A factory concept for processing and manufacturing with lunar material
NASA Technical Reports Server (NTRS)
Driggers, G. W.
1977-01-01
A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.
MapFactory - Towards a mapping design pattern for big geospatial data
NASA Astrophysics Data System (ADS)
Rautenbach, Victoria; Coetzee, Serena
2018-05-01
With big geospatial data emerging, cartographers and geographic information scientists have to find new ways of dealing with the volume, variety, velocity, and veracity (4Vs) of the data. This requires the development of tools that allow processing, filtering, analysing, and visualising of big data through multidisciplinary collaboration. In this paper, we present the MapFactory design pattern that will be used for the creation of different maps according to the (input) design specification for big geospatial data. The design specification is based on elements from ISO19115-1:2014 Geographic information - Metadata - Part 1: Fundamentals that would guide the design and development of the map or set of maps to be produced. The results of the exploratory research suggest that the MapFactory design pattern will help with software reuse and communication. The MapFactory design pattern will aid software developers to build the tools that are required to automate map making with big geospatial data. The resulting maps would assist cartographers and others to make sense of big geospatial data.
Ramadas, Gisela C V; Rocha, Ana Maria A C; Fernandes, Edite M G P
2015-01-01
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Design Learning of Teaching Factory in Mechanical Engineering
NASA Astrophysics Data System (ADS)
Putra, R. C.; Kusumah, I. H.; Komaro, M.; Rahayu, Y.; Asfiyanur, E. P.
2018-02-01
The industrial world that is the target of the process and learning outcomes of vocational high school (SMK) has its own character and nuance. Therefore, vocational education institutions in the learning process should be able to make the appropriate learning approach and in accordance with the industrial world. One approach to learning that is based on production and learning in the world of work is by industry-based learning or known as Teaching Factory, where in this model apply learning that involves direct students in goods or service activities are expected to have the quality so it is worth selling and accepted by consumers. The method used is descriptive approach. The purpose of this research is to get the design of the teaching factory based on the competency requirements of the graduates of the spouse industry, especially in the engineering department. The results of this study is expected to be one of the choice of model factory teaching in the field of machinery engineering in accordance with the products and competencies of the graduates that the industry needs.
Jaynes, Jessica; Wong, Weng Kee; Xu, Hongquan
2016-01-01
Discrete choice experiments (DCEs) are increasingly used for studying and quantifying subjects preferences in a wide variety of health care applications. They provide a rich source of data to assess real-life decision making processes, which involve trade-offs between desirable characteristics pertaining to health and health care, and identification of key attributes affecting health care. The choice of the design for a DCE is critical because it determines which attributes’ effects and their interactions are identifiable. We apply blocked fractional factorial designs to construct DCEs and address some identification issues by utilizing the known structure of blocked fractional factorial designs. Our design techniques can be applied to several situations including DCEs where attributes have different number of levels. We demonstrate our design methodology using two health care studies to evaluate (1) asthma patients’ preferences for symptom-based outcome measures, and (2) patient preference for breast screening services. PMID:26823156
Qian, Xu; Smith, Helen; Huang, Wenyuan; Zhang, Jie; Huang, Ying; Garner, Paul
2007-05-31
In urban China, more single women are becoming pregnant and resorting to induced abortion, despite the wide availability of temporary methods of contraception. We developed and piloted a workplace-based intervention to promote contraceptive use in unmarried female migrants working in privately owned factories. Quasi-experimental design. In consultation with clients, we developed a workplace based intervention to promote contraception use in unmarried female migrants in a privately owned factory. We then implemented this in one factory, using a controlled before-and-after design. The intervention included lectures, bespoke information leaflets, and support to the factory doctors in providing a contraceptive service. 598 women participated: most were under 25, migrants to the city, with high school education. Twenty percent were lost when staff were made redundant, and implementation was logistically complicated. All women attended the initial lecture, and just over half the second lecture. Most reported reading the educational material provided (73%), but very few women reported using the free family planning services offered at the factory clinic (5%) or the Family Planning Institute (3%). At baseline, 90% (N = 539) stated that contraceptives were required if having sex before marriage; of those reporting sex in the last three months, the majority reporting using contraceptives (78%, 62/79) but condom use was low (44%, 35/79). Qualitative data showed that the reading material seemed to be popular and young women expressed a need for more specific reproductive health information, particularly on HIV/AIDS. Women wanted services with some privacy and anonymity, and views on the factory service were mixed. Implementing a complex intervention with a hard to reach population through a factory in China, using a quasi-experimental design, is not easy. Further research should focus on the specific needs and service preferences of this population and these should be considered in any policy reform so that contraceptive use may be encouraged among young urban migrant workers.
The International Design Study for the Neutrino Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, K.
2008-02-21
The International Design Study for a future Neutrino Factory and super-beam facility (the ISS) established the physics case for a high-precision programme of long-baseline neutrino-oscillation measurements. The ISS also identified baseline specifications for the Neutrino Factory accelerator complex and the neutrino detector systems. This paper summarises the objectives of the International Design Study for the Neutrino Factory (the IDS-NF). The IDS-NF will build on the work of the ISS to deliver a Reference Design Report for the Neutrino Factory by 2012/13 and an Interim Design Report by 2010/11.
NASA Astrophysics Data System (ADS)
Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.
1999-06-01
The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.
Rank-based permutation approaches for non-parametric factorial designs.
Umlauft, Maria; Konietschke, Frank; Pauly, Markus
2017-11-01
Inference methods for null hypotheses formulated in terms of distribution functions in general non-parametric factorial designs are studied. The methods can be applied to continuous, ordinal or even ordered categorical data in a unified way, and are based only on ranks. In this set-up Wald-type statistics and ANOVA-type statistics are the current state of the art. The first method is asymptotically exact but a rather liberal statistical testing procedure for small to moderate sample size, while the latter is only an approximation which does not possess the correct asymptotic α level under the null. To bridge these gaps, a novel permutation approach is proposed which can be seen as a flexible generalization of the Kruskal-Wallis test to all kinds of factorial designs with independent observations. It is proven that the permutation principle is asymptotically correct while keeping its finite exactness property when data are exchangeable. The results of extensive simulation studies foster these theoretical findings. A real data set exemplifies its applicability. © 2017 The British Psychological Society.
Collins, Linda M.; Dziak, John J.; Li, Runze
2009-01-01
An investigator who plans to conduct experiments with multiple independent variables must decide whether to use a complete or reduced factorial design. This article advocates a resource management perspective on making this decision, in which the investigator seeks a strategic balance between service to scientific objectives and economy. Considerations in making design decisions include whether research questions are framed as main effects or simple effects; whether and which effects are aliased (confounded) in a particular design; the number of experimental conditions that must be implemented in a particular design and the number of experimental subjects the design requires to maintain the desired level of statistical power; and the costs associated with implementing experimental conditions and obtaining experimental subjects. In this article four design options are compared: complete factorial, individual experiments, single factor, and fractional factorial designs. Complete and fractional factorial designs and single factor designs are generally more economical than conducting individual experiments on each factor. Although relatively unfamiliar to behavioral scientists, fractional factorial designs merit serious consideration because of their economy and versatility. PMID:19719358
A practical limit to trials needed in one-person randomized controlled experiments.
Alemi, Roshan; Alemi, Farrokh
2007-01-01
Recently in this journal, J. Olsson and colleagues suggested the use of factorial experimental designs to guide a patient's efforts to choose among multiple interventions. These authors argue that factorial design, where every possible combination of the interventions is tried, is superior to sequential trial and errors. Factorial design is efficient in identifying the effectiveness of interventions (factor effect). Most patients care only about feeling better and not why their conditions are improving. If the goal of the patient is to get better and not to estimate the factor effect, then no control groups are needed. In this article, we show a modification in the factorial design of experiments proposed by Olsson and colleagues where a full-factorial design is planned, but experimentation is stopped when the patient's condition improves. With this modification, the number of trials is radically fewer than those needed by factorial design. For example, a patient trying out 4 different interventions with a median probability of success of .50 is expected to need 2 trials before stopping the experimentation in comparison with 32 in a full-factorial design.
Virtual Collaborative Simulation Environment for Integrated Product and Process Development
NASA Technical Reports Server (NTRS)
Gulli, Michael A.
1997-01-01
Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.
Implementing Clinical Research Using Factorial Designs: A Primer.
Baker, Timothy B; Smith, Stevens S; Bolt, Daniel M; Loh, Wei-Yin; Mermelstein, Robin; Fiore, Michael C; Piper, Megan E; Collins, Linda M
2017-07-01
Factorial experiments have rarely been used in the development or evaluation of clinical interventions. However, factorial designs offer advantages over randomized controlled trial designs, the latter being much more frequently used in such research. Factorial designs are highly efficient (permitting evaluation of multiple intervention components with good statistical power) and present the opportunity to detect interactions amongst intervention components. Such advantages have led methodologists to advocate for the greater use of factorial designs in research on clinical interventions (Collins, Dziak, & Li, 2009). However, researchers considering the use of such designs in clinical research face a series of choices that have consequential implications for the interpretability and value of the experimental results. These choices include: whether to use a factorial design, selection of the number and type of factors to include, how to address the compatibility of the different factors included, whether and how to avoid confounds between the type and number of interventions a participant receives, and how to interpret interactions. The use of factorial designs in clinical intervention research poses choices that differ from those typically considered in randomized clinical trial designs. However, the great information yield of the former encourages clinical researchers' increased and careful execution of such designs. Copyright © 2017. Published by Elsevier Ltd.
Automated production of plant-based vaccines and pharmaceuticals.
Wirz, Holger; Sauer-Budge, Alexis F; Briggs, John; Sharpe, Aaron; Shu, Sudong; Sharon, Andre
2012-12-01
A fully automated "factory" was developed that uses tobacco plants to produce large quantities of vaccines and other therapeutic biologics within weeks. This first-of-a-kind factory takes advantage of a plant viral vector technology to produce specific proteins within the leaves of rapidly growing plant biomass. The factory's custom-designed robotic machines plant seeds, nurture the growing plants, introduce a viral vector that directs the plant to produce a target protein, and harvest the biomass once the target protein has accumulated in the plants-all in compliance with Food and Drug Administration (FDA) guidelines (e.g., current Good Manufacturing Practices). The factory was designed to be time, cost, and space efficient. The plants are grown in custom multiplant trays. Robots ride up and down a track, servicing the plants and delivering the trays from the lighted, irrigated growth modules to each processing station as needed. Using preprogrammed robots and processing equipment eliminates the need for human contact, preventing potential contamination of the process and economizing the operation. To quickly produce large quantities of protein-based medicines, we transformed a laboratory-based biological process and scaled it into an industrial process. This enables quick, safe, and cost-effective vaccine production that would be required in case of a pandemic.
