Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H
2009-02-01
A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the inhibition of p38 delayed the process. These results indicate that heparin-binding epidermal growth factor-like growth factor may constitute a critical factor in the wound healing of human periodontal ligament cells by a mechanism that requires the activation of Erk1/2 via specific interaction with epidermal growth factor receptor 1.
Growth hormone deficiency - children
... be done include: Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 ( ... C, et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, ...
Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice
2008-01-01
Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765
Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity.
Novosyadlyy, Ruslan; Leroith, Derek
2012-06-01
Numerous lines of evidence indicate that insulin-like growth factor signaling plays an important role in the regulation of life span and tumor development. In the present paper, the role of individual components of insulin-like growth factor signaling in aging and tumor development has been extensively analyzed. The molecular mechanisms underlying aging and tumor development are frequently overlapping. Although the link between reduced insulin-like growth factor signaling and suppressed tumor growth and development is well established, it remains unclear whether extended life span results from direct suppression of insulin-like growth factor signaling or this effect is caused by indirect mechanisms such as improved insulin sensitivity.
Growth factors, nutrient signaling, and cardiovascular aging.
Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D
2012-04-13
Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.
Assessment of insulin-like growth factor-1 (IGF-I) level in patients with rheumatic mitral stenosis.
Deveci, Onur S; Yavuz, Bunyamin; Sen, Omer; Deniz, Ali; Ozkan, Selcuk; Dal, Kursat; Ata, Naim; Baser, Salih; Akin, Kadir O; Kucukazman, Metin; Beyan, Esin; Ertugrul, Derun T
2015-03-01
Insulin-like growth factor-1 may serve some regulatory function in the immune system. Rheumatic mitral stenosis is related to autoimmune heart valve damage after streptococcal infection. The aim of this study was to assess the level of insulin-like growth factor-1 and its correlation with the Wilkins score in patients with rheumatic mitral stenosis. A total of 65 patients with rheumatic mitral stenosis and 62 age- and sex-matched control subjects were enrolled in this study. All subjects underwent transthoracic echocardiography. The mitral valve area and Wilkins score were evaluated for all patients. Biochemical parameters and serum insulin-like growth factor-1 levels were measured. Demographic data were similar in the rheumatic mitral stenosis and control groups. The mean mitral valve area was 1.6±0.4 cm2 in the rheumatic mitral stenosis group. The level of insulin-like growth factor-1 was significantly higher in the rheumatic mitral stenosis group than in the control group (104 (55.6-267) versus 79.1 (23.0-244.0) ng/ml; p=0.039). There was a significant moderate positive correlation between insulin-like growth factor-1 and thickening of leaflets score of Wilkins (r=0.541, p<0.001). The present study demonstrated that serum insulin-like growth factor-1 levels were significantly higher in the rheumatic mitral stenosis group compared with control subjects and that insulin-like growth factor-1 level was also correlated with the Wilkins score. It can be suggested that there may be a link between insulin-like growth factor-1 level and immune pathogenesis of rheumatic mitral stenosis.
USDA-ARS?s Scientific Manuscript database
The insulin-like growth factor pathway plays a central role in the normal and abnormal growth of tissues; however, the nutritional determinants of insulin-like growth factor I (IGF-I) and its binding proteins in normal individuals are not well-defined. The purpose of this study was to determine the ...
Lang, Charles H; Frost, Robert A
2002-05-01
The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.
Ververis, J; Ku, L; Delafontaine, P
1994-02-01
Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.
The effects of oxcarbazepine and valproate therapies on growth in children with epilepsy.
Cansu, Ali; Yesilkaya, Ediz; Serdaroglu, Ayse; Camurdan, Orhun; Hirfanoglu, Tugba Luleci; Karaoglu, Abdulbaki; Bideci, Aysun; Cinaz, Peyami
2012-01-01
This study aimed to evaluate the effects of monotherapy with valproate or oxcarbazepine on the linear growth of children with idiopathic epilepsy. Antiepileptic treatment with valproate or oxcarbazepine was initiated in 76 patients. These were evaluated at baseline and at 6 and 18 months after commencement of therapy to determine height standard deviations (height z-scores). Serum ghrelin, insulin-like growth factor-1, and insulin-like growth factor-binding protein-3 levels were measured. In prepubertal patients receiving oxcarbazepine, height z-scores were elevated after 6 and 18 months of therapy (p = 0.008 and p = 0.001, respectively); in pubertal patients, a significant increase was noted at the 18th month of therapy (p = 0.004). In prepubertal patients receiving oxcarbazepine, serum standardized insulin-like growth factor-1 and insulin-like growth factor-binding protein-3 levels were significantly higher at the 18th month of therapy compared with baseline (p = 0.005 and p = 0.004, respectively). In puber-tal patients receiving valproate, serum ghrelin levels were significantly decreased at the 18th month of therapy compared with baseline (p = 0.006). Exposure to oxcarbazepine stimulated linear growth in epileptic patients through mechanisms involving the release of insulin-like growth factor-1 and insulin-like growth factor-binding protein-3. In contrast, expo-sure to valproate did not affect linear growth, but did lead to a decrease in serum ghrelin levels.
Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.
Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C
2017-05-01
High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.
Opgenorth, A; Nation, N; Graham, K; McFadden, G
1993-02-01
The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.
2018-02-15
possible mutation in the fibroblast growth factor receptor 3 gene, and type 3, the most common, associated with insulin resistant states and...like growth factor receptor 1 (IGFR1), fibroblast growth factor receptors (FGFR), and epidermal growth factor receptor (EGFR), have all been proposed...as contributing factors. EGFR is a pivotal receptor because it interacts with several other growth factors (PDGF, TF-B, protein kinase C). They
Costa, Beatriz Pinto; Gonçalves, Ana Cristina; Abrantes, Ana Margarida; Alves, Raquel; Matafome, Paulo; Seiça, Raquel; Sarmento-Ribeiro, Ana Bela; Botelho, Maria Filomena; Castro-Sousa, Francisco
2018-01-16
Teduglutide is an enterotrophic analogue of glucagon-like peptide-2, with an indirect and poorly understood mechanism of action, approved for the rehabilitation of short-bowel syndrome. This study aims to analyze the response of tissue growth factors to surgical injury and teduglutide administration on an animal model of intestinal anastomosis. Wistar rats (n = 59) were distributed into four groups: "ileal resection" or "laparotomy", each one subdivided into "postoperative teduglutide administration" or "no treatment"; and sacrificed at the third or the seventh day, with ileal sample harvesting. Gene expression of insulin-like growth factor 1 (Igf1), vascular endothelial growth factor a (Vegfa), transforming growth factor β1 (Tgfβ1), connective tissue growth factor (Ctgf), fibroblast growth factor 2 (Fgf2), fibroblast growth factor 7 (Fgf7), epidermal growth factor (Egf), heparin-binding epidermal-like growth factor (Hbegf), platelet-derived growth factor b (Pdgfb) and glucagon-like peptide 2 receptor (Glp2r)was studied by real-time polymerase chain reaction. Upregulation of Fgf7, Fgf2, Egf, Vegfaand Glp2rat the third day and of Pdgfat the seventh day was verified in the perianastomotic segment. Teduglutide administration was associated with higher fold-change of relative gene expression of Vegfa(3.6 ± 1.3 vs.1.9 ± 2.0, p = 0.0001), Hbegf(2.2 ± 2.3 vs. 1.1 ± 0.9, p = 0.001), Igf1(1.6 ± 7.6 vs. 0.9 ± 0.7, p = 0.002) and Ctgf(1.1 ± 2.1 vs. 0.6 ± 2.0, p = 0.013); and lower fold-change of Tgfβ1, Fgf7and Glp2r. Those results underscore the recognized role of Igf1and Hbegfas molecular mediators of the effects of teduglutide and suggest that other humoral factors, like Vegfand Ctgf, may also be relevant in the perioperative context. Induction of Vegfa, Igf1and Ctgfgene expressions might indicate a favorable influence of teduglutide on the intestinal anastomotic healing.
Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation
Gaviglio, Angela L.; Knelson, Erik H.; Blobe, Gerard C.
2017-01-01
High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor–like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.—Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. PMID:28174207
Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W
2012-05-01
Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.
Primary growth hormone insensitivity (Laron syndrome) and acquired hypothyroidism: a case report
2011-01-01
Introduction Primary growth hormone resistance or growth hormone insensitivity syndrome, also known as Laron syndrome, is a hereditary disease caused by deletions or different types of mutations in the growth hormone receptor gene or by post-receptor defects. This disorder is characterized by a clinical appearance of severe growth hormone deficiency with high levels of circulating growth hormone in contrast to low serum insulin-like growth factor 1 values. Case presentation We report the case of a 15-year-old Caucasian girl who was diagnosed with Silver-Russell syndrome at the age of four and a half years. Recombinant growth hormone was administered for 18 months without an appropriate increase in growth velocity. At the age of seven years, her serum growth hormone levels were high, and an insulin-like growth factor 1 generation test did not increase insulin-like growth factor 1 levels (baseline insulin-like growth factor 1 levels, 52 μg/L; reference range, 75 μg/L to 365 μg/L; and peak, 76 μg/L and 50 μg/L after 12 and 84 hours, respectively, from baseline). The genetic analysis showed that the patient was homozygous for the R217X mutation in the growth hormone receptor gene, which is characteristic of Laron syndrome. On the basis of these results, the diagnosis of primary growth hormone insensitivity syndrome was made, and recombinant insulin-like growth factor 1 therapy was initiated. The patient's treatment was well tolerated, but unexplained central hypothyroidism occurred at the age of 12.9 years. At the age of 15 years, when the patient's sexual development was almost completed and her menstrual cycle occurred irregularly, her height was 129.8 cm, which is 4.71 standard deviations below the median for normal girls her age. Conclusion The most important functional tests for the diagnosis of growth hormone insensitivity are the insulin-like growth factor 1 generation test and genetic analysis. Currently, the only effective treatment is daily administration of recombinant insulin-like growth factor 1 starting from early childhood. However, these patients show a dramatically impaired final height. In our case, unexplained central hypothyroidism occurred during treatment. PMID:21745362
Primary growth hormone insensitivity (Laron syndrome) and acquired hypothyroidism: a case report.
Cotta, Oana R; Santarpia, Libero; Curtò, Lorenzo; Aimaretti, Gianluca; Corneli, Ginevra; Trimarchi, Francesco; Cannavò, Salvatore
2011-07-11
Primary growth hormone resistance or growth hormone insensitivity syndrome, also known as Laron syndrome, is a hereditary disease caused by deletions or different types of mutations in the growth hormone receptor gene or by post-receptor defects. This disorder is characterized by a clinical appearance of severe growth hormone deficiency with high levels of circulating growth hormone in contrast to low serum insulin-like growth factor 1 values. We report the case of a 15-year-old Caucasian girl who was diagnosed with Silver-Russell syndrome at the age of four and a half years. Recombinant growth hormone was administered for 18 months without an appropriate increase in growth velocity. At the age of seven years, her serum growth hormone levels were high, and an insulin-like growth factor 1 generation test did not increase insulin-like growth factor 1 levels (baseline insulin-like growth factor 1 levels, 52 μg/L; reference range, 75 μg/L to 365 μg/L; and peak, 76 μg/L and 50 μg/L after 12 and 84 hours, respectively, from baseline). The genetic analysis showed that the patient was homozygous for the R217X mutation in the growth hormone receptor gene, which is characteristic of Laron syndrome. On the basis of these results, the diagnosis of primary growth hormone insensitivity syndrome was made, and recombinant insulin-like growth factor 1 therapy was initiated. The patient's treatment was well tolerated, but unexplained central hypothyroidism occurred at the age of 12.9 years. At the age of 15 years, when the patient's sexual development was almost completed and her menstrual cycle occurred irregularly, her height was 129.8 cm, which is 4.71 standard deviations below the median for normal girls her age. The most important functional tests for the diagnosis of growth hormone insensitivity are the insulin-like growth factor 1 generation test and genetic analysis. Currently, the only effective treatment is daily administration of recombinant insulin-like growth factor 1 starting from early childhood. However, these patients show a dramatically impaired final height. In our case, unexplained central hypothyroidism occurred during treatment.
Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage
Johns, D.E.; Athanasiou, K.A.
2010-01-01
Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118
Intestinal hormones and growth factors: Effects on the small intestine
Drozdowski, Laurie; Thomson, Alan BR
2009-01-01
There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442
Recruitment and retention: factors that affect pericyte migration
Aguilera, Kristina Y.
2013-01-01
Pericytes are critical for vascular morphogenesis and contribute to several pathologies, including cancer development and progression. The mechanisms governing pericyte migration and differentiation are complex and have not been fully established. Current literature suggests that platelet-derived growth factor/platelet-derived growth factor receptor-β, sphingosine 1-phosphate/endothelial differentiation gene-1, angiopoietin-1/tyrosine kinase with immunoglobulin-like and EGF-like domains 2, angiopoietin-2/tyros-ine kinase with immunoglobulin-like and EGF-like domains 2, transforming growth factor β/activin receptor-like kinase 1, transforming growth factor β/activin receptor-like kinase 5, Semaphorin-3A/Neuropilin, and matrix metalloproteinase activity regulate the recruitment of pericytes to nascent vessels. Interestingly, many of these pathways are directly affected by secreted protein acidic and rich in cysteine (SPARC). Here, we summarize the function of these factors in pericyte migration and discuss if and how SPARC might infuence these activities and thus provide an additional layer of control for the recruitment of vascular support cells. Additionally, the consequences of targeted inhibition of pericytes in tumors and the current understanding of pericyte recruitment in pathological environments are discussed. PMID:23912898
Cross-talk between GPER and growth factor signaling.
Lappano, Rosamaria; De Marco, Paola; De Francesco, Ernestina Marianna; Chimento, Adele; Pezzi, Vincenzo; Maggiolini, Marcello
2013-09-01
G protein-coupled receptors (GPCRs) and growth factor receptors mediate multiple physio-pathological responses to a diverse array of extracellular stimuli. In this regard, it has been largely demonstrated that GPCRs and growth factor receptors generate a multifaceted signaling network, which triggers relevant biological effects in normal and cancer cells. For instance, some GPCRs transactivate the epidermal growth factor receptor (EGFR), which stimulates diverse transduction pathways leading to gene expression changes, cell migration, survival and proliferation. Moreover, it has been reported that a functional interaction between growth factor receptors and steroid hormones like estrogens is involved in the growth of many types of tumors as well as in the resistance to endocrine therapy. This review highlights recent findings on the cross-talk between a member of the GPCR family, the G protein-coupled estrogen receptor 1 (GPER, formerly known as GPR30) and two main growth factor receptors like EGFR and insulin-like growth factor-I receptor (IGF-IR). The biological implications of the functional interaction between these important mediators of cell responses particularly in cancer are discussed. This article is part of a Special Issue entitled 'CSR 2013'. Copyright © 2013 Elsevier Ltd. All rights reserved.
2010-08-01
microtubule-associated protein, RP/EB family, member 3 6.06 211668_s_at PLAU plasminogen activator, urokinase 6.06 207403_at IRS4 insulin receptor...polypeptide 3.48 202410_x_at INS-IGF2 insulin -like growth factor 2 (somatomedin A); insulin ; INS-IGF2 readthrough transcript 3.48 202410_x_at INS insulin -like...growth factor 2 (somatomedin A); insulin ; INS-IGF2 readthrough transcript 3.48 202410_x_at IGF2 insulin -like growth factor 2 (somatomedin A); insulin
Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika
2013-01-01
Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.
Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika
2013-01-01
Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828
Pereira, Clifford T; Herndon, David N; Rocker, Roland; Jeschke, Marc G
2007-05-15
Growth factors affect the complex cascade of wound healing; however, interaction between different growth factors during dermal and epidermal regeneration are still not entirely defined. In the present study, we thought to determine the interaction between keratinocyte growth factor (KGF) administered as liposomal cDNA with other dermal and epidermal growth factors and collagen synthesis in an acute wound. Rats received an acute wound and were divided into two groups to receive weekly subcutaneous injections of liposomes plus the Lac-Z gene (0.22 microg, vehicle), or liposomes plus the KGF cDNA (2.2 microg) and Lac-Z gene (0.22 microg). Histological and immunohistochemical techniques were used to determine growth factor, collagen expression, and dermal and epidermal structure. KGF cDNA increased insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and fibroblast growth factor (FGF), decreased transforming growth factor-beta (TGF-beta), while it had no effect on platelet-derived growth factor (PDGF) levels in the wound. KGF cDNA significantly increased collagen Type IV at both the wound edge as well as the wound bed, while it had no effect on collagen Type I and III. KGF cDNA increased re-epithelialization, improved dermal regeneration, and increased neovascularization. Exogenous administered KGF cDNA causes increases in IGF-I, IGF-BP3, FGF, and collagen IV and decreases TGF-beta concentration. KGF gene transfer accelerates wound healing without causing an increase in collagen I or III.
Hagiwara, Koichi; Kobayashi, Tatsuo; Tobita, Masato; Kikyo, Nobuaki; Yazaki, Yoshio
1995-01-01
We have found growth‐promoting activity for vascular endothelial cells in the conditioned medium of a human lung cancer cell line, T3M‐11. Purification and characterization of the growth‐promoting activity have been carried out using ammonium sulfate precipitation and gel‐exclusion chromatography. The activity migrated as a single peak just after ribonuclease. It did not bind to a heparin affinity column. These results suggest that the activity is not a heparin‐binding growth factor (including fibroblast growth factors) or a vascular endothelial growth factor. To identify the molecule exhibiting the growth‐promoting activity, a cDNA encoding the growth factor was isolated through functional expression cloning in COS‐1 cells from a cDNA library prepared from T3M‐11 cells. The nucleotide sequence encoded by the cDNA proved to be identical with that of insulin‐like growth factor II. PMID:7730145
Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul
2016-08-01
Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.; Karlisch, Patricia; Shansky, Janet
1990-01-01
Skeletal myofibers differentiated from primary avian myoblasts in tissue culture can be maintained in positive nitrogen balance in a serum-free medium for at least 6 to 7 days when embedded in a three dimensional collagen gel matrix. The myofibers are metabolically sensitive to physiological concentrations of insulin but these concentrations do not stimulate cell growth. Higher insulin concentrations stimulate both cell hyperplasia and myofiber hypertrophy. Cell growth results from a long term 42 percent increase in total protein synthesis and a 38 percent increase in protein degradation. Myofiber diameters increase by 71 to 98 percent after 6 to 7 days in insulin-containing medium. Insulin-like growth factor-1 but not insulin-like growth factor-2, at 250 ng/ml, is as effective as insulin in stimulating cell hyperplasia and myofiber hypertrophy. This model system provides a new method for studying the long-term anabolic effects of insulin and insulin-like growth factors on myofiber hypertrophy under defined tissue culture conditions.
A cytokine axis regulates elastin formation and degradation
Sproul, Erin P.; Argraves, W. Scott
2013-01-01
Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093
Mooney, R A; Freund, G G; Way, B A; Bordwell, K L
1992-11-25
Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.
Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder
Galvez-Contreras, Alma Y.; Campos-Ordonez, Tania; Gonzalez-Castaneda, Rocio E.; Gonzalez-Perez, Oscar
2017-01-01
Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders. PMID:28751869
Growth hormone and insulin-like growth factors in fish: Where we are and where to go
Reinecke, M.; Bjornsson, Bjorn Thrandur; Dickhoff, Walton W.; McCormick, S.D.; Navarro, I.; Power, D.M.; Gutierrez, J.
2005-01-01
This communication summarizes viewpoints, discussion, perspectives, and questions, put forward at a workshop on "Growth hormone and insulin-like growth factors in fish" held on September 7th, 2004, at the 5th International Symposium on Fish Endocrinology in Castello??n, Spain. ?? 2005 Elsevier Inc. All rights reserved.
Sequential plasma angiogenic factors levels in women with suspected preeclampsia.
Baltajian, Kedak; Bajracharya, Surichhya; Salahuddin, Saira; Berg, Anders H; Geahchan, Carl; Wenger, Julia B; Thadhani, Ravi; Karumanchi, S Ananth; Rana, Sarosh
2016-07-01
Alterations in circulating angiogenic factors are associated with the diagnosis of preeclampsia and correlate with adverse perinatal outcomes during the third trimester. Analysis of the sequential levels of plasma angiogenic factors among patients admitted for evaluation of preeclampsia. We performed an observational study among women with singleton pregnancies admitted to Beth Israel Deaconess Medical Center, Boston, Massachusetts, for evaluation of preeclampsia at less than 37 weeks of gestation. Plasma samples were collected on admission and daily for the first 3 days and then weekly until delivery. Doppler ultrasound was performed on admission (within 48 hours) and then weekly (within 24 hours of blood collection) to evaluate uteroplacental and umbilical blood flows. Maternal demographics, hospital course, mode of delivery, diagnosis of hypertensive disorder, adverse maternal outcomes (elevated liver function enzymes, low platelet count, pulmonary edema, cerebral hemorrhage, convulsion, acute renal insufficiency, or maternal death), and adverse fetal/neonatal outcomes (small for gestational age, abnormal umbilical artery Doppler, fetal death, and neonatal death) were recorded. Circulating angiogenic factors (soluble fms-like tyrosine kinase and placental growth factor were measured on automated platform in a single batch after delivery and in a blinded fashion. Data are presented as median (25th to 75th centile), mean, or proportions as appropriate. During the study period, data from 100 women were analyzed for the study, and 43 had adverse outcomes. Women with adverse outcomes had lower gestational age of delivery, higher systolic and diastolic blood pressures during hospitalization, and lower birthweight and placental weight (all P < .01). These patients had higher soluble fms-like tyrosine kinase and soluble fms-like tyrosine kinase/placental growth factor ratio on admission and continued to have an increase in levels throughout hospital course. The median (25th to 75th) soluble fms-like tyrosine kinase/placental growth factor ratio among patients with adverse outcomes was 205.9 (72.5, 453.1) versus 47.5 (9.7, 87.0) among women without adverse outcomes (P < .001). The median (25th to 75th) absolute change per day in soluble fms-like tyrosine kinase levels (pg/mL) was 491.0 pg/mL (120.3, 1587.2) among women with adverse outcomes versus 81.3 pg/mL (-177.9, 449.0) among women without adverse outcomes (P = .01). Similarly the absolute change per day for soluble fms-like tyrosine kinase/placental growth factor ratio was 15.1 (1.8, 58.1) versus 2.7 (-0.6, 8.3) between the two groups (P = .004). The mean (range) days from admission to delivery was 6 (0-35) among subjects with soluble fms-like tyrosine kinase/placental growth factor ratio ≥85 and 14 (0-39) below a ratio of 85 (P < .001). The positive predictive value for plasma soluble fms-like tyrosine kinase/placental growth factor ratio ≥85 at admission for indicated delivery within 2 weeks was 91% (83-99%). Admission plasma soluble fms-like tyrosine kinase/placental growth factor ratio positively correlated with pre-delivery uterine artery resistive index (r = 0.35; P = .004). Among women admitted for evaluation of preeclampsia, women at risk for adverse pregnancy outcomes have higher soluble fms-like tyrosine kinase/placental growth factor ratio on admission, which continued to rise until delivery. Women with high soluble fms-like tyrosine kinase/placental growth factor ratios delivered sooner than women with low soluble fms-like tyrosine kinase/placental growth factor levels. These data support the hypothesis that targeting angiogenic imbalance in preeclampsia may lead to prolongation of pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.
Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M
1997-07-01
Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.
Muñoz, M; Martin, D; Carrocera, S; Alonso-Guervos, M; Mora, M I; Corrales, F J; Peynot, N; Giraud-Delville, C; Duranthon, V; Sandra, O; Gómez, E
2017-10-01
Early embryonic losses before implantation account for the highest rates of reproductive failure in mammals, in particular when in vitro-produced embryos are transferred. In the present study, we used molecular biology techniques (real-time quantitative polymerase chain reaction), classical immunohistochemical staining coupled with confocal microscopy and proteomic analysis (multiple reaction monitoring and western blot analysis) to investigate the role of four growth factors in embryo-uterine interactions during blastocyst development. Supported by a validated embryo transfer model, the study investigated: (1) the expression of stem cell factor (SCF), stanniocalcin-1 (STC1), connective tissue growth factor (CTGF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) in bovine uterine fluid; (2) the presence of SCF, STC1, CTGF and HB-EGF mRNA and protein in the bovine endometrium and embryos; and (3) the existence of reciprocal regulation between endometrial and embryonic expression of SCF, STC1, CTGF and HB-EGF. The results suggest that these growth factors most likely play an important role during preimplantation embryo development in cattle. The information obtained from the present study can contribute to improving the performance of in vitro culture technology in cattle and other species.
USDA-ARS?s Scientific Manuscript database
The effects of acute stressor exposure on proximal (growth hormone; GH) and distal (insulin-like growth factor-I; IGF-I and IGF-binding proteins) components of the somatotropic axis are poorly understood in finfish. We exposed rainbow trout (Oncorhynchus mykiss) to a 5-minute handling disturbance to...
Won, Chong Hyun; Jeong, Yun-Mi; Kang, Sangjin; Koo, Tae-Sung; Park, So-Hyun; Park, Ki-Young; Sung, Young-Kwan; Sung, Jong-Hyuk
2015-02-19
Keratinocyte stem/progenitor cells (KSCs) reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs) and outer root sheath (ORS) cells were treated with conditioned medium (CM) of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor). A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells.
Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.
Bortvedt, Sarah F; Lund, P Kay
2012-03-01
To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.
Aldag, Caroline; Nogueira Teixeira, Diana; Leventhal, Phillip S
2016-01-01
Skin aging is primarily due to alterations in the dermal extracellular matrix, especially a decrease in collagen I content, fragmentation of collagen fibrils, and accumulation of amorphous elastin material, also known as elastosis. Growth factors and cytokines are included in several cosmetic products intended for skin rejuvenation because of their ability to promote collagen synthesis. Matrikines and matrikine-like peptides offer the advantage of growth factor-like activities but better skin penetration due to their much smaller molecular size. In this review, we summarize the commercially available products containing growth factors, cytokines, and matrikines for which there is evidence that they promote skin rejuvenation. PMID:27877059
Nieto-Sampedro, M; Bovolenta, P
1990-01-01
Various growth factors are present in the hippocampal formation and appear responsible for the prominent plasticity of this brain area. Although hormone-like growth-promoting polypeptides are the best known, recent studies emphasize the importance in the growth response of molecules such as laminin proteoglycans, neurotransmitters and growth inhibitors. The progress and problems in the study of these substances are reviewed.
Jakobsen, Rune B.; Østrup, Esben; Zhang, Xiaolan; Mikkelsen, Tarjei S.; Brinchmann, Jan E.
2014-01-01
The in vitro process of chondrogenic differentiation of mesenchymal stem cells for tissue engineering has been shown to require three-dimensional culture along with the addition of differentiation factors to the culture medium. In general, this leads to a phenotype lacking some of the cardinal features of native articular chondrocytes and their extracellular matrix. The factors used vary, but regularly include members of the transforming growth factor β superfamily and dexamethasone, sometimes in conjunction with fibroblast growth factor 2 and insulin-like growth factor 1, however the use of soluble factors to induce chondrogenesis has largely been studied on a single factor basis. In the present study we combined a factorial quality-by-design experiment with high-throughput mRNA profiling of a customized chondrogenesis related gene set as a tool to study in vitro chondrogenesis of human bone marrow derived mesenchymal stem cells in alginate. 48 different conditions of transforming growth factor β 1, 2 and 3, bone morphogenetic protein 2, 4 and 6, dexamethasone, insulin-like growth factor 1, fibroblast growth factor 2 and cell seeding density were included in the experiment. The analysis revealed that the best of the tested differentiation cocktails included transforming growth factor β 1 and dexamethasone. Dexamethasone acted in synergy with transforming growth factor β 1 by increasing many chondrogenic markers while directly downregulating expression of the pro-osteogenic gene osteocalcin. However, all factors beneficial to the expression of desirable hyaline cartilage markers also induced undesirable molecules, indicating that perfect chondrogenic differentiation is not achievable with the current differentiation protocols. PMID:24816923
USDA-ARS?s Scientific Manuscript database
In an effort to determine whether tropical adaptation influences circulating concentrations of the growth-related hormone, insulin-like growth factor-I (IGF-I), 3-breed diallel matings were conducted using temperate Bos taurus (A; Angus), tropical Bos indicus (B; Brahman), and tropical Bos taurus (R...
Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer.
Spirina, Ludmila V; Yunusova, Nataliya V; Kondakova, Irina V; Kolomiets, Larisa A; Koval, Valeriya D; Chernyshova, Alena L; Shpileva, Olga V
2012-09-01
Insulin-like growth factors (IGFs), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and nuclear factor kappa-B (NF-κB) are known to play an important role in endometrial cancer pathogenesis. However, the proteolytic regulation of these factors is still poorly understood. We studied the correlation between chymotrypsin-like activity of proteasomes and IGF-I, IGF-II, VEGF, HIF-1, and NF-κB levels in endometrial cancer tissues. It was shown that the total activity of proteasomes and the activity of the 20S and 26S proteasomes in malignant tumors were significantly higher than those observed in the normal endometrium. Negative relationships between the proteasome activity and IGF-I, HIF-1, and NF-κB p50 expressions were found. High 20S proteasome activity was associated with increase of HIF-1 level. Positive relationships between IGF-I expression and two classic forms of NF-κB p50 and p65 in endometrial cancer were revealed. The data obtained indicate the possible proteasomal regulation of growth and transcription factors. The major pool of IGF-I is located in the extracellular space, and it is likely that extracellular proteasomes also take part in the regulation of the IGF-I content. The present data show the evidence of proteasome regulation of growth and nuclear factors that can play an important role in cancer pathogenesis.
Uniyal, S; Panda, R P; Chouhan, V S; Yadav, V P; Hyder, I; Dangi, S S; Gupta, M; Khan, F A; Sharma, G T; Bag, S; Sarkar, M
2015-01-01
This study investigated the expression and localization of insulin-like growth factor (IGF) system at different stages of buffalo CL and the role of IGF-I in stimulating vascular endothelial growth factor (VEGF) and progesterone (P4) production in cultured luteal cells. The mRNA expression of IGF system, VEGF, steroidogenic acute regulatory protein, P450scc, and hydroxysteroid dehydrogenase (HSD) was investigated by quantitative real-time polymerase chain reaction (PCR). Protein expression of IGF was demonstrated by Western blot and localization by immunohistochemistry. Progesterone and VEGF production was assayed using RIA and ELISA. A relatively high mRNA expression of IGF-I and IGF-II in early, mid- and late luteal phases with immunoreactivity mostly restricted to cytoplasm of large luteal cells indicates their autocrine role, whereas very weak immunoreactivity in endothelial cells during the mid-luteal phase indicates their paracrine role. Insulin-like growth factor receptors, IGF-IR and IGF-IIR, were restricted to large luteal cells with high mRNA and protein expressions in the mid-luteal phase. The significantly higher expression of insulin-like growth factor binding protein (IGFBP)-1, -3, -5, and -6 in the early or mid-luteal phase suggested their stimulatory role, whereas that of IGFBP-2 and -4 in mid-, late, and regressive luteal stages implied their inhibitory role. The mRNA expressions of key steroidogenic factors and VEGF were significantly higher (P < 0.05) when the culture medium was supplemented with 100 ng/mL of IGF-I for 72 hours. Moreover, IGF-I at a dose of 100 ng/mL increased P4 and VEGF production (P < 0.05). It can be concluded that IGF family members via their autocrine and paracrine effect play significant roles in promoting angiogenesis through the production of VEGF in luteal cells and steroid synthesis through the production of key steroidogenic factors. Copyright © 2015 Elsevier Inc. All rights reserved.
Catrina, S-B; Lewitt, M; Massambu, C; Dricu, A; Grünler, J; Axelson, M; Biberfeld, P; Brismar, K
2005-04-25
Kaposi's sarcoma (KS) is a highly vascular tumour and is the most common neoplasm associated with human immunodeficiency virus (HIV-1) infection. Growth factors, in particular vascular endothelial growth factor (VEGF), have been shown to play an important role in its development. The role of insulin-like growth factors (IGFs) in the pathophysiology of different tumours led us to evaluate the role of IGF system in KS. The IGF-I receptors (IGF-IR) were identified by immunohistochemistry in biopsies taken from patients with different AIDS/HIV-related KS stages and on KSIMM cells (an established KS-derived cell line). Insulin-like growth factor-I is a growth factor for KSIMM cells with a maximum increase of 3H-thymidine incorporation of 130 +/- 27.6% (P < 0.05) similar to that induced by VEGF and with which it is additive (281 +/- 13%) (P < 0.05). Moreover, specific blockade of the receptor (either by alpha IR3 antibody or by picropodophyllin, a recently described selective IGF-IR tyrosine phosphorylation inhibitor) induced KSIMM apoptosis, suggesting that IGF-IR agonists (IGF-I and -II) mediate antiapoptotic signals for these cells. We were able to identify an autocrine loop essential for KSIMM cell survival in which IGF-II is the IGF-IR agonist secreted by the cells. In conclusion, IGF-I pathway inhibition is a promising therapeutical approach for KS tumours.
Berdiaki, Aikaterini; Tzardi, Maria
2015-01-01
Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease. PMID:26258011
Pradeep, C-R; Zeisel, A; Köstler, WJ; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y
2013-01-01
The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients’ lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment. PMID:22139081
Ciarmela, Pasquapina; Islam, Md. Soriful; Reis, Fernando M.; Gray, Peter C.; Bloise, Enrrico; Petraglia, Felice; Vale, Wylie; Castellucci, Mario
2011-01-01
BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology. PMID:21788281
Won, Chong Hyun; Jeong, Yun-Mi; Kang, Sangjin; Koo, Tae-Sung; Park, So-Hyun; Park, Ki-Young; Sung, Young-Kwan; Sung, Jong-Hyuk
2015-01-01
Keratinocyte stem/progenitor cells (KSCs) reside in the bulge region of the hair follicles and may be involved in hair growth. Hair follicle dermal papilla cells (HFDPCs) and outer root sheath (ORS) cells were treated with conditioned medium (CM) of KSCs. Moreover, the effects of KSC-CM on hair growth were examined ex vivo and in vivo. A human growth factor chip array and RT-PCR were employed to identify enriched proteins in KSC-CM as compared with CM from keratinocytes. KSC-CM significantly increased the proliferation of HFDPCs and ORS cells, and increased the S-phase of the cell cycle in HFDPCs. KSC-CM led to the phosphorylation of ATK and ERK1/2 in both cell types. After subcutaneous injection of KSC-CM in C3H/HeN mice, a significant increase in hair growth and increased proliferation of hair matrix keratinocytes ex vivo was observed. We identified six proteins enriched in KSC-CM (amphiregulin, insulin-like growth factor binding protein-2, insulin-like growth factor binding protein-5, granulocyte macrophage-colony stimulating factor, Platelet-derived growth factor-AA, and vascular endothelial growth factor). A growth-factor cocktail that contains these six recombinant growth factors significantly increased the proliferation of HFDPCs and ORS cells and enhanced the hair growth of mouse models. These results collectively indicate that KSC-CM has the potential to increase hair growth via the proliferative capacity of HFDPCs and ORS cells. PMID:25706512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.
2008-11-14
REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...
Vahabi, Surena; Torshabi, Maryam; Esmaeil Nejad, Azadeh
2016-12-01
Predictable regeneration of alveolar bone defects has always been a challenge in implant dentistry. Bone allografts are widely used bone substitutes with controversial osteoinductive activity. This in vitro study aimed to assess the osteogenic potential of some commercially available freeze-dried bone allografts supplemented with human recombinant platelet-derived growth factor-BB and transforming growth factor beta-1. Cell viability, mineralization, and osteogenic gene expression of MG-63 osteoblast-like cells were compared among the allograft alone, allograft/platelet-derived growth factor-BB, allograft/transforming growth factor beta-1, and allograft/platelet-derived growth factor-BB/transforming growth factor beta-1 groups. The methyl thiazol tetrazolium assay, real-time quantitative reverse transcription polymerase chain reaction and alizarin red staining were performed, respectively, for assessment of cell viability, differentiation, and mineralization at 24-72 h post treatment. The allograft with greater cytotoxic effect on MG-63 cells caused the lowest differentiation among the groups. In comparison with allograft alone, allograft/transforming growth factor beta-1, and allograft/transforming growth factor beta-1/platelet-derived growth factor-BB caused significant upregulation of bone sialoprotein and osteocalcin osteogenic mid-late marker genes, and resulted in significantly higher amounts of calcified nodules especially in mineralized non-cytotoxic allograft group. Supplementation of platelet-derived growth factor-BB alone in 5 ng/mL concentration had no significant effect on differentiation or mineralization markers. According to the results, transforming growth factor beta-1 acts synergistically with bone allografts to enhance the osteogenic differentiation potential. Therefore, this combination may be useful for rapid transformation of undifferentiated cells into bone-forming cells for bone regeneration. However, platelet-derived growth factor-BB supplementation did not support this synergistic ability to enhance osteogenic differentiation and thus, further investigations are required.
Milne, E; Martinez Pereira, Y; Muir, C; Scase, T; Shaw, D J; McGregor, G; Oldroyd, L; Scurrell, E; Martin, M; Devine, C; Hodgkiss-Geere, H
2018-05-01
To develop a provisional immunohistochemistry panel for distinguishing reactive pericardium, atypical mesothelial proliferation and mesothelioma in dogs. Archived pericardial biopsies were subject to haematoxylin and eosin staining, immunohistochemistry for cytokeratin, vimentin, insulin-like growth factor II mRNA-binding protein 3, glucose transporter 1 and desmin. Samples were scored for intensity and number of cells stained. Ten biopsies of reactive mesothelium, 17 of atypical mesothelial proliferation, 26 of mesothelioma and five of normal pericardium were identified on the basis of haematoxylin and eosin staining. Cytokeratin and vimentin were expressed in all biopsies, confirming mesothelial origin. Normal pericardial samples had the lowest scores for insulin-like growth factor II mRNA-binding protein 3, glucose transporter 1 and desmin. Mesothelioma and atypical proliferative samples were similar to each other, with higher scores for insulin-like growth factor II mRNA-binding protein 3 and glucose transporter 1 than the reactive samples. Desmin staining was variable. Insulin-like growth factor II mRNA-binding protein 3 was the best to distinguish between disease groups. An immunohistochemistry panel of cytokeratin, vimentin, insulin-like growth factor II mRNA-binding protein 3 and glucose transporter 1 could provide superior information compared with haematoxylin and eosin staining alone in the diagnosis of cases of mesothelial proliferation in canine pericardium, but further validation is warranted. © 2018 British Small Animal Veterinary Association.
Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle
NASA Technical Reports Server (NTRS)
Adams, Gregory R.
2002-01-01
Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.
Novel Growth Factor as Prognostic Marker for Estrogen-Independence in Breast Cancer
2002-08-01
factor (PCDGF, also known as progranulin ) is a novel autocrine growth factor shown to be overexpressed and to be mitogenic in human breast cancer cell...kDa glycoprotein originally purified from the highly tumorigenic mouse teratoma-derived cell line PC (1, 2). PCDGF (also known as progranulin ) is the...requirement for the insulin-like growth factor 1 receptor for growth in vitro. J Biol Chem, 273: 20078-20083, 1998. 6. He, Z. and Bateman, A. Progranulin gene
Breaking the barriers: New role for insulin-like growth factor 1 receptor in vascular permeability.
Xavier, Sandhya
2015-05-01
This commentary highlights the article by Liang et al that describes a critical role for insulin-like growth factor 1 receptor in the progression of chronic kidney disease. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Wolff, Garen S; Chiang, Po Jen; Smith, Susan M; Romero, Roberto; Armant, D Randall
2007-07-01
Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0-100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1-2 h of exposure to 50 mM alcohol. Exposure to 25-50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism.
Roles of neural stem cells in the repair of peripheral nerve injury.
Wang, Chong; Lu, Chang-Feng; Peng, Jiang; Hu, Cheng-Dong; Wang, Yu
2017-12-01
Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.
Effects of Growth Factors on Dental Stem/ProgenitorCells
Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.
2014-01-01
Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538
Graffigna, Mabel Nora; Belli, Susana H; de Larrañaga, Gabriela; Fainboim, Hugo; Estepo, Claudio; Peres, Silvia; García, Natalia; Levalle, Oscar
2009-03-01
to assess the presence of nonalcoholic fatty liver disease in patients with risk factors for this pathology (obesity, dyslipidemia, metabolic syndrome and diabetes type 2) and to determine the role of insulin, HOMA index, insulin-like growth factor-binding protein-1, sex hormone-binding globulin and plasminogen activator inhibitor type 1, as biochemical markers. Ninety-one patients with risk factors for nonalcoholic fatty liver disease were evaluated. Serum transaminases, insulin, sex hormone-binding globulin, insulin-like growth factor-binding protein-1 and plasminogen activator inhibitor type 1 were measured. The diagnosis of fatty liver was performed by ultrasonography and liver biopsies were performed to 31 subjects who had steatosis by ultrasonography and high alanine aminotransferase. Nonalcoholic fatty liver disease was present in 65 out of 91 patients (71,4%). Liver biopsy performed to 31 subjects confirmed nonalcoholic steatohepatitis. Twenty-five patients had different degrees of fibrosis. Those individuals with fatty liver had higher waist circumference, serum levels of triglycerides, insulin and HOMA index, and lower serum insulin-like growth factor-binding protein-1 concentration. The degree ofhepatic steatosis by ultrasonography was positively correlated to waist circumference, triglycerides, insulin and HOMA index (p<0,003; p<0,003; p<0,002 and p<0,001, respectively), and was negatively correlated to HDL-cholesterol and insulin-like growth factor-binding protein-1 (p<0,025 and p<0,018, respectively). We found a high prevalence of NAFLD in patients with risk factors, most of them overweight or obese. Although SHBG and PAI-1 have a closely relationship to insulin resistance, they did not show to be markers of NAFLD. Regardless of low IGFBP-1 levels associated with NAFLD, serum IGFBP-1 measure is less accessible than insulin and triglycerides levels, HOMA index and waist circumference. Moreover, it is not a better marker for NAFLD than the above mentioned.
Gu, Yun; Xue, Chenbin; Zhu, Jianbin; Sun, Hualin; Ding, Fei; Cao, Zheng; Gu, Xiaosong
2014-04-01
Considerable research has been devoted to unraveling the regulation of neural stem cell (NSC) differentiation. The responses of NSCs to various differentiation-inducing stimuli, however, are still difficult to estimate. In this study, we aimed to search for a potent growth factor that was able to effectively induce differentiation of NSCs toward Schwann cells. NSCs were isolated from dorsal root ganglia (DRGs) of adult rats and identified by immunostaining. Three different growth factors were used to stimulate the differentiation of DRG-derived NSCs (DRG-NSCs). We found that among these three growth factors, bFGF was the strongest inducer for the glial differentiation of DRG-NSCs, and bFGF induced the generation of an increased number of Schwann cell-like cells as compared to nerve growth factor (NGF) and neuregulin1-β (NRG). These Schwann cell-like cells demonstrated the same characteristics as those of primary Schwann cells. Furthermore, we noted that bFGF-induced differentiation of DRG-NSCs toward Schwann cells might be mediated by binding to fibroblast growth factor receptor-1 (FGFR-1) through activation of MAPK/ERK signal pathway.
Interleukin-Driven Insulin-Like Growth Factor Promotes Prostatic Inflammatory Hyperplasia
Hahn, Alana M.; Myers, Jason D.; McFarland, Eliza K.; Lee, Sanghee
2014-01-01
Prostatic inflammation is of considerable importance to urologic research because of its association with benign prostatic hyperplasia and prostate cancer. However, the mechanisms by which inflammation leads to proliferation and growth remain obscure. Here, we show that insulin-like growth factors (IGFs), previously known as critical developmental growth factors during prostate organogenesis, are induced by inflammation as part of the proliferative recovery to inflammation. Using genetic models and in vivo IGF receptor blockade, we demonstrate that the hyperplastic response to inflammation depends on interleukin-1–driven IGF signaling. We show that human prostatic hyperplasia is associated with IGF pathway activation specifically localized to foci of inflammation. This demonstrates that mechanisms of inflammation-induced epithelial proliferation and hyperplasia involve the induction of developmental growth factors, further establishing a link between inflammatory and developmental signals and providing a mechanistic basis for the management of proliferative diseases by IGF pathway modulation. PMID:25292180
2011-08-01
activator, urokinase 6.06 207403_at IRS4 insulin receptor substrate 4 6.06 208487_at lmx1b LIM homeobox transcription factor 1, beta 6.06 206051_at...3.48 216533_at pccA propionyl Coenzyme A carboxylase, alpha polypeptide 3.48 202410_x_at INS-IGF2 insulin -like growth factor 2 (somatomedin A); insulin ...INS-IGF2 readthrough transcript 3.48 202410_x_at INS insulin -like growth factor 2 (somatomedin A); insulin ; INS-IGF2 readthrough transcript 3.48
Genetic factors in fetal growth restriction and miscarriage.
Yamada, Hideto; Sata, Fumihiro; Saijo, Yasuaki; Kishi, Reiko; Minakami, Hisanori
2005-06-01
Recently, several investigations concerning disadvantageous genetic factors in human reproduction have progressed. Inherited thrombophilia, such as factor V Leiden, prothrombin, and methylenetetrahydrofolate reductase mutations; gene polymorphisms of detoxification enzyme (CYP1A1); growth factors (insulin-like growth factor-I); and hormones such as angiotensinogen and CYP17 are involved in the pathogenesis of fetal growth restriction. The inherited thrombophilia, gene polymorphisms of coagulation and anticoagulation factor such as thrombomodulin, endothelial protein C receptor, plasminogen activator inhibitor 1, and factor XIII; human lymphocyte antigen (HLA-G); detoxification enzymes (glutathione- S-transferase M1); cytokines such as interleukin (IL) -1 and IL-6; hormones (CYP17); vasodilators (nitric oxide synthase 3); and vitamins (transcobalamin) are involved in the pathogenesis of sporadic and recurrent miscarriage. It is likely that a gene polymorphism or mutation susceptible to reproductive failure has a beneficial effect on the process of human reproduction with or without the environmental interaction. The factor V Leiden mutation has genetic advantages that are believed to be an improved implantation rate in in vitro fertilization and a reduction of maternal intrapartum blood loss. It has also been demonstrated that the CYP17 A2 allele has bidirectional effects on human reproduction, including increases in susceptibility to recurrent miscarriage and fetal growth enhancement.
Calhoun, Darlene A; Christensen, Robert D
2004-03-01
The practice of complete bowel rest in prematurely delivered neonates and those who have undergone surgery for congenital anomalies of the gastrointestinal (GI) tract is common in neonatal intensive care units (NICU). However, increased recognition of the critical role of growth factors in GI development suggests that this practice might be modified to include the administration of synthetic amniotic fluid-like solutions designed to bridge the neonate between their intra-uterine environment and that of the NICU. This article reviews advances in administering synthetic amniotic fluid-like solutions in the NICU.
Sozen, Ibrahim; Arici, Aydin
2002-07-01
To review the available information regarding the role of cytokines, growth factors, and the extracellular matrix in the pathophysiology of uterine leiomyomata and to integrate this information in a suggested model of disease at the cellular level. A thorough literature and MEDLINE search was conducted to identify the relevant studies in the English literature published between January, 1966 and October, 2001. A model of disease at the cellular level was developed using the most likely cytokines to be involved in the pathogenesis of leiomyomata as determined by our assessment of the available literature. A number of cytokines and growth factors, including transforming growth factor-beta (TGF-beta), epidermal growth factor, monocyte chemotactic protein-1, insulin-like growth factors 1 and 2, prolactin, parathyroid-hormone-related peptide, basic fibroblast growth factor, platelet-derived growth factor, interleukin-8, and endothelin, have been investigated in myometrium and leiomyoma. Among these cytokines, TGF-beta appears to be the only growth factor that has been shown to be overexpressed in leiomyoma vs. myometrium, be hormonally-regulated both in vivo and in vitro, and be both mitogenic and fibrogenic in these tissues. In addition to the cytokines, extracellular matrix components such as collagen, fibronectin, proteoglycans, matrix metalloproteinases, and tissue inhibitors of metalloproteinases seem to play pivotal roles in the pathogenesis of leiomyomata. We believe that, given the extent and depth of the current research on the cellular biology of leiomyomata, the cellular mechanisms responsible in the pathogenesis of leiomyomata will be identified clearly within the foreseeable future. This will enable researchers to develop therapy directed against the molecules and mechanisms at the cellular level.
Poinsot, Pierre; Schwarzer, Martin; Peretti, Noël; Leulier, François
2018-07-01
In most animal species, postnatal growth is controlled by conserved insulin/insulin-like growth factor (IGF) signaling. In mammals, juvenile growth is characterized by a longitudinal bone growth resulting from the ossification of the growth plate. This ossification is under IGF1 influence through endocrine and paracrine mechanisms. Moreover, the nutritional status has been largely described as an important factor influencing the insulin/insulin-like growth factor signaling. It is now well established that the gut microbiota modulates the nutrient availability of its host. Hence, studies of the interaction between nutritional status, gut microbiota and bone growth have recently emerged. Here, we review recent findings using experimental models about the impact of gut bacteria on the somatotropic axis and its consequence on the bone growth. We also discuss the perspectives of these studies in opening an entire field for clinical interventions. © 2018 Society for Endocrinology.
Roles of insulin-like growth factors in metamorphic development of turbot (Scophthalmus maximus).
Jia, Yudong
2018-01-31
Larval turbot (Scophthalmus maximus) undergo metamorphosis, a late post-embryonic developmental event that precedes juvenile transition. Insulin-like growth factors (IGFs) are important endocrine/autocrine/paracrine factors that provide essential signals to control of the embryonic and postnatal development of vertebrate species, including fish. Accumulating evidence suggests that IGFs are involved in regulating the metamorphic development of flatfish. This mini review focus on the functions of all known IGFs (IGF-I and IGF-II) during the metamorphic development of turbot. Information about IGFs and insulin-like growth factors binding proteins (IGFBPs) from other teleosts is also included in this review to provide an overview of IGFs functions in the metamorphic development of turbot. These findings may enhance our understanding of the potential roles of the IGFs system in controlling of flatfish metamorphosis and contributing to the improvement of broodstock management strategies for larval turbot. Copyright © 2018 Elsevier Inc. All rights reserved.
Villar, Cristina C; Zhao, Xiang R; Livi, Carolina B; Cochran, David L
2015-05-01
A fundamental issue limiting the efficacy of surgical approaches designed to correct periodontal mucogingival defects is that new tissues rely on limited sources of blood supply from the adjacent recipient bed. Accordingly, therapies based on tissue engineering that leverage local self-healing potential may represent promising alternatives for the treatment of mucogingival defects by inducing local vascularization. The aim of this study is to evaluate the effect of commercially available living cellular sheets (LCS) on the angiogenic potential of neonatal dermal human microvascular endothelial cells (HMVEC-dNeo). The effect of LCS on HMVEC-dNeo proliferation, migration, capillary tube formation, gene expression, and production of angiogenic factors was evaluated over time. LCS positively influenced HMVEC-dNeo proliferation and migration. Moreover, HMVEC-dNeo incubated with LCS showed transcriptional profiles different from those of untreated cells. Whereas increased expression of angiogenic genes predominated early on in response to LCS, late-phase responses were characterized by up- and downregulation of angiostatic and angiogenic genes. However, this trend was not confirmed at the protein level, as LCS induced increased production of most of the angiogenic factors tested (i.e., epidermal growth factor [EGF], heparin-binding EGF-like growth factor, interleukin 6, angiopoietin, platelet-derived growth factor-BB, placental growth factor, and vascular endothelial growth factor) throughout the investigational period. Finally, although LCS induced HMVEC-dNeo proliferation, migration, and expression of angiogenic factors, additional factors and environmental pressures are likely to be required to promote the development of complex, mesh-like vascular structures. LCS favor initial mechanisms that govern angiogenesis but failed to enhance or accelerate HMVEC-dNeo morphologic transition to complex vascular structures.
USDA-ARS?s Scientific Manuscript database
Purpose: Our objective was to investigate if insulin-like growth factor (IGF) axis genes affect the risk for age-related macular degeneration (AMD). Methods: 864 Caucasian non-diabetic participants from the Age-Related Eye Disease Study (AREDS) Genetic Repository were used in this case control st...
NASA Astrophysics Data System (ADS)
Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng
2003-12-01
Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.
Growth factors, nutrient signaling, and cardiovascular aging
Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D.
2012-01-01
Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the great majority of the organisms studied. In particular, the enzymes activated by growth hormone (GH), insulin and insulin-like growth factor 1 (IGF-I) in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction (DR), which reduces the level of IGF-I and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases and deficiencies in GH signaling and IGF-I are strongly associated with protection from cancer and diabetes in both mice and humans, but their role in cardiac function and cardiovascular diseases is controversial. Here we review the link between growth factors, cardiac function and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans. PMID:22499903
Early pregnancy angiogenic markers and spontaneous abortion: an Odense Child Cohort study.
Andersen, Louise B; Dechend, Ralf; Karumanchi, S Ananth; Nielsen, Jan; Joergensen, Jan S; Jensen, Tina K; Christesen, Henrik T
2016-11-01
Spontaneous abortion is the most commonly observed adverse pregnancy outcome. The angiogenic factors soluble Fms-like kinase 1 and placental growth factor are critical for normal pregnancy and may be associated to spontaneous abortion. We investigated the association between maternal serum concentrations of soluble Fms-like kinase 1 and placental growth factor, and subsequent spontaneous abortion. In the prospective observational Odense Child Cohort, 1676 pregnant women donated serum in early pregnancy, gestational week <22 (median 83 days of gestation, interquartile range 71-103). Concentrations of soluble Fms-like kinase 1 and placental growth factor were determined with novel automated assays. Spontaneous abortion was defined as complete or incomplete spontaneous abortion, missed abortion, or blighted ovum <22+0 gestational weeks, and the prevalence was 3.52% (59 cases). The time-dependent effect of maternal serum concentrations of soluble Fms-like kinase 1 and placental growth factor on subsequent late first-trimester or second-trimester spontaneous abortion (n = 59) was evaluated using a Cox proportional hazards regression model, adjusting for body mass index, parity, season of blood sampling, and age. Furthermore, receiver operating characteristics were employed to identify predictive values and optimal cut-off values. In the adjusted Cox regression analysis, increasing continuous concentrations of both soluble Fms-like kinase 1 and placental growth factor were significantly associated with a decreased hazard ratio for spontaneous abortion: soluble Fms-like kinase 1, 0.996 (95% confidence interval, 0.995-0.997), and placental growth factor, 0.89 (95% confidence interval, 0.86-0.93). When analyzed by receiver operating characteristic cut-offs, women with soluble Fms-like kinase 1 <742 pg/mL had an odds ratio for spontaneous abortion of 12.1 (95% confidence interval, 6.64-22.2), positive predictive value of 11.70%, negative predictive value of 98.90%, positive likelihood ratio of 3.64 (3.07-4.32), and negative likelihood ratio of 0.30 (0.19-0.48). For placental growth factor <19.7 pg/mL, odds ratio was 13.2 (7.09-24.4), positive predictive value was 11.80%, negative predictive value was 99.0%, positive likelihood ratio was 3.68 (3.12-4.34), and negative likelihood ratio was 0.28 (0.17-0.45). In the sensitivity analysis of 54 spontaneous abortions matched 1:4 to controls on gestational age at blood sampling, the highest area under the curve was seen for soluble Fms-like kinase 1 in prediction of first-trimester spontaneous abortion, 0.898 (0.834-0.962), and at the optimum cut-off of 725 pg/mL, negative predictive value was 51.4%, positive predictive value was 94.6%, positive likelihood ratio was 4.04 (2.57-6.35), and negative likelihood ratio was 0.22 (0.09-0.54). A strong, novel prospective association was identified between lower concentrations of soluble Fms-like kinase 1 and placental growth factor measured in early pregnancy and spontaneous abortion. A soluble Fms-like kinase 1 cut-off <742 pg/mL in maternal serum was optimal to stratify women at high vs low risk of spontaneous abortion. The cause and effect of angiogenic factor alterations in spontaneous abortions remain to be elucidated. Copyright © 2016 Elsevier Inc. All rights reserved.
Microglia M2A Polarization as Potential Link between Food Allergy and Autism Spectrum Disorders.
Kalkman, Hans O; Feuerbach, Dominik
2017-12-09
Atopic diseases are frequently co-morbid with autism spectrum disorders (ASD). Allergic responses are associated with an activation of mast cells, innate lymphoid cells, and Th2 cells. These cells produce type-2 cytokines (IL4 and IL13), which stimulate microglia and macrophages to adopt a phenotype referred to as 'alternative activation' or 'M2A'. M2A-polarized macrophages and microglia play a physiological role in tissue repair by secreting growth factors such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1. In ASD there is evidence for increased type-2 cytokines, microglia activation, M2A polarization, and increased levels of growth factors. In neurons, these growth factors drive a signal transduction pathway that leads to activation of the enzyme mammalian Target of Rapamycin (mTOR), and thereby to the inhibition of autophagy. Activation of mTOR is an effect that is also common to several of the genetic forms of autism. In the central nervous system, redundant synapses are removed via an autophagic process. Activation of mTOR would diminish the pruning of redundant synapses, which in the context of ASD is likely to be undesired. Based on this line of reasoning, atopic diseases like food allergy, eczema or asthma would represent risk factors for autism spectrum disorders.
Kobayashi, Yasuhiro; Jimenez-Krassel, Fermin; Ireland, James J; Smith, George W
2006-01-01
The ability of ovarian follicles to produce large amounts of estradiol is a hallmark of follicle health status. Estradiol producing capacity is lost in ovarian follicles before morphological signs of atresia. A prominent wave like pattern of growth of antral follicles is characteristic of monotocous species such as cattle, horses and humans. While our knowledge of the role of pituitary gonadotropins in support of antral follicle growth and development is well established, the intrinsic factors that suppress estradiol production and may help promote atresia during follicular waves are not well understood. Numerous growth factors and cytokines have been reported to suppress granulosa cell estradiol production in vitro, but the association of expression of many such factors in vivo with follicle health status and their physiological significance are not clear. The purpose of this review is to discuss the in vivo and in vitro evidence supporting a local physiological role for cocaine and amphetamine regulated transcript, inhibins and low molecular weight insulin like growth factor binding proteins in negative regulation of granulosa cell estradiol production, with emphasis on evidence from the bovine model system. PMID:16611367
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Immunoreactive Trypsinogen (IRT) Influenza Tests Insulin Insulin-like Growth Factor-1 ... Hormone (LH) Lyme Disease Tests Magnesium Maternal Serum Screening, ...
Kanakis, Georgios A; Grimelius, Lars; Papaioannou, Dimitrios; Kaltsas, Gregory; Tsolakis, Apostolos V
2018-04-27
Altered expression of Insulin-like Growth Factor-1 (IGF-1), its receptor (IGF-1R), Connective Tissue Growth Factor (CTGF) and Hypoxia Inducible Factor-1 (HIF-1), has been implicated in tumorigenesis. So far, these factors have not been studied systematically in Pulmonary Carcinoids (PCs). To examine IGF-1, IGF-1R, CTGF and HIF-1 expression in PCs, and assess their prognostic value over established factors. Retrospective study of 121 PCs (104 Typical and 17 Atypical). The expression of growth factors was studied immunohistochemically and tumors were considered positive if immunoreactivity appeared in >50% of cells. All studied parameters were expressed in the majority of tumors (IGF-1, IGF-1R, CTGF and HIF-1, in 78.5%, 67%, 72% and 78%, respectively). Their expression tended to be more frequent in TCs and in tumors with Ki-67≤2% (significant only for HIF-1; 82 vs. 53%; p=0.023 and 83 vs. 63%; p=0.025 respectively). CTGF was the only factor correlated with more extensive disease (larger size; presence of lymph node and distant metastases). According to logistic regression analysis, only advanced age, Ki-67≥3.4% and lymph node involvement could predict the development of distant metastases. IGF-1, IGF-1R, CTGF and HIF-1 are avidly expressed in PCs; however, their presence did not appear to be of statistically significant value over established prognostic factors.
