animal evolution and, in mammals and Xenopus, plays a key role in embryonic growth and development, with the IGF-1 receptor (IGF-1R) being a crucial regulator of the signalling cascade. Here we report the first functional role for the IGF pathway in zebrafish. Expression of mRNA coding for a dominant negative IGF-1R resulted in embryos that were small in size compared to controls and had disrupted head and CNS development. At its most extreme, this phenotype was characterized by a complete loss of head and eye structures, an absence of notochord and the presence of abnormal somites. In contrast, up-regulation of IGF signalling following injection of IGF-1 mRNA, resulted in a greatly expanded development of anterior structures at the expense of trunk and tail. IGF-1R knockdown caused a significant decrease in the expression of Otx2, Rx3, FGF8, Pax6.2 and Ntl, while excess IGF signalling expanded Otx2 expression in presumptive forebrain tissue and widened the Ntl expression domain in the developing notochord. The observation that IGF-1R knockdown reduced expression of two key organizer genes (chordin and goosecoid) suggests that IGF signalling plays a role in regulating zebrafish organizer activity. This is supported by the expression of IGF-1, IGF-2 and IGF-1R in shield-stage zebrafish embryos and the demonstration that IGF signalling influences expression of BMP2b, a gene that plays an important role in zebrafish pattern formation. Our data is consistent with a common pathway for integration of IGF, FGF8 and anti-BMPs in early vertebrate development.

  13. Bidirectional TSH and IGF-1 receptor cross talk mediates stimulation of hyaluronan secretion by Graves' disease immunoglobins.

    PubMed

    Krieger, Christine C; Neumann, Susanne; Place, Robert F; Marcus-Samuels, Bernice; Gershengorn, Marvin C

    2015-03-01

    There is no pathogenetically linked medical therapy for Graves' ophthalmopathy (GO). Lack of animal models and conflicting in vitro studies have hindered the development of such therapy. Recent reports propose that Graves' Igs bind to and activate thyrotropin receptors (TSHRs) and IGF-1 receptors (IGF-1Rs) on cells in orbital fat, stimulating hyaluronan (HA) secretion, a component of GO. The objective of the study was to investigate potential cross talk between TSHRs and IGF-1Rs in the pathogenesis of GO using a sensitive HA assay. Orbital fibroblasts from GO patients were collected in an academic clinical practice and cultured in a research laboratory. Cells were treated with TSH, IGF-1, and a monoclonal Graves' Ig M22. HA was measured by a modified ELISA. Simultaneous activation by TSH and IGF-1 synergistically increased HA secretion from 320 ± 52 for TSH and 430 ± 65 μg/mL for IGF-1 alone, to 1300 ± 95 μg/mL. IGF-1 shifted the TSH EC50 19-fold to higher potency. The dose response to M22 was biphasic. An IGF-1R antagonist inhibited the higher potency phase but had no effect on the lower potency phase. M22 did not cause IGF-1R autophosphorylation. A TSHR antagonist abolished both phases of M22-stimulated HA secretion. M22 stimulation of HA secretion by GO fibroblasts/preadipocytes involves cross talk between TSHR and IGF-1R. This cross talk relies on TSHR activation rather than direct activation of IGF-1R and leads to synergistic stimulation of HA secretion. These data propose a model for GO pathogenesis that explains previous contradictory results and argues for TSHR as the primary therapeutic target for GO.

  14. Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing's Sarcoma: Reality and Expectations

    PubMed Central

    Olmos, David; Martins, Ana Sofia; Jones, Robin L.; Alam, Salma; Scurr, Michelle; Judson, Ian R.

    2011-01-01

    Ewing's sarcoma family of tumours comprises a group of very aggressive diseases that are potentially curable with multimodality treatment. Despite the undoubted success of current treatment, approximately 30% of patients will relapse and ultimately die of disease. The insulin-like growth factor 1 receptor (IGF-1R) has been implicated in the genesis, growth, proliferation, and the development of metastatic disease in Ewing's sarcoma. In addition, IGF1-R has been validated, both in vitro and in vivo, as a potential therapeutic target in Ewing's sarcoma. Phase I studies of IGF-1R monoclonal antibodies reported several radiological and clinical responses in Ewing's sarcoma patients, and initial reports of several Phase II studies suggest that about a fourth of the patients would benefit from IGF-1R monoclonal antibodies as single therapy, with approximately 10% of patients achieving objective responses. Furthermore, these therapies are well tolerated, and thus far severe toxicity has been rare. Other studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies are expected. Despite, the initial promising results, not all patients benefit from IGF-1R inhibition, and consequently, there is an urgent need for the identification of predictive markers of response. PMID:21647361

  15. Does IGF-1 play a role in the biology of endometrial cancer?

    PubMed

    Majchrzak-Baczmańska, Dominika; Malinowski, Andrzej

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is a mitogen which plays a key role in regulating cell proliferation, differentiation, and apoptosis. It belongs to the family of proteins also composed of insulin-like growth factor 2 (IGF-2), two types of membrane receptors (IGF-1R and IGF-2R), 6 binding proteins (IGFBP 1-6), hydrolyzing proteases, and reactive molecules binding proteins, which regulate the activity of growth factors. Disturbances in the functioning of IGFBP/IGF/1GF1R can lead to induction of carcinogenesis, which has been demonstrated in breast, prostate or colon cancers. Findings evaluating the role of IGF-1 in endometrial cancer biology are ambiguous and contradictory. Therefore, in the present study, we analyzed the role of IGF-1 in the process of carcinogenesis of endometrial cancer, based on the available literature.

  16. Expression of serum insulin-like growth factors, insulin-like growth factor-binding proteins, and the growth hormone-binding protein in heterozygote relatives of Ecuadorian growth hormone receptor deficient patients.

    PubMed

    Fielder, P J; Guevara-Aguirre, J; Rosenbloom, A L; Carlsson, L; Hintz, R L; Rosenfeld, R G

    1992-04-01

    Recently, an isolated population of apparent GH-receptor deficient (GHRD) patients has been identified in the Loja province of southern Ecuador. These individuals presented many of the physical and biochemical phenotypes characteristic of Laron-Syndrome and are believed to have a defect in the GH-receptor gene. In this study, we have compared the biochemical phenotypes between the affected individuals and their parents, considered to be obligate heterozygotes for the disorder. Serum GH, insulin-like growth factor I and II (IGF-I and IGF-II) levels were measured by RIA Insulin-like growth factor binding proteins. (IGFBPs) were measured by Western ligand blotting (WLB) of serum samples, following separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and relative quantitation of serum IGFBPs was performed with a scanning laser densitometer. Serum GH-binding protein (GHBP) levels were measured with a ligand-mediated immunofunctional assay using a monoclonal antibody raised against the GHBP. These values were then compared to values obtained from normal, sex-matched adult Ecuadorian controls, to determine if the above parameters were abnormal in the heterozygotes. The serum IGF-I levels of the GHRD patients were less than 13% of control values for adults and 2% for children. However, the IGF-I levels of both the mothers and fathers were not significantly different from that of the control population. The serum IGF-II levels of the GHRD patients were approximately 20% of control values for adults and 12% for the children. The IGF-II levels of the mothers were reduced, but were not significantly different from that of the control population. However, IGF-II levels of the fathers were significantly lower than those of controls (64% of control male levels). WLB analysis of serum IGFBP levels of the affected subjects demonstrated increased IGFBP-2 and decreased IGFBP-3, suggesting an inverse relationship between these IGFBPs. The GHRD patients who had the

  17. The IGF-1 receptor inhibitor picropodophyllin potentiates the anti-myeloma activity of a BH3-mimetic

    PubMed Central

    Bieghs, Liesbeth; Lub, Susanne; Fostier, Karel; Maes, Ken; Van Valckenborgh, Els; Menu, Eline; Johnsen, Hans E.; Overgaard, Michael T.; Larsson, Olle; Axelson, Magnus; Nyegaard, Mette; Schots, Rik; Jernberg-Wiklund, Helena

    2014-01-01

    The ABT-analogous 737, 263 and 199 are BH3 mimetics showing potent anti-myeloma (MM) activity, but only on defined molecular subgroups of MM patients presenting a Bcl-2high/Mcl-1low profile. IGF-1 is a major survival factor in MM regulating the expression of Bcl-2 proteins and might therefore be a resistance factor to these ABT-analogous. We first show that IGF-1 protected human MM cell lines (HMCLs) against ABT-737. Concurrently, the IGF-1 receptor inhibitor picropodophyllin (PPP) synergistically sensitized HMCL, primary human MM and murine 5T33MM cells to ABT-737 and ABT-199 by further decreasing cell viability and enhancing apoptosis. Knockdown of Bcl-2 by shRNA protected MM cells to ABT-737, while Mcl-1 shRNA sensitized the cells. PPP overcame the Bcl-2 dependency of ABT-737, but failed to completely overcome the protective effect of Mcl-1. In vivo, co-treatment of 5T33MM bearing mice significantly decreased tumor burden and prolonged overall survival both in a prophylactic and therapeutic setting. Interestingly, proteasome inhibitor resistant CD138− 5T33MM cells were more sensitive to ABT-737, whereas PPP alone targeted the CD138+ cells more effectively. After co-treatment, both subpopulations were targeted equally. Together, the combination of an IGF-1R inhibitor and an ABT-analogue displays synergistic anti-myeloma activity providing the rational for further (pre)clinical testing. PMID:25008202