In Silico Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories
Maia, Paulo; Rocha, Miguel
2015-01-01
SUMMARY Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed. PMID:26609052
Cloud-based robot remote control system for smart factory
NASA Astrophysics Data System (ADS)
Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei
2015-12-01
With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.
An examination of effect estimation in factorial and standardly-tailored designs
Allore, Heather G; Murphy, Terrence E
2012-01-01
Background Many clinical trials are designed to test an intervention arm against a control arm wherein all subjects are equally eligible for all interventional components. Factorial designs have extended this to test multiple intervention components and their interactions. A newer design referred to as a ‘standardly-tailored’ design, is a multicomponent interventional trial that applies individual interventional components to modify risk factors identified a priori and tests whether health outcomes differ between treatment arms. Standardly-tailored designs do not require that all subjects be eligible for every interventional component. Although standardly-tailored designs yield an estimate for the net effect of the multicomponent intervention, it has not yet been shown if they permit separate, unbiased estimation of individual component effects. The ability to estimate the most potent interventional components has direct bearing on conducting second stage translational research. Purpose We present statistical issues related to the estimation of individual component effects in trials of geriatric conditions using factorial and standardly-tailored designs. The medical community is interested in second stage translational research involving the transfer of results from a randomized clinical trial to a community setting. Before such research is undertaken, main effects and synergistic and or antagonistic interactions between them should be identified. Knowledge of the relative strength and direction of the effects of the individual components and their interactions facilitates the successful transfer of clinically significant findings and may potentially reduce the number of interventional components needed. Therefore the current inability of the standardly-tailored design to provide unbiased estimates of individual interventional components is a serious limitation in their applicability to second stage translational research. Methods We discuss estimation of individual component effects from the family of factorial designs and this limitation for standardly-tailored designs. We use the phrase ‘factorial designs’ to describe full-factorial designs and their derivatives including the fractional factorial, partial factorial, incomplete factorial and modified reciprocal designs. We suggest two potential directions for designing multicomponent interventions to facilitate unbiased estimates of individual interventional components. Results Full factorial designs and their variants are the most common multicomponent trial design described in the literature and differ meaningfully from standardly-tailored designs. Factorial and standardly-tailored designs result in similar estimates of net effect with different levels of precision. Unbiased estimation of individual component effects from a standardly-tailored design will require new methodology. Limitations Although clinically relevant in geriatrics, previous applications of standardly-tailored designs have not provided unbiased estimates of the effects of individual interventional components. Discussion Future directions to estimate individual component effects from standardly-tailored designs include applying D-optimal designs and creating independent linear combinations of risk factors analogous to factor analysis. Conclusion Methods are needed to extract unbiased estimates of the effects of individual interventional components from standardly-tailored designs. PMID:18375650
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-01
... and catch weighing requirements address performance standards designed to ensure that all catch... motherships is based on the vessel meeting a series of design criteria. Because of the wide variations in factory layout for inshore processors, NMFS requires a performance-based catch monitoring system for...
75 FR 52507 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-26
... standards designed to ensure that all catch delivered to the processor is accurately weighed and accounted... NMFS for catcher/processors and motherships is based on the vessel meeting a series of design criteria. Because of the wide variations in factory layout for inshore processors, NMFS requires a performance-based...
Web-Based Smoking-Cessation Program
Strecher, Victor J.; McClure, Jennifer B.; Alexander, Gwen L.; Chakraborty, Bibhas; Nair, Vijay N.; Konkel, Janine M.; Greene, Sarah M.; Collins, Linda M.; Carlier, Carola C.; Wiese, Cheryl J.; Little, Roderick J.; Pomerleau, Cynthia S.; Pomerleau, Ovide F.
2009-01-01
Background Initial trials of web-based smoking-cessation programs have generally been promising. The active components of these programs, however, are not well understood. This study aimed to (1) identify active psychosocial and communication components of a web-based smoking-cessation intervention and (2) examine the impact of increasing the tailoring depth on smoking cessation. Design Randomized fractional factorial design. Setting Two HMOs: Group Health in Washington State and Henry Ford Health System in Michigan. Participants 1866 smokers. Intervention A web-based smoking-cessation program plus nicotine patch. Five components of the intervention were randomized using a fractional factorial design: high- versus low-depth tailored success story, outcome expectation, and efficacy expectation messages; high- versus low-personalized source; and multiple versus single exposure to the intervention components. Measurements Primary outcome was 7 day point-prevalence abstinence at the 6-month follow-up. Findings Abstinence was most influenced by high-depth tailored success stories and a high-personalized message source. The cumulative assignment of the three tailoring depth factors also resulted in increasing the rates of 6-month cessation, demonstrating an effect of tailoring depth. Conclusions The study identified relevant components of smoking-cessation interventions that should be generalizable to other cessation interventions. The study also demonstrated the importance of higher-depth tailoring in smoking-cessation programs. Finally, the use of a novel fractional factorial design allowed efficient examination of the study aims. The rapidly changing interfaces, software, and capabilities of eHealth are likely to require such dynamic experimental approaches to intervention discovery. PMID:18407003
Design, analysis and presentation of factorial randomised controlled trials
Montgomery, Alan A; Peters, Tim J; Little, Paul
2003-01-01
Background The evaluation of more than one intervention in the same randomised controlled trial can be achieved using a parallel group design. However this requires increased sample size and can be inefficient, especially if there is also interest in considering combinations of the interventions. An alternative may be a factorial trial, where for two interventions participants are allocated to receive neither intervention, one or the other, or both. Factorial trials require special considerations, however, particularly at the design and analysis stages. Discussion Using a 2 × 2 factorial trial as an example, we present a number of issues that should be considered when planning a factorial trial. The main design issue is that of sample size. Factorial trials are most often powered to detect the main effects of interventions, since adequate power to detect plausible interactions requires greatly increased sample sizes. The main analytical issues relate to the investigation of main effects and the interaction between the interventions in appropriate regression models. Presentation of results should reflect the analytical strategy with an emphasis on the principal research questions. We also give an example of how baseline and follow-up data should be presented. Lastly, we discuss the implications of the design, analytical and presentational issues covered. Summary Difficulties in interpreting the results of factorial trials if an influential interaction is observed is the cost of the potential for efficient, simultaneous consideration of two or more interventions. Factorial trials can in principle be designed to have adequate power to detect realistic interactions, and in any case they are the only design that allows such effects to be investigated. PMID:14633287
New generation electron-positron factories
NASA Astrophysics Data System (ADS)
Zobov, Mikhail
2011-09-01
In 2010 we celebrate 50 years since commissioning of the first particle storage ring ADA in Frascati (Italy) that also became the first electron-positron collider in 1964. After that date the particle colliders have increased their intensity, luminosity and energy by several orders of magnitude. Namely, because of the high stored beam currents and high rate of useful physics events (luminosity) the modern electron-positron colliders are called "factories". However, the fundamental physics has required luminosities by 1-2 orders of magnitudes higher with respect to those presently achieved. This task can be accomplished by designing a new generation of factories exploiting the potential of a new collision scheme based on the Crab Waist (CW) collision concept recently proposed and successfully tested at Frascati. In this paper we discuss the performance and limitations of the present generation electron-positron factories and give a brief overview of new ideas and collision schemes proposed for further collider luminosity increase. In more detail we describe the CW collision concept and the results of the crab waist collision tests in DAϕNE, the Italian ϕ-factory. Finally, we briefly describe most advanced projects of the next generation factories based on the CW concept: SuperB in Italy, SuperKEKB in Japan and SuperC-Tau in Russia.
ED-WAVE tool design approach: Case of a textile wastewater treatment plant in Blantyre, Malawi
NASA Astrophysics Data System (ADS)
Chipofya, V.; Kraslawski, A.; Avramenko, Y.
The ED-WAVE tool is a PC based package for imparting training on wastewater treatment technologies. The system consists of four modules viz. Reference Library, Process Builder, Case Study Manager, and Treatment Adviser. The principles of case-based design and case-based reasoning as applied in the ED-WAVE tool are utilised in this paper to evaluate the design approach of the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory, Blantyre, Malawi. The case being compared with MDW&S in the ED-WAVE tool is Textile Case 4 in Sri Lanka (2003). Equalisation, coagulation and rotating biological contactors is the sequencing of treatment units at Textile Case 4 in Sri Lanka. Screening, oxidation ditches and sedimentation is the sequencing of treatment units at MDW&S textile and garments factory. The study suggests that aerobic biological treatment is necessary in the treatment of wastewater from a textile and garments factory. MDW&S incorporates a sedimentation process which is necessary for the removal of settleable matter before the effluent is discharged to the municipal wastewater treatment plant. The study confirmed the practical use of the ED-WAVE tool in the design of wastewater treatment systems, where after encountering a new situation; already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects.
D-OPTIMAL EXPERIMENTAL DESIGNS TO TEST FOR DEPARTURE FROM ADDITIVITY IN A FIXED-RATIO MIXTURE RAY.
Traditional factorial designs for evaluating interactions among chemicals in a mixture are prohibitive when the number of chemicals is large. However, recent advances in statistically-based experimental design have made it easier to evaluate interactions involving many chemicals...
Factorial Experiments: Efficient Tools for Evaluation of Intervention Components
Collins, Linda M.; Dziak, John J.; Kugler, Kari C.; Trail, Jessica B.
2014-01-01
Background An understanding of the individual and combined effects of a set of intervention components is important for moving the science of preventive medicine interventions forward. This understanding can often be achieved in an efficient and economical way via a factorial experiment, in which two or more independent variables are manipulated. The factorial experiment is a complement to the randomized controlled trial (RCT); the two designs address different research questions. Purpose This article offers an introduction to factorial experiments aimed at investigators trained primarily in the RCT. Method The factorial experiment is compared and contrasted with other experimental designs used commonly in intervention science to highlight where each is most efficient and appropriate. Results Several points are made: factorial experiments make very efficient use of experimental subjects when the data are properly analyzed; a factorial experiment can have excellent statistical power even if it has relatively few subjects per experimental condition; and when conducting research to select components for inclusion in a multicomponent intervention, interactions should be studied rather than avoided. Conclusions Investigators in preventive medicine and related areas should begin considering factorial experiments alongside other approaches. Experimental designs should be chosen from a resource management perspective, which states that the best experimental design is the one that provides the greatest scientific benefit without exceeding available resources. PMID:25092122
Cadman, D; Goldsmith, C
1986-01-01
Global indices, which aggregate multiple health or function attributes into a single summary indicator, are useful measures in health research. Two key issues must be addressed in the initial stages of index construction from the universe of possible health and function attributes, which ones should be included in a new index? and how simple can the statistical model be to combine attributes into a single numeric index value? Factorial experimental designs were used in the initial stages of developing a function index for evaluating a program for the care of young handicapped children. Beginning with eight attributes judged important to the goals of the program by clinicians, social preference values for different function states were obtained from 32 parents of handicapped children and 32 members of the community. Using category rating methods each rater scored 16 written multi-attribute case descriptions which contained information about a child's status for all eight attributes. Either a good or poor level of each function attribute and age 3 or 5 years were described in each case. Thus, 2(8) = 256 different cases were rated. Two factorial design plans were selected and used to allocate case descriptions to raters. Analysis of variance determined that seven of the eight clinician selected attributes were required in a social value based index for handicapped children. Most importantly, the subsequent steps of index construction could be greatly simplified by the finding that a simple additive statistical model without complex attribute interaction terms was adequate for the index. We conclude that factorial experimental designs are an efficient, feasible and powerful tool for the initial stages of constructing a multi-attribute health index.