Insulin-like growth factor-I, physical activity, and control of cellular anabolism.
Nindl, Bradley C
2010-01-01
The underlying mechanisms responsible for mediating the beneficial outcomes of exercise undoubtedly are many, but the insulin-like growth factor-I (IGF-I) system is emerging as an important and central hormonal axis that plays a significant role concerning cellular anabolism. This introductory article summarizes the intent and the content for papers presented as part of a 2008 American College of Sports Medicine national symposium entitled "Insulin-like Growth Factor-I, Physical Activity, and Control of Cellular Anabolism." The individual authors and their papers are as follows: Jan Frystyk authoring "The relationship between exercise and the growth hormone/insulin-like growth factor-I axis," Greg Adams authoring "IGF-I signaling in skeletal muscle and the potential for cytokine interactions," and Brad Nindl authoring "Insulin-like growth factor-I as a biomarker of health, fitness, and training status." These papers focus on 1) different assay methodologies for IGF-I within the paradigm of exercise studies, 2) research demonstrating that intracellular signaling components associated with several proinflammatory cytokines have the potential to interact with anabolic signaling processes in skeletal muscle, and 3) an overview of IGF-I as a biomarker related to exercise training, muscle and bone remodeling, body composition, cognition, and cancer. When summed in total, the contribution that these papers will make will undoubtedly involve bringing attention to the vast regulatory complexity of the IGF-I system and will hopefully convince the reader that the IGF-I system warrants further detailed scientific inquiry to resolve many unanswered questions and paradoxical experimental findings. The IGF-I system remains one of the most intriguing and captivating marvels of human physiology that seems central in mediating numerous adaptations from physical activity.
Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor
NASA Technical Reports Server (NTRS)
Ellis, S.
1981-01-01
The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.
Normal growth and development in the absence of hepatic insulin-like growth factor I
Yakar, Shoshana; Liu, Jun-Li; Stannard, Bethel; Butler, Andrew; Accili, Domenici; Sauer, Brian; LeRoith, Derek
1999-01-01
The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I. PMID:10377413
ERIC Educational Resources Information Center
Stern, Sarah A.; Chen, Dillon Y.; Alberini, Cristina M.
2014-01-01
Recent work has reported that the insulin-like growth factor 2 (IGF2) promotes memory enhancement. Furthermore, impaired insulin or IGF1 functions have been suggested to play a role in the pathogenesis of neurodegeneration and cognitive impairments, hence implicating the insulin/IGF system as an important target for cognitive enhancement and/or…
Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn
2016-09-06
Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.
Neurodevelopmental effects of insulin-like growth factor signaling
O’Kusky, John; Ye, Ping
2012-01-01
Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development. PMID:22710100
Loĭko, N G; Kozlova, A N; Osipov, G A; El'-Registan, G I
2002-01-01
The haloalkaliphilic, lithoautotrophic, sulfur-oxidizing gram-negative bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum were found to possess a special system for the autoregulation of their growth. The system includes the extracellular autoinducers of anabiosis (the d1 factor) and autolysis (the d2 factor). The principal components of the d1 factor are alkylhydroxybenzenes. The principal components of the d2 factor are free unsaturated fatty acids dominated by oleic acid isomers. Like the respective autoregulators of neutrophilic bacteria, the d1 factor of haloalkaliphilic bacteria presumably controls their growth and transition to a anabiotic state, while the d2 factor controls autolytic processes. Alkylhydroxybenzenes of both microbial and chemical origin were found to influence bacterial respiration. The low-molecular-weight osmoprotectant glycine betaine enhanced the thermostability of trypsin. This suggests that glycine betaine, like the d1 factor, serves as a molecular chaperone.
1998-09-01
and cultured in serum-free media without growth factors, estrogen did not stimulate proliferation of either cell line. Insulin and growth factors (EGF...purchased from ICN Biomedicals, Inc. Nonessential amino acids (NEAA), gentamycin, certified FBS, and insulin were obtained from Life Technologies, Inc...Laboratories, Inc. (Logan, UT). Insulin - like growth factor-I (IGF-I) was purchased from GroPep Pty. Ltd. (Adelaide, Australia). Poly-L- lysine and all
Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth
Milanesi, Marco; Torrecilha, Rafaela B. P.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S.; Sölkner, Johann; Contreras-Castillo, Carmen J.; Garcia, José F.
2016-01-01
Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030
Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter
2011-01-01
Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.
Witt, Anika; Salamon, Achim; Boy, Diana; Hansmann, Doris; Büttner, Andreas; Wree, Andreas; Bader, Rainer; Jonitz-Heincke, Anika
2017-01-01
The main goal of cartilage repair is to create functional tissue by enhancing the in vitro conditions to more physiological in vivo conditions. Chondrogenic growth factors play an important role in influencing cartilage homeostasis. Insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β1 affect the expression of collagen type II (Col2) and glycosaminoglycans (GAGs) and, therefore, the targeted use of growth factors could make chondrogenic redifferentiation more efficient. In the present study, human chondrocytes were postmortally isolated from healthy articular cartilage and cultivated as monolayer or 3D pellet cultures either under normoxia or hypoxia and stimulated with IGF-1 and/or TGF-β1 to compare the impact of the different growth factors. The mRNA levels of the specific receptors (IGF1R, TGFBR1, TGFBR2) were analyzed at different time points. Moreover, gene expression rates of collagen type 1 and 2 in pellet cultures were observed over a period of 5 weeks. Additionally, hyaline-like Col2 protein and sulphated GAG (sGAG) levels were quantified. Stimulation with IGF-1 resulted in an enhanced expression of IGF1R and TGFBR2 whereas TGF-β1 stimulated TGFBR1 in the monolayer and pellet cultures. In monolayer, the differences reached levels of significance. This effect was more pronounced under hypoxic culture conditions. In pellet cultures, increased amounts of Col2 protein and sGAGs after incubation with TGF-β1 and/or IGF-1 were validated. In summary, constructing a gene expression profile regarding mRNA levels of specific growth factor receptors in monolayer cultures could be helpful for a targeted application of growth factors in cartilage tissue engineering. PMID:28534942
Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K
2013-09-15
The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
Adase, Christopher A.; Borkowski, Andrew W.; Zhang, Ling-juan; Williams, Michael R.; Sato, Emi; Sanford, James A.
2016-01-01
A critical function for skin is that when damaged it must simultaneously identify the nature of the injury, repair barrier function, and limit the intrusion of pathogenic organisms. These needs are carried out through the detection of damage-associated molecular patterns (DAMPs) and a response that includes secretion of cytokines, chemokines, growth factors, and antimicrobial peptides (AMPs). In this study, we analyzed how non-coding double-stranded RNA (dsRNAs) act as a DAMP in the skin and how the human cathelicidin AMP LL-37 might influence growth factor production in response to this DAMP. dsRNA alone significantly increased the expression of multiple growth factors in keratinocytes, endothelial cells, and fibroblasts. Furthermore, RNA sequencing transcriptome analysis found that multiple growth factors increase when cells are exposed to both LL-37 and dsRNA, a condition that mimics normal wounding. Quantitative PCR and/or ELISA validated that growth factors expressed by keratinocytes in these conditions included, but were not limited to, basic fibroblast growth factor (FGF2), heparin-binding EGF-like growth factor (HBEGF), vascular endothelial growth factor C (VEGFC), betacellulin (BTC), EGF, epiregulin (EREG), and other members of the transforming growth factor β superfamily. These results identify a novel role for DAMPs and AMPs in the stimulation of repair and highlight the complex interactions involved in the wound environment. PMID:27048655
USDA-ARS?s Scientific Manuscript database
The effects of insulin-like growth factor-I (IGF-I), insulin, and leucine on protein turnover and pathways that regulate proteolytic gene expression and protein polyubiquitination were investigated in primary cultures of four day old rainbow trout myocytes. Supplementing media with 100 nM IGF-I inc...
Schwenke, Maren; Knöfler, Martin; Velicky, Philipp; Weimar, Charlotte H. E.; Kruse, Michelle; Samalecos, Annemarie; Wolf, Anja; Macklon, Nick S.; Bamberger, Ana-Maria; Gellersen, Birgit
2013-01-01
Human implantation involves extensive tissue remodeling at the fetal-maternal interface. It is becoming increasingly evident that not only trophoblast, but also decidualizing endometrial stromal cells are inherently motile and invasive, and likely contribute to the highly dynamic processes at the implantation site. The present study was undertaken to further characterize the mechanisms involved in the regulation of endometrial stromal cell motility and to identify trophoblast-derived factors that modulate migration. Among local growth factors known to be present at the time of implantation, heparin-binding epidermal growth factor-like growth factor (HB-EGF) triggered chemotaxis (directed locomotion), whereas platelet-derived growth factor (PDGF)-BB elicited both chemotaxis and chemokinesis (non-directed locomotion) of endometrial stromal cells. Supernatants of the trophoblast cell line AC-1M88 and of first trimester villous explant cultures stimulated chemotaxis but not chemokinesis. Proteome profiling for cytokines and angiogenesis factors revealed neither PDGF-BB nor HB-EGF in conditioned media from trophoblast cells or villous explants, while placental growth factor, vascular endothelial growth factor and PDGF-AA were identified as prominent secretory products. Among these, only PDGF-AA triggered endometrial stromal cell chemotaxis. Neutralization of PDGF-AA in trophoblast conditioned media, however, did not diminish chemoattractant activity, suggesting the presence of additional trophoblast-derived chemotactic factors. Pathway inhibitor studies revealed ERK1/2, PI3 kinase/Akt and p38 signaling as relevant for chemotactic motility, whereas chemokinesis depended primarily on PI3 kinase/Akt activation. Both chemotaxis and chemokinesis were stimulated upon inhibition of Rho-associated, coiled-coil containing protein kinase. The chemotactic response to trophoblast secretions was not blunted by inhibition of isolated signaling cascades, indicating activation of overlapping pathways in trophoblast-endometrial communication. In conclusion, trophoblast signals attract endometrial stromal cells, while PDGF-BB and HB-EGF, although not identified as trophoblast-derived, are local growth factors that may serve to fine-tune directed and non-directed migration at the implantation site. PMID:23349855
Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds.
Biggs, Bradley T; Tang, Tao; Krimm, Robin F
2016-01-01
Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling.
Wang, Limin; Detamore, Michael S
2009-01-01
Temporomandibular joint (TMJ) condylar cartilage is a distinct cartilage that has both fibrocartilaginous and hyaline-like character, with a thin proliferative zone that separates the fibrocartilaginous fibrous zone at the surface from the hyaline-like mature and hypertrophic zones below. In this study, we compared the effects of insulin-like growth factor-I (IGF-I), basic fibroblast growth factor (bFGF), transforming growth factor beta1 (TGF-beta1), and glucosamine sulphate on porcine TMJ condylar cartilage and ankle cartilage cells in monolayer culture. In general, TMJ condylar cartilage cells proliferated faster than ankle cartilage cells, while ankle cells produced significantly greater amounts of glycosaminoglycans (GAGs) and collagen than TMJ condylar cartilage cells. IGF-I and bFGF were potent stimulators of TMJ cell proliferation, while no signals statistically outperformed controls for ankle cell proliferation. IGF-I was the most effective signal for GAG production with ankle cells, and the most potent upregulator of collagen synthesis for both cell types. Glucosamine sulphate promoted cell proliferation and biosynthesis at specific concentrations and outperformed growth factors in certain instances. In conclusion, hyaline cartilage cells had lower cell numbers and superior biosynthesis compared to TMJ condylar cartilage cells, and we have found IGF-I at 100 ng/mL and glucosamine sulphate at 100 microg/mL to be the most effective signals for these cells under the prescribed conditions.
USDA-ARS?s Scientific Manuscript database
Effects of a single injection of 17-estradiol (E2), testosterone (T), or 5a-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, TGF-beta superfamily signaling cascade, and estrogen receptors were determ...
Hagerty, Paul; Lee, Ann; Calve, Sarah; Lee, Cassandra A; Vidal, Martin; Baar, Keith
2012-09-01
Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bioactive factors for tissue regeneration: state of the art.
Ohba, Shinsuke; Hojo, Hironori; Chung, Ung-Il
2012-07-01
THERE ARE THREE COMPONENTS FOR THE CREATION OF NEW TISSUES: cell sources, scaffolds, and bioactive factors. Unlike conventional medical strategies, regenerative medicine requires not only analytical approaches but also integrative ones. Basic research has identified a number of bioactive factors that are necessary, but not sufficient, for organogenesis. In skeletal development, these factors include bone morphogenetic proteins (BMPs), transforming growth factor β TGF-β, Wnts, hedgehogs (Hh), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs), SRY box-containing gene (Sox) 9, Sp7, and runt-related transcription factors (Runx). Clinical and preclinical studies have been extensively performed to apply the knowledge to bone and cartilage regeneration. Given the large number of findings obtained so far, it would be a good time for a multi-disciplinary, collaborative effort to optimize these known factors and develop appropriate drug delivery systems for delivering them.
Cartilage Engineering from Mesenchymal Stem Cells
NASA Astrophysics Data System (ADS)
Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.
Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.
NASA Technical Reports Server (NTRS)
Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.
1995-01-01
Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.
Delivering heparin-binding insulin-like growth factor 1 with self-assembling peptide hydrogels.
Florine, Emily M; Miller, Rachel E; Liebesny, Paul H; Mroszczyk, Keri A; Lee, Richard T; Patwari, Parth; Grodzinsky, Alan J
2015-02-01
Heparin-binding insulin-like growth factor 1 (HB-IGF-1) is a fusion protein of IGF-1 with the HB domain of heparin-binding epidermal growth factor-like growth factor. A single dose of HB-IGF-1 has been shown to bind specifically to cartilage and to promote sustained upregulation of proteoglycan synthesis in cartilage explants. Achieving strong integration between native cartilage and tissue-engineered cartilage remains challenging. We hypothesize that if a growth factor delivered by the tissue engineering scaffold could stimulate enhanced matrix synthesis by both the cells within the scaffold and the adjacent native cartilage, integration could be enhanced. In this work, we investigated methods for adsorbing HB-IGF-1 to self-assembling peptide hydrogels to deliver the growth factor to encapsulated chondrocytes and cartilage explants cultured with growth factor-loaded hydrogels. We tested multiple methods for adsorbing HB-IGF-1 in self-assembling peptide hydrogels, including adsorption prior to peptide assembly, following peptide assembly, and with/without heparan sulfate (HS, a potential linker between peptide molecules and HB-IGF-1). We found that HB-IGF-1 and HS were retained in the peptide for all tested conditions. A subset of these conditions was then studied for their ability to stimulate increased matrix production by gel-encapsulated chondrocytes and by chondrocytes within adjacent native cartilage. Adsorbing HB-IGF-1 or IGF-1 prior to peptide assembly was found to stimulate increased sulfated glycosaminoglycan per DNA and hydroxyproline content of chondrocyte-seeded hydrogels compared with basal controls at day 10. Cartilage explants cultured adjacent to functionalized hydrogels had increased proteoglycan synthesis at day 10 when HB-IGF-1 was adsorbed, but not IGF-1. We conclude that delivery of HB-IGF-1 to focal defects in cartilage using self-assembling peptide hydrogels is a promising technique that could aid cartilage repair via enhanced matrix production and integration with native tissue.
Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes
Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.
2014-01-01
Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960
Salarinasab, Sadegh; Nourazarian, AliReza; Nikanfar, Masoud; Abdyazdani, Nima; Kazemi, Masoumeh; Feizy, Navid; Rahbarghazi, Reza
2017-11-01
Alzheimer's disease is correlated with neuronal degeneration and loss of neuronal precursors in different parts of the brain. It has been found disturbance in the homeostasis neural stem cells (NSCs) can cause neurodegeneration. Morphine, an analgesic agent, can disrupt the dynamic and normal state of NSCs. However, more investigations are required to clearly address underlying mechanisms. The current experiment aimed to investigate the effects of morphine on the cell distribution of insulin factor and receptor and insulin-like growth factors (IGF1, IGF2) in NSCs. NSCs were isolated from rats and stemness feature confirmed by antibodies against nestin and Sox2. The cells were exposed to 100μM morphine, 50μM naloxone and combination of these two drugs for 72h. The neural cell growth, changes in levels of insulin and insulin-like growth factors secreted by NSCs as well as the insulin-receptor-gene expression were assessed by flow cytometry, ELlSA, and real-time PCR, respectively. Cell cycle assay revealed the exposure of cells to morphine for 72h increased cell apoptosis and decreased neural stem cell growth. The biosynthesis of insulin, insulin-like growth factors, and insulin receptor were reduced (p<0.05) after NSCs exposure to morphine at the concentration of 100μM for 24, 48 and 72h. Naloxone is a competitive antagonist which binds MOR where morphine (and endogenous opioids) bind, and reversed the detrimental effects of morphine. It can be concluded that morphine initiated irregularity in NSCs kinetics and activity by reducing the secretion of insulin and insulin-like growth factors and down-regulation of insulin receptor. Copyright © 2017 Elsevier B.V. All rights reserved.
Gilmore, Andrew P; Valentijn, Anthony J; Wang, Pengbo; Ranger, Ann M; Bundred, Nigel; O'Hare, Michael J; Wakeling, Alan; Korsmeyer, Stanley J; Streuli, Charles H
2002-08-02
Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.
Working mechanism of extracorporeal shockwave therapy in non-urological disciplines
NASA Astrophysics Data System (ADS)
Schaden, Wolfgang
2005-04-01
For 32 years of extracorporeal shockwave lithotripsy (ESWL) only the mechanical strength of shockwaves were of clinical interest. For use in orthopaedics, the absence of dangerous long term effects (malignant degeneration, etc.) is the only important message. The mechanical model tries to explain the effect of shock waves by the provocation of microleasions in the tissue stimulating repairing processes. First doubts on this mechanical model came up when Schaden (2001) could show, that less energy is more efficient in the treatment of non-unions. Due to the basic research of the last years knowledge increased about the microbiological effects. Under the influence of shock waves the change of permeability of cell membranes and the liberation of free radicals was reported. Also the production of nitric oxide (NO) and different growth factors like vascular endothelial growth factor (VEGF), bone morphogenetic proteins (BMP), transforming growth factor-beta 1 (TGF-b1), insulin-like growth factor-I (IGF-I) etc. was observed. The biological model tries to explain the effect of shock waves by stimulating the ingrowth of blood vessels and liberation of growth factors. Under the influence of shock waves, biological tissues seem to be able to produce important substances to initiate healing processes.
Quantification of growth factor signaling and pathway cross talk by live-cell imaging.
Gross, Sean M; Rotwein, Peter
2017-03-01
Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor-receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras-Raf-Mek-ERK and phosphatidylinositol (PI) 3-kinase-Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways. Copyright © 2017 the American Physiological Society.
Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G
1991-11-01
Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.
Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.
Kobayashi, S; Clemmons, D R; Venkatachalam, M A
1991-07-01
We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.
Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. Themore » switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.« less
NEUROTROPHIC FACTORS IN COMBINATORIAL APPROACHES FOR SPINAL CORD REGENERATION
McCall, Julianne; Weidner, Norbert; Blesch, Armin
2012-01-01
Axonal regeneration is inhibited by a plethora of different mechanisms in the adult central nervous system (CNS). While neurotrophic factors have been shown to stimulate axonal growth in numerous animal models of nervous system injury, a lack of suitable growth substrates, an insufficient activation of neuron-intrinsic regenerative programs and extracellular inhibitors of regeneration limit the efficacy of neurotrophic factor delivery for anatomical and functional recovery after spinal cord injury. Thus, growth-stimulating factors will likely have to be combined with other treatment approaches to tap into the full potential of growth factor therapy for axonal regeneration. In addition, the temporal and spatial distribution of growth factors have to be tightly controlled to achieve biologically active concentrations, to allow for the chemotropic guidance of axons and to prevent adverse effects related to the widespread distribution of neurotrophic factors. Here, we will review the rationale for combinatorial treatments in axonal regeneration and summarize some recent progress in promoting axonal regeneration in the injured CNS using such approaches. PMID:22526621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retamales, A.; Zuloaga, R.; Valenzuela, C.A.
Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletalmore » myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.« less
Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei
2016-02-01
Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor 2-positive breast cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.
1995-01-01
Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.
[Insulin-like growth factor-1 (IGF-1) - structure and the role in the human body].
Filus, Alicja; Zdrojewicz, Zygmunt
2015-01-01
In the recent years, managed to broadly explore the structure and role of insulin-like growth factors type 1 and 2 (IGF1 I 2). They belong to the structure of polypeptide hormones homologous to proinsulin. They are characterized by a wide range of activities. IGF-1 is a key mediator of most tissue effects of growth hormone (GH). In addition to effects on growth processes of the body, is also an important factor for cell homeostasis, is subject to both endocrine and tissue-specific auto- and paracrine regulation. In this paper, the current, general knowledge on the structure, function and mechanism of biological effects of IGF-1 in the human body was presented. Attention was also drawn to the directions of use of IGf-1 in the treatment of other diseases than the diseases of the hypothalamic-pituitary and growth disorders in children. © Polish Society for Pediatric Endocrinology and Diabetology.
Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy
Lindsey, Richard C.; Mohan, Subburaman
2015-01-01
The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965
Phan, N T; Cabot, P J; Wallwork, B D; Cervin, A U; Panizza, B J
2015-07-01
Chronic rhinosinusitis is characterised by persistent inflammation of the sinonasal mucosa. Multiple pathophysiological mechanisms are likely to exist. Previous research has focused predominantly on T-helper type cytokines to highlight the inflammatory mechanisms. However, proteins such as nuclear factor kappa B and transforming growth factor beta are increasingly recognised to have important roles in sinonasal inflammation and tissue remodelling. This review article explores the roles of T-helper type cytokines, nuclear factor kappa B and transforming growth factor beta in the pathophysiological mechanisms of chronic rhinosinusitis. An understanding of these mechanisms will allow for better identification and classification of chronic rhinosinusitis endotypes, and, ultimately, improved therapeutic strategies.
Breuer, Christian; Kawamura, Ayako; Clark, Natalie M.; Morohashi, Kengo; Busch, Wolfgang; Benfey, Philip N.; Sozzani, Rosangela
2018-01-01
ABSTRACT How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis. Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. PMID:29439132
c-erbA and v-erbA modulate growth and gene expression of a mouse glial precursor cell line.
Iglesias, T; Llanos, S; López-Barahona, M; Pérez-Aranda, A; Rodríguez-Peña, A; Bernal, J; Höhne, A; Seliger, B; Muñoz, A
1994-07-01
The c-erbA alpha protooncogene coding for the thyroid hormone (T3) receptor (TR alpha 1) and the viral, mutated v-erbA oncogene were expressed in an immortal mouse glial cell line (B3.1) using retroviral vectors. c-erbA alpha expression led to a decrease in cell proliferation in high and low serum conditions, both in the presence and in the absence of T3. In serum-free medium, c-erbA-expressing cells (B3.1 + TR alpha 1) were completely arrested, whereas cells expressing v-erbA (B3.1 + v-erbA) showed a higher DNA synthesis rate than normal B3.1 cells. Although proliferation of all three cell types was stimulated by platelet-derived growth factor and basic fibroblast growth factor, differences were also observed in the response to these agents. B3.1 + TR alpha 1 cells were more sensitive to platelet-derived growth factor than B3.1 and B3.1 + v-erbA cells. In contrast, B3.1 cells responded to basic fibroblast growth factor better than B3.1 + TR alpha 1 or B3.1 + v-erbA cells. Insulin-like growth factor I potentiated the action of platelet-derived growth factor and basic fibroblast growth factor. Again, different responses to treatment with insulin-like growth factor I alone were observed; B3.1 + TR alpha 1 cells did not respond to it, whereas B3.1 + v-erbA cells showed a dramatic stimulation by this agent. Interestingly, in the presence of T3, the blockade in B3.1 + TR alpha 1 cell proliferation was accompanied by the down-regulation of the typical astrocytic genes, glial fibrillary acidic protein and vimentin. These hormone effects were not found in v-erbA-expressing cells. In addition, v-erbA inhibited the basal expression of the cyclic nucleotide phosphodiesterase gene, an oligodendrocytic marker.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yang; Han, Chen-chen; Li, Yifan
Basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) produced by hepatocellular carcinoma (HCC) cells are responsible for the growth of HCC cells. Accumulating evidence shows that insulin-like growth factor-binding protein-3 (IGFBP-3) suppresses HCC cell proliferation in both IGF-dependent and independent manners. It's unknown, however, whether treatment with exogenous IGFBP-3 inhibits bFGF and PDGF production in HCC cells. The present study demonstrates that IGFBP-3 suppressed IGF-1-induced bFGF and PDGF expression while it does not affect their expression in the absence of IGF-1. To delineate the underlying mechanism, western-blot and RT-PCR assays confirmed that the transcription factor early growth responsemore » protein 1 (EGR1) is involved in IGFBP-3 regulation of bFGF and PDGF. IGFBP-3 inhibition of type 1 insulin-like growth factor receptor (IGF1R), ERK and AKT activation is IGF-1-dependent. Furthermore, transient transfection with constitutively activated AKT or MEK partially blocks the IGFBP-3 inhibition of EGR1, bFGF and PDGF expression. In conclusion, these findings suggest that IGFBP-3 suppresses transcription of EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation. It demonstrates the importance of IGFBP-3 in the regulation of HCC cell proliferation, suggesting that IGFBP-3 could be a target for the treatment of HCC. - Highlights: • IGFBP-3 plays an inhibition role in IGF1-induced HCC cell growth. • IGFBP-3 inhibits bFGF and PDGF production in the IGF-dependent manner. • EGR1 is involved in IGFBP-3 regulation of bFGF and PDGF in HCC cells. • IGFBP-3 suppresses EGR1 and its target genes bFGF and PDGF through inhibiting IGF-1-dependent ERK and AKT activation.« less
Hack, Nicole L; Strobel, Jackson S; Journey, Meredith L; Beckman, Brian R; Lema, Sean C
2018-06-05
Growth performance in vertebrates is regulated by environmental factors including the quality and quantity of food, which influence growth via endocrine pathways such as the growth hormone (GH)/insulin-like growth factor somatotropic axis. In several teleost fishes, circulating concentrations of insulin-like growth factor-1 (Igf1) correlate positively with growth rate, and it has been proposed that plasma Igf1 levels may serve as an indicator of growth variation for fisheries and aquaculture applications. This study tested whether plasma Igf1 concentrations might serve as an indicator of somatic growth in olive rockfish (Sebastes serranoides), one species among dozens of rockfishes important to commercial and recreational fisheries in the Northern Pacific Ocean. Juvenile olive rockfish were reared under food ration treatments of 1% or 4% wet mass per d for 98 d to experimentally generate variation in growth. Juvenile rockfish in the 4% ration grew 60% more quickly in mass and 22% faster in length than fish in the 1% ration. Plasma Igf1 levels were elevated in rockfish under the 4% ration, and individual Igf1 levels correlated positively with growth rate, as well as with individual variation in hepatic igf1 mRNA levels. Transcripts encoding the Igf binding proteins (Igfbps) igfbp1a and igfbp1b were also at higher abundance in the liver of rockfish in the 1% ration treatment, while mRNAs for igfbp5a and igfbp5b were elevated in the skeletal muscle of 4% ration fish. These findings support the use of plasma Igf1 as a physiological index of growth rate variation in rockfish. Copyright © 2018. Published by Elsevier Inc.
Emerging role of PLAG1 as a regulator of growth and reproduction.
Juma, Almas R; Damdimopoulou, Pauliina E; Grommen, Sylvia V H; Van de Ven, Wim J M; De Groef, Bert
2016-02-01
Pleomorphic adenoma gene 1 (PLAG1) belongs to the PLAG family of zinc finger transcription factors along with PLAG-like 1 and PLAG-like 2. The PLAG1 gene is best known as an oncogene associated with certain types of cancer, most notably pleomorphic adenomas of the salivary gland. While the mechanisms of PLAG1-induced tumorigenesis are reasonably well understood, the role of PLAG1 in normal physiology is less clear. It is known that PLAG1 is involved in cell proliferation by directly regulating a wide array of target genes, including a number of growth factors such as insulin-like growth factor 2. This is likely to be a central mode of action for PLAG1 both in embryonic development and in cancer. The phenotype of Plag1 knockout mice suggests an important role for PLAG1 also in postnatal growth and reproduction, as PLAG1 deficiency causes growth retardation and reduced fertility. A role for PLAG1 in growth and reproduction is further corroborated by genome-wide association studies in humans and domestic animals in which polymorphisms in the PLAG1 genomic region are associated with body growth and reproductive traits. Here we review the current evidence for PLAG1 as a regulator of growth and fertility and discuss possible endocrine mechanisms involved. © 2016 Society for Endocrinology.
Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z
2000-05-01
In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.
Quantification of growth factor signaling and pathway cross talk by live-cell imaging
Gross, Sean M.
2017-01-01
Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor–receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras–Raf–Mek–ERK and phosphatidylinositol (PI) 3-kinase–Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways. PMID:28100485
Choi, Jae-Suk; Jeon, Min-Hee; Moon, Woi-Sook; Moon, Jin-Nam; Cheon, Eun Jin; Kim, Joo-Wan; Jung, Sung Kyu; Ji, Yi-Hwa; Son, Sang Wook; Kim, Mi-Ryung
2014-01-01
The potential hair growth-promoting activity of rice bran supercritical CO2 extract (RB-SCE) and major components of RB-SCE, linoleic acid, policosanol, γ-oryzanol, and γ-tocotrienol, were evaluated with the histological morphology and mRNA expression levels of cell growth factors using real-time reverse transcriptase-polymerase chain reaction (PCR) in C57BL/6 mice. RB-SCE showed hair growth-promoting potential to a similar extent as 3% minoxidil, showing that the hair follicles were induced to be in the anagen stage. The numbers of the hair follicles were significantly increased. In addition, mRNA expression levels of vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), and keratinocyte growth factor (KGF) were also significantly increased and that of transforming growth factor-β (TGF-β) decreased in RB-SCE-treated groups. Among the major components of RB-SCE, linoleic acid and γ-oryzanol induced the formation of hair follicles according to examination of histological morphology and mRNA expression levels of cell growth factors. In conclusion, our results demonstrate that RB-SCE, particularly linoleic acid and γ-oryzanol, promotes hair growth and suggests RB-SCE can be applied as hair loss treatment.
The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia.
Moises, Hans W; Zoega, Tomas; Gottesman, Irving I
2002-07-03
A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments.
USDA-ARS?s Scientific Manuscript database
Endometrial cancer is the most commonly diagnosed female genital tract malignancy. Krüppel-like Factor 9 (KLF9), a member of the evolutionarily conserved Sp-family of transcription factors, is expressed in uterine stroma and glandular epithelium where it affects cellular proliferation, differenti...
Growth factor transgenes interactively regulate articular chondrocytes.
Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B
2013-04-01
Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.
Farmer, John T; Weigent, Douglas A
2007-01-01
In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.
Thornton, K J; Kamange-Sollo, E; White, M E; Dayton, W R
2015-09-01
Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment with GDPβS, MMPI, CRM197, AG1024, AG1478, and/or AG879 all suppressed ( < 0.05) TBA-induced increases in proliferation. These data indicate that TBA likely initiates a nongenomic response involving GPCR, MMP2 and MMP9, hbEGF, EGFR, erbB2, and IGF-1R, which may play a role in TBA-mediated increases in BSC proliferation.
Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.
Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P
2016-04-01
Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. © 2016 American Heart Association, Inc.
Antczak, M; Van Blerkom, J; Clark, A
1997-10-01
This study describes the occurrence of a highly specialized subpopulation of granulosa and cumulus oophorus cells that accumulate and sequester specific growth factors by a novel mechanism. These cells are characterized by multiple balloon-like processes tethered to the cell by means of a slender stalk of plasma membrane. Time-lapse analyses demonstrate that these tethered structures (TS) form in minutes and frequently detach from the cell with the bulbous portion remaining motile on the cell surface. Serial section reconstruction of transmission electron microscopic images shows a specific and stable intracellular organization in which an apparent secretory compartment composed of densely packed vacuoles, vesicles, and cisternae is separated by a thick filamentous network from a nuclear compartment containing mitochondria, polyribosomes, lipid inclusions, and rough-surfaced endoplasmic reticulum. Immunofluorescent analysis performed during the formation of these structures showed a progressive accumulation of vascular endothelial growth factor, leptin, and transforming growth factor-beta2 in the bulbous region. TS were identified in newly aspirated masses of granulosa and cumulus oophorus, and their production persists for months in culture. Observations of TS-forming cells made over several days of culture indicates that their production is episodic and factor release from these cells may be pulsatile. The findings suggest that a novel method of growth factor storage and release by an apparent apocrine-like mechanism occurs in the human ovarian follicle. The results are discussed with respect to possible roles in pre- and post-ovulatory follicular development.
Middleton, Kellie K.; Barro, Victor; Muller, Bart; Terada, Satosha; Fu, Freddie H.
2012-01-01
Abstract Musculoskeletal injuries are the most common cause of severe long-term pain and physical disability, and affect hundreds of millions of people around the world. One of the most popular methods used to biologically enhance healing in the fields of orthopaedic surgery and sports medicine includes the use of autologous blood products, namely, platelet rich plasma (PRP). PRP is an autologous concentration of human platelets to supra-physiologic levels. At baseline levels, platelets function as a natural reservoir for growth factors including platelet-derived growth factor (PDGF), epidermal growth factor (EGF), transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF), hepatocyte growth factor (HGF), and insulin-like growth factor (IGF-I). PRP is commonly used in orthopaedic practice to augment healing in sports-related injuries of skeletal muscle, tendons, and ligaments. Despite its pervasive use, the clinical efficacy of PrP therapy and varying mechanisms of action have yet to be established. Basic science research has revealed that PRP exerts is effects through many downstream events secondary to release of growth factors and other bioactive factors from its alpha granules. These effects may vary depending on the location of injury and the concentration of important growth factors involved in various soft tissue healing responses. This review focuses on the effects of PrP and its associated bioactive factors as elucidated in basic science research. Current findings in PRP basic science research, which have shed light on its proposed mechanisms of action, have opened doors for future areas of PrP research. PMID:23576936
Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka
2013-10-01
Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The insulin-like growth factor-1 (IGF-1) signaling axis is important for cell growth, differentiation, and survival, and increased serum IGF is a risk factor for prostate and other cancers. To study IGF-1 action on the prostate, we created transgenic (PB-Des) mice that specifically express human IGF...
Krizbai, I A; Bauer, H; Amberger, A; Hennig, B; Szabó, H; Fuchs, R; Bauer, H C
2000-09-01
The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.
Matrisian, L M; Planck, S R; Magun, B E
1984-03-10
We previously reported that 125I-labeled epidermal growth factor is processed intracellularly to acidic macromolecules in Rat-1 fibroblasts. The present study defines the precursor-product relationship and localization of the processing steps to subcellular organelles by the use of a single isoelectric species of 125I-epidermal growth factor and Percoll gradient fractionation. The native pI 4.55 125I-epidermal growth factor was rapidly processed to a pI 4.2 species on or near the cell surface and in organelles corresponding to clathrin-coated vesicles, Golgi, and endoplasmic reticulum. This species was then processed to a pI 4.35 species in similar organelles. The pI 4.2 and 4.35 species were converted to a pI 4.0 species in dense, lysosome-like organelles. This species was ultimately degraded and exocytosed from the cell as low molecular weight products.
de Faria, Maria Estela Justamante; Carvalho, Luciani R; Rossetto, Shirley M; Amaral, Terezinha Sampaio; Berger, Karina; Arnhold, Ivo Jorge Prado; Mendonca, Berenice Bilharinho
2009-01-01
There are many controversies regarding side effects on craniofacial and extremity growth due to growth hormone (GH) treatment. Our aim was to estimate GH action on craniofacial development and extremity growth in GH-deficient patients. Twenty patients with GH deficiency with a chronological age ranging from 4.6 to 24.3 years (bone age from 1.5 to 13 years) were divided in 2 groups: group 1 (n = 6), naive to GH treatment, and group 2 (n = 14), ongoing GH treatment for 2-11 years. GH doses (0.1-0.15 U/kg/day) were adjusted to maintain insulin-like growth factor 1 and insulin-like growth factor binding protein 3 levels within the normal range. Anthropometric measurements, cephalometric analyses and facial photographs to verify profile and harmony were performed annually for at least 3 years. Two patients with a disharmonious profile due to mandibular growth attained harmony, and none of them developed facial disharmony. Increased hand or foot size (>P97) was observed in 2 female patients and in 4 patients (1 female), respectively, both not correlated with GH treatment duration and increased levels of insulin-like growth factor 1. GH treatment with standard doses in GH-deficient patients can improve the facial profile in retrognathic patients and does not lead to facial disharmony although extremity growth, mainly involving the feet, can occur. Copyright 2009 S. Karger AG, Basel.
Growth factor involvement in tension-induced skeletal muscle growth
NASA Technical Reports Server (NTRS)
Vandenburgh, H. H.
1987-01-01
Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.
Tasnim, Farah; Phan, Derek; Toh, Yi-Chin; Yu, Hanry
2015-11-01
Significant efforts have been invested into the differentiation of stem cells into functional hepatocyte-like cells that can be used for cell therapy, disease modeling and drug screening. Most of these efforts have been concentrated on the use of growth factors to recapitulate developmental signals under in vitro conditions. Using small molecules instead of growth factors would provide an attractive alternative since small molecules are cell-permeable and cheaper than growth factors. We have developed a protocol for the differentiation of human embryonic stem cells into hepatocyte-like cells using a predominantly small molecule-based approach (SM-Hep). This 3 step differentiation strategy involves the use of optimized concentrations of LY294002 and bromo-indirubin-3'-oxime (BIO) for the generation of definitive endoderm; sodium butyrate and dimethyl sulfoxide (DMSO) for the generation of hepatoblasts and SB431542 for differentiation into hepatocyte-like cells. Activin A is the only growth factor required in this protocol. Our results showed that SM-Hep were morphologically and functionally similar or better compared to the hepatocytes derived from the growth-factor induced differentiation (GF-Hep) in terms of expression of hepatic markers, urea and albumin production and cytochrome P450 (CYP1A2 and CYP3A4) activities. Cell viability assays following treatment with paradigm hepatotoxicants Acetaminophen, Chlorpromazine, Diclofenac, Digoxin, Quinidine and Troglitazone showed that their sensitivity to these drugs was similar to human primary hepatocytes (PHHs). Using SM-Hep would result in 67% and 81% cost reduction compared to GF-Hep and PHHs respectively. Therefore, SM-Hep can serve as a robust and cost effective replacement for PHHs for drug screening and development. Copyright © 2015 Elsevier Ltd. All rights reserved.
EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS
ABSTRACT
Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...
Leach, Richard E; Kilburn, Brian A; Petkova, Anelia; Romero, Roberto; Armant, D Randall
2008-04-01
The antiapoptotic action of heparin-binding epidermal growth factor (HBEGF)-like growth factor and its regulation by O(2) constitutes a key factor for trophoblast survival. The hypothesis that cytotrophoblast survival is compromised by exposure to hypoxia-reoxygenation (H/R) injury, which may contribute to preeclampsia and some missed abortions, prompted us to investigate HBEGF regulation and its role as a survival factor during H/R in cytotrophoblast cells. A transformed human first-trimester cytotrophoblast cell line HTR-8/SVneo was exposed to H/R (2% O(2) followed by 20% O(2)) and assessed for HBEGF expression and cell death. Cellular HBEGF declined significantly within 30 minutes of reoxygenation after culture at 2% O(2). H/R significantly reduced proliferation and increased cell death when compared with trophoblast cells cultured continuously at 2% or 20% O(2). Restoration of cell survival also was achieved by adding recombinant HBEGF during reoxygenation. HBEGF inhibited apoptosis through its binding to either human epidermal receptor (HER)-1 or HER4, its cognate receptors. These results provide evidence that cytotrophoblast exposure to H/R induces apoptosis and decreased cell proliferation. HBEGF accumulation is diminished under these conditions, whereas restoration of HBEGF signaling improves trophoblast survival.
Hellström, Ann; Smith, Lois E H; Dammann, Olaf
2015-01-01
The immature retinas of preterm neonates are susceptible to insults that disrupt neurovascular growth, leading to retinopathy of prematurity. Suppression of growth factors due to hyperoxia and loss of the maternal–fetal interaction result in an arrest of retinal vascularisation (phase 1). Subsequently, the increasingly metabolically active, yet poorly vascularised, retina becomes hypoxic, stimulating growth factor-induced vasoproliferation (phase 2), which can cause retinal detachment. In very premature infants, controlled oxygen administration reduces but does not eliminate retinopathy of prematurity. Identification and control of factors that contribute to development of retinopathy of prematurity is essential to prevent progression to severe sight-threatening disease and to limit comorbidities with which the disease shares modifiable risk factors. Strategies to prevent retinopathy of prematurity will depend on optimisation of oxygen saturation, nutrition, and normalisation of concentrations of essential factors such as insulin-like growth factor 1 and ω-3 polyunsaturated fatty acids, as well as curbing of the effects of infection and inflammation to promote normal growth and limit suppression of neurovascular development. PMID:23782686
Stogov, V M; Kireeva, E A; Karasev, A G
2014-12-01
The study was carried out to comparatively analyze metabolic profile and content of growth factors in blood serum of patients with retarded consolidation of fractures of bones of lower extremities. The evaluation was applied to concentration of metabolites, growth factors and enzyme activity of blood serum in 13 patients with retarded consolidation of fractures of thigh and shank bones (main group). The comparative group included 14 patients with solid fractures of thigh and shank bones. The analysis established that as compared to patients with solid fractures of bones, in patients with retarded consolidation of fractures blood serum contained reliably higher concentration of triglycerides, products of glycolysis, epidermal growth factor and transforming growth factors TGF-α and TGF-β2. The content of vitamin E and insullin-like growth factor (IGF-1) was decreased The given markers can be labeled as potential markers of diagnostic and prognosis of development of retarded consolidation of fractures.
Insulin-Like Growth Factors Are Expressed in the Taste System, but Do Not Maintain Adult Taste Buds
Biggs, Bradley T.; Tang, Tao; Krimm, Robin F.
2016-01-01
Growth factors regulate cell growth and differentiation in many tissues. In the taste system, as yet unknown growth factors are produced by neurons to maintain taste buds. A number of growth factor receptors are expressed at greater levels in taste buds than in the surrounding epithelium and may be receptors for candidate factors involved in taste bud maintenance. We determined that the ligands of eight of these receptors were expressed in the E14.5 geniculate ganglion and that four of these ligands were expressed in the adult geniculate ganglion. Of these, the insulin-like growth factors (IGF1, IGF2) were expressed in the ganglion and their receptor, insulin-like growth factor receptor 1 (IGF1R), were expressed at the highest levels in taste buds. To determine whether IGF1R regulates taste bud number or structure, we conditionally eliminated IGF1R from the lingual epithelium of mice using the keratin 14 (K14) promoter (K14-Cre::Igf1rlox/lox). While K14-Cre::Igf1rlox/lox mice had significantly fewer taste buds at P30 compared with control mice (Igf1rlox/lox), this difference was not observed by P80. IGF1R removal did not affect taste bud size or cell number, and the number of phospholipase C β2- (PLCβ2) and carbonic anhydrase 4- (Car4) positive taste receptor cells did not differ between genotypes. Taste buds at the back of the tongue fungiform taste field were larger and contained more cells than those at the tongue tip, and these differences were diminished in K14-Cre::Igf1rlox/lox mice. The epithelium was thicker at the back versus the tip of the tongue, and this difference was also attenuated in K14-Cre::Igf1rlox/lox mice. We conclude that, although IGFs are expressed at high levels in the taste system, they likely play little or no role in maintaining adult taste bud structure. IGFs have a potential role in establishing the initial number of taste buds, and there may be limits on epithelial thickness in the absence of IGF1R signaling. PMID:26901525
Hartog, H; Boezen, H M; de Jong, M M; Schaapveld, M; Wesseling, J; van der Graaf, W T A
2013-12-01
High circulating insulin-like growth factor 1 (IGF-1) levels are firmly established as a risk factor for developing breast cancer, especially estrogen positive tumors. The effect of circulating IGF-1 on prognosis once a tumor is established is unknown. The authors explored the effect of IGF-1 blood levels and of it's main binding protein, IGFBP-3, on overall survival and occurrence of second primary breast tumors in breast cancer patients, as well as reproductive and lifestyle factors that could modify this risk. Patients were accrued from six hospitals in the Netherlands between 1998 and 2003. Total IGF-1 and IGFBP-3 were measured in 582 plasma samples. No significant association between IGF-1 and IGFBP-3 plasma levels and overall survival was found. However, in a multivariate Cox regression model including standard prognostic variables high IGF-1 levels were related to worse overall survival in patients receiving endocrine therapy (HR = 1.37, 95% CI: 1.11, 1.69, P 0.004). These data at least indicate that higher IGF-1 levels, and as a consequence most likely IGF-1-induced signaling, are related to a less favorable overall survival in breast cancer patients treated with endocrine therapy. Interventions aimed at reducing circulating levels of IGF-1 in hormone receptor positive breast cancer may improve survival. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men
Allen, N E; Appleby, P N; Davey, G K; Key, T J
2000-01-01
Mean serum insulin-like growth factor-I was 9% lower in 233 vegan men than in 226 meat-eaters and 237 vegetarians (P = 0.002). Vegans had higher testosterone levels than vegetarians and meat-eaters, but this was offset by higher sex hormone binding globulin, and there were no differences between diet groups in free testosterone, androstanediol glucuronide or luteinizing hormone. © 2000 Cancer Research Campaign PMID:10883675
Westley, Rosalyne L.; May, Felicity E. B.
2013-01-01
Obesity has reached epidemic proportions in the developed world. The progression from obesity to diabetes mellitus type 2, via metabolic syndrome, is recognised, and the significant associated increase in the risk of major human cancers acknowledged. We review the molecular basis of the involvement of morbidly high concentrations of endogenous or therapeutic insulin and of insulin-like growth factors in the progression from obesity to diabetes and finally to cancer. Epidemiological and biochemical studies establish the role of insulin and hyperinsulinaemia in cancer risk and progression. Insulin-like growth factors, IGF-1 and IGF-2, secreted by visceral or mammary adipose tissue have significant paracrine and endocrine effects. These effects can be exacerbated by increased steroid hormone production. Structural studies elucidate how each of the three ligands, insulin, IGF-1, and IGF-2, interacts differently with isoforms A and B of the insulin receptor and with type I IGF receptor and explain how these protagonists contribute to diabetes-associated cancer. The above should inform appropriate treatment of cancers that arise in obese individuals and in those with diabetes mellitus type 2. Novel drugs that target the insulin and insulin-like growth factor signal transduction pathways are in clinical trial and should be effective if appropriate biomarker-informed patient stratification is implemented. PMID:23983688
Zanou, Nadège; Gailly, Philippe
2013-11-01
Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.
Alexander, Thomas H; Sage, August B; Chen, Albert C; Schumacher, Barbara L; Shelton, Elliot; Masuda, Koichi; Sah, Robert L; Watson, Deborah
2010-10-01
Tissue engineering of human nasal septal chondrocytes offers the potential to create large quantities of autologous material for use in reconstructive surgery of the head and neck. Culture with recombinant human growth factors may improve the biochemical and biomechanical properties of engineered tissue. The objectives of this study were to (1) perform a high-throughput screen to assess multiple combinations of growth factors and (2) perform more detailed testing of candidates identified in part I. In part I, human nasal septal chondrocytes from three donors were expanded in monolayer with pooled human serum (HS). Cells were then embedded in alginate beads for 2 weeks of culture in medium supplemented with 2% or 10% HS and 1 of 90 different growth factor combinations. Combinations of insulin-like growth factor-I (IGF-1), bone morphogenetic protein (BMP)-2, BMP-7, BMP-13, growth differentiation factor-5 (GDF-5), transforming growth factor β (TGFβ)-2, insulin, and dexamethasone were evaluated. Glycosaminoglycan (GAG) accumulation was measured. A combination of IGF-1 and GDF-5 was selected for further testing based on the results of part I. Chondrocytes from four donors underwent expansion followed by three-dimensional alginate culture for 2 weeks in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5. Chondrocytes and their associated matrix were then recovered and cultured for 4 weeks in 12 mm transwells in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5 (the same medium used for alginate culture). Biochemical and biomechanical properties of the neocartilage were measured. In part I, GAG accumulation was highest for growth factor combinations including both IGF-1 and GDF-5. In part II, the addition of IGF-1 and GDF-5 to 2% HS resulted in a 12-fold increase in construct thickness compared with 2% HS alone (p < 0.0001). GAG and type II collagen accumulation was significantly higher with IGF-1 and GDF-5. Confined compression modulus was greatest with 2% HS, IGF-1, and GDF-5. Supplementation of medium with IGF-1 and GDF-5 during creation of neocartilage constructs results in increased accumulation of GAG and type II collagen and improved biomechanical properties compared with constructs created without the growth factors.
Tanigawa, T; Ahluwalia, A; Watanabe, T; Arakawa, T; Tarnawski, A S
2015-08-01
A previous study has demonstrated that locally administered growth factors such as epidermal growth factor, basic fibroblast growth factor and hepatocyte growth factor can accelerate healing of experimental gastric ulcers in rats. That study indicates that locally administered growth factors can exert potent biological effects resulting in enhanced gastric ulcers healing. However, the fate of injected growth factors, their retention and localization to specific cellular compartments have not been examined. In our preliminary study, we demonstrated that local injection of nerve growth factor to the base of experimental gastric ulcers dramatically accelerates ulcer healing, increases angiogenesis - new blood vessel formation, and improves the quality of vascular and epithelial regeneration. Before embarking on larger, definitive and time sequence studies, we wished to determine whether locally injected nerve growth factor is retained in gastric ulcer's tissues and taken up by specific cells during gastric ulcer healing. Gastric ulcers were induced in anesthetized rats by local application of acetic acid using standard methods; and, 60 min later fluorescein isothiocyanate-labeled nerve growth factor was injected locally to the ulcer base. Rats were euthanized 2, 5 and 10 days later. Gastric specimens were obtained and processed for histology. Unstained paraffin sections were examined under a fluorescence microscope, and the incorporation of fluorescein isothiocyanate-labeled nerve growth factor into various gastric tissue cells was determined and quantified. In addition, we performed immunostaining for S100β protein that is expressed in neural components. Five and ten days after ulcer induction labeled nerve growth factor (injected to the gastric ulcer base) was incorporated into endothelial cells of blood vessels, neuronal, glial and epithelial cells, myofibroblasts and muscle cells. This study demonstrates for the first time that during gastric ulcer healing locally administered exogenous nerve growth factor is retained in gastric tissue and is taken up by endothelial, neural, muscle and epithelial cells. This is likely the basis for the therapeutic action of locally administered nerve growth factor and its stimulation of angiogenesis, tissue regeneration and gastric ulcer healing.
The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia
Moises, Hans W; Zoega, Tomas; Gottesman, Irving I
2002-01-01
Background A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. Presentation of the hypothesis Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. Testing the hypothesis Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. Implications of the hypothesis The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments. PMID:12095426
Wolfe, Andrew; Divall, Sara; Wu, Sheng
2014-01-01
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. PMID:24929098
EGF receptor ligands: recent advances.
Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J
2016-01-01
Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.
Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli
Alibolandi, Mona; Mirzahoseini, Hasan
2011-01-01
This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. PMID:21837279
Shibata, Michitaro; Breuer, Christian; Kawamura, Ayako; Clark, Natalie M; Rymen, Bart; Braidwood, Luke; Morohashi, Kengo; Busch, Wolfgang; Benfey, Philip N; Sozzani, Rosangela; Sugimoto, Keiko
2018-02-08
How plants determine the final size of growing cells is an important, yet unresolved, issue. Root hairs provide an excellent model system with which to study this as their final cell size is remarkably constant under constant environmental conditions. Previous studies have demonstrated that a basic helix-loop helix transcription factor ROOT HAIR DEFECTIVE 6-LIKE 4 (RSL4) promotes root hair growth, but how hair growth is terminated is not known. In this study, we demonstrate that a trihelix transcription factor GT-2-LIKE1 (GTL1) and its homolog DF1 repress root hair growth in Arabidopsis Our transcriptional data, combined with genome-wide chromatin-binding data, show that GTL1 and DF1 directly bind the RSL4 promoter and regulate its expression to repress root hair growth. Our data further show that GTL1 and RSL4 regulate each other, as well as a set of common downstream genes, many of which have previously been implicated in root hair growth. This study therefore uncovers a core regulatory module that fine-tunes the extent of root hair growth by the orchestrated actions of opposing transcription factors. © 2018. Published by The Company of Biologists Ltd.
Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.
Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf
2017-04-28
Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).
Dorum, Bayram Ali; Yılmaz, Cansu Canbolat; Köksal, Nilgün; Özkan, Hilal; Yıldız, Meral; Özmen, Ahmet Tuncer
2017-03-01
To determine the role of serum insulin-like growth factor-1 levels in the development of retinopathy of prematurity, which is a major cause of childhood blindness worldwide. We prospectively studied newborn infants born at a postmenstrual age of <32 weeks and birth weights <1 500 gr, between January 1 st , 2015, and December 31 st , 2015. A total of 40 infants were enrolled in the study. The retinal examination time was determined in accordance with the American Academy of Pediatrics recommendations for retinopathy of prematurity screening and follow-up. Retinopathy of prematurity was classified according to the international classification of retinopathy of prematurity. Serum Insulin like growth factor 1 levels were measured serially in blood samples on the 1 st , 3 rd , 7 th , 21 st , and 28 th day. Among the 40 infants, 11 (27.5%) constituted the retinopathy of prematurity group and 29 comprised the non-retinopathy of prematurity group. In the retinopathy of prematurity group, the mean gestational age and birth weight was significantly lower. The demographic features of the study cohort were similar. The duration of mechanical ventilation was significantly greater in the retinopathy of prematurity group compared with the non-retinopathy of prematurity group (p=0.036). In terms of neonatal morbidities such as respiratory distress syndrome, intraventricular hemorrhage, bronchopulmonary dysplasia, patent ductus arteriosus, and necrotizing enterocolitis, no differences were detected between the groups. The mean serum insulin-like growth factor-1 levels in retinopathy of prematurity group were significantly lower than those in the non-retinopathy of prematurity group at each time point (1 st , 3 rd , 7 th , 21 st , and 28 th day of postnatal life) (p=0.001). This study demonstrated the low serum insulin-like growth factor-1 levels was associated with retinopathy of prematurity development.
Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.
2007-01-01
Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519
Ruaud, Anne-Françoise; Katic, Iskra; Bessereau, Jean-Louis
2011-01-01
Identified as a major pathway controlling entry in the facultative dauer diapause stage, the DAF-2/Insulin receptor (InsR) signaling acts in multiple developmental and physiological regulation events in Caenorhabditis elegans. Here we identified a role of the insulin-like pathway in controlling developmental speed during the C. elegans second larval stage. This role relies on the canonical DAF-16/FOXO-dependent branch of the insulin-like signaling and is largely independent of dauer formation. Our studies provide further evidence for broad conservation of insulin/insulin-like growth factor (IGF) functions in developmental speed control.
Rehman, Jalees; Li, Jingling; Orschell, Christie M; March, Keith L
2003-03-04
Endothelial progenitor cells (EPCs) have been isolated from peripheral blood and can enhance angiogenesis after infusion into host animals. It is not known whether the proangiogenic effects are a result of such events as endothelial differentiation and subsequent proliferation of EPCs or secondary to secretion of angiogenic growth factors. Human EPCs were isolated as previously described, and their phenotypes were confirmed by uptake of acetylated LDL and binding of ulex-lectin. EPC proliferation and surface marker expression were analyzed by flow cytometry, and conditioned medium was assayed for growth factors. The majority of EPCs expressed monocyte/macrophage markers such as CD14 (95.7+/-0.3%), Mac-1 (57.6+/-13.5%), and CD11c (90.8+/-4.9%). A much lower percentage of cells expressed the specific endothelial marker VE-cadherin (5.2+/-0.7%) or stem/progenitor-cell markers AC133 (0.16+/-0.05%) and c-kit (1.3+/-0.7%). Compared with circulating monocytes, cultured EPCs showed upregulation of monocyte activation and macrophage differentiation markers. EPCs did not demonstrate any significant proliferation but did secrete the angiogenic growth factors vascular endothelial growth factor, hepatocyte growth factor, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor. Our findings suggest that acetylated LDL(+)ulex-lectin(+) cells, commonly referred to as EPCs, do not proliferate but release potent proangiogenic growth factors. The majority of acetylated LDL(+)ulex-lectin(+) cells are derived from monocyte/macrophages. The findings of low proliferation and endothelial differentiation suggest that their angiogenic effects are most likely mediated by growth factor secretion. These findings may allow for development of novel angiogenic therapies relying on secreted growth factors or on recruitment of endogenous monocytes/macrophages to sites of ischemia.
Preclinical and clinical studies on the use of growth factors for bone repair: a systematic review.
Fisher, Daniel Mark; Wong, James Min-Leong; Crowley, Conor; Khan, Wasim S
2013-05-01
Bone healing is a complex process. Whilst the majority of fractures heal with conventional treatment, open fractures, large bone defects and non unions still provide great challenges to Orthopaedic Surgeons. Whilst autologous bone graft is seen as the gold standard, the use of growth factors is a growing area of research to find an effective alternative with lower side effects such as donor site morbidity and the finite amount available. This systematic review aims to summarize the pre clinical in-vivo studies and examine the clinical studies on the use of growth factors in bone healing. Databases: PubMed, Medline, OVID, and Cochrane library. The following key words and search terms were used: Growth Factors, Bone Healing, Bone Morphogenic Protein, Transforming Growth Factor Beta, Insulin Like Growth Factor, Platelet Derived Growth Factor, Fracture. All articles were screened based on title with abstracts and full text articles reviewed as appropriate. Reference lists were reviewed from relevant articles to ensure comprehensive and systematic review. Three tables of studies were constructed focussing on Bone Morphogenic Proteins, Platelet Rich Plasma and Growth Factors and Tissue Engineering. Bone Morphogenic Proteins and Platelet Rich Plasma, which contains multiple growth factors, have been shown in preclinical and clinical trials to be an effective alternative to autologous bone graft. Bone Morphogenic Proteins have been shown to be effective in fracture non union, and in open tibial fractures. Platelet Rich Plasma has shown promise in preclinical trials and some small clinical trials, however numbers are limited. Bone Morphogenic Proteins have been shown to be superior to Platelet Rich Protein in one trial. Combining these growth factors with tissue engineering techniques is the focus of ongoing research, and through further clinical trials the most effective techniques for enhancing bone healing will be revealed.
Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo
The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma.