  18. Serum IGF-I, IGFBP-3 and ALS concentrations and physical performance in young swimmers during a training season.

    PubMed

    Tourinho Filho, H; Pires, M; Puggina, E F; Papoti, M; Barbieri, R; Martinelli, C E

    2017-02-01

    The GH/IGF-I axis is a system of growth mediators, receptors, and binding proteins that regulate somatic and tissue growth; and it has been shown that exercise programs are related to the anabolic function of this axis. The aim of this study was to analyse the changes of serum IGF-I concentration and that of its binding proteins IGFBP-3 and ALS in adolescent swimmers at different stages of a training season, and compare them with physical performance parameters and body composition of the athletes. Nine male athletes, aged 16 to 19years and who trained regularly throughout the season, were included in this study. Serum IGF-I, IGFBP-3, and ALS concentrations were recorded before and after (pre×post) standardized training sessions during the different stages of a training season (extensive×intensive×tapering). Endurance in freestyle, anaerobic fitness in tied swimming (Peak Force and Average Force), body mass, fat percentage, and lean body mass were also analysed at the different stages of training in order to compare the changes of the IGF-I/IGFBP/ALS system with the physical performance and body composition of the athletes. Variations in the IGF-I/IGFBP-3-ALS system before and after a standardized training session, and at the different stages of training were analysed by the Wilcoxon and Friedman non-parametric tests, respectively. Significance was considered at 5%. The results from this study demonstrate that IGF-I is sensitive to the acute and chronic effects of training, exhibiting biphasic behaviour throughout the season. The catabolic phase was characterized by a reduction in serum IGF-I concentrations during the intensive stage (∆ IGF-I : - 43.33±47.32ng/ml; P<0.05) while the anabolic phase was marked by similar basal concentrations at the different stages of training and an increase in post-training serum IGF-I concentrations during the tapering stage (320±40; 298±36 and 359±94ng/ml; P<0.05). IGFBP-3 was only sensitive to the chronic effects of

  19. Prostate Cancer Risk in Relation to IGF-1 and its Genetic Determinants: A Case Control Study Within the Cancer Prostate Sweden Project (CAPS)

    DTIC Science & Technology

    2007-05-01

    releasing hormone (GHRH), and the GHRH receptor (GHRHR). Ghrelin (GHRL), a recently identified new peptide hormone produced by endocrine cells in...synthesis IGF1R IGF-I receptor GHRL Ghrelin GHSR Growth hormone secretagogue receptor IGFALS IGF binding protein, acid labile subunit IGFBP1 - 6...Hasinoff MJ, Fischer M, et al. Genetic linkage and association of the growth hormone secretagogue receptor ( ghrelin receptor) gene in human obesity. Diabetes

  20. Effect of the addition of IGF-I and vitamin E to stored boar semen.

    PubMed

    Mendez, M F B; Zangeronimo, M G; Rocha, L G P; Faria, B G; Pereira, B A; Fernandes, C D; Chaves, B R; Murgas, L D S; Sousa, R V

    2013-05-01

    The objective of this study was to evaluate the addition of IGF-I to pig insemination doses stored at 15°C, in conjunction with the addition of different amounts of vitamin E (α-tocopherol). Semen samples (n = 12) from four boars were treated by the addition of different concentrations of vitamin E, ranging up to 400 μg/ml. Immediately after processing and after the doses had been stored at 15°C for 24 or 72 h, samples were warmed at 37°C and 30 ng/ml of IGF-I was added. The assessments were made after 10 and 120 min of IGF-I addition. There was a minor effect of the vitamin E added before cooling and IGF-I added after storage on sperm quality. The addition of 400 μg/ml of vitamin E to diluted semen reduced (P < 0.01) the malondialdehyde (MDA) production in boar semen stored at 15°C for 72 h, regardless of the addition of IGF-I as additive during a 120 min incubation period at 37°C. In these conditions, IGF-I also reduced (P < 0.05) the MDA production in semen samples without addition of vitamin E. IGF-I in the presence of vitamin E reduced (P = 0.03) the glucose intake in freshly diluted boar semen samples before cooling. It was concluded that the addition of 400 μg/ml of vitamin E reduces the MDA production in boar semen stored at 15°C for 72 h, regardless of the presence of IGF-I additive. The addition of IGF-I in doses stored for 72 h with vitamin E ensures higher sperm motility after 120 min of incubation at 37°C.

  1. IGF-I slightly improves nuclear maturation and cleavage rate of bovine oocytes exposed to acute heat shock in vitro.

    PubMed

    Meiyu, Qi; Liu, Di; Roth, Zvi

    2015-08-01

    An in vitro model of embryo production was used to examine the effects of insulin-like growth factor (IGF)-I on maturation and developmental competence of oocytes exposed to heat shock. Cumulus-oocyte complexes were matured at 38.5°C or exposed to acute heat shock (HS; 41.5°C), with or without 100 ng/ml IGF-I, for 22 h through in vitro maturation. The experimental groups were control (C), C + IGF-I, HS, and HS + IGF-I. Oocytes were fertilized at the end of maturation, and the proportion of cleaved embryos was recorded 44 h later. HS during maturation increased the proportion of TUNEL-positive oocytes (P < 0.05). HS did not have any effect on cortical granule translocation but impaired resumption of meiosis, expressed as a decreased proportion of oocytes with nuclei in metaphase I (P < 0.05) and metaphase II (MII; P < 0.05). HS decreased the proportion of oocytes that cleaved (P < 0.05), in particular those oocytes that further developed to 4-cell-stage embryos (P < 0.05). IGF-I alleviated, to some extent, the deleterious effects of HS on the oocytes as reflected by a reduced proportion of TUNEL-positive oocytes (P < 0.03). While not significant, IGF-I tended to increase the proportion of MII-stage oocytes (P < 0.08) and 4-cell-stage cleaved embryos (P < 0.06). Further examination is required to explore whether IGF-I also affects the developmental competence of oocytes exposed to HS.

  2. The DNA methylation status of MyoD and IGF-I genes are correlated with muscle growth during different developmental stages of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Huang, Yajuan; Wen, Haishen; Zhang, Meizhao; Hu, Nan; Si, Yufeng; Li, Siping; He, Feng

    2018-05-01

    Many genes related to muscle growth modulate myoblast proliferation and differentiation and promote muscle hypertrophy. MyoD is a myogenic determinant that contributes to myoblast determination, and insulin-like growth factor 1 (IGF-I) interacts with MyoD to regulate muscle hypertrophy and muscle mass. In this study, we aimed to assess DNA methylation and mRNA expression patterns of MyoD and IGF-I during different developmental stages of Japanese flounder, and to examine the relationship between MyoD and IGF-I gene. DNA and RNA were extracted from muscles, and DNA methylation of MyoD and IGF-I promoter and exons was detected by bisulfite sequencing. The relative expression of MyoD and IGF-I was measured by quantitative polymerase chain reaction. IGF-I was measured by radioimmunoassay. Interestingly, the lowest expression of MyoD and IGF-I emerged at larva stage, and the mRNA expression was negatively associated with methylation. We hypothesized that many skeletal muscle were required to complete metamorphosis; thus, the expression levels of MyoD and IGF-I genes increased from larva stage and then decreased. The relative expression levels of MyoD and IGF-I exhibited similar patterns, suggesting that MyoD and IGF-I regulated muscle growth through combined effects. Changes in the concentrations of IGF-I hormone were similar to those of IGF-I gene expression. Our results the mechanism through which MyoD and IGF-I regulate muscle development and demonstrated that MyoD interacted with IGF-I to regulate muscle growth during different developmental stages. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Shifting the IGF-axis: An age-related decline in human tear IGF-1 correlates with clinical signs of dry eye.

    PubMed

    Patel, Roshni; Zhu, Meifang; Robertson, Danielle M

    2018-06-01

    The human corneal epithelium expresses both the insulin-like growth factor type 1 receptor (IGF-1R) and the IGF-1R/insulin receptor (INSR) hybrid. Despite the previous identification of IGF-1 in human tear fluid, little is known regarding the regulation of IGF-1 in tear fluid and its role in corneal epithelial homeostasis. In the present study, we investigated the impact of biological parameters on the concentration of human tear levels of IGF-1. Tear levels of IGF-1 were measured in 41 healthy, human volunteers without any reported symptoms of dry eye. All volunteers underwent standard biomicroscopic examination of the cornea and tear film. In a subgroup of volunteers, corneal staining with sodium fluorescein, tear film break up time and tear production using a Schirmer's test strip were measured to assess clinical signs of dry eye. Tears were collected from the inferior tear meniscus using glass microcapillary tubes and IGF-1 levels were measured using a solid phase sandwich ELISA. Tear levels of IGF-1 were highest in young adults and significantly decreased in older adults (P = 0.003). There were no differences in tear IGF-1 between males and females (P = 0.628). Tear IGF-1 levels were correlated with tear film break up time (R = 0.738) and tear production (R = 0.826). These data indicate that there is a progressive decline in tear IGF-1 due to aging that is associated with clinical signs of dry eye. This effect is likely due to age-related changes in the lacrimal gland. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. IGF-1 and Insulin Resistance Are Major Determinants of Common Carotid Artery Thickness in Morbidly Obese Young Patients.