Factorial experiments: efficient tools for evaluation of intervention components.
Collins, Linda M; Dziak, John J; Kugler, Kari C; Trail, Jessica B
2014-10-01
An understanding of the individual and combined effects of a set of intervention components is important for moving the science of preventive medicine interventions forward. This understanding can often be achieved in an efficient and economical way via a factorial experiment, in which two or more independent variables are manipulated. The factorial experiment is a complement to the RCT; the two designs address different research questions. To offer an introduction to factorial experiments aimed at investigators trained primarily in the RCT. The factorial experiment is compared and contrasted with other experimental designs used commonly in intervention science to highlight where each is most efficient and appropriate. Several points are made: factorial experiments make very efficient use of experimental subjects when the data are properly analyzed; a factorial experiment can have excellent statistical power even if it has relatively few subjects per experimental condition; and when conducting research to select components for inclusion in a multicomponent intervention, interactions should be studied rather than avoided. Investigators in preventive medicine and related areas should begin considering factorial experiments alongside other approaches. Experimental designs should be chosen from a resource management perspective, which states that the best experimental design is the one that provides the greatest scientific benefit without exceeding available resources. Copyright © 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Power Terminal Communication Access Network Monitoring System Scheme Based on Design Patterns
NASA Astrophysics Data System (ADS)
Yan, Shengchao; Wu, Desheng; Zhu, Jiang
2018-01-01
In order to realize patterns design for terminal communication monitoring system, this paper introduces manager-workers, tasks-workers design patterns, based on common design patterns such as factory method, chain of responsibility, facade. Using these patterns, the communication monitoring system which combines module-groups like networking communication, business data processing and the peripheral support has been designed successfully. Using these patterns makes this system have great flexibility and scalability and improves the degree of systematic pattern design structure.
Factorial versus multi-arm multi-stage designs for clinical trials with multiple treatments.
Jaki, Thomas; Vasileiou, Despina
2017-02-20
When several treatments are available for evaluation in a clinical trial, different design options are available. We compare multi-arm multi-stage with factorial designs, and in particular, we will consider a 2 × 2 factorial design, where groups of patients will either take treatments A, B, both or neither. We investigate the performance and characteristics of both types of designs under different scenarios and compare them using both theory and simulations. For the factorial designs, we construct appropriate test statistics to test the hypothesis of no treatment effect against the control group with overall control of the type I error. We study the effect of the choice of the allocation ratios on the critical value and sample size requirements for a target power. We also study how the possibility of an interaction between the two treatments A and B affects type I and type II errors when testing for significance of each of the treatment effects. We present both simulation results and a case study on an osteoarthritis clinical trial. We discover that in an optimal factorial design in terms of minimising the associated critical value, the corresponding allocation ratios differ substantially to those of a balanced design. We also find evidence of potentially big losses in power in factorial designs for moderate deviations from the study design assumptions and little gain compared with multi-arm multi-stage designs when the assumptions hold. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
... Directed at Adolescents.'' This study is designed to examine how adolescents interpret DTC advertising... understanding of benefits and risks in DTC ads differ across this part of the lifespan. Design Overview Within... (benefit onset: immediate, delayed) x 2 (risk severity: high, low) factorial design, based on the rationale...
Algorithm for designing smart factory Industry 4.0
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-03-01
The designing task of production division of the Industry 4.0 item designing company is being studied. The authors proposed an algorithm, which is based on the modified V L Volkovich method. This algorithm allows generating options how to arrange the production with robotized technological equipment functioning in the automatic mode. The optimization solution of the multi-criteria task for some additive criteria is the base of the algorithm.
ERIC Educational Resources Information Center
Wang, Pei-Yu; Huang, Chung-Kai
2015-01-01
This study aims to explore the impact of learner grade, visual cueing, and control design on children's reading achievement of audio e-books with tablet computers. This research was a three-way factorial design where the first factor was learner grade (grade four and six), the second factor was e-book visual cueing (word-based, line-based, and…
Nandi, Gouranga; Nandi, Amit Kumar; Khan, Najim Sarif; Pal, Souvik; Dey, Sibasish
2018-07-15
Development of tamarind seed gum (TSG)-hydrolyzed polymethacrylamide-g-gellan (h-Pmaa-g-GG) composite beads for extended release of diclofenac sodium using 3 2 full factorial design is the main purpose of this study. The ratio of h-Pmaa-g-GG and TSG and concentration of cross-linker CaCl 2 were taken as independent factors with three different levels of each. Effects of polymer ratio and CaCl 2 on drug entrapment efficiency (DEE), drug release, bead size and swelling were investigated. Responses such as DEE and different drug release parameters were statistically analyzed by 3 2 full factorial design using Design-Expert software and finally the formulation factors were optimized to obtain USP-reference release profile. Drug release rate was found to decrease with decrease in the ratio of h-Pmaa-g-GG:TSG and increase in the concentration of Ca 2+ ions in cross-linking medium. The optimized formulation showed DEE of 93.25% and an extended drug release profile over a period of 10h with f 2 =80.13. Kinetic modeling unveiled case-I-Fickian diffusion based drug release mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kingswell, R.; Scott, K. T.; Wassell, L. L.
1993-06-01
The vacuum plasma spray (VPS) deposition of metal, ceramic, and cermet coatings has been investigated using designed statistical experiments. Processing conditions that were considered likely to have a significant influence on the melting characteristics of the precursor powders and hence deposition efficiency were incorporated into full and fractional factorial experimental designs. The processing of an alumina powder was very sensitive to variations in the deposition conditions, particularly the injection velocity of the powder into the plasma flame, the plasma gas composition, and the power supplied to the gun. Using a combination of full and fractional factorial experimental designs, it was possible to rapidly identify the important spraying variables and adjust these to produce a deposition efficiency approaching 80 percent. The deposition of a nickel-base alloy metal powder was less sensitive to processing conditions. Generally, however, a high degree of particle melting was achieved for a wide range of spray conditions. Preliminary experiments performed using a tungsten carbide/cobalt cermet powder indicated that spray efficiency was not sensitive to deposition conditions. However, microstructural analysis revealed considerable variations in the degree of tungsten carbide dissolution. The structure and properties of the optimized coatings produced in the factorial experiments are also discussed.
A method to accelerate creation of plasma etch recipes using physics and Bayesian statistics
NASA Astrophysics Data System (ADS)
Chopra, Meghali J.; Verma, Rahul; Lane, Austin; Willson, C. G.; Bonnecaze, Roger T.
2017-03-01
Next generation semiconductor technologies like high density memory storage require precise 2D and 3D nanopatterns. Plasma etching processes are essential to achieving the nanoscale precision required for these structures. Current plasma process development methods rely primarily on iterative trial and error or factorial design of experiment (DOE) to define the plasma process space. Here we evaluate the efficacy of the software tool Recipe Optimization for Deposition and Etching (RODEo) against standard industry methods at determining the process parameters of a high density O2 plasma system with three case studies. In the first case study, we demonstrate that RODEo is able to predict etch rates more accurately than a regression model based on a full factorial design while using 40% fewer experiments. In the second case study, we demonstrate that RODEo performs significantly better than a full factorial DOE at identifying optimal process conditions to maximize anisotropy. In the third case study we experimentally show how RODEo maximizes etch rates while using half the experiments of a full factorial DOE method. With enhanced process predictions and more accurate maps of the process space, RODEo reduces the number of experiments required to develop and optimize plasma processes.
A Market-Based Approach to Multi-factory Scheduling
NASA Astrophysics Data System (ADS)
Vytelingum, Perukrishnen; Rogers, Alex; MacBeth, Douglas K.; Dutta, Partha; Stranjak, Armin; Jennings, Nicholas R.
In this paper, we report on the design of a novel market-based approach for decentralised scheduling across multiple factories. Specifically, because of the limitations of scheduling in a centralised manner - which requires a center to have complete and perfect information for optimality and the truthful revelation of potentially commercially private preferences to that center - we advocate an informationally decentralised approach that is both agile and dynamic. In particular, this work adopts a market-based approach for decentralised scheduling by considering the different stakeholders representing different factories as self-interested, profit-motivated economic agents that trade resources for the scheduling of jobs. The overall schedule of these jobs is then an emergent behaviour of the strategic interaction of these trading agents bidding for resources in a market based on limited information and their own preferences. Using a simple (zero-intelligence) bidding strategy, we empirically demonstrate that our market-based approach achieves a lower bound efficiency of 84%. This represents a trade-off between a reasonable level of efficiency (compared to a centralised approach) and the desirable benefits of a decentralised solution.
An Application of Fractional Factorial Designs to Study Drug Combinations
Jaynes, Jessica; Ding, Xianting; Xu, Hongquan; Wong, Weng Kee; Ho, Chih-Ming
2013-01-01
Herpes simplex virus type 1 (HSV-1) is known to cause diseases of various severities. There is increasing interest to find drug combinations to treat HSV-1 by reducing drug resistance and cytotoxicity. Drug combinations offer potentially higher efficacy and lower individual drug dosage. In this paper, we report a new application of fractional factorial designs to investigate a biological system with HSV-1 and six antiviral drugs, namely, Interferon-alpha, Interferon-beta, Interferon-gamma, Ribavirin, Acyclovir, and TNF-alpha. We show how the sequential use of two- and three-level fractional factorial designs can screen for important drugs and drug interactions, as well as determine potential optimal drug dosages through the use of contour plots. Our initial experiment using a two-level fractional factorial design suggests that there is model inadequacy and drug dosages should be reduced. A follow-up experiment using a blocked three-level fractional factorial design indicates that TNF-alpha has little effect and HSV-1 infection can be suppressed effectively by using a right combination of the other five antiviral drugs. These observations have practical implications in the understanding of antiviral drug mechanism that can result in better design of antiviral drug therapy. PMID:22859316
Assessing the applicability of the Taguchi design method to an interrill erosion study
NASA Astrophysics Data System (ADS)
Zhang, F. B.; Wang, Z. L.; Yang, M. Y.