2008-07-31
phenomenon. aging; insulin-like growth factor-I; ischemia-reperfusion; muscle re- generation; sarcopenia OVER 20,000 operating room tourniquet (TK...occurring in elderly patients, the postsurgical I/R injury ensu- ing TK application is a notable concern to the elderly popula- tion. With this demographic... elderly population can lead to loss of independence, as the individual loses the ability to perform necessary daily routines. This affliction is a
Mahmoud, Ranim; Naidu, Ajanta; Risheg, Hiba; Kimonis, Virginia
2017-01-01
We report a six-year-old boy who presented with short stature, microcephaly, dysmorphic features, and developmental delay and who was identified with a terminal deletion of 15q26.2q26.3 containing the insulin-like growth factor receptor (IGF1R) gene in addition to a terminal duplication of the 4q35.1q35.2 region. We compare our case with other reports of deletions and mutations affecting the IGF1R gene associated with pre-and postnatal growth restriction. We report the dramatic response to growth hormone therapy in this patient which highlights the importance of identifying patients with IGF1R deletion and treating them early. PMID:28720553
Mahmoud, Ranim; Naidu, Ajanta; Risheg, Hiba; Kimonis, Virginia
2017-12-15
We report a six-year-old boy who presented with short stature, microcephaly, dysmorphic features, and developmental delay and who was identified with a terminal deletion of 15q26.2q26.3 containing the insulin-like growth factor receptor (IGF1R) gene in addition to a terminal duplication of the 4q35.1q35.2 region. We compare our case with other reports of deletions and mutations affecting the IGF1R gene associated with pre-and postnatal growth restriction. We report the dramatic response to growth hormone therapy in this patient which highlights the importance of identifying patients with IGF1R deletion and treating them early.
Maurer, M H; Schäbitz, W-R; Schneider, A
2008-01-01
Currently, growth factors which have been identified in hematopoiesis and angiogenesis are re-considered as therapeutical agents in a number of neurological diseases, mainly neurodegenerative disorders like Parkinson's Disease, amyotrophic lateral sclerosis (ALS), or cerebrovascular events such as stroke. Among these growth factors, erythropoietin (EPO) and granulocyte colony-stimulating growth factor (G-CSF) are the most prominent. With regard to neurological disease, EPO has been tested in clinical trials for potential use in stroke, schizophrenia, and addiction, G-CSF is currently under clinical investigation for stroke treatment. The major advantage of these growth factors is their well-described pharmacological behavior and their clinical use over several years. A number of mechanisms of action in the CNS have been identified that are probably important for the beneficial action of these factors in animal models of disease, the most relevant relating to neuroprotection, neuroplasticity and stem cell growth and differentiation. In this review, we will discuss the current efforts and prerequisites of novel growth factor therapies for neurodegenerative diseases with regard to their possible mechanism of action on the molecular level and their effects on brain-derived stem cell populations. Additionally, we will describe the necessities for future research before such therapies can be envisioned.
Marwaha, Ramank K; Garg, M K; Gupta, Sushil; Ganie, Mohd Ashraf; Gupta, Nandita; Narang, Archna; Shukla, Manoj; Arora, Preeti; Singh, Annie; Chadha, Aditi; Mithal, Ambrish
2018-03-28
There is a high prevalence of vitamin D deficiency (VDD) in India. Molecular mechanisms suggest a strong relationship between vitamin D and growth factors. However, there is a paucity of literature with regard to a relationship between insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) and vitamin D particularly in subjects with VDD. The objective of the study was to assess the relationship between growth factors and serum vitamin D-parathormone (PTH) status in school girls and study the impact of vitamin D supplementation on growth factors in pre-pubertal girls with VDD. Our study subjects were apparently healthy school girls aged 6-18 years. The baseline height, weight, body mass index (BMI), pubertal status, serum 25-hydroxy vitamin D (25OHD), PTH, IGF-1 and IGFBP-3 were assessed in 847 girls aged 6-18 years and in 190 pre-pubertal girls with VDD following supplementation. The mean age, BMI and serum 25OHD of girls were 11.5±3.2 years, 18.7±4.8 kg/m2 and 9.9±5.6 ng/mL, respectively. VDD was observed in 94.6% of girls. Unadjusted serum IGF-1 levels and IGF-1/IGFBP-3 molar ratio were significantly higher in girls with severe VDD as compared to girls with mild-to-moderate VDD. However, these differences disappeared when adjusted for age, height or sexual maturation. The serum IGF-1 and IGFBP-3 levels increased significantly post supplementation with vitamin D. There were no differences in serum IGF-1 levels and the IGF-1/IGFBP-3 molar ratio among VDD categories when adjusted for age, height and sexual maturation in girls. Vitamin D supplementation resulted in a significant increase in serum IGF-1 levels in VDD pre-pubertal girls.
Kerpedjieva, Svetoslava S.; Kim, Duk Soo; Barbeau, Dominique J.
2012-01-01
Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)–EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase–extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands. PMID:22316125
Kerpedjieva, Svetoslava S; Kim, Duk Soo; Barbeau, Dominique J; Tamama, Kenichi
2012-09-01
Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)-EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase-extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands.
Altas, Ayfer; Can, Murat; Barut, Figen; Kokturk, Furuzan; Ilikhan, Sevil Uygun; Bayraktaroglu, Taner
2017-01-01
Aim Insulin-like growth factor-1 (IGF-1) is a potent mitogen for many cells. IGF-1 plays a role in the pathogenesis of various tumors with its mutagenic and antiapoptotic properties. The aim of this study was to determine both the serum and intranodular levels of IGF-1 and insulin-like growth factor binding protein-3 (IGFBP-3) in patients with nodular thyroid diseases. Materials and Methods In this study, 80 subjects who performed fine-needle aspiration biopsy (FNAB) were required in order to investigate the effects of serum and intranodular IGF-1 and IGFBP-3 in the pathogenesis of nodules. After performing FNAB, IGF-1 and IGFBP-3 levels were determined in blood and aspiration samples. Results The serum levels of IGF-1 (232.8 ± 12.9 ng/ml) and IGFBP-3 (4.8 μg/ml) were found significantly higher than that of the intranodular IGF-1 (39.1 ng/ml) and intranodular IGFBP-3 levels (0.173 μg/ml) (p < 0.01). Intranodular levels of IGF-1 and IGFBP-3 were higher in subjects with multinodular thyroid gland than those of subjects with solitary nodules (p = 0.043). A positive correlation between the nodule size and the serum IGFBP-3 levels was detected (p = 0.042, r = 0.23). Conclusion This study demonstrated the possible role of both IGF-1 and IGFBP-3 in the growth and the formation of multinodularity of thyroid nodules. PMID:29081797
Patel, Leena; Whatmore, Andrew; Davies, Jill; Bansal, Narinder; Vyas, Avni; Gemmell, Isla; Oldroyd, John; Cruickshank, J Kennedy; Clayton, Peter
2014-01-01
To study the effect of the insulin-like growth factor (IGF) system on growth, adiposity and systolic blood pressure (SBP) in early life in British-born South Asian (SA) and White European (WE) children. The effect of IGF-1 and insulin-like growth factor-binding protein 3 (IGFBP-3) over the first 4 years in 204 healthy SA and WE children was investigated by mixed linear regression modelling. This enabled inclusion of all follow-up observations and adjustment for repeated measures. At birth, SA babies were shorter and lighter than WE babies. Over 4 years, SA ethnicity was associated with lower height, weight and body mass index (BMI) standard deviation score (SDS), higher subscapular/triceps skinfold thickness (Ss/Tr SFT) and lower SBP (all p < 0.01). IGF-1 was associated with greater height (p = 0.03), weight (p < 0.001) and BMI SDS (p < 0.001), and IGFBP-3 with greater weight SDS (p < 0.001), BMI SDS (p = 0.001), Ss/Tr SFT (p = 0.003) and SBP (p = 0.023). Over this first 4-year period of life, SA ethnicity was associated with being shorter, lighter, having more superficial truncal adiposity and lower SBP. IGFBP-3 (and not IGF-1) was independently associated with both superficial truncal adiposity and SBP, suggesting that IGFBP-3 is a potential metabolic and cardiovascular marker in healthy children in the early years of life.
Progress in the molecular and genetic modification breeding of beef cattle in China.
Tong, Bin; Zhang, Li; Li, Guang-Peng
2017-11-20
The studies of beef cattle breeding in China have been greatly improved with the rapid development of the international beef cattle industrialization. The beef cattle breeding technologies have rapidly transformed from traditional breeding to molecular marker-assisted breeding, genomic selection and genetic modification breeding. Hundreds of candidate genes and molecular markers associated with growth, meat quality, reproduction performance and diseases resistance have been identified, and some of them have already been used in cattle breeding. Genes and molecular markers associated with growth and development are focused on the growth hormone, muscle regulatory factors, myostatin and insulin-like growth factors. Meat quality is mediated by fatty acid transport and deposition related signals, calpains and calpain system, muscle regulatory factors and muscle growth regulation pathways. Reproduction performance is regulated by GnRH-FSH-LH, growth differentiation factor 9, prolactin receptor and forkhead box protein O1. Disease resistance is modulated by the major histocompatibility complex gene family, toll-like receptors, mannose-binding lectin and interferon gene signals. In this review, we summarize the most recent progress in beef cattle breeding in marker-assisted selection, genome-wide selection and genetic modification breeding, aiming to provide a reference for further genetic breeding research of beef cattle in China.
Small-Molecule-Directed Hepatocyte-Like Cell Differentiation of Human Pluripotent Stem Cells.
Mathapati, Santosh; Siller, Richard; Impellizzeri, Agata A R; Lycke, Max; Vegheim, Karianne; Almaas, Runar; Sullivan, Gareth J
2016-08-17
Hepatocyte-like cells (HLCs) generated in vitro from human pluripotent stem cells (hPSCs) provide an invaluable resource for basic research, regenerative medicine, drug screening, toxicology, and modeling of liver disease and development. This unit describes a small-molecule-driven protocol for in vitro differentiation of hPSCs into HLCs without the use of growth factors. hPSCs are coaxed through a developmentally relevant route via the primitive streak to definitive endoderm (DE) using the small molecule CHIR99021 (a Wnt agonist), replacing the conventional growth factors Wnt3A and activin A. The small-molecule-derived DE is then differentiated to hepatoblast-like cells in the presence of dimethyl sulfoxide. The resulting hepatoblasts are then differentiated to HLCs with N-hexanoic-Tyr, Ile-6 aminohexanoic amide (Dihexa, a hepatocyte growth factor agonist) and dexamethasone. The protocol provides an efficient and reproducible procedure for differentiation of hPSCs into HLCs utilizing small molecules. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Growth factor involvement in tension-induced skeletal muscle growth
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1993-01-01
Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.
Does IGF-1 play a role in the biology of endometrial cancer?
Majchrzak-Baczmańska, Dominika; Malinowski, Andrzej
2016-01-01
Insulin-like growth factor 1 (IGF-1) is a mitogen which plays a key role in regulating cell proliferation, differentiation, and apoptosis. It belongs to the family of proteins also composed of insulin-like growth factor 2 (IGF-2), two types of membrane receptors (IGF-1R and IGF-2R), 6 binding proteins (IGFBP 1-6), hydrolyzing proteases, and reactive molecules binding proteins, which regulate the activity of growth factors. Disturbances in the functioning of IGFBP/IGF/1GF1R can lead to induction of carcinogenesis, which has been demonstrated in breast, prostate or colon cancers. Findings evaluating the role of IGF-1 in endometrial cancer biology are ambiguous and contradictory. Therefore, in the present study, we analyzed the role of IGF-1 in the process of carcinogenesis of endometrial cancer, based on the available literature.
Liu, Dewu; Zhang, Yushan; Du, Yinjun; Yang, Guanfu; Zhang, Xiquan
2007-06-01
The growth-correlated genes that are part of the neuroendocrine growth axis play crucial roles in the regulation of growth and development of pig. The identification of genetic polymorphisms in these genes will enable the scientist to evaluate the biological relevance of such polymorphisms and to gain a better understanding of quantitative traits like growth. In the present study, seven pairs of primers were designed to obtain unknown sequences of growth-correlated genes, and other 25 pairs of primers were designed to identify single nucleotide polymorphisms (SNP) using the denaturing high-performance liquid chromatography (DHPLC) technology in four pig breeds (Duroc, Landrace, Lantang and Wuzhishan), significantly differing in growth and development characteristics. A total of 101 polymorphisms were discovered in 10,707 base pairs (bp) from six genes of the ghrelin (GHRL), leptin (LEP), insulin-like growth factor II (IGF-II), insulin-like growth factor binding protein 2 (IGFBP-2), insulin-like growth factor binding protein 3 (IGFBP-3), and somatostatin (SS). The observed average distances between the SNP in the 5'UTR, coding regions, introns and 3'UTR were 134, 521, 81 and 92 bp, respectively. Four SNPs were found in the coding regions of IGF-II, IGFBP-2 and LEP, respectively. Two synonymous mutations were obtained in IGF-II and LEP genes respectively, and two non-synonymous were found in IGFBP-2 and LEP genes, respectively. Seven other mutations were also observed. Thirty-two PCR-RFLP markers were found among 101 polymorphisms of the six genes. The SNP discovered in this study would provide suitable markers for association studies of candidate genes with growth related traits in pig.
EGF receptor ligands: recent advances
Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J.
2016-01-01
Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR. PMID:27635238
Sharma, Ruchi; George, Aman; Kamble, Nitin M; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat
2012-01-01
The present study examined the expression profile of buffalo fetal fibroblasts (BFF) used as a feeder layer for embryonic stem (ES) cell-like cells. The expression of important growth factors was detected in cells at different passages. Mitomycin-C inactivation increased relative expression levels of ACTIVIN-A, TGF-β1, BMP-4 and GREMLIN but not of fibroblast growth factor-2 (FGF-2). The expression level of ACTIVIN-A, transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-4 (BMP-4) and FGF-2 was similar in buffalo fetal fibroblast (BFF) cultured in stem cell medium (SCM), SCM+1000IU mL(-1) leukemia inhibitory factor (LIF), SCM+5 ngmL(-1) FGF-2 or SCM+LIF+FGF-2 for 24 h whereas GREMLIN expression was higher in FGF-2-supplemented groups. In spent medium, the concentration of ACTIVIN-A was higher in FGF-2-supplemented groups whereas that of TGF-β1 was similar in SCM and LIF+FGF-2, which was higher than when either LIF or FGF-2 was used alone. Following culture of ES cell-like cells on a feeder layer for 24 h, the TGF-β1 concentration was higher with LIF+FGF-2 than with LIF or FGF-2 alone which, in turn, was higher than that in SCM. In the LIF+FGF-2 group, the concentration of TGF-β1 was lower and that of ACTIVIN-A was higher in spent medium at 24 h than at 48 h of culture. These results suggest that BFF produce signalling molecules that may help in self-renewal of buffalo ES cell-like cells.
Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders
2008-11-01
Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors like vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-1) and its receptor, IGF-1R, have been implicated in CNV. We have previously shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in-vivo model. In this study we investigated the effect of PPP on VEGF expression both in vitro and in vivo and whether this effect has anti-angiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in choroids and retinal pigment epithelial cells (APRE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed 22-32% (p = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroids were significantly reduced. In cultured APRE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. We could confirm that PPP reduced the level of transcriptional activity of VEGF promoter. PPP reduces IGF-1 dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the therapy of conditions associated with CNV including neovascular AMD.
Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.
Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K
2017-10-02
Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.
Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis
Matkar, Pratiek N.; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K.
2017-01-01
Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review. PMID:28974056
Insulin-Like Growth Factor-I is a Marker for the Nutritional State
Hawkes, Colin P; Grimberg, Adda
2017-01-01
Measurement of the serum concentration of insulin-like growth factor-1 (IGF-I) is generally used as a screening investigation for disorders of the growth hormone (GH)/IGF-I axis in children and adolescents with short stature. IGF-I concentration is sensitive to short-term and chronic alterations in the nutritional state, and the interpretation of IGF-I measurements requires knowledge of the child’s nutritional status. In this review, we summarize the effects of nutrition on the GH/IGF-I axis, and review the clinical implications of these interactions throughout childhood, both in under-nutrition and over-nutrition. PMID:26841638
The measurement of insulin-like growth factor 1 in sheep plasma.
Bruce, L A; Atkinson, T; Hutchinson, J S; Shakespear, R A; MacRae, J C
1991-02-01
A method is described for the radioimmunoassay (RIA) of insulin-like growth factor 1 (IGF-1) in neutralised formic acid-ethanol extracts of sheep plasma. The ability of the acid-ethanol pretreatment to remove the IGF-1 binding proteins (BPs), which interfere in the assay has been examined. Comparative plasma IGF-1 concentrations determined by the method correlated closely (P less than 0.001) with corresponding values where BPs were removed by acid gel filtration. The method has been applied to studies in which sheep were given exogenous growth hormone and indicated that plasma IGF-1 levels respond rapidly to the onset and termination of treatment.
Neurotrophins: Role in Placental Growth and Development.
Sahay, A S; Sundrani, D P; Joshi, S R
2017-01-01
Neurotrophins, a family of closely related proteins, were originally identified as growth factors for survival, development, and function of neurons in both the central and peripheral nervous systems. Subsequently, neurotrophins have been shown to have functions in immune and reproductive systems. Neurotrophins like nerve growth factor and brain-derived neurotrophic factor (BDNF) are known to play an important role during pregnancy in the process of placental angiogenesis and maturation. Several studies have demonstrated the presence of neurotrophins in the human placenta. The current chapter reviews studies demonstrating the role of neurotrophins during pregnancy particularly in placental development. This chapter also focuses on the regional changes in neurotrophins in the human placenta and its interactions with other growth factors. Future research is needed to understand the mechanisms through which neurotrophins influence the growth and development of the placenta and pregnancy outcome. © 2017 Elsevier Inc. All rights reserved.
Neurobiological markers of exercise-related brain plasticity in older adults
Voss, Michelle W.; Erickson, Kirk I.; Prakash, Ruchika Shaurya; Chaddock, Laura; Kim, Jennifer S.; Alves, Heloisa; Szabo, Amanda; White, Siobhan M.; Wójcicki, Thomas R.; Mailey, Emily L.; Olson, Erin A.; Gothe, Neha; Potter, Vicki V.; Martin, Stephen A.; Pence, Brandt D.; Cook, Marc D.; Woods, Jeffrey A.; McAuley, Edward; Kramer, Arthur F.
2012-01-01
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF. PMID:23123199
Leong, Hui Sun; Chong, Fui Teen; Sew, Pui Hoon; Lau, Dawn P; Wong, Bernice H; Teh, Bin-Tean; Tan, Daniel S W; Iyer, N Gopalakrishna
2014-09-01
Emerging data suggest that cancer stem cells (CSCs) exist in equilibrium with differentiated cells and that stochastic transitions between these states can account for tumor heterogeneity and drug resistance. The aim of this study was to establish an in vitro system that recapitulates stem cell plasticity in head and neck squamous cell cancers (HNSCCs) and identify the factors that play a role in the maintenance and repopulation of CSCs. Tumor spheres were established using patient-derived cell lines via anchorage-independent cell culture techniques. These tumor spheres were found to have higher aldehyde dehydrogenase (ALD) cell fractions and increased expression of Kruppel-like factor 4, SRY (sex determining region Y)-box 2, and Nanog and were resistant to γ-radiation, 5-fluorouracil, cisplatin, and etoposide treatment compared with monolayer culture cells. Monolayer cultures were subject to single cell cloning to generate clones with high and low ALD fractions. ALDHigh clones showed higher expression of stem cell and epithelial-mesenchymal transition markers compared with ALDLow clones. ALD fractions, representing stem cell fractions, fluctuated with serial passaging, equilibrating at a level specific to each cell line, and could be augmented by the addition of epidermal growth factor (EGF) and/or insulin. ALDHigh clones showed increased EGF receptor (EGFR) and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation, with increased activation of downstream pathways compared with ALDLow clones. Importantly, blocking these pathways using specific inhibitors against EGFR and IGF-1R reduced stem cell fractions drastically. Taken together, these results show that HNSCC CSCs exhibit plasticity, with the maintenance of the stem cell fraction dependent on the EGFR and IGF-1R pathways and potentially amenable to targeted therapeutics. ©AlphaMed Press.
Kamanga-Sollo, E; Thornton, K J; White, M E; Dayton, W R
2014-10-01
In feedlot steers, estradiol-17β (E2) and combined E2 and trenbolone acetate (a testosterone analog) implants enhance rate and efficiency of muscle growth; and, consequently, these compounds are widely used as growth promoters. Although the positive effects of E2 on rate and efficiency of bovine muscle growth are well established, the mechanisms involved in these effects are not well understood. Combined E2 and trenbolone acetate implants result in significantly increased muscle satellite cell number in feedlot steers. Additionally, E2 treatment stimulates proliferation of cultured bovine satellite cells (BSC). Studies in nonmuscle cells have shown that binding of E2 to G protein-coupled estrogen receptor (GPER)-1 results in activation of matrix metalloproteinases 2 and 9 (MMP2/9) resulting in proteolytic release of heparin binding epidermal growth factor-like growth factor (hbEGF) from the cell surface. Released hbEGF binds to and activates the epidermal growth factor receptor resulting in increased proliferation. To assess if GPER-1, MMP2/9, and/or hbEGF are involved in the mechanism of E2-stimulated BSC proliferation, we have examined the effects of G36 (a specific inhibitor of GPER-1), CRM197 (a specific inhibitor of hbEGF), and MMP-2/MMP-9 Inhibitor II (an inhibitor of MMP2/9 activity) on E2-stimulated BSC proliferation. Inhibition of GPER-1, MMP2/9, or hbEGF suppresses E2-stimulated BSC proliferation (P < 0.001) suggesting that all these are required in order for E2 to stimulate BSC proliferation. These results strongly suggest that E2 may stimulate BSC proliferation by binding to GPER-1 resulting in MMP2/9-catalyzed release of cell membrane-bound hbEGF and subsequent activation of epidermal growth factor receptor by binding of released hbEGF. Copyright © 2014 Elsevier Inc. All rights reserved.
Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis
Echave, Pedro; Machado-da-Silva, Gisela; Arkell, Rebecca S.; Duchen, Michael R.; Jacobson, Jake; Mitter, Richard; Lloyd, Alison C.
2009-01-01
Summary Cells generate new organelles when stimulated by extracellular factors to grow and divide; however, little is known about how growth and mitogenic signalling pathways regulate organelle biogenesis. Using mitochondria as a model organelle, we have investigated this problem in primary Schwann cells, for which distinct factors act solely as mitogens (neuregulin) or as promoters of cell growth (insulin-like growth factor 1; IGF1). We find that neuregulin and IGF1 act synergistically to increase mitochondrial biogenesis and mitochondrial DNA replication, resulting in increased mitochondrial density in these cells. Moreover, constitutive oncogenic Ras signalling results in a further increase in mitochondrial density. This synergistic effect is seen at the global transcriptional level, requires both the ERK and phosphoinositide 3-kinase (PI3K) signalling pathways and is mediated by the transcription factor ERRα. Interestingly, the effect is independent of Akt-TOR signalling, a major regulator of cell growth in these cells. This separation of the pathways that drive mitochondrial biogenesis and cell growth provides a mechanism for the modulation of mitochondrial density according to the metabolic requirements of the cell. PMID:19920079
Kawada, Manabu; Inoue, Hiroyuki; Ohba, Shun-ichi; Yoshida, Junjiro; Masuda, Tohru; Yamasaki, Manabu; Usami, Ihomi; Sakamoto, Shuichi; Abe, Hikaru; Watanabe, Takumi; Yamori, Takao; Shibasaki, Masakatsu; Nomoto, Akio
2015-01-01
Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy. PMID:25785838
NASA Technical Reports Server (NTRS)
Chromiak, J. A.; Shansky, J.; Perrone, C.; Vandenburgh, H. H.
1998-01-01
Three-dimensional skeletal muscle organ-like structures (organoids) formed in tissue culture by fusion of proliferating myoblasts into parallel networks of long, unbranched myofibers provide an in vivo-like model for examining the effects of growth factors, tension, and space flight on muscle cell growth and metabolism. To determine the feasibility of maintaining either avian or mammalian muscle organoids in a commercial perfusion bioreactor system, we measured metabolism, protein turnover. and autocrine/paracrine growth factor release rates. Medium glucose was metabolized at a constant rate in both low-serum- and serum-free media for up to 30 d. Total organoid noncollagenous protein and DNA content decreased approximately 22-28% (P < 0.05) over a 13-d period. Total protein synthesis rates could be determined accurately in the bioreactors for up to 30 h and total protein degradation rates could be measured for up to 3 wk. Special fixation and storage conditions necessary for space flight studies were validated as part of the studies. For example, the anabolic autocrine/paracrine skeletal muscle growth factors prostaglandin F2alpha (PGF2alpha) and insulin-like growth factor-1 (IGF-1) could be measured accurately in collected media fractions, even after storage at 37 degrees C for up to 10 d. In contrast, creatine kinase activity (a marker of cell damage) in collected media fractions was unreliable. These results provide initial benchmarks for long-term ex vivo studies of tissue-engineered skeletal muscle.
High levels of IGF-1 predict difficult intubation of patients with acromegaly.
Zhang, Yu; Guo, Xiaopeng; Pei, Lijian; Zhang, Zhuhua; Tan, Gang; Xing, Bing
2017-08-01
To investigate the characteristics of difficult intubation and identify novel efficient predictors in patients with acromegaly. Patients with either untreated acromegaly or non-functional pituitary adenomas were enrolled. Patients with acromegaly underwent hormone assays, upper airway computed tomography and magnetic resonance imaging examinations and preoperative overnight polysomnography. The modified Mallampati classification, mouth opening, neck circumference, and neck extension were assessed, and the Cormack-Lehane grades and the time of tracheal intubation were recorded. Patients with acromegaly had a higher incidence of difficult intubation (62.5%). The time of tracheal intubation was prolonged, the neck circumference was enlarged, and the neck extension was confined. In patients with acromegaly and difficult intubation, the insulin-like growth factor 1 levels and apnea/hypoxia index were significantly higher compared to patients without difficult intubation (1115.40 ± 253.73 vs. 791.67 ± 206.62 ng/ml, P = 0.020; 22.17 ± 23.25 vs. 2.47 ± 2.84, P = 0.026, respectively). The bilateral regression analysis revealed that high levels of insulin-like growth factor 1 were an independent risk factor for developing difficult intubation (p = 0.042, Exp B = 1.006). The modified Mallampati classification was positively correlated with apnea/hypoxia index and could be calculated using the following logarithmic equation: MMC = 0.2982 * ln (AHI) + 2.1836. In patients with acromegaly, neck movement is confined, the time of tracheal intubation is prolonged, and the neck circumference is enlarged, and these patients suffer from an increased incidence of difficult intubation (62.5%) during anesthesia induction. The apnea/hypoxia index and insulin-like growth factor 1 levels are both increased in acromegalic patients with difficult intubation, and elevated insulin-like growth factor 1 levels are an independent risk factor of difficult intubation in acromegalic patients.
Diversification of the insulin-like growth factor 1 gene in mammals.
Rotwein, Peter
2017-01-01
Insulin-like growth factor 1 (IGF1), a small, secreted peptide growth factor, is involved in a variety of physiological and patho-physiological processes, including somatic growth, tissue repair, and metabolism of carbohydrates, proteins, and lipids. IGF1 gene expression appears to be controlled by several different signaling cascades in the few species in which it has been evaluated, with growth hormone playing a major role by activating a pathway involving the Stat5b transcription factor. Here, genes encoding IGF1 have been evaluated in 25 different mammalian species representing 15 different orders and ranging over ~180 million years of evolutionary diversification. Parts of the IGF1 gene have been fairly well conserved. Like rat Igf1 and human IGF1, 21 of 23 other genes are composed of 6 exons and 5 introns, and all 23 also contain recognizable tandem promoters, each with a unique leader exon. Exon and intron lengths are similar in most species, and DNA sequence conservation is moderately high in orthologous exons and proximal promoter regions. In contrast, putative growth hormone-activated Stat5b-binding enhancers found in analogous locations in rodent Igf1 and in human IGF1 loci, have undergone substantial variation in other mammals, and a processed retro-transposed IGF1 pseudogene is found in the sloth locus, but not in other mammalian genomes. Taken together, the fairly high level of organizational and nucleotide sequence similarity in the IGF1 gene among these 25 species supports the contention that some common regulatory pathways had existed prior to the beginning of mammalian speciation.
Kawamura, Kazuhiro; Chen, Yuan; Shu, Yimin; Cheng, Yuan; Qiao, Jie; Behr, Barry; Pera, Renee A Reijo; Hsueh, Aaron J W
2012-01-01
Studies using animal models demonstrated the importance of autocrine/paracrine factors secreted by preimplantation embryos and reproductive tracts for embryonic development and implantation. Although in vitro fertilization-embryo transfer (IVF-ET) is an established procedure, there is no evidence that present culture conditions are optimal for human early embryonic development. In this study, key polypeptide ligands known to be important for early embryonic development in animal models were tested for their ability to improve human early embryo development and blastocyst outgrowth in vitro. We confirmed the expression of key ligand/receptor pairs in cleavage embryos derived from discarded human tri-pronuclear zygotes and in human endometrium. Combined treatment with key embryonic growth factors (brain-derived neurotrophic factor, colony-stimulating factor, epidermal growth factor, granulocyte macrophage colony-stimulating factor, insulin-like growth factor-1, glial cell-line derived neurotrophic factor, and artemin) in serum-free media promoted >2.5-fold the development of tri-pronuclear zygotes to blastocysts. For normally fertilized embryos, day 3 surplus embryos cultured individually with the key growth factors showed >3-fold increases in the development of 6-8 cell stage embryos to blastocysts and >7-fold increase in the proportion of high quality blastocysts based on Gardner's criteria. Growth factor treatment also led to a 2-fold promotion of blastocyst outgrowth in vitro when day 7 surplus hatching blastocysts were used. When failed-to-be-fertilized oocytes were used to perform somatic cell nuclear transfer (SCNT) using fibroblasts as donor karyoplasts, inclusion of growth factors increased the progression of reconstructed SCNT embryos to >4-cell stage embryos. Growth factor supplementation of serum-free cultures could promote optimal early embryonic development and implantation in IVF-ET and SCNT procedures. This approach is valuable for infertility treatment and future derivation of patient-specific embryonic stem cells.
Comparison of point-of-care methods for preparation of platelet concentrate (platelet-rich plasma).
Weibrich, Gernot; Kleis, Wilfried K G; Streckbein, Philipp; Moergel, Maximilian; Hitzler, Walter E; Hafner, Gerd
2012-01-01
This study analyzed the concentrations of platelets and growth factors in platelet-rich plasma (PRP), which are likely to depend on the method used for its production. The cellular composition and growth factor content of platelet concentrates (platelet-rich plasma) produced by six different procedures were quantitatively analyzed and compared. Platelet and leukocyte counts were determined on an automatic cell counter, and analysis of growth factors was performed using enzyme-linked immunosorbent assay. The principal differences between the analyzed PRP production methods (blood bank method of intermittent flow centrifuge system/platelet apheresis and by the five point-of-care methods) and the resulting platelet concentrates were evaluated with regard to resulting platelet, leukocyte, and growth factor levels. The platelet counts in both whole blood and PRP were generally higher in women than in men; no differences were observed with regard to age. Statistical analysis of platelet-derived growth factor AB (PDGF-AB) and transforming growth factor β1 (TGF-β1) showed no differences with regard to age or gender. Platelet counts and TGF-β1 concentration correlated closely, as did platelet counts and PDGF-AB levels. There were only rare correlations between leukocyte counts and PDGF-AB levels, but comparison of leukocyte counts and PDGF-AB levels demonstrated certain parallel tendencies. TGF-β1 levels derive in substantial part from platelets and emphasize the role of leukocytes, in addition to that of platelets, as a source of growth factors in PRP. All methods of producing PRP showed high variability in platelet counts and growth factor levels. The highest growth factor levels were found in the PRP prepared using the Platelet Concentrate Collection System manufactured by Biomet 3i.
IGF-1 (Insulin-Like Growth Factor -1) Test
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... a Glance Why Get Tested? To help diagnose growth hormone (GH) deficiency or, less commonly, growth hormone excess; ...
Growth factors and cytokines in patients with long bone fractures and associated spinal cord injury.
Khallaf, Fathy G; Kehinde, Elijah O; Mostafa, Ahmed
2016-06-01
The aim of the study was to test the effect of acute traumatic spinal cord injury of quadriplegia or paraplegia on bone healing in patients with associated long bone fractures and to investigate the molecular and cellular events of the underlying mechanism for a possible acceleration. Healing indicators of long bone fractures and growth factors, IGF-II, platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), Activin-A, and cytokine I-L-1, in the patients' blood were calculated and measured for 21 patients with spinal cord injuries and associated long bone fractures in prospective controlled study and compared to 20 patients with only spinal cord injuries, 30 patients with only long bone fractures, and 30 healthy volunteers. The study results showed that long bone fractures in patients with associated acute traumatic spinal cord injury of quadriplegia or paraplegia heal more expectedly, faster, and with exuberant florid union callus (P > 0.001) and show statistically significant higher levels of growth factors like PDGF, VEGF, Activin-A, and cytokine I-L-1, along the 3 weeks of follow-up (P > 0.005). I-IGF-II showed statistically significant subnormal level along the whole follow-up period in the same patients (P > 0.005). We concluded that long bone fractures in spinal cord injury patients heal more expectedly, faster, and with exuberant and florid callus formation; growth factors like IGF-II, PDGF, VEGF, Activin-A, and cytokine I-L-I have roles as mediators, in molecular events and as byproducts of the subtle mechanism of accelerated osteogenesis in these patients and may represent therapeutic potentials to serve as agents to enhance bone repair.
Ververis, J J; Ku, L; Delafontaine, P
1993-06-01
Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.
Horai, Yoshiro; Honda, Mai; Nishino, Ayako; Nakashima, Yoshikazu; Suzuki, Takahisa; Kawashiri, Shin-Ya; Ichinose, Kunihiro; Tamai, Mami; Nakamura, Hideki; Motomura, Masakatsu; Origuchi, Tomoki; Kawakami, Atsushi
2014-01-01
A 73-year-old man with a history of myasthenia gravis (MG) was diagnosed with rheumatoid arthritis (RA) based on a history of polyarthritis and positivity for anti-citrullinated protein antibodies (ACPA). He presented with a high level of serum vascular endothelial growth factor (VEGF) and RS3PE syndrome-like pitting edema in the extremities, which improved following treatment with low-dose prednisolone. This is an interesting case of ACPA-positive RA associated with RS3PE syndrome-like pitting edema and a high VEGF level.
Wolfe, Andrew; Divall, Sara; Wu, Sheng
2014-10-01
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction. Copyright © 2014 Elsevier Inc. All rights reserved.
Iunusova, N V; Spirina, L V; Kondakova, L A; Kolomiets, A L; Chernyshova, A L; Koval', V D; Nedosekov, V V; Savenkova, O V
2013-01-01
We have examined for the first time the relationship between the expression of PAPP-A metalloproteinase and insulin-like growth factors (IGF-I, IGF-II, VEGF) and transcription factors (NF-kappaB, HIF-1) playing an important role in pathogenesis of cancer. We also demonstrated a positive association between the level of PAPP-A metalloproteinase and the level of growth (VEGF and IGF-I) and transcription factors (NF-kappaB p50, NF-kappaB p65, HIF-1alpha). The current findings suggest an important role of PAPP-A in regulation of bioavailability of IGF-I, VEGF, activated forms of NF-kappaB, and alpha-subunits of HIF-1 in endometrial tumors.
Zhang, Xiao Man; Shi, Jun; Meng, Guo Zhen; Chen, Hong Sai; Zhang, Li Na; Wang, Zhao Yan; Wu, Hao
2015-03-01
To explore the effects of obstructive sleep apnea syndrome (OSAS) on children's growth by the study of identical twins. Seventeen cases of nonobese children with OSAS were included in this study. The control group was their identical twin sibling, who had no signs of OSAS. Data including height, weight, and serum insulin-like growth factor 1 levels were analyzed before tonsillectomy and adenoidectomy (T&A) and at 3, 6, and 12 months after surgery. The mean apnea hyponea index was 3.9 times/hour in patients with OSAS and became normal after surgery. Minimum oxygen saturation gradually increased after T&A. The height and weight of the OSAS group before T&A was lower than the control group. During the follow-up period, height and weight increased but were lower than the control group. Serum insulin-like growth factor 1 levels in the OSAS group before T&A were lower than the control group. The level was significantly increased 3 months after T&A. OSAS impairs growth and development. Significant growth recovery occurs after T&A, and early surgical intervention is an important factor for improvement in growth. Copyright © 2015. Published by Elsevier Inc.
Tumor-Secreted Autocrine Motility Factor (AMF): Casual Role in a Animal Model of Cachexia
2004-08-01
83:526-531 Crown AL, Cottle K, Lightman SL, Falk S, Mohamed-Ali V, Armstrong L, Millar AB, Holly JM (2002). What is the role of the insulin-like growth...Falk S, Mohamed-Ali V, Armstrong L, Millar AB, Holly JM (2002). What is the role of the insulin-like growth factor system in the pathophysiology of...Regulation of lipolysis: natriuretic peptides and the development of cachexia. Int J Cardiol 85:125-132 Kotler DP (2000). Cachexia. Ann Intern Med 133:622-634
Ratajczak, Mariusz Z; Bartke, Andrzej; Darzynkiewicz, Zbigniew
2017-08-01
The dream of slowing down the aging process has always inspired mankind. Since stem cells are responsible for tissue and organ rejuvenation, it is logical that we should search for encoded mechanisms affecting life span in these cells. However, in adult life the hierarchy within the stem cell compartment is still not very well defined, and evidence has accumulated that adult tissues contain rare stem cells that possess a broad trans-germ layer differentiation potential. These most-primitive stem cells-those endowed with pluripotent or multipotent differentiation ability and that give rise to other cells more restricted in differentiation, known as tissue-committed stem cells (TCSCs) - are of particular interest. In this review we present the concept supported by accumulating evidence that a population of so-called very small embryonic-like stem cells (VSELs) residing in adult tissues positively impacts the overall survival of mammals, including humans. These unique cells are prevented in vertebrates from premature depletion by decreased sensitivity to growth hormone (GH), insulin (INS), and insulin-like growth factor (IGF) signaling, due to epigenetic changes in paternally imprinted genes that regulate their resistance to these factors. In this context, we can envision nutrient response GH/INS/IGF signaling pathway as a lethal factor for these most primitive stem cells and an important culprit in aging.
Nuclear receptors in pancreatic tumor cells.
Damaskos, Christos; Garmpis, Nikolaos; Karatzas, Theodore; Kostakis, Ioannis D; Nikolidakis, Lampros; Kostakis, Alkiviadis; Kouraklis, Gregory
2014-12-01
This review focuses on nuclear receptors expressed in pancreatic cancer. An extensive search of articles published up to March 2013 was conducted using the MEDLINE database. The key words used were "pancreatic cancer", "molecular receptors" and "growth factors". A total of 112 articles referred to pancreatic cancer, molecular receptors and/or growth factors were included. Receptors of growth factors, such as the epithelial growth factor receptor, insulin-like growth factor-1 receptor, vascular endothelial growth factor receptor and others, such as integrin α5β1, somatostatin receptors, the death receptor 5, claudin, notch receptors, mesothelin receptors, follicle-stimulating hormone receptors, the MUC1 receptor, the adrenomedullin receptor, the farnesoid X receptor, the transferrin receptor, sigma-2 receptors, the chemokine receptor CXCR4, the urokinase plasminogen activator receptor, the ephrine A2 receptor, the GRIA3 receptor, the RON receptor and the angiotensin II receptor AT-1 are expressed in pancreatic tumor cells. These molecules are implicated in tumor growth, apoptosis, angiogenesis, metastasis etc. After identifying the molecular receptors associated with the pancreatic cancer, many more target molecules playing important roles in tumor pathophysiology and senescence-associated signal transduction in cancer cells will be identified. This may have a significant influence on diagnosis, therapy and prognosis of pancreatic cancer. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Fox, B K; Riley, L G; Hirano, T; Grau, E G
2006-09-15
Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.
Blum, Werner F; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O
2018-01-01
The growth hormone (GH)–insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGF-binding protein (IGFBP)-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management. PMID:29724795
Blum, Werner; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O
2018-05-03
The growth hormone (GH)-insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGFBP-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management.
Musiychuk, Konstantin; Sivalenka, Rajarajeswari; Jaje, Jennifer; Bi, Hong; Flores, Rosemary; Shaw, Brenden; Jones, R. Mark; Golovina, Tatiana; Schnipper, Jacob; Khandker, Luipa; Sun, Ruiqiang; Li, Chang; Kang, Lin; Voskinarian-Berse, Vanessa; Zhang, Xiaokui; Streatfield, Stephen; Hambor, John; Abbot, Stewart
2013-01-01
Clinically available red blood cells (RBCs) for transfusions are at high demand, but in vitro generation of RBCs from hematopoietic stem cells requires significant quantities of growth factors. Here, we describe the production of four human growth factors: erythropoietin (EPO), stem cell factor (SCF), interleukin 3 (IL-3), and insulin-like growth factor-1 (IGF-1), either as non-fused proteins or as fusions with a carrier molecule (lichenase), in plants, using a Tobacco mosaic virus vector-based transient expression system. All growth factors were purified and their identity was confirmed by western blotting and peptide mapping. The potency of these plant-produced cytokines was assessed using TF1 cell (responsive to EPO, IL-3 and SCF) or MCF-7 cell (responsive to IGF-1) proliferation assays. The biological activity estimated here for the cytokines produced in plants was slightly lower or within the range cited in commercial sources and published literature. By comparing EC50 values of plant-produced cytokines with standards, we have demonstrated that all four plant-produced growth factors stimulated the expansion of umbilical cord blood-derived CD34+ cells and their differentiation toward erythropoietic precursors with the same potency as commercially available growth factors. To the best of our knowledge, this is the first report on the generation of all key bioactive cytokines required for the erythroid development in a cost-effective manner using a plant-based expression system. PMID:23517237
Xiao, J H; Feng, X; Di, W; Peng, Z H; Li, L A; Chambon, P; Voorhees, J J
1999-01-01
The role of retinoic acid receptors (RARs) in intercellular regulation of cell growth was assessed by targeting a dominant-negative RARalpha mutant (dnRARalpha) to differentiated suprabasal cells of mouse epidermis. dnRARalpha lacks transcriptional activation but not DNA-binding and receptor dimerization functions. Analysis of transgenic mice revealed that dnRARalpha dose-dependently impaired induction of basal cell proliferation and epidermal hyperplasia by all-trans RA (tRA). dnRARalpha formed heterodimers with endogenous retinoid X receptor-alpha (RXRalpha) over RA response elements in competition with remaining endogenous RARgamma-RXRalpha heterodimers, and dose-dependently impaired retinoid-dependent gene transcription. To identify genes regulated by retinoid receptors and involved in cell growth control, we analyzed the retinoid effects on expression of the epidermal growth factor (EGF) receptor, EGF, transforming growth factor-alpha, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin genes. In normal epidermis, tRA rapidly and selectively induced expression of HB-EGF but not the others. This induction occurred exclusively in suprabasal cells. In transgenic epidermis, dnRARalpha dose-dependently inhibited tRA induction of suprabasal HB-EGF and subsequent basal cell hyperproliferation. Together, our observations suggest that retinoid receptor heterodimers located in differentiated suprabasal cells mediate retinoid induction of HB-EGF, which in turn stimulates basal cell growth via intercellular signaling. These events may underlie retinoid action in epidermal regeneration during wound healing. PMID:10075925
Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung
2012-03-23
A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-α and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-α and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-κB-dependent inflammatory responses by directly blocking the phosphorylation and degradation of IκBα and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-κB. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Isolation and culture of adult mouse vestibular nucleus neurons
Him, Aydın; Altuntaş, Serap; Öztürk, Gürkan; Erdoğan, Ender; Cengiz, Nureddin
2017-12-19
Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.
Chen, Shangliang; Wang, Mingzhu; Chen, Xinglu; Chen, Shaolian; Liu, Li; Zhu, Jianbin; Wang, Jinhui; Yang, Xiaorong; Cai, Xiangsheng
2018-06-21
BACKGROUND Cytokeratin 19 (CK19) is a typical epithelial marker. In this study, we determined whether epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) could enhance CK19 expression in adipose-derived stem cells (ADSCs), thereby inducing the differentiation of ADSCs into epithelial-like cells. MATERIAL AND METHODS ADSCs were isolated from perinephric fat, and the expression of CD29, CD90, and CD105 was confirmed. Following isolation, ADSCs were cultured in static medium or medium containing EGF or bFGF. RESULTS Flow cytometry revealed that EGF and bFGF could alter mesenchymal stem cell markers as well as the cell cycle of ADSCs. Western blotting and immunofluorescence revealed that after 14 days, EGF treatment enhanced the expression of CK19 in ADSCs. CONCLUSIONS Our findings offer important insight for the clinical use of ADSCs in the generation of epithelial-like cells in the future.
Zelazowska-Rutkowska, Beata; Trusiak, Marta; Bossowski, Artur; Cylwik, Bogdan
2018-05-01
Pituitary dwarfism (also known as short stature) is a medical condition in which the pituitary gland does not produce enough growth hormone (GH). To confirm the diagnosis of growth hormone deficiency the overnight profile of GH secretion and GH provocative tests are usually performed; however, due to wide GH fluctuations throughout the day and night and the invasiveness of stimulation tests, their clinical utility is limited. Therefore, screening for IGF-1 (insulin-like growth factor 1) and IGFBP-3 (insulin-like growth factor binding protein type 3) is proposed, suggesting that these tests provide a more accurate reflection of the mean plasma GH level, although the results of these tests are still problematic. In this context, the aim of this study was to assess the diagnostic usefulness of IGF-1 and IGFBP-3 in children with suspected pituitary dwarfism. Studies were carried out in 127 children with abnormal growth and low spontaneous 24-hour plasma GH profiles and abnormal results of GH stimulation tests. Fasting serum IGF-1 and IGFBP-3 were determined by chemiluminescent quantitative measurement using the IMMULITE 1000 IGF-1 and IGFBP-3 kits (Siemens Healthcare Diagnostics, United Kingdom) on the IMMULITE 1000 analyzer (Siemens Healthcare Diagnostics, USA). Results were compared to the normal range by children's age. Mean serum IGF-1 concentrations were within the lower normal range (41.7% cases), and 58.3% results were below the normal reference range in the study group. The average serum IGFBP-3 levels were within the lower normal range. We conclude that IGF-1 test can be a useful tool in the diagnosis of pituitary dwarfism in children suspected of this condition, but due to relatively poor sensitivity the testing cannot be performed alone, but in combination with other tests. The IGFBP-3 test is not useful for the diagnosis of this disease.
Harendra, Galhenagey Gayani; Jayasekara, Rohan W; Dissanayake, Vajira H W
2012-01-01
Heparin-binding epidermal-growth-factor-like growth factor (HBEGF) plays an important role in placentation, including impaired placentation, the primary defect seen in pre-eclampsia. We carried out a case-control disease-association study to examine the association of single nucleotide polymorphisms (SNP) in the HBEGF gene and haplotypes defined by them with pre-eclampsia in a Sinhalese population in Sri Lanka. A total of 175 women with pre-eclampsia and 171 matched normotensive controls were genotyped for six SNP selected in silico as having putative functional effects using mass array Sequenom iplex methodology and a newly designed polymerase chain reaction-restriction fragment length polymorphism assay. The individual SNP were not associated with pre-eclampsia. The haplotypes defined by them, however, showed both predisposing (rs13385T,rs2074613G,rs2237076G,rs2074611C,rs4150196A,rs1862176A; odds ratio,1.65; 95% confidence interval1.04-2.60; P=0.032) and protective (rs13385C,rs2074613G,rs2237076A,rs2074611C,rs4150196A,rs1862176A; odds ratio,0.20; 95% confidence interval, 0.04-0.89; P=0.034) effects. These results confirm that polymorphisms in the HGEGF gene are associated with pre-eclampsia. The haplotypes are likely to exert their effects through the numerous transcription regulation factors binding to the polymorphic sites, namely GATA-1, GATA-3, MZF-1 and AML-1a. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.
Koyama, Takashi; Mirth, Christen K.
2016-01-01
In Drosophila, the fat body, functionally equivalent to the mammalian liver and adipocytes, plays a central role in regulating systemic growth in response to nutrition. The fat body senses intracellular amino acids through Target of Rapamycin (TOR) signaling, and produces an unidentified humoral factor(s) to regulate insulin-like peptide (ILP) synthesis and/or secretion in the insulin-producing cells. Here, we find that two peptides, Growth-Blocking Peptide (GBP1) and CG11395 (GBP2), are produced in the fat body in response to amino acids and TOR signaling. Reducing the expression of GBP1 and GBP2 (GBPs) specifically in the fat body results in smaller body size due to reduced growth rate. In addition, we found that GBPs stimulate ILP secretion from the insulin-producing cells, either directly or indirectly, thereby increasing insulin and insulin-like growth factor signaling activity throughout the body. Our findings fill an important gap in our understanding of how the fat body transmits nutritional information to the insulin producing cells to control body size. PMID:26928023
Regulation of rat mesangial cell growth by diadenosine phosphates.
Heidenreich, S; Tepel, M; Schlüter, H; Harrach, B; Zidek, W
1995-01-01
The newly recognized human endogenous vasoconstrictive dinucleotides, diadenosine pentaphosphate (AP5A) and diadenosine hexaphosphate (AP6A), were tested for growth stimulatory effects in rat mesangial cells (MC). Both AP5A and AP6A stimulated growth in micromolar concentrations. The growth stimulatory effect exceeded that of ATP, alpha,beta-methylene ATP, adenosine 5'-O-(3-thio)triphosphate and UTP. Both diadenosine phosphates potentiated the growth response to platelet-derived growth factor, but not to insulin-like growth factor-1. To further elucidate the site of action in the cell cycle, RNA and protein synthesis were assessed. AP5 and AP6A stimulated protein synthesis, but not RNA formation. Furthermore, both agents increased cytosolic free Ca2+ concentration. It is concluded that AP5A and AP6A may play a regulatory role in MC growth as progression factors and possibly modify MC proliferation in glomerular disease. PMID:7769127
Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P
2016-08-01
The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Comparison of fibrin clots derived from peripheral blood and bone marrow.
Shoji, Takeshi; Nakasa, Tomoyuki; Yoshizuka, Masaaki; Yamasaki, Takuma; Yasunaga, Yuji; Adachi, Nobuo; Ochi, Mitsuo
2017-03-01
Autologous fibrin clots derived from peripheral blood (pb-fibrin clot) and bone marrow (bm-fibrin clot) are thought to be effective for tissue regeneration. However, there is no report detailing the amount of growth factors in pb-/bm-fibrin clot. In this study we evaluated the amount of growth factors in human pb-/bm-fibrin clot, and prove the validity of fibrin clot for clinical use. Human pb-/bm-fibrin clots were obtained during surgery. In the first experiment, enzyme-linked immunosorbent assay (ELISA) was performed for detecting the amount of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-β), platelet derived-growth factors-AB (PDGF-AB), and stromal cell-derived factor-1 (SDF-1). In the second experiment, the efficacy of fibrin clot on the osteogenic differentiation and fibroblast proliferation was evaluated. Pb-/bm-fibrin clots were incubated in human osteoblast derived from mesenchymal stromal cells (MSCs) or human skin fibroblast. Alizarin red staining and real-time PCR (COL1A1, RUNX2) were performed for the detection of osteogenic potential. Cell-growth assay (WST-8) and real-time PCR (COL1A1) were also performed for the detection of the potential of fibroblast proliferation. ELISA analysis revealed that the amount of VEGF, HGF, bFGF, IGF-1, and SDF-1 of bm-fibrin clot group is higher than that of pb-fibrin clot group with statistical differences. Besides, we confirmed that bm-fibrin clot has much potential for the osteogenic differentiation and fibroblast proliferation. The positive outcomes confirm the efficacy of pb-/bm-fibrin clot, and bm-fibrin clot was proved to have much potential for tissue regeneration compared with pb-fibrin clot. The current study showed the potential of a strategy for regenerative medicine using bm-fibrin clot.
Yasutake, Nobuko; Ohishi, Yoshihiro; Taguchi, Kenichi; Hiraki, Yuka; Oya, Masafumi; Oshiro, Yumi; Mine, Mari; Iwasaki, Takeshi; Yamamoto, Hidetaka; Kohashi, Kenichi; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao
2018-04-01
The aim of this study was to identify the prognostic factors of uterine leiomyosarcoma (ULMS). We reviewed 60 cases of surgically resected ULMSs and investigated conventional clinicopathological factors, together with the expression of insulin-like growth factor II messenger RNA-binding protein-3 (IMP3), hormone receptors and cell cycle regulatory markers by immunohistochemistry. Mediator complex subunit 12 (MED12) mutation analysis was also performed. Univariate analyses revealed that advanced stage (P < 0.0001), older age (P = 0.0244) and IMP3 expression (P = 0.0011) were significant predictors of a poor outcome. Multivariate analysis revealed advanced stage (P < 0.0001) and IMP3 (P = 0.0373) as independent predictors of a poor prognosis. Expressions of cell cycle markers and hormone receptors, and MED12 mutations (12% in ULMSs) were not identified as prognostic markers in this study. IMP3 expression in ULMS could be a marker of a poor prognosis. © 2017 John Wiley & Sons Ltd.
Anitua, Eduardo; de la Fuente, María; Riestra, Ana; Merayo-Lloves, Jesús; Muruzábal, Francisco; Orive, Gorka
2015-09-01
To analyze whether plasma rich in growth factors (PRGF) eye drops preserve their biological characteristics and activity after storage for 3 and 6 months at -20°C, at 4°C, and at room temperature for 72 hours, compared with fresh samples (t0). Blood from 6 healthy donors was harvested and centrifuged to obtain PRGF free of leukocytes. Resulting PRGF eye drops were stored for 3 and 6 months at -20°C. At each time, 2 aliquots were maintained at room temperature or at 4°C for 72 hours. Platelet-derived growth factor-AB, transforming growth factor-β1, vascular endothelial growth factor, epidermal growth factor, insulin-like growth factor-1, angiopoietin-1, and thrombospondin-1 were quantified at each time and temperature of storage. Also, the effect of PRGF eye drops on proliferation of primary human keratocytes was evaluated. All the analyzed growth factor levels remained constant at each time and storage condition. No differences were observed in the proliferative activity of keratocytes after treatment with PRGF eye drops at any studied time or temperature. Finally, there was no microbial contamination in any of the PRGF eye drops. The preservation of the PRGF eye drops at -20°C for up to 3 and 6 months does not mean reduction of the main growth factors and proteins implicated in ocular surface wound healing. Eye drop characteristics and in vitro biological activity were not affected by their usage and conservation for 72 hours at 4°C or at room temperature.
Yun, Sumi; Kwak, Yoonjin; Nam, Soo Kyung; Seo, An Na; Oh, Heung-Kwon; Kim, Duck-Woo; Kang, Sung-Bum; Lee, Hye Seung
2018-01-17
Molecular treatments targeting epidermal growth factor receptors (EGFRs) are important strategies for advanced colorectal cancer (CRC). However, clinicopathologic implications of EGFRs and EGFR ligand signaling have not been fully evaluated. We evaluated the expression of EGFR ligands and correlation with their receptors, clinicopathologic factors, and patients' survival with CRC. The expression of EGFR ligands, including heparin binding epidermal growth factor like growth factor (HBEGF), transforming growth factor (TGF), betacellulin, and epidermal growth factor (EGF), were evaluated in 331 consecutive CRC samples using mRNA in situ hybridization (ISH). We also evaluated the expression status of EGFR, human epidermal growth factor receptor 2 (HER2), HER3, and HER4 using immunohistochemistry and/or silver ISH. Unlike low incidences of TGF (38.1%), betacellulin (7.9%), and EGF (2.1%), HBEGF expression was noted in 62.2% of CRC samples. However, the expression of each EGFR ligand did not reveal significant correlations with survival. The combined analyses of EGFR ligands and EGFR expression indicated that the ligands‒/EGFR+ group showed a significant association with the worst disease-free survival (DFS, p=0.018) and overall survival (OS, p=0.005). It was also an independent, unfavorable prognostic factor for DFS (p=0.026) and OS (p=0.007). Additionally, HER4 nuclear expression, regardless of ligand expression, was an independent, favorable prognostic factor for DFS (p=0.034) and OS (p=0.049), by multivariate analysis. Ligand-independent EGFR overexpression was suggested to have a significant prognostic impact; thus, the expression status of EGFR ligands, in addition to EGFR, might be necessary for predicting patients' outcome in CRC.
Ohno, Hiroaki; Kubo, Kazuo; Murooka, Hideko; Kobayashi, Yoshiko; Nishitoba, Tsuyoshi; Shibuya, Masabumi; Yoneda, Toshiyuki; Isoe, Toshiyuki
2006-11-01
In bone metastatic lesions, osteoclasts play a key role in the development of osteolysis. Previous studies have shown that macrophage colony-stimulating factor (M-CSF) is important for the differentiation of osteoclasts. In this study, we investigated whether an inhibitor of M-CSF receptor (c-Fms) suppresses osteoclast-dependent osteolysis in bone metastatic lesions. We developed small molecule inhibitors against ligand-dependent phosphorylation of c-Fms and examined the effects of these compounds on osteolytic bone destruction in a bone metastasis model. We discovered a novel quinoline-urea derivative, Ki20227 (N-{4-[(6,7-dimethoxy-4-quinolyl)oxy]-2-methoxyphenyl}-N'-[1-(1,3-thiazole-2-yl)ethyl]urea), which is a c-Fms tyrosine kinase inhibitor. The IC(50)s of Ki20227 to inhibit c-Fms, vascular endothelial growth factor receptor-2 (KDR), stem cell factor receptor (c-Kit), and platelet-derived growth factor receptor beta were found to be 2, 12, 451, and 217 nmol/L, respectively. Ki20227 did not inhibit other kinases tested, such as fms-like tyrosine kinase-3, epidermal growth factor receptor, or c-Src (c-src proto-oncogene product). Ki20227 was also found to inhibit the M-CSF-dependent growth of M-NFS-60 cells but not the M-CSF-independent growth of A375 human melanoma cells in vitro. Furthermore, in an osteoclast-like cell formation assay using mouse bone marrow cells, Ki20227 inhibited the development of tartrate-resistant acid phosphatase-positive osteoclast-like cells in a dose-dependent manner. In in vivo studies, oral administration of Ki20227 suppressed osteoclast-like cell accumulation and bone resorption induced by metastatic tumor cells in nude rats following intracardiac injection of A375 cells. Moreover, Ki20227 decreased the number of tartrate-resistant acid phosphatase-positive osteoclast-like cells on bone surfaces in ovariectomized (ovx) rats. These findings suggest that Ki20227 inhibits osteolytic bone destruction through the suppression of M-CSF-induced osteoclast accumulation in vivo. Therefore, Ki20227 may be a useful therapeutic agent for osteolytic disease associated with bone metastasis and other bone diseases.
Effects of different CMV-heat-inactivation-methods on growth factors in human breast milk.
Goelz, Rangmar; Hihn, Eva; Hamprecht, Klaus; Dietz, Klaus; Jahn, Gerhard; Poets, Christian; Elmlinger, Martin
2009-04-01
Preterm infants can inoculate virulent cytomegalovirus (CMV) through their mothers' raw breast milk. Complete virus inactivation is achieved only by heat treatment, but the effect on growth factors has never been assessed systematically. Insulin-like-growth-factor-1-, IGF-2-, insulin-like-growth-factor-binding-protein-2-, and IGFBP-3-concentrations were measured, before and after heating, in 51 breast-milk-samples from 28 mothers, and epidermal-growth-factor-concentrations in a subgroup of 35 samples from 22 mothers. Two heating methods were applied: Short-term (5 s) pasteurisation at 62, 65, and 72 degrees C, and long-term Holder-Pasteurisation (30 min) at 63 degrees C. IGF-1, IGF-2, IGFBP-2, and IGFBP-3 were measured by RIA, and EGF by ELISA. Heating for 30 min decreased significantly IGF-1 by 39.4%, IGF-2 by 9.9%, IGFBP-2 by 19.1%, and IGFBP-3 by 7.0%. In contrast, IGF-1, IGF-2, IGFBP-2, and IGFBP-3 were not altered significantly when using a short heating duration of 5 s, irrespective of the level of temperature, except for IGF-2 at 62 degrees C for 5 s (p = 0.041) and IGFBP-2 at 72 degrees C for 5 s (p = 0.025). Neither long- nor short-time heating methods changed the concentration of EGF. Only short heating methods (5 s, 62-72 degrees C) can preserve, almost completely, the concentrations of IGFs in human milk, whereas Holder-Pasteurization does not.