    PubMed

    Sirbu, Anca; Nicolae, Horia; Martin, Sorina; Barbu, Carmen; Copaescu, Catalin; Florea, Suzana; Panea, Cristina; Fica, Simona

    2016-03-01

    We assessed the relationship between insulin resistance, serum insulin-like growth factor 1 (IGF-1) levels, and common carotid intima-media thickness (CC-IMT) in morbidly obese young patients. A total of 249 patients (aged 37.9 ± 9.8 years, body mass index [BMI] 45.6 ± 8.3 kg/m(2)) were evaluated (metabolic tests, serum IGF-1 measurements, homeostasis model assessment-insulin resistance [HOMA-IR], and ultrasonographically assessed CC-IMT) in a research program for bariatric surgery candidates. After adjusting for age, gender, BMI, systolic blood pressure, uric acid, antihypertensive and lipid-lowering treatment, metabolic syndrome, and metabolic class, both HOMA-IR and IGF-1 z-score were significantly associated with CC-IMT. These results were confirmed in logistic regression analysis, in which age (β = 1.11, P = .001), gender (β = 3.19, P = .001), HOMA-IR (β = 1.221, P = .005), and IGF-1 z-score (β = 1.734, P = .009) were the only independent determinants of abnormal CC-IMT, presumably modulating the effect of the other risk factors included in the regression. Area under the receiver-operating characteristic curve for the model was 0.841 (confidence interval: 0.776-0.907; P < .001). In conclusion, in morbidly obese young adults, insulin resistance and IGF-1 z-score are significantly associated with CC-IMT, independent of other major cardiovascular risk factors. © The Author(s) 2015.

  5. Insulin-Like Growth Factor-I is a Marker for the Nutritional State

    PubMed Central

    Hawkes, Colin P; Grimberg, Adda

    2017-01-01

    Measurement of the serum concentration of insulin-like growth factor-1 (IGF-I) is generally used as a screening investigation for disorders of the growth hormone (GH)/IGF-I axis in children and adolescents with short stature. IGF-I concentration is sensitive to short-term and chronic alterations in the nutritional state, and the interpretation of IGF-I measurements requires knowledge of the child’s nutritional status. In this review, we summarize the effects of nutrition on the GH/IGF-I axis, and review the clinical implications of these interactions throughout childhood, both in under-nutrition and over-nutrition. PMID:26841638

  6. Effects of an acute bout of resistance exercise on fiber-type specific to GLUT4 and IGF-1R expression.

    PubMed

    Gallagher, Philip M; Touchberry, Chad D; Teson, Kelli; McCabe, Everlee; Tehel, Michelle; Wacker, Michael J

    2013-05-01

    The effects of resistance exercise on fiber-type-specific expression of insulin-like growth factor I receptor (IGF-1R) and glucose transporter 4 (GLUT4) was determined in 6 healthy males. The expression of both genes increased in Type I fibers (p < 0.05), but only GLUT4 increased (p < 0.05) in Type II fibers. These data demonstrates that an acute bout of resistance exercise can up-regulate mechanisms of glucose uptake in slow and fast-twitch fibers, but the IGF signaling axis may not be as effective in fast-twitch fibers.

  7. [Insulin-like growth factor-1 (IGF-1) - structure and the role in the human body].

    PubMed

    Filus, Alicja; Zdrojewicz, Zygmunt

    2015-01-01

    In the recent years, managed to broadly explore the structure and role of insulin-like growth factors type 1 and 2 (IGF1 I 2). They belong to the structure of polypeptide hormones homologous to proinsulin. They are characterized by a wide range of activities. IGF-1 is a key mediator of most tissue effects of growth hormone (GH). In addition to effects on growth processes of the body, is also an important factor for cell homeostasis, is subject to both endocrine and tissue-specific auto- and paracrine regulation. In this paper, the current, general knowledge on the structure, function and mechanism of biological effects of IGF-1 in the human body was presented. Attention was also drawn to the directions of use of IGf-1 in the treatment of other diseases than the diseases of the hypothalamic-pituitary and growth disorders in children. © Polish Society for Pediatric Endocrinology and Diabetology.

  8. Insulin-like growth factor-I, physical activity, and control of cellular anabolism.

    PubMed

    Nindl, Bradley C

    2010-01-01

    The underlying mechanisms responsible for mediating the beneficial outcomes of exercise undoubtedly are many, but the insulin-like growth factor-I (IGF-I) system is emerging as an important and central hormonal axis that plays a significant role concerning cellular anabolism. This introductory article summarizes the intent and the content for papers presented as part of a 2008 American College of Sports Medicine national symposium entitled "Insulin-like Growth Factor-I, Physical Activity, and Control of Cellular Anabolism." The individual authors and their papers are as follows: Jan Frystyk authoring "The relationship between exercise and the growth hormone/insulin-like growth factor-I axis," Greg Adams authoring "IGF-I signaling in skeletal muscle and the potential for cytokine interactions," and Brad Nindl authoring "Insulin-like growth factor-I as a biomarker of health, fitness, and training status." These papers focus on 1) different assay methodologies for IGF-I within the paradigm of exercise studies, 2) research demonstrating that intracellular signaling components associated with several proinflammatory cytokines have the potential to interact with anabolic signaling processes in skeletal muscle, and 3) an overview of IGF-I as a biomarker related to exercise training, muscle and bone remodeling, body composition, cognition, and cancer. When summed in total, the contribution that these papers will make will undoubtedly involve bringing attention to the vast regulatory complexity of the IGF-I system and will hopefully convince the reader that the IGF-I system warrants further detailed scientific inquiry to resolve many unanswered questions and paradoxical experimental findings. The IGF-I system remains one of the most intriguing and captivating marvels of human physiology that seems central in mediating numerous adaptations from physical activity.

  9. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer.

    PubMed

    Heni, Martin; Hennenlotter, Jörg; Scharpf, Marcus; Lutz, Stefan Z; Schwentner, Christian; Todenhöfer, Tilman; Schilling, David; Kühs, Ursula; Gerber, Valentina; Machicao, Fausto; Staiger, Harald; Häring, Hans-Ulrich; Stenzl, Arnulf

    2012-01-01

    In different cancers types, insulin receptor isoform composition or insulin receptor substrate (IRS) isoforms are different to healthy tissue. This may be a molecular link to increased cancer risk in diabetes and obesity. Since this is yet unclear for prostate cancer, we investigated IR isoform composition and IRS balance in prostate cancer compared to benign and tumor adjacent benign prostate tissue and brought this into relation to cell proliferation. We studied 23 benign prostate samples from radical cystectomy or benign prostatic hyperplasia surgery, 30 samples from benign tissue directly adjacent to prostate cancer foci and 35 cancer samples from different patients. RNA expression levels for insulin receptor isoforms A and B, IRS-1, IRS-2, and IGF-1 receptor were assessed by quantitative real-time RT-PCR. In addition, RNA- and protein expression of the cell cycle regulator p27(Kip1) was quantified by real-time RT-PCR and immunohistochemistry. Insulin receptor isoform A to B ratio was significantly higher in cancer as well as in tumor adjacent benign prostate tissue compared to purely benign prostates (p<0.05). IRS-1 to IRS-2 ratios were lower in malignant than in benign prostatic tissue (p<0.05). These altered ratios both in cancer and adjacent tissue were significantly associated with reduced p27(Kip1) content (p<0.02). Interestingly, IGF-1 receptor levels were significantly lower in patients with type 2 diabetes (p = 0.0019). We found significant differences in the insulin signaling cascade between benign prostate tissue and prostate cancer. Histological benign tissue adjacent to cancer showed expression patterns similar to the malignancies. Our findings suggest a role of the insulin signaling pathway in prostate cancer and surrounding tissue and can hence be relevant for both novel diagnostic and therapeutic approaches in this malignancy.

  10. Effects of the antitumor drug OSI-906, a dual inhibitor of IGF-1 receptor and insulin receptor, on the glycemic control, β-cell functions, and β-cell proliferation in male mice.

    PubMed

    Shirakawa, Jun; Okuyama, Tomoko; Yoshida, Eiko; Shimizu, Mari; Horigome, Yuka; Tuno, Takayuki; Hayasaka, Moe; Abe, Shiori; Fuse, Masahiro; Togashi, Yu; Terauchi, Yasuo

    2014-06-01

    The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug.

  11. Tamoxifen regulation of bone growth and endocrine function in the ovariectomized rat: discrimination of responses involving estrogen receptor α/estrogen receptor β, G protein-coupled estrogen receptor, or estrogen-related receptor γ using fulvestrant (ICI 182780).