2015-02-01
Full-factorial experimental designs have been used in soil erosion studies, but are time, cost and labor intensive, and sometimes they are impossible to conduct due to the increasing number of factors and their levels to consider. The Taguchi design is a simple, economical and efficient statistical tool that only uses a portion of the total possible factorial combinations to obtain the results of a study. Soil erosion studies that use the Taguchi design are scarce and no comparisons with full-factorial designs have been made. In this paper, a series of simulated rainfall experiments using a full-factorial design of five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m), five slope gradients (18%, 27%, 36%, 48%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h-1) were conducted. Validation of the applicability of a Taguchi design to interrill erosion experiments was achieved by extracting data from the full dataset according to a theoretical Taguchi design. The statistical parameters for the mean quasi-steady state erosion and runoff rates of each test, the optimum conditions for producing maximum erosion and runoff, and the main effect and percentage contribution of each factor obtained from the full-factorial and Taguchi designs were compared. Both designs generated almost identical results. Using the experimental data from the Taguchi design, it was possible to accurately predict the erosion and runoff rates under the conditions that had been excluded from the Taguchi design. All of the results obtained from analyzing the experimental data for both designs indicated that the Taguchi design could be applied to interrill erosion studies and could replace full-factorial designs. This would save time, labor and costs by generally reducing the number of tests to be conducted. Further work should test the applicability of the Taguchi design to a wider range of conditions.
Lee, Seung-Mok; Kim, Young-Gyu; Cho, Il-Hyoung
2005-01-01
Optimal operating conditions in order to treat dyeing wastewater were investigated by using the factorial design and responses surface methodology (RSM). The experiment was statistically designed and carried out according to a 22 full factorial design with four factorial points, three center points, and four axial points. Then, the linear and nonlinear regression was applied on the data by using SAS package software. The independent variables were TiO2 dosage, H2O2 concentration and total organic carbon (TOC) removal efficiency of dyeing wastewater was dependent variable. From the factorial design and responses surface methodology (RSM), maximum removal efficiency (85%) of dyeing wastewater was obtained at TiO2 dosage (1.82 gL(-1)), H2O2 concentration (980 mgL(-1)) for oxidation reaction (20 min).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Paul A.; Liao, Chang-hsien
2007-11-15
A passive flow disturbance has been proven to enhance the conversion of fuel in a methanol-steam reformer. This study presents a statistical validation of the experiment based on a standard 2{sup k} factorial experiment design and the resulting empirical model of the enhanced hydrogen producing process. A factorial experiment design was used to statistically analyze the effects and interactions of various input factors in the experiment. Three input factors, including the number of flow disturbers, catalyst size, and reactant flow rate were investigated for their effects on the fuel conversion in the steam-reformation process. Based on the experimental results, anmore » empirical model was developed and further evaluated with an uncertainty analysis and interior point data. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soko, W.A.; Biaecka, B.
1998-12-31
In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less
Dziak, John J.; Nahum-Shani, Inbal; Collins, Linda M.
2012-01-01
Factorial experimental designs have many potential advantages for behavioral scientists. For example, such designs may be useful in building more potent interventions, by helping investigators to screen several candidate intervention components simultaneously and decide which are likely to offer greater benefit before evaluating the intervention as a whole. However, sample size and power considerations may challenge investigators attempting to apply such designs, especially when the population of interest is multilevel (e.g., when students are nested within schools, or employees within organizations). In this article we examine the feasibility of factorial experimental designs with multiple factors in a multilevel, clustered setting (i.e., of multilevel multifactor experiments). We conduct Monte Carlo simulations to demonstrate how design elements such as the number of clusters, the number of lower-level units, and the intraclass correlation affect power. Our results suggest that multilevel, multifactor experiments are feasible for factor-screening purposes, because of the economical properties of complete and fractional factorial experimental designs. We also discuss resources for sample size planning and power estimation for multilevel factorial experiments. These results are discussed from a resource management perspective, in which the goal is to choose a design that maximizes the scientific benefit using the resources available for an investigation. PMID:22309956
Dziak, John J; Nahum-Shani, Inbal; Collins, Linda M
2012-06-01
Factorial experimental designs have many potential advantages for behavioral scientists. For example, such designs may be useful in building more potent interventions by helping investigators to screen several candidate intervention components simultaneously and to decide which are likely to offer greater benefit before evaluating the intervention as a whole. However, sample size and power considerations may challenge investigators attempting to apply such designs, especially when the population of interest is multilevel (e.g., when students are nested within schools, or when employees are nested within organizations). In this article, we examine the feasibility of factorial experimental designs with multiple factors in a multilevel, clustered setting (i.e., of multilevel, multifactor experiments). We conduct Monte Carlo simulations to demonstrate how design elements-such as the number of clusters, the number of lower-level units, and the intraclass correlation-affect power. Our results suggest that multilevel, multifactor experiments are feasible for factor-screening purposes because of the economical properties of complete and fractional factorial experimental designs. We also discuss resources for sample size planning and power estimation for multilevel factorial experiments. These results are discussed from a resource management perspective, in which the goal is to choose a design that maximizes the scientific benefit using the resources available for an investigation. (c) 2012 APA, all rights reserved
Generalized Subset Designs in Analytical Chemistry.
Surowiec, Izabella; Vikström, Ludvig; Hector, Gustaf; Johansson, Erik; Vikström, Conny; Trygg, Johan
2017-06-20
Design of experiments (DOE) is an established methodology in research, development, manufacturing, and production for screening, optimization, and robustness testing. Two-level fractional factorial designs remain the preferred approach due to high information content while keeping the number of experiments low. These types of designs, however, have never been extended to a generalized multilevel reduced design type that would be capable to include both qualitative and quantitative factors. In this Article we describe a novel generalized fractional factorial design. In addition, it also provides complementary and balanced subdesigns analogous to a fold-over in two-level reduced factorial designs. We demonstrate how this design type can be applied with good results in three different applications in analytical chemistry including (a) multivariate calibration using microwave resonance spectroscopy for the determination of water in tablets, (b) stability study in drug product development, and (c) representative sample selection in clinical studies. This demonstrates the potential of generalized fractional factorial designs to be applied in many other areas of analytical chemistry where representative, balanced, and complementary subsets are required, especially when a combination of quantitative and qualitative factors at multiple levels exists.
Paula Soares; Margarida Tome
2000-01-01
In Portugal, several eucalyptus spacing trials cover a relatively broad range of experimental designs: trials with a non-randomized block design with plots of different size and number of trees per plot; trials based on a non-systematic design in which spacings were randomized resulting in a factorial arrangement with plots of different size and shape and equal number...
Factorial Design: An Eight Factor Experiment Using Paper Helicopters
NASA Technical Reports Server (NTRS)
Kozma, Michael
1996-01-01
The goal of this paper is to present the analysis of the multi-factor experiment (factorial design) conducted in EG490, Junior Design at Loyola College in Maryland. The discussion of this paper concludes the experimental analysis and ties the individual class papers together.
Bondi, Robert W; Igne, Benoît; Drennen, James K; Anderson, Carl A
2012-12-01
Near-infrared spectroscopy (NIRS) is a valuable tool in the pharmaceutical industry, presenting opportunities for online analyses to achieve real-time assessment of intermediates and finished dosage forms. The purpose of this work was to investigate the effect of experimental designs on prediction performance of quantitative models based on NIRS using a five-component formulation as a model system. The following experimental designs were evaluated: five-level, full factorial (5-L FF); three-level, full factorial (3-L FF); central composite; I-optimal; and D-optimal. The factors for all designs were acetaminophen content and the ratio of microcrystalline cellulose to lactose monohydrate. Other constituents included croscarmellose sodium and magnesium stearate (content remained constant). Partial least squares-based models were generated using data from individual experimental designs that related acetaminophen content to spectral data. The effect of each experimental design was evaluated by determining the statistical significance of the difference in bias and standard error of the prediction for that model's prediction performance. The calibration model derived from the I-optimal design had similar prediction performance as did the model derived from the 5-L FF design, despite containing 16 fewer design points. It also outperformed all other models estimated from designs with similar or fewer numbers of samples. This suggested that experimental-design selection for calibration-model development is critical, and optimum performance can be achieved with efficient experimental designs (i.e., optimal designs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunhai
Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory,more » emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable« less
Gaming in the Classroom: An Innovative Way to Teach Factorial Designs
ERIC Educational Resources Information Center
Stansbury, Jessica A.; Munro, Geoffrey D.
2013-01-01
This study tested the effectiveness of video game use for instruction of factorial designs in a research methods course. Students designed and conducted a mini study, playing "Dance, Dance, Revolution", using video game scores as the dependent variable. A mixed-design analysis of variance revealed a significantly greater increase from pretest to…
NASA Technical Reports Server (NTRS)
Fuller, John; Ali, Warsame; Willis, Danette
1989-01-01
In a continued effort to design a surface based factory on Mars for the production of oxygen and water, a preliminary study was made of the surface and atmospheric composition on Mars and determined the mass densities of the various gases in the Martian atmosphere. Based on the initial studies, oxygen and water were determined to be the two products that could be produced economically under the Martian conditions. Studies were also made on present production techniques to obtain water and oxygen. Analyses were made to evaluate the current methods of production that were adaptable to the Martian conditions. Even though the initial effort was the production of oxygen and water, it was found necessary to produce some diluted gases that can be mixed with the oxygen produced to constitute 'breathable' air. The conceptual design of a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use were completed. The design objective was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use.
ERIC Educational Resources Information Center
Hariadi, Bambang; Wurijanto, Tutut
2016-01-01
The research aimed at examining the effect of instructional strategy (web-based STAD and text-based STAD) and achiever motivation toward student learning outcomes. The research implied quasi-experimental design with nonequivalent control group factorial version. The subjects were undergraduate students of Information Systems of academic year…
Turan, Nurdan Gamze; Ozgonenel, Okan
2013-01-01
An intensive study has been made of the removal efficiency of Cu(II) from industrial leachate by biosorption of montmorillonite. A 24 factorial design and cascade forward neural network (CFNN) were used to display the significant levels of the analyzed factors on the removal efficiency. The obtained model based on 24 factorial design was statistically tested using the well-known methods. The statistical analysis proves that the main effects of analyzed parameters were significant by an obtained linear model within a 95% confidence interval. The proposed CFNN model requires less experimental data and minimum calculations. Moreover, it is found to be cost-effective due to inherent advantages of its network structure. Optimization of the levels of the analyzed factors was achieved by minimizing adsorbent dosage and contact time, which were costly, and maximizing Cu(II) removal efficiency. The suggested optimum conditions are initial pH at 6, adsorbent dosage at 10 mg/L, and contact time at 10 min using raw montmorillonite with the Cu(II) removal of 80.7%. At the optimum values, removal efficiency was increased to 88.91% if the modified montmorillonite was used. PMID:24453833
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1973-01-01
An algorithm and computer program are presented for generating all the distinct 2(p-q) fractional factorial designs. Some applications of this algorithm to the construction of tables of designs and of designs for nonstandard situations and its use in Bayesian design are discussed. An appendix includes a discussion of an actual experiment whose design was facilitated by the algorithm.