Interaction of AIM with insulin-like growth factor-binding protein-4
YOU, QIANG; WU, YAN; YAO, NANNAN; SHEN, GUANNAN; ZHANG, YING; XU, LIANGGUO; LI, GUIYING; JU, CYNTHIA
2015-01-01
Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two-hybrid screening, the present study uncovered that AIM binds to insulin-like growth factor binding protein-4 (IGFBP-4). AIM interaction with IGFBP-4, as well as IGFBP-2 and -3, but not with IGFBP-1, -5 and -6, was further confirmed by co-immunoprecipitation (co-IP) using 293 cells. The binding activity and affinity between AIM and IGFBP-4 in vitro were analyzed by co-IP and biolayer interferometry. Serum depletion-induced cellular apoptosis was attenuated by insulin-like growth factor-I (IGF-I), and this effect was abrogated by IGFBP-4. Of note, in the presence of AIM, the inhibitory effect of IGFBP-4 on the anti-apoptosis function of IGF-I was attenuated, possibly through binding of AIM with IGFBP-4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP-2, -3 and -4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function. PMID:26135353
Insulin-like growth factor-I (lGF-l): safety and efficacy.
Laron, Zvi
2004-11-01
Insulin-like growth factor I (IGF-I) is a peptide synthesized mainly in the liver by stimulation by pituitary growth hormone (GH). It circulates almost entirely bound to its binding proteins. It is the anabolic effector hormone of GH. It is the only treatment in states of GH resistance such as Laron syndrome and blocking antibodies to human GH. As it suppresses insulin and GH secretion it has been used in states of insulin resistance including Type II diabetes mellitus. IGF-I is administered by once or twice daily injections. Adverse effects are mostly caused by overdosage. The usual daily dose in children ranges from 100-200 microg/kg.
Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children.
Riikonen, Raili
2017-09-26
Insulin-like growth factors play a key role for neuronal growth, differentiation, the survival of neurons and synaptic formation. The action of IGF-1 is most pronounced in the developing brain. In this paper we will try to give an answer to the following questions: Why are studies in children important? What clinical studies in neonatal asphyxia, infantile spasms, progressive encephalopathy-hypsarrhythmia-optical atrophy (PEHO) syndrome, infantile ceroid lipofuscinosis (INCL), autistic spectrum disorders (ASD) and subacute sclerosing encephalopathy (SSPE) have been carried out? What are IGF-based therapeutic strategies? What are the therapeutic approaches? We conclude that there are now great hopes for the therapeutic use of IGF-1 for some neurological disorders (particularly ASD).
Schrevel, Marlies; Osse, E Michelle; Prins, Frans A; Trimbos, J Baptist M Z; Fleuren, Gert Jan; Gorter, Arko; Jordanova, Ekaterina S
2017-06-01
In cervical cancer, the epidermal growth factor receptor (EGFR) is overexpressed in 70-90% of the cases and has been associated with poor prognosis. EGFR-based therapy is currently being explored in cervical cancer. We investigated which EGFR ligand is primarily expressed in cervical cancer and which cell type functions as the major source of this ligand. We hypothesized that macrophages are the main source of EGFR ligands and that a paracrine loop between tumor cells and macrophages is responsible for ligand expression. mRNA expression analysis was performed on 32 cervical cancer cases to determine the expression of the EGFR ligands amphiregulin, β-cellulin, epidermal growth factor (EGF), epiregulin, heparin-binding EGF-like growth factor (HB‑EGF) and transforming growth factor α (TGFα). Subsequently, protein expression was determined immunohistochemically on 36 additional cases. To assess whether macrophages are the major source of EGFR ligands, immunohistochemical double staining was performed on four representative tissue slides. Expression of the chemokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif ligand 2 (CCL2) was determined by mRNA in situ hybridization. Of the known EGFR ligands, HB‑EGF had the highest mRNA expression and HB‑EGF and EGFR protein expression were highly correlated. Tumor specimens with high EGFR expression showed higher numbers of macrophages, and higher expression of GM-CSF and CCL2, but only a small subset (9%) of macrophages was found to be HB‑EGF-positive. Strikingly, 78% of cervical cancer specimens were found to express HB‑EGF. Standardized assessment of staining intensity, using spectral imaging analysis, showed that HB‑EGF expression was higher in the tumor compartment than in the stromal compartment. These results suggest that HB‑EGF is an important EGFR ligand in cervical cancer and that cervical cancer cells are the predominant source of HB‑EGF. Therefore, we propose an autocrine EGFR stimulation model in cervical carcinomas.
Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki
2015-01-01
Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177
Laron, Zvi
2008-03-01
Laron syndrome (LS, congenital primary GH insensitivity) is caused by deletions or mutations in the GH receptor gene, resulting in an inability to generate insulin-like growth factor-I (IGF-I). If untreated, the deficiency of IGF-I results in severe dwarfism, as well as skeletal and muscular underdevelopment. The only treatment is the daily administration of recombinant IGF-I. This review summarizes the present experience by several groups worldwide. The main conclusions are: A. The one or two injections regimen result in the same growth velocity; B. The growth velocity obtained with IGF-I administration is smaller than that observed with hGH in children with congenital isolated GH deficiency; C. Overdosage of IGF-I causes a series of adverse effects which can be avoided by carefully monitoring the serum IGF-I and GH levels.
Abdian, Narges; Ghasemi-Dehkordi, Payam; Hashemzadeh-Chaleshtori, Morteza; Ganji-Arjenaki, Mahbobe; Doosti, Abbas; Amiri, Beheshteh
2015-12-01
Basic fibroblast growth factor (bFGF or FGF-2) is a member of the FGF family secreted by different kinds of cells like HDFs and it is an important nutritional factor for cell growth and differentiation. The HDFs release bFGF in culture media at very low. The present study aims to investigate the HDFs growth rate in culture media supplemented either with or without bFGF. In brief, HDFs were isolated from human foreskin sample and were cultured in vitro in media containing bFGF and lack of this factor. The cells growth rate was calculated by trypan blue. The karyotyping was performed using G-banding to investigate the chromosomal abnormality of HDFs in both groups. Total RNA of each groups were extracted and cDNA samples were synthesized then, real-time Q-PCR was used to measure the expression level of p27kip1 and cyclin D1 genes normalized to internal control gene (GAPDH). The karyotype analysis showed that HDFs cultured in media or without bFGF had normal karyotype (46 chromosomes, XY) and chromosomal abnormalities were not observed. The cell growth rates in both groups were normal with proliferated exponentially but the slope of growth curve in HDFs cultured in media containing bFGF was increased. Karyotyp test showed that bFGF does not affect on cytogenetic stability of cells. The survey of p27kip1 and cyclin D1 genes by real-time Q-PCR showed that the expression level of these genes were up-regulated when adding bFGF in culture media (p < 0.05). The findings of the present study demonstrate that appropriate supplementation of culture media with growth factor like bFGF could enhance the proliferation and differentiation capacity of cells and improve cells growth rate. Similarly, fibroblast growth factors did not induce any chromosomal abnormality in cells. Furthermore, in HDFs cultured in bFGF supplemented media, the p27kip1 and cyclin D1 genes were up-regulated and suggesting an important role for bFGF in cell-cycle regulation and progression and fibroblast division stimulation. It also suggests that the effects of bFGF on different cell types with/or without production of bFGF or other regulation factors be investigated in future.
Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).
Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E
2014-08-01
The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.
Tureckova, J; Wilson, E M; Cappalonga, J L; Rotwein, P
2001-10-19
The differentiation and maturation of skeletal muscle require interactions between signaling pathways activated by hormones and growth factors and an intrinsic regulatory network controlled by myogenic transcription factors. Insulin-like growth factors (IGFs) play key roles in muscle development in the embryo and in regeneration in the adult. To study mechanisms of IGF action in muscle, we developed a myogenic cell line that overexpresses IGF-binding protein-5. C2BP5 cells remain quiescent in low serum differentiation medium until the addition of IGF-I. Here we use this cell line to identify signaling pathways controlling IGF-mediated differentiation. Induction of myogenin by IGF-I and myotube formation were prevented by the phosphatidylinositol (PI) 3-kinase inhibitor, LY294002, even when included 2 days after growth factor addition, whereas expression of active PI 3-kinase could promote differentiation in the absence of IGF-I. Differentiation also was induced by myogenin but was blocked by LY294002. The differentiation-promoting effects of IGF-I were mimicked by a modified membrane-targeted inducible Akt-1 (iAkt), and iAkt was able to stimulate differentiation of C2 myoblasts and primary mouse myoblasts incubated with otherwise inhibitory concentrations of LY294002. These results show that an IGF-regulated PI 3-kinase-Akt pathway controls muscle differentiation by mechanisms acting both upstream and downstream of myogenin.
Fischer, T W; Herczeg-Lisztes, E; Funk, W; Zillikens, D; Bíró, T; Paus, R
2014-11-01
Caffeine reportedly counteracts the suppression of hair shaft production by testosterone in organ-cultured male human hair follicles (HFs). We aimed to investigate the impact of caffeine (i) on additional key hair growth parameters, (ii) on major hair growth regulatory factors and (iii) on male vs. female HFs in the presence of testosterone. Microdissected male and female human scalp HFs were treated in serum-free organ culture for 120 h with testosterone alone (0·5 μg mL(-1)) or in combination with caffeine (0·005-0·0005%). The following effects on hair shaft elongation were evaluated by quantitative (immuno)histomorphometry: HF cycling (anagen-catagen transition); hair matrix keratinocyte proliferation; expression of a key catagen inducer, transforming growth factor (TGF)-β2; and expression of the anagen-prolonging insulin-like growth factor (IGF)-1. Caffeine effects were further investigated in human outer root sheath keratinocytes (ORSKs). Caffeine enhanced hair shaft elongation, prolonged anagen duration and stimulated hair matrix keratinocyte proliferation. Female HFs showed higher sensitivity to caffeine than male HFs. Caffeine counteracted testosterone-enhanced TGF-β2 protein expression in male HFs. In female HFs, testosterone failed to induce TGF-β2 expression, while caffeine reduced it. In male and female HFs, caffeine enhanced IGF-1 protein expression. In ORSKs, caffeine stimulated cell proliferation, inhibited apoptosis/necrosis, and upregulated IGF-1 gene expression and protein secretion, while TGF-β2 protein secretion was downregulated. This study reveals new growth-promoting effects of caffeine on human hair follicles in subjects of both sexes at different levels (molecular, cellular and organ). © 2014 British Association of Dermatologists.
Role of IGF-I Signaling in Muscle Bone Interactions
Bikle, Daniel D; Tahimic, Candice; Chang, Wenhan; Wang, Yongmei; Philippou, Anastassios; Barton, Elisabeth R.
2015-01-01
Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. PMID:26453498
Okazaki, Hideto; Beppu, Hidehiko; Mizutani, Kenmei; Okamoto, Sayaka; Sonoda, Shigeru
2014-07-01
Predicting recovery from hemiparesis after stroke is important for rehabilitation. A few recent studies reported that the levels of some growth factors shortly after stroke were positively correlated with the clinical outcomes during the chronic phase. The aim of this study was to examine the relationships between the serum levels of growth factors (vascular endothelial growth factor [VEGF], insulin-like growth factor-I [IGF-I], and hepatocyte growth factor [HGF]) and improvement in hemiparesis in stroke patients who received rehabilitation in a postacute rehabilitation hospital. Subjects were 32 stroke patients (cerebral infarction: 21 and intracerebral hemorrhage [ICH]: 11). We measured serum levels of VEGF, IGF-I, and HGF and 5 items of the Stroke Impairment Assessment Set (SIAS) for hemiparesis on admission and at discharge. Age-matched healthy subjects (n=15) served as controls. Serum levels of VEGF and HGF in cerebral infarct patients on admission were higher than those in control subjects, and the serum levels of IGF-I in stroke patients were lower than those in controls. The level of HGF in ICH patients on admission was negatively correlated with gains in SIAS, and higher outliers in HGF concentration were correlated with lower gains in SIAS. Focusing on the extremely high levels of these factors may be a predictor of the low recovery from hemiparesis after stroke. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe
2015-04-01
Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieweke, M.H.; Bissell, M.J.; Thompson, N.L.
1990-06-29
In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still ledmore » to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.« less
Bertin, Ana Carina Junqueira; Vilarinho, Adriana; Junqueira, Ana Lúcia Ariano
2018-02-16
Androgenetic alopecia, also known as male and female pattern hair loss, is a very prevalent condition; however, approved therapeutic options are limited. Fractionated laser has been proposed to assist in penetration of topical medications to the cutaneous tissue. We present four cases of androgenetic alopecia that underwent treatment with a non-ablative erbium glass fractional laser followed by the application of topical finasteride 0,05% and growth factors including basic fibroblast growth factor, insulin-like growth factor, vascular endothelial growth factor, and copper peptide 1%. During all laser treatment sessions, eight passes were performed, at 7 mJ, 3-9% of coverage and density of 120 mzt/cm 2 . A positive response was observed in all of the four patients. Photographs taken 2 weeks after the last session showed improvement in hair regrowth and density. No significant side effects were observed.
Cardiovascular Disease in Acromegaly.
Sharma, Morali D; Nguyen, Anh V; Brown, Spandana; Robbins, Richard J
2017-01-01
In patients with acromegaly, chronic excess of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) leads to the development of acromegalic cardiomyopathy. Its main features are biventricular hypertrophy, diastolic dysfunction, and in later stages, systolic dysfunction and congestive heart failure. Surgical and/or pharmacological treatment of acromegaly and control of cardiovascular risk factors help reverse some of these pathophysiologic changes and decrease the high risk of cardiovascular complications.
Hexamethylenebisacetamide (HMBA) is a growth factor for human, ovine and porcine thyroid cells.
Fayet, G; Amphoux-Fazekas, T; Aouani, A; Hovsépian, S
1996-03-01
Hexamethylenebisacetamide (HMBA) provokes in murine erythroleukemia cells (MELC) a commitment to terminal differentiation leading to the activation of the expression of hemoglobin. HMBA has been tested also in other cells from colon cancer, melanoma or lung cancer. However it has not yet been tested in the thyroid. We demonstrate in this paper that HMBA in kinetics and concentration-response experiments increases the proliferation of human thyroid cells isolated from Graves'-Basedow patients. It also acts like a growth factor for ovine and porcine thyroid cells, respectively, from the OVNIS line and the ATHOS line. This molecule which is a differentiating factor in the MELC system and a growth factor in human thyroid cell cultures represents a potential to get human thyroid cell lines expressing specialized functions.
Thompson, L M; Raffioni, S; Wasmuth, J J; Bradshaw, R A
1997-01-01
Mutations in the gene for human fibroblast growth factor receptor 3 (hFGFR3) cause a variety of skeletal dysplasias, including the most common genetic form of dwarfism, achondroplasia (ACH). Evidence indicates that these phenotypes are not due to simple haploinsufficiency of FGFR3 but are more likely related to a role in negatively regulating skeletal growth. The effects of one of these mutations on FGFR3 signaling were examined by constructing chimeric receptors composed of the extracellular domain of human platelet-derived growth factor receptor beta (hPDGFR beta) and the transmembrane and intracellular domains of hFGFR3 or of an ACH (G375C) mutant. Following stable transfection in PC12 cells, which lack platelet-derived growth factor (PDGF) receptors, all clonal cell lines, with either type of chimera, showed strong neurite outgrowth in the presence of PDGF but not in its absence. Antiphosphotyrosine immunoblots showed ligand-dependent autophosphorylation, and both receptor types stimulated strong phosphorylation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase, an event associated with the differentiative response of these cells. In addition, ligand-dependent phosphorylation of phospholipase Cgamma and Shc was also observed. All of these responses were comparable to those observed from ligand activation, such as by nerve growth factor, of the native PC12 cells used to prepare the stable transfectants. The cells with the chimera bearing the ACH mutation were more rapidly responsive to ligand with less sustained MAPK activation, indicative of a preactivated or primed condition and consistent with the view that these mutations weaken ligand control of FGFR3 function. However, the full effect of the mutation likely depends in part on structural features of the extracellular domain. Although FGFR3 has been suggested to act as a negative regulator of long-bone growth in chrondrocytes, it produces differentiative signals similar to those of FGFR1, to which only positive effects have been ascribed, in PC12 cells. Therefore, its regulatory effects on bone growth likely result from cellular contexts and not the induction of a unique FGFR3 signaling pathway. PMID:9199352
A review on the factors affecting mite growth in stored grain commodities.
Collins, D A
2012-03-01
A thorough review of the literature has identified the key factors and interactions that affect the growth of mite pests on stored grain commodities. Although many factors influence mite growth, the change and combinations of the physical conditions (temperature, relative humidity and/or moisture content) during the storage period are likely to have the greatest impact, with biological factors (e.g. predators and commodity) playing an important role. There is limited information on the effects of climate change, light, species interactions, local density dependant factors, spread of mycotoxins and action thresholds for mites. A greater understanding of these factors may identify alternative control techniques. The ability to predict mite population dynamics over a range of environmental conditions, both physical and biological, is essential in providing an early warning of mite infestations, advising when appropriate control measures are required and for evaluating control measures. This information may provide a useful aid in predicting and preventing mite population development as part of a risk based decision support system.
Mancera, J.M.; McCormick, S.D.
1998-01-01
The ability of ovine growth hormone (oGH), recombinant bovine insulin- like growth factor I (rbIGF-I), recombinant human insulin-like growth factor II (rhIGF-II), and bovine insulin to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity, 320 mOsm/kg H2O) were injected with a single dose of hormone and transferred to seawater (SW, 35 ppt salinity, 1120 mOsm/kg H2O) 2 days later. Fish were sampled 24 h after transfer and plasma osmolality, plasma glucose, and gill Na+,K+-ATPase activity were examined. Transfer from BW to SW increased plasma osmolality and gill Na+,K+-ATPase activity. Transfer from BW to BW had no effect on these parameters. rbIGF-I (0.05, 0.1, and 0.2 ??g/g) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity in a dose-dependent manner. oGH (0.5, 1, and 2 ??g/g) also increased hypoosmoregulatory ability but only the higher doses (2 ??g/g) significantly increased gill Na+,K+-ATPase activity. oGH (1 ??g/g) and rbIGF-I (0.1 ??g/g) had a significantly greater effect on plasma osmolality and gill Na+,K+-ATPase activity than either hormone alone. rhIGF-II (0.05, 0.1, and 0.2 ??g/g) and bovine insulin (0.01 and 0.05 ??g/g) were without effect. The results suggest a role of GH and insulin-like growth factor I (IGF-I) in seawater acclimation of E heteroclitus. Based on these findings and previous studies, it is concluded that the capacity of the GH/IGF-I axis to increase hypoosmoregulatory ability may be a common feature of euryhalinity in teleosts.
Laron syndrome. First report from Greece.
Galli-Tsinopoulou, Assimina; Nousia-Arvanitakis, Sanda; Tsinopoulos, Ioannis; Bechlivanides, Christos; Shevah, Orit; Laron, Zvi
2003-01-01
Laron-type dwarfism is an autosomal recessive disorder caused by deletions or mutations of the growth hormone receptor gene. It is characterized by high circulating levels of growth hormone (GH) and low levels of insulin-like growth factor I (IGF-I). Patients are refractory to both endogenous and exogenous GH, and present severe growth retardation and obesity. Therapy with recombinant human insulin-like growth factor-I (rhIGF-I) accelerates linear growth. We describe a 2-year old girl with Laron syndrome, who presented with postnatal growth failure and hypoglycaemic seizures. Her evaluation disclosed high GH values during a glucagon test (peak GH value 170 ng/ml) and very low IGF I value (0.1 ng/ml) with no rise following GH administration. The growth velocity improved considerably with the administration of IGF I. Molecular analysis showed a heterozygous mutation on exon 4 of the GH receptor gene, inherited from the mother, a rather puzzling finding considering the clinical findings in mother and infant. This case constitutes the first report of Laron syndrome from Greece.
Bee Venom Promotes Hair Growth in Association with Inhibiting 5α-Reductase Expression.
Park, Seeun; Erdogan, Sedef; Hwang, Dahyun; Hwang, Seonwook; Han, Eun Hye; Lim, Young-Hee
2016-06-01
Alopecia is an important issue that can occur in people of all ages. Recent studies show that bee venom can be used to treat certain diseases including rheumatoid arthritis, neuralgia, and multiple sclerosis. In this study, we investigated the preventive effect of bee venom on alopecia, which was measured by applying bee venom (0.001, 0.005, 0.01%) or minoxidil (2%) as a positive control to the dorsal skin of female C57BL/6 mice for 19 d. Growth factors responsible for hair growth were analyzed by quantitative real-time PCR and Western blot analysis using mice skins and human dermal papilla cells (hDPCs). Bee venom promoted hair growth and inhibited transition from the anagen to catagen phase. In both anagen phase mice and dexamethasone-induced catagen phase mice, hair growth was increased dose dependently compared with controls. Bee venom inhibited the expression of SRD5A2, which encodes a type II 5α-reductase that plays a major role in the conversion of testosterone into dihydrotestosterone. Moreover, bee venom stimulated proliferation of hDPCs and several growth factors (insulin-like growth factor 1 receptor (IGF-1R), vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)2 and 7) in bee venom-treated hDPCs dose dependently compared with the control group. In conclusion, bee venom is a potentially potent 5α-reductase inhibitor and hair growth promoter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, Keigo; Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp; Yamamoto, Satomi
Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response.more » ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.« less
Greenall, Sameer A; Bentley, John D; Pearce, Lesley A; Scoble, Judith A; Sparrow, Lindsay G; Bartone, Nicola A; Xiao, Xiaowen; Baxter, Robert C; Cosgrove, Leah J; Adams, Timothy E
2013-01-04
Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.
We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...
Figueiredo, B C; Piccardo, P; Maysinger, D; Clarke, P B; Cuello, A C
1993-10-01
The ability of acidic fibroblast growth factor to elicit a trophic response in the nervous system of the rat was tested in vitro and in vivo. Treatment of cultured septal cells with acidic fibroblast growth factor resulted in an elongation of glial processes as assessed by immunostaining for glial fibrillary acidic protein. Increased choline acetyltransferase was also observed. The responses to acidic fibroblast growth factor in vivo were studied in rats trained in a spatial memory task, using the Morris water maze. Randomly selected animals were subjected to unilateral cortical devascularization. This lesion results in partial unilateral infarction of the neocortex, and in retrograde degeneration of the nucleus basalis magnocellularis. Animals were tested post-lesion for memory retention and were then killed for morphological studies. Intracerebroventricular administration of acidic fibroblast growth factor (0.6 microgram/h for seven days starting at surgery) prevented the lesion-induced impairment in this test, and reduced the nucleus basalis magnocellularis cholinergic degeneration, as assessed by morphometric choline acetyltransferase-like immunoreactivity and radioenzymatic assay for choline acetyltransferase activity. The preservation of the phenotype of injured cholinergic neurons of the nucleus basalis magnocellularis by acidic fibroblast growth factor was indicated by the maintenance of the cross-sectional area of cell bodies and mean length of neuritic processes one month after surgery. The effect of acidic fibroblast growth factor in non-cholinergic cells remains to be investigated. It is suggested that acidic fibroblast growth factor may alleviate the lesion-induced deficit in the memory retention task by preventing disruption of functional connections between nucleus basalis magnocellularis and intact cortical areas.(ABSTRACT TRUNCATED AT 250 WORDS)
Palmer, Steve; Groves, Nicola; Schindeler, Aaron; Yeoh, Thomas; Biben, Christine; Wang, Cheng-Chun; Sparrow, Duncan B.; Barnett, Louise; Jenkins, Nancy A.; Copeland, Neal G.; Koentgen, Frank; Mohun, Tim; Harvey, Richard P.
2001-01-01
We have isolated a murine cDNA encoding a 9-kD protein, Chisel (Csl), in a screen for transcriptional targets of the cardiac homeodomain factor Nkx2-5. Csl transcripts were detected in atria and ventricles of the heart and in all skeletal muscles and smooth muscles of the stomach and pulmonary veins. Csl protein was distributed throughout the cytoplasm in fetal muscles, although costameric and M-line localization to the muscle cytoskeleton became obvious after further maturation. Targeted disruption of Csl showed no overt muscle phenotype. However, ectopic expression in C2C12 myoblasts induced formation of lamellipodia in which Csl protein became tethered to membrane ruffles. Migration of these cells was retarded in a monolayer wound repair assay. Csl-expressing myoblasts differentiated and fused normally, although in the presence of insulin-like growth factor (IGF)-1 they showed dramatically enhanced fusion, leading to formation of large dysmorphogenic “myosacs.” The activities of transcription factors nuclear factor of activated T cells (NFAT) and myocyte enhancer–binding factor (MEF)2, were also enhanced in an IGF-1 signaling–dependent manner. The dynamic cytoskeletal localization of Csl and its dominant effects on cell shape and behavior and transcription factor activity suggest that Csl plays a role in the regulatory network through which muscle cells coordinate their structural and functional states during growth, adaptation, and repair. PMID:11381084
Assessment of Growth Factors Secreted by Human Breastmilk Mesenchymal Stem Cells.
Kaingade, Pankaj Mahipatrao; Somasundaram, Indumathi; Nikam, Amar Babaso; Sarang, Shabari Amit; Patel, Jagdish Shantilal
2016-01-01
Human breastmilk is a dynamic, multifaceted biological fluid containing nutrients, bioactive substances, and growth factors. It is effective in supporting growth and development of an infant. As breastmilk has been found to possess mesenchymal stem cells, the importance of the components of breastmilk and their physiological roles is increasing day by day. The present study was intended to identify the secretions of growth factors, mainly vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), from human breastmilk mesenchymal stem cells under basal conditions of in vitro cell culture using synthetic media and human cord serum. The growth factors were analyzed with the enzyme-linked immunosorbent assay technique. The cultured mesenchymal stem cells of breastmilk without serum revealed significant differences in secretions of the VEGF and HGF growth factors (8.55 ± 2.26402 pg/mL and 230.8 ± 45.9861 pg/mL, respectively) compared with mesenchymal stem cells of breastmilk with serum (21.31 ± 4.69 pg/mL and 2,404.42 ± 481.593 pg/mL, respectively). Results obtained from our study demonstrate that both VEGF and HGF are secreted in vitro by human breastmilk mesenchymal stem cells. The roles of VEGF and HGF in surfactant secretion, pulmonary maturation, and neonatal maturity have been well established. Thus, we emphasize that breastmilk-derived MSCs could be a potent therapeutic source in treating neonatal diseases. Besides, due to its immense potency, the study also emphasizes the importance of breastfeeding, which is promoted by organizations like the World Heatlh Organization and UNICEF.
Tutau, Federico; Rodríguez-Ortigosa, Carlos; Puche, Juan Enrique; Juanarena, Nerea; Monreal, Iñigo; García Fernández, María; Clavijo, Encarna; Castilla, Alberto; Castilla-Cortázar, Inma
2009-01-01
Cirrhosis is a diffuse process of hepatic fibrosis and regenerative nodule formation. The liver is the major source of circulating insulin-like growth factor-I (IGF-I) whose plasma levels are diminished in cirrhosis. IGF-I supplementation has been shown to induce beneficial effects in cirrhosis, including antifibrogenic and hepatoprotective effects. On other hand, interferon-alpha (IFN-alpha) therapy seems to suppress the progression of hepatic fibrosis. The aim of this study was to investigate the effect of the co-administration of IGF-I+IFN-alpha to Wistar rats with CCl(4)-induced cirrhosis, exploring liver function tests, hepatic lipid peroxidation and histopathology. The mechanisms underlying the effects of these agents were studied by reverse transcription-polymerase chain reaction, determining the expression of some factors [hepatocyte growth factor (HGF), transforming growth factor-beta (TGF-beta), alpha-smooth muscle actin, collagen, tissular inhibitor of metalloproteinases-1 and pregnane X receptor (PXR)] involved in fibrogenesis, fibrolysis and/or hepatoprotection. Both IGF-I and IFN-alpha exerted significant effects on fibrogenesis. IGF-I significantly increased serum albumin and HGF whereas IFN-alpha-therapy did not. The inhibition of TGF-beta expression was only observed by the effect of IFN-alpha-therapy. In addition, only the co-administration of IGF-I and IFN-alpha was able to increase the PXR. The combined therapy with both factors improved liver function tests, hepatic lipid peroxidation and reduced fibrosis, inducing a relevant histological improvement, reducing fibrosis and recovering hepatic architecture. The co-administration IGF-I+IFN enhanced all the beneficial effects observed with each factor separately, showing an additive action on histopathology and PXR expression, which is involved in the inhibition of fibrogenesis.
Economou, Mario A; Wu, Jiangmei; Vasilcanu, Daiana; Rosengren, Linda; All-Ericsson, Charlotta; van der Ploeg, Ingeborg; Menu, Eline; Girnita, Leonard; Axelson, Magnus; Larsson, Olle; Seregard, Stefan; Kvanta, Anders
2008-06-01
Choroidal neovascularization (CNV) is a debilitating complication of age-related macular degeneration (AMD) and a leading cause of vision loss. Along with other angiogenic factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF)-1 and its receptor, IGF-1R, have been implicated in CNV. A prior study has shown that the cyclolignan picropodophyllin (PPP) efficiently blocks the insulin-like growth factor-1 receptor (IGF-1R) activity and causes cell death in uveal melanoma cell lines and in an in vivo model. In this study we investigated the effect of PPP on VEGF expression, both in vitro and in vivo, and whether this effect has antiangiogenic consequences in a murine CNV model. C57BL/6J mice with laser-induced CNVs were treated with PPP. Effects on CNV area were assayed by image analysis. VEGF levels in the choroid and retinal pigment epithelial cells (ARPE-19) were measured by Western blot or ELISA. Transcriptional activation of the VEGF promoter was determined by luciferase reporter gene assay. Mice treated with PPP, administered intraperitoneally or orally, showed a 22% to 32% (P = 0.002) decrease in CNV area. Furthermore, VEGF levels in the choroid were significantly reduced. In cultured ARPE-19 cells, IGF-1 was shown to increase VEGF secretion. This increase was completely blocked by PPP. PPP reduced the level of transcriptional activity of the VEGF promoter. PPP reduces IGF-1-dependent VEGF expression and CNV in vivo. Accordingly, IGF-1R inhibitors may be useful tools in the treatment of conditions associated with CNV, including neovascular AMD.
IGF system targeted therapy: Therapeutic opportunities for ovarian cancer.
Liefers-Visser, J A L; Meijering, R A M; Reyners, A K L; van der Zee, A G J; de Jong, S
2017-11-01
The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including insulin-like growth factor 1 receptor (IGF-1R), insulin receptor (IR) -A and -B. These receptors are activated upon binding to their respective growth factor ligands, IGF-I, IGF-II and insulin, and play an important role in development, maintenance, progression, survival and chemotherapeutic response of ovarian cancer. In many pre-clinical studies anti-IGF-1R/IR targeted strategies proved effective in reducing growth of ovarian cancer models. In addition, anti-IGF-1R targeted strategies potentiated the efficacy of platinum based chemotherapy. Despite the vast amount of encouraging and promising pre-clinical data, anti-IGF-1R/IR targeted strategies lacked efficacy in the clinic. The question is whether targeting the IGF-1R/IR signaling pathway still holds therapeutic potential. In this review we address the complexity of the IGF-1R/IR signaling pathway, including receptor heterodimerization within and outside the IGF system and downstream signaling. Further, we discuss the implications of this complexity on current targeted strategies and indicate therapeutic opportunities for successful targeting of the IGF-1R/IR signaling pathway in ovarian cancer. Multiple-targeted approaches circumventing bidirectional receptor tyrosine kinase (RTK) compensation and prevention of system rewiring are expected to have more therapeutic potential. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Giannoni, Paolo; Scaglione, Silvia; Quarto, Rodolfo; Narcisi, Roberto; Parodi, Manuela; Balleari, Enrico; Barbieri, Federica; Pattarozzi, Alessandra; Florio, Tullio; Ferrini, Silvano; Corte, Giorgio; de Totero, Daniela
2011-07-01
Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor-producing mesenchymal and neoplastic cells contributes to maintenance of the leukemic clone.
Giannoni, Paolo; Scaglione, Silvia; Quarto, Rodolfo; Narcisi, Roberto; Parodi, Manuela; Balleari, Enrico; Barbieri, Federica; Pattarozzi, Alessandra; Florio, Tullio; Ferrini, Silvano; Corte, Giorgio; de Totero, Daniela
2011-01-01
Background Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. Design and Methods Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. Results Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. Conclusions The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor-producing mesenchymal and neoplastic cells contributes to maintenance of the leukemic clone. PMID:21486864
2011-01-01
Exogenous administration of insulin-like growth factor (IGF)-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF) while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng) was administered intracerebroventricularly (i.c.v.) to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng). Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST). Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß), tumor necrosis factor-(TNF)α, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior. PMID:21306618
Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok
2016-01-21
Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parakati, Rajini; DiMario, Joseph X
2013-05-10
FGFR1 gene expression regulates myoblast proliferation and differentiation, and its expression is controlled by Krüppel-like transcription factors. KLF10 interacts with the FGFR1 promoter, repressing its activity and cell proliferation. KLF10 represses FGFR1 promoter activity and thereby myoblast proliferation. A model of transcriptional control of chicken FGFR1 gene regulation during myogenesis is presented. Skeletal muscle development is controlled by regulation of myoblast proliferation and differentiation into muscle fibers. Growth factors such as fibroblast growth factors (FGFs) and their receptors (FGFRs) regulate cell proliferation and differentiation in numerous tissues, including skeletal muscle. Transcriptional regulation of FGFR1 gene expression is developmentally regulated by the Sp1 transcription factor, a member of the Krüppel-like factor (KLF) family of transcriptional regulators. Here, we show that another KLF transcription factor, KLF10, also regulates myoblast proliferation and FGFR1 promoter activity. Expression of KLF10 reduced myoblast proliferation by 86%. KLF10 expression also significantly reduced FGFR1 promoter activity in myoblasts and Sp1-mediated FGFR1 promoter activity in Drosophila SL2 cells. Southwestern blot, electromobility shift, and chromatin immunoprecipitation assays demonstrated that KLF10 bound to the proximal Sp factor binding site of the FGFR1 promoter and reduced Sp1 complex formation with the FGFR1 promoter at that site. These results indicate that KLF10 is an effective repressor of myoblast proliferation and represses FGFR1 promoter activity in these cells via an Sp1 binding site.
Ciresi, Alessandro; Radellini, Stefano; Guarnotta, Valentina; Giordano, Carla
2017-06-01
The visceral adiposity index, based on anthropometric and metabolic parameters, has been shown to be related to adipose tissue function and insulin sensitivity. We aimed to evaluate the performance of the visceral adiposity index in adult patients with growth hormone deficiency. We enrolled 52 patients(mean age 51 ± 13 years) with newly diagnosed growth hormone deficiency and 50 matched healthy subjects as controls at baseline. At baseline and after 12 and 24 months of treatment we evaluated anthropometric measures, lipid profile, glucose and insulin during an oral glucose tolerance test, hemoglobin A1c, homeostasis model assessment estimate of insulin resistance, quantitative insulin sensitivity check index, insulin sensitivity index Matsuda, insulin-like growth factor-I and visceral adiposity index. At baseline growth hormone deficiency patients showed higher waist circumference (p < 0.001), low-density lipoprotein cholesterol (p < 0.001) and visceral adiposity index (p = 0.003) with lower insulin sensitivity index (p = 0.007) and high-density lipoprotein cholesterol (p = 0.001) than controls. During growth hormone treatment we observed a significant increase in insulin-like growth factor-I (p < 0.001), high-density lipoprotein (p < 0.001) with a trend toward increase in insulin sensitivity index (p = 0.055) and a significant decrease in total cholesterol (p < 0.001) and visceral adiposity index (p < 0.001), while no significant changes were observed in other clinical and metabolic parameters. The visceral adiposity index was the only parameter that significantly correlated with growth hormone peak at diagnosis (p < 0.001) and with insulin-like growth factor-I and insulin sensitivity index both at diagnosis (p = 0.009 and p < 0.001) and after 12 (p = 0.026 and p = 0.001) and 24 months (p < 0.001 and p = 0.001) of treatment. The visceral adiposity index, which has shown to be associated with both insulin-like growth factor-I and insulin sensitivity, proved to be the most reliable index of metabolic perturbation, among the most common indexes of adiposity assessment and a marker of benefit during treatment in adult growth hormone deficiency patients.
Tse, Anna Chung-Kwan; Ge, Wei
2009-05-01
Recently the roles of epidermal growth factor (EGF) family ligands in vertebrate ovaries have received increasing attention, including betacellulin (BTC), amphiregulin (AR), heparin-binding EGF-like growth factor (HB-EGF), transforming growth factor alpha (TGFalpha), epiregulin, and EGF itself. In the zebrafish (Danio rerio), four members of EGF family have been identified by either molecular cloning or genome sequencing, which are EGF, TGFalpha, BTC, and HB-EGF. Although they are mostly expressed in the oocytes in the ovary, the present study demonstrated the expression of all the four EGF family ligands (egf, btc, tgfa, and hbegf) in cultured zebrafish follicle cells albeit at very low levels. Treatment of the cultured follicle cells with EGF, BTC, and HB-EGF demonstrated differential effects of these ligands on the expression of themselves. While the expression of egf was rather non-responsive to EGF, BTC, and HB-EGF, the expression of btc was consistently down-regulated by all the three molecules. In contrast, hbegf increased its expression in response to these molecules. These results suggest that there is an EGF signaling network in the zebrafish ovarian follicle, and the functionality of this network is self-regulated by its own members.
New targeted therapies in pancreatic cancer.
Seicean, Andrada; Petrusel, Livia; Seicean, Radu
2015-05-28
Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.
Effects of Hypergravity Rearing on Growth Hormone and Insulin-Like Growth Factor in Rat Pups
NASA Technical Reports Server (NTRS)
Baer, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.
2003-01-01
Body weights of rat pups reared during exposure to hypergravity (hg) are significantly reduced relative to 1 g controls. In the present study, we examined in hg-reared rat pups two major contributors to growth and development, namely growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Beginning on Gestational day (G)11 of the rats 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g or 2.0-g. On Postnatal day (P)l0, plasma GH and IGF-1 were analyzed using radioimmunoassay (RIA). Both hormones were significantly elevated in hg pups relative to 1-g control pups. Together, these findings suggest that GH and IGF-1 are not primary determinants of reduced body weights observed in hg-reared pups. The significant elevations in pup GH and IGF-1 may be related to increased physical stimulation in hypergravity.
Role of fibroblast growth factor receptor signaling in kidney development
2011-01-01
Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling “decoy” receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development. PMID:21613421
Role of fibroblast growth factor receptor signaling in kidney development.
Bates, Carlton M
2011-08-01
Fibroblast growth factor receptors (Fgfrs) consist of four signaling family members and one nonsignaling "decoy" receptor, Fgfr-like 1 (Fgfrl1), all of which are expressed in the developing kidney. Several studies have shown that exogenous fibroblast growth factors (Fgfs) affect growth and maturation of the metanephric mesenchyme (MM) and ureteric bud (UB) in cultured tissues. Transgenic and conditional knockout approaches in whole animals have shown that Fgfr1 and Fgfr2 (predominantly the IIIc isoform) in kidney mesenchyme are critical for early MM and UB formation. Conditional deletion of the ligand, Fgf8, in nephron precursors or global deletion of Fgfrl1 interrupts nephron formation. Fgfr2 (likely the IIIb isoform signaling downstream of Fgf7 and Fgf10) is critical for ureteric morphogenesis. Moreover, Fgfr2 appears to act independently of Frs2α (the major signaling adapter for Fgfrs) in regulating UB branching. Loss of Fgfr2 in the MM leads to many kidney and urinary tract anomalies, including vesicoureteral reflux. Thus Fgfr signaling is critical for patterning of virtually all renal lineages at early and later stages of development.
Le Maitre, Christine L; Richardson, Stephen M A; Baird, Pauline; Freemont, Anthony J; Hoyland, Judith A
2005-12-01
Low back pain (LBP) is a common, debilitating and economically important disorder. Current evidence implicates loss of intervertebral disc (IVD) matrix consequent upon 'degeneration' as a major cause of LBP. Degeneration of the IVD involves increases in degradative enzymes and decreases in the extracellular matrix (ECM) component in a process that is controlled by a range of cytokines and growth factors. Studies have suggested using anabolic growth factors to regenerate the normal matrix of the IVD, hence restoring disc height and reversing degenerative disc disease. However, for such therapies to be successful it is vital that the target cells (i.e. the disc cells) express the appropriate receptors. This immunohistochemical study has for the first time investigated the expression and localization of four potentially beneficial growth factor receptors (i.e. TGFbetaRII, BMPRII, FGFR3 and IGFRI) in non-degenerate and degenerate human IVDs. Receptor expression was quantified across regions of the normal and degenerate disc and showed that cells of the nucleus pulposus (NP) and inner annulus fibrosus (IAF) expressed significantly higher levels of the four growth factor receptors investigated. There were no significant differences between the four growth factor expression in non-degenerate and degenerate biopsies. However, expression of TGFbetaRII, FGFR3 and IGFRI, but not BMP RII, were observed in the ingrowing blood vessels that characterize part of the disease aetiology. In conclusion, this study has demonstrated the expression of the four growth factor receptors at similar levels in the chondrocyte-like cells of the NP and IAF in both non-degenerate and degenerate discs, implicating a role in normal disc homeostasis and suggesting that the application of these growth factors to the degenerate human IVD would stimulate matrix production. However, the expression of some of the growth factor receptors on ingrowing blood vessels might be problematic in a therapeutic approach. Copyright 2005 Pathological Society of Great Britain and Ireland.
Dauncey, M J; Shakespear, R A; Rudd, B T; Ingram, D L
1990-05-01
The influences of environmental temperature and energy intake on plasma concentrations of somatomedin-C/insulin-like growth factor-I (IGF-I) have been investigated in young growing pigs. After 10 weeks acclimation, IGF-I was significantly greater at 35 than 10 degrees C (P less than 0.001) and on a high than a low energy intake (P less than 0.001). During the period 16-26 h after the last meal, there was a significant decline in IGF-I with time (P less than 0.01). These results can be explained partly in relation to differences in energy exchange in warm and cold environments and may also be related to changes in growth and thyroid hormones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, Laurence; Legay, Christine; Adriaenssens, Eric
2006-12-01
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110more » expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.« less
FOXO Transcriptional Factors and Long-Term Living
Rashid, Rehana; Muneer, Saiqa; Hasan, Syed Muhammad Farid
2017-01-01
Several pathologies such as neurodegeneration and cancer are associated with aging, which is affected by many genetic and environmental factors. Healthy aging conceives human longevity, possibly due to carrying the defensive genes. For instance, FOXO (forkhead box O) genes determine human longevity. FOXO transcription factors are involved in the regulation of longevity phenomenon via insulin and insulin-like growth factor signaling. Only one FOXO gene (FOXO DAF-16) exists in invertebrates, while four FOXO genes, that is, FOXO1, FOXO3, FOXO4, and FOXO6 are found in mammals. These four transcription factors are involved in the multiple cellular pathways, which regulate growth, stress resistance, metabolism, cellular differentiation, and apoptosis in mammals. However, the accurate mode of longevity by FOXO factors is unclear until now. This article describes briefly the existing knowledge that is related to the role of FOXO factors in human longevity. PMID:28894507
Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M
2007-12-01
Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.
Shakibaei, M; John, T; De Souza, P; Rahmanzadeh, R; Merker, H J
1999-09-15
We have examined the mechanism by which collagen-binding integrins co-operate with insulin-like growth factor-I (IGF-I) receptors (IGF-IR) to regulate chondrocyte phenotype and differentiation. Adhesion of chondrocytes to anti-beta1 integrin antibodies or collagen type II leads to phosphorylation of cytoskeletal and signalling proteins localized at focal adhesions, including alpha-actinin, vinculin, paxillin and focal adhesion kinase (FAK). These stimulate docking proteins such as Shc (Src-homology collagen). Moreover, exposure of collagen type II-cultured chondrocytes to IGF-I leads to co-immunoprecipitation of Shc protein with the IGF-IR and with beta1, alpha1 and alpha5 integrins, but not with alpha3 integrin. Shc then associates with growth factor receptor-bound protein 2 (Grb2), an adaptor protein and extracellular signal-regulated kinase. The expression of the docking protein Shc occurs only when chondrocytes are bound to collagen type II or integrin antibodies and increases when IGF-I is added, suggesting a collaboration between integrins and growth factors in a common/shared biochemical signalling pathway. Furthermore, these results indicate that focal adhesion assembly may facilitate signalling via Shc, a potential common target for signal integration between integrin and growth-factor signalling regulatory pathways. Thus, the collagen-binding integrins and IGF-IR co-operate to regulate focal adhesion components and these signalling pathways have common targets (Shc-Grb2 complex) in subcellular compartments, thereby linking to the Ras-mitogen-activated protein kinase signalling pathway. These events may play a role during chondrocyte differentiation.
Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.
2007-01-01
Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800
Longo, N; Singh, R; Griffin, L D; Langley, S D; Parks, J S; Elsas, L J
1994-09-01
Mutations in the insulin receptor gene cause the severe insulin-resistant syndromes leprechaunism and Rabson-Mendenhall syndrome. There is no accepted therapy for these inherited conditions. Here we report the results of recombinant human GH (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I) treatment of a male patient, Atl-2, with Rabson-Mendenhall syndrome. The patient was small for gestational age, had premature dentition, absence of sc fat, acanthosis nigricans, fasting hypoglycemia and postprandial hyperglycemia, and extremely high concentrations of circulating insulin (up to 8500 microU/mL). Fibroblasts and lymphoblasts established from this patient had reduced insulin binding, which was 20-30% of the control value. Binding of epidermal growth factor, IGF-I, and GH to the patient's fibroblasts was normal. The growth of fibroblasts cultured from patient Atl-2 in vitro was intermediate between that of fibroblasts from patients with leprechaunism and control values. The patient's growth curve in vivo was far below the fifth percentile despite adequate nutrition. To stimulate growth, therapy with rhGH was initiated, the rationale being to stimulate hepatic IGF-I production and IGF-I receptor signaling, and bypass the inherited block in insulin receptor signaling. Therapy with rhGH (up to 0.5 mg/kg.week) did not improve growth and failed to increase the levels of circulating IGF-I and IGF-binding protein-3 over a 14-month period. As rhGH could not stimulate growth, rhIGF-I (up to 100 micrograms/kg.day) was given by daily sc injection. No increase in growth velocity was observed over a 14-month period. These results indicate that both GH and IGF-I fail to correct growth in a patient with severe inherited insulin resistance. The lack of efficacy of IGF-I treatment may be related to multiple factors, such as the poor metabolic state of the patient, the deficiency of serum carrier protein for IGF-I, an increased clearance of the growth factor, IGF-I resistance in target cells at a receptor or postreceptor level, or an inhibitory action of the mutant insulin receptors on IGF-I receptor signaling.
Lilley, Jodi L. Stewart; Gee, Christopher W.; Sairanen, Ilkka; Ljung, Karin; Nemhauser, Jennifer L.
2012-01-01
The local environment has a substantial impact on early seedling development. Applying excess carbon in the form of sucrose is known to alter both the timing and duration of seedling growth. Here, we show that sucrose changes growth patterns by increasing auxin levels and rootward auxin transport in Arabidopsis (Arabidopsis thaliana). Sucrose likely interacts with an endogenous carbon-sensing pathway via the PHYTOCHROME-INTERACTING FACTOR (PIF) family of transcription factors, as plants grown in elevated carbon dioxide showed the same PIF-dependent growth promotion. Overexpression of PIF5 was sufficient to suppress photosynthetic rate, enhance response to elevated carbon dioxide, and prolong seedling survival in nitrogen-limiting conditions. Thus, PIF transcription factors integrate growth with metabolic demands and thereby facilitate functional equilibrium during photomorphogenesis. PMID:23073695
Axelrod, Mark J; Mendez, Rolando E; Khalil, Ashraf; Leimgruber, Stephanie S; Sharlow, Elizabeth R; Capaldo, Brian; Conaway, Mark; Gioeli, Daniel G; Weber, Michael J; Jameson, Mark J
2015-12-01
In head and neck squamous cell carcinoma (HNSCC), resistance to single-agent targeted therapy may be overcome by co-targeting of compensatory signaling pathways. A targeted drug screen with 120 combinations was used on 9 HNSCC cell lines. Multiple novel drug combinations demonstrated synergistic growth inhibition. Combining the insulin-like growth factor-1 receptor (IGF-1R) inhibitor, BMS754807, with either the human epidermal growth factor receptor (HER)-family inhibitor, BMS599626, or the Src-family kinase inhibitor, dasatinib, resulted in substantial synergy and growth inhibition. Depending on the cell line, these combinations induced synergistic or additive apoptosis; when synergistic apoptosis was observed, AKT phosphorylation was inhibited to a greater extent than either drug alone. Conversely, when additive apoptosis occurred, AKT phosphorylation was not reduced by the drug combination. Combined IGF-1R/HER family and IGF-1R/Src family inhibition may have therapeutic potential in HNSCC. AKT may be a node of convergence between IGF-1R signaling and pathways that compensate for IGF-1R inhibition. © 2015 Wiley Periodicals, Inc.
Energy balance, insulin-resistance biomarkers and breast cancer risk
Fair, Alecia Malin; Dai, Qi; Shu, Xiao-Ou; Matthews, Charles E.; Yu, Herbert; Jin, Fan; Gao, Yu-Tang; Zheng, Wei
2007-01-01
Background American women are five times more likely to be at risk for breast cancer than women from Asian countries. Epidemiologic studies have linked energy balance to an increased risk of breast cancer, yet few studies have investigated potential mediators of this association with Chinese women. We examined the above association by blood levels of insulin-like growth factors, binding proteins, and C-peptide in the Shanghai Breast Cancer Study (SBCS), a case-control study conducted among 1459 breast cancer cases and 1556 healthy Chinese women from 1996 and 1998. Methods In-person surveys were used to collect data on energy intake, anthropometric measures, exercise/sport activity, and occupational activity. The present analyses consisted of 397 cases and 397 controls whose blood samples were measured for levels of insulin-like growth factors ( IGFs), insulin growth-factor binding protein 3, (IGFBP-3) C-peptide and the relationship with physical activity status, total energy intake, and body fat distribution. Results Body mass index [BMI] and waist-to-hip ratio [WHR] were significantly positively correlated with IGFBP-3 and C-peptide. Adult exercise/sport activity was significantly negatively correlated with insulin-like growth factor 1(IGF-I). C-peptide levels increased with increasing quartiles of WHR (p for trend <0.01). Additional analyses were performed to evaluate whether the association of energy balance measures with breast cancer risk changed after adjustment for IGFs, IGFBP-3 and C-peptide biomarkers. The associations attenuated, but none of them changed substantially. Conclusions Insulin resistance biomarkers may partially explain the association between positive energy balance and breast cancer risk, but future studies are needed to identify the underlying complex biological mechanisms of action for breast cancer prevention. PMID:17646056
Bouchet, Audrey; Bräuer-Krisch, Elke; Prezado, Yolanda; El Atifi, Michèle; Rogalev, Léonid; Le Clec'h, Céline; Laissue, Jean Albert; Pelletier, Laurent; Le Duc, Géraldine
2016-08-01
Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control and on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouchet, Audrey, E-mail: audrey.m.bouchet@gmail.com; Biomedical Beamline, European Synchrotron Radiation Facility, Grenoble; Bräuer-Krisch, Elke
Purpose: Synchrotron microbeam radiation therapy (MRT) is based on the spatial fractionation of the incident, highly focused synchrotron beam into arrays of parallel microbeams, typically a few tens of microns wide and depositing several hundred grays. This irradiation modality was shown to have a high therapeutic impact on tumors, especially in intracranial locations. However, mechanisms responsible for such a property are not fully understood. Methods and Materials: Thanks to recent progress in dosimetry, we compared the effect of MRT and synchrotron broad beam (BB) radiation therapy delivered at comparable doses (equivalent to MRT valley dose) on tumor growth control andmore » on classical radiobiological functions by histologic evaluation and/or transcriptomic analysis. Results: MRT significantly improved survival of rats bearing 9L intracranial glioma compared with BB radiation therapy delivered at a comparable dose (P<.001); the efficacy of MRT and BB radiation therapy was similar when the MRT dose was half that of BB. The greater efficacy of MRT was not correlated with a difference in cell proliferation (Mki67 and proliferating cell nuclear antigen) or in transcriptomic stimulation of angiogenesis (vascular endothelial growth factor A or tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 2) but was correlated with a higher cell death rate (factor for apoptosis signals) and higher recruitment of macrophages (tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains 1 and CD68 transcripts) a few days after MRT. Conclusions: These results show the superiority of MRT over BB radiation therapy when applied at comparable doses, suggesting that spatial fractionation is responsible for a specific and particularly efficient tissue response. The higher induction of cell death and immune cell activation in brain tumors treated by MRT may be involved in such responses.« less
Johnson, Michelle H; de Mejia, Elvira Gonzalez
2016-03-30
Berries are a rich source of bioactive phenolic compounds that are able to bind and inhibit the enzyme dipeptidyl peptidase-IV (DPP-IV), a current target for type-2 diabetes therapy. The objectives were to determine the role of berry phenolic compounds to modulate incretin-cleaving DPP-IV and its substrate glucagon-like peptide-1 (GLP-1), insulin secretion from pancreatic β-cells, and genes and proteins involved in the insulin secretion pathway using cell culture. Anthocyanins (ANC) from 50% blueberry-50% blackberry (Blu-Bla) and 100% blackberry (Bla) fermented beverages at 50 μM cyanidin-3-glucoside equivalents increased (p < 0.05) glucose-stimulated insulin secretion from pancreatic β-cells (iNS-1E) both when applied directly and following simulated absorption through Caco-2 cells (by 233 and 100 μIU insulin/mL, respectively). ANC 50%Blu-Bla and ANC 100%Bla upregulated the gene for incretin hormone GLP-1 (fold-change 3.0 ± 1.4 and 2.0 ± 0.3, respectively) and genes in the insulin secretory pathway including insulin-like growth factor 1 receptor (iGF1R, 2.3 ± 0.6 and 1.6 ± 0.3, respectively), and increased (p < 0.05) the protein expression of insulin-like growth factor 2 (IGF-II), insulin-like growth factor binding proteins (IGFBP-2 and 3), and vascular endothelial growth factor (VEGF) in iNS-1E cells. Taken together, anthocyanins, predominantly delphinidin-3-arabinoside, from fermented berry beverages have the potential to modulate DPP-IV and its substrate GLP-1, to increase insulin secretion, and to upregulate expression of mRNA of insulin-receptor associated genes and proteins in pancreatic β-cells.
[Metabolic and hemodynamic effects of the growth hormone system - insulin-like growth factor].
Manhylova, T A; Gafarova, N H
2015-01-01
Significant congenital deficiency of growth factor (GF) results in pituitary nanism (dwarfism) and its substantial excess is accompanied by the development of gigantism or acromegaly. Its impact on the growth of the whole body or its individual parts is impossible without affecting metabolic processes and hemodynamic parameters. A number of investigations have proven that GF has a direct lipolytic effect: adequate replacement therapy for pituitary nanism gives rise to a reduction in fat depots. Since the concentration of GF is lower in obesity, Whether it may be used to treat this abnormality is considered.
Font Tellado, Sònia; Chiera, Silvia; Bonani, Walter; Poh, Patrina S P; Migliaresi, Claudio; Motta, Antonella; Balmayor, Elizabeth R; van Griensven, Martijn
2018-05-01
The tendon/ligament-to-bone transition (enthesis) is a highly specialized interphase tissue with structural gradients of extracellular matrix composition, collagen molecule alignment and mineralization. These structural features are essential for enthesis function, but are often not regenerated after injury. Tissue engineering is a promising strategy for enthesis repair. Engineering of complex tissue interphases such as the enthesis is likely to require a combination of biophysical, biological and chemical cues to achieve functional tissue regeneration. In this study, we cultured human primary adipose-derived mesenchymal stem cells (AdMCs) on biphasic silk fibroin scaffolds with integrated anisotropic (tendon/ligament-like) and isotropic (bone/cartilage like) pore alignment. We functionalized those scaffolds with heparin and explored their ability to deliver transforming growth factor β2 (TGF-β2) and growth/differentiation factor 5 (GDF5). Heparin functionalization increased the amount of TGF-β2 and GDF5 remaining attached to the scaffold matrix and resulted in biological effects at low growth factor doses. We analyzed the combined impact of pore alignment and growth factors on AdMSCs. TGF-β2 and pore anisotropy synergistically increased the expression of tendon/ligament markers and collagen I protein content. In addition, the combined delivery of TGF-β2 and GDF5 enhanced the expression of cartilage markers and collagen II protein content on substrates with isotropic porosity, whereas enthesis markers were enhanced in areas of mixed anisotropic/isotropic porosity. Altogether, the data obtained in this study improves current understanding on the combined effects of biological and structural cues on stem cell fate and presents a promising strategy for tendon/ligament-to-bone regeneration. Regeneration of the tendon/ligament-to-bone interphase (enthesis) is of significance in the repair of ruptured tendons/ligaments to bone to improve implant integration and clinical outcome. This study proposes a novel approach for enthesis regeneration based on a biomimetic and integrated tendon/ligament-to-bone construct, stem cells and heparin-based delivery of growth factors. We show that heparin can keep growth factors local and biologically active at low doses, which is critical to avoid supraphysiological doses and associated side effects. In addition, we identify synergistic effects of biological (growth factors) and structural (pore alignment) cues on stem cells. These results improve current understanding on the combined impact of biological and structural cues on the multi-lineage differentiation capacity of stem cells for regenerating complex tissue interphases. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Hatt, P J; Liebon, C; Morinière, M; Oberlander, H; Porcheron, P
1997-01-01
Ecdysteroids, or molting hormones, have been proven to be key differentiation regulators for epidermal cells in the postembryonic development of arthropods. Regulators of cell proliferation, however, remain largely unknown. To date, no diffusible insect peptidic growth factors have been characterized. Molecules structurally related to insulin have been discovered in insects, as in other eucaryotes. We developed in vitro tests for the preliminary characterization of potential growth factors in arthropods by adapting the procedures designed to detect such factors in vertebrates to an insect cell line (IAL-PID2) established from imaginal discs of the Indian meal moth. We verified the ability of these tests to measure the proliferation of IAL-PID2 cells. We tested mammalian insulin and insulin-like growth factors (IGF-I, IGF-II). Following an arrest of cell proliferation by serum deprivation, IGF-I and IGF-II caused partial resumption of the cell cycle, evidenced by DNA synthesis. In contrast, the addition of 20-hydroxyecdysone arrested the proliferation of the IAL-PID2 cells. The cell line was then used in a test for functional characterization of potential growth factors originating from the penaeid shrimp, Penaeus vannamei. Crude extracts of neurosecretory and nervous tissues, eyestalks, and ventral neural chain compensated for serum deprivation and stimulated completion of mitosis. Arch.