    PubMed

    Fitts, James M; Klein, Robert M; Powers, C Andrew

    2011-07-01

    Tamoxifen is a selective estrogen receptor (ER) modulator, but it is also a deactivating ligand for estrogen-related receptor-γ (ERRγ) and a full agonist for the G protein-coupled estrogen receptor (GPER). Fulvestrant is a selective ER down-regulator that lacks agonist effects on ERα/ERβ, is inactive on ERRγ, but acts as a full agonist on GPER. Fulvestrant effects on tamoxifen actions on uterine and somatic growth, bone, the growth hormone (GH)-insulin-like growth factor I (IGF-I) axis, and pituitary prolactin were analyzed to pharmacologically discriminate tamoxifen effects that may be mediated by ERα/ERβ versus ERRγ versus GPER. Ovariectomized rats received tamoxifen (0.6 mg/kg/daily) plus fulvestrant at 0, 3, 6, or 12 mg/kg/daily for 5 weeks; controls received vehicle or 6 mg/kg fulvestrant daily. Tamoxifen effects to increase uterine weight, decrease serum IGF-I, increase pituitary prolactin, and increase bone mineral density could be fully blocked by fulvestrant, indicating mediation by ERα/ERβ. Tamoxifen effects to decrease pituitary GH, tibia length, and body weight were only partially blocked by fulvestrant, indicating involvement of mechanisms unrelated to ERα/ERβ. Fulvestrant did not inhibit tamoxifen actions to reduce total pituitary protein, again indicating effects not mediated by ERα/ERβ. Tamoxifen actions to reduce serum GH were mimicked rather than inhibited by fulvestrant, pharmacological features consistent with GPER involvement. However, fulvestrant alone increased IGF-I and also blocked tamoxifen-evoked IGF-I decreases; thus fulvestrant effects on serum GH might reflect increased IGF-I feedback inhibition. Fulvestrant alone had no effect on the other parameters. The findings indicate that mechanisms unrelated to ERα/ERβ contribute to tamoxifen effects on body weight, bone growth, and pituitary function.

  12. Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot-Specific Manner in Male Mice With Modified GH Action.

    PubMed

    Hjortebjerg, Rikke; Berryman, Darlene E; Comisford, Ross; Frank, Stuart J; List, Edward O; Bjerre, Mette; Frystyk, Jan; Kopchick, John J

    2017-05-01

    Growth hormone (GH) is a determinant of glucose homeostasis and adipose tissue (AT) function. Using 7-month-old transgenic mice expressing the bovine growth hormone (bGH) gene and growth hormone receptor knockout (GHR-/-) mice, we examined whether changes in GH action affect glucose, insulin, and pyruvate tolerance and AT expression of proteins involved in the interrelated signaling pathways of GH, insulinlike growth factor 1 (IGF-1), and insulin. Furthermore, we searched for AT depot-specific differences in control mice. Glycated hemoglobin levels were reduced in bGH and GHR-/- mice, and bGH mice displayed impaired gluconeogenesis as judged by pyruvate tolerance testing. Serum IGF-1 was elevated by 90% in bGH mice, whereas IGF-1 and insulin were reduced by 97% and 61% in GHR-/- mice, respectively. Igf1 RNA was increased in subcutaneous, epididymal, retroperitoneal, and brown adipose tissue (BAT) depots in bGH mice (mean increase ± standard error of the mean in all five depots, 153% ± 27%) and decreased in all depots in GHR-/- mice (mean decrease, 62% ± 4%). IGF-1 receptor expression was decreased in all AT depots of bGH mice (mean decrease, 49% ± 6%) and increased in all AT depots of GHR-/- mice (mean increase, 94% ± 8%). Insulin receptor expression was reduced in retroperitoneal, mesenteric, and BAT depots in bGH mice (mean decrease in all depots, 56% ± 4%) and augmented in subcutaneous, retroperitoneal, mesenteric, and BAT depots in GHR-/- mice (mean increase: 51% ± 1%). Collectively, our findings indicate a role for GH in influencing hormone signaling in AT in a depot-dependent manner. Copyright © 2017 Endocrine Society.

  13. Insulin-like growth factor type-1 receptor down-regulation associated with dwarfism in Holstein calves.

    PubMed

    Blum, J W; Elsasser, T H; Greger, D L; Wittenberg, S; de Vries, F; Distl, O

    2007-10-01

    Perturbations in endocrine functions can impact normal growth. Endocrine traits were studied in three dwarf calves exhibiting retarded but proportionate growth and four phenotypically normal half-siblings, sired by the same bull, and four unrelated control calves. Plasma 3,5,3'-triiodothyronine and thyroxine concentrations in dwarfs and half-siblings were in the physiological range and responded normally to injected thyroid-releasing hormone. Plasma glucagon concentrations were different (dwarfs, controls>half-siblings; P<0.05). Plasma growth hormone (GH), insulin-like growth factor-1 (IGF-1) and insulin concentrations in the three groups during an 8-h period were similar, but integrated GH concentrations (areas under concentration curves) were different (dwarfs>controls, P<0.02; half-siblings>controls, P=0.08). Responses of GH to xylazine and to a GH-releasing-factor analogue were similar in dwarfs and half-siblings. Relative gene expression of IGF-1, IGF-2, GH receptor (GHR), insulin receptor, IGF-1 type-1 and -2 receptors (IGF-1R, IGF-2R), and IGF binding proteins were measured in liver and anconeus muscle. GHR mRNA levels were different in liver (dwarfsIGF-1R mRNA abundance in liver in half-siblings and controls was 2.4- and 2.5-fold higher (P=0.003 and P=0.001, respectively) and in muscle tissue was 2.3- and 1.8-fold higher (P=0.01 and P=0.08, respectively) than in dwarfs. Hepatic IGF-1R protein levels (Western blots) in muscle were 2.5-fold higher (P<0.05) and in liver and muscle (quantitative immunohistochemistry) were higher (P<0.02 and P<0.07, respectively) in half-siblings than in dwarfs. The reduced presence of IGF-1R may have been the underlying cause of dwarfism in studied calves.

  14. Hypothalamic IGF-I Gene Therapy Prolongs Estrous Cyclicity and Protects Ovarian Structure in Middle-Aged Female Rats

    PubMed Central

    Rodríguez, Silvia S.; Schwerdt, José I.; Barbeito, Claudio G.; Flamini, Mirta A.; Han, Ye; Bohn, Martha C.

    2013-01-01

    There is substantial evidence that age-related ovarian failure in rats is preceded by abnormal responsiveness of the neuroendocrine axis to estrogen positive feedback. Because IGF-I seems to act as a permissive factor for proper GnRH neuronal response to estrogen positive feedback and considering that the hypothalamic content of IGF-I declines in middle-aged (M-A) rats, we assessed the effectiveness of long-term IGF-I gene therapy in the mediobasal hypothalamus (MBH) of M-A female rats to extend regular cyclicity and preserve ovarian structure. We used 3 groups of M-A rats: 1 group of intact animals and 2 groups injected, at 36.2 weeks of age, in the MBH with either a bicistronic recombinant adeno-associated virus (rAAV) harboring the genes for IGF-I and the red fluorescent protein DsRed2, or a control rAAV expressing only DsRed2. Daily vaginal smears were taken throughout the study, which ended at 49.5 weeks of age. We measured serum levels of reproductive hormones and assessed ovarian histology at the end of the study. Although most of the rats injected with the IGF-I rAAV had, on the average, well-preserved estrous cyclicity as well as a generally normal ovarian histology, the intact and control rAAV groups showed a high percentage of acyclic rats at the end of the study and ovaries with numerous enlarged cysts and scarce corpora lutea. Serum LH was higher and hyperprolactinemia lower in the treated animals. These results suggest that overexpression of IGF-I in the MBH prolongs normal ovarian function in M-A female rats. PMID:23584855

  15. Myogenin, MyoD and IGF-I regulate muscle mass but not fiber-type conversion during resistance training in rats.

    PubMed

    Aguiar, A F; Vechetti-Júnior, I J; Alves de Souza, R W; Castan, E P; Milanezi-Aguiar, R C; Padovani, C R; Carvalho, R F; Silva, M D P

    2013-04-01

    The purpose of this study was to test the hypothesis that skeletal muscle adaptations induced by long-term resistance training (RT) are associated with increased myogenic regulatory factors (MRF) and insulin-like growth factor-I (IGF-I) mRNA expression in rats skeletal muscle. Male Wistar rats were divided into 4 groups: 8-week control (C8), 8-week trained (T8), 12-week control (C12) and 12-week trained (T12). Trained rats were submitted to a progressive RT program (4 sets of 10-12 repetitions at 65-75% of the 1RM, 3 day/week), using a squat-training apparatus with electric stimulation. Muscle hypertrophy was determined by measurement of muscle fiber cross-sectional area (CSA) of the muscle fibers, and myogenin, MyoD and IGF-I mRNA expression were measured by RT-qPCR. A hypertrophic stabilization occurred between 8 and 12 weeks of RT (control-relative % area increase, T8: 29% vs. T12: 35%; p>0.05) and was accompanied by the stabilization of myogenin (control-relative % increase, T8: 44.8% vs. T12: 37.7%, p>0.05) and MyoD (control-relative % increase, T8: 22.9% vs. T12: 22.3%, p>0.05) mRNA expression and the return of IGF-I mRNA levels to the baseline (control-relative % increase, T8: 30.1% vs. T12: 1.5%, p<0.05). Moreover, there were significant positive correlations between the muscle fiber CSA and mRNA expression for MyoD (r=0.85, p=0.0001), myogenin (r=0.87, p=0.0001), and IGF-I (r=0.88, p=0.0001). The significant (p<0.05) increase in myogenin, MyoD and IGF-I mRNA expression after 8 weeks was not associated with changes in the fiber-type frequency. In addition, there was a type IIX/D-to-IIA fiber conversion at 12 weeks, even with the stabilization of MyoD and myogenin expression and the return of IGF-I levels to baseline. These results indicate a possible interaction between MRFs and IGF-I in the control of muscle hypertrophy during long-term RT and suggest that these factors are involved more in the regulation of muscle mass than in fiber-type conversion.