Norinder, U; Högberg, T
1992-04-01
The advantageous approach of using an experimentally designed training set as the basis for establishing a quantitative structure-activity relationship with good predictive capability is described. The training set was selected from a fractional factorial design scheme based on a principal component description of physico-chemical parameters of aromatic substituents. The derived model successfully predicts the activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicylamide type. The major influence on activity of the 3-substituent is demonstrated.
Feasibility Study for an Asymmetric B Factory Based on PEP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattapadhyay, A.; Hitlin, D.; Porter, F.
This report addresses the feasibility of designing and constructing an asymmetric B-factory based on the PEP storage ring at SLAC that can ultimately reach a luminosity of 1 X 10{sup 34} cm{sup -2}s{sup -1}. Such a facility, operating at the {gamma}(4S) resonance, could be used to study mixing, rate decays, and CP violation in the B{bar B} system, and could also study tau and charm physics. The essential accelerator physics, engineering, and technology issues that must be addressed to successfully build this exciting and challenging facility are identified, and possible solutions, or R and D that will reasonable lead tomore » such solutions, are described.« less
ERIC Educational Resources Information Center
Björklund, Tua A.; Nordström, Katrina M.; Clavert, Maria
2013-01-01
The paper presents a Sino-Finnish teaching initiative, including the design and experiences of a series of pedagogical workshops implemented at the Aalto-Tongji Design Factory (DF), Shanghai, China, and the experimentation plans collected from the 54 attending professors and teachers. The workshops aimed to encourage trying out interdisciplinary…
Cyber and physical equipment digital control system in Industry 4.0 item designing company
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-05-01
The problem of organization of digital control of the item designing company equipped with cyber and physical systems is being studied. A scheme of cyber and physical systems and personnel interaction in the Industry 4.0 smart factory company is presented. A scheme of assembly units transportation in the Industry 4.0 smart factory company is provided. A scheme of digital control system in the Industry 4.0 smart factory company is given.
Bioretention Systems: Partial Factorial Designs for Nitrate Removal
Changes in nutrient loadings are monitored by introducing captured stormwater runoff into eight outdoor rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey scaled for residential and urban landscapes. The partial factorial design includes non-vegetated meso...
Midlands Teaching Factory, LTD.
ERIC Educational Resources Information Center
Midlands Technical Coll., Columbia, SC.
In 1987, Midlands Technical College (MTC), in Columbia, South Carolina, initiated a Computer Integrated Manufacturing (CIM) project, the Midlands Teaching Factory, LTD, which integrated various college departments with the goal of manufacturing a high quality, saleable product. The faculty developed a teaching factory model which was designed to…
"Fab 13": The Learning Factory.
ERIC Educational Resources Information Center
Crooks, Steven M.; Eucker, Tom R.
2001-01-01
Describes how situated learning theory was employed in the design of Fab 13, a four-day simulation-based learning experience for manufacturing professionals at Intel Corporation. Presents a conceptual framework for understanding situated learning and discusses context, content, anchored instruction, facilitation, scaffolding, collaborating,…
The Factorial Survey: Design Selection and its Impact on Reliability and Internal Validity
ERIC Educational Resources Information Center
Dülmer, Hermann
2016-01-01
The factorial survey is an experimental design consisting of varying situations (vignettes) that have to be judged by respondents. For more complex research questions, it quickly becomes impossible for an individual respondent to judge all vignettes. To overcome this problem, random designs are recommended most of the time, whereas quota designs…
Design optimization of condenser microphone: a design of experiment perspective.
Tan, Chee Wee; Miao, Jianmin
2009-06-01
A well-designed condenser microphone backplate is very important in the attainment of good frequency response characteristics--high sensitivity and wide bandwidth with flat response--and low mechanical-thermal noise. To study the design optimization of the backplate, a 2(6) factorial design with a single replicate, which consists of six backplate parameters and four responses, has been undertaken on a comprehensive condenser microphone model developed by Zuckerwar. Through the elimination of insignificant parameters via normal probability plots of the effect estimates, the projection of an unreplicated factorial design into a replicated one can be performed to carry out an analysis of variance on the factorial design. The air gap and slot have significant effects on the sensitivity, mechanical-thermal noise, and bandwidth while the slot/hole location interaction has major influence over the latter two responses. An organized and systematic approach of designing the backplate is summarized.
Microeconomics of yield learning and process control in semiconductor manufacturing
NASA Astrophysics Data System (ADS)
Monahan, Kevin M.
2003-06-01
Simple microeconomic models that directly link yield learning to profitability in semiconductor manufacturing have been rare or non-existent. In this work, we review such a model and provide links to inspection capability and cost. Using a small number of input parameters, we explain current yield management practices in 200mm factories. The model is then used to extrapolate requirements for 300mm factories, including the impact of technology transitions to 130nm design rules and below. We show that the dramatic increase in value per wafer at the 300mm transition becomes a driver for increasing metrology and inspection capability and sampling. These analyses correlate well wtih actual factory data and often identify millions of dollars in potential cost savings. We demonstrate this using the example of grating-based overlay metrology for the 65nm node.
Information security of Smart Factories
NASA Astrophysics Data System (ADS)
Iureva, R. A.; Andreev, Y. S.; Iuvshin, A. M.; Timko, A. S.
2018-05-01
In several years, technologies and systems based on the Internet of things (IoT) will be widely used in all smart factories. When processing a huge array of unstructured data, their filtration and adequate interpretation are a priority for enterprises. In this context, the correct representation of information in a user-friendly form acquires special importance, for which the market today presents advanced analytical platforms designed to collect, store and analyze data on technological processes and events in real time. The main idea of the paper is the statement of the information security problem in IoT and integrity of processed information.
Bayesian adaptive phase II screening design for combination trials.
Cai, Chunyan; Yuan, Ying; Johnson, Valen E
2013-01-01
Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multiarm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while providing higher power to identify the best treatment at the end of the trial.
Best practices for the use of siliceous river gravel in concrete paving.
DOT National Transportation Integrated Search
2009-02-01
Fracture toughness (KIC) value at early ages of concrete was used to represent the interfacial bond between : aggregate and mortar of a variety of coarse aggregates types and concrete mixtures. A fractional factorial design based : on Taguchis ort...
1991-09-01
an Experimental Design ...... 31 Selection of Variables .................... ... 34 Defining Measures of Effectiveness ....... 37 Specification of...Required Number of Replications 44 Modification of Scenario Files ......... ... 46 Analysis of the Main Effects of a Two Level Factorial Design ...48 Analysis of the Interaction Effects of a *Two Level Factorial Design .. ............. ... 49 Yate’s Algorithm ......... ................ 50
ERIC Educational Resources Information Center
Mahmoud, Ali Bassam; Khalifa, Bayan
2015-01-01
Purpose: The purpose of this paper is to confirm the factorial structure of SERVPERF based on an exploration of its dimensionality among Syrian universities' students. It also aimed at assessing the perceived service quality offered at these universities. Design/methodology/approach: A cross-sectional survey was conducted targeting students at…
ERIC Educational Resources Information Center
Badru, Ademola K.
2016-01-01
The study investigated Problem-based Instructional Strategy and Numerical ability as determinants of Senior Secondary Achievement in Mathematics. This study used 4 x 2 x 2 non-randomised control group Pretest-Posttest Quasi-experimental Factorial design. It consisted of two independent variables (treatment and Numerical ability) and one moderating…
A Classroom of Polymer Factories.
ERIC Educational Resources Information Center
Harris, Mary E.; Van Natta, Sandra
1998-01-01
Provides an activity in which students create small classroom factories and investigate several aspects of production including design, engineering, quality control, waste management, packaging, shipment, and communication. (DDR)
Integrating PCLIPS into ULowell's Lincoln Logs: Factory of the future
NASA Technical Reports Server (NTRS)
Mcgee, Brenda J.; Miller, Mark D.; Krolak, Patrick; Barr, Stanley J.
1990-01-01
We are attempting to show how independent but cooperating expert systems, executing within a parallel production system (PCLIPS), can operate and control a completely automated, fault tolerant prototype of a factory of the future (The Lincoln Logs Factory of the Future). The factory consists of a CAD system for designing the Lincoln Log Houses, two workcells, and a materials handling system. A workcell consists of two robots, part feeders, and a frame mounted vision system.
Badawi, Mariam A; El-Khordagui, Labiba K
2014-07-16
Emulsion electrospinning is a multifactorial process used to generate nanofibers loaded with hydrophilic drugs or macromolecules for diverse biomedical applications. Emulsion electrospinnability is greatly impacted by the emulsion pharmaceutical attributes. The aim of this study was to apply a quality by design (QbD) approach based on design of experiments as a risk-based proactive approach to achieve predictable critical quality attributes (CQAs) in w/o emulsions for electrospinning. Polycaprolactone (PCL)-thickened w/o emulsions containing doxycycline HCl were formulated using a Span 60/sodium lauryl sulfate (SLS) emulsifier blend. The identified emulsion CQAs (stability, viscosity and conductivity) were linked with electrospinnability using a 3(3) factorial design to optimize emulsion composition for phase stability and a D-optimal design to optimize stable emulsions for viscosity and conductivity after shifting the design space. The three independent variables, emulsifier blend composition, organic:aqueous phase ratio and polymer concentration, had a significant effect (p<0.05) on emulsion CQAs, the emulsifier blend composition exerting prominent main and interaction effects. Scanning electron microscopy (SEM) of emulsion-electrospun NFs and desirability functions allowed modeling of emulsion CQAs to predict electrospinnable formulations. A QbD approach successfully built quality in electrospinnable emulsions, allowing development of hydrophilic drug-loaded nanofibers with desired morphological characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.
Recent Developments in Fibers for Telecommunications
NASA Astrophysics Data System (ADS)
Caronna, V.; Cocchini, F.; Collaro, A.; Cuomo, D.; Ruzzier, M.; Schiaffo, A.; Terruzzi, L.; Valls, A.