Sreenivasulu, Karli; Nandeesha, Hanumanthappa; Dorairajan, Lalgudi Narayanan; Rajappa, Medha; Vinayagam, Vickneshwaran
2017-06-01
Insulin and insulin like growth factor-1 (IGF-1) have growth promoting effects, while insulin like growth factor binding protein-3 (IGFBP-3) has growth inhibitory effects. The present study was designed to assess the concentrations of insulin, IGF-1, IGFBP-3 and their association with prostate size in patients with BPH. Ninety 90 BPH cases and 90 controls were enrolled in the study. Insulin, IGF-1, IGFBP-3, PSA, testosterone and estradiol were estimated in both the groups. Insulin, IGF-1 and estradiol were increased and IGFBP-3/PSA was decreased in BPH cases when compared with controls. Insulin (r=0.64, p=0.001) and IGF-1 (r=0.22, p=0.03) were positively correlated and IGFBP-3/PSA (r=-0.316, p=0.002) were negatively correlated with prostate size in BPH. Multivariate analysis showed that insulin (p=0.001) and IGFBP-3/PSA (p=0.004) predicts the prostate size in patients with BPH. Insulin was increased and IGFBP-3/PSA was reduced in BPH patients with increased prostate size. At a cutoff concentration of 527.52, IGFBP-3/PSA ratio was found to differentiate benign growth of prostate from normal prostate with 96% sensitivity and 96% specificity. Insulin is elevated and IGFBP-3/PSA is reduced with increase prostate size in BPH cases. Copyright © 2017 Elsevier B.V. All rights reserved.
Brick, Rachel M.; Sun, Aaron X.
2017-01-01
Abstract Adult tissue‐derived mesenchymal stem cells (MSCs) are known to produce a number of bioactive factors, including neurotrophic growth factors, capable of supporting and improving nerve regeneration. However, with a finite culture expansion capacity, MSCs are inherently limited in their lifespan and use. We examined here the potential utility of an alternative, mesenchymal‐like cell source, derived from induced pluripotent stem cells, termed induced mesenchymal progenitor cells (MiMPCs). We found that several genes were upregulated and proteins were produced in MiMPCs that matched those previously reported for MSCs. Like MSCs, the MiMPCs secreted various neurotrophic and neuroprotective factors, including brain‐derived neurotrophic factor (BDNF), interleukin‐6 (IL‐6), leukemia inhibitory factor (LIF), osteopontin, and osteonectin, and promoted neurite outgrowth in chick embryonic dorsal root ganglia (DRG) cultures compared with control cultures. Cotreatment with a pharmacological Trk‐receptor inhibitor did not result in significant decrease in MiMPC‐induced neurite outgrowth, which was however inhibited upon Jak/STAT3 blockade. These findings suggest that the MiMPC induction of DRG neurite outgrowth is unlikely to be solely dependent on BDNF, but instead Jak/STAT3 activation by IL‐6 and/or LIF is likely to be critical neurotrophic signaling pathways of the MiMPC secretome. Taken together, these findings suggest MiMPCs as a renewable, candidate source of therapeutic cells and a potential alternative to MSCs for peripheral nerve repair, in view of their ability to promote nerve growth by producing many of the same growth factors and cytokines as Schwann cells and signaling through critical neurotrophic pathways. stem cells translational Medicine 2018;7:45–58 PMID:29215199
Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki
2015-12-08
Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Foraida, Zahraa I.; Sharikova, Anna; Peerzada, Lubna N.; Khmaladze, Alexander; Larsen, Melinda; Castracane, James
2017-08-01
Sustained delivery of growth factors, proteins, drugs and other biologically active molecules is necessary for tissue engineering applications. Electrospun fibers are attractive tissue engineering scaffolds as they partially mimic the topography of the extracellular matrix (ECM). However, they do not provide continuous nourishment to the tissue. In search of a biomimetic scaffold for salivary gland tissue regeneration, we previously developed a blend nanofiber scaffold composed of the protein elastin and the synthetic polymer polylactic-co-glycolic acid (PLGA). The nanofiber scaffold promoted in vivo-like salivary epithelial cell tissue organization and apicobasal polarization. However, in order to enhance the salivary cell proliferation and biomimetic character of the scaffold, sustained growth factor delivery is needed. The composite nanofiber scaffold was optimized to act as a growth factor delivery system using epidermal growth factor (EGF) as a model protein. The nanofiber/EGF hybrid nanofibers were synthesized by double emulsion electrospinning where EGF is emulsified within a water/oil/water (w/o/w) double emulsion system. Successful incorporation of EGF was confirmed using Raman spectroscopy. EGF release profile was characterized using enzyme-linked immunosorbent assay (ELIZA) of the EGF content. Double emulsion electrospinning resulted in slower release of EGF. We demonstrated the potential of the proposed double emulsion electrospun nanofiber scaffold for the delivery of growth factors and/or drugs for tissue engineering and pharmaceutical applications.
Three-dimensional structure and cytokine distribution of platelet-rich fibrin.
Bai, Meng-Yi; Wang, Ching-Wei; Wang, Jyun-Yi; Lin, Ming-Fang; Chan, Wing P
2017-02-01
Previous reports have revealed that several cytokines (including platelet-derived growth factor-BB, transforming growth factors-β1 and insulin-like growth factor-1) can enhance the rate of bone formation and synthesis of extracellular matrix in orthopaedics or periodontology. This study aimed to determine the concentration of cytokines within platelet-rich fibrin microstructures and investigate whether there are differences in the different portions of platelet-rich fibrin, which has implications for proper clinical use of platelet-rich fibrin gel. Whole blood was obtained from six New Zealand rabbits (male, 7 to 39 weeks old, weight 2.7-4 kg); it was then centrifuged for preparation of platelet-rich fibrin gels and harvest of plasma. The resultant platelet-rich fibrin gels were used for cytokine determination, histological analyses and scanning electron microscopy. All plasmas obtained were subject to the same cytokine determination assays for the purpose of comparison. Cytokines platelet-derived growth factor-BB and transforming growth factor-β1 formed concentration gradients from high at the red blood cell end of the platelet-rich fibrin gel (p=1.88×10-5) to low at the plasma end (p=0.19). Insulin-like growth factor-1 concentrations were similar at the red blood cell and plasma ends. The porosities of the platelet-rich fibrin samples taken in sequence from the red blood cell end to the plasma end were 6.5% ± 4.9%, 24.8% ± 7.5%, 30.3% ± 8.5%, 41.4% ± 12.3%, and 40.3% ± 11.7%, respectively, showing a gradual decrease in the compactness of the platelet-rich fibrin network. Cytokine concentrations are positively associated with platelet-rich fibrin microstructure and portion in a rabbit model. As platelet-rich fibrin is the main entity currently used in regenerative medicine, assessing cytokine concentration and the most valuable portion of PRF gels is essential and recommended to all physicians.
NASA Technical Reports Server (NTRS)
McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.
2000-01-01
Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.
Chien, Wenwen; O'Kelly, James; Lu, Daning; Leiter, Amanda; Sohn, Julia; Yin, Dong; Karlan, Beth; Vadgama, Jay; Lyons, Karen M; Koeffler, H Phillip
2011-06-01
Connective tissue growth factor (CTGF/CCN2) belongs to the CCN family of matricellular proteins, comprising Cyr61, CTGF, NovH and WISP1-3. The CCN proteins contain an N-terminal signal peptide followed by four conserved domains sharing sequence similarities with the insulin-like growth factor binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a C-terminal growth factor cysteine knot domain. To investigate the role of CCN2 in breast cancer, we transfected MCF-7 cells with full-length CCN2, and with four mutant constructs in which one of the domains had been deleted. MCF-7 cells stably expressing full-length CCN2 demonstrated reduced cell proliferation, increased migration in Boyden chamber assays and promoted angiogenesis in chorioallantoic membrane assays compared to control cells. Deletion of the C-terminal cysteine knot domain, but not of any other domain-deleted mutants, abolished activities mediated by full-length CCN2. We have dissected the role of CCN2 in breast tumorigenesis on a structural basis.
Sustained release of nerve growth factor from biodegradable polymer microspheres.
Camarata, P J; Suryanarayanan, R; Turner, D A; Parker, R G; Ebner, T J
1992-03-01
Although grafted adrenal medullary tissue to the striatum has been used both experimentally and clinically in parkinsonism, there is a definite need to augment long-term survival. Infusion of nerve growth factor (NGF) or implantation of NGF-rich tissue into the area of the graft prolongs survival and induces differentiation into neural-like cells. To provide for prolonged, site-specific delivery of this growth factor to the grafted tissue in a convenient manner, we fabricated biodegradable polymer microspheres of poly(L-lactide)co-glycolide (70:30) containing NGF. Biologically active NGF was released from the microspheres, as assayed by neurite outgrowth in a dorsal root ganglion tissue culture system. Anti-NGF could block this outgrowth. An enzyme-linked immunosorbent assay detected NGF still being released in vitro for longer than 5 weeks. In vivo immunohistochemical studies showed release over a 4.5-week period. This technique should prove useful for incorporating NGF and other growth factors into polymers and delivering proteins and other macromolecules intracerebrally over a prolonged time period. These growth factor-containing polymer microspheres can be used in work aimed at prolonging graft survival, treating experimental Alzheimer's disease, and augmenting peripheral nerve regeneration.
Hsieh-Bonassera, Nancy D; Wu, Iwen; Lin, Jonathan K; Schumacher, Barbara L; Chen, Albert C; Masuda, Koichi; Bugbee, William D; Sah, Robert L
2009-11-01
To determine if selected culture conditions enhance the expansion and redifferentiation of chondrocytes isolated from human osteoarthritic cartilage with yields appropriate for creation of constructs for treatment of joint-scale cartilage defects, damage, or osteoarthritis. Chondrocytes isolated from osteoarthritic cartilage were analyzed to determine the effects of medium supplement on cell expansion in monolayer and then cell redifferentiation in alginate beads. Expansion was assessed as cell number estimated from DNA, growth rate, and day of maximal growth. Redifferentiation was evaluated quantitatively from proteoglycan and collagen type II content, and qualitatively by histology and immunohistochemistry. Using either serum or a growth factor cocktail (TFP: transforming growth factor beta1, fibroblast growth factor 2, and platelet-derived growth factor type bb), cell growth rate in monolayer was increased to 5.5x that of corresponding conditions without TFP, and cell number increased 100-fold within 17 days. In subsequent alginate bead culture with human serum or transforming growth factor beta1 and insulin-transferrin-selenium-linoleic acid-bovine serum albumin, redifferentiation was enhanced with increased proteoglycan and collagen type II production. Effects of human serum were dose dependent, and 5% or higher induced formation of chondron-like structures with abundant proteoglycan-rich matrix. Chondrocytes from osteoarthritic cartilage can be stimulated to undergo 100-fold expansion and then redifferentiation, suggesting that they may be useful as a cell source for joint-scale cartilage tissue engineering.
Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya
2015-08-14
Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.
Metformin targets multiple signaling pathways in cancer.
Lei, Yong; Yi, Yanhua; Liu, Yang; Liu, Xia; Keller, Evan T; Qian, Chao-Nan; Zhang, Jian; Lu, Yi
2017-01-26
Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.
Use of high-dose nandrolone aggravates septic shock in a mouse model.
Lin, Che; Chen, Shou-Tung; Chien, Su-Yu; Kuo, Shou-Jen; Chen, Dar-Ren
2011-06-01
Nandrolone, an anabolic-androgenic steroid, is widely misused by athletes who wish to rapidly increase muscle mass and performance. An increasing number of reports have indicated that nandrolone may affect and modulate the immune system. This study aimed to investigate the effects of nandrolone on septic shock-caused immune responses and the cellular mechanism of action using a sepsis murine model. Before septic shock induction, BALB/c mice were given a high dose of nandrolone or peanut oil only. After septic shock induction, mice were sacrificed at different time points. Their blood and tissue specimens were analyzed. It was found that the high-dose nandrolone group had significantly increased mortality compared with the control group (p<0.001). The serum malondialdehyde level was significantly increased in the high-dose group compared with the control group. Animals administered a high dose of nandrolone had significantly increased hepatic tumor necrosis factor-α or splenic interferon-γ at 0 and 6 hours. In lung tissue, insulin-like growth factor-1, insulin-like growth factor binding proteins (IGFBPs) and insulin-like growth factor-1 receptor, and IGFBP1 and IGFBP2 mRNA expression were increased in the high-dose nandrolone group at 6 hours. Nandrolone abuse may hasten the death of patients with septic shock and may aggravate septic shock in mice. Copyright © 2011. Published by Elsevier B.V.
Biochemical characterization of a new maize (Zea mays L.) peptide growth factor.
Rodríguez-López, Cesar David; Rodríguez-Romero, Adela; Aguilar, Raúl; de Jiménez, Estela Sánchez
2011-01-01
Coordination of cell growth and cell division is very important for living organisms in order for these to develop harmonically. The present research is concerned with the purification and characterization of a new peptide hormone, namely ZmIGF (Zea mays insulin-like growth factor), which regulates growth and cell division in maize tissues. ZmIGF is a peptide of 5.7 kDa, as determined by mass spectroscopy. It was isolated either from maize embryonic axes of 48-h germinated seeds or from embryogenic callus and purified through several chromatographic procedures to obtain a single peak as shown by Reverse Phase High-Performance Liquid Chromatography (RP-HPLC). This peptide exhibits a well defined α-helix structure by circular dichroism analysis, similar to that reported for Insulin or for Insulin-like growth factor (IGF-1). Further, ZmIGF seems to perform, in maize, a similar function to that reported for insulin or peptides from the IGF family in animals. Indeed, maize tissues stimulated either by ZmIGF or insulin showed to induce selective synthesis of ribosomal proteins as well as of DNA. Taken together, the previously mentioned data strongly suggest that plants contain a peptide hormone of the IGF family, highly conserved through evolution that regulates growth and development.
Nonlinear structural crack growth monitoring
Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.
2002-01-01
A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randazzo, P.A.; Jarett, L.
1990-09-01
The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetalmore » calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.« less
FGF2 High Molecular Weight Isoforms Contribute to Osteoarthropathy in Male Mice
Meo Burt, Patience; Xiao, Liping; Dealy, Caroline; Fisher, Melanie C.
2016-01-01
Humans with X-linked hypophosphatemia (XLH) and Hyp mice, the murine homolog of the disease, develop severe osteoarthropathy and the precise factors that contribute to this joint degeneration remain largely unknown. Fibroblast growth factor 2 (FGF2) is a key regulatory growth factor in osteoarthritis. Although there are multiple FGF2 isoforms the potential involvement of specific FGF2 isoforms in joint degradation has not been investigated. Mice that overexpress the high molecular weight FGF2 isoforms in bone (HMWTg mice) phenocopy Hyp mice and XLH subjects and Hyp mice overexpress the HMWFGF2 isoforms in osteoblasts and osteocytes. Given that Hyp mice and XLH subjects develop osteoarthropathies we examined whether HMWTg mice also develop knee joint degeneration at 2, 8, and 18 mo compared with VectorTg (control) mice. HMWTg mice developed spontaneous osteoarthropathy as early as age 2 mo with thinning of subchondral bone, osteophyte formation, decreased articular cartilage thickness, abnormal mineralization within the joint, increased cartilage degradative enzymes, hypertrophic markers, and angiogenesis. FGF receptors 1 and 3 and fibroblast growth factor 23 were significantly altered compared with VectorTg mice. In addition, gene expression of growth factors and cytokines including bone morphogenetic proteins, Insulin like growth factor 1, Interleukin 1 beta, as well as transcription factors Sex determining region Y box 9, hypoxia inducible factor 1, and nuclear factor kappa B subunit 1 were differentially modulated in HMWTg compared with VectorTg. This study demonstrates that overexpression of the HMW isoforms of FGF2 in bone results in catabolic activity in joint cartilage and bone that leads to osteoarthropathy. PMID:27732085
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Immunoreactive Trypsinogen (IRT) Influenza Tests Insulin Insulin-like Growth Factor-1 ... Hormone (LH) Lyme Disease Tests Magnesium Maternal Serum Screening, ...
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Immunoreactive Trypsinogen (IRT) Influenza Tests Insulin Insulin-like Growth Factor-1 ... Hormone (LH) Lyme Disease Tests Magnesium Maternal Serum Screening, ...
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Immunoreactive Trypsinogen (IRT) Influenza Tests Insulin Insulin-like Growth Factor-1 ... Hormone (LH) Lyme Disease Tests Magnesium Maternal Serum Screening, ...
... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Immunoreactive Trypsinogen (IRT) Influenza Tests Insulin Insulin-like Growth Factor-1 ... Hormone (LH) Lyme Disease Tests Magnesium Maternal Serum Screening, ...
Paradis, Francois; Wood, Katie M; Swanson, Kendall C; Miller, Stephen P; McBride, Brian W; Fitzsimmons, Carolyn
2017-08-18
Manipulating maternal nutrition during specific periods of gestation can result in re-programming of fetal and post-natal development. In this experiment we investigated how a feed restriction of 85% compared with 140% of total metabolizable energy requirements, fed to cows during mid-to-late gestation, influences phenotypic development of fetuses and mRNA expression of growth (Insulin-Like Growth Factor family and Insulin Receptor (INSR)), myogenic (Myogenic Differentiation 1 (MYOD1), Myogenin (MYOG), Myocyte Enhancer Factor 2A (MEF2A), Serum Response Factor (SRF)) and adipogenic (Peroxisome Proliferator Activated Receptor Gamma (PPARG)) genes in fetal longissimus dorsi (LD) and semitendinosus (ST) muscle. DNA methylation of imprinted genes, Insulin Like Growth Factor 2 (IGF2) and Insulin Like Growth Factor 2 Receptor (IGF2R), and micro RNA (miRNA) expression, were also examined as potential consequences of poor maternal nutrition, but also potential regulators of altered gene expression patterns. While the nutrient restriction impacted dam body weight, no differences were observed in phenotypic fetal measurements (weight, crown-rump length, or thorax circumference). Interestingly, LD and ST muscles responded differently to the differential pre-natal nutrient levels. While LD muscle of restricted fetal calves had greater mRNA abundances for Insulin Like Growth Factor 1 and its receptor (IGF1 and IGF1R), IGF2R, INSR, MYOD1, MYOG, and PPARG, no significant differences were observed for gene expression in ST muscle. Similarly, feed restriction had a greater impact on the methylation level of IGF2 Differentially Methylated Region 2 (DMR2) in LD muscle as compared to ST muscle between treatment groups. A negative correlation existed between IGF2 mRNA expression and IGF2 DMR2 methylation level in both LD and ST muscles. Differential expression of miRNAs 1 and 133a were also detected in LD muscle. Our data suggests that a nutrient restriction of 85% as compared to 140% of total metabolizable energy requirements during the 2nd half of gestation can alter the expression of growth, myogenic and adipogenic genes in fetal muscle without apparent differences in fetal phenotype. It also appears that the impact of feed restriction varies between muscles suggesting a priority for nutrient partitioning depending on muscle function and/or fiber composition. Differences in the methylation level in IGF2, a well-known imprinted gene, as well as differences in miRNA expression, may be functional mechanisms that precede the differences in gene expression observed, and could lead to trans-generational epigenetic programming.
Impact of skeletal unloading on bone formation: Role of systemic and local factors
NASA Astrophysics Data System (ADS)
Bikle, Daniel D.; Halloran, Bernard P.; Morey-Holton, Emily
We have developed a model of skeletal unloading using growing rats whose hindlimbs are unweighted by tail suspension. The bones in the hindlimbs undergo a transient cessation of bone growth; when reloaded bone formation is accelerated until bone mass is restored. These changes do not occur in the normally loaded bones of the forelimbs. Associated with the fall in bone formation is a fall in 1,25(OH) 2D 3 production and osteocalcin levels. In contrast, no changes in parathyroid hormone, calcium, or corticosterone levels are seen. To examine the role of locally produced growth factors, we have measured the mRNA and protein levels of insulin like growth factor-1 (IGF-1) in bone during tail suspension. Surprisingly, both the mRNA and protein levels of IGF-1 increase during tail suspension as bone formation is reduced. Furthermore, the bones in the hindlimbs of the suspended animals develop a resistance to the growth promoting effects of both growth hormone and IGF-1 when given parenterally. Thus, the cessation of bone growth with skeletal unloading is apparently associated with a resistance to rather than failure to produce local growth factors. The cause of this resistance remains under active investigation.
Luo, T David; Alton, Timothy B; Apel, Peter J; Cai, Jiaozhong; Barnwell, Jonathan C; Sonntag, William E; Smith, Thomas L; Li, Zhongyu
2016-10-01
Neurotrophin receptors, such as p75(NTR) , direct neuronal response to injury. Insulin-like growth factor-1 receptor (IGF-1R) mediates the increase in p75(NTR) during aging. The aim of this study was to examine the effect of aging and insulin-like growth factor-1 (IGF-1) treatment on recovery after peripheral nerve injury. Young and aged rats underwent tibial nerve transection with either local saline or IGF-1 treatment. Neurotrophin receptor mRNA and protein expression were quantified. Aged rats expressed elevated baseline IGF-1R (34% higher, P = 0.01) and p75(NTR) (68% higher, P < 0.01) compared with young rats. Post-injury, aged animals expressed significantly higher p75(NTR) levels (68.5% above baseline at 4 weeks). IGF-1 treatment suppressed p75(NTR) gene expression at 4 weeks (17.2% above baseline, P = 0.002) post-injury. Local IGF-1 treatment reverses age-related declines in recovery after peripheral nerve injuries by suppressing p75(NTR) upregulation and pro-apoptotic complexes. IGF-1 may be considered a viable adjuvant therapy to current treatment modalities. Muscle Nerve 54: 769-775, 2016. © 2016 Wiley Periodicals, Inc.
A virally inactivated functional growth factor preparation from human platelet concentrates.
Su, C-Y; Kuo, Y P; Lin, Y C; Huang, C-T; Tseng, Y H; Burnouf, T
2009-08-01
Human platelet growth factors (HPGF) are essential for tissue regeneration and may replace fetal bovine serum (FBS) in cell therapy. No method for the manufacture of standardized virally inactivated HPGF has been developed yet. Platelet concentrates (PC) were subjected to solvent/detergent (S/D) treatment (1% TnBP/1% Triton X-45), oil extraction, hydrophobic interaction chromatography and sterile filtration. Platelet-derived growth factor (PDGF)-AB, -BB and -AA, transforming growth factor-beta1 (TGF-beta1), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and vascular endothelium growth factor (VEGF) were measured by ELISA. Composition in proteins and lipids was determined, protein profiles were obtained by SDS-PAGE, and TnBP and Triton X-45 were assessed by gas chromatography and high-performance liquid chromatography, respectively. Cell growth promoting activity of HPGF was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay using human embryonic kidney (HEK293A) fibroblast and Statens Seruminstitute rabbit corneal (SIRC) epithelial cell lines. The GF preparation contained a mean of 16.66, 2.04, 1.53, 72.19, 0.33, 48.59 and 0.44 ng/ml of PDGF-AB, -BB, -AA, TGF-beta1, EGF, IGF-1 and VEGF, respectively. The protein profile was typical of platelet releasates and had less than 2 p.p.m. of residual S/D agents. MTS assay of HEK293A and SIRC cultures showed that the GF preparation at 10% and 0.1% (v/v), respectively, could successfully replace 10% FBS for cell proliferation. Cell-stimulating activity of HPGF on HEK293A was over twice that of PC releasates. STANDARDIZED and functional virally inactivated HPGF can be prepared from human PC for possible applications in cell therapy and regenerative medicine.
The GHR mutations related to individual’s dwarf
USDA-ARS?s Scientific Manuscript database
Growth hormone (GH) promotes body’s growth through binding with two receptors (GHRs) at the cell surface to interact with Janus kinase and signal transducers and activators of transcription, and then to stimulate metabolic effects and insulin-like growth factor (IGF) synthesis. However, the disorder...
Shi, Jieru; Huang, Zhiheng; Wang, Yuhuan; Huang, Ying
2015-07-01
This study aimed to evaluate the effectiveness of different types of nutritional formulas in a rat model of TNBS-induced IBD. IBD was induced with TNBS in 4-week-old rats that were then fed different exclusive enteral nutrition diets for 7 days. The length of the tibia and the number of chondrocytes in the proximal tibias were analyzed at 7 days after supplementation. Immunohistochemical analysis, ELISA and real-time PCR were performed to evaluate the levels of growth hormone receptor (GHR) and insulin-like growth factor-I receptor (IGF-IR), the growth factors IGF-I and insulin-like growth factor-binding protein-3 (IGFBP3) , bone morphogenetic protein (BMP)-2 and BMP-6 respectively. The results demonstrated that the tibia length of the peptide formula group was longer than that of the IBD-Modulen(®) formula and normal diet groups (P < 0.05). Furthermore, the number of chondrocytes of the proximal tibial was more pronounced in the peptide formula group compared to the other groups (P < 0.05). The peptide formula was also more effective in increasing the expression of GHR compared to the other groups (P < 0.05), while the expression of IGF-IR was not significantly different (P > 0.05). In addition, the IGF-I and IGFBP3 levels were more pronounced in the peptide formula supplement group (P < 0.05), and the expression of BMP-2 and BMP-6 mRNA in the proximal tibia growth plate from the peptide formula group was higher than that in the ordinary formula and normal diet groups (P < 0.05). EEN, and particularly a peptide formula, exerted protective effects on the proximal tibial epiphyseal growth plate in a TNBS-induced IBD model.
Woods, K A; Camacho-Hübner, C; Barter, D; Clark, A J; Savage, M O
1997-11-01
The first human case of a homozygous molecular defect in the gene encoding insulin-like growth factor I (IGF-I) is described. The patient was a 15-year-old boy from a consanguineous pedigree who presented with severe intrauterine growth failure, sensorineural deafness and mild mental retardation. Endocrine evaluation of the growth hormone (GH)--IGF-I axis revealed elevated GH secretion, undetectable serum IGF-I and normal serum IGF-binding protein-3, acid-labile subunit, and GH-binding activity. Analysis of the IGF-I gene revealed a homozygous partial IGF-I gene deletion involving exons 4 and 5, which encodes a severely truncated mature IGF-I peptide. This patient demonstrates that complete disruption of the IGF-I gene in man is compatible with life, and indicates a major role for IGF-I in human fetal growth. In addition, his neurological abnormalities suggest that IGF-I may be involved in central nervous system development.
Mitterberger, Maria C; Mattesich, Monika; Klaver, Elise; Piza-Katzer, Hildegunde; Zwerschke, Werner
2011-11-01
Life-span extension in laboratory rodents induced by long-term caloric restriction correlates with decreased serum insulin-like growth factor-I (IGF-I) levels. Reduced activity of the growth hormone/IGF-I signaling system slows aging and increases longevity in mutant mouse models. In the present study, we show that long-term caloric restriction achieved by two different interventions for 4 years, either laparoscopic-adjustable gastric banding or reducing diet, leads to reduced IGF-I serum levels in formerly obese women relative to normal-weight women eating ad libitum. Moreover, we present evidence that the long-term caloric restriction interventions reduce fasting growth hormone serum levels. The present study indicates that the activity of the growth hormone/IGF-I axis is reduced in long-term calorically restricted formerly obese humans. Furthermore, our findings suggest that the duration and severity of the caloric restriction intervention are important for the outcome on the growth hormone/IGF-I axis in humans.
Hibi, M; Hirano, T
2000-04-01
Gab1 and Gab2 (Grb2 associated binder 1 and 2) are scaffolding adapter molecules that display sequence similarity with Drosophila DOS (daughter of sevenless), which is a potential substrate for the protein tyrosine phosphatase, Corkscrew, Both Gab1 and Gab2, like DOS, have a pleckstrin homology domain and potential binding sites for SH2 and SH3 domains. Gab1 and Gab2 are phosphorylated on tyrosine upon the stimulation of various cytokines, growth factors, and antigen receptors, and interact with signaling molecules, such as Grb2, SHP-2, and PI-3 kinase. Overexpression of Gab1 or Gab2 mimics or enhances growth factor or cytokine-mediated biological processes and activates ERK MAP kinase. These data imply that Gab1 and Gab2 act downstream of a broad range of cytokine and growth factor receptors, as well as T and B antigen receptors, and link these receptors to ERK MAP kinase and biological actions.
Ludwig, Kirsten; Tse, Edison S; Wang, Jean Yj
2013-05-02
The intestinal crypt homeostasis is maintained by a combination of growth factors including Wnt, R-Spondin1, Noggin and the epidermal growth factor (EGF). In human colorectal cancer, the Wnt pathway is constitutively activated through genetic and epigenetic alterations in as many as 11 genes encoding components of this crypt stem-cell maintenance mechanism. Although the proliferation of colon cancer cells does not require Wnt, it is possible that colon cancer cells can still respond to the crypt growth factors in the colonic microenvironment. A number of studies have shown that epithelial cells behave differently in 3-D versus 2-D cultures. Because the 3-D conditions more closely mimic the in vivo environment, we examined the effects of Wnt and other crypt growth factors on colon cancer cell growth in 3-D culture. Colon cancer cells were grown in 3-D matrigel supplemented with different combinations of crypt growth factors and colonies were examined for morphology and pathways. When colon cancer cells were cultured in 3-D with EGF, they grew as round spheroid colonies. However, colon cancer cells also grew as flat, disc-like colonies when cultured with EGF plus Wnt, R-Spondin1 and Noggin. Disc colonies were found to have comparable levels of E-cadherin as the spheroid colonies, but showed decreased E-cadherin at the cell-matrix contact sites. Disc colonies also elaborated F-actin rich protrusions (FRP) at the cell-matrix edge, reminiscent of an invasive phenotype but without the expression of vimentin. These E-cadherin and F-actin alterations were not induced by the four growth factors in 2-D culture. Formation of the disc colonies was inhibited by the knockdown of β-catenin and by protein kinase inhibitors such as gefitinib, imatinib and MK-2206. Furthermore, withdrawal of the crypt growth factors was able to revert the disc colonies to spheroid growth, showing that the invasive phenotype was reversible dependent on the availability of growth factors. These findings show that colon cancer cells remain responsive to the growth factors in the crypt microenvironment and can be induced to undergo morphological transformation in the more physiologically relevant 3-D culture.
Greenall, Sameer A.; Bentley, John D.; Pearce, Lesley A.; Scoble, Judith A.; Sparrow, Lindsay G.; Bartone, Nicola A.; Xiao, Xiaowen; Baxter, Robert C.; Cosgrove, Leah J.; Adams, Timothy E.
2013-01-01
Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling. PMID:23166326
Predictive factors for intrauterine growth restriction
Albu, AR; Anca, AF; Horhoianu, VV; Horhoianu, IA
2014-01-01
Abstract Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies. Abbreviations: SGA = small for gestational age; IUGR = intrauterine growth restriction; FGR = fetal growth restriction; IUFD = intrauterine fetal demise; HIV = human immunodeficiency virus; PAPP-A = pregnancy associated plasmatic protein A; β-hCG = beta human chorionic gonadotropin; MoM = multiple of median; ADAM-12 = A-disintegrin and metalloprotease 12; PP-13 = placental protein 13; VEGF = vascular endothelial growth factor; PlGF = placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; UAD = uterine arteries Doppler ultrasound; RI = resistence index; PI = pulsatility index; VOCAL = Virtual Organ Computer–Aided Analysis software; VI = vascularization index; FI = flow index; VFI = vascularization flow index; PQ = placental quotient PMID:25408721
IGF-1 and BDNF promote chick bulbospinal neurite outgrowth in vitro.
Salie, Rishard; Steeves, John D
2005-11-01
Injured neurons in the CNS do not experience significant functional regeneration and so spinal cord insult often results in permanently compromised locomotor ability. The capability of a severed axon to re-grow is thought to depend on numerous factors, one of which is the decreased availability of neurotrophic factors. Application of trophic factors to axotomized neurons has been shown to enhance survival and neurite outgrowth. Although brainstem-spinal connections play a pivotal role in motor dysfunction after spinal cord injury, relatively little is known about the trophic sensitivity of these populations. This study explores the response of bulbospinal populations to various trophic factors. Several growth factors were initially examined for potential trophic effects on the projection neurons of the brainstem. Brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) significantly enhance mean process length in both the vestibulospinal neurons and spinal projection neurons from the raphe nuclei. Nerve growth factor (NGF), neurotrophin-4 (NT-4) and glial derived neurotrophic factor (GDNF) did not effect process outgrowth in vestibulospinal neurons. At the developmental stages used in this study, it was determined that receptors for BDNF and IGF-1 were present both on bulbospinal neurons and on surrounding cells with a non-neuronal morphology.
Melis, Daniela; Pivonello, Rosario; Parenti, Giancarlo; Della Casa, Roberto; Salerno, Mariacarolina; Balivo, Francesca; Piccolo, Pasquale; Di Somma, Carolina; Colao, Annamaria; Andria, Generoso
2010-04-01
To investigate the growth hormone (GH)-insulin-like growth factor (IGF) system in patients with glycogen storage disease type 1 (GSD1). This was a prospective, case-control study. Ten patients with GSD1a and 7 patients with GSD1b who were given dietary treatment and 34 sex-, age-, body mass index-, and pubertal stage-matched control subjects entered the study. Auxological parameters were correlated with circulating GH, either at basal or after growth hormone releasing hormone plus arginine test, insulin-like growth factors (IGF-I and IGF-II), and anti-pituitary antibodies (APA). Short stature was detected in 10.0% of patients with GSD1a, 42.9% of patients with GSD1b (P = .02), and none of the control subjects. Serum IGF-I levels were lower in patients with GSD1b (P = .0001). An impaired GH secretion was found in 40% of patients with GSD1a (P = .008), 57.1% of patients with GSD1b (P = .006), and none of the control subjects. Short stature was demonstrated in 3 of 4 patients with GSD1b and GH deficiency. The prevalence of APA was significantly higher in patients with GSD1b than in patients with GSD1a (P = .02) and control subjects (P = .03). The GH response to the provocative test inversely correlated with the presence of APA (P = .003). Compared with levels in control subjects, serum IGF-II and insulin levels were higher in both groups of patients, in whom IGF-II levels directly correlated with height SD scores (P = .003). Patients with GSD1a have an impaired GH secretion associated with reference range serum IGF-I levels and normal stature, whereas in patients with GSD1b, the impaired GH secretion, probably because of the presence of APA, was associated with reduced IGF-I levels and increased prevalence of short stature. The increased IGF-II levels, probably caused by increased insulin levels, in patients with GSD1 are presumably responsible for the improved growth pattern observed in patients receiving strict dietary treatment. Copyright 2010 Mosby, Inc. All rights reserved.
Sitar, Tomasz; Popowicz, Grzegorz M.; Siwanowicz, Igor; Huber, Robert; Holak, Tad A.
2006-01-01
Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a “hybrid” ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1–38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1. PMID:16924115
Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition
ERIC Educational Resources Information Center
Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.
2012-01-01
The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…
Obesity and Cancer Metabolism: A Perspective on Interacting Tumor-Intrinsic and Extrinsic Factors.
Doerstling, Steven S; O'Flanagan, Ciara H; Hursting, Stephen D
2017-01-01
Obesity is associated with increased risk and poor prognosis of many types of cancers. Several obesity-related host factors involved in systemic metabolism can influence tumor initiation, progression, and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. Such host factors include systemic metabolic regulators including insulin, insulin-like growth factor 1, adipokines, inflammation-related molecules, and steroid hormones, as well as the cellular and structural components of the tumor microenvironment, particularly adipose tissue. These secreted and structural host factors are extrinsic to, and interact with, the intrinsic metabolic characteristics of cancer cells to influence their growth and spread. This review will focus on the interplay of these tumor cell-intrinsic and extrinsic factors in the context of energy balance, with the objective of identifying new intervention targets for preventing obesity-associated cancer.
He, Xiaolin; Chao, Yuan; Zhou, Guangxian; Chen, Yulin
2016-01-10
To determine the relationship between fibroblast growth factor 5 (FGF5) and FGF5-short (FGF5s) in dermal papilla cells of cashmere goat primary and secondary hair follicles. We isolated dermal papilla cells from primary hair follicle (PHF) and secondary hair follicle (SHF) of cashmere goat, and found that the FGF5 receptor, fibroblast growth factor receptor 1 (FGFR1), was expressed in these two types of dermal papilla cells. Moreover, adenovirus-mediated overexpression of FGF5 could upregulate the mRNA expression of insulin-like growth factor-1 (IGF-1), versican and noggin that were important for follicle growth maintenance, whereas downregulate the expression of anagen chalone bone morphogenetic protein 4 (BMP4) in dermal papilla cells. However, these alterations were partly reversed by FGF5s overexpression. In conclusion, our results demonstrated that FGF5s acted as an inhibitor of FGF5 in the regulation of anagen-catagen transition of cashmere goat dermal papilla cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya
2015-01-01
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13+CD133+ cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13+CD133+ cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation. PMID:25808356
Tsuruya, Kota; Chikada, Hiromi; Ida, Kinuyo; Anzai, Kazuya; Kagawa, Tatehiro; Inagaki, Yutaka; Mine, Tetsuya; Kamiya, Akihide
2015-07-15
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.
Effects of Lycopersicon esculentum extract on hair growth and alopecia prevention.
Choi, Jae-Suk; Jung, Sung Kyu; Jeon, Min-Hee; Moon, Jin-Nam; Moon, Woi-Sook; Ji, Yi-Hwa; Choi, In Soon; Wook Son, Sang
2013-01-01
To evaluate the potential hair growth-promoting activity and the expression of cell growth factors of Lycopersicon esculentum extracts, each 3% (w/w) of ethyl acetate extract (EAE), and supercritical CO2 extract (SCE) of L. esculentum and isolated lycopene Tween 80 solution (LTS) and test hair tonic (THT) containing LTS were applied on the dorsal skin of C57BL/6 mice, once a day for 4 weeks. At week 4, LTS and THT exhibited hair growth-promoting potential similar to that of 3% minoxidil as a positive control (PC). Further, in the LTS group, a significant increase of mRNA expression of vascular endothelial growth factor (VEGF), keratinocyte growth factor, and insulin-like growth factor-1 (IGF-1) was observed than PC, as well as the negative control (NC). In the THT group, increases in IGF-1 and decrease in VEGF and transforming growth factor-β expression were significant over the NC. In a histological examination in the THT group, the induction of anagen stage of hair follicles was faster than that of NC. In the Draize skin irritation study for THT, no observable edema or erythema was observed on all four sectors in the back skin after exposure for 24 or 72 h for any rabbit. Therefore, this study provides reasonable evidence that L. esculentum extracts promote hair growth and suggests that applications could be found in hair loss treatments without skin irritation at moderate doses.
PLACENTAL GROWTH FACTOR ADMINISTRATION ABOLISHES PLACENTAL ISCHEMIA-INDUCED HYPERTENSION
Spradley, Frank T.; Tan, Adelene Y.; Joo, Woo S.; Daniels, Garrett; Kussie, Paul; Karumanchi, S. Ananth; Granger, Joey P.
2016-01-01
Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia as placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and VEGF are both natural ligands for sFlt-1, VEGF also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to four groups: normal pregnant (NP) or RUPP ± infusion of rhPlGF (180 μg/kg/day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than NP rats. Infusion of rhPlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that rhPlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193
Jepsen, Malene R.; Kløverpris, Søren; Mikkelsen, Jakob H.; Pedersen, Josefine H.; Füchtbauer, Ernst-Martin; Laursen, Lisbeth S.; Oxvig, Claus
2015-01-01
Mammalian stanniocalcin-2 (STC2) is a secreted polypeptide widely expressed in developing and adult tissues. However, although transgenic expression in mice is known to cause severe dwarfism, and targeted deletion of STC2 causes increased postnatal growth, its precise biological role is still unknown. We found that STC2 potently inhibits the proteolytic activity of the growth-promoting metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A). Proteolytic inhibition requires covalent binding of STC2 to PAPP-A and is mediated by a disulfide bond, which involves Cys-120 of STC2. Binding of STC2 prevents PAPP-A cleavage of insulin-like growth factor-binding protein (IGFBP)-4 and hence release within tissues of bioactive IGF, required for normal growth. Concordantly, we show that STC2 efficiently inhibits PAPP-A-mediated IGF receptor signaling in vitro and that transgenic mice expressing a mutated variant of STC2, STC2(C120A), which is unable to inhibit PAPP-A, grow like wild-type mice. Our work identifies STC2 as a novel proteinase inhibitor and a previously unrecognized extracellular component of the IGF system. PMID:25533459
Growth hormone regulation of follicular growth.
Lucy, Matthew C
2011-01-01
The somatotropic axis-consisting of growth hormone (GH), the insulin-like growth factors 1 and 2 (IGF1 and IGF2), GH binding protein (GHBP), IGF binding proteins (IGFBPs) 1 to 6, and the cell-surface receptors for GH and the IGFs-has major effects on growth, lactation and reproduction. The primary target tissues for GH are involved in growth and metabolism. The functionality of the somatotropic axis depends in part on the expression of liver GH receptor (GHR), which determines the amount of IGF1 released from the liver in response to GH. The IGF1 acts as a pleiotropic growth factor and also serves as the endocrine negative feedback signal controlling pituitary GH secretion. Growth hormone and IGF1 undergo dynamic changes throughout the life cycle, particularly when animals are either growing, early post partum or lactating. Cells within the reproductive tract can respond directly to GH but to a lesser degree than the primary target tissues. The major impact that GH has on reproduction, therefore, may be secondary to its systemic effects on metabolism (including insulin sensitivity) or secondary to the capacity for GH to control IGF1 secretion. Insulin-like growth factor 1 and IGFBP are also synthesised within the ovary and this local synthesis is a component of the collective IGF1 action on the follicle. Future studies of GH should focus on its direct effects on the follicle as well as its indirect effects mediated by shifts in nutrient metabolism, insulin sensitivity, IGF1 and IGFBP.
Uetani, Teruyoshi; Nakayama, Hironao; Okayama, Hideki; Okura, Takafumi; Higaki, Jitsuo; Inoue, Hirofumi; Higashiyama, Shigeki
2009-05-01
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a cardiogenic and cardiohypertrophic growth factor. ProHB-EGF, a product of the Hb-egf gene and the precursor of HB-EGF, is anchored to the plasma membrane. Its ectodomain region is shed by a disintegrin and metalloproteases (ADAMs) when activated by various stimulations. It has been reported that an uncleavable mutant of Hb-egf, uc-Hb-egf, produces uc-proHB-EGF, which is not cleaved by ADAMs and causes dilation of the heart in knock-in mice. This suggests that the shedding of proHB-EGF is essential for the development and survival of cardiomyocytes: however, the molecular mechanism involved has remained unclear. In this study, we investigated the relationship between uc-proHB-EGF expression and cardiomyocyte survival. Human uc-proHB-EGF was adenovirally introduced into the rat cardiomyoblast cell line H9c2, and the cells were cultured under normoxic and hypoxic conditions. Uc-proHB-EGF-expressing H9c2 cells underwent apoptosis under normoxic conditions, which distinctly increased under hypoxic conditions. Furthermore, we observed an increased Caspase-3 activity, reactive oxygen species accumulation, and an increased c-Jun N-terminal kinase (JNK) activity in the uc-proHB-EGF-expressing H9c2 cells. Treatment of the uc-proHB-EGF transfectants with inhibitors of Caspase-3, reactive oxygen species, and JNK, namely, Z-VAD-fmk, N-acetylcysteine, and SP600125, respectively, significantly reduced hypoxic cell death. These data indicate that insufficiency of proHB-EGF shedding under hypoxic stress leads to cardiomyocyte apoptosis via Caspase-3- and JNK-dependent pathways.
Laker, R C; Wadley, G D; McConell, G K; Wlodek, M E
2012-02-01
Foetal growth restriction impairs skeletal muscle development and adult muscle mitochondrial biogenesis. We hypothesized that key genes involved in muscle development and mitochondrial biogenesis would be altered following uteroplacental insufficiency in rat pups, and improving postnatal nutrition by cross-fostering would ameliorate these deficits. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed on day 18 of gestation. Males and females were investigated at day 20 of gestation (E20), 1 (PN1), 7 (PN7) and 35 (PN35) days postnatally. A separate cohort of Control and Restricted pups were cross-fostered onto a different Control or Restricted mother and examined at PN7. In both sexes, peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), cytochrome c oxidase subunits 3 and 4 (COX III and IV) and myogenic regulatory factor 4 expression increased from late gestation to postnatal life, whereas mitochondrial transcription factor A, myogenic differentiation 1 (MyoD), myogenin and insulin-like growth factor I (IGF-I) decreased. Foetal growth restriction increased MyoD mRNA in females at PN7, whereas in males IGF-I mRNA was higher at E20 and PN1. Cross-fostering Restricted pups onto a Control mother significantly increased COX III mRNA in males and COX IV mRNA in both sexes above controls with little effect on other genes. Developmental age appears to be a major factor regulating skeletal muscle mitochondrial and developmental genes, with growth restriction and cross-fostering having only subtle effects. It therefore appears that reductions in adult mitochondrial biogenesis markers likely develop after weaning.
Gredes, Tomasz; Kunert-Keil, Christiane; Dominiak, Marzena; Gedrange, Tomasz; Wróbel-Kwiatkowska, Magdalena; Szopa, Jan
2010-12-01
In many studies, natural flax fibers have been proven to be resistant and surgically suitable. Genetically modified flax fibers, derived from transgenic flax expressing three bacterial genes for the synthesis of poly-3-hydroxybutyric acid (PHB), have better mechanical properties than unmodified flax fibers. The aim of this study was to examine the biocompatibility of composites containing flax fibers from transgenic polyhydroxybutyrate producing (M50) and control (wt-NIKE) plants in a polylactide (PLA) matrix in rat Musculus latissimus dorsi. For this purpose, effects of biocomposites on the expression of growth factors and osteogenic differentiation, in particular the mRNA expression of vascular endothelial growth factor, insulin like growth factor 1, insulin like growth factor 2, collagen-1, collagen-2 and myostatin, were analyzed using quantitative RT-PCR. The biocomposites did not show any inflammation response after subcutaneous insertion. The results following subcutaneous insertion of PLA alone and PLA-M50 showed no significant changes on the gene expression of all tested genes, whereas PLA-wt-NIKE reduced the mRNA amount of myostatin, VEGFA and IGF2, respectively. It can be asserted that modified flax membranes with PHB and other organic substances have a good biocompatibility to the muscle and they do not disrupt the muscle function. Furthermore, composites from transgenic flax plants producing PHB did not differ from composites of non-transgenic flax plants.
Singal, Sahil S; Nygard, Karen; Gratton, Robert; Jansson, Thomas; Gupta, Madhulika B
2018-05-01
Intrauterine growth restriction (IUGR) is often caused by placental insufficiency, which is believed to be associated with decreased delivery of oxygen and nutrients to the placental barrier. We recently reported that hypoxia and/or leucine deprivation triggered hyperphosphorylation of insulin-like growth factor binding protein-1 (IGFBP-1) in decidualized human immortalized endometrial stromal cells (HIESCs), resulting in decreased insulin-like growth factor-1 (IGF-1) bioactivity. To test the hypothesis that human IUGR is associated with increased decidual IGFBP-1 phosphorylation at discrete sites, we used IUGR and gestational age matched appropriate for gestational age (AGA) placentas ( n=5 each). We performed dual immunofluorescence immunohistochemistry (IHC) using IGFBP-1 and vimentin as decidual and mesenchymal markers, respectively. Employing a unique strategy with imaging software, we extracted signal intensity of IGFBP-1 expressed specifically from truly decidualized cells of the placenta. Relative IGFBP-1 was increased (85%; p=0.0001) and using custom phospho-site-specific antibodies, we found that IGFBP-1 phosphorylation (pSer101; +40%, p=0.0677/pSer119; +60%, p=0.0064/pSer169; +100%, p=0.0021) was markedly enhanced in IUGR. Together, our data links for the first time, increased decidual IGFBP-1 phosphorylation at discrete sites with human IUGR. These novel findings suggest that hyperphosphorylation of IGFBP-1 in decidualized stromal mesenchymal decidua basalis contributes to potentially elevated levels of phosphorylated IGFBP-1 in maternal circulation in IUGR pregnancies.
Ahrens, Jamie M; Jones, James D; Nieves, Nirca J; Mitzey, Ann M; DeLuca, Hector F; Clagett-Dame, Margaret
2017-01-01
While all 2-methylene-19-nor analogs of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) tested produce an increase in epidermal thickness in the rhino mouse, only a subset reduce utricle size (comedolysis). All-trans retinoic acid (atRA) also causes epidermal thickening and a reduction in utricle size in the rhino mouse. We now report that 2-methylene-19-nor-(20S)-1α-hydroxybishomopregnacalciferol (2MbisP), a comedolytic analog, increases epidermal thickening more rapidly than does atRA, while both reduce utricle area at an equal rate. Whereas unlike atRA, 2MbisP does not alter the epidermal growth factor receptor ligand, heparin-binding epidermal growth factor-like growth factor, it does increase the expression of both amphiregulin and epigen mRNA, even after a single dose. In situ hybridization reveals an increase in these transcripts throughout the closing utricle as well as in the interfollicular epidermis. The mRNAs for other EGFR ligands including betacellulin and transforming growth factor-α, as well as the epidermal growth factor receptor are largely unaffected by 2MbisP. Another analog, 2-methylene-19-nor-(20S)-26,27-dimethylene-1α,25-dihydroxyvitamin D3 (CAGE-3), produces epidermal thickening but fails to reduce utricle size or increase AREG mRNA levels. CAGE-3 modestly increases epigen mRNA levels, but only after 5 days of dosing. Thus, 2-MbisP produces unique changes in epidermal growth factor receptor ligand mRNAs that may be responsible for both epidermal proliferation and a reduction in utricle size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuratomi, Y.; Ono, M.; Yasutake, C.
1987-01-01
A mutant clone (MO-5) was originally isolated as a clone resistant to Na/sup +//K/sup +/ ionophoric antibiotic monensin from mouse Balb/c3T3 cells. MO-5 was found to show low receptor-endocytosis activity for epidermal growth factor (EGF):binding activity for EGF in MO-5 was less than one tenth of that in Balb/c3T3. Anchorage-independent growth of MO-5 was compared to that of Balb/c3T3 when assayed by colony formation capacity in soft agar. Coadministration of EGF and TGF-..beta.. efficiently enhanced anchorage-independent growth of normal rat kidney (NRK) cells, but neither factor alone was competent to promote the anchorage-independent growth. The frequency of colonies appearing inmore » soft agar of MO-5 or Balb/c3T3 was significantly enhanced by TGF-..beta.. while EGF did not further enhance that of MO-5 or Balb/c3T3. Colonies of Balb/c3T3 formed in soft agar in the presence of TGF-..beta.. showed low colony formation capacity in soft agar in the absence of TGF-..beta... Colonies of MO-5 formed by TGF-..beta.. in soft agar, however, showed high colony formation capacity in soft agar in the absence of TGF-..beta... Pretreatment of MO-5 with TGF-..beta.. induced secretion of TGF-..beta..-like activity from the cells, while the treatment of Balb/c3T3 did not induce the secretion of a significant amount of TGF-..beta..-like activity. The loss of EGF-receptor activity in the stable expression and maintenance of the transformed phenotype in MO-5 is discussed.« less
Huang, Yong-Zhen; Zhan, Zhao-Yang; Sun, Yu-Jia; Wang, Jing; Li, Ming-Xun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Chen, Hong
2013-06-01
Muscle growth is a complex phenomenon regulated by many factors, whereby net growth results from the combined action of synthesis and turnover. Insulin-like growth factor 2 (IGF2) is a fetal growth and differentiation factor that plays an important role in muscle growth and in myoblast proliferation and differentiation; Zinc finger, BED-type containing 6 (ZBED6) is a novel transcription factor that was identified and shown to act as a repressor of IGF2 transcription in skeletal muscle. In this study, a total of seven single nucleotide polymorphisms (SNPs) were identified, four SNPs in intron 8 of IGF2 and one promoter SNP and two missense mutations in the coding region of ZBED6, two of which were in complete linkage disequilibrium (LD) in the bovine IGF2. The 58 haplotypes were inferred in 1522 individuals representing four purebred cattle breeds from China. The seven SNPs, 79 and 66 combined diplotypes were revealed for association with body mass in Nanyang and Jiaxian cattle populations at five different ages (P < 0.05 or 0.01). The mutant-type variants and haplotype 58 (likely in LD with the beneficial quantitative trait nucleotide allele) was superior for body mass; the heterozygote diplotype of the most common haplotypes 58 was associated with higher body mass compared to either heterozygote or homozygote. The statistical analyses indicated that the mutant-type variants and haplotypes are significantly associated with body mass in study cattle populations at different ages. These data demonstrate that variants and haplotypes are associated with growth traits, and these results may provide important biological insights into the phenotypic differentiation that is associated with adaptation and specialization of cattle breeds.
Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.
2014-01-01
In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523
Bale, Laurie K; Conover, Cheryl A
2005-08-01
Pregnancy-associated plasma protein-A (PAPP-A), an insulin-like growth factor-binding protein (IGFBP) protease, increases insulin-like growth factor (IGF) activity through cleavage of inhibitory IGFBP-4 and the consequent release of IGF peptide for receptor activation. Mice homozygous for targeted disruption of the PAPP-A gene are born as proportional dwarfs and exhibit retarded bone ossification during fetal development. Phenotype and in vitro data support a model in which decreased IGF-II bioavailability during embryogenesis results in growth retardation and reduction in overall body size. To test the hypothesis that an increase in IGF-II during embryogenesis would overcome the growth deficiencies, PAPP-A-null mice were crossed with DeltaH19 mutant mice, which have increased IGF-II expression and fetal overgrowth due to disruption of IgfII imprinting. DeltaH19 mutant mice were 126% and PAPP-A-null mice were 74% the size of controls at birth. These size differences were evident at embryonic day 16.5. Importantly, double mutants were indistinguishable from controls both in terms of size and skeletal development. Body size programmed during embryo development persisted post-natally. Thus, disruption of IgfII imprinting and consequent elevation in IGF-II during fetal development was associated with rescue of the dwarf phenotype and ossification defects of PAPP-A-null mice. These data provide strong genetic evidence that PAPP-A plays an essential role in determining IGF-II bioavailability for optimal fetal growth and development.
Wu, San-Gang; Li, Hui; Tang, Li-Ying; Sun, Jia-Yuan; Zhang, Wen-Wen; Li, Feng-Yan; Chen, Yong-Xiong; He, Zhen-Yu
2017-06-01
To investigate the effect of distant metastases sites on survival in patients with de novo stage-IV breast cancer. From 2010 to 2013, patients with a diagnosis of de novo stage-IV breast cancer were identified using the Surveillance, Epidemiology, and End Results database. Univariate and multivariate Cox regression analyses were performed to analyze the effect of distant metastases sites on breast cancer-specific survival and overall survival. A total of 7575 patients were identified. The most common metastatic sites were bone, followed by lung, liver, and brain. Patients with hormone receptor+/human epidermal growth factor receptor 2- and hormone receptor+/human epidermal growth factor receptor 2+ status were more prone to bone metastases. Lung and brain metastases were common in hormone receptor-/human epidermal growth factor receptor 2+ and hormone receptor-/human epidermal growth factor receptor 2- subtypes, and patients with hormone receptor+/ human epidermal growth factor receptor 2+ and hormone receptor-/human epidermal growth factor receptor 2+ subtypes were more prone to liver metastases. Patients with liver and brain metastases had unfavorable prognosis for breast cancer-specific survival and overall survival, whereas bone and lung metastases had no effect on patient survival in multivariate analyses. The hormone receptor-/human epidermal growth factor receptor 2- subtype conferred a significantly poorer outcome in terms of breast cancer-specific survival and overall survival. hormone receptor+/human epidermal growth factor receptor 2+ disease was associated with the best prognosis in terms of breast cancer-specific survival and overall survival. Patients with liver and brain metastases were more likely to experience poor prognosis for breast cancer-specific survival and overall survival by various breast cancer subtypes. Distant metastases sites have differential impact on clinical outcomes in stage-IV breast cancer. Follow-up screening for brain and liver metastases might be effective in improving breast cancer-specific survival and overall survival.
Low-Intensity Vibration Improves Angiogenesis and Wound Healing in Diabetic Mice
Weinheimer-Haus, Eileen M.; Judex, Stefan; Ennis, William J.; Koh, Timothy J.
2014-01-01
Chronic wounds represent a significant health problem, especially in diabetic patients. In the current study, we investigated a novel therapeutic approach to wound healing – whole body low-intensity vibration (LIV). LIV is anabolic for bone, by stimulating the release of growth factors, and modulating stem cell proliferation and differentiation. We hypothesized that LIV improves the delayed wound healing in diabetic mice by promoting a pro-healing wound environment. Diabetic db/db mice received excisional cutaneous wounds and were subjected to LIV (0.4 g at 45 Hz) for 30 min/d or a non-vibrated sham treatment (controls). Wound tissue was collected at 7 and 15 d post-wounding and wound healing, angiogenesis, growth factor levels and wound cell phenotypes were assessed. LIV increased angiogenesis and granulation tissue formation at day 7, and accelerated wound closure and re-epithelialization over days 7 and 15. LIV also reduced neutrophil accumulation and increased macrophage accumulation. In addition, LIV increased expression of pro-healing growth factors and chemokines (insulin-like growth factor-1, vascular endothelial growth factor and monocyte chemotactic protein-1) in wounds. Despite no evidence of a change in the phenotype of CD11b+ macrophages in wounds, LIV resulted in trends towards a less inflammatory phenotype in the CD11b− cells. Our findings indicate that LIV may exert beneficial effects on wound healing by enhancing angiogenesis and granulation tissue formation, and these changes are associated with increases in pro-angiogenic growth factors. PMID:24618702
Parker, E; Newby, L J; Sharpe, C C; Rossetti, S; Streets, A J; Harris, P C; O'Hare, M J; Ong, A C M
2007-07-01
Autosomal dominant polycystic kidney disease (ADPKD) largely results from mutations in the PKD1 gene leading to hyperproliferation of renal tubular epithelial cells and consequent cyst formation. Rodent models of PKD suggest that the multifunctional hormone insulin-like growth factor-1 (IGF-1) could play a pathogenic role in renal cyst formation. In order to test this possibility, conditionally immortalized renal epithelial cells were prepared from normal individuals and from ADPKD patients with known germline mutations in PKD1. All patient cell lines had a decreased or absence of polycystin-1 but not polycystin-2. These cells had an increased sensitivity to IGF-1 and to cyclic AMP, which required phosphatidylinositol-3 (PI3)-kinase and the mitogen-activated protein kinase, extracellular signal-regulated protein kinase (ERK) for enhanced growth. Inhibition of Ras or Raf abolished the stimulated cell proliferation. Our results suggest that haploinsufficiency of polycystin-1 lowers the activation threshold of the Ras/Raf signalling system leading to growth factor-induced hyperproliferation. Inhibition of Ras or Raf activity may be a therapeutic option for decreasing tubular cell proliferation in ADPKD.
Ruttenstock, Elke; Doi, Takashi; Dingemann, Jens; Puri, Prem
2011-04-01
Pulmonary hypoplasia (PH) is the main cause of mortality in newborns with congenital diaphragmatic hernia (CDH). Prenatal administration of retinoic acid (RA) stimulates alveologenesis in the nitrofen-induced pulmonary hypoplasia. Insulin-like growth factor receptors (IGFRs) play a crucial role in alveologenesis during lung development. We recently demonstrated that IGFRs were downregulated in later stages of lung development in the nitrofen CDH model. Several studies suggest the ability of RA to regulate insulin-like growth factor signaling. We hypothesized that IGFRs pulmonary gene expression is upregulated after the administration of RA in the nitrofen-induced CDH model. Pregnant rats were exposed to either olive oil or nitrofen on day 9 (D9) of gestation. RA was given intraperitoneally on days D18, D19, and D20. Fetal lungs were dissected on D21 and divided into control, control + RA, CDH, and CDH + RA group. IGFRs gene and protein expression were determined using RT-PCR and immunohistochemistry. mRNA expression levels of IGFRs were significantly increased in control + RA and CDH + RA compared with CDH group. Immunoreactivity of IGFRs was markedly increased in control + RA and CDH + RA compared with CDH lungs. Upregulation of pulmonary gene and protein expression of IGFRs after prenatal RA treatment in the nitrofen model suggests that RA may promote lung growth by stimulating IGFRs mediated alveologenesis. © 2011 Wiley-Liss, Inc.