  16. The novel IGF-IR/Akt–dependent anticancer activities of glucosamine

    PubMed Central

    2014-01-01

    Background Recent studies have shown that glucosamine inhibits the proliferation of various human cancer cell lines and downregulates the activity of COX-2, HIF-1α, p70S6K, and transglutaminase 2. Because the IGF-1R/Akt pathway is a common upstream regulator of p70S6K, HIF-1α, and COX-2, we hypothesized that glucosamine inhibits cancer cell proliferation through this pathway. Methods We used various in vitro assays including flow cytometry assays, small interfering RNA (siRNA) transfection, western blot analysis, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays, reverse transcription-polymerase chain reaction, and in vivo xenograft mouse model to confirm anticancer activities of glucosamine and to investigate the molecular mechanism. Results We found that glucosamine inhibited the growth of human non-small cell lung cancer (NSCLC) cells and negatively regulated the expression of IGF-1R and phosphorylation of Akt. Glucosamine decreased the stability of IGF-1R and induced its proteasomal degradation by increasing the levels of abnormal glycosylation on IGF-1R. Moreover, picropodophyllin, a selective inhibitor of IGF-1R, and the IGF-1R blocking antibody IMC-A12 induced significant cell growth inhibition in glucosamine-sensitive, but not glucosamine-resistant cell lines. Using in vivo xenograft model, we confirmed that glucosamine prohibits primary tumor growth through reducing IGF-1R signalling and increasing ER-stress. Conclusions Taken together, our results suggest that targeting the IGF-1R/Akt pathway with glucosamine may be an effective therapeutic strategy for treating some type of cancer. PMID:24438088

  17. Effect of naloxone on plasma insulin, insulin-like growth factor I, and its binding protein 1 in patients with polycystic ovarian disease.

    PubMed

    Laatikainen, T; Anttila, L; Suikkari, A M; Ruutiainen, K; Erkkola, R; Seppälä, M

    1990-09-01

    Insulin and insulin-like growth factors (IGFs) stimulate ovarian steroidogenesis, and hyperinsulinemia is often accompanied by hyperandrogenemia in women with polycystic ovarian disease (PCOD). Because opioid peptides are involved in the regulation of insulin secretion, we studied the effect of naloxone-induced opiate receptor blockade on the circulating levels of insulin, IGF-I, and IGF binding protein 1 (IGFBP-1) in 13 nonobese and 7 obese PCOD patients and in 6 healthy subjects. In obese PCOD patients, the mean basal insulin concentration was significantly higher and the IGFBP-1 concentration lower than in nonobese PCOD patients. Plasma IGF-I levels were elevated both in obese and nonobese PCOD patients. After an intravenous bolus of 10 mg naloxone, no significant changes were found in the circulating insulin or IGF-I levels, whereas IGFBP-1 levels decreased in nonobese PCOD patients and remained low in obese PCOD patients. No significant decrease was found in healthy subjects. These results suggest that, in addition to insulin, endogenous opioids are involved in the regulation of serum IGFBP-1 level.

  18. G Allele of the IGF2 ApaI Polymorphism Is Associated With Judo Status.

    PubMed

    Itaka, Toshio; Agemizu, Kenichiro; Aruga, Seiji; Machida, Shuichi

    2016-07-01

    Itaka, T, Agemizu, K, Aruga, S, and Machida, S. G allele of the IGF2 ApaI polymorphism is associated with judo status. J Strength Cond Res 30(7): 2043-2048, 2016-Previous studies have reported that the insulin-like growth factor 2 (IGF2) ApaI polymorphism is associated with body mass index, fat mass, and grip strength. Competitive judo requires high levels of strength and power. The purpose of this study was to investigate the association between the IGF2 ApaI and ACTN3 R577X polymorphisms and judo status. The subjects were 156 male judo athletes from a top-level university in Japan. They were divided into 3 groups based on their competitive history: international-level athletes, national-level athletes, and others. Genomic DNA was extracted from the saliva of each athlete, and the maximal isometric strength of the trunk muscles and handgrip strength were measured. Genotyping by polymerase chain reaction-restriction fragment length polymorphism was used to detect IGF2 (rs680) and α-actinin-3 (ACTN3) (rs1815739) gene polymorphisms. The genotype frequencies of the 2 gene polymorphisms were compared among the 3 groups of judo athletes and controls. International-level judo athletes showed a higher frequency of the GG + GA genotype of the IGF2 gene than that of the national-level athletes and others. There was an inverse linear correlation between the frequency of the IGF2 AA genotype and level of judo performance (p = 0.041). Back muscle strength relative to height and weight was higher in subjects with the GG + GA genotype than in those with the AA genotype. Conversely, the ACTN3 R577X polymorphism was not associated with judo status. Additionally, no differences were found in back muscle or handgrip strength among the ACTN3 genotypes. In conclusion, the results indicate that the IGF2 gene polymorphism may be associated with judo status.

  19. Insulin/IGF-driven cancer cell-stroma crosstalk as a novel therapeutic target in pancreatic cancer.

    PubMed

    Mutgan, Ayse Ceren; Besikcioglu, H Erdinc; Wang, Shenghan; Friess, Helmut; Ceyhan, Güralp O; Demir, Ihsan Ekin

    2018-02-23

    Pancreatic ductal adenocarcinoma (PDAC) is unrivalled the deadliest gastrointestinal cancer in the western world. There is substantial evidence implying that insulin and insulin-like growth factor (IGF) signaling axis prompt PDAC into an advanced stage by enhancing tumor growth, metastasis and by driving therapy resistance. Numerous efforts have been made to block Insulin/IGF signaling pathway in cancer therapy. However, therapies that target the IGF1 receptor (IGF-1R) and IGF subtypes (IGF-1 and IGF-2) have been repeatedly unsuccessful. This failure may not only be due to the complexity and homology that is shared by Insulin and IGF receptors, but also due to the complex stroma-cancer interactions in the pancreas. Shedding light on the interactions between the endocrine/exocrine pancreas and the stroma in PDAC is likely to steer us toward the development of novel treatments. In this review, we highlight the stroma-derived IGF signaling and IGF-binding proteins as potential novel therapeutic targets in PDAC.

  20. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy

    PubMed Central

    Li, Chao; Vu, Kent; Hazelgrove, Krystina

    2015-01-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. PMID:26428636

  1. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    PubMed

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  2. Genetic and Dietary Determinants of Insulin-Like Growth Factor (IGF)-1 and IGF Binding Protein (BP)-3 Levels among Chinese Women

    PubMed Central

    Li, Hui; McCullough, Lauren E.; Qi, Ya-na; Li, Jia-yuan; Zhang, Jing; Miller, Erline; Yang, Chun-xia; Smith, Jennifer S.

    2014-01-01

    Background Higher insulin-like growth factor (IGF)-1 and lower IGF binding protein (BP)-3 levels have been associated with higher commoncancer risk, including breast cancer. Dietary factors, genetic polymorphisms, and the combination of both may influence circulating IGF-1 and IGFBP-3 serum concentrations. Methods From September 2011 to July 2012, we collected demographic, reproductive and dietary data on 143 women (≥40 years). We genotyped IGF-1 rs1520220 and IGFBP-3 rs2854744 and measured circulating IGF-1 and IGFBP-3 levels in serum. Covariance analyses were used to estimate the associations of serum levels of IGF-1 and IGFBP-3, and the molar ratio of IGF-1to IGFBP-3 with IGF-1 rs1520220 and IGFBP-3 rs2854744 genotypes. We subsequently assessed the combined influence of genetics and diet (daily intake of protein, fat and soy isoflavones) on IGF-1 and IGFBP-3 levels. Results Among women aged less than 50 years, circulating IGF-1 serum levels were significantly lower for those with CC genotype for IGF-1 rs1520220 than levels for those with the GC or GG genotypes (in recessive model: P = 0.007).In gene-diet analyses among these women, we found carrying CC genotype for IGF-1 rs1520220 and high soy isoflavone intake tend to be associated with lower circulating IGF-1 levels synthetically (P = 0.002). Women with GG or GC genotypes for IGF-1 rs1520220 and with low intake of soy isoflavones had the highest levels of circulating IGF-1 (geometric mean [95% CI]: 195 [37, 1021] µg/L). Comparatively, women with both the CC genotype and high soy intake had the lowest levels of circulating IGF-1 (geometric mean [95% CI]: 120 [38,378] µg/L). Conclusions IGF-1 serum levels are significantly lower among women with the CC genotype for IGF-1-rs1520220. High soy isoflavone intake may interact with carrying CC genotype for IGF-1-rs1520220 to lower women's serum IGF-1 levels more. PMID:25285521

  3. Postpartum IGF-I and IGFBP-2 levels are prospectively associated with the development of type 2 diabetes in women with previous gestational diabetes mellitus.