Formerly known as Pirelli Cables and Systems, Prysmian Cables & Systems was founded in 2005, incorporating all previous Pirelli assets: "same knowledge, different names." Established in 1879, the company has more than 50 factories worldwide, operating in energy and telecommunications sectors. The main fiber manufacturing facility, Fibre Ottiche Sud (FOS), located in Italy, is operating since 1984 using the outside vapor deposition (OVD) technology and adopting today a proprietary coating system, Neon Plus. More than 40 Mkm of fibers produced in all Prysmian factories have been installed worldwide until now. Research activities are extensively carried out both in the headquarters based in Milan, Italy, and in several developments in different factories. This article will present the more noticeable results achieved in the past few years in developing Prysmian products out of its different activities in telecommunications, specifically in the optical fiber sector, while leaving to published papers the description of developments in cable design and connectivity products [1, 2].
Besseris, George J
2013-01-01
Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1) easy to grasp, 2) well-explained test-power properties, 3) distribution-free, 4) sparsity-free, 5) calibration-free, 6) simulation-free, 7) easy to implement, and 8) expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process.
A Distribution-Free Multi-Factorial Profiler for Harvesting Information from High-Density Screenings
Besseris, George J.
2013-01-01
Data screening is an indispensable phase in initiating the scientific discovery process. Fractional factorial designs offer quick and economical options for engineering highly-dense structured datasets. Maximum information content is harvested when a selected fractional factorial scheme is driven to saturation while data gathering is suppressed to no replication. A novel multi-factorial profiler is presented that allows screening of saturated-unreplicated designs by decomposing the examined response to its constituent contributions. Partial effects are sliced off systematically from the investigated response to form individual contrasts using simple robust measures. By isolating each time the disturbance attributed solely to a single controlling factor, the Wilcoxon-Mann-Whitney rank stochastics are employed to assign significance. We demonstrate that the proposed profiler possesses its own self-checking mechanism for detecting a potential influence due to fluctuations attributed to the remaining unexplainable error. Main benefits of the method are: 1) easy to grasp, 2) well-explained test-power properties, 3) distribution-free, 4) sparsity-free, 5) calibration-free, 6) simulation-free, 7) easy to implement, and 8) expanded usability to any type and size of multi-factorial screening designs. The method is elucidated with a benchmarked profiling effort for a water filtration process. PMID:24009744
ERIC Educational Resources Information Center
Hsiao, E-Ling
2010-01-01
The aim of this study is to explore whether presentation format and prior knowledge affect the effectiveness of worked examples. The experiment was conducted through a specially designed online instrument. A 2X2X3 factorial before-and-after design was conducted. Three-way ANOVA was employed for data analysis. The result showed first, that prior…
Factorial study of rain garden design for nitrogen removal
Abstract Nitrate (〖NO〗_3^--N ) removal studies in bioretention systems showed great variability in removal rates and in some cases 〖NO〗_3^--N was exported. A 3-way factorial design (2 x 2 x 4) was devised for eight outdoor un-vegetated rain gardens to evaluate the effects of ...
More Powerful Tests of Simple Interaction Contrasts in the Two-Way Factorial Design
ERIC Educational Resources Information Center
Hancock, Gregory R.; McNeish, Daniel M.
2017-01-01
For the two-way factorial design in analysis of variance, the current article explicates and compares three methods for controlling the Type I error rate for all possible simple interaction contrasts following a statistically significant interaction, including a proposed modification to the Bonferroni procedure that increases the power of…
Zucchelli, Silvia; Patrucco, Laura; Persichetti, Francesca; Gustincich, Stefano; Cotella, Diego
2016-01-01
Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells are the primary factories for the production of therapeutic proteins, including monoclonal antibodies (MAbs). To improve expression and stability, several methodologies have been adopted, including methods based on media formulation, selective pressure and cell- or vector engineering. This review presents current approaches aimed at improving mammalian cell factories that are based on the enhancement of translation. Among well-established techniques (codon optimization and improvement of mRNA secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure, SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the production of secreted proteins in biomanufacturing processes.
Nair, Vijay; Strecher, Victor; Fagerlin, Angela; Ubel, Peter; Resnicow, Kenneth; Murphy, Susan; Little, Roderick; Chakraborty, Bibhas; Zhang, Aijun
2008-01-01
Health behavior intervention studies have focused primarily on comparing new programs and existing programs via randomized controlled trials. However, numbers of possible components (factors) are increasing dramatically as a result of developments in science and technology (e.g., Web-based surveys). These changes dictate the need for alternative methods that can screen and quickly identify a large set of potentially important treatment components. We have developed and implemented a multiphase experimentation strategy for accomplishing this goal. We describe the screening phase of this strategy and the use of fractional factorial designs (FFDs) in studying several components economically. We then use 2 ongoing behavioral intervention projects to illustrate the usefulness of FFDs. FFDs should be supplemented with follow-up experiments in the refining phase so any critical assumptions about interactions can be verified. PMID:18556602
The National Shipbuilding Research Program, Computer Aided Process Planning for Shipyards
1986-08-01
Factory Simulation with Conventional Factory Planning Techniques Financial Justification of State-of-the-Art Investment: A Study Using CAPP I–5 T I T L...and engineer to order.” “Factory Simulation: Approach to Integration of Computer- Based Factory Simulation with Conventional Factory Planning Techniques
Solenoid Fringe Field Effects for the Neutrino Factory Linac - MAD-X Investigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Aslaninejad,C. Bontoiu,J. Pasternak,J. Pozimski,Alex Bogacz
2010-05-01
International Design Study for the Neutrino Factory (IDS-NF) assumes the first stage of muon acceleration (up to 900 MeV) to be implemented with a solenoid based Linac. The Linac consists of three styles of cryo-modules, containing focusing solenoids and varying number of SRF cavities for acceleration. Fringe fields of the solenoids and the focusing effects in the SRF cavities have significant impact on the transverse beam dynamics. Using an analytical formula, the effects of fringe fields are studied in MAD-X. The resulting betatron functions are compared with the results of beam dynamics simulations using OptiM code.
Jian Yang; Hong S. He; Brian R. Sturtevant; Brian R. Miranda; Eric J. Gustafson
2008-01-01
We compared four fire spread simulation methods (completely random, dynamic percolation. size-based minimum travel time algorithm. and duration-based minimum travel time algorithm) and two fire occurrence simulation methods (Poisson fire frequency model and hierarchical fire frequency model) using a two-way factorial design. We examined these treatment effects on...
Huffman, Jeffery C; Albanese, Ariana M; Campbell, Kirsti A; Celano, Christopher M; Millstein, Rachel A; Mastromauro, Carol A; Healy, Brian C; Chung, Wei-Jean; Januzzi, James L; Collins, Linda M; Park, Elyse R
2017-04-01
Positive psychological constructs, such as optimism, are associated with greater participation in cardiac health behaviors and improved cardiac outcomes. Positive psychology interventions, which target psychological well-being, may represent a promising approach to improving health behaviors in high-risk cardiac patients. However, no study has assessed whether a positive psychology intervention can promote physical activity following an acute coronary syndrome. In this article we will describe the methods of a novel factorial design study to aid the development of a positive psychology-based intervention for acute coronary syndrome patients and aim to provide preliminary feasibility data on study implementation. The Positive Emotions after Acute Coronary Events III study is an optimization study (planned N = 128), subsumed within a larger multiphase optimization strategy iterative treatment development project. The goal of Positive Emotions after Acute Coronary Events III is to identify the ideal components of a positive psychology-based intervention to improve post-acute coronary syndrome physical activity. Using a 2 × 2 × 2 factorial design, Positive Emotions after Acute Coronary Events III aims to: (1) evaluate the relative merits of using positive psychology exercises alone or combined with motivational interviewing, (2) assess whether weekly or daily positive psychology exercise completion is optimal, and (3) determine the utility of booster sessions. The study's primary outcome measure is moderate-to-vigorous physical activity at 16 weeks, measured via accelerometer. Secondary outcome measures include psychological, functional, and adherence-related behavioral outcomes, along with metrics of feasibility and acceptability. For the primary study outcome, we will use a mixed-effects model with a random intercept (to account for repeated measures) to assess the main effects of each component (inclusion of motivational interviewing in the exercises, duration of the intervention, and inclusion of booster sessions) from a full factorial model controlling for baseline activity. Similar analyses will be performed on self-report measures and objectively-measured medication adherence over 16 weeks. We hypothesize that the combined positive psychology and motivational interviewing intervention, weekly exercises, and booster sessions will be associated with superior physical activity. Thus far, 78 participants have enrolled, with 72% of all possible exercises fully completed by participants. The Positive Emotions after Acute Coronary Events III study will help to determine the optimal content, intensity, and duration of a positive psychology intervention in post-acute coronary syndrome patients prior to testing in a randomized trial. This study is novel in its use of a factorial design within the multiphase optimization strategy framework to optimize a behavioral intervention and the use of a positive psychology intervention to promote physical activity in high-risk cardiac patients.
Bayesian adaptive phase II screening design for combination trials
Cai, Chunyan; Yuan, Ying; Johnson, Valen E
2013-01-01
Background Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Methods Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Results Simulation studies show that the proposed design substantially outperforms the conventional multiarm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while allocating substantially more patients to efficacious treatments. Limitations The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. Conclusions The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while providing higher power to identify the best treatment at the end of the trial. PMID:23359875
The Skateboard Factory: Curriculum by Design--Oasis Skateboard Factory Q&A with Craig Morrison
ERIC Educational Resources Information Center
Pearson, George
2012-01-01
Since its opening three years ago, Oasis Skateboard Factory (OSF), founded by teacher Craig Morrison, has attracted considerable media exposure and received a Ken Spencer Award from the CEA for its innovative program. OSF is one of three programs offered by Oasis Alternative Secondary School, one of 22 alternative secondary schools of the Toronto…
Clustering Words to Match Conditions: An Algorithm for Stimuli Selection in Factorial Designs
ERIC Educational Resources Information Center
Guasch, Marc; Haro, Juan; Boada, Roger
2017-01-01
With the increasing refinement of language processing models and the new discoveries about which variables can modulate these processes, stimuli selection for experiments with a factorial design is becoming a tough task. Selecting sets of words that differ in one variable, while matching these same words into dozens of other confounding variables…
A Methodology for the Assessment of Experiential Learning Lean: The Lean Experience Factory Study
ERIC Educational Resources Information Center
De Zan, Giovanni; De Toni, Alberto Felice; Fornasier, Andrea; Battistella, Cinzia
2015-01-01
Purpose: The purpose of this paper is to present a methodology to assess the experiential learning processes of learning lean in an innovative learning environment: the lean model factories. Design/methodology/approach: A literature review on learning and lean management literatures was carried out to design the methodology. Then, a case study…
Performing Contrast Analysis in Factorial Designs: From NHST to Confidence Intervals and Beyond
ERIC Educational Resources Information Center
Wiens, Stefan; Nilsson, Mats E.