Ruan, W; Powell-Braxton, L; Kopchick, J J; Kleinberg, D L
1999-05-01
Insulin-like growth factor I (IGF-I) has been implicated as a factor that may predispose one to prostate cancer. However, no specific relationship between IGF-I and prostate development or cancer in vivo has been established. To determine whether IGF-I was important in prostate development, we examined prostate architecture in IGF-I(-/-) null mice and wild-type littermates. Glands from 44-day-old IGF-I-deficient animals were not only smaller than those from wild-type mice, but also had fewer terminal duct tips and branch points and deficits in tertiary and quaternary branching (P < 0.0001), indicating a specific impairment in gland structure. Administration of des(1-3)-IGF-I for 7 days partially reversed the deficit by increasing those parameters of prostate development (P < 0.006). That IGF-I production probably mediates an effect of GH in this process was indicated by the observations that GH antagonist transgenic mice also had significantly impaired prostate development (P < 0.0002) and that bovine GH had no independent effect on stimulating prostate development in IGF-I null animals. The data indicate that IGF-I deficiency is the proximate cause of impaired prostate development and give credence to the idea that, like testosterone, GH and IGF-I may be involved in prostate cancer growth as an extension of a normal process.
IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice
USDA-ARS?s Scientific Manuscript database
Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue...
Retinopathy of prematurity - from recognition of risk factors to treatment recommendations.
Fagerholm, Reija; Vesti, Eija
Retinopathy of prematurity is a proliferative retinal disorder diagnosed exclusively in prematurely born infants. In retinopathy of prematurity, growth of the retinal vasculature is disturbed, leading to hypoxia-induced pathological changes typical of retinopathy of prematurity, in the worst case resulting in retinal detachment. The most typical risk factors predisposing to the disease include hyperoxemia, low levels of insulin-like growth factor 1 (IGF-I), and low birth weight in relation to weeks of pregnancy. Laser therapy of peripheral retina is the currently established form of treatment. Screening is applied in order to recognize the pathological changes in retinopathy of prematurity early enough.
Further Clinical Evidence for the Effect of IGF-1 on Hair Growth and Alopecia.
Trüeb, Ralph M
2018-04-01
Observations on the Laron syndrome originally offered the opportunity to explore the effect of insulin-like growth factor 1 (IGF-1) deficiency on human hair growth and differentiation. According to its expression in the dermal hair papilla, IGF-1 is likely involved in reciprocal signaling. It has been shown to affect follicular proliferation, tissue remodeling, and the hair growth cycle, as well as follicular differentiation, identifying IGF-1 signaling as an important mitogenic and morphogenetic regulator in hair follicle biology. Of all the cytokines or growth factors that have been postulated to play a role in hair follicles, ultimately IGF-1 is known to be regulated by androgens. Accordingly, dermal papillary cells from balding scalp follicles were found to secrete significantly less IGF-1 than their counterparts from nonbalding scalp follicles. Herein, hypotrichosis in primary growth hormone deficiency, and a lack of response of female and male androgenetic-type alopecia to treatment with topical minoxidil and oral finasteride in patients who had undergone surgical resection of the pituitary gland, provide further evidence for an effect of IGF-1 on hair growth and alopecia.
NASA Astrophysics Data System (ADS)
Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.
2013-02-01
It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.
Kim, Na Na; Choi, Young-Ung; Park, Heung-Sik; Choi, Cheol Young
2015-01-01
This study aimed to test the effects of kisspeptin (Kiss) on somatic growth in the cinnamon clownfish Amphiprion melanopus. We investigated the effects of Kiss treatment on the growth by measuring the mRNA expressions of the growth hormone (GH), insulin-like growth hormone factor (IGF-I), somatolactin (SL), and melatonin receptor (MT). The expression levels of GH and SL of the pituitary gland and IGF-I of the liver increased after Kiss treatment (in vivo and in vitro). In addition, the MT mRNA expression increased in the pituitary gland and brain after Kiss treatment (in vivo and in vitro). These results support the hypothesis that Kiss directly regulates the somatic growth-related factors, such as GH, SL, and MT, and IGF-I in the cinnamon clownfish. Further, injection of Kiss resulted in significantly higher levels of plasma melatonin than that in the control. We, therefore, conclude that Kiss plays a role in modulating growth and artificially induced rapid growth in cinnamon clownfish. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayne, M.L.; Cascieri, M.A.; Kelder, B.
1987-05-01
A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less
Okamoto, Naoki; Yamanaka, Naoki; Satake, Honoo; Saegusa, Hironao; Kataoka, Hiroshi; Mizoguchi, Akira
2009-03-01
Insulin-like growth factors (IGFs) play essential roles in fetal and postnatal growth and development of mammals. They are secreted by a wide variety of tissues, with the liver being the major source of circulating IGFs, and regulate cell growth, differentiation and survival. IGFs share some biological activities with insulin but are secreted in distinct physiological and developmental contexts, having specific functions. Although recent analyses of invertebrate genomes have revealed the presence of multiple insulin family peptide genes in each genome, little is known about functional diversification of the gene products. Here we show that a novel insulin family peptide of the silkmoth Bombyx mori, which was purified and sequenced from the hemolymph, is more like IGFs than like insulin, in contrast to bombyxins, which are previously identified insulin-like peptides in B. mori. Expression analysis reveals that this IGF-like peptide is predominantly produced by the fat body, a functional equivalent of the vertebrate liver and adipocytes, and is massively released during pupa-adult development. Studies using in vitro tissue culture systems show that secretion of the peptide is stimulated by ecdysteroid and that the secreted peptide promotes the growth of adult-specific tissues. These observations suggest that this peptide is a Bombyx counterpart of vertebrate IGFs and that functionally IGF-like peptides may be more ubiquitous in the animal kingdom than previously thought. Our results also suggest that the known effects of ecdysteroid on insect adult development may be in part mediated by IGF-like peptides.
Buchdunger, E; Zimmermann, J; Mett, H; Meyer, T; Müller, M; Regenass, U; Lydon, N B
1995-01-01
The platelet-derived growth factor (PDGF) receptor is a member of the transmembrane growth factor receptor protein family with intrinsic protein-tyrosine kinase activity. We describe a potent protein-tyrosine kinase inhibitor (CGP 53716) that shows selectivity for the PDGF receptor in vitro and in the cell. The compound shows selectivity for inhibition of PDGF-mediated events such as PDGF receptor autophosphorylation, cellular tyrosine phosphorylation, and c-fos mRNA induction in response to PDGF stimulation of intact cells. In contrast, ligand-induced autophosphorylation of the epidermal growth factor (EGF) receptor, insulin receptor, and the insulin-like growth factor I receptor, as well as c-fos mRNA expression induced by EGF, fibroblast growth factor, and phorbol ester, was insensitive to inhibition by CGP 53716. In antiproliferative assays, the compound was approximately 30-fold more potent in inhibiting PDGF-mediated growth of v-sis-transformed BALB/c 3T3 cells relative to inhibition of EGF-dependent BALB/Mk cells, interleukin-3-dependent FDC-P1 cells, and the T24 bladder carcinoma line. When tested in vivo using highly tumorigenic v-sis- and human c-sis-transformed BALB/c 3T3 cells, CGP 53716 showed antitumor activity at well-tolerated doses. In contrast, CGP 53716 did not show antitumor activity against xenografts of the A431 tumor, which overexpresses the EGF receptor. These findings suggest that CGP 53716 may have therapeutic potential for the treatment of diseases involving abnormal cellular proliferation induced by PDGF receptor activation. Images Fig. 1 Fig. 2 Fig. 3 PMID:7708684
Kim, Joong-Hyun; Oh, Se Heang; Min, Hyun Ki; Lee, Jin Ho
2018-01-01
Insufficient repair of the bone-to-tendon interface (BTI) with structural/compositional gradients has been a significant challenge in orthopedics. In this study, dual growth factor (platelet-derived growth factor-BB [PDGF-BB] and bone morphogenetic protein-2 [BMP-2])-immobilized polycaprolactone (PCL)/Pluronic F127 asymmetrically porous membrane was fabricated to estimate its feasibility as a potential strategy for effective regeneration of BTI injury. The growth factors immobilized (via heparin-intermediated interactions) on the membrane were continuously released for up to ∼80% of the initial loading amount after 5 weeks without a significant initial burst. From the in vivo animal study using a rat patellar tendon avulsion model, it was observed that the PDGF-BB/BMP-2-immobilized membrane accelerates the regeneration of the BTI injury, probably because of the continuous release of both growth factors (biological stimuli) and their complementary effect to create a multiphasic structure (bone, fibrocartilage, and tendon) like a native structure, as well as the role of the asymmetrically porous membrane as a physical barrier (nanopore side; prevention of fibrous tissue invasion into the defect site) and scaffold (micropore side; guidance for tissue regeneration). © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 115-125, 2018. © 2017 Wiley Periodicals, Inc.
Martínez, Constanza E; González, Sergio A; Palma, Verónica; Smith, Patricio C
2016-02-01
Plasma-derived fractions have been used as an autologous source of growth factors; however, limited knowledge concerning their biologic effects has hampered their clinical application. In this study, the authors analyze the content and specific effect of both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on osteoblastic differentiation using primary cultures of human periodontal ligament stem cells (HPLSCs). The authors evaluated the growth factor content of PRP and PPP using a proteome profiler array and enzyme-linked immunosorbent assay. HPLSCs were characterized by flow cytometry and differentiation assays. The effect of PRP and PPP on HPLSC bone differentiation was analyzed by quantifying calcium deposition after 14 and 21 days of treatment. Albeit at different concentrations, the two fractions had similar profiles of growth factors, the most representative being platelet-derived growth factor (PDGF) isoforms (PDGF-AA, -BB, and -AB), insulin-like growth factor binding protein (IGFBP)-2, and IGFBP-6. Both formulations exerted a comparable stimulus on osteoblastic differentiation even at low doses (2.5%), increasing calcium deposits in HPLSCs. PRP and PPP showed a similar protein profile and exerted comparable effects on bone differentiation. Further studies are needed to characterize and compare the effects of PPP and PRP on bone healing in vivo.
Acromegaly resolution after traumatic brain injury: a case report.
Cob, Alejandro
2014-09-02
Anterior hypopituitarism is a common complication of head trauma, with a prevalence of 30% to 70% among long-term survivors. This is a much higher frequency than previously thought and suggests that most cases of post-traumatic hypopituitarism remain undiagnosed and untreated. Symptoms of hypopituitarism are very unspecific and very similar to those in traumatic brain injury patients in general, which makes hypopituitarism difficult to diagnose. The factors that predict the likelihood of developing hypopituitarism following traumatic brain injury remain poorly understood. The incidence of a specific hormone deficiency is variable, with growth hormone deficiency reported in 18% to 23% of cases. A 23-year-old Hispanic man with a 2-year history of hypertension and diabetes presented with severe closed-head trauma producing diffuse axonal injury, subarachnoid hemorrhage and a brain concussion. A computed tomography scan showed a pituitary macroadenoma. The patient has clinical features of acromegaly and gigantism without other pituitary hyperfunctional manifestations or mass effect syndrome. A short-term post-traumatic laboratory test showed high levels of insulin like growth factor 1 and growth hormone, which are compatible with a growth hormone-producing pituitary tumor. At the third month post-trauma, the patient's levels of insulin like growth factor 1 had decreased to low normal levels, with basal low levels of growth hormone. A glucose tolerance test completely suppressed the growth hormone, which confirmed resolution of acromegaly. An insulin tolerance test showed lack of stimulation of growth hormone and cortisol, demonstrating hypopituitarism of both axes. Even though hypopituitarism is a frequent complication of traumatic brain injury, there are no reports in the literature, to the best of my knowledge, of patients with hyperfunctional pituitary adenomas, such as growth hormone-producing adenoma, that resolved after head trauma. A clear protocol has not yet been established to identify which patients should be screened for hypopituitarism. Predictive factors that might determine the likelihood of developing post-traumatic hypopituitarism have not been clearly established, but there is no evidence of the presence of pituitary adenomas as a risk factor in otherwise healthy patients.
Armant, D. Randall; Kilburn, Brian A.; Petkova, Anelia; Edwin, Samuel S.; Duniec-Dmuchowski, Zophia M.; Edwards, Holly J.; Romero, Roberto; Leach, Richard E.
2006-01-01
Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is downregulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O2 (∼2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O2 upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O2, signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O2 and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O2 rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts. PMID:16407398
Armant, D Randall; Kilburn, Brian A; Petkova, Anelia; Edwin, Samuel S; Duniec-Dmuchowski, Zophia M; Edwards, Holly J; Romero, Roberto; Leach, Richard E
2006-02-01
Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is down regulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O(2) ( approximately 2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O(2) upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O(2), signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O(2) and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O(2) rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts.
Dissociation between plasma concentrations of thyroxine and insulin-like growth factor-I.
Dauncey, M J; Morovat, A; Rudd, B T; Shakespear, R A
1990-09-01
The relation between plasma concentrations of thyroxine (T4) and insulin-like growth factor-I (IGF-I) has been examined in young, growing pigs under controlled conditions of energy intake. Compared with euthyroid controls, plasma levels of IGF-I were significantly elevated (P less than 0.005) both in hypothyroid animals on the same food intake and in hyperthyroid animals on double the food intake. There was however no increase in IGF-I in a hyperthyroid group on the control level of intake. Contrary to previous reports in which energy intake was not controlled, it is concluded that there is no simple correlation between plasma concentrations of T4 and IGF-I.
Type I insulin-like growth factor receptor signaling in hematological malignancies
Vishwamitra, Deeksha; George, Suraj Konnath; Shi, Ping; Kaseb, Ahmed O.; Amin, Hesham M.
2017-01-01
The insulin-like growth factor (IGF) signaling system plays key roles in the establishment and progression of different types of cancer. In agreement with this idea, substantial evidence has shown that the type I IGF receptor (IGF-IR) and its primary ligand IGF-I are important for maintaining the survival of malignant cells of hematopoietic origin. In this review, we discuss current understanding of the role of IGF-IR signaling in cancer with a focus on the hematological neoplasms. We also address the emergence of IGF-IR as a potential therapeutic target for the treatment of different types of cancer including plasma cell myeloma, leukemia, and lymphoma. PMID:27661006
Eap, Sandy; Ferrand, Alice; Schiavi, Jessica; Keller, Laetitia; Kokten, Tunay; Fioretti, Florence; Mainard, Didier; Ladam, Guy; Benkirane-Jessel, Nadia
2014-01-01
Implants triggering rapid, robust and durable tissue regeneration are needed to shorten recovery times and decrease risks of postoperative complications for patients. Here, we describe active living collagen implants with highly promising bone regenerative properties. Bioactivity of the implants is obtained through the protective and stabilizing layer-by-layer immobilization of a protein growth factor in association with a polysaccharide (chitosan), within the form of nanocontainers decorating the collagen nanofibers. All components of the implants are US FDA approved. From both in vitro and in vivo evaluations, the sophisticated strategy described here should enhance, at a reduced cost, the safety and efficacy of the therapeutic implants in terms of large bone defects repair compared with current simplistic approaches based on the soaking of the implants with protein growth factor.
The role of pleiotrophin in bone repair.
Lamprou, Margarita; Kaspiris, Angelos; Panagiotopoulos, Elias; Giannoudis, Peter V; Papadimitriou, Evangelia
2014-12-01
Bone has an enormous capacity for growth, regeneration, and remodelling, largely due to induction of osteoblasts that are recruited to the site of bone formation. Although the pathways involved have not been fully elucidated, it is well accepted that the immediate environment of the cells is likely to play a role via cell–matrix interactions, mediated by several growth factors. Formation of new blood vessels is also significant and interdependent to bone formation, suggesting that enhancement of angiogenesis could be beneficial during the process of bone repair. Pleiotrophin (PTN), also called osteoblast-specific factor 1, is a heparin-binding angiogenic growth factor, with a well-defined and significant role in both physiological and pathological angiogenesis. In this review we summarise the existing evidence on the role of PTN in bone repair.
The Impact of Magnesium Sulfate Therapy on Angiogenic Factors in Preeclampsia
VADNAIS, Mary A.; RANA, Sarosh; QUANT, Hayley S.; SALAHUDDIN, Saira; DODGE, Laura E.; LIM, Kee-Hak; KARUMANCHI, S. Ananth; HACKER, Michele R.
2011-01-01
Objective The objective was to evaluate whether intravenous magnesium sulfate (magnesium) alters levels of angiogenic factors in women with preeclampsia. Study Design This was a prospective cohort study comparing women with preeclampsia treated with magnesium for seizure prophylaxis to those who were not. Serum levels of angiogenic factors, soluble fms-like tyrosine kinase 1, soluble endoglin and placental growth factor, were measured at the time of diagnosis and approximately 24 hours later. Secondary analysis compared women receiving magnesium for preeclampsia to women receiving magnesium for preterm labor. Analysis of covariance was used to compare levels at 24 hours, adjusting for levels at enrollment and potential confounders. Results Angiogenic factor levels did not differ between preeclampsia groups with and without magnesium or between preeclampsia and preterm labor groups treated with magnesium (all P > 0.05). Conclusion Magnesium likely decreases seizure risk in preeclampsia by a mechanism other than altering angiogenic factor levels. PMID:22247820
The Impact of Magnesium Sulfate Therapy on Angiogenic Factors in Preeclampsia.
Vadnais, Mary A; Rana, Sarosh; Quant, Hayley S; Salahuddin, Saira; Dodge, Laura E; Lim, Kee-Hak; Karumanchi, S Ananth; Hacker, Michele R
2012-01-01
OBJECTIVE: The objective was to evaluate whether intravenous magnesium sulfate (magnesium) alters levels of angiogenic factors in women with preeclampsia. STUDY DESIGN: This was a prospective cohort study comparing women with preeclampsia treated with magnesium for seizure prophylaxis to those who were not. Serum levels of angiogenic factors, soluble fms-like tyrosine kinase 1, soluble endoglin and placental growth factor, were measured at the time of diagnosis and approximately 24 hours later. Secondary analysis compared women receiving magnesium for preeclampsia to women receiving magnesium for preterm labor. Analysis of covariance was used to compare levels at 24 hours, adjusting for levels at enrollment and potential confounders. RESULTS: Angiogenic factor levels did not differ between preeclampsia groups with and without magnesium or between preeclampsia and preterm labor groups treated with magnesium (all P > 0.05). CONCLUSION: Magnesium likely decreases seizure risk in preeclampsia by a mechanism other than altering angiogenic factor levels.
Witsenburg, C P J; Rosendaal, F R; Middeldorp, J M; Van der Meer, F J M; Scherjon, S A
2005-01-01
Recently, acquired as well as genetic prothrombotic factors are associated with thrombotic events. These factors have also been related to conditions of uteroplacental insufficiency such as pre-eclampsia, HELLP syndrome and severe intrauterine growth restriction (IUGR). The aim of this study was to determine whether elevated factor VIII levels are associated with uteroplacental insufficiency, in particular pre-eclampsia, HELLP syndrome or pregnancy-induced hypertension and intrauterine growth retardation. Plasma samples of 75 women with a history of pregnancy complicated by pre-eclampsia, HELLP syndrome, pregnancy induced hypertension or intrauterine growth restriction were tested for factor VIII:C (FVIII:C) levels at a minimum of 10 weeks post-partum. Laboratory results were compared to factor VIII:C levels found in a healthy control group of 272 women. Mean factor VIII:C levels were similar at 123 IU/dl in both the patient group and the controls. In a logistic regression model, after adjusting for age and blood group, no effect of factor VIII:C levels on the risk of pregnancy complications was observed, with the exception of IUGR with (OR 2.9, CI 1.0-8.7) or without hypertension (OR 2.0, CI 0.7-6.4). If the elevated level of factor VIII would be the sole factor responsible for the increased risk observed, one would expect to find an effect of blood group on risk as well (blood group being an important determinant of FVIII:C). While no such effect could be shown a causal relationship between elevated levels of factor VIII and conditions of uteroplacental insufficiency such as pre-eclampsia, HELLP syndrome, pregnancy-induced hypertension and IUGR is not very likely.
Fujinaga, Daiki; Kohmura, Yusuke; Okamoto, Naoki; Kataoka, Hiroshi; Mizoguchi, Akira
2017-08-01
It is well established that ecdysteroids play pivotal roles in the regulation of insect molting and metamorphosis. However, the mechanisms by which ecdysteroids regulate the growth and development of adult organs after pupation are poorly understood. Recently, we have identified insulin-like growth factor (IGF)-like peptides (IGFLPs), which are secreted after pupation under the control of 20-hydroxyecdysone (20E). In the silkmoth, Bombyx mori, massive amounts of Bombyx-IGFLP (BIGFLP) are present in the hemolymph during pupal-adult development, suggesting its importance in the regulation of adult tissue growth. Thus, we hypothesized that the growth and development of adult tissues including imaginal disks are regulated by the combined effects of BIGFLP and 20E. In this study, we investigated the growth-promoting effects of BIGFLP and 20E using the male genital disks of B. mori cultured ex vivo, and further analyzed the cell signaling pathways mediating hormone actions. We demonstrate that 20E induces the elongation of genital disks, that both hormones stimulate protein synthesis in an additive manner, and that BIGFLP and 20E exert their effects through the insulin/IGF signaling pathway and mitogen-activated protein kinase pathway, respectively. These results show that the growth and development of the genital disk are coordinately regulated by both BIGFLP and 20E. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gelse, K; Mühle, C; Knaup, K; Swoboda, B; Wiesener, M; Hennig, F; Olk, A; Schneider, H
2008-12-01
To investigate the chondrogenic potential of growth factor-stimulated periosteal cells with respect to the activity of Hypoxia-inducible Factor 1alpha (HIF-1alpha). Scaffold-bound autologous periosteal cells, which had been activated by Insulin-like Growth Factor 1 (IGF-1) or Bone Morphogenetic Protein 2 (BMP-2) gene transfer using both adeno-associated virus (AAV) and adenoviral (Ad) vectors, were applied to chondral lesions in the knee joints of miniature pigs. Six weeks after transplantation, the repair tissues were investigated for collagen type I and type II content as well as for HIF-1alpha expression. The functional role of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling on BMP-2/IGF-1-induced HIF-1alpha expression was assessed in vitro by employing specific inhibitors. Unstimulated periosteal cells formed a fibrous extracellular matrix in the superficial zone and a fibrocartilaginous matrix in deep zones of the repair tissue. This zonal difference was reflected by the absence of HIF-1alpha staining in superficial areas, but moderate HIF-1alpha expression in deep zones. In contrast, Ad/AAVBMP-2-stimulated periosteal cells, and to a lesser degree Ad/AAVIGF-1-infected cells, adopted a chondrocyte-like phenotype with strong intracellular HIF-1alpha staining throughout all zones of the repair tissue and formed a hyaline-like matrix. In vitro, BMP-2 and IGF-1 supplementation increased HIF-1alpha protein levels in periosteal cells, which was based on posttranscriptional mechanisms rather than de novo mRNA synthesis, involving predominantly the MEK/ERK pathway. This pilot experimental study on a relatively small number of animals indicated that chondrogenesis by precursor cells is facilitated in deeper hypoxic zones of cartilage repair tissue and is stimulated by growth factors which enhance HIF-1alpha activity.
Amin, A.R.M. Ruhul; Karpowicz, Phillip A.; Carey, Thomas E.; Arbiser, Jack; Nahta, Rita; Chen, Zhuo G.; Dong, Jin-Tang; Kucuk, Omer; Khan, Gazala N.; Huang, Gloria S.; Mi, Shijun; Lee, Ho-Young; Reichrath, Joerg; Honoki, Kanya; Georgakilas, Alexandros G.; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S.; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I.; Azmi, Asfar S.; Keith, W Nicol; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Fujii, Hiromasa; Aquilano, Katia; Ashraf, S. Salman; Nowsheen, Somaira; Yang, Xujuan; Bilsland, Alan; Shin, Dong M.
2015-01-01
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally-occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally-occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting. PMID:25749195
Gernand, Alison D.; Schulze, Kerry J.; Nanayakkara-Bind, Ashika; Arguello, Margia; Shamim, Abu Ahmed; Ali, Hasmot; Wu, Lee; West, Keith P.; Christian, Parul
2015-01-01
Prenatal multiple micronutrient (MM) supplementation improves birth weight through increased fetal growth and gestational age, but whether maternal or fetal growth factors are involved is unclear. Our objective was to examine the effect of prenatal MM supplementation on intrauterine growth factors and the associations between growth factors and birth outcomes in a rural setting in Bangladesh. In a double-blind, cluster-randomized, controlled trial of MM vs. iron and folic acid (IFA) supplementation, we measured placental growth hormone (PGH) at 10 weeks and PGH and human placental lactogen (hPL) at 32 weeks gestation in maternal plasma (n = 396) and insulin, insulin-like growth factor-1 (IGF-1), and IGF binding protein-1 (IGFBP-1) in cord plasma (n = 325). Birth size and gestational age were also assessed. Early pregnancy mean (SD) BMI was 19.5 (2.4) kg/m2 and birth weight was 2.68 (0.41) kg. There was no effect of MM on concentrations of maternal hPL or PGH, or cord insulin, IGF-1, or IGFBP-1. However, among pregnancies of female offspring, hPL concentration was higher by 1.1 mg/L in the third trimester (95% CI: 0.2, 2.0 mg/L; p = 0.09 for interaction); and among women with height <145 cm, insulin was higher by 59% (95% CI: 3, 115%; p = 0.05 for interaction) in the MM vs. IFA group. Maternal hPL and cord blood insulin and IGF-1 were positively, and IGFBP-1 was negatively, associated with birth weight z score and other measures of birth size (all p<0.05). IGF-1 was inversely associated with gestational age (p<0.05), but other growth factors were not associated with gestational age or preterm birth. Prenatal MM supplementation had no overall impact on intrauterine growth factors. MM supplementation altered some growth factors differentially by maternal early pregnancy nutritional status and sex of the offspring, but this should be examined in other studies. Trial Registration ClinicalTrials.gov NCT00860470 PMID:26431336
Gernand, Alison D; Schulze, Kerry J; Nanayakkara-Bind, Ashika; Arguello, Margia; Shamim, Abu Ahmed; Ali, Hasmot; Wu, Lee; West, Keith P; Christian, Parul
2015-01-01
Prenatal multiple micronutrient (MM) supplementation improves birth weight through increased fetal growth and gestational age, but whether maternal or fetal growth factors are involved is unclear. Our objective was to examine the effect of prenatal MM supplementation on intrauterine growth factors and the associations between growth factors and birth outcomes in a rural setting in Bangladesh. In a double-blind, cluster-randomized, controlled trial of MM vs. iron and folic acid (IFA) supplementation, we measured placental growth hormone (PGH) at 10 weeks and PGH and human placental lactogen (hPL) at 32 weeks gestation in maternal plasma (n = 396) and insulin, insulin-like growth factor-1 (IGF-1), and IGF binding protein-1 (IGFBP-1) in cord plasma (n = 325). Birth size and gestational age were also assessed. Early pregnancy mean (SD) BMI was 19.5 (2.4) kg/m2 and birth weight was 2.68 (0.41) kg. There was no effect of MM on concentrations of maternal hPL or PGH, or cord insulin, IGF-1, or IGFBP-1. However, among pregnancies of female offspring, hPL concentration was higher by 1.1 mg/L in the third trimester (95% CI: 0.2, 2.0 mg/L; p = 0.09 for interaction); and among women with height <145 cm, insulin was higher by 59% (95% CI: 3, 115%; p = 0.05 for interaction) in the MM vs. IFA group. Maternal hPL and cord blood insulin and IGF-1 were positively, and IGFBP-1 was negatively, associated with birth weight z score and other measures of birth size (all p<0.05). IGF-1 was inversely associated with gestational age (p<0.05), but other growth factors were not associated with gestational age or preterm birth. Prenatal MM supplementation had no overall impact on intrauterine growth factors. MM supplementation altered some growth factors differentially by maternal early pregnancy nutritional status and sex of the offspring, but this should be examined in other studies. ClinicalTrials.gov NCT00860470.
Farrugia, M K; Sharma, S B; Lin, C-C; McLaughlin, S L; Vanderbilt, D B; Ammer, A G; Salkeni, M A; Stoilov, P; Agazie, Y M; Creighton, C J; Ruppert, J M
2015-01-01
The Kruppel-like transcription factors (KLFs) 4 and 5 (KLF4/5) are coexpressed in mouse embryonic stem cells, where they function redundantly to maintain pluripotency. In mammary carcinoma, KLF4/5 can each impact the malignant phenotype, but potential linkages to drug resistance remain unclear. In primary human breast cancers, we observed a positive correlation between KLF4/5 transcript abundance, particularly in the human epidermal growth factor receptor 2 (HER2)-enriched subtype. Furthermore, KLF4/5 protein was rapidly upregulated in human breast cancer cells following treatment with the HER2/epidermal growth factor receptor inhibitor, lapatinib. In addition, we observed a positive correlation between these factors in the primary tumors of genetically engineered mouse models (GEMMs). In particular, the levels of both factors were enriched in the basal-like tumors of the C3(1) TAg (SV40 large T antigen transgenic mice under control of the C3(1)/prostatein promoter) GEMM. Using tumor cells derived from this model as well as human breast cancer cells, suppression of KLF4 and/or KLF5 sensitized HER2-overexpressing cells to lapatinib. Indicating cooperativity, greater effects were observed when both genes were depleted. KLF4/5-deficient cells had reduced basal mRNA and protein levels of the anti-apoptotic factors myeloid cell leukemia 1 (MCL1) and B-cell lymphoma-extra large (BCL-XL). Moreover, MCL1 was upregulated by lapatinib in a KLF4/5-dependent manner, and enforced expression of MCL1 in KLF4/5-deficient cells restored drug resistance. In addition, combined suppression of KLF4/5 in cultured tumor cells additively inhibited anchorage-independent growth, resistance to anoikis and tumor formation in immunocompromised mice. Consistent with their cooperative role in drug resistance and other malignant properties, KLF4/5 levels selectively stratified human HER2-enriched breast cancer by distant metastasis-free survival. These results identify KLF4 and KLF5 as cooperating protumorigenic factors and critical participants in resistance to lapatinib, furthering the rationale for combining anti-MCL1/BCL-XL inhibitors with conventional HER2-targeted therapies. PMID:25789974
Wehrum, Mark J.; Buhimschi, Irina A.; Salafia, Carolyn; Thung, Stephen; Bahtiyar, Mert O.; Werner, Erica F.; Campbell, Katherine H.; Laky, Christine; Sfakianaki, Anna K.; Zhao, Guomao; Funai, Edmund F.; Buhimschi, Catalin S.
2011-01-01
OBJECTIVE To characterize serum angiogenic factor profile of women with complete placenta previa and determine if invasive trophoblast differentiation characteristic of accreta, increta or percreta shares features of epitehelial-mesenchymal-transition (EMT). STUDY DESIGN We analyzed gestational age matched serum samples from 90 pregnant women with either complete placenta previa (n=45) or uncomplicated pregnancies (n=45). Vascular-endothelial-growth-factor (VEGF), placental-growth-factor (PlGF) and soluble fms-like-tyrosine-kinase-1 (sFlt-1) were immunoassayed. VEGF and phosphotyrosine (P-Tyr) immunoreactivity was surveyed in histological specimens relative to expression of vimentin and cytokeratin-7. RESULTS Women with previa and invasive placentation [accreta (n=5); increta (n=6); percreta (n=2)] had lower systemic VEGF (invasive previa: median [IQR]: 0.8[0.02–3.4] vs. control: 6.5[2.7–10.5] pg/mL, P=0.02). VEGF and P-Tyr immunostaining predominated in the invasive extravillous trophoblasts (EVT) which co-expressed vimentin and cytokeratin-7, a EMT feature and tumor-like cell phenotype. CONCLUSIONS Lower systemic free VEGF and a switch of the interstitial EVT to a metastable cell phenotype characterize placenta previa with excessive myometrial invasion. PMID:21316642
Insulin-Like Growth Factor System in Cancer: Novel Targeted Therapies
Brahmkhatri, Varsha P.; Prasanna, Chinmayi; Atreya, Hanudatta S.
2015-01-01
Insulin-like growth factors (IGFs) are essential for growth and survival that suppress apoptosis and promote cell cycle progression, angiogenesis, and metastatic activities in various cancers. The IGFs actions are mediated through the IGF-1 receptor that is involved in cell transformation induced by tumour. These effects depend on the bioavailability of IGFs, which is regulated by IGF binding proteins (IGFBPs). We describe here the role of the IGF system in cancer, proposing new strategies targeting this system. We have attempted to expand the general viewpoint on IGF-1R, its inhibitors, potential limitations of IGF-1R, antibodies and tyrosine kinase inhibitors, and IGFBP actions. This review discusses the emerging view that blocking IGF via IGFBP is a better option than blocking IGF receptors. This can lead to the development of novel cancer therapies. PMID:25866791
Fuchs, Charles S; Goldberg, Richard M; Sargent, Daniel J; Meyerhardt, Jeffrey A; Wolpin, Brian M; Green, Erin M; Pitot, Henry C; Pollak, Michael
2008-12-15
Insulin-like growth factor (IGF)-I and IGF-II stimulate neoplastic cell growth and inhibit apoptosis, whereas IGF-binding protein-3 (IGFBP-3) inhibits the bioavailability of IGF-I and has independent proapoptotic activity. We examined the influence of baseline plasma levels of IGF-I, IGF-II, IGFBP-3, and C-peptide on outcome among patients receiving first-line chemotherapy for metastatic colorectal cancer. The plasma levels of IGF-I, IGF-II, IGFBP-3, and C-peptide as well as data on prognostic factors and body size were measured at baseline among 527 patients participating in a randomized trial of first-line chemotherapy for metastatic colorectal cancer. Higher baseline plasma IGFBP-3 levels were associated with a significantly greater chemotherapy response rate (P = 0.03) after adjusting for other prognostic factors, whereas neither IGF-I nor IGF-II levels significantly predicted tumor response. Higher levels of IGF-I, IGF-II, and IGFBP-3 were all univariately associated with improved overall survival (P = 0.0001 for all). In a model that mutually adjusted for IGF-I and IGFBP-3, as well as other prognostic factors, increasing baseline-circulating IGFBP-3 was associated with a significantly longer time to tumor progression (P = 0.03), whereas circulating IGF-I was not associated with disease progression (P = 0.95). Levels of C-peptide were not associated with any measure of patient outcome. Among colorectal cancer patients receiving first-line chemotherapy, increasing levels of IGFBP-3, an endogenous antagonist to IGF-I, are associated with an improved objective treatment response and a prolonged time to cancer progression. The IGF pathway may represent an important target for future treatment strategies.
Bone Growth, Mechanical Stimulus and IGF-I
2005-10-01
children, stress fractures in military recruits, and osteoporotic fractures in elderly women. Insulin-like growth factor-I (IGF-I), a major regulator...subjects completed the intervention arm of the study and returned for the short-term post-intervention appointment, which included anthropometrie
Böker, J; Völzke, H; Nauck, M; Hannemann, A; Friedrich, N
2018-03-01
Growth hormone (GH) and its main mediator, insulin-like growth factor-I (IGF-I), play a significant role in bone metabolism. The relations between IGF-I and bone mineral density (BMD) or osteoporosis have been assessed in previous studies but whether the associations are sex-specific remains uncertain. Moreover, only a few studies examined bone quality assessed by quantitative ultrasound (QUS). We aimed to investigate these associations in the general population of north-east Germany. Data from 1759 men and 1784 women who participated in the baseline examination of the Study of Health in Pomerania (SHIP)-Trend were used. IGF-I and IGF-binding protein-3 (IGFBP-3) concentrations were measured on the IDS-iSYS multidiscipline automated analyser (Immunodiagnostic Systems Limited). QUS measurements were performed at the heel (Achilles InSight, GE Healthcare). Sex-specific linear and multinomial logistic regression models adjusted for potential confounders were calculated. Linear regression analyses revealed significant positive associations between IGF-I and IGF-I/IGFBP-3 ratio, a marker for free IGF-I, with all QUS parameters in men. Among women, we found an inverse association between IGF-I and the QUS-based fracture risk but no association with any other QUS parameter. There was no association between IGFBP-3 and the QUS-based fracture risk. Our data suggest an important role of IGF-I on bone quality in men. The observed association of IGF-I with the QUS-based stiffness index and QUS-based fracture risk in this study might animate clinicians to refer patients with low IGF-I levels, particularly men, to a further evaluation of risk factors for osteoporosis and a detailed examination of the skeletal system. © 2018 John Wiley & Sons Ltd.
Aggarwal, Kanika; Agarwal, Aniruddha; Sharma, Aman; Sharma, Kusum; Gupta, Vishali
2018-04-23
To study optical coherence tomography angiography (OCTA) and multimodal imaging features of Type 1 inflammatory choroidal neovascularization (CNV) in tubercular serpiginous-like choroiditis and response to anti-vascular endothelial growth factor therapy. In this study, multimodal imaging was performed using OCTA, enhanced-depth imaging optical coherence tomography, fluorescein angiography, and indocyanine green angiography. Correlation of OCTA with other imaging modalities in the detection of CNV was performed. The changes in CNV configuration after anti-vascular endothelial growth factor therapy were assessed. In this study, nine eyes (8 patients; 5 females; mean age: 32.5 ± 11.57 years) with diagnosis of tubercular serpiginous-like choroiditis were included. All the eyes had presence of low-lying pigment epithelial detachments on enhanced-depth imaging optical coherence tomography. Using OCTA, it was possible to detect Type 1 CNV in all eyes. Type 1 CNV networks comprised fine anastomotic network of vessels, some of which had a hairpin loop configuration. After anti-vascular endothelial growth factor therapy, there was a decrease in branching and anastomosis. The visual acuity significantly improved from 0.49 ± 0.26 (20/60 Snellen equivalent) at baseline to 0.26 ± 0.17 (20/36 Snellen equivalent) (P = 0.03) in all eyes. Type 1 CNV can occur among patients with tubercular serpiginous-like choroiditis, leading to significant visual loss even in the healed stages of the disease. Optical coherence tomography angiography can help in the detection of Type 1 CNV where conventional multimodal imaging, including fluorescein angiography and OCT, fails to make a definitive diagnosis and thereby guide the initiation of anti-vascular endothelial growth factor therapy.
Hou, J W
2003-07-01
Hallermann-Streiff syndrome (HSS) is a rare clinic entity of unknown aetiology. Further clinical and metabolic-genetic evaluations are indicated. A 2-mo-old female baby presented with ocular abnormalities and severe failure to thrive since birth. The clinical features were compatible with the diagnosis of HSS. Further imaging, metabolic and cytogenetic examinations were performed. Features characteristic of HSS were dyscephaly with mandibular and nasal cartilage hypoplasia, microphthalmia, bilateral cataracts with congenital glaucoma, natal teeth and proportionate dwarfism. Rare anomalies such as choanal atresia and small cerebellum, very low insulin-like growth factor I level, hypothyroidism, generalized organic aciduria were also noticed. An increased chromosomal breakage rate is suggestive of the existence of some DNA repair defects in HSS patients. The associated anomalies in this patient may broaden the clinical spectrum of HSS. Underlying conditions of organic aciduria, growth factor deficiency and impaired DNA repair are likely to contribute to the progeria-like facies, congenital cataracts and growth failure.
McKeown, Brendan T; Hurta, Robert A R
2014-11-01
This study investigated the effects of magnolol, a compound from Magnolia officinalis, on the behavior of LNCaP and PC3 human prostate cancer cells in vitro. In vitro cell culture approach with biochemical tests and Western blot analyses was used. Magnolol, (80 μM, 6 hour exposure) was found to affect the expression of insulin-like growth factor-1 (IGF-1) and associated proteins. In both cell lines, protein expression of IGF-1 and insulin-like growth factor binding protein-5 (IGFBP-5) were significantly decreased, while protein expression of IGFBP-3 was significantly increased. Additionally, protein expression of insulin-like growth factor-1 receptor (IGF-1R) was significantly increased and the phosphorylated form of IGF-1 (p-IGF-1R) was significantly decreased in PC3 cells, while IGFBP-4 protein expression was significantly increased in LNCaP cells. This study has demonstrated for the first time that magnolol can alter the expression of IGF-1 and associated proteins in human prostate cancer cells in vitro and suggests that magnolol may have a potential role as a novel anti-prostate cancer agent. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Kaznatcheev, Artem; Vander Velde, Robert; Scott, Jacob G; Basanta, David
2017-03-14
Tumours are diverse ecosystems with persistent heterogeneity in various cancer hallmarks like self-sufficiency of growth factor production for angiogenesis and reprogramming of energy metabolism for aerobic glycolysis. This heterogeneity has consequences for diagnosis, treatment and disease progression. We introduce the double goods game to study the dynamics of these traits using evolutionary game theory. We model glycolytic acid production as a public good for all tumour cells and oxygen from vascularisation via vascular endothelial growth factor production as a club good benefiting non-glycolytic tumour cells. This results in three viable phenotypic strategies: glycolytic, angiogenic and aerobic non-angiogenic. We classify the dynamics into three qualitatively distinct regimes: (1) fully glycolytic; (2) fully angiogenic; or (3) polyclonal in all three cell types. The third regime allows for dynamic heterogeneity even with linear goods, something that was not possible in prior public good models that considered glycolysis or growth factor production in isolation. The cyclic dynamics of the polyclonal regime stress the importance of timing for anti-glycolysis treatments like lonidamine. The existence of qualitatively different dynamic regimes highlights the order effects of treatments. In particular, we consider the potential of vascular normalisation as a neoadjuvant therapy before follow-up with interventions like buffer therapy.
Caviedes-Bucheli, J; Canales-Sánchez, P; Castrillón-Sarria, N; Jovel-Garcia, J; Alvarez-Vásquez, J; Rivero, C; Azuero-Holguín, M M; Diaz, E; Munoz, H R
2009-08-01
To quantify the expression of insulin-like growth factor-1 (IGF-1) and proliferating cell nuclear antigen (PCNA) in human pulp cells of teeth with complete or incomplete root development, to support the specific role of IGF-1 in cell proliferation during tooth development and pulp reparative processes. Twenty six pulp samples were obtained from freshly extracted human third molars, equally divided in two groups according to root development stage (complete or incomplete root development). All samples were processed and immunostained to determine the expression of IGF-1 and PCNA in pulp cells. Sections were observed with a light microscope at 80x and morphometric analyses were performed to calculate the area of PCNA and IGF-1 immunostaining using digital image software. Mann-Whitney's test was used to determine statistically significant differences between groups (P < 0.05) for each peptide and the co-expression of both. Expression of IGF-1 and PCNA was observed in all human pulp samples with a statistically significant higher expression in cells of pulps having complete root development (P = 0.0009). Insulin-like growth factor-1 and PCNA are expressed in human pulp cells, with a significant greater expression in pulp cells of teeth having complete root development.
Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells.
Liang, Chang-Min; Weng, Shao-Ju; Tsai, Tung-Han; Li, I-Hsun; Lu, Pin-Hui; Ma, Kuo-Hsing; Tai, Ming-Cheng; Chen, Jiann-Torng; Cheng, Cheng-Yi; Huang, Yuahn-Sieh
2014-10-01
The purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo. Cultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media. Isolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects. L-MSCs can secrete various neurotrophic factors stimulating neurite outgrowth and protecting neurons against brain ischemic injury through paracrine mechanism. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
2010-01-01
Background With its genome sequence and other experimental attributes, Populus trichocarpa has become the model species for genomic studies of wood development. Wood is derived from secondary growth of tree stems, and begins with the development of a ring of vascular cambium in the young developing stem. The terminal region of the developing shoot provides a steep developmental gradient from primary to secondary growth that facilitates identification of genes that play specialized functions during each of these phases of growth. Results Using a genomic microarray representing the majority of the transcriptome, we profiled gene expression in stem segments that spanned primary to secondary growth. We found 3,016 genes that were differentially expressed during stem development (Q-value ≤ 0.05; >2-fold expression variation), and 15% of these genes encode proteins with no significant identities to known genes. We identified all gene family members putatively involved in secondary growth for carbohydrate active enzymes, tubulins, actins, actin depolymerizing factors, fasciclin-like AGPs, and vascular development-associated transcription factors. Almost 70% of expressed transcription factors were upregulated during the transition to secondary growth. The primary shoot elongation region of the stem contained specific carbohydrate active enzyme and expansin family members that are likely to function in primary cell wall synthesis and modification. Genes involved in plant defense and protective functions were also dominant in the primary growth region. Conclusion Our results describe the global patterns of gene expression that occur during the transition from primary to secondary stem growth. We were able to identify three major patterns of gene expression and over-represented gene ontology categories during stem development. The new regulatory factors and cell wall biogenesis genes that we identified provide candidate genes for further functional characterization, as well as new tools for molecular breeding and biotechnology aimed at improvement of tree growth rate, crown form, and wood quality. PMID:20199690
Platelet-rich plasma therapy - future or trend?
2012-01-01
Chronic complex musculoskeletal injuries that are slow to heal pose challenges to physicians and researchers alike. Orthobiologics is a relatively newer science that involves application of naturally found materials from biological sources (for example, cell-based therapies), and offers exciting new possibilities to promote and accelerate bone and soft tissue healing. Platelet-rich plasma (PRP) is an orthobiologic that has recently gained popularity as an adjuvant treatment for musculoskeletal injuries. It is a volume of fractionated plasma from the patient's own blood that contains platelet concentrate. The platelets contain alpha granules that are rich in several growth factors, such as platelet-derived growth factor, transforming growth factor-β, insulin-like growth factor, vascular endothelial growth factor and epidermal growth factor, which play key roles in tissue repair mechanisms. PRP has found application in diverse surgical fields to enhance bone and soft-tissue healing by placing supra-physiological concentrations of autologous platelets at the site of tissue damage. The relative ease of preparation, applicability in the clinical setting, favorable safety profile and possible beneficial outcome make PRP a promising therapeutic approach for future regenerative treatments. However, there is a large knowledge gap in our understanding of PRPs mechanism of action, which has raised skepticism regarding its potential efficacy and use. Thus, the aim of this review is to describe the various factors proposed to contribute to the biological activity of PRP, and the published pre-clinical and clinical evidence to support it. Additionally, we describe the current techniques and technology for PRP preparation, and review the present shortcomings of this therapy that will need to be overcome if it is to gain broad acceptance. PMID:22894643
Ekdahl, Kristina N; Davoodpour, Padideh; Ekstrand-Hammarström, Barbro; Fromell, Karin; Hamad, Osama A; Hong, Jaan; Bucht, Anders; Mohlin, Camilla; Seisenbaeva, Gulaim A; Kessler, Vadim G; Nilsson, Bo
2018-04-01
Iron-oxide nanoparticles (NPs) generated by environmental events are likely to represent health problems. α-Fe 2 O 3 NPs were synthesized, characterized and tested in a model for toxicity utilizing human whole blood without added anticoagulant. MALDI-TOF of the corona was performed and activation markers for plasma cascade systems (complement, contact and coagulation systems), platelet consumption and release of growth factors, MPO, and chemokine/cytokines from blood cells were analyzed. The coronas formed on the pristine α-Fe 2 O 3 NPs contained contact system proteins and they induced massive activation of the contact (kinin/kallikrein) system, as well as thrombin generation, platelet activation, and release of two pro-angiogeneic growth factors: platelet-derived growth factor and vascular endothelial growth factor, whereas complement activation was unaffected. The α-Fe 2 O 3 NPs exhibited a noticeable toxicity, with kinin/kallikrein activation, which may be associated with hypotension and long-term angiogenesis in vivo, with implications for cancer, arteriosclerosis and pulmonary disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Tissue Engineering Organs for Space Biology Research
NASA Technical Reports Server (NTRS)
Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.
1999-01-01
Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.
Unsal, Ebru; Köksal, Deniz; Yurdakul, Ahmet Selim; Atikcan, Sükran; Cinaz, Peyami
2005-05-01
Insulin like growth factor 1 (IGF-1) is recognized as a potent mitogen for many cancer cell lines and there is good evidence that lung cancer cells produce both IGF-1 and insulin like growth factor binding protein 3 (IGFBP-3). The aim of this study was to investigate the clinical significance of IGF-1 and IGFBP-3 levels in serum and in bronchoalveolar lavage (BAL) fluid by comparing lung cancer patients with healthy controls. BAL fluid and serum samples were obtained from 24 lung cancer patients and 12 healthy controls, and were analyzed for IGF-1 and IGFBP-3 levels by a two site immunoradiometric assay. The recovered BAL fluid was standardized by albumin to remove the variable of dilution and the data was expressed in epithelial lining fluid (ELF). Serum IGF-1 and IGFBP-3 levels were lower in lung cancer patients, but the difference between the groups did not reach a statistical significance. IGF-1/IGFBP-3 ratio in ELF was significantly lower in lung cancer patients (P=0.035). Mean IGF-1 level in ELF was determined to be significantly lower in patients with distant metastasis (P=0.04). Serum IGF-1/IGFBP-3 ratio was found to be significantly lower in patients with distant (P=0.04) and nodal metastasis (P=0.03). Tumor stage was negatively correlated with IGF-1 level in ELF (P=0.05, r=-0.4) and serum IGF-1/IGFBP-3 ratio (P=0.04, r=-0.4). IGF-1 and IGFBP-3 levels both in serum and ELF might serve a clinical significance in patients with lung cancer. However, further studies comprising more cases are needed to investigate the clinical significance of IGF-1 and IGFBP-3 in lung cancer.
Christo, Karla; Prabhakaran, Rajani; Lamparello, Brooke; Cord, Jennalee; Miller, Karen K.; Goldstein, Mark A.; Gupta, Nupur; Herzog, David B.; Klibanski, Anne; Misra, Madhusmita
2011-01-01
OBJECTIVE We hypothesized that, despite increased activity, bone density would be low in athletes with amenorrhea, compared with athletes with eumenorrhea and control subjects, because of associated hypogonadism and would be associated with a decrease in bone formation and increases in bone-resorption markers. METHODS In a cross-sectional study, we examined bone-density measures (spine, hip, and whole body) and body composition by using dual-energy radiograph absorptiometry and assessed fasting levels of insulin-like growth factor I and bone-turnover markers (N-terminal propeptied of type 1 procollagen and N-telopeptide) in 21 athletes with amenorrhea, 18 athletes with eumenorrhea, and 18 control subjects. Subjects were 12 to 18 years of age and of comparable chronologic and bone age. RESULTS Athletes with amenorrhea had lower bone-density z scores at the spine and whole body, compared with athletes with eumenorrhea and control subjects, and lower hip z scores, compared with athletes with eumenorrhea. Lean mass did not differ between groups. However, athletes with amenorrhea had lower BMI z scores than did athletes with eumenorrhea and lower insulin-like growth factor I levels than did control subjects. Levels of both markers of bone turnover were lower in athletes with amenorrhea than in control subjects. BMI z scores, lean mass, insulin-like growth factor I levels, and diagnostic category were important independent predictors of bone mineral density z scores. CONCLUSIONS Although they showed no significant differences in lean mass, compared with athletes with eumenorrhea and control subjects, athletes with amenorrhea had lower bone density at the spine and whole body. Insulin-like growth factor I levels, body-composition parameters, and menstrual status were important predictors of bone density. Follow-up studies are necessary to determine whether amenorrhea in athletes adversely affects the rate of bone mass accrual and therefore peak bone mass. PMID:18519482
Wei, Min; Zheng, Sheng Z; Lu, Ye; Liu, Daniel; Ma, Hong; Mahady, Gail B
2015-10-01
Menoprogen (MPG), a traditional Chinese medicine formula for menopause, improves menopausal symptoms; however, its mechanism remains unknown. Previous studies have shown that MPG is not directly estrogenic; thus, the goal of this study was to investigate the effects of MPG on insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-1 (IGFBP-1) levels in an aged female rat model of menopause. In a six-arm study, 14-month-old female Sprague-Dawley rats (n = 8 per arm) were randomly divided into the following groups: untreated aged, 17β-estradiol-treated aged (estradiol [E2]), and three arms with increasing doses of MPG (162, 324, or 648 mg/kg/d). The sixth arm contained 4-month-old female Sprague-Dawley rats as a normal comparison group. Four weeks after MPG or E2 administration, animals were killed after blood draws, and ovarian tissues were excised. Levels of E2 and progesterone (P4) were determined by radioimmunoassay. Serum and ovarian tissue levels of IGF-1, IGFBP-1, and IGF-1 receptor were determined by enzyme-linked immunosorbent assay. Compared with the normal group, aged rats had significantly reduced serum levels of E2, P4, and IGF-1, and increased serum and ovarian tissue levels of IGFBP-1. MPG restored serum IGF-1 and IGFBP-1 levels and down-regulated ovarian levels of IGFBP-1, which were closely related to increases in E2 and P4 levels in aged rats. No significant differences in either IGF-1 or IGFBP-1 were observed between the three doses of MPG. MPG exerts a direct in vivo effect on aged female rats by positively regulating serum and ovarian IGF-1 and IGFBP-1 levels.
Lynch, Anne M.; Wagner, Brandie D.; Mandava, Naresh; Palestine, Alan G.; Mourani, Peter M.; McCourt, Emily A.; Oliver, Scott C. N.; Abman, Steven H.
2016-01-01
Purpose Retinopathy of prematurity (ROP) is a vision-threatening disease associated with abnormal retinal vascular development. Proteins from the insulin-like growth factor pathway are related to ROP. However, there is a paucity of research on the role of other proteins in ROP. The aim of this study was to identify plasma proteins related to clinically significant ROP. Methods We measured 1121 plasma proteins in the early neonatal period in infants at risk for ROP using an aptamer-based proteomic technology. The primary aim of the study was to compare plasma protein concentrations in infants who did (n = 12) and did not (n = 23) subsequently develop clinically significant ROP using logistic regression. As a secondary aim, we examined patterns in the proteins across categories of clinically significant, low-grade, and no ROP groups. Results Lower levels of 16 proteins were associated with an increased risk of clinically significant ROP. In this group, superoxide dismutase (Mn), mitochondrial (MnSOD), and chordin-like protein 1 (CRDL1) were highly ranked. Other proteins in this group included: C-C motif chemokine 14 (HCC-1), prolactin, insulin-like growth factor-binding protein 7 (IGFBP-7), and eotaxin. Higher levels of 12 proteins were associated with a higher risk for ROP. Fibroblast growth factor 19 (FGF-19) was the top-ranked protein target followed by hepatocyte growth factor-like protein (MSP), luteinizing hormone (LH), cystatin M, plasminogen, and proprotein convertase subtilisin/kexin type 9 (PCSK9). We also noted different patterns in the trend of concentrations of proteins across the clinically significant, low-grade, and no ROP groups. Conclusions We discovered plasma proteins with novel associations with clinically significant ROP (MnSOD, CRDL1, PCSK9), proteins with links to established ROP signaling pathways (IGFBP-7), and proteins such as MnSOD that may be a target for future therapeutic interventions. PMID:27679852
Insulin in human milk and the use of hormones in infant formulas.
Shamir, Raanan; Shehadeh, Naim
2013-01-01
Human milk contains a substantial number of hormones and growth factors. Studies in animal models show that some of these peptides (e.g. insulin, insulin-like growth factor 1, IGF-1, epidermal growth factors) have an effect on the small intestine after orogastric administration. Recently, two efforts were made to incorporate growth factors into infant formulas. One of these efforts included the incorporation of IGF-1, and the second is an ongoing effort to evaluate the safety and efficacy of incorporating insulin into infant formulas. The rational and current evidence for adding insulin to infant formulas (presence in human milk, effects of orally administrated insulin on gut maturation, intestinal permeability, systemic effects and preliminary encouraging results of supplementing insulin to a preterm infant formula) is detailed in this review. If the addition of insulin to preterm infant formulas indeed results in better growth and accelerated intestinal maturation, future studies will need to address the supplementation of insulin in term infants and assess the efficacy of such supplementation in enhancing gut maturation and prevention of later noncommunicable diseases such as allergy, autoimmune diseases and obesity. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.
Woo, Hyunju; Lee, Seungjun; Kim, Seungbeom; Park, Deokhoon; Jung, Eunsun
2017-07-01
Hair loss known as alopecia is caused by abnormal hair follicle cycling including shortening of the anagen (growth) phase and changing of hair follicle morphology with miniaturization. In accordance with the life extension, the quality of life is considered to be a most important thing. The yearning for healthy and beautiful hair and low self esteem due to hair loss had negative influence on the quality of life with psychosocial maladjustment. The objective of this research was to identify new compound that can be used as a drug to promote hair growth. We investigated whether the function of sinapic acid (SA) is able to promote hair growth in human hair follicle dermal papilla cells (hHFDPC). We showed that treatment of SA in hHFDPC could induce proliferation and the activation of Akt signaling in HFDPC. In addition, SA could stimulate the expressions of the several growth factors, insulin-like growth factor 1, and vascular endothelial growth factor for hair growth. We showed that SA led to an increased level of phospho-GSK-3β and β-catenin accumulation in HFDPC. Finally, the promoting effect of SA in hHFDPC cell growth occurred by the induction of cell cycle progression. These results suggest that SA could be one of the potential candidate compounds for the treatment of alopecia by inducing hair growth through triggering the expressions of growth factors via activation of Akt and subsequent inactivation of GSK-3β /β-catenin pathway.
Rice, Megan S; Tamimi, Rulla M; Connolly, James L; Collins, Laura C; Shen, Dejun; Pollak, Michael N; Rosner, Bernard; Hankinson, Susan E; Tworoger, Shelley S
2012-03-13
Previous research in the Nurses' Health Study (NHS) and the NHSII observed that, among women diagnosed with benign breast disease (BBD), those with predominant type 1/no type 3 lobules (a marker of complete involution) versus other lobule types were at lower risk of subsequent breast cancer. Studies in animal models suggest that insulin-like growth factor-1 (IGF-1) may inhibit involution of lobules in the breast; however, this has not been studied in humans. We conducted a cross-sectional study among 472 women in the NHSII who were diagnosed with biopsy-confirmed proliferative BBD between 1991 and 2002 and provided blood samples between 1996 and 1999. A pathologist, blinded to exposure status, classified lobule type in normal adjacent tissue on available biopsy slides according to the number of acini per lobule. For each participant, the pathologist determined the predominant lobule type (that is, type 1, type 2, or type 3) and whether any type 1 or any type 3 lobules were present. Lobule type was then classified as: predominant type 1/no type 3 lobules, which is suggestive of complete involution; or other lobule types. Multivariate logistic models were used to assess the associations between plasma IGF-1, insulin-like growth factor binding protein-3 (IGFBP-3), and the ratio of IGF-1:IGFBP-3 levels with lobule type. In univariate analyses, greater age, higher body mass index, postmenopausal status, nulliparity, and lower IGF-1 levels were associated with predominant type 1/no type 3 lobules (P < 0.05). In multivariate models adjusting for age and assay batch, higher IGF-1 levels were associated with decreased odds of predominant type 1/no type 3 lobules (odds ratio quartile 4 vs. quartile 1 = 0.37, 95% confidence interval = 0.15 to 0.89). Greater ratios of IGF-1:IGFBP-3 levels were also associated with decreased odds of predominant type 1/no type 3 lobules (odds ratio quartile 4 vs. quartile 1 = 0.26, 95% confidence interval = 0.11 to 0.64). These results were slightly attenuated after adjustment for other potential predictors of lobule type. Higher IGF-1 levels and a greater IGF-1:IGFBP-3 ratio were associated with decreased odds of having predominant type 1 lobules/no type 3 lobules among women with proliferative BBD in the NHSII. This study provides further evidence for the role of insulin-like growth factors in the structure of breast lobules and lobular involution.