    PubMed

    Lappas, M; Jinks, D; Shub, A; Willcox, J C; Georgiou, H M; Permezel, M

    2016-12-01

    Women with previous gestational diabetes mellitus (GDM) are at greater risk of developing type 2 diabetes. In the general population, the insulin-like growth factor (IGF) system has been implicated in the development of type 2 diabetes. The aim of this study was to determine if circulating IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels 12weeks following a GDM pregnancy are associated with an increased risk of developing type 2 diabetes. IGF-I, IGF-II, IGFBP-1 and IGFBP-2 levels were measured in 98 normal glucose tolerant women, 12weeks following an index GDM pregnancy using enzyme immunoassay. Women were assessed for up to 10years for the development of overt type 2 diabetes. Among the 98 women with previous GDM, 21 (21%) developed diabetes during the median follow-up period of 8.5years. After adjusting for age and BMI, IGF-I and IGFBP-2 were significantly associated with the development of type 2 diabetes. In a clinical model of prediction of type 2 diabetes that included age, BMI, pregnancy fasting glucose and postnatal fasting glucose, the addition of IGF-I and IGFBP-2 resulted in an improvement in the net reclassification index of 17.8%. High postpartum IGF-I and low postpartum IGFBP-2 levels are a significant risk factor for the development of type 2 diabetes in women with a previous history of GDM. This is the first report that identifies IGF-I and IGFBP-2 as a potential biomarker for the prediction of type 2 diabetes in women with a history of GDM. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Anticancer activity of the type I insulin-like growth factor receptor antagonist, ganitumab, in combination with the death receptor 5 agonist, conatumumab.

    PubMed

    Tabernero, Josep; Chawla, Sant P; Kindler, Hedy; Reckamp, Karen; Chiorean, E Gabriela; Azad, Nilofer S; Lockhart, A Craig; Hsu, Cheng-Pang; Baker, Nigel F; Galimi, Francesco; Beltran, Pedro; Baselga, José

    2015-03-01

    Agents targeting the insulin-like growth factor receptor type 1 (IGF1R) have shown antitumor activity. Based on the evidence for interaction between the IGF-1 and TRAIL pathways, we hypothesized that the combination of ganitumab (monoclonal antibody to IGF1R) with the pro-apoptotic death receptor 5 agonist, conatumumab, might increase antitumor response. Ganitumab and conatumumab were tested in combination in a Colo-205 xenograft model. Part 1 of the clinical study was a phase Ib program of three doses of conatumumab (1, 3, 15 mg/kg) in combination with 18 mg/kg ganitumab to determine the maximum tolerated dose (MTD) in patients with advanced solid tumors. Part 2 was conducted in six cohorts with advanced non-small cell lung cancer (squamous or non-squamous histology), colorectal cancer, sarcoma, pancreatic cancer, or ovarian cancer, treated at the recommended doses of the combination. The combination was significantly more active in the Colo-205 xenograft model than either single agent alone (p < 0.0015). In part 1 of the clinical study, no dose-limiting toxicities were observed and the MTD of conatumumab was 15 mg/kg in combination with 18 mg/kg ganitumab. In part 2, 78 patients were treated and there were no objective responses but 28 patients (36 %) had stable disease (median 46 days, range 0-261). The combination was well-tolerated with no new toxicities. In conclusion, the combination of ganitumab and conatumumab was well-tolerated but had no objective responses in the population tested. The successful future application of this combination of antitumor mechanisms may rely on the identification of predictive biomarkers.

  5. IGF-II-mediated downregulation of peroxisome proliferator-activated receptor-γ coactivator-1α in myoblast cells involves PI3K/Akt/FoxO1 signaling pathway.

    PubMed

    Mu, Xiaoyu; Qi, Weihong; Liu, Yunzhang; Zhou, Jianfeng; Li, Yun; Rong, Xiaozhi; Lu, Ling

    2017-08-01

    Insulin-like growth factor II (IGF-II) can stimulate myogenesis and is critically involved in skeletal muscle differentiation. The presence of negative regulators of this process, however, is not well explored. Here, we showed that in myoblast cells, IGF-II negatively regulated peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA expression, while constitutive expression of PGC-1α induced myoblast differentiation. These results suggest that the negative regulation of PGC-1α by IGF-II may act as a negative feedback mechanism in IGF-II-induced myogenic differentiation. Reporter assays demonstrated that IGF-II suppresses the basal PGC-1α promoter activity. Blocking the IGF-II signaling pathway increased the endogenous PGC-1α levels. In addition, pharmacological inhibition of PI3 kinase activity prevented the downregulation of PGC-1α but the activation of mTOR was not required for this process. Importantly, further analysis showed that forkhead transcription factor FoxO1 contributes to mediating the effects of IGF-II on PGC-1 promoter activity. These findings indicate that IGF-II reduces PGC-1α expression in skeletal muscle cells through a mechanism involving PI3K-Akt-FoxO1 but not p38 MAPK or Erk1/2 MAPK pathways.

  6. No preclinical rationale for IGF1R directed therapy in chondrosarcoma of bone.

    PubMed

    Peterse, Elisabeth F P; Cleven, Arjen H G; De Jong, Yvonne; Briaire-de Bruijn, Inge; Fletcher, Jonathan A; Danen, Erik H J; Cleton-Jansen, Anne-Marie; Bovée, Judith V M G

    2016-07-14

    Chondrosarcoma is a malignant cartilage forming bone tumour for which no effective systemic treatment is available. Previous studies illustrate the need for a better understanding of the role of the IGF pathway in chondrosarcoma to determine if it can be a target for therapy, which was therefore explored in this study. Expression of mediators of IGF1R signalling and phosphorylation status of IRS1 was determined in chondrosarcoma cell lines by qRT-PCR and western blot. The effect of activation and inhibition of IGF1R signalling on downstream targets was assessed by western blot. Ten chondrosarcoma cell lines were treated with OSI-906 (IGF1R and IR dual inhibitor) after which cell proliferation and migration were determined by a viability assay and the xCELLigence system, respectively. In addition, four chondrosarcoma cell lines were treated with a combination of doxorubicin and OSI-906. By immunohistochemistry, IGF1R expression levels were determined in tissue microarrays of 187 cartilage tumours and ten paraffin embedded cell lines. Mediators of IGF1R signalling are heterogeneously expressed and phosphorylated IRS1 was detected in 67 % of the tested chondrosarcoma cell lines, suggesting that IGF1R signalling is active in a subset of chondrosarcoma cell lines. In the cell lines with phosphorylated IRS1, inhibition of IGF1R signalling decreased phosphorylated Akt levels and increased IGF1R expression, but it did not influence MAPK or S6 activity. In line with these findings, treatment with IGF1R/IR inhibitors did not impact proliferation or migration in any of the chondrosarcoma cell lines, even upon stimulation with IGF1. Although synergistic effects of IGF1R/IR inhibition with doxorubicin are described for other cancers, our results demonstrate that this was not the case for chondrosarcoma. In addition, we found minimal IGF1R expression in primary tumours in contrast to the high expression detected in chondrosarcoma cell lines, even if both were derived from the

  7. Circulating IGF-I and IGFBP3 levels control human colonic stem cell function and are disrupted in diabetic enteropathy

    PubMed Central

    Maestroni, Anna; Jung, Peter; Orsenigo, Elena; Nasr, Moufida Ben; Tezza, Sara; Bassi, Roberto; Finzi, Giovanna; Marando, Alessandro; Vergani, Andrea; Frego, Roberto; Albarello, Luca; Andolfo, Annapaola; Manuguerra, Roberta; Viale, Edi; Staudacher, Carlo; Corradi, Domenico; Batlle, Eduard; Breault, David; Secchi, Antonio; Folli, Franco; Fiorina, Paolo

    2016-01-01

    Summary The role of circulating factors in regulating colonic stem cells (CoSCs) and colonic epithelial homeostasis is unclear. Individuals with long-standing type 1 diabetes (T1D) frequently have intestinal symptoms, termed diabetic enteropathy (DE), though its etiology is unknown. Here, we report T1D patients with DE exhibit abnormalities in their intestinal mucosa and CoSCs, which fail to generate in vitro mini-guts. Proteomic profiling of T1D+DE patient serum revealed altered levels of insulin-like growth factor 1 (IGF-1) and its binding protein-3 (IGFBP3). IGFBP3 prevented in vitro growth of patient-derived organoids via binding its receptor TMEM219, in an IGF-1-independent manner, and disrupted in vivo CoSC function in a preclinical DE model. Restoration of normoglycemia in patients with long-standing T1D via kidney-pancreas transplantation or in diabetic mice by treatment with an ecto-TMEM219 recombinant protein normalized circulating IGF-1/IGFBP3 levels and reestablished CoSC homeostasis. These findings demonstrate that peripheral IGF-1/IGFBP3 control CoSCs and their dysfunction in DE. PMID:26431183