2017-01-01
Because of the continuing debates about statistics, many researchers may feel confused about how to analyze and interpret data. Current guidelines in psychology advocate the use of effect sizes and confidence intervals (CIs). However, researchers may be unsure about how to extract effect sizes from factorial designs. Contrast analysis is helpful…
Organization of project works in Industry 4.0 digital item designing companies
NASA Astrophysics Data System (ADS)
Gurjanov, A. V.; Zakoldaev, D. A.; Shukalov, A. V.; Zharinov, I. O.
2018-05-01
The task of the project works organization in the Industry 4.0 item designing digital factories is being studied. There is a scheme of the item designing component life cycle. There is also a scheme how to develop and confirm the quality of the item designing component documentation using the mathematical modelling. There is a description of the self-organization principles for the cyber and physical technological equipment in the Industry 4.0 «smart factory» company during the manufacturing process.
A Profile-Based Framework for Factorial Similarity and the Congruence Coefficient.
Hartley, Anselma G; Furr, R Michael
2017-01-01
We present a novel profile-based framework for understanding factorial similarity in the context of exploratory factor analysis in general, and for understanding the congruence coefficient (a commonly used index of factor similarity) specifically. First, we introduce the profile-based framework articulating factorial similarity in terms of 3 intuitive components: general saturation similarity, differential saturation similarity, and configural similarity. We then articulate the congruence coefficient in terms of these components, along with 2 additional profile-based components, and we explain how these components resolve ambiguities that can be-and are-found when using the congruence coefficient. Finally, we present secondary analyses revealing that profile-based components of factorial are indeed linked to experts' actual evaluations of factorial similarity. Overall, the profile-based approach we present offers new insights into the ways in which researchers can examine factor similarity and holds the potential to enhance researchers' ability to understand the congruence coefficient.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Association, and which is designed to reduce the risk of death, personal injury, or property damage resulting... or advance, plus interest, if any, at a stated annual rate over time, with the borrower's obligation... details the wholesale (base) prices at the factory for specific models or series of manufactured homes and...
Animation-Based Learning in Geology: Impact of Animations Coupled with Seductive Details
ERIC Educational Resources Information Center
Clayton, Rodney L.
2016-01-01
Research is not clear on how to address the difficulty students have conceptualizing geologic processes and phenomena. This study investigated how animations coupled with seductive details effect learners' situational interest and emotions. A quantitative quasi-experimental study employing an independent-measures factorial design was used. The…
Reedsport PB150 Deployment and Ocean Test Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, Phil
2016-06-03
As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport (OR) was planned to consist of 10 PowerBuoys (Phase II)1, located 2.5 miles off the coast. U.S. Department of Energy (DOE) funding under a prior DOE Grant (DE-FG36-08GO88017) along with funding from PNGC Power, an Oregon-based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. The design and fabrication of the first PowerBuoy and factory testing of the power take-off subsystem were completed, and the power take-off subsystem wasmore » successfully integrated into the spar at the fabricator’s facility in Oregon. The objectives of this follow-on grant were: advance PB150B design from TRL 5/6 to TRL 7/8; deploy a single PB150 and operate autonomously for 2 years; establish O&M costs; collect environmental information; and establish manufacturing methodologies.« less
Kalia, Shivani; Trager, Jordan; Sitton, Oliver C; Mormile, Melanie R
2016-08-20
In recent years, biodiesel, a substitute for fossil fuels, has led to the excessive production of crude glycerol. The resulting crude glycerol can possess a high concentration of salts and an alkaline pH. Moreover, current crude glycerol purification methods are expensive, rendering this former commodity a waste product. However, Halanaerobium hydrogeniformans, a haloalkaliphilic bacterium, possesses the metabolic capability to convert glycerol into 1,3-propanediol, a valuable commodity compound, without the need for salt dilution or adjusting pH when grown on this waste. Experiments were performed with different combinations of 24 medium components to determine their impact on the production of 1,3-propanediol by using a fractional factorial design. Tested medium components were selected based on data from the organism's genome. Analysis of HPLC data revealed enhanced production of 1,3-propanediol with additional glycerol, pH, vitamin B12, ammonium ions, sodium sulfide, cysteine, iron, and cobalt. However, other selected components; nitrate ions, phosphate ions, sulfate ions, sodium:potassium ratio, chloride, calcium, magnesium, silicon, manganese, zinc, borate, nickel, molybdenum, tungstate, copper and aluminum, did not enhance 1,3-propanediol production. The use of a fractional factorial design enabled the quick and efficient assessment of the impact of 24 different medium components on 1,3-propanediol production from glycerol from a haloalkaliphilic bacterium.
Jiang, Mao-Yuan; Zhang, Zhen; Shi, Jin-Feng; Zhang, Jin-Ming; Fu, Chao-Mei; Lin, Xia; Liu, Yu-Mei
2018-03-01
To preliminarily investigate the dissolution behavior of Fuzi Lizhong pill, provide the basis for its quality control and lay foundation for in vivo dissolution behavior by determining the dissolution rate of liquiritin and glycyrrhizic acid. High-performance liquid chromatography (HPLC) method for simultaneous content determination of the two active ingredients of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was established; The dissolution amount of these two active ingredients in fifteen batches of Fuzi Lizhong pill from five manufacturers was obtained at different time points, and then the cumulative dissolution rate was calculated and cumulative dissolution curve was drawn. The similarity of cumulative dissolution curve of different batches was evaluated based on the same factory, and the similarity of cumulative dissolution curve of different factories was evaluated based on the same active ingredients. The dissolution model of Fuzi Lizhong pill based on two kinds of active ingredients was established by fitting with the dissolution data. The best dissolution medium was 0.25% sodium lauryl sulfate. The dissolution behavior of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was basically the same and sustained release in 48 h. Three batches of the factories (factory 2, factory 3, factory 4 and factory 5) appeared to be similar in dissolution behavior, indicating similarity in dissolution behavior in most factories. Two of the three batches from factory 1 appeared to be not similar in dissolution behavior of liquiritin and glycyrrhizic acid. The dissolution data of the effective ingredients from different factories were same in fitting, and Weibull model was the best model in these batches. Fuzi Lizhong pill in 15 batches from 5 factories showed sustained release in 48 h, proving obviously slow releasing characteristics "pill is lenitive and keeps a long-time efficacy". The generally good dissolution behavior also suggested that quality of different batches from most factories was stable. The dissolution behavior of liquiritin and glycyrrhizic acid in different factories was different, suggesting that the source of medicinal materials and preparation technology parameters in five factories were different. Copyright© by the Chinese Pharmaceutical Association.
Optimization of a chondrogenic medium through the use of factorial design of experiments.
Enochson, Lars; Brittberg, Mats; Lindahl, Anders
2012-12-01
The standard culture system for in vitro cartilage research is based on cells in a three-dimensional micromass culture and a defined medium containing the chondrogenic key growth factor, transforming growth factor (TGF)-β1. The aim of this study was to optimize the medium for chondrocyte micromass culture. Human chondrocytes were cultured in different media formulations, designed with a factorial design of experiments (DoE) approach and based on the standard medium for redifferentiation. The significant factors for the redifferentiation of the chondrocytes were determined and optimized in a two-step process through the use of response surface methodology. TGF-β1, dexamethasone, and glucose were significant factors for differentiating the chondrocytes. Compared to the standard medium, TGF-β1 was increased 30%, dexamethasone reduced 50%, and glucose increased 22%. The potency of the optimized medium was validated in a comparative study against the standard medium. The optimized medium resulted in micromass cultures with increased expression of genes important for the articular chondrocyte phenotype and in cultures with increased glycosaminoglycan/DNA content. Optimizing the standard medium with the efficient DoE method, a new medium that gave better redifferentiation for articular chondrocytes was determined.
Medical Technology Base Master Plan
1990-03-01
methodologes to evaluate off ectiveness of current and new Integrated protectivb equxipment systems. The failure of the system designer to adequately consider...With animal studies to use fewer than one-tenth the nu~r~e of aniimals used In standard factorial experimental designs , and "* Preliminary development of...research and developmnent have Produced Cost savings as well as sustained and augmented combat and non -combat rniss~on effectiveness. Examples 0f the Armys
Wolbers, Marcel; Heemskerk, Dorothee; Chau, Tran Thi Hong; Yen, Nguyen Thi Bich; Caws, Maxine; Farrar, Jeremy; Day, Jeremy
2011-02-02
In certain diseases clinical experts may judge that the intervention with the best prospects is the addition of two treatments to the standard of care. This can either be tested with a simple randomized trial of combination versus standard treatment or with a 2 x 2 factorial design. We compared the two approaches using the design of a new trial in tuberculous meningitis as an example. In that trial the combination of 2 drugs added to standard treatment is assumed to reduce the hazard of death by 30% and the sample size of the combination trial to achieve 80% power is 750 patients. We calculated the power of corresponding factorial designs with one- to sixteen-fold the sample size of the combination trial depending on the contribution of each individual drug to the combination treatment effect and the strength of an interaction between the two. In the absence of an interaction, an eight-fold increase in sample size for the factorial design as compared to the combination trial is required to get 80% power to jointly detect effects of both drugs if the contribution of the less potent treatment to the total effect is at least 35%. An eight-fold sample size increase also provides a power of 76% to detect a qualitative interaction at the one-sided 10% significance level if the individual effects of both drugs are equal. Factorial designs with a lower sample size have a high chance to be underpowered, to show significance of only one drug even if both are equally effective, and to miss important interactions. Pragmatic combination trials of multiple interventions versus standard therapy are valuable in diseases with a limited patient pool if all interventions test the same treatment concept, it is considered likely that either both or none of the individual interventions are effective, and only moderate drug interactions are suspected. An adequately powered 2 x 2 factorial design to detect effects of individual drugs would require at least 8-fold the sample size of the combination trial. Current Controlled Trials ISRCTN61649292.
Strategic Investment Plan Fiscal Year 1993.
1993-09-01
Groundwater ........................ 283 Heavy Metals in Soils, Sludges, Sediments and Water .................... 321 Energetics in Soils and Groundwater...technologies and tools to achieve a design for reconfiguring existing PEP production facilities into agile factories which will reduce total life cycle wastes...facilities. When use of existing facilities is not practical, a special demonstration testbed may be built. The factory design will then be developed
Performing Contrast Analysis in Factorial Designs: From NHST to Confidence Intervals and Beyond
Wiens, Stefan; Nilsson, Mats E.