Tajima, Satoshi; Tobita, Morikuni; Orbay, Hakan; Hyakusoku, Hiko; Mizuno, Hiroshi
2015-03-01
A key goal for successful bone regeneration is to bridge a bone defect using healing procedures that are stable and durable. Adipose-derived stem cells (ASCs) have the potential to differentiate into bone. Meanwhile, platelet-rich plasma (PRP) is an interesting biological means to repair tissue by inducing chemotactic, proliferative, and anabolic cellular responses. This study evaluated bone regeneration using a combination of ASCs and PRP in a rat calvarial defect model. ASCs were isolated from inguinal fat pads of F344 inbred rats, while PRP was prepared from these rats. ASCs were cultured in control medium supplemented with 10% fetal bovine serum or 5% PRP in vitro. After 1 week, levels of growth factors including insulin-like growth factor-1, transforming growth factor-β1, hepatocyte growth factor, and vascular endothelial growth factor in the culture supernatant were measured by enzyme-linked immunosorbent assays. Moreover, the ASC/PRP admixture was transplanted into the rat calvarial defect. Microcomputed tomography, histological, and immunohistochemical (osteopontin and osteocalcin) analyses were performed at 4 and 8 weeks after transplantation. The in vitro study showed that the levels of growth factors secreted by ASCs were significantly increased by the addition of PRP. Transplantation of the ASC/PRP admixture had dramatic effects on bone regeneration overtime in comparison with rats that received other transplants. Furthermore, some ASCs directly differentiated into osteogenic cells in vivo. These findings suggest that the combination of ASCs and PRP has augmentative effects on bone regeneration. The ASC/PRP admixture may be a promising source for the clinical treatment of cranial defects.
Guo, Yongze; Ding, Qian; Chen, Lei; Ji, Chenguang; Hao, Huiyao; Wang, Jia; Qi, Wei; Xie, Xiaoli; Ma, Junji; Li, Aidi; Jiang, Xiaoyu; Li, Xiaotian; Jiang, Huiqing
2017-08-01
The role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver fibrosis is not clear and is sometimes even contradictory. To clarify this role, a HB-EGF transgenic (Tg) mouse model was, for the first time, used to evaluate the functions of HB-EGF in liver fibrosis. For the in vivo study, carbon tetrachloride injection and bile duct ligation treatment were used to induce liver fibrosis in HB-EGF Tg mice and wild-type (WT) mice, respectively. Primary hepatic satellite cells (HSCs) were isolated from HB-EGF Tg and WT mice for the in vitro study. Compared with the WT mice, HB-EGF Tg mice were shown to develop more severe liver fibrosis when treated with carbon tetrachloride or bile duct ligation, with increased matrix metalloproteinases 13 activity and enhanced expression of fibrogenic genes including α-smooth muscle actin and collagen I. HB-EGF gene transfer led to an increase in proliferation and a decrease in apoptosis in primary HSCs. The ERK signaling pathway was more highly activated in primary HSCs from HB-EGF Tg mice than in those from WT mice. Our investigation confirmed the profibrotic effect of HB-EGF on the liver using a Tg mouse model. This result may contribute to the elucidation of HB-EGF as a therapeutic target in liver fibrosis. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Weigent, Douglas A; Arnold, Robyn E
2005-03-01
Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayanth, V.R.; Belfi, C.A.; Swick, A.R.
1995-08-01
Plateau-phase A549 cells exhibit a high capacity for repair of potentially lethal radiation damage (PLD) when allowed to recover in their own spent medium. Addition of either insulin or insulin-like growth factor-1 (IGF-1) to the spent medium 60 to 120 min before irradiation significantly inhibits PLD repair. The 9-h recovery factor (survival with holding/survival without holding)is reduced from 10.8 {plus_minus} 0.7 to 3.4 {plus_minus}0.3 by insulin and to 3.0 {plus_minus} 0.4 by IGF-1. Neither growth factor alters the cell age distribution of the plateau-phase cells, increases the rate of incorporation of 5-bromo-2{prime}-deoxyuridine into DNA, or alters the extent of radiation-inducedmore » mitotic delay in cells subcultured immediately after irradiation. Both insulin and IGF-1 alter the kinetics for rejoining of DNA double-strand breaks (DSBs), slowing the fast component of rejoining significantly. However, these growth factors have no effect on the initial level of DSBs or on the percentage of residual unrejoined breaks at 120 min postirradiation. Both growth factors affect repair of lesions leading to dicentric, but not to acentric, chromosome aberrations significantly. In control cells (treated with phosphate-buffered saline, 90 min prior to irradiation), the half-time for disappearance of dicentrics was 4.1 h (3.4 to 5.1 h), and 47.1 {plus_minus} 3.7% of the residual damage remained at 24 h postirradiation. Insulin and IGF-1 increased the half-time for disappearance of dicentrics to 5.2 h (3.9 to 7.7 h) and 5.7 h (5.5 to 5.9 h), respectively, and increased residual damage to 56.1 {plus_minus}5.9% and 60.8 {plus_minus} 6.0%, respectively. Overall, these data show that insulin and IGF-1 inhibit PLD repair in A54j9 cells by mechanisms which are independent of changes in cell cycle parameters. The data suggest that the growth factors act by inducing changes in chromatin conformation which promote misrepair of radiation-damaged DNA. 49 refs., 5 figs., 4 tabs.« less
Inflammatory Diseases and Growth: Effects on the GH–IGF Axis and on Growth Plate
Lazzeroni, Pietro; Sartori, Chiara
2017-01-01
This review briefly describes the most common chronic inflammatory diseases in childhood, such as cystic fibrosis (CF), inflammatory bowel diseases (IBDs), juvenile idiopathic arthritis (JIA), and intrauterine growth restriction (IUGR) that can be considered, as such, for the changes reported in the placenta and cord blood of these subjects. Changes in growth hormone (GH) secretion, GH resistance, and changes in the insulin-like growth factor (IGF) system are described mainly in relationship with the increase in nuclear factor-κB (NF-κB) and pro-inflammatory cytokines. Changes in the growth plate are also reported as well as a potential role for microRNAs (miRNAs) and thus epigenetic changes in chronic inflammation. Many mechanisms leading to growth failure are currently known; however, it is clear that further research in the field is still warranted. PMID:28858208
Drucker, Claudia; Parzefall, Wolfram; Teufelhofer, Olga; Grusch, Michael; Ellinger, Adolf; Schulte-Hermann, Rolf; Grasl-Kraupp, Bettina
2006-01-01
Hepatocellular carcinoma almost always arises in chronically inflamed livers. We developed a culture model to study the role of non-parenchymal cells (NPCs) for inflammation-driven hepatocarcinogenesis. Rats were treated with the carcinogen N-nitrosomorpholine, which induced initiated hepatocytes expressing the marker placental glutathione-S-transferase (GSTp). After 21 days two preparations of hepatocytes were made: (i) conventional ones (Hep-conv) containing NPCs and (ii) hepatocytes purified of NPCs (Hep-pur). Initiated hepatocytes, being positive for GSTp (GSTp-pos) were present in both preparations and were cultured along with normal hepatocytes, being negative for GSTp (GSTp-neg). Under any culture condition DNA synthesis was approximately 4-fold higher in GSTp-pos than in GSTp-neg hepatocytes demonstrating the inherent growth advantage of the first stages of hepatocarcinogenesis. Hepatocytes showed approximately 3-fold lower rates of DNA synthesis in Hep-pur than in Hep-conv, which was elevated above Hep-conv levels by addition of NPC or NPC-supernatant. Pretreatment of NPCs with proinflammatory lipopolysaccharide (LPS) further increased DNA synthesis. Thus, NPCs release soluble growth stimulators. Next we investigated the effect of specific cytokines produced by NPCs. Tumour necrosis factor alpha and interleukin 6 barely altered DNA synthesis, whereas hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and the heparin-binding epidermal growth factor-like growth factor (HB-EGF) were potent inducers of DNA replication in both, GSTp-neg and GSTp-pos cells. In conclusion, DNA synthesis of hepatocytes is increased by factors released from NPCs, an effect augmented by LPS-stimulation. NPC-derived cytokines, such as KGF, HGF and HB-EGF, stimulate DNA synthesis preferentially in initiated hepatocytes, presumably resulting in tumour promotion. Similar mechanisms may contribute to carcinogenesis in human inflammatory liver diseases.
A Fatigue Life Prediction Method Based on Strain Intensity Factor
Zhang, Wei; Liu, Huili; Wang, Qiang; He, Jingjing
2017-01-01
In this paper, a strain-intensity-factor-based method is proposed to calculate the fatigue crack growth under the fully reversed loading condition. A theoretical analysis is conducted in detail to demonstrate that the strain intensity factor is likely to be a better driving parameter correlated with the fatigue crack growth rate than the stress intensity factor (SIF), especially for some metallic materials (such as 316 austenitic stainless steel) in the low cycle fatigue region with negative stress ratios R (typically R = −1). For fully reversed cyclic loading, the constitutive relation between stress and strain should follow the cyclic stress-strain curve rather than the monotonic one (it is a nonlinear function even within the elastic region). Based on that, a transformation algorithm between the SIF and the strain intensity factor is developed, and the fatigue crack growth rate testing data of 316 austenitic stainless steel and AZ31 magnesium alloy are employed to validate the proposed model. It is clearly observed that the scatter band width of crack growth rate vs. strain intensity factor is narrower than that vs. the SIF for different load ranges (which indicates that the strain intensity factor is a better parameter than the stress intensity factor under the fully reversed load condition). It is also shown that the crack growth rate is not uniquely determined by the SIF range even under the same R, but is also influenced by the maximum loading. Additionally, the fatigue life data (strain-life curve) of smooth cylindrical specimens are also used for further comparison, where a modified Paris equation and the equivalent initial flaw size (EIFS) are involved. The results of the proposed method have a better agreement with the experimental data compared to the stress intensity factor based method. Overall, the strain intensity factor method shows a fairly good ability in calculating the fatigue crack propagation, especially for the fully reversed cyclic loading condition. PMID:28773049
Jiang, Hua; Feng, You-Ji; Xie, Yi; Han, Jin-Lan; Wang, Zack; Chen, Tong
2008-10-14
To establish a sprouting embryoid body model mimicking early embryonic vasculogenesis in human embryo. Human embryonic stem were (hESCs) were cultured on the mouse embryo fibroblasts and then were induced to differentiate to form three-dimensional EB. The hEBs were cultured in media containing various angiogenesis-related factors: vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), endostatin, angiostatin, and platelet factor (PF)-4 of different concentrations for 3 days to observe the sprouting of the hEBs. 3, 3, 3', 3'-tetramethylindo-carbocyanine perchlorate labeled acetylated low density lipoprotein (Dil-AcLDL) was added onto the hEBs foe 4 h Immunofluorescence assay was used to observe if Dil-AcLDL was absorbed and if CD31 was expressed so as to determine the existence of embryonic endothelial cells in the sprouting structures. The ideal culturing condition was analyzed. The differentiated EBs formed sprouting structures in the collagen I matrix containing VEGF and FGF. The sprouts among individual EBs were able to link to each other and form vascular network-like structures. In the presence of VEGF and FGF, the sprouts branching from the EBs assimilated Dil-AcLDL, expressed CD31 and formed a 3-dimensional cylindrical organization. The concentrations of growth factors ideally stimulating sprouting growth were 100 ng/ml of VEGF and 50 ng/ml of FGF. The networks among the EBs were abolished by the angiostatin, endostatin, and PF4. The sprouting from hEBs accumulates embryonic endothelial cells and the sprouting network-like structures are indeed endothelial in nature. Inducing of sprouting EBs is an ideal model that mimics early embryonic vasculogenesis in humans.
Raia-Barjat, Tiphaine; Prieux, Carole; Gris, Jean-Christophe; Chapelle, Céline; Laporte, Silvy; Chauleur, Céline
2017-09-22
The study aimed to compare the level of two angiogenic factors, soluble fms-like tyrosine kinase-1 (sFlt1) and soluble endoglin (sEng), for the prediction of preeclampsia and intrauterine growth restriction in high-risk pregnant women. A prospective multicenter cohort study of 200 pregnant patients was conducted between June 2008 and October 2010. sFlt1 and sEng were measured by enzyme-linked immunosorbent assay. Forty-five patients developed a placenta-mediated adverse pregnancy outcome. Plasma levels of sFlt1 and sEng were higher in patients who will experience a preeclampsia at 28, 32, and 36 weeks compared with patients with no complication. The same results were observed for intrauterine growth restriction. Plasma levels of sFlt1 and sEng were not significantly different for patients with preeclampsia compare to patients with intrauterine growth restriction. Patients with early pre-eclampsia (PE) had very high rates of angiogenic factors at 20, 24, and 28 weeks. Patients with late PE and early and late intrauterine growth retardation (IUGR) had high rates at 32 and 36 weeks. In high-risk women, angiogenic factors are disturbed before the onset of preeclampsia and this is true for intrauterine growth restriction.
Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Yunguang; Zheng Siyuan; Torossian, Artour
2012-03-01
Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133more » and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.« less
Kucera, Radek; Babuska, Vaclav; Ulcova-Gallova, Zdenka; Kulda, Vlastimil; Topolcan, Ondrej
2018-06-01
Anti-Müllerian hormone (AMH), insulin-like growth factor 1 (IGF1) and leptin are produced in the granulosa cells of follicles and play an important role in the growth and maturation of follicles. The aim of our study was to monitor AMH, IGF1 and leptin levels in a group of healthy women and compare them to a group of women with fertility disorders. The second aim was the evaluation of biomarker levels in relation to the identified cause of infertility. Totally, 146 females were enrolled into our study. Seventy-two healthy controls and seventy-four females with fertility disorders were divided into four subgroups: anovulation, endometriosis, fallopian tube damage, unknown reason. IGF1 was the only biomarker with significantly lower levels throughout the entire group with fertility disorders. We did not identify any statistically significant differences for AMH and leptin. Regarding subgroups, significant differences were only observed in the group of anovulatory women. AMH and leptin showed higher levels while IGF1 showed lower levels. In conclusion, levels of AMH, IGF1 and leptin found in follicular fluid are sensitive markers for anovulatory fertility disorders. AMH, IGF1 and leptin levels in follicular fluid have no relation to the fertility disorders caused by endometriosis, fallopian tube damage or disorders with unknown etiology. AMH: anti-Müllerian hormone; IGF1: insulin-like growth factor 1; PCOS: polycystic ovary syndrome.
Tumor necrosis factor-alpha converting enzyme in the human placenta throughout gestation.
Hung, Tai-Ho; Chen, Szu-Fu; Hsieh, Ching-Chang; Hsu, Jenn-Jeih; Li, Meng-Jen; Yeh, Yi-Lin; Hsieh, T'sang-T'ang
2008-02-01
Ectodomain shedding of epidermal growth factor receptor ligands such as transforming growth factor- alpha (TGF-alpha), heparin-binding epidermal growth factor-like growth factor (HBEGF), and amphiregulin (AREG) is considered to be important during implantation. Tumor necrosis factor-alpha converting enzyme (TACE) has been suggested as the major sheddase for these molecules. The objectives of this study are (1) to characterize the expression of TACE in the human placenta throughout gestation; (2) to determine the association between the expression of TACE with TGF-alpha, HBEGF, and AREG; (3) to ascertain whether TACE mediates TGF-alpha, HBEGF, and AREG shedding; and (4) to examine the effect of hypoxia on the expression of TACE. By analyzing a total of 55 villous samples representing different gestational ages, the authors found that TACE was continuously expressed in the placentas throughout gestation and that the levels of TACE were positively correlated with the levels of TGF-alpha, HBEGF, and AREG. Preadministration of a TACE inhibitor in villous explant cultures or transfection of cytotrophoblastic cells with TACE-specific small interference RNA decreased the shedding of HBEGF and AREG. Moreover, hypoxia (2% O(2)) caused an increase in the levels of TACE mRNA and protein in villous explants and primary cytotrophoblastic cells in vitro. These results indicate that oxygen regulates the expression of TACE and that TACE may be important for placental development during human pregnancy.
NASA Technical Reports Server (NTRS)
Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.
1994-01-01
Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.
Association of p21ras with phosphatidylinositol 3-kinase.
Sjölander, A; Yamamoto, K; Huber, B E; Lapetina, E G
1991-01-01
In mammalian cells, ras genes code for 21-kDa GTP-binding proteins. Increased expression and mutations in specific amino acids have been closely linked to alterations of normal cell morphology, growth, and differentiation and, in particular, to neoplastic transformation. The signal transduction induced by these p21ras proteins is largely unknown; however, the signaling pathways of several growth factors have been reported to involve phosphatidylinositol (PtdIns) 3-kinase. In the present study of a Ha-ras-transformed epithelial cell line, we demonstrated increased PtdIns 3-kinase activity in anti-phosphotyrosine and anti-receptor (insulin and hybrid insulin-like growth factor I) immunoprecipitates of cells that had been stimulated with insulin or insulin-like growth factor I. The PtdIns 3-kinase activity was also immunoprecipitated in these experiments by the anti-Ras monoclonal antibody Y13-259. The specificity of this association with p21ras was ascertained by the neutralizing effect of the antigen peptide and the absence of PtdIns 3-kinase activity in Y13-259 immunoprecipitates from cells in which the ras gene was turned off. These data indicate that PtdIns 3-kinase activity is an important step in the cascade of reactions in p21ras signal transduction, suggesting that the alterations of the cytoskeleton and growth in ras-transformed cells could be mediated by PtdIns 3-kinase activity. Images PMID:1716764
Nwosu, Benjamin U; Soyka, Leslie A; Angelescu, Amanda; Lee, Mary M
2011-01-01
The ternary complex is composed of insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3 and acid labile subunit (ALS). Growth hormone (GH) promotes IGFBP-3 proteolysis to release free IGF-I, ALS, and IGFBP-3 fragments. Our aim was to determine whether elevated GH levels during GH stimulation testing would trigger IGFBP-3 proteolysis. This prospective study of 10 short prepubertal children (height standard deviation score -2.37 +/- 0.31) used arginine and GH releasing hormone stimulation to study dynamic changes in the ternary complex moieties. IGFBP-3 was measured in two assays: a radioimmunoassay (RIA) that detects both cleaved and intact IGFBP-3; and an immunochemiluminescence assay (ICMA) that detects only intact IGFBP-3. IGFBP-3 measured by RIA increased by 19% (p < 0.05), while IGFBP-3 measured by ICMA did not significantly increase (6.1%). The significant increase in IGFBP-3 measured by RIA, but not ICMA, provides evidence of IGFBP-3 proteolysis during acute GH stimulation.
Sowmya, S; Mony, Ullas; Jayachandran, P; Reshma, S; Kumar, R Arun; Arzate, H; Nair, Shantikumar V; Jayakumar, R
2017-04-01
A tri-layered scaffolding approach is adopted for the complete and concurrent regeneration of hard tissues-cementum and alveolar bone-and soft tissue-the periodontal ligament (PDL)-at a periodontal defect site. The porous tri-layered nanocomposite hydrogel scaffold is composed of chitin-poly(lactic-co-glycolic acid) (PLGA)/nanobioactive glass ceramic (nBGC)/cementum protein 1 as the cementum layer, chitin-PLGA/fibroblast growth factor 2 as the PDL layer, and chitin-PLGA/nBGC/platelet-rich plasma derived growth factors as the alveolar bone layer. The tri-layered nanocomposite hydrogel scaffold is cytocompatible and favored cementogenic, fibrogenic, and osteogenic differentiation of human dental follicle stem cells. In vivo, tri-layered nanocomposite hydrogel scaffold with/without growth factors is implanted into rabbit maxillary periodontal defects and compared with the controls at 1 and 3 months postoperatively. The tri-layered nanocomposite hydrogel scaffold with growth factors demonstrates complete defect closure and healing with new cancellous-like tissue formation on microcomputed tomography analysis. Histological and immunohistochemical analyses further confirm the formation of new cementum, fibrous PDL, and alveolar bone with well-defined bony trabeculae in comparison to the other three groups. In conclusion, the tri-layered nanocomposite hydrogel scaffold with growth factors can serve as an alternative regenerative approach to achieve simultaneous and complete periodontal regeneration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anitua, Eduardo; Sánchez, Mikel; de la Fuente, Maria; Azofra, Juan; Zalduendo, Mar; Aguirre, Jose J.; Andía, Isabel
2009-01-01
Objective. To examine new investigative biomarkers and their relevance for radiographic severity in knee osteoarthritis. Methods. The group comprised 63 patients with 73 knees examined. Patients were divided according to radiographic severity to allow for comparison of biomarker levels. Hyaluronic acid (HA), matrix metalloproteases (MMP-1, MMP-3 and MMP-13), tissue inhibitors of metalloproteases (TIMP-1 and TIMP-2), platelet-derived growth factor (PDGF-AB), transformed growth factor (TGF-β), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF) and insulin-like growth factor (IGF-I) were measured on synovial fluid and in plasma releasate at a single time point. Principal component analysis (PCA) followed by analysis of covariance were applied to evaluate data. Results. Four different groups of biomarker were identified in plasma releasates. The first (platelet number, PDGF-AB and TGF-β) and second groups (HA and IGF-I) were related to radiographic severity, P = .005 and P = .022, respectively. The third (MMP-1 and TIMP-2) and fourth groups (MMP-3 and TIMP-1) represented the catabolic balance, but were not associated to radiographic grading. Three different clusters of biomarkers were found in synovial fluid but did not show any significant association to radiographic grading. Conclusions. New imaging approaches to assess structural deterioration and correlation with biomarker levels are warranted to advance in OA research. PMID:20130801
Applications of Microscale Technologies for Regenerative Dentistry
Hacking, S.A.; Khademhosseini, A.
2009-01-01
While widespread advances in tissue engineering have occurred over the past decade, many challenges remain in the context of tissue engineering and regeneration of the tooth. For example, although tooth development is the result of repeated temporal and spatial interactions between cells of ectoderm and mesoderm origin, most current tooth engineering systems cannot recreate such developmental processes. In this regard, microscale approaches that spatially pattern and support the development of different cell types in close proximity can be used to regulate the cellular microenvironment and, as such, are promising approaches for tooth development. Microscale technologies also present alternatives to conventional tissue engineering approaches in terms of scaffolds and the ability to direct stem cells. Furthermore, microscale techniques can be used to miniaturize many in vitro techniques and to facilitate high-throughput experimentation. In this review, we discuss the emerging microscale technologies for the in vitro evaluation of dental cells, dental tissue engineering, and tooth regeneration. Abbreviations: AS, adult stem cell; BMP, bone morphogenic protein; ECM, extracellular matrix; ES, embryonic stem cell; HA, hydroxyapatite; FGF-2, fibroblast growth factor; iPS, inducible pleuripotent stem cell; IGF-1, insulin-like growth factor; PDGF, platelet-derived growth factor; PDMS, poly(dimethylsiloxane); PGA, polyglycolate; PGS, polyglycerol sebacate; PLGA, poly-L-lactate-co-glycolate; PLL, poly-L-lactate; RGD, Arg-Gly-Asp attachment site; TCP, tricalcium phosphate; TGF-β, transforming growth factor beta; and VEGF, vascular endothelial growth factor. PMID:19493883
Neira, J A; Tainturier, D; Peña, M A; Martal, J
2010-03-15
This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; P<0.05) on Day 8 after in vitro fertilization and similar results to use of SOF+10% fetal calf serum (38% and 16%, at the same stages, respectively). The averages of total cells, inner cell mass cells, and trophectoderm cells of exclusively in vitro Day-8 blastocysts for pooled GF-CYK treatments were higher than those for SOF and similar to those for fetal calf serum. The presence of these growth factors and cytokines in the embryo culture medium therefore has a combined stimulatory action on embryonic development; in particular through an increase in hatching rate and in the number of cells of both the inner cell mass and trophoblast. These results are the first to demonstrate that use of a combination of recombinant growth factors and cytokine, as IGF-I, IGF-II, bFGF, TGF-beta1, LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the biosecurity of embryo transfer. Copyright 2010 Elsevier Inc. All rights reserved.
Assessing skeletal maturity by using blood spot insulin-like growth factor I (IGF-I) testing.
Masoud, Mohamed; Masoud, Ibrahim; Kent, Ralph L; Gowharji, Nour; Cohen, Laurie E
2008-08-01
Accurate determination of skeletal maturity and remaining growth is crucial to many orthodontic, orthognathic, and dental-implant timing decisions. Cervical vertebral stages and hand-wrist radiographs are currently used to identify peak mandibular bone growth. These are highly subjective techniques that not only involve radiographic exposure but also lack the ability to determine the intensity of the growth spurt and the end of growth. Insulin-like growth factor I (IGF-I) is a circulating growth hormone-dependent factor whose level correlates with sexual maturity; it is used to diagnose growth hormone deficiency and excess. We hypothesized that IGF-I levels would also correlate with cervical skeletal maturity and would be highest at the cervical stages that correspond to the greatest amount of facial growth. We measured mean blood spot IGF-I levels in a cross-sectional study of 83 patients (44 female, 39 male) on recall to begin orthodontic treatment, in active treatment, or in posttreatment follow-up. Mean blood spot IGF-I levels were significantly higher in the late pubertal stages than in the prepubertal, early pubertal, and postpubertal stages. Linear correlation showed that IGF-I levels had a significant positive correlation with cervical skeletal maturity from the prepubertal to the late pubertal stages, and a significant negative correlation from the late pubertal to the postpubertal stages. In the postpubertal stage, IGF-I levels had a negative linear correlation with increasing time since the onset of puberty and with chronological age. Blood spot IGF-I could be used as a skeletal maturity indicator and might be useful in detecting residual mandibular growth in young adults.
USDA-ARS?s Scientific Manuscript database
Background: The peptide hormones insulin-like growth factor-1 (IGF1) and leptin mediate a myriad of biological effects both in the peripheral and central nervous systems. The transcription of these two hormones is regulated by the transcription factor C/EBPa, which in turn is negatively regulated by...
Effect of growth hormone deficiency on brain structure, motor function and cognition.
Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Chong, Wui K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T
2012-01-01
The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone <6.7 µg/l) and idiopathic short stature (peak growth hormone >10 µg/l) underwent cognitive assessment, diffusion tensor imaging and volumetric magnetic resonance imaging prior to commencing growth hormone treatment. Total brain, corpus callosal, hippocampal, thalamic and basal ganglia volumes were determined using Freesurfer. Fractional anisotropy (a marker of white matter structural integrity) images were aligned and tract-based spatial statistics performed. Fifteen children (mean 8.8 years of age) with isolated growth hormone deficiency [peak growth hormone <6.7 µg/l (mean 3.5 µg/l)] and 14 controls (mean 8.4 years of age) with idiopathic short stature [peak growth hormone >10 µg/l (mean 15 µg/l) and normal growth rate] were recruited. Compared with controls, children with isolated growth hormone deficiency had lower Full-Scale IQ (P < 0.01), Verbal Comprehension Index (P < 0.01), Processing Speed Index (P < 0.05) and Movement-Assessment Battery for Children (P < 0.008) scores. Verbal Comprehension Index scores correlated significantly with insulin-like growth factor-1 (P < 0.03) and insulin-like growth factor binding protein-3 (P < 0.02) standard deviation scores in isolated growth hormone deficiency. The splenium of the corpus callosum, left globus pallidum, thalamus and hippocampus (P < 0.01) were significantly smaller; and corticospinal tract (bilaterally; P < 0.045, P < 0.05) and corpus callosum (P < 0.05) fractional anisotropy were significantly lower in the isolated growth hormone deficiency group. Basal ganglia volumes and bilateral corticospinal tract fractional anisotropy correlated significantly with Movement-Assessment Battery for Children scores, and corpus callosum fractional anisotropy with Full-Scale IQ and Processing Speed Index. In patients with isolated growth hormone deficiency, white matter abnormalities in the corpus callosum and corticospinal tract, and reduced thalamic and globus pallidum volumes relate to deficits in cognitive function and motor performance. Follow-up studies that investigate the course of the structural and cognitive deficits on growth hormone treatment are now required to confirm that growth hormone deficiency impacts significantly on brain structure, cognitive function and motor performance.
Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther
2013-01-01
The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148
Archetti, Marco; Ferraro, Daniela A; Christofori, Gerhard
2015-02-10
The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the "tragedy of the commons," which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors.
A minireview of E4BP4/NFIL3 in heart failure.
Velmurugan, Bharath Kumar; Chang, Ruey-Lin; Marthandam Asokan, Shibu; Chang, Chih-Fen; Day, Cecilia-Hsuan; Lin, Yueh-Min; Lin, Yuan-Chuan; Kuo, Wei-Wen; Huang, Chih-Yang
2018-06-01
Heart failure (HF) remains a major cause of morbidity and mortality worldwide. The primary cause identified for HF is impaired left ventricular myocardial function, and clinical manifestations may lead to severe conditions like pulmonary congestion, splanchnic congestion, and peripheral edema. Development of new therapeutic strategies remains the need of the hour for controlling the problem of HF worldwide. Deeper insights into the molecular mechanisms involved in etiopathology of HF indicate the significant role of calcium signaling, autocrine signaling pathways, and insulin-like growth factor-1 signaling that regulates the physiologic functions of heart growth and development such as contraction, metabolism, hypertrophy, cytokine signaling, and apoptosis. In view of these facts, a transcription factor (TF) regulating the myriad of these signaling pathways may prove as a lead candidate for development of therapeutics. Adenovirus E4 promoter-binding protein (E4BP4), also known as nuclear-factor, interleukin 3 regulated (NFIL3), a type of basic leucine zipper TF, is known to regulate the signaling processes involved in the functioning of heart. The current review discusses about the expression, structure, and functional role of E4BP4 in signaling processes with emphasis on calcium signaling mechanisms, autocrine signaling, and insulin-like growth factor II receptor-mediated processes regulated by E4BP4 that may regulate the pathogenesis of HF. We propose that E4BP4, being the critical component for the regulation of the above signaling processes, may serve as a novel therapeutic target for HF, and scientific investigations are merited in this direction. © 2018 Wiley Periodicals, Inc.
Cow milk consumption, insulin-like growth factor-I, and human biology: a life history approach.
Wiley, Andrea S
2012-01-01
To assess the life history consequences of cow milk consumption at different stages in early life (prenatal to adolescence), especially with regard to linear growth and age at menarche and the role of insulin-like growth factor I (IGF-I) in mediating a relationship among milk, growth and development, and long-term biological outcomes. United States National Health and Nutrition Examination Survey (NHANES) data from 1999 to 2004 and review of existing literature. The literature tends to support milk's role in enhancing growth early in life (prior to age 5 years), but there is less support for this relationship during middle childhood. Milk has been associated with early menarche and with acceleration of linear growth in adolescence. NHANES data show a positive relationship between milk intake and linear growth in early childhood and adolescence, but not middle childhood, a period of relatively slow growth. IGF-I is a candidate bioactive molecule linking milk consumption to more rapid growth and development, although the mechanism by which it may exert such effects is unknown. Routine milk consumption is an evolutionarily novel dietary behavior that has the potential to alter human life history parameters, especially vis-à-vis linear growth, which in turn may have negative long-term biological consequences. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Lijun; Li Qing, E-mail: qli@swu.edu.cn; Lin Hua
Novel flower-like silver nanoarchitectures were synthesized via a facile and environmentally benign route in the presence of citric acid and ascorbic acid. The flower-like structures are composed of nano-petals of ca. 20 nm in thickness. The products were characterized with X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The growth mechanism of flower-like silver nanoarchitectures involves a film-fold process. Some crucial factors affect the nanocrchitectures growth, such as, pH, the concentration of citric acid, and the concentration of ascorbic acid, have also been discussed.
The Public Face of Kinesiology in the 21st Century
ERIC Educational Resources Information Center
Thomas, Jerry R.
2014-01-01
Recent enrollment growth in kinesiology places it second among academic areas of study in higher education. This article addresses issues that have prompted that growth, will allow it to continue, and examines other likely changes in the field. A major factor in growth has been the value of kinesiology as a major for allied health professional…
[Current strategies in the treatment of renal-cell cancer: targeted therapies].
Trigo, José Manuel; Bellmunt, Joaquim
2008-03-22
Renal-cell carcinoma represents 95% of all renal tumours. The Von Hippel-Lindau (VHL) tumor-suppressor gene is mutated or silenced in most clear cell renal carcinomas. pVHL loss results in the stabilization of the heterodimeric transcription factor hypoxia-inducible factor (HIF) and enhanced transactivation of HIF target genes. HIF itself has been difficult to inhibit with drug-like molecules although a number of agents that indirectly inhibit HIF, including mTOR (mammalian target of rapamycin) inhibitors, have been identified. Moreover, a number of drugs have been developed that target HIF-responsive gene products, such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), implicated in tumor angiogenesis. Many of these targeted therapies, especially sunitinib, have demonstrated significant activity in kidney cancer clinical trials and represent a substantive advance in the treatment of this disease.
Li, Min; Zheng, Fangxiu; Jin, Yanhui; Wang, Mingshan; Zhu, Liqing; Yang, Lihong
2013-03-01
A 25-year-old Chinese woman who had a history of easy bruising was admitted to hospital due to uncontrolled epistaxis. She showed factor VII activity level of 2% and factor VII antigen level of 4% of the normal value. We detected a novel missense mutation g.8355 A>T (p.Gln100Leu) in the second epidermal growth factor-like (EGF) domain and a g.11482 T>G (p.His348Gln) in the catalytic domain. Although the Gln100 residue is close to the junction of EGF-2 domain with the serine protease domain, we infer that the substitution of polar negatively charged Gln residue at the position 100 with introduction of nonpolar Leu residue may be likely to perturb proper folding, resulting in decreasing factor VII activity.
Szewczuk, M
2017-02-01
As a member of the somatotropic axis, insulin-like growth factor I receptor (IGF1R) seems to be a promising candidate gene. Two silent polymorphisms, identified by MspI and TaqI restriction enzymes, were selected within exon 2, encoding the majority of the putative ligand binding pocket. A total of 1169 cows of four pure breeds (Polish Holstein Friesian, Montbeliarde, Jersey and Holstein Friesian) were genotyped. The T (IGF1R/e2/MspI) and G (IGF1R/e2/TaqI) alleles were found to be prevalent. Three combinations of genotypes (TT/GG, TT/AG and CT/GG) were associated with the highest productivity (milk, protein and fat yields) among all breeds under study, as opposed to individuals carrying the worst CC/AA combination. In view of the specific structure of the ligand binding pocket and the significance of insulin-like growth factor I signalling promoting the development and differentiation in a variety of tissues (not only limited to mammary gland), the existence of missense mutation is unlikely. Potential mutations are likely limited to mRNA transcription and further post-transcriptional modifications. Further investigations should follow searching for the most useful IGF1R haplotypes, associated with higher milk production traits, exerting at the same time positive or neutral impact on health and welfare of individuals. © 2016 Blackwell Verlag GmbH.
Rubinek, T; Modan-Moses, D
2016-01-01
The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is pivotal for many metabolic functions, including proper development and growth of bones, skeletal muscles, and adipose tissue. Defects in the axis' activity during childhood result in growth abnormalities, while increased secretion of GH from the pituitary results in acromegaly. In order to keep narrow physiologic concentration, GH and IGF-1 secretion and activity are tightly regulated by hypothalamic, pituitary, endocrine, paracrine, and autocrine factors. Klotho was first discovered as an aging-suppressor gene. Mice that do not express klotho die prematurely with multiple symptoms of aging, several of them are also characteristic of decreased GH/IGF-1 axis activity. Klotho is highly expressed in the brain, the kidney, and parathyroid and pituitary glands, but can also serve as a circulating hormone by its shedding, forming soluble klotho that can be detected in blood, cerebrospinal fluid, and urine. Several lines of evidence suggest an association between klotho levels and activity of the GH/IGF-1 axis: the GH-secreting cells in the anterior pituitary of klotho-deficient mice are hypotrophic; klotho levels are altered in subjects with pathologies of the GH/IGF-1 axis; and accumulating data indicate that klotho is a direct regulator of GH secretion. Thus, klotho seems to be a new player in the intricate regulation of the GH/IGF-1 axis. © 2016 Elsevier Inc. All rights reserved.
O'Riordan, Aisling M; McGrath, Niamh; Sharif, Farhana; Murphy, Nuala P; Franklin, Orla; Lynch, Sally Ann; O'Grady, Michael J
2017-01-01
Haploinsufficiency of the insulin-like growth factor-1 receptor (IGF1R) gene on chromosome 15q26.3 is associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. Terminal deletions of chromosome 15q26 arising more proximally may also be associated with congenital heart disease, epilepsy, diaphragmatic hernia and renal anomalies. We report three additional cases of 15q26 terminal deletions with novel features which may further expand the spectrum of this rarely reported contiguous gene syndrome. Phenotypic features including neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been reported previously. Similarly, laboratory features of insulin-like growth factor 1 (IGF-1) resistance are described, including markedly elevated IGF-1 of up to +4.7 SDS. In one patient, the elevated IGF-1 declined over time and this coincided with a period of spontaneous growth acceleration. Deletions of 15q26 are a potential risk factor for aortic root dilatation, neonatal lymphedema and aplasia cutis in addition to causing growth restriction. What is Known: • Terminal deletions of chromosome 15q26 are associated with impaired prenatal and postnatal growth, developmental delay, dysmorphic features and skeletal abnormalities. What is New: • Neonatal lymphedema, aplasia cutis congenita and aortic root dilatation have not been previously described in 15q26 terminal deletions and may represent novel features. • IGF-1 levels may be increased up to 4.7 SDS.
Mimeault, Murielle; Batra, Surinder K
2013-01-01
Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse. PMID:23301832
Ong, C K; Tan, W C; Chan, L C; Abdul Razak, M
2012-04-01
Epidermal growth factor receptor (EGFR)--tyrosine kinase inhibitors (TKI) like erlotinib and gefitinib have been approved as monotherapy for the treatment of patients with locally advanced or metastatic non small cell lung cancer (NSCLC) after failure of at least one prior chemotherapy regimen. The use of EGFR-TKI is associated with unique and dramatic dermatologic side effects. We report 2 patients with NSCLC developing a typical acneiform (papulo-pustular) eruption shortly after initiation of EGFR-TKI.
Dixit, Jaya
2016-01-01
Introduction In recent years, emphasis on the use of growth factors for periodontal healing is gaining great momentum. Several growth factors showed promising results in periodontal regeneration. Aim This study was designed to compare the clinical outcomes of 0.8μg recombinant human Vascular Endothelial Growth Factor (rh-VEGF) and 10μg recombinant human Insulin Like Growth Factor-I (rh-IGF-I) with β-Tricalcium Phosphate (β-TCP) and Polylactide-Polyglycolide Acid (PLGA) membrane in two wall intra-osseous defects. Materials and Methods A total of 29 intra-osseous defects in 27 subjects were randomly divided into 3 test and 1 control group. Test group I (n=8) received rh-VEGF+ rh-IGF-I, Test group II (n=7) rh-VEGF, Test group III (n=7) rh-IGF-I and control group (n=7) with no growth factor, β-TCP and PLGA membrane was used in all the groups. Baseline soft tissue parameters including Probing Pocket Depth (PPD), Clinical Attachment Level (CAL), and Gingival Recession (GR) at selected sites were recorded at baseline and at 6 months. Intrasurgically, intra-osseous component was calculated as a) Cemento-Enamel Junction to Bone Crest (CEJ to BC), b) Bone Crest to Base of the Defect (BC to BD) at baseline and at re-entry. The mean changes at baseline and after 6 months within each group were compared using Wilcoxon Signed Rank Test. The mean changes for each parameter between groups were compared using Mann-Whitney U test. Results After 6 months, maximum mean PPD reduction occurred in test group I followed by test group II, III and control group. Similar trend was observed in CAL gain. Non-significant GR was present in test group I and control group whereas in test group II and III GR was absent. The use of rh-VEGF+ rhIGF-I exhibited 95.8% osseous fill as compared to 54.8% in test group II, 52.7% in test group III and 41.1 % in the control group. Conclusion Within the limitations of this study, it can be concluded that, rh-IGF-I+rh-VEGF treated sites resulted in greater improvement in PPD reduction, CAL gain as well as in osseous fill after 6 months when compared with rh-VEGF, rh-IGF-I and control sites. PMID:27790578
Lurie, R; Ben-Amitai, D; Laron, Z
2004-01-01
Classical Laron syndrome is a recessive disease of primary insulin-like growth factor 1 (IGF-1) deficiency and primary growth hormone insensitivity. Affected children have, among other defects, sparse hair growth and frontal recessions. The hair is thin and easy to pluck. Young adults have various degrees of alopecia, more pronounced in males. The aim of the present study was to investigate the effect of primary IGF-1 deficiency on hair structure. The study sample included 11 patients with Laron syndrome--5 children (2 untreated) and 6 adults (5 untreated). Hairs were examined by light and electron microscopy. The most significant structured defect, pili torti et canaliculi, was found in 2 young, untreated patients. Grooving, tapered hair and trichorrhexis nodosa were found in the remainder. IGF-1-treated patients had either none or significantly fewer pathological changes compared to the untreated patients. This is the first documentation of the role of primary IGF-1 deficiency on hair structure in human beings. Copyright 2004 S. Karger AG, Basel
Growth Hormone and Insulin-Like Growth Factor-1.
Nicholls, Adam R; Holt, Richard I G
2016-01-01
Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. © 2016 S. Karger AG, Basel.
Ambler, Geoffrey
2002-09-01
The predominant influences on fetal growth are maternal and placental factors. Post-natal growth is regulated by a complex interaction between genetic, environmental and hormonal influences. The role of the growth hormone insulin-like growth factor (GH-IGF) system is explored, including the emerging role of IGF-2 in fetal growth. Increasing understanding of the genetics of overgrowth and short stature syndromes is contributing greatly to basic understanding of growth regulation. A range of prenatal overgrowth syndromes is discussed, including those associated with neonatal hyperinsulinism and hypoglycaemia.Post-natal overgrowth may be caused by a diverse range of normal variant conditions, endocrine disorders, chromosomal abnormalities and other genetic syndromes. An approach to diagnosis is presented and major conditions discussed in detail. Sex-steroid therapy for height limitation continues to be a controversial area with uncertainty about height prediction, benefits achieved and possible long-term side-effects.
What Factors Sustain Professional Growth among School Counselors?
ERIC Educational Resources Information Center
Konstam, Varda; Cook, Amy L.; Tomek, Sara; Mahdavi, Esmaeil; Gracia, Robert; Bayne, Alexander H.
2015-01-01
This study examined relationships among self-reported professional expertise, organizational support of evidence-based practices (EBP), and professional growth. Data were collected from 85 members of American School Counseling Association (ASCA). School counselors with higher self-reported expertise reported that they were more likely to improve…
White adipose tissue and cardiovascular disease.
Matsuzawa, Yuji
2005-12-01
Adipocytes have recently been shown to secrete a variety of bioactive substances called 'adipocytokines', and have been recognized as endocrine cells. Tumour necrosis factor (TNF)-alphaalpha, plasminogen activator inhibitor-1 (PAI-1) and heparin-binding epidermal-growth-factor-like growth factor (HBEGF) are among these adipocytokines, and they contribute to the development of vascular diseases. Visfatin is a visceral fat-specific protein that may be related to the development of obesity-related diseases such as diabetes mellitus and cardiovascular disease. In contrast, adiponectin, an adipose-tissue-specific collagen-like protein, has recently been reported as an important anti-atherogenic and anti-diabetic protein. Adipocytokine secretion may be regulated dynamically by the nutritional state. Visceral fat accumulation leads to dysfunction of adipocytes (including hypersecretion of TNF-alphaalpha, PAI-1 and HBEGF, and hyposecretion of adiponectin), which results in the development of a variety of metabolic and circulatory diseases. In this review, the importance of adipocytokines, including adiponectin, is discussed with respect to cardiovascular disease.
The Insulin-Like Growth Factor System and Nutritional Assessment
Livingstone, Callum
2012-01-01
Over recent years there has been considerable interest in the role of the insulin-like growth factor (IGF) system in health and disease. It has long been known to be dysregulated in states of under- and overnutrition, serum IGF-I levels falling in malnourished patients and responding promptly to nutritional support. More recently, other proteins in this system have been observed to be dysregulated in both malnutrition and obesity. Currently no biochemical marker is sufficiently specific for use in screening for malnutrition, but levels may be valuable in providing information on nutritional status and in monitoring of nutritional support. All have limitations as nutritional markers in that their serum levels are influenced by factors other than nutritional status, most importantly the acute phase response (APR). Levels should be interpreted along with clinical findings and the results of other investigations such as C-reactive protein (CRP). This paper reviews data supporting the use of proteins of the IGF system as nutritional markers. PMID:24278739
Periostin Limits Tumor Response to VEGFA Inhibition.
Keklikoglou, Ioanna; Kadioglu, Ece; Bissinger, Stefan; Langlois, Benoît; Bellotti, Axel; Orend, Gertraud; Ries, Carola H; De Palma, Michele
2018-03-06
Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs) under extended vascular-endothelial growth factor A (VEGFA) blockade are dependent on periostin (POSTN), a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA + stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy. POSTN deficiency also impeded the upregulation of basic fibroblast growth factor (FGF2), an adaptive mechanism previously implicated in PNET evasion from antiangiogenic therapy. Higher POSTN expression correlated with markers of M2-like macrophages in human PNETs, and depleting macrophages with a colony-stimulating factor 1 receptor (CSF1R) antibody inhibited PNET revascularization and progression under VEGFA blockade despite continued POSTN production. These findings suggest a role for POSTN in orchestrating resistance to anti-VEGFA therapy in PNETs. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Marwaha, Raman K; Garg, M K; Gupta, Sushil; Khurana, A K; Narang, Archna; Shukla, Manoj; Arora, Preeti; Chadha, Aditi; Nayak, Deb Datta; Manchanda, R K
2017-07-26
Population specific data and influence of sub-clinical hypothyroidism on insulin like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3) in Indian children is lacking. This study was undertaken to evaluate serum IGF-1 and IGFBP-3 and their correlation with age, gender, pubertal status and thyroid functions. A total of 840 apparently healthy school girls aged 6-18 years, were recruited for the study and underwent assessment of height, weight, body mass index, pubertal status and serum T3, T4, TSH, IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio. The mean serum levels of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio were 381.8±240.5 ng/mL, 4.19±2.08 μg/mL and 40.5±37.2%, respectively. The serum IGF-1 and IGF-1/IGFBP-3 molar ratio increased significantly (p<0.0001) at 11 years followed by a steady yet non-significant rise till 16 years of age. A similar pattern was observed for IGFBP-3 showing a steep rise at 12 years and peaking at 16 years. Likewise, serum levels of IGF-1 and molar ratio of IGF-1/IGFBP-3 increased significantly with pubertal maturation from stage 1 to 3 and were higher in overweight girls compared to normal weight and obese girls. The growth factors were no different in girls with or without subclinical hypothyroidism. There was no significant impact of age on IGF-1 and IGFBP-3 in pre-pubertal girls. A sudden marked increase at 11 years followed by a gradual rise in growth factors till 16 years is indicative of pubertal initiation and maturation. Subclinical hypothyroidism did not influence growth factors in girls.
Beattie, James; Al-Khafaji, Hasanain; Noer, Pernille R; Alkharobi, Hanaa Esa; Alhodhodi, Aishah; Meade, Josephine; El-Gendy, Reem; Oxvig, Claus
2018-01-01
The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.
Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R
2016-06-01
Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n TBA exhibit increased ( < 0.05) pAKT protein levels. These data indicate the TBA-mediated increases in protein synthesis likely involve GPCR, MMP2/9, hbEGF, EGFR, erbB2, and IGF-1R. However, the mechanism through which TBA mediates changes in protein degradation is different and appears to involve only the EGFR and erbB2. Furthermore, it appears the protein kinase B pathway is involved in TBA's effects on fused BSC cultures.
Growth Hormone and Reproduction: A Review of Endocrine and Autocrine/Paracrine Interactions
Hull, Kerry L.; Harvey, Steve
2014-01-01
The somatotropic axis, consisting of growth hormone (GH), hepatic insulin-like growth factor I (IGF-I), and assorted releasing factors, regulates growth and body composition. Axiomatically, since optimal body composition enhances reproductive function, general somatic actions of GH modulate reproductive function. A growing body of evidence supports the hypothesis that GH also modulates reproduction directly, exerting both gonadotropin-dependent and gonadotropin-independent actions in both males and females. Moreover, recent studies indicate GH produced within reproductive tissues differs from pituitary GH in terms of secretion and action. Accordingly, GH is increasingly used as a fertility adjunct in males and females, both humans and nonhumans. This review reconsiders reproductive actions of GH in vertebrates in respect to these new conceptual developments. PMID:25580121
The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes.
Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N
2015-08-14
Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.
Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming.
Mohamed, Tamer M A; Stone, Nicole R; Berry, Emily C; Radzinsky, Ethan; Huang, Yu; Pratt, Karishma; Ang, Yen-Sin; Yu, Pengzhi; Wang, Haixia; Tang, Shibing; Magnitsky, Sergey; Ding, Sheng; Ivey, Kathryn N; Srivastava, Deepak
2017-03-07
Reprogramming of cardiac fibroblasts into induced cardiomyocyte-like cells in situ represents a promising strategy for cardiac regeneration. A combination of 3 cardiac transcription factors, Gata4, Mef2c, and Tbx5 (GMT), can convert fibroblasts into induced cardiomyocyte-like cells, albeit with low efficiency in vitro. We screened 5500 compounds in primary cardiac fibroblasts to identify the pathways that can be modulated to enhance cardiomyocyte reprogramming. We found that a combination of the transforming growth factor-β inhibitor SB431542 and the WNT inhibitor XAV939 increased reprogramming efficiency 8-fold when added to GMT-overexpressing cardiac fibroblasts. The small molecules also enhanced the speed and quality of cell conversion; we observed beating cells as early as 1 week after reprogramming compared with 6 to 8 weeks with GMT alone. In vivo, mice exposed to GMT, SB431542, and XAV939 for 2 weeks after myocardial infarction showed significantly improved reprogramming and cardiac function compared with those exposed to only GMT. Human cardiac reprogramming was similarly enhanced on transforming growth factor-β and WNT inhibition and was achieved most efficiently with GMT plus myocardin. Transforming growth factor-β and WNT inhibitors jointly enhance GMT-induced direct cardiac reprogramming from cardiac fibroblasts in vitro and in vivo and provide a more robust platform for cardiac regeneration. © 2016 American Heart Association, Inc.
The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes
Zhong, Leilei; Huang, Xiaobin; Karperien, Marcel; Post, Janine N.
2015-01-01
Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint. PMID:26287176
Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury
Genis, Laura; Dávila, David; Fernandez, Silvia; Pozo-Rodrigálvarez, Andrea; Martínez-Murillo, Ricardo; Torres-Aleman, Ignacio
2014-01-01
Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I) in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H 2O 2). Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H 2O 2 such as stem cell factor (SCF) to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging. PMID:24715976
The Effect of Online Reviews on Customer Satisfaction: An Expectation Disconfirmation Approach
ERIC Educational Resources Information Center
Picazo-Vela, Sergio
2010-01-01
During the last decade online retail sales have been growing constantly. This growth has been possible due to different factors like online reviews. Online reviews have been proven successful in predicting different variables like trust and sales in online settings; however, the impact of online reviews on other variables like customer…
Feng, Xingmei; Huang, Dan; Lu, Xiaohui; Feng, Guijuan; Xing, Jing; Lu, Jun; Xu, Ke; Xia, Weiwei; Meng, Yan; Tao, Tao; Li, Liren; Gu, Zhifeng
2014-12-01
Insulin-like growth factor 1 (IGF-1) is a multifunctional peptide that can enhance osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). However, it remains unclear whether IGF-1 can promote osteogenic differentiation of human dental pulp stem cells (DPSCs). In our study, DPSCs were isolated from the impacted third molars, and treated with IGF-1. Osteogenic differentiation abilities were investigated. We found that IGF-1 activated the mTOR signaling pathway during osteogenic differentiation of DPSCs. IGF-1 also increased the expression of runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osterix (OSX) and collagen type I (COL I) during this process. Rapamycin, an mTOR inhibitor, blocked osteogenic differentiation induced by IGF-1. Meanwhile, CCK-8 assay and flow cytometry results demonstrated that 10-200 ng/mL IGF-1 could enhance proliferation ability of DPSCs and 100 ng/mL was the optimal concentration. In summary, IGF-1 could promote proliferation and osteogenic differentiation of DPSCs via mTOR pathways, which might have clinical implications for osteoporosis. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.
Trojan, J; Johnson, T R; Rudin, S D; Blossey, B K; Kelley, K M; Shevelev, A; Abdul-Karim, F W; Anthony, D D; Tykocinski, M L; Ilan, J
1994-01-01
Teratocarcinoma is a germ-line carcinoma giving rise to an embryoid tumor with structures derived from the three embryonic layers: mesoderm, endoderm, and ectoderm. Teratocarcinoma is widely used as an in vitro model system to study regulation of cell determination and differentiation during mammalian embryogenesis. Murine embryonic carcinoma (EC) PCC3 cells express insulin-like growth factor I(IGF-I) and its receptor, while all derivative tumor structures express IGF-I and IGF-II and their receptors. Therefore the system lends itself to dissect the role of these two growth factors during EC differentiation. With an episomal antisense strategy, we define a role for IGF-I in tumorigenicity and evasion of immune surveillance. Antisense IGF-I EC transfectants are shown to elicit a curative anti-tumor immune response with tumor regression at distal sites. In contrast, IGF-II is shown to drive determination and differentiation in EC cells. Since IGF-I and IGF-II bind to type I receptor and antisense sequence used for IGF-II cannot form duplex with endogenous IGF-I transcripts, it follows that this receptor is not involved in determination and differentiation. Images PMID:8016120
HIF2α/EFEMP1 cascade mediates hypoxic effects on breast cancer stem cell hierarchy.
Kwak, Ji-Hye; Lee, Na-Hee; Lee, Hwa-Yong; Hong, In-Sun; Nam, Jeong-Seok
2016-07-12
Breast cancer stem cells (BCSCs) have been shown to contribute to tumor growth, metastasis, and recurrence. They are also markedly resistant to conventional cancer treatments, such as chemotherapy and radiation. Recent studies have suggested that hypoxia is one of the prominent micro-environmental factors that increase the self-renewal ability of BCSCs, partially by enhancing CSC phenotypes. Thus, the identification and development of new therapeutic approaches based on targeting the hypoxia-dependent responses in BCSCs is urgent. Through various in vitro studies, we found that hypoxia specifically up-regulates BCSC sphere formation and a subset of CD44+/CD24-/low CSCs. Hypoxia inducible factors 2α (HIF2α) depletion suppressed CSC-like phenotypes and CSC-mediated drug resistance in breast cancer. Furthermore, the stimulatory effects of hypoxia-induced HIF2α on BCSC sphere formation were successfully attenuated by epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) knockdown. Taken together, these data suggest that HIF2α mediates hypoxia-induced cancer growth/metastasis and that EFEMP1 is a downstream effector of hypoxia-induced HIF2α during breast tumorigenesis.
Kähkönen, T E; Ivaska, K K; Jiang, M; Büki, K G; Väänänen, H K; Härkönen, P L
2018-02-05
Fibroblast growth factors (FGF) and their receptors (FGFRs) regulate many developmental processes including differentiation of mesenchymal stromal cells (MSC). We developed two MSC lines capable of differentiating to osteoblasts and adipocytes and studied the role of FGFRs in this process. We identified FGFR2 and fibroblast growth factor receptor like-1 (FGFRL1) as possible actors in MSC differentiation with gene microarray and qRT-PCR. FGFR2 and FGFRL1 mRNA expression strongly increased during MSC differentiation to osteoblasts. FGF2 treatment, resulting in downregulation of FGFR2, or silencing FGFR2 expression with siRNAs inhibited osteoblast differentiation. During adipocyte differentiation expression of FGFR1 and FGFRL1 increased and was down-regulated by FGF2. FGFR1 knockdown inhibited adipocyte differentiation. Silencing FGFR2 and FGFR1 in MSCs was associated with decreased FGFRL1 expression in osteoblasts and adipocytes, respectively. Our results suggest that FGFR1 and FGFR2 regulate FGFRL1 expression. FGFRL1 may mediate or modulate FGFR regulation of MSC differentiation together with FGFR2 in osteoblastic and FGFR1 in adipocytic lineage. Copyright © 2017 Elsevier B.V. All rights reserved.
Ou, Hua-Se; Wei, Chao-Hai; Deng, Yang; Gao, Nai-Yun
2013-08-01
Qingcaosha Reservoir (QR) is the largest river-embedded reservoir in east China, which receives its source water from the Yangtze River (YR). The temporal and spatial variations in dissolved organic matter (DOM), chromophoric DOM (CDOM), nitrogen, phosphorus and phytoplankton biomass were investigated from June to September in 2012 and were integrated by principal component analysis (PCA). Three PCA factors were identified: (1) phytoplankton related factor 1, (2) total DOM related factor 2, and (3) eutrophication related factor 3. Factor 1 was a lake-type parameter which correlated with chlorophyll-a and protein-like CDOM (r = 0.793 and r = 0.831, respectively). Factor 2 was a river-type parameter which correlated with total DOC and humic-like CDOM (r = 0.668 and r = 0.726, respectively). Factor 3 correlated with total nitrogen and phosphorus (r = 0.864 and r = 0.621, respectively). The low flow speed, self-sedimentation and nutrient accumulation in QR resulted in increases in PCA factor 1 scores (phytoplankton biomass and derived CDOM) in the spatial scale, indicating a change of river-type water (YR) to lake-type water (QR). In summer, the water temperature variation induced a growth-bloom-decay process of phytoplankton combined with the increase of PCA factor 2 (humic-like CDOM) in the QR, which was absent in the YR.
Arrieta, Oscar; Garcia-Perez, Francisco O; Michel-Tello, David; Ramírez-Tirado, Laura-Alejandra; Pitalua-Cortes, Quetzali; Cruz-Rico, Graciela; Macedo-Pérez, Eleazar-Omar; Cardona, Andrés F; Garza-Salazar, Jaime de la
2018-03-01
Nintedanib is an oral angiokinase inhibitor used as second-line treatment for non-small cell lung cancer. New radiotracers, such as 68 Ga-DOTA-E-[c(RGDfK)] 2 , that target α v β 3 integrin might have an impact as a noninvasive method for assessing angiogenesis inhibitors. Methods: From July 2011 through October 2015, 38 patients received second-line nintedanib plus docetaxel. All patients underwent PET/CT with 68 Ga-DOTA-E-[c(RGDfK)] 2 radiotracer and blood-sample tests to quantify angiogenesis factors (fibroblast growth factor, vascular endothelial growth factor, and platelet-derived growth factor AB) before and after completing 2 therapy cycles. Results: Of the 38 patients, 31 had available baseline and follow-up PET/CT. Baseline lung tumor volume addressed with 68 Ga-DOTA-E-[c(RGDfK)] 2 PET/CT correlated with serum vascular endothelial growth factor levels, whereas baseline lung/liver SUV max index correlated with platelet-derived growth factor AB. After treatment, the overall response rate and disease control rate were 7.9% and 47.3%, respectively. A greater decrease in lung tumor volume (-37.2% vs. -27.6%) was associated with a better disease control rate in patients ( P = 0.005). Median progression-free survival was 3.7 mo. Nonsmokers and patients with a higher baseline lung tumor volume were more likely to have a higher progression-free survival (6.4 vs. 3.74 [ P = 0.023] and 6.4 vs. 2.1 [ P = 0.003], respectively). Overall survival was not reached. Patients with a greater decrease in lung SUV max (not reached vs. 7.1 mo; P = 0.016) and a greater decrease in the lung/spleen SUV max index (not reached vs. 7.1; P = 0.043) were more likely to have a longer overall survival. Conclusion: 68 Ga-DOTA-E-[c(RGDfK)] 2 PET/CT is a potentially useful tool for assessing responses to angiogenesis inhibitors. Further analysis and novel studies are warranted to identify patients who might benefit from this therapy. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P
2018-02-21
Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.