  8. Impact of morphine on the expression of insulin receptor and protein levels of insulin/IGFs in rat neural stem cells.

    PubMed

    Salarinasab, Sadegh; Nourazarian, AliReza; Nikanfar, Masoud; Abdyazdani, Nima; Kazemi, Masoumeh; Feizy, Navid; Rahbarghazi, Reza

    2017-11-01

    Alzheimer's disease is correlated with neuronal degeneration and loss of neuronal precursors in different parts of the brain. It has been found disturbance in the homeostasis neural stem cells (NSCs) can cause neurodegeneration. Morphine, an analgesic agent, can disrupt the dynamic and normal state of NSCs. However, more investigations are required to clearly address underlying mechanisms. The current experiment aimed to investigate the effects of morphine on the cell distribution of insulin factor and receptor and insulin-like growth factors (IGF1, IGF2) in NSCs. NSCs were isolated from rats and stemness feature confirmed by antibodies against nestin and Sox2. The cells were exposed to 100μM morphine, 50μM naloxone and combination of these two drugs for 72h. The neural cell growth, changes in levels of insulin and insulin-like growth factors secreted by NSCs as well as the insulin-receptor-gene expression were assessed by flow cytometry, ELlSA, and real-time PCR, respectively. Cell cycle assay revealed the exposure of cells to morphine for 72h increased cell apoptosis and decreased neural stem cell growth. The biosynthesis of insulin, insulin-like growth factors, and insulin receptor were reduced (p<0.05) after NSCs exposure to morphine at the concentration of 100μM for 24, 48 and 72h. Naloxone is a competitive antagonist which binds MOR where morphine (and endogenous opioids) bind, and reversed the detrimental effects of morphine. It can be concluded that morphine initiated irregularity in NSCs kinetics and activity by reducing the secretion of insulin and insulin-like growth factors and down-regulation of insulin receptor. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Elucidating the Activation Mechanism of the Insulin-Family Proteins with Molecular Dynamics Simulations.

    PubMed

    Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka

    2016-01-01

    The insulin-family proteins bind to their own receptors, but insulin-like growth factor II (IGF-II) can also bind to the A isoform of the insulin receptor (IR-A), activating unique and alternative signaling pathways from those of insulin. Although extensive studies of insulin have revealed that its activation is associated with the opening of the B chain-C terminal (BC-CT), the activation mechanism of the insulin-like growth factors (IGFs) still remains unknown. Here, we present the first comprehensive study of the insulin-family proteins comparing their activation process and mechanism using molecular dynamics simulations to reveal new insights into their specificity to the insulin receptor. We have found that all the proteins appear to exhibit similar stochastic dynamics in their conformational change to an active state. For the IGFs, our simulations show that activation involves two opening locations: the opening of the BC-CT section away from the core, similar to insulin; and the additional opening of the BC-CT section away from the C domain. Furthermore, we have found that these two openings occur simultaneously in IGF-I, but not in IGF-II, where they can occur independently. This suggests that the BC-CT section and the C domain behave as a unified domain in IGF-I, but as two independent domains in IGF-II during the activation process, implying that the IGFs undergo different activation mechanisms for receptor binding. The probabilities of the active and inactive states of the proteins suggest that IGF-II is hyperactive compared to IGF-I. The hinge residue and the hydrophobic interactions in the core are found to play a critical role in the stability and activity of IGFs. Overall, our simulations have elucidated the crucial differences and similarities in the activation mechanisms of the insulin-family proteins, providing new insights into the molecular mechanisms responsible for the observed differences between IGF-I and IGF-II in receptor binding.

  10. Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model.

    PubMed

    Menu, Eline; Jernberg-Wiklund, Helena; Stromberg, Thomas; De Raeve, Hendrik; Girnita, Leonard; Larsson, Olle; Axelson, Magnus; Asosingh, Kewal; Nilsson, Kenneth; Van Camp, Ben; Vanderkerken, Karin

    2006-01-15

    Insulin-like growth factor 1 (IGF-1) plays a pleiotropic role in multiple myeloma (MM), that is, in survival, proliferation, chemotaxis, and angiogenesis. Strategies targeting the IGF-1 receptor (IGF-1R) may therefore be important to develop efficient anti-MM agents. In this work we investigated the effect of an IGF-1R tyrosine kinase (IGF-1RTK) inhibitor (picropodophyllin or PPP) in the 5T33MM mouse model. In vitro data showed that PPP reduced IGF-1R autophosphorylation and downstream ERK activation, leading to inhibition of IGF-1-stimulated proliferation and vascular endothelial growth factor (VEGF) secretion of MM cells. In an in vivo study, PPP reduced the bone marrow tumor burden and serum paraprotein in 5T33MM mice by 77% and 90%, respectively, compared to vehicle-treated animals. Angiogenesis was assessed by quantifying the microvessel density on CD31-stained paraffin sections and this was reduced by 60% in the PPP-treated group. In a separate survival experiment, Kaplan-Meier analysis demonstrated a significant increase in survival in PPP-treated 5T33MM animals compared to the vehicle controls (28 versus 18 days). These data suggest that the IGF-1RTK inhibitor PPP possesses a marked antitumor activity and strongly points to the possibility of using IGF-1R inhibitors in the treatment of MM.

  11. Synthetic ligands of the elastin receptor induce elastogenesis in human dermal fibroblasts via activation of their IGF-1 receptors.

    PubMed

    Qa'aty, Nour; Vincent, Matthew; Wang, Yanting; Wang, Andrew; Mitts, Thomas F; Hinek, Aleksander

    2015-12-01

    We have previously reported that a mixture of peptides obtained after chemical or enzymatic degradation of bovine elastin, induced new elastogenesis in human skin. Now, we investigated the elastogenic potential of synthetic peptides mimicking the elastin-derived, VGVAPG sequence, IGVAPG sequence that we found in the rice bran, and a similar peptide, VGVTAG that we identified in the IGF-1-binding protein-1 (IGFBP-1). We now demonstrate that treatment with each of these xGVxxG peptides (recognizable by the anti-elastin antibody), up-regulated the levels of elastin-encoding mRNA, tropoelastin protein, and the deposition of new elastic fibers in cultures of human dermal fibroblasts and in cultured explants of human skin. Importantly, we found that such induction of new elastogenesis may involve two parallel signaling pathways triggered after activation of IGF-1 receptor. In the first one, the xGVxxG peptides interact with the cell surface elastin receptor, thereby causing the downstream activation of the c-Src kinase and a consequent cross-activation of the adjacent IGF-1R, even in the absence of its principal ligand. In the second pathway their hydrophobic association with the N-terminal domain (VGVTAG) of the serum-derived IGFBP-1 induces conformational changes of this IGF-1 chaperone allowing for the release of its cargo and a consequent ligand-specific phosphorylation of IGF-1R. We present a novel, clinically relevant mechanism in which products of partial degradation of dermal elastin may stimulate production of new elastic fibers by dermal fibroblasts. Our findings particularly encourage the use of biologically safe synthetic xGVxxG peptides for regeneration of the injured or aged human skin. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I.

    PubMed

    Fernandez, Ana M; Hernandez-Garzón, Edwin; Perez-Domper, Paloma; Perez-Alvarez, Alberto; Mederos, Sara; Matsui, Takashi; Santi, Andrea; Trueba-Saiz, Angel; García-Guerra, Lucía; Pose-Utrilla, Julia; Fielitz, Jens; Olson, Eric N; Fernandez de la Rosa, Ruben; Garcia Garcia, Luis; Pozo, Miguel Angel; Iglesias, Teresa; Araque, Alfonso; Soya, Hideaki; Perea, Gertrudis; Martin, Eduardo D; Torres Aleman, Ignacio

    2017-01-01

    Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes. © 2017 by the American Diabetes Association.

  13. Reducing blood glucose levels in TIDM mice with an orally administered extract of sericin from hIGF-I-transgenic silkworm cocoons.