Regulation of IGF-1 but not TGF-β1 by NGF in the smooth muscle of the inflamed urinary bladder
Zhang, Qing L.; Qiao, Li-Ya
2012-01-01
Intraperitoneal injection of cyclophosphamide (CYP) causes haemorrhagic cystitis with excess growth of muscular layer leading to bladder hypertrophy; this could be attributable to changes in the expression profiles of growth factors in the inflamed urinary bladder. The growth factors characterized in the current study include nerve growth factor (NGF), insulin-like growth factor (IGF)-1, and transforming growth factor (TGF)-β1. We found that following CYP injection for 8h and 48h, the mRNA levels of all three factors were increased in the inflamed bladder when compared to control. The level of NGF mRNA was mainly increased in the urothelium layer while the levels of IGF-1 mRNA and TGF-β1 mRNA were increased in the smooth muscle layer. The level of NGF high affinity receptor TrkA mRNA was also increased in both the urothelium and the smooth muscle layers during bladder inflammation. When we blocked NGF action with NGF neutralizing antibody in vivo, we found that the up-regulation of IGF-1 in the inflamed bladder was reversed while the up-regulation of TGF-β1 was not affected by NGF neutralization. The effect of NGF on regulating IGF-1 expression was further confirmed in bladder smooth muscle culture showing that exogenous NGF increased the mRNA level of IGF-1 after 30 min to 1h stimulation. These results suggest that bladder inflammation induced region-specific changes in the expression profiles of NGF, IGF-1 and TGF-β1. The up-regulation of NGF in the urothelium may have a role in affecting bladder smooth muscle cell physiology by regulating IGF-1 expression. PMID:22579999
Link, Kaitlyn A; Koenig, Judith B; Silveira, Andressa; Plattner, Brandon L; Lillie, Brandon N
2013-02-01
To compare the effect of extracorporeal shock wave therapy (ESWT) on expression of fibroblast growth factor-7 (FGF-7), transforming growth factor-β1 (TGF-β1), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor-A (PDGF), and vascular endothelial growth factor-A (VEGF) in skin with surgically created skin wounds and intact skin in horses. 14 healthy horses. 8 horses were treated with ESWT at 6 locations along the neck at 36, 24, 12, 6, 2, or 1 hour prior to collection of full-thickness biopsy specimens from each location; a control specimen was collected from a sham-treated location. In 6 horses, 5 full-thickness wounds were created in each forelimb. Wounds in 1 forelimb/horse received ESWT immediately after creation and subsequently on days 7, 14, and 21; wounds in the contralateral forelimb remained untreated. Biopsy specimens were collected from 1 wound on each forelimb on days 7, 14, 21, 28, and 35. Expression levels of FGF-7, TGF-β1, IGF-1, PDGF, and VEGF were assessed in tissue samples from the horses' necks and forelimbs. In surgically created wounds, ESWT treatment was associated with reduced TGF-β1 expression, compared with expression in control wounds, during the entire study period. At 28 days following wound creation, IGF-1 expression was significantly increased for treated and untreated wounds, compared with findings on days 7, 14, 21, and 35. There was no significant effect of treatment on FGF-7, TGF-β1, IGF-1, PDGF, or VEGF expression in intact skin. Intervention with ESWT to suppress TGF-β1 may decrease granulation tissue production, resulting in improved wound healing on the distal portion of horses' limbs.
Guo, J-R; Monteiro, A P A; Weng, X-S; Ahmed, B M; Laporta, J; Hayen, M J; Dahl, G E; Bernard, J K; Tao, S
2016-08-01
Maternal heat stress alters immune function of the offspring, as well as metabolism and future lactational performance, but its effect on the hormonal and metabolic responses of the neonate immediately after birth is still not clear. The objective of this study was to investigate the blood profiles of hormones and metabolites of calves born to cows that were cooled (CL) or heat-stressed (HS) during the dry period. Within 2 h after birth, but before colostrum feeding, blood samples were collected from calves [18 bulls (HS: n=10; CL: n=8) and 20 heifers (HS: n=10; CL: n=10)] born to CL or HS dry cows, and hematocrit and plasma concentrations of total protein, prolactin, insulin-like growth factor-I, insulin, glucose, nonesterified fatty acid, and β-hydroxybutyrate were measured. Compared with CL, HS calves had lower hematocrit and tended to have lower plasma concentrations of insulin, prolactin, and insulin-like growth factor-I. However, maternal heat stress had no effect on plasma levels of total protein, glucose, fatty acid, and β-hydroxybutyrate immediately after birth. These results suggest that maternal heat stress desensitizes a calf's stress response and alters the fetal development by reducing the secretion of insulin-like growth factor-I, prolactin, and insulin. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Changes in insulin-like growth factor signaling alter phenotypes in Fragile X Mice.
Wise, T L
2017-02-01
Fragile X syndrome (FXS) is an inherited form of intellectual disability that is usually caused by expansion of a polymorphic CGG repeat in the 5' untranslated region of the X-linked FMR1 gene, which leads to hypermethylation and transcriptional silencing. Two non-neurological phenotypes of FXS are enlarged testes and connective tissue dysplasia, which could be caused by alterations in a growth factor signaling pathway. FXS patients also frequently have autistic-like symptoms, suggesting that the signaling pathways affected in FXS may overlap with those affected in autism. Identifying these pathways is important for both understanding the effects of FMR1 inactivation and developing treatments for both FXS and autism. Here we show that decreasing the levels of the insulin-like growth factor (Igf) receptor 1 corrects a number of phenotypes in the mouse model of FXS, including macro-orchidism, and that increasing the levels of IGF2 exacerbates the seizure susceptibility phenotype. These results suggest that the pathways altered by the loss of the FMR1-encoded protein (FMRP) may overlap with the pathways affected by changes in Igf signaling or that one or more of the proteins that play a role in Igf signaling could interact with FMRP. They also indicate a new set of potential targets for drug treatment of FXS and autism spectrum disorders. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
[Association between IGF system and PAPP-A in coronary atherosclerosis].
Fierro-Macías, Alfonso Eduardo; Floriano-Sánchez, Esaú; Mena-Burciaga, Victoria Michelle; Gutiérrez-Leonard, Hugo; Lara-Padilla, Eleazar; Abarca-Rojano, Edgar; Fierro-Almanzán, Alfonso Edmundo
2016-01-01
Atherosclerosis is a condition that involves multiple pathophysiological mechanisms and whose knowledge has not been fully elucidated. Often, scientific advances on the atherogenic pathophysiology generate that molecules not previously considered in the scene of this disease, were attributed actions on the onset or progression of it. A representative example is the study of a new mechanism involved in the atherogenic process, consisting of the association between the insulin-like growth factor (IGF) system and pregnancy-associated plasma protein-A (PAPP-A). Insulin-like growth factor system is a family of peptides that include 3 peptide hormones, 4 transmembrane receptors and 6 binding proteins. Insulin-like growth factor-1 (IGF-1) is the main ligand of the IGF system involved in coronary atherosclerosis. IGF-1 exerts its effects via activation of the IGF-1R receptor on vascular smooth muscle cells or macrophages. In vascular smooth muscle cells promotes migration and prevents apoptosis which increases plaque stability while in macrophages reduces reverse cholesterol transport leading to the formation of foam cells. Regulation of IGF-1 endothelial bioavailability is carried out by IGFBP proteases, mainly by PAPP-A. In this review, we address the mechanisms between IGF system and PAPP-A in atherosclerosis with emphasis on molecular effects on vascular smooth muscle cells and macrophages. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.
Placental Adaptations in Growth Restriction
Zhang, Song; Regnault, Timothy R.H.; Barker, Paige L.; Botting, Kimberley J.; McMillen, Isabella C.; McMillan, Christine M.; Roberts, Claire T.; Morrison, Janna L.
2015-01-01
The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions. PMID:25580812
Myoblast-mediated gene transfer for therapeutic angiogenesis and arteriogenesis.
von Degenfeld, Georges; Banfi, Andrea; Springer, Matthew L; Blau, Helen M
2003-10-01
Therapeutic angiogenesis aims at generating new blood vessels by delivering growth factors such as VEGF and FGF. Clinical trials are underway in patients with peripheral vascular and coronary heart disease. However, increasing evidence indicates that the new vasculature needs to be stabilized to avoid deleterious effects such as edema and hemangioma formation. Moreover, a major challenge is to induce new vessels that persist following cessation of the angiogenic stimulus. Mature vessels may be generated by modulating timing and dosage of growth factor expression, or by combination of 'growth' factors with 'maturation' factors like PDGF-BB, angiopoietin-1 or TGF-beta. Myoblast-mediated gene transfer has unique characteristics that make it a useful tool for studying promising novel approaches to therapeutic angiogenesis. It affords robust and long-lasting expression, and can be considered as a relatively rapid form of 'adult transgenesis' in muscle. The combined insertion of different gene constructs into single myoblasts and their progeny allows the simultaneous expression of different 'growth' and 'maturation' factors within the same cell in vivo. The additional insertion of a reporter gene makes it possible to analyze the phenotype of the vessels surrounding the transgenic muscle fibers into which the myoblasts have fused. The effects of timing and duration of gene expression can be studied by using tetracycline-inducible constructs, and dosage effects by selecting subpopulations consistently expressing distinct levels of growth factors. Finally, the autologous cell-based approach using transduced myoblasts could be an alternative gene delivery system for therapeutic angiogenesis in patients, avoiding the toxicities seen with some viral vectors.
Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E; Lee, Esther J; Seyednejad, Hajar; van den Beucken, Jeroen J J P; Tabata, Yasuhiko; Kasper, F Kurtis; Scott, David W; Wong, Mark E; Jansen, John A; Mikos, Antonios G
2015-12-01
The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.
Chen, Yongshuo; Li, Shizhong; Berezin, Vladimir; Bock, Elisabeth
2010-07-01
Activation of fibroblast growth factor (FGF) receptors (FGFRs) both by FGFs and by the neural cell adhesion molecule (NCAM) is crucial in the development and function of the nervous system. We found that FGFR substrate 2alpha (FRS2alpha), Src homologous and collagen A (ShcA), and phospholipase-Cgamma (PLCgamma) were all required for neurite outgrowth from cerebellar granule neurons (CGNs) induced by FGF1 and FGL (an NCAM-derived peptide agonist of FGFR1). Like FGF1, FGL induced tyrosine phosphorylation of FGFR1, FRS2alpha, ShcA, and PLCgamma in a time- and dose-dependent manner. However, the activation of FRS2alpha by FGL was significantly lower than the activation by FGF1, indicating a differential signaling profile induced by NCAM compared with the cognate growth factor.
Soh, M C; Nelson-Piercy, C; Westgren, M; McCowan, L; Pasupathy, D
2017-11-01
Cardiovascular events (CVEs) are prevalent in patients with systemic lupus erythematosus (SLE), and it is the young women who are disproportionately at risk. The risk factors for accelerated cardiovascular disease remain unclear, with multiple studies producing conflicting results. In this paper, we aim to address both traditional and SLE-specific risk factors postulated to drive the accelerated vascular disease in this cohort. We also discuss the more recent hypothesis that adverse pregnancy outcomes in the form of maternal-placental syndrome and resultant preterm delivery could potentially contribute to the CVEs seen in young women with SLE who have fewer traditional cardiovascular risk factors. The pathophysiology of how placental-mediated vascular insufficiency and hypoxia (with the secretion of placenta-like growth factor (PlGF) and soluble fms-tyrosine-like kinase-1 (sFlt-1), soluble endoglin (sEng) and other placental factors) work synergistically to damage the vascular endothelium is discussed. Adverse pregnancy outcomes ultimately are a small contributing factor to the complex pathophysiological process of cardiovascular disease in patients with SLE. Future collaborative studies between cardiologists, obstetricians, obstetric physicians and rheumatologists may pave the way for a better understanding of a likely multifactorial aetiological process.
Adamowski, Maciek; Kania, Urszula
2018-01-01
Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterized compared with that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing tandem affinity purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologs of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in Arabidopsis caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like1/2 loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the ongoing characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in Arabidopsis. PMID:29511054
Treatment of dwarfism with recombinant human insulin-like growth factor-1.
Ranke, Michael B; Wölfle, Joachim; Schnabel, Dirk; Bettendorf, Markus
2009-10-01
The growth hormone-IGF (insulin-like growth factor) system plays a central role in hormonal growth regulation. Recombinant human (rh) growth hormone (GH) has been available since the late 1980s for replacement therapy in GH-deficient patients and for the stimulation of growth in patients with short stature of various causes. Growth promotion by GH occurs in part indirectly through the induction of IGF-1 synthesis. In primary disturbances of IGF-1 production, short stature can only be treated with recombinant human IGF-1 (rhIGF-1). rhIGF-1 was recently approved for this indication but can also be used to treat other conditions. Selective review of the literature on IGF-1 therapy, based on a PubMed search. In children with severe primary IGF-1 deficiency (a rare condition whose prevalence is less than 1:10,000), the prognosis for final height is very poor (ca. 130 cm), and IGF-1 therapy is the appropriate form of pathophysiologically based treatment. There is no alternative treatment at present. The subcutaneous administration of IGF-1 twice daily in doses of 80 to 120 microg/kg accelerates growth and increases final height by 12 to 15 cm, according to current data. There is, however, a risk of hypoglycemia, as IGF-1 has an insulin-like effect. As treatment with IGF-1 is complex, this new medication should only be prescribed, for the time being, by experienced pediatric endocrinologists and diabetologists.
Interaction of AIM with insulin-like growth factor-binding protein-4.
You, Qiang; Wu, Yan; Yao, Nannan; Shen, Guannan; Zhang, Ying; Xu, Liangguo; Li, Guiying; Ju, Cynthia
2015-09-01
Apoptosis inhibitor of macrophages (AIM/cluster of differentiation 5 antigen-like/soluble protein α) has been shown to inhibit cellular apoptosis; however, the underlying molecular mechanism has not been elucidated. Using yeast two‑hybrid screening, the present study uncovered that AIM binds to insulin‑like growth factor binding protein‑4 (IGFBP‑4). AIM interaction with IGFBP‑4, as well as IGFBP‑2 and ‑3, but not with IGFBP‑1, ‑5 and ‑6, was further confirmed by co‑immunoprecipitation (co‑IP) using 293 cells. The binding activity and affinity between AIM and IGFBP‑4 in vitro were analyzed by co‑IP and biolayer interferometry. Serum depletion‑induced cellular apoptosis was attenuated by insulin‑like growth factor‑I (IGF‑I), and this effect was abrogated by IGFBP‑4. Of note, in the presence of AIM, the inhibitory effect of IGFBP‑4 on the anti‑apoptosis function of IGF‑I was attenuated, possibly through binding of AIM with IGFBP‑4. In conclusion, to the best of our knowledge, the present study provides the first evidence that AIM binds to IGFBP‑2, ‑3 and ‑4. The data suggest that this interaction may contribute to the mechanism of AIM-mediated anti-apoptosis function.
Rice, Megan S; Tworoger, Shelley S; Rosner, Bernard A; Pollak, Michael N; Hankinson, Susan E; Tamimi, Rulla M
2012-12-01
Higher circulating insulin-like growth factor I (IGF-1) levels have been associated with higher mammographic density among women in some, but not all studies. Also, few studies have examined the association between mammographic density and circulating growth hormone (GH) in premenopausal women. We conducted a cross-sectional study among 783 premenopausal women and 436 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or in 1996-1999 (NHSII), and mammograms were obtained near the time of blood draw. Generalized linear models were used to assess the associations of IGF-1, IGF-binding protein-3 (IGFBP-3), IGF-1:IGFBP-3 ratio, and GH with percent mammographic density, total dense area, and total non-dense area. Models were adjusted for potential confounders including age and body mass index (BMI), among others. We also assessed whether the associations varied by age or BMI. In both pre- and postmenopausal women, percent mammographic density was not associated with plasma levels of IGF-1, IGFBP-3, or the IGF-1:IGFBP-3 ratio. In addition, GH was not associated with percent density among premenopausal women in the NHSII. Similarly, total dense area and non-dense area were not significantly associated with any of these analytes. In postmenopausal women, IGF-1 was associated with higher percent mammographic density among women with BMI <25 kg/m(2), but not among overweight/obese women. Overall, plasma IGF-1, IGFBP-3, and GH levels were not associated with mammographic density in a sample of premenopausal and postmenopausal women.
Paternal Metabolic and Cardiovascular Risk Factors for Fetal Growth Restriction
Hillman, Sara; Peebles, Donald M.; Williams, David J.
2013-01-01
OBJECTIVE Fathers of low–birth weight offspring are more likely to have type 2 diabetes and cardiovascular disease in later life. We investigated whether paternal insulin resistance and cardiovascular risk factors were evident at the time that fetal growth–restricted offspring were born. RESEARCH DESIGN AND METHODS We carried out a case-control study of men who fathered pregnancies affected by fetal growth restriction, in the absence of recognized fetal disease (n = 42), compared with men who fathered normal–birth weight offspring (n = 77). All mothers were healthy, nonsmoking, and similar in age, BMI, ethnicity, and parity. Within 4 weeks of offspring birth, all fathers had measures of insulin resistance (HOMA index), blood pressure, waist circumference, endothelial function (flow-mediated dilatation), lipid profile, weight, and smoking habit. Comparison was made using multivariable logistical regression analysis. RESULTS Fathers of fetal growth–restricted offspring [mean (SD) 1.8th (2.2) customized birth centile] were more likely to have insulin resistance, hypertension, central adiposity, and endothelial dysfunction and to smoke cigarettes compared with fathers of normal grown offspring. After multivariable analysis, paternal insulin resistance and smoking remained different between the groups. Compared with fathers of normal grown offspring, men who fathered pregnancies affected by fetal growth restriction had an OR 7.68 (95% CI 2.63–22.40; P < 0.0001) of having a 1-unit higher log HOMA-IR value and 3.39 (1.26–9.16; P = 0.016) of being a smoker. CONCLUSIONS Men who recently fathered growth-restricted offspring have preclinical evidence of the insulin resistance syndrome and are more likely to smoke than fathers of normal grown offspring. Paternal lifestyle may influence heritable factors important for fetal growth. PMID:23315598
2012-01-01
Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS)-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2), and insulin-like growth factor binding protein 2 (Igfbp2) were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice. PMID:22672618
Alahakoon, Thushari I; Zhang, Weiyi; Arbuckle, Susan; Zhang, Kewei; Lee, Vincent
2018-05-01
To localize, quantify and compare angiogenic factors, vascular endothelial growth factor (VEGF), placental growth factor (PlGF), as well as their receptors fms-like tyrosine kinase receptor (Flt-1) and kinase insert domain receptor (KDR) in the placentas of normal pregnancy and complications of preeclampsia (PE), intrauterine fetal growth restriction (IUGR) and PE + IUGR. In a prospective cross-sectional case-control study, 30 pregnant women between 24-40 weeks of gestation, were recruited into four clinical groups. Representative placental samples were stained for VEGF, PlGF, Flt-1 and KDR. Analysis was performed using semiquantitative methods and digital image analysis. The overall VEGF and Flt-1 were strongly expressed and did not show any conclusive difference in the expression between study groups. PlGF and KDR were significantly reduced in expression in the placentas from pregnancies complicated by IUGR compared with normal and preeclamptic pregnancies. The lack of PlGF and KDR may be a cause for the development of IUGR and may explain the loss of vasculature and villous architecture in IUGR. Automated digital image analysis software is a viable alternative method to the manual reading of placental immunohistochemical staining. © 2018 Japan Society of Obstetrics and Gynecology.
Band, Arja M.; Björklund, Mia; Laiho, Marikki
2009-01-01
Ski is an oncoprotein that negatively regulates transforming growth factor (TGF)-β signaling. It acts as a transcriptional co-repressor by binding to TGF-β signaling molecules, Smads. Efficient TGF-β signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-β. Here we report that Ski is phosphorylated by Akt/PKB kinase. Akt phosphorylates Ski on a highly conserved Akt motif at threonine 458 both in vitro and in vivo. The phosphorylation of Ski at threonine 458 is induced by Akt pathway activators including insulin, insulin-like growth factor-1, and hepatocyte growth factor. The phosphorylation of Ski causes its destabilization and reduces Ski-mediated inhibition of expression of another negative regulator of TGF-β, Smad7. Induction of Smad7 levels leads to inactivation of TGF-β receptors and TGF-β signaling cascade, as indicated by reduced induction of TGF-β target p15. Therefore, Akt modulates TGF-β signaling by temporarily adjusting the levels of two TGF-β pathway negative regulators, Ski and Smad7. These novel findings demonstrate that Akt pathway activation directly impacts TGF-β pathway. PMID:19875456
Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line.
Tong, Hui-Li; Li, Qing-Zhang; Gao, Xue-Jun; Yin, De-Yun
2012-03-01
To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.
Inflation and Growth: Positive or Negative Relationship?
NASA Astrophysics Data System (ADS)
Berument, Hakan; Inamlik, Ali; Olgun, Hasan
This study has been motivated by two developments. Firstly, by the vast literature on the relationship between inflation and growth which is abundantly endowed with diverse theoretical explanations and contradictory evidence and by the unique experience of the Turkish economy with inflation and growth. A preliminary examination of the Turkish data pointed to a negative relation between inflation and growth. Moreover, there is a unanimous agreement among the students of the Turkish economy that many factors have contributed to inflation in this country. In view of these facts this paper employs a VAR model which will enable us to identify the sources of the shocks and control for external factors. In addition VAR models have a high predictive power and enable the researcher to observe the impulse response functions. The study employs Generalised Impulse Response analysis. In the empirical experiments oil prices, money supply, government spending and taxes have been taken as the most likely determinants of inflation. The study shows that there is a negative relationship between inflation and output growth in Turkey and that the underlying explanatory factor is the real exchange rate. This result is robust.
USDA-ARS?s Scientific Manuscript database
Like IGF-I, progranulin (pgrn) is a growth factor involved in tumorigenesis and wound healing. We report here the identification and characterization of pgrn cDNA in tilapia and the regulation of its expression by growth hormone(GH). The tilapia pgrn cDNA was cloned by RT-PCR ampliWcation, using g...
Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.
1997-01-01
Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826
Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J
1997-11-25
Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.
Growth factors and chronic wound healing: past, present, and future.
Goldman, Robert
2004-01-01
Growth substances (cytokines and growth factors) are soluble signaling proteins affecting the process of normal wound healing. Cytokines govern the inflammatory phase that clears cellular and extracellular matrix debris. Wound repair is controlled by growth factors (platelet-derived growth factor [PDGF], keratinocyte growth factor, and transforming growth factor beta). Endogenous growth factors communicate across the dermal-epidermal interface. PDGF is important for most phases of wound healing. Becaplermin (PDGF-BB), the only growth factor approved by the Food and Drug Administration, requires daily application for neuropathic wound healing. Gene therapy is under development for more efficient growth factor delivery; a single application will induce constitutive growth factor expression for weeks. Based on dramatic preclinical animal studies, a phase 1 clinical trial planned on a PDGF genetic construct appears promising.
The key role of growth hormone — insulin — IGF-1 signaling in aging and cancer
Anisimov, Vladimir N.; Bartke, Andrzej
2014-01-01
Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors in aging. GH/Insulin/insulin-like growth factor 1 (IGF-1) signaling molecules that have been linked to longevity include daf-2 and InR and their homologues in mammals, and inactivation of the corresponding genes increases lifespan in nematodes, fruit flies and mice. The life-prolonging effects of caloric restriction are likely related to decreasing IGF-1 levels. Evidence has emerged that antidiabetic drugs are promising candidates for both lifespan extension and prevention of cancer. Thus, antidiabetic drugs postpone spontaneous carcinogenesis in mice and rats, as well as chemical and radiation carcinogenesis in mice, rats and hamsters. Furthermore, metformin seems to decrease the risk for cancer in diabetic patients. PMID:23434537
Progranulin: at the interface of neurodegenerative and metabolic diseases.
Nguyen, Andrew D; Nguyen, Thi A; Martens, Lauren Herl; Mitic, Laura L; Farese, Robert V
2013-12-01
Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor-like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin function in the brain. More recently, progranulin was recognized as an adipokine involved in diet-induced obesity and insulin resistance, revealing its metabolic function. We review here progranulin biology in both neurodegenerative and metabolic diseases. In particular, we highlight the growth factor-like, trophic, and anti-inflammatory properties of progranulin as potential unifying themes in these seemingly divergent conditions. We also discuss potential therapeutic options for raising progranulin levels to treat progranulin-deficient FTD, as well as the possible consequences of such treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Taqi, Esmaeel; Wallace, Laurie E; de Heuvel, Elaine; Chelikani, Prasanth K; Zheng, Huiyuan; Berthoud, Hans-Rudolph; Holst, Jens J; Sigalet, David L
2010-05-01
The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions, and systemic enteric hormones on intestinal adaptation in short bowel syndrome. Male rats (350-400 g; n = 8/group) underwent sham or GRYB with pair feeding and were observed for 14 days. Weight and serum hormonal levels (glucagon-like peptide-2 [GLP-2], PYY) were quantified. Adaptation was assessed by intestinal morphology and crypt cell kinetics in each intestinal limb of the bypass and the equivalent points in the sham intestine. Mucosal growth factors and expression of transporter proteins were measured in each limb of the model. The GRYB animals lost weight compared to controls and exhibited significant adaptive changes with increased bowel width, villus height, crypt depth, and proliferation indices in the alimentary and common intestinal limbs. Although the biliary limb did not adapt at the mucosa, it did show an increased bowel width and crypt cell proliferation rate. The bypass animals had elevated levels of systemic PYY and GLP-2. At the mucosal level, insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) increased in all limbs of the bypass animals, whereas keratinocyte growth factor (KGF) and epidermal growth factor (EGF) had variable responses. The expression of the passive transporter of glucose, GLUT-2, expression was increased, whereas GLUT-5 was unchanged in all limbs of the bypass groups. Expression of the active mucosal transporter of glucose, SGLT-1 was decreased in the alimentary limb. Adaptation occurred maximally in intestinal segments stimulated by nutrients. Partial adaptation in the biliary limb may reflect the effects of systemic hormones. Mucosal content of IGF-1, bFGF, and EGF appear to be stimulated by systemic hormones, potentially GLP-2, whereas KGF may be locally regulated. Further studies to examine the relationships between the factors controlling nutrient-induced adaptation are suggested. Direct contact with nutrients appears to be the most potent factor in inducing mucosal adaptation. Copyright (c) 2010 Elsevier Inc. All rights reserved.
2018-01-01
Objective The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth factor-β (TGF-β) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on TGF-β signaling pathway and inhibit each other to affect the hair growth. PMID:29514440
Regulation of blood vessels by prolactin and vasoinhibins.
Clapp, Carmen; Thebault, Stéphanie; Macotela, Yazmín; Moreno-Carranza, Bibiana; Triebel, Jakob; Martínez de la Escalera, Gonzalo
2015-01-01
Prolactin (PRL) stimulates the growth of new blood vessels (angiogenesis) either directly through actions on endothelial cells or indirectly by upregulating proangiogenic factors like vascular endothelial growth factor (VEGF). Moreover, PRL acquires antiangiogenic properties after undergoing proteolytic cleavage to vasoinhibins, a family of PRL fragments (including 16 kDa PRL) with potent antiangiogenic, vasoconstrictive, and antivasopermeability effects. In view of the opposing actions of PRL and vasoinhibins, the regulation of the proteases responsible for specific PRL cleavage represents an efficient mechanism for controlling blood vessel growth and function. This review briefly describes the vascular actions of PRL and vasoinhibins, and addresses how their interplay could help drive biological effects of PRL in the context of health and disease.
Cell-based delivery of glucagon-like peptide-1 using encapsulated mesenchymal stem cells.
Wallrapp, Christine; Thoenes, Eric; Thürmer, Frank; Jork, Anette; Kassem, Moustapha; Geigle, Peter
2013-01-01
Glucagon-like peptide-1 (GLP-1) CellBeads are cell-based implants for the sustained local delivery of bioactive factors. They consist of GLP-1 secreting mesenchymal stem cells encapsulated in a spherically shaped immuno-isolating alginate matrix. A highly standardized and reproducible encapsulation method is described for the manufacturing of homogeneous CellBeads. Viability and sustained secretion was shown for the recombinant GLP-1 and the cell endogenous bioactive factors like vascular endothelial growth factor, neurotrophin 3 (NT-3) and glial cell line-derived neurotrophic factor. Manufacturing and quality control is performed in compliance with good manufacturing practice and fulfils all regulatory requirements for human clinical use. GLP-1 CellBeads combine the neuro- and cardioprotective properties of both GLP-1 and mesenchymal stem cells. First promising results were obtained from preclinical studies and an ongoing safety trial in humans but further studies have to prove the overall potential of CellBead technology in cell-based regenerative medicine.
Kwiatkowski, Sebastian; Dołęgowska, Barbara; Kwiatkowska, Ewa; Rzepka, Rafał; Torbè, Andrzej; Bednarek-Jędrzejek, Magdalena
2016-01-01
Preeclampsia and intrauterine growth restriction are two separate disease entities that, according to numerous reports, share the same pathogenesis. In both, angiogenesis disorders and generalized inflammation are the dominant symptoms. In this study, we hypothesized that both diseases demonstrate the same profile in early preeclampsia, late preeclampsia, and intrauterine growth restriction patients, with the only difference being the degree of exacerbation of lesions. One hundred sixty-seven patients were enrolled in the study and divided into four groups: early preeclampsia, late preeclampsia, and intrauterine growth restriction groups, and one control group. Concentrations of the angiogenesis and inflammatory markers soluble fms-like tyrosine kinase receptor 1, placental growth factor, high-sensitivity C-reactive protein, and interleukin-6 were determined, and the behavior of these markers and correlations among them were studied. Higher concentrations of soluble fms-like tyrosine kinase receptor 1, high-sensitivity C-reactive protein, and interleukin-6 and a lower concentration of placental growth factor were observed in the study groups compared with the control group. No differences in concentrations of the studied markers were found among the study groups but significant correlations were observed. The higher values for the angiogenesis and inflammatory markers both in preeclampsia patients and patients with intrauterine growth restriction of placental origin compared with the control group suggest the existence of the same underlying disorders in the development of these pathologies. The observed mutual correlations for disordered angiogenesis and inflammatory markers are suggestive of a mutual relationship between these processes in the development of pathologies evolving secondary to placental ischemia. The same lesion profile was observed for both preeclampsia and 'placental' intrauterine growth restriction patients, which could be used in developing common diagnostic criteria for pregnant patients.
[GHBP, IGF-1 and IGFBP-3 serum levels in familial short-statured and normal-statured children].
del Valle Núñez, Cristóbal Jorge; López-Siguero, Juan Pedro; López-Canti, Luis Fernando; Lechuga Campoy, José Luis; Espigares Martín, Rosa; Martínez-Aedo Ollero, María José
2004-10-09
Growth hormone binding protein (GHBP), insuline-like growth factor 1 (IGF-1) and insuline-like growth factor binding protein 3 (IGFBP-3) serum concentrations were studied in familial short-statured patients (FSS) and age-matched normal-statured subjects. The aim of the study was to ascertain whether differences in growth factors concentrations between groups could be shown and whether they may contribute to explaining the different patterns of growth in both groups. Serum samples of 38 FSS patients (20 boys) and 31 normal-statured subjects (15 boys) in Tanner I stage (prepubertal), were analysed in a central laboratory. All auxological parameters (height, growth velocity, target height, body mass index (BMI) and biochemical parameters (IGF-1 and IGFBP-3) were standardised for age and sex-matched subjects. GHBP values were expressed as percentage of specific binding. The studied populations were similar and no statistically-significant differences in chronological age, bone age and BMI were found. Height, growth velocity and target height were significantly lower in FSS patients compared with normal subjects (p < 0.0001). IGF-1, IGFBP-3 and GHBP concentrations were significantly lower in the FSS group (p < 0.01). Correlations were found between IGF-1 and IGFBP-3 (r = 0.56; p = 0.0004) and between IGF-1 and GHBP (r = 0.34; p = 0.03) in the FSS group. However, in the normal-statured group only BMI and GHBP were correlated (r = 0.5; p = 0.02). These results strongly support the importance of the GH/IGF-1 functional axis in the pattern of growth and probably contribute to understanding of the pathophysiologic basis of the auxological differences found between groups.
Fibroblast growth factor receptors in breast cancer.
Wang, Shuwei; Ding, Zhongyang
2017-05-01
Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.
Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L.
2006-01-01
Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-β is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, αvβ6 and αvβ8, are responsible for almost all of the TGF-β activation in the EMTU. Both αvβ8 and αvβ6 contribute to fetal tracheal epithelial activation of TGF-β, whereas only αvβ8 contributes to fetal tracheal fibroblast activation of TGF-β. Interestingly, fetal tracheal epithelial αvβ8-mediated TGF-β activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in αvβ8-mediated activation of TGF-β. Autocrine αvβ8-mediated TGF-β activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-β within the EMTU. PMID:16877343
Araya, Jun; Cambier, Stephanie; Morris, Alanna; Finkbeiner, Walter; Nishimura, Stephen L
2006-08-01
Trophic interactions between pulmonary epithelial and mesenchymal cell types, known as the epithelial-mesenchymal trophic unit (EMTU), are crucial in lung development and lung disease. Transforming growth factor (TGF)-beta is a key factor in mediating these interactions, but it is expressed in a latent form that requires activation to be functional. Using intact fetal tracheal tissue and primary cultures of fetal tracheal epithelial cells and fibroblasts, we demonstrate that a subset of integrins, alpha(v)beta(6) and alpha(v)beta(8), are responsible for almost all of the TGF-beta activation in the EMTU. Both alpha(v)beta(8) and alpha(v)beta(6) contribute to fetal tracheal epithelial activation of TGF-beta, whereas only alpha(v)beta(8) contributes to fetal tracheal fibroblast activation of TGF-beta. Interestingly, fetal tracheal epithelial alpha(v)beta(8)-mediated TGF-beta activation can be enhanced by phorbol esters, likely because of the increased activity of MT1-MMP, an essential co-factor in alpha(v)beta(8)-mediated activation of TGF-beta. Autocrine alpha(v)beta(8)-mediated TGF-beta activation by fetal tracheal fibroblasts results in suppression of both transcription and secretion of hepatocyte growth factor, which is sufficient to affect phosphorylation of the airway epithelial hepatocyte growth factor receptor, c-Met, as well as airway epithelial proliferation in a co-culture model of the EMTU. These findings elucidate the function and complex regulation of integrin-mediated activation of TGF-beta within the EMTU.
Neurotrophic Factors and Maternal Nutrition During Pregnancy.
Dhobale, M
2017-01-01
Maternal nutrition is one of the major determinants of pregnancy outcome. It has been suggested that reduced intakes or lack of specific nutrients during pregnancy influences the length of gestation, proper placental and fetal growth during pregnancy. Maternal nutrition, particularly micronutrients such as folate and vitamin B 12 , and long-chain polyunsaturated fatty acids (LCPUFA) are the major determinants of the one carbon cycle and are suggested to be at the heart of intrauterine programming of diseases in adult life. LCPUFA play a key role in the normal feto-placental development, as well as in the development and functional maturation of the brain and central nervous system and also regulate the levels of neurotrophic factors. These neurotrophic factors are known to regulate the development of the placenta at the materno-fetal interface and act in a paracrine and endocrine manner. Neurotrophic factors like brain-derived neurotrophic factor and nerve growth factor are proteins involved in angiogenesis and potentiate the placental development. This chapter mainly focuses on micronutrients since they play a main physiological role during pregnancy. © 2017 Elsevier Inc. All rights reserved.
Physical Factors Effecting Cerebral Aneurysm Pathophysiology
Sadasivan, Chander; Fiorella, David J.; Woo, Henry H.; Lieber, Baruch B.
2013-01-01
Many factors that are either blood-, wall-, or hemodynamics-borne have been associated with the initiation, growth, and rupture of intracranial aneurysms. The distribution of cerebral aneurysms around the bifurcations of the circle of Willis has provided the impetus for numerous studies trying to link hemodynamic factors (flow impingement, pressure, and/or wall shear stress) to aneurysm pathophysiology. The focus of this review is to provide a broad overview of such hemodynamic associations as well as the subsumed aspects of vascular anatomy and wall structure. Hemodynamic factors seem to be correlated to the distribution of aneurysms on the intracranial arterial tree and complex, slow flow patterns seem to be associated with aneurysm growth and rupture. However, both the prevalence of aneurysms in the general population and the incidence of ruptures in the aneurysm population are extremely low. This suggests that hemodynamic factors and purely mechanical explanations by themselves may serve as necessary, but never as necessary and sufficient conditions of this disease’s causation. The ultimate cause is not yet known, but it is likely an additive or multiplicative effect of a handful of biochemical and biomechanical factors. PMID:23549899
Kim, WonJin; Jang, Chul Ho; Kim, GeunHyung
2017-09-01
Collagen has been widely used as a very promising material to regenerate various tissues. It is a chief component of the extracellular matrix, and encourages various biological effects conducive to tissue regeneration. However, poor mechanical stability, low processability, and high level of water absorption can lead to impaired control of growth factor release and have impeded the use of collagen as a functional biomedical scaffold. Here, to overcome the shortcomings of collagen scaffolds, we have additively manufactured collagen/polycaprolactone (PCL) biocomposites supplemented with a bioceramic (hydroxyapatite (HA)/β-tricalcium-phosphate (TCP)) and two growth factors (recombinant human bone morphogenetic protein-2 [rhBMP-2] and platelet-rich plasma [PRP]). Various weight fractions of PCL in the collagen/PCL composites were manipulated to select optimal growth factor release and highly active cellular responses. After the optimal concentration of PCL in the collagen/PCL scaffold was determined, biocomposites supplemented with bioceramic/growth-factors were fabricated. Continuously released growth factors were assumed to increase the in vitro cellular activities of the osteoblast-like cells (MG63) cultured on the biocomposites. In vitro cellular responses, including osteogenic activities, were examined, and results showed that compared to the HA/TCP/rhBMP-2 supplemented scaffold the HA/TCP/PRP biocomposites provide significantly high cellular activities (cell proliferation: >1.3-fold) and mineralization (calcium deposition: >1.4-fold, osteocalcin: >2.6-fold) sufficient for regenerating bone tissue. Copyright © 2017. Published by Elsevier B.V.
Mechanisms of resistance to anti-human epidermal growth factor receptor 2 agents in breast cancer.
Mukohara, Toru
2011-01-01
Approximately 20% of breast cancers are characterized by overexpression of human epidermal growth factor receptor 2 (HER2) protein and associated gene amplification, and the receptor tyrosine kinase is believed to play a critical role in the pathogenesis of these tumors. The development and implementation of trastuzumab, a humanized monoclonal antibody against the extracellular domain of HER2 protein, has significantly improved treatment outcomes in patients with HER2-overexpressing breast cancer. However, despite this clinical usefulness, unmet needs for better prediction of trastuzumab's response and overcoming primary and acquired resistance remain. In this review, we discuss several potential mechanisms of resistance to trastuzumab that have been closely studied over the last decade. Briefly, these mechanisms include: impaired access of trastuzumab to HER2 by expression of extracellular domain-truncated HER2 (p95 HER2) or overexpression of MUC4; alternative signaling from insulin-like growth factor-1 receptor, other epidermal growth factor receptor family members, or MET; aberrant downstream signaling caused by loss of phosphatase and tensin homologs deleted from chromosome 10 (PTEN), PIK3CA mutation, or downregulation of p27; or FCGR3A polymorphisms. In addition, we discuss potential strategies for overcoming resistance to trastuzumab. Specifically, the epidermal growth factor receptor/HER2 tyrosine kinase inhibitor lapatinib partially overcame trastuzumab resistance in a clinical setting, so its efficacy results and limited data regarding potential mechanisms of resistance to the drug are also discussed. © 2010 Japanese Cancer Association.
Klenkler, Bettina; Sheardown, Heather
2004-11-01
A number of growth factors and their associated receptors, including epidermal growth factor, transforming growth factor-beta, keratinocyte growth factor, hepatocyte growth factor, fibroblast growth factor and platelet-derived growth factor have been detected in the anterior segment of the eye. On binding to cellular receptors, these factors activate signalling cascades, which regulate functions including mitosis, differentiation, motility and apoptosis. Production of growth factors by corneal cells and their presence in the tear fluid and aqueous humour is essential for maintenance and renewal of normal tissue in the anterior eye and the prevention of undesirable immune or angiogenic reactions. Growth factors also play a vital role in corneal wound healing, mediating the proliferation of epithelial and stromal tissue and affecting the remodelling of the extracellular matrix (ECM). These functions depend on a complex interplay between growth factors of different types, the ECM, and regulatory mechanisms of the affected cells. Imbalances may lead to deficient wound healing and various ocular pathologies, including edema, neovascularization and glaucoma. Growth factors may be targeted in therapeutic ophthalmic applications, through exogenous application or selective inhibition, and may be used to elicit specific cellular responses to ophthalmic materials. A thorough understanding of the mechanism and function of growth factors and their actions in the complex environment of the anterior eye is required for these purposes. Growth factors, their function and mechanisms of action as well as the interplay between different growth factors based on recent in vitro and in vivo studies are presented.
Fatigue life and crack growth prediction methodology
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.
1993-01-01
The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.
Gat-Yablonski, Galia; Pando, Rakefet; Phillip, Moshe
2013-01-01
Malnutrition, marked by variant nutrient deficiencies, is considered a leading cause of stunted growth worldwide. In developing countries, malnutrition is caused mainly by food shortage and infectious diseases. Malnutrition may also be found in the developed world, where it is due mostly to prematurity, chronic diseases, and anorexia nervosa. In most cases, when food consumption is corrected, spontaneous catch-up (CU) growth occurs. However, CU growth is not always complete, leading to growth deficits. Therefore, it is important to understand the mechanisms that govern this process. Using a rat model of food restriction followed by refeeding, we established a nutrition-induced CU growth model. Levels of leptin and insulin-like growth factor-1 were found to significantly decrease when food was restricted and to increase already 1 day after refeeding. Gene expression analysis of the growth plate revealed that food restriction specifically affects transcription factors such as the hypoxia inducible factor-1 and its downstream targets on the one hand, and global gene expression, indicating epigenetic regulation, on the other. Food restriction also reduced the level of several microRNAs, including the chondrocyte-specific miR-140, which led to an increase in its target, SIRT1, a class III histone deacetylase. These findings may explain the global changes in gene expression observed under nutritional manipulation. We suggest that multiple levels of regulation, including transcription factors, epigenetic mechanisms, and microRNAs respond to nutritional cues and offer a possible explanation for some of the effects of food restriction on epiphyseal growth plate growth. The means whereby these components sense changes in nutritional status are still unknown. Deciphering the role of epigenetic regulation in growth may pave the way for the development of new treatments for children with growth disorders. Copyright © 2013 S. Karger AG, Basel.
Interspecific variation in growth responses to climate and competition of five eastern tree species.
Rollinson, Christine R; Kaye, Margot W; Canham, Charles D
2016-04-01
Climate and competition are often presented from two opposing views of the dominant driver of individual tree growth and species distribution in temperate forests, such as those in the eastern United States. Previous studies have provided abundant evidence indicating that both factors influence tree growth, and we argue that these effects are not independent of one another and rather that interactions between climate, competition, and size best describe tree growth. To illustrate this point, we describe the growth responses of five common eastern tree species to interacting effects of temperature, precipitation, competition, and individual size using maximum likelihood estimation. Models that explicitly include interactions among these four factors explained over half of the variance in annual growth for four out of five species using annual climate. Expanding temperature and precipitation analyses to include seasonal interactions resulted in slightly improved models with a mean R2 of 0.61 (SD 0.10). Growth responses to individual factors as well their interactions varied greatly among species. For example, growth sensitivity to temperature for Quercus rubra increased with maximum annual precipitation, but other species showed no change in sensitivity or slightly reduced annual growth. Our results also indicate that three-way interactions among individual stem size, competition, and temperature may determine which of the five co-occurring species in our study could have the highest growth rate in a given year. Continued consideration and quantification of interactions among climate, competition, and individual-based characteristics are likely to increase understanding of key biological processes such as tree growth. Greater parameterization of interactions between traditionally segregated factors such as climate and competition may also help build a framework to reconcile drivers of individual-based processes such as growth with larger-scale patterns of species distribution.
Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method
Bolotnikov, Aleskey E [South Setauket, NY; James, Ralph B [Ridge, NY
2010-07-20
The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.
Role of the insulin-like growth factor family in cancer development and progression.
Yu, H; Rohan, T
2000-09-20
The insulin-like growth factors (IGFs) are mitogens that play a pivotal role in regulating cell proliferation, differentiation, and apoptosis. The effects of IGFs are mediated through the IGF-I receptor, which is also involved in cell transformation induced by tumor virus proteins and oncogene products. Six IGF-binding proteins (IGFBPs) can inhibit or enhance the actions of IGFs. These opposing effects are determined by the structures of the binding proteins. The effects of IGFBPs on IGFs are regulated in part by IGFBP proteases. Laboratory studies have shown that IGFs exert strong mitogenic and antiapoptotic actions on various cancer cells. IGFs also act synergistically with other mitogenic growth factors and steroids and antagonize the effect of antiproliferative molecules on cancer growth. The role of IGFs in cancer is supported by epidemiologic studies, which have found that high levels of circulating IGF-I and low levels of IGFBP-3 are associated with increased risk of several common cancers, including those of the prostate, breast, colorectum, and lung. Evidence further suggests that certain lifestyles, such as one involving a high-energy diet, may increase IGF-I levels, a finding that is supported by animal experiments indicating that IGFs may abolish the inhibitory effect of energy restriction on cancer growth. Further investigation of the role of IGFs in linking high energy intake, increased cell proliferation, suppression of apoptosis, and increased cancer risk may provide new insights into the etiology of cancer and lead to new strategies for cancer prevention.
Shao, Yu-Yun; Hsu, Chih-Hung; Cheng, Ann-Lii
2015-01-01
Sorafenib is the current standard treatment for advanced hepatocellular carcinoma (HCC), but its efficacy is modest with low response rates and short response duration. Predictive biomarkers for sorafenib efficacy are necessary. However, efforts to determine biomarkers for sorafenib have led only to potential candidates rather than clinically useful predictors. Studies based on patient cohorts identified the potential of blood levels of angiopoietin-2, hepatocyte growth factor, insulin-like growth factor-1, and transforming growth factor-β1 for predicting sorafenib efficacy. Alpha-fetoprotein response, dynamic contrast-enhanced magnetic resonance imaging, and treatment-related side effects may serve as early surrogate markers. Novel approaches based on super-responders or experimental mouse models may provide new directions in biomarker research. These studies identified tumor amplification of FGF3/FGF4 or VEGFA and tumor expression of phospho-Mapk14 and phospho-Atf2 as possible predictive markers that await validation. A group effort that considers various prognostic factors and proper collection of tumor tissues before treatment is imperative for the success of future biomarker research in advanced HCC. PMID:26420960
Shao, Yu-Yun; Hsu, Chih-Hung; Cheng, Ann-Lii
2015-09-28
Sorafenib is the current standard treatment for advanced hepatocellular carcinoma (HCC), but its efficacy is modest with low response rates and short response duration. Predictive biomarkers for sorafenib efficacy are necessary. However, efforts to determine biomarkers for sorafenib have led only to potential candidates rather than clinically useful predictors. Studies based on patient cohorts identified the potential of blood levels of angiopoietin-2, hepatocyte growth factor, insulin-like growth factor-1, and transforming growth factor-β1 for predicting sorafenib efficacy. Alpha-fetoprotein response, dynamic contrast-enhanced magnetic resonance imaging, and treatment-related side effects may serve as early surrogate markers. Novel approaches based on super-responders or experimental mouse models may provide new directions in biomarker research. These studies identified tumor amplification of FGF3/FGF4 or VEGFA and tumor expression of phospho-Mapk14 and phospho-Atf2 as possible predictive markers that await validation. A group effort that considers various prognostic factors and proper collection of tumor tissues before treatment is imperative for the success of future biomarker research in advanced HCC.
Huang, Yu-Fei; Yang, Chih-Hao; Huang, Chiung-Chun; Hsu, Kuei-Sen
2012-01-01
Current antidepressant treatments remain limited by poor efficacy and a slow onset of action. Increasing evidence demonstrates that enriched environment (EE) treatment can promote structural and behavioral plasticity in the brain and dampen stress-induced alterations of neuroplasticity. Here, we have examined whether short term exposure to EE is able to produce antidepressant-like effects. Our results show that housing adult mice in an EE cage for 7 days led to antidepressant-like behavioral profiles and a significant increase in the number of dendritic spines in hippocampal CA1 pyramidal neurons. These EE-induced antidepressant-like effects are primarily attributed to increased vascular endothelial growth factor (VEGF) expression through a hypoxia-inducible factor-1α (HIF-1α)-mediated transcriptional mechanism. Blockade of HIF-1α synthesis by lentiviral infection with HIF-1α small hairpin RNAs completely blocked the increase in expression of VEGF and the antidepressant-like effects induced by EE. Moreover, no significant antidepressant-like effects were observed with EE treatment in VEGF receptor 2 (Flk-1) knock-out mice. The increase in HIF-1α expression in the hippocampus induced by EE was associated with a decrease in endogenous levels of microRNA-107 (miR-107). Overexpression of miR-107 in the hippocampus completely blocked EE-induced HIF-1α expression and the antidepressant-like effects. These results support a model in which the down-regulation of miR-107, acting through HIF-1α, mediates VEGF-dependent spinogenesis to underlie the EE-induced antidepressant-like effects. PMID:23074224
Insulin-like growth factor-II regulates bone sialoprotein gene transcription.
Choe, Jin; Sasaki, Yoko; Zhou, Liming; Takai, Hideki; Nakayama, Yohei; Ogata, Yorimasa
2016-09-01
Insulin-like growth factor-I and -II (IGF-I and IGF-II) have been found in bone extracts of several different species, and IGF-II is the most abundant growth factor stored in bone. Bone sialoprotein (BSP) is a noncollagenous extracellular matrix glycoprotein associated with mineralized connective tissues. In this study, we have investigated the regulation of BSP transcription by IGF-II in rat osteoblast-like ROS17/2.8 cells. IGF-II (50 ng/ml) increased BSP mRNA and protein levels after 6-h stimulation, and enhanced luciferase activities of the constructs pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to +60). Effects of IGF-II were inhibited by tyrosine kinase, extracellular signal-regulated kinase1/2 and phosphatidylinositol 3-kinase inhibitors, and abrogated by 2-bp mutations in cAMP response element (CRE), FGF2 response element (FRE) and homeodomain protein-binding site (HOX). The results of gel shift assays showed that nuclear proteins binding to CRE, FRE and HOX sites were increased by IGF-II (50 ng/ml) at 3 and 6 h. CREB1, phospho-CREB1, c-Fos and c-Jun antibodies disrupted the formation of the CRE-protein complexes. Dlx5 and Runx2 antibodies disrupted the FRE- and HOX-protein complex formations. These studies therefore demonstrated that IGF-II increased BSP transcription by targeting CRE, FRE and HOX elements in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, Dlx5 and Runx2 transcription factors appear to be key regulators of IGF-II effects on BSP transcription.
Ping, Jian; Chen, Hong-Yun; Yang, Zhou; Yang, Cheng; Xu, Lie-Ming
2014-03-01
To observe the effect of Yiguan Decoction (YGD) on differentiation of bone marrow mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro. Rat BMSCs were isolated using whole bone marrow adherent method. The properties of BMSCs were identified by analyzing the expression of surface cytokines by flow cytometry. The third passage cells were differentiated into fat cells to identify their features. BMSCs were incubated with hepatocyte growth factor (HGF) plus fibroblast growth factor 4 (FGF4) or YGD containing serum YGD for 21 days. The mRNA expression of alpha-fetoprotein (alphaAFP), albumin (Alb), and hepatocyte nuclear factor 4alpha (HNF4alpha) were detected by real time PCR. Expression of AFP and cytokeratin 18 (CK18) protein was detected by cell immunofluorescence. Glycogen synthesis was observed using periodic acid-Schiff stain (PAS). CK18, Wnt 3alpha, and alphacatenin protein expressions were detected by Western blot. High expression of CD90, CD29, and CD44, and low expression of CD34 and CD11b were observed in BMSCs isolated by whole bone mar- row adherent method, and numerous lipid droplets were observed in BMSCs using oil red O staining. Both YGD containing serum and growth factor stimulated the expression levels of Alb, AFP, HNF4alpha mRNA and CK18 protein. The down-regulated expression of Wnt 3alpha and beta-catenin could be detected at 21 days after induction. The synthesized glycogen granule could be seen. Down-regulated Wnt 3alpha and beta-catenin expression could also be observed. YGD could induce the differentiation of rat BMSCs into hepatocyte-like cells, which was related to down-regulating Wnt/beta-catenin signal pathway.
Choi, Hyong Woo; Kim, Dae Sung; Kim, Nak Hyun; Jung, Ho Won; Ham, Jong Hyun; Hwang, Byung Kook
2013-12-01
Pathogens have evolved a variety of virulence factors to infect host plants successfully. We previously identified the pepper plasma-membrane-resident hypersensitive-induced reaction protein (CaHIR1) as a regulator of plant disease- and immunity-associated cell death. Here, we identified the small filamentous hemagglutinin-like protein (Fha1) of Xanthomonas campestris pv. vesicatoria as an interacting partner of CaHIR1 using yeast two-hybrid screening. Coimmunoprecipitation and bimolecular fluorescence complementation experiments revealed that Fha1 specifically interacts with CaHIR1 in planta. The endocytic tracker FM4-64 staining showed that the CaHIR1-Fha1 complex localizes in the endocytic vesicle-like structure. The X. campestris pv. vesicatoria Δfha1 mutant strain exhibited significantly increased surface adherence but reduced swarming motility. Mutation of fha1 inhibited the growth of X. campestris pv. vesicatoria and X. campestris pv. vesicatoria ΔavrBsT in tomato and pepper leaves, respectively, suggesting that Fha1 acts as a virulence factor in host plants. Transient expression of fha1 and also infiltration with purified Fha1 proteins induced disease-associated cell death response through the interaction with CaHIR1 and suppressed the expression of pathogenesis-related (PR) genes. Silencing of CaHIR1 in pepper significantly reduced ΔavrBsT growth and Fha1-triggered susceptibility cell death. Overexpression of fha1 in Arabidopsis retarded plant growth and triggered disease-associated cell death, resulting in altered disease susceptibility. Taken together, these results suggest that the X. campestris pv. vesicatoria virulence factor Fha1 interacts with CaHIR1, induces susceptibility cell death, and suppresses PR gene expression in host plants.
Fukuda, Takayuki; Takayama, Kazuo; Hirata, Mitsuhi; Liu, Yu-Jung; Yanagihara, Kana; Suga, Mika; Mizuguchi, Hiroyuki; Furue, Miho K
2017-03-15
Limited growth potential, narrow ranges of sources, and difference in variability and functions from batch to batch of primary hepatocytes cause a problem for predicting drug-induced hepatotoxicity during drug development. Human pluripotent stem cell (hPSC)-derived hepatocyte-like cells in vitro are expected as a tool for predicting drug-induced hepatotoxicity. Several studies have already reported efficient methods for differentiating hPSCs into hepatocyte-like cells, however its differentiation process is time-consuming, labor-intensive, cost-intensive, and unstable. In order to solve this problem, expansion culture for hPSC-derived hepatic progenitor cells, including hepatic stem cells and hepatoblasts which can self-renewal and differentiate into hepatocytes should be valuable as a source of hepatocytes. However, the mechanisms of the expansion of hPSC-derived hepatic progenitor cells are not yet fully understood. In this study, to isolate hPSC-derived hepatic progenitor cells, we tried to develop serum-free growth factor defined culture conditions using defined components. Our culture conditions were able to isolate and grow hPSC-derived hepatic progenitor cells which could differentiate into hepatocyte-like cells through hepatoblast-like cells. We have confirmed that the hepatocyte-like cells prepared by our methods were able to increase gene expression of cytochrome P450 enzymes upon encountering rifampicin, phenobarbital, or omeprazole. The isolation and expansion of hPSC-derived hepatic progenitor cells in defined culture conditions should have advantages in terms of detecting accurate effects of exogenous factors on hepatic lineage differentiation, understanding mechanisms underlying self-renewal ability of hepatic progenitor cells, and stably supplying functional hepatic cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hair growth is promoted by BeauTop via expression of EGF and FGF-7
Lee, Chien-Ying; Yang, Chi-Yu; Lin, Ching-Che; Yu, Min-Chien; Sheu, Shuenn-Jyi; Kuan, Yu-Hsiang
2018-01-01
Minoxidil and finasteride have been approved to treat hair loss by the Food and Drug Administration. However, the further elucidation of treatments for hair loss, including those using Chinese herbal medicine, remains important clinically. BeauTop (BT) is a health food supplement which contains Ginseng radix, Astragali radix, Radix Angelicae sinensis, Ligustri fructus, Rehmannia glutinosa and Eclipta prostrata (Linn). Susbsequent to oral administration of BT at 0.6 g/kg/day to wax/rosin-induced alopecia in C57BL/6 mice, BT significantly induced hair growth at day 8 compared with control treatment (P<0.05). The expression levels of epidermal growth factor (EGF), and fibroblast growth factor (FGF)-7 were increased compared with control animals on day 8. In contrast, levels of FGF-5 of the BT group were reduced compared with the control on day 12. There were no effects on the expression of insulin-like growth factor 1. The results demonstrated that the mechanism of BT improving alopecia is potentially associated with modulation of EGF and FGF-7 levels. Taken together, it is suggested that BT may have a potential effect of the promotion of hair growth. PMID:29693180
Park, Ki Moon; Kim, Dong Woo; Lee, Seung Ho
2015-01-01
Allium tuberosum Rottler ex Spreng (ATRES) has been used as a traditional medicine for the treatment of abdominal pain, diarrhea, and asthma. In this study, we investigated the hair growth promoting activities of ATRES on telogenic C57BL6/N mice. Hair growth was significantly increased in the dorsal skin of ethanol extract of ATRES treated mouse group compared with the control mouse group. To enrich the hair promoting activity, an ethanol-insoluble fraction was further extracted in sequence with n-hexane, dichloromethane, ethyl acetate, n-butanol, and distilled water. Interestingly, we found that extraction with n-butanol is most efficient in producing the hair promoting activity. In addition, the soluble fraction of the n-butanol extract was further separated by silica gel chromatography and thin layer chromatography (TLC) resulting in isolating four single fractions which have hair growth regeneration potential. Furthermore, administration of ATRES extracts to dorsal skin area increased the number of hair follicles compared with control mouse group. Interestingly, administration of ATRES extract stimulated the expression of insulin-like growth factor-1 (IGF-1) but not of keratin growth factor (KGF) or vascular endothelial growth factor (VEGF). Taken together, these results suggest that ATRES possesses strong hair growth promoting potential which controls the expression of IGF-1. PMID:26078771