    PubMed

    Song, Zuowei; Zhang, Mengyao; Xue, Renyu; Cao, Guangli; Gong, Chengliang

    2014-05-01

    In previous studies, we reported that the blood glucose levels of mice with type I diabetes mellitus (TIDM) was reduced with orally administered silk gland powder from silkworms transgenic for human insulin-like growth factor-I (hIGF-I). However, potential safety hazards could not be eliminated because the transgenic silk gland powder contained heterologous DNA, including the green fluorescent protein (gfp) and neomycin resistance (neo) genes. These shortcomings might be overcome if the recombinant hIGF-I were secreted into the sericin layer of the cocoon. In this study, silkworm eggs were transfected with a novel piggyBac transposon vector, pigA3GFP-serHS-hIGF-I-neo, containing the neo, gfp, and hIGF-I genes controlled by the sericin-1 (ser-1) promoter with the signal peptide DNA sequence of the fibrin heavy chain (Fib-H) and a helper plasmid containing the piggyBac transposase sequence under the control of the Bombyx mori actin 3 (A3) promoter, using sperm-mediated gene transfer to generate the transformed silkworms. The hIGF-I content estimated by enzyme-linked immunosorbent assay was approximately 162.7 ng/g. To estimate the biological activity of the expressed hIGF-I, streptozotocin-induced TIDM mice were orally administered sericin from the transgenic silkworm. The blood glucose levels of the mice were significantly reduced, suggesting that the extract from the transgenic hIGF-I silkworm cocoons can be used as an orally administered drug. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas

    PubMed Central

    Huang, Xin; Park, Haein; Greene, Joseph; Zhou, Sophia X.; Albert, Catherine M.; Moy, Fred; Sachdev, Deepali; Yee, Douglas; Rader, Christoph; Hamby, Carl V.; Loeb, David M.; Cairo, Mitchell S.; Zhou, Xianzheng

    2015-01-01

    Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR) T cells targeting the type I insulin-like growth factor receptor (IGF1R) or tyrosine kinase-like orphan receptor 1 (ROR1) molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15) and ROR1 (11/15) were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB) transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-γ, TNF-α and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-γ in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients. PMID:26173023

  15. IGF1R- and ROR1-Specific CAR T Cells as a Potential Therapy for High Risk Sarcomas.

    PubMed

    Huang, Xin; Park, Haein; Greene, Joseph; Pao, James; Mulvey, Erin; Zhou, Sophia X; Albert, Catherine M; Moy, Fred; Sachdev, Deepali; Yee, Douglas; Rader, Christoph; Hamby, Carl V; Loeb, David M; Cairo, Mitchell S; Zhou, Xianzheng

    2015-01-01

    Patients with metastatic or recurrent and refractory sarcomas have a dismal prognosis. Therefore, new targeted therapies are urgently needed. This study was designed to evaluate chimeric antigen receptor (CAR) T cells targeting the type I insulin-like growth factor receptor (IGF1R) or tyrosine kinase-like orphan receptor 1 (ROR1) molecules for their therapeutic potential against sarcomas. Here, we report that IGF1R (15/15) and ROR1 (11/15) were highly expressed in sarcoma cell lines including Ewing sarcoma, osteosarcoma, alveolar or embryonal rhabdomyosarcoma, and fibrosarcoma. IGF1R and ROR1 CAR T cells derived from eight healthy donors using the Sleeping Beauty (SB) transposon system were cytotoxic against sarcoma cells and produced high levels of IFN-γ, TNF-α and IL-13 in an antigen-specific manner. IGF1R and ROR1 CAR T cells generated from three sarcoma patients released significant amounts of IFN-γ in response to sarcoma stimulation. The adoptive transfer of IGF1R and ROR1 CAR T cells derived from a sarcoma patient significantly reduced tumor growth in pre-established, systemically disseminated and localized osteosarcoma xenograft models in NSG mice. Infusion of IGF1R and ROR1 CAR T cells also prolonged animal survival in a localized sarcoma model using NOD/scid mice. Our data indicate that both IGF1R and ROR1 can be effectively targeted by SB modified CAR T cells and that such CAR T cells may be useful in the treatment of high risk sarcoma patients.

  16. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The GH-IGF-I response to typical field sports practices in adolescent athletes: a summary.

    PubMed

    Eliakim, Alon; Cooper, Dan M; Nemet, Dan

    2014-11-01

    The present study compares previous reports on the effect of "real-life" typical field individual (i.e., cross-country running and wrestling--representing combat versus noncombat sports) and team sports (i.e., volleyball and water polo-representing water and land team sports) training on GH and IGF-1, the main growth factors of the GH→IGF axis, in male and female late pubertal athletes. Cross-country running practice and volleyball practice in both males and females were associated with significant increases of circulating GH levels, while none of the practices led to a significant increase in IGF-I levels. The magnitude (percent change) of the GH response to the different practices was determined mainly by preexercise GH levels. There was no difference in the training-associated GH response between individual and team sports practices. The GH response to the different typical practices was not influenced by the practice-associated lactate change. Further studies are needed to better understand the effect of real-life typical training in prepubertal and adolescent athletes and their role in exercise adaptations.

  18. Insulin-like growth factor I in inclusion-body myositis and human muscle cultures.

    PubMed

    Broccolini, Aldobrando; Ricci, Enzo; Pescatori, Mario; Papacci, Manuela; Gliubizzi, Carla; D'Amico, Adele; Servidei, Serenella; Tonali, Pietro; Mirabella, Massimiliano

    2004-06-01

    Possible pathogenic mechanisms of sporadic inclusion-body myositis (sIBM) include abnormal production and accumulation of amyloid beta (A beta), muscle aging, and increased oxidative stress. Insulin-like growth factor I (IGF-I), an endocrine and autocrine/paracrine trophic factor, provides resistance against A beta toxicity and oxidative stress in vitro and promotes cell survival. In this study we analyzed the IGF-I signaling pathway in sIBM muscle and found that 16.2% +/- 2.5% of nonregenerating fibers showed increased expression of IGF-I, phosphatidylinositide 3'OH-kinase, and Akt. In the majority of sIBM abnormal muscle fibers, increased IGF-I mRNA and protein correlated with the presence of A beta cytoplasmic inclusions. To investigate a possible relationship between A beta toxicity and IGF-I upregulation, normal primary muscle cultures were stimulated for 24 hours with the A beta(25-35) peptide corresponding to the biologically active domain of A beta. This induced an increase of IGF-I mRNA and protein in myotubes at 6 hours, followed by a gradual reduction thereafter. The level of phosphorylated Akt showed similar changes. We suggest that in sIBM. IGF-I overexpression represents a reactive response to A beta toxicity, possibly providing trophic support to vulnerable fibers. Understanding the signaling pathways activated by IGF-I in sIBM may lead to novel therapeutic strategies for the disease.

  19. Alu-mediated recombination defect in IGF1R: haploinsufficiency in a patient with short stature.

    PubMed

    Harmel, Eva-Maria; Binder, Gerhard; Barnikol-Oettler, Anja; Caliebe, Janina; Kiess, Wieland; Losekoot, Monique; Ranke, Michael B; Rappold, Gudrun A; Schlicke, Marina; Stobbe, Heike; Wit, Jan M; Pfäffle, Roland; Klammt, Jürgen

    2013-01-01

    The insulin-like growth factor (IGF) receptor (IGF1R) is essential for normal development and growth. IGF1R mutations cause IGF-1 resistance resulting in intrauterine and postnatal growth failure. The phenotypic spectrum related to IGF1R mutations remains to be fully understood. Auxological and endocrinological data of a patient identified previously were assessed. The patient's fibroblasts were studied to characterize the IGF1R deletion, mRNA fate, protein expression and signalling capabilities. The boy, who carries a heterozygous IGF1R exon 6 deletion caused by Alu element-mediated recombination and a heterozygous SHOX variant (p.Met240Ile), was born appropriate for gestational age but developed proportionate short stature postnatally. IGF-1 levels were low-normal. None of the stigmata associated with SHOX deficiency or sporadically observed in IGF1R mutation carriers were present. Nonsense-mediated mRNA decay led to a substantial decline of IGF1R dosage and IGF-1-dependent receptor autophosphorylation but not impaired downstream signalling. We present the first detailed report of an intragenic IGF1R deletion identified in a patient who, apart from short stature, deviates from all established markers that qualify a growth-retarded child for IGF1R analysis. Although such children will usually escape routine clinical mutation screenings, they can contribute to the understanding of factors and mechanisms that cooperate with the IGF1R. © 2013 S. Karger AG, Basel.

  20. The interaction of protein-tyrosine phosphatase α (PTPα) and RACK1 protein enables insulin-like growth factor 1 (IGF-1)-stimulated Abl-dependent and -independent tyrosine phosphorylation of PTPα.

    PubMed

    Khanna, Ranvikram S; Le, Hoa T; Wang, Jing; Fung, Thomas C H; Pallen, Catherine J

    2015-04-10

    Protein tyrosine phosphatase α (PTPα) promotes integrin-stimulated cell migration in part through the role of Src-phosphorylated PTPα-Tyr(P)-789 in recruiting and localizing p130Cas to focal adhesions. The growth factor IGF-1 also stimulates PTPα-Tyr-789 phosphorylation to positively regulate cell movement. This is in contrast to integrin-induced PTPα phosphorylation, that induced by IGF-1 can occur in cells lacking Src family kinases (SFKs), indicating that an unknown kinase distinct from SFKs can target PTPα. We show that this IGF-1-stimulated tyrosine kinase is Abl. We found that PTPα binds to the scaffold protein RACK1 and that RACK1 coordinates the IGF-1 receptor, PTPα, and Abl in a complex to enable IGF-1-stimulated and Abl-dependent PTPα-Tyr-789 phosphorylation. In cells expressing SFKs, IGF-1-stimulated phosphorylation of PTPα is mediated by RACK1 but is Abl-independent. Furthermore, expressing the SFKs Src and Fyn in SFK-deficient cells switches IGF-1-induced PTPα phosphorylation to occur in an Abl-independent manner, suggesting that SFK activity dominantly regulates IGF-1/IGF-1 receptor signaling to PTPα. RACK1 is a molecular scaffold that integrates growth factor and integrin signaling, and our identification of PTPα as a RACK1 binding protein suggests that RACK1 may coordinate PTPα-Tyr-789 phosphorylation in these signaling networks to promote cell migration. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.