2016-01-01
Because of the continuing debates about statistics, many researchers may feel confused about how to analyze and interpret data. Current guidelines in psychology advocate the use of effect sizes and confidence intervals (CIs). However, researchers may be unsure about how to extract effect sizes from factorial designs. Contrast analysis is helpful because it can be used to test specific questions of central interest in studies with factorial designs. It weighs several means and combines them into one or two sets that can be tested with t tests. The effect size produced by a contrast analysis is simply the difference between means. The CI of the effect size informs directly about direction, hypothesis exclusion, and the relevance of the effects of interest. However, any interpretation in terms of precision or likelihood requires the use of likelihood intervals or credible intervals (Bayesian). These various intervals and even a Bayesian t test can be obtained easily with free software. This tutorial reviews these methods to guide researchers in answering the following questions: When I analyze mean differences in factorial designs, where can I find the effects of central interest, and what can I learn about their effect sizes? PMID:29805179
Abdulra'uf, Lukman Bola; Tan, Guan Huat
2013-12-15
Solid-phase microextraction (SPME) is a solvent-less sample preparation method which combines sample preparation, isolation, concentration and enrichment into one step. In this study, multivariate strategy was used to determine the significance of the factors affecting the solid phase microextraction of pesticide residues (fenobucarb, diazinon, chlorothalonil and chlorpyrifos) using a randomised factorial design. The interactions and effects of temperature, time and salt addition on the efficiency of the extraction of the pesticide residues were evaluated using 2(3) factorial designs. The analytes were extracted with 100 μm PDMS fibres according to the factorial design matrix and desorbed into a gas chromatography-mass spectrometry detector. The developed method was applied for the analysis of apple samples and the limits of detection were between 0.01 and 0.2 μg kg(-)(1), which were lower than the MRLs for apples. The relative standard deviations (RSD) were between 0.1% and 13.37% with average recovery of 80-105%. The linearity ranges from 0.5-50 μg kg(-)(1) with correlation coefficient greater than 0.99. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Alex
We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650more » MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.« less
ERIC Educational Resources Information Center
Hernández-Bravo, Juan R.; Cardona-Moltó, M. Cristina; Hernández-Bravo, José A.
2016-01-01
The purpose of this study was to examine the effect of an information and communications technology (ICT)-based individualised music education programme on primary students' musical competence. A 2 × 3 aptitude treatment interaction factorial design was used to assess the impact of the programme as a function of students' musical aptitude (MA)…
Chipman, Hugh A.; Hamada, Michael S.
2016-06-02
Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chipman, Hugh A.; Hamada, Michael S.
Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.
NASA Astrophysics Data System (ADS)
Jumpatong, Sutthaya; Yuenyong, Chokchai
2018-01-01
STEM education suggested that students should be enhanced to learn science with integration between Science, Technology, Engineering and Mathematics. To help Thai students make sense of relationship between Science, Technology, Engineering and Mathematics, this paper presents learning activities of STS Sound Pollution. The developing of STS Sound Pollution is a part of research that aimed to enhance students' perception of the relationship between Science Technology Engineering and Mathematics. This paper will discuss how to develop Sound Pollution through STS approach in framework of Yuenyong (2006) where learning activities were provided based on 5 stages. These included (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decisionmaking, and (5) socialization stage. The learning activities could be highlighted as following. First stage, we use video clip of `Problem of people about Sound Pollution'. Second stage, students will need to identification of potential solutions by design Home/Factory without noisy. The need of scientific and other knowledge will be proposed for various alternative solutions. Third stage, students will gain their scientific knowledge through laboratory and demonstration of sound wave. Fourth stage, students have to make decision for the best solution of designing safety Home/Factory based on their scientific knowledge and others (e.g. mathematics, economics, art, value, and so on). Finally, students will present and share their Design Safety Home/Factory in society (e.g. social media or exhibition) in order to validate their ideas and redesigning. The paper, then, will discuss how those activities would allow students' applying knowledge of science technology engineering, mathematics and others (art, culture and value) for their possible solution of the STS issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Dae -Heung; Anderson-Cook, Christine Michaela
When there are constraints on resources, an unreplicated factorial or fractional factorial design can allow efficient exploration of numerous factor and interaction effects. A half-normal plot is a common graphical tool used to compare the relative magnitude of effects and to identify important effects from these experiments when no estimate of error from the experiment is available. An alternative is to use a least absolute shrinkage and selection operation plot to examine the pattern of model selection terms from an experiment. We examine how both the half-normal and least absolute shrinkage and selection operation plots are impacted by the absencemore » of individual observations or an outlier, and the robustness of conclusions obtained from these 2 techniques for identifying important effects from factorial experiments. As a result, the methods are illustrated with 2 examples from the literature.« less
Jang, Dae -Heung; Anderson-Cook, Christine Michaela
2017-04-12
When there are constraints on resources, an unreplicated factorial or fractional factorial design can allow efficient exploration of numerous factor and interaction effects. A half-normal plot is a common graphical tool used to compare the relative magnitude of effects and to identify important effects from these experiments when no estimate of error from the experiment is available. An alternative is to use a least absolute shrinkage and selection operation plot to examine the pattern of model selection terms from an experiment. We examine how both the half-normal and least absolute shrinkage and selection operation plots are impacted by the absencemore » of individual observations or an outlier, and the robustness of conclusions obtained from these 2 techniques for identifying important effects from factorial experiments. As a result, the methods are illustrated with 2 examples from the literature.« less
ERIC Educational Resources Information Center
Liao, Ya-Wen; She, Hsiao-Ching
2009-01-01
This study reports the impacts of the Scientific Concept Construction and Reconstruction (SCCR) digital learning system on eighth grade students' concept construction, conceptual change, and scientific reasoning involving the topic of "atoms". A two-factorial experimental design was carried out to investigate the effects of the approach…
Sb2Te3 and Its Superlattices: Optimization by Statistical Design.
Behera, Jitendra K; Zhou, Xilin; Ranjan, Alok; Simpson, Robert E
2018-05-02
The objective of this work is to demonstrate the usefulness of fractional factorial design for optimizing the crystal quality of chalcogenide van der Waals (vdW) crystals. We statistically analyze the growth parameters of highly c axis oriented Sb 2 Te 3 crystals and Sb 2 Te 3 -GeTe phase change vdW heterostructured superlattices. The statistical significance of the growth parameters of temperature, pressure, power, buffer materials, and buffer layer thickness was found by fractional factorial design and response surface analysis. Temperature, pressure, power, and their second-order interactions are the major factors that significantly influence the quality of the crystals. Additionally, using tungsten rather than molybdenum as a buffer layer significantly enhances the crystal quality. Fractional factorial design minimizes the number of experiments that are necessary to find the optimal growth conditions, resulting in an order of magnitude improvement in the crystal quality. We highlight that statistical design of experiment methods, which is more commonly used in product design, should be considered more broadly by those designing and optimizing materials.
Fotopoulos, Christos; Krystallis, Athanasios; Vassallo, Marco; Pagiaslis, Anastasios
2009-02-01
Recognising the need for a more statistically robust instrument to investigate general food selection determinants, the research validates and confirms Food Choice Questionnaire (FCQ's) factorial design, develops ad hoc a more robust FCQ version and tests its ability to discriminate between consumer segments in terms of the importance they assign to the FCQ motivational factors. The original FCQ appears to represent a comprehensive and reliable research instrument. However, the empirical data do not support the robustness of its 9-factorial design. On the other hand, segmentation results at the subpopulation level based on the enhanced FCQ version bring about an optimistic message for the FCQ's ability to predict food selection behaviour. The paper concludes that some of the basic components of the original FCQ can be used as a basis for a new general food motivation typology. The development of such a new instrument, with fewer, of higher abstraction FCQ-based dimensions and fewer items per dimension, is a right step forward; yet such a step should be theory-driven, while a rigorous statistical testing across and within population would be necessary.
Architecture and biogenesis of plus-strand RNA virus replication factories
Paul, David; Bartenschlager, Ralf
2013-01-01
Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories. PMID:24175228
Wongnoi, Rachbordin; Songkasiri, Warinthorn; Phalakornkule, Chantaraporn
2007-02-01
The objective of this study was to investigate the influence of a three-phase separator configuration on the performance of an upflow anaerobic sludge bed (USAB) treating wastewater from a fruit canning factory. The performances of two 30-L UASB reactors--one with a modified three-phase separator giving a spiral flow pattern and the other with a conventional configuration-were investigated in parallel. Wastewater, with a chemical oxygen demand (COD) concentration between 2000 and 7000 mg/L, was obtained from a fruit-canning factory. Based on the effluent data of the first 100 operation days, the UASB with the three-phase separator giving spiral flow patterns yielded up to 25% lower biomass washout. It also showed better efficiencies in treating wastewater--up to 60% lower effluent COD, up to 20% higher COD percent removal, and up to 29% higher biogas production. This work presents evidence of an improvement on the conventional physical design of a UASB.
Factorials of real negative and imaginary numbers - A new perspective.
Thukral, Ashwani K
2014-01-01
Presently, factorials of real negative numbers and imaginary numbers, except for zero and negative integers are interpolated using the Euler's gamma function. In the present paper, the concept of factorials has been generalised as applicable to real and imaginary numbers, and multifactorials. New functions based on Euler's factorial function have been proposed for the factorials of real negative and imaginary numbers. As per the present concept, the factorials of real negative numbers, are complex numbers. The factorials of real negative integers have their imaginary part equal to zero, thus are real numbers. Similarly, the factorials of imaginary numbers are complex numbers. The moduli of the complex factorials of real negative numbers, and imaginary numbers are equal to their respective real positive number factorials. Fractional factorials and multifactorials have been defined in a new perspective. The proposed concept has also been extended to Euler's gamma function for real negative numbers and imaginary numbers, and beta function.
Minifactory: a precision assembly system adaptable to the product life cycle
NASA Astrophysics Data System (ADS)
Muir, Patrick F.; Rizzi, Alfred A.; Gowdy, Jay W.
1997-12-01
Automated product assembly systems are traditionally designed with the intent that they will be operated with few significant changes for as long as the product is being manufactured. This approach to factory design and programming has may undesirable qualities which have motivated the development of more 'flexible' systems. In an effort to improve agility, different types of flexibility have been integrated into factory designs. Specifically, automated assembly systems have been endowed with the ability to assemble differing products by means of computer-controlled robots, and to accommodate variations in parts locations and dimensions by means of sensing. The product life cycle (PLC) is a standard four-stage model of the performance of a product from the time that it is first introduced in the marketplace until the time that it is discontinued. Manufacturers can improve their return on investment by adapting the production process to the PLC. We are developing two concepts to enable manufacturers to more readily achieve this goal: the agile assembly architecture (AAA), an abstract framework for distributed modular automation; and minifactory, our physical instantation of this architecture for the assembly of precision electro-mechanical devices. By examining the requirements which each PLC stage places upon the production system, we identify characteristics of factory design and programming which are appropriate for that stage. As the product transitions from one stage to the next, the factory design and programing should also transition from one embodiment to the next in order to achieve the best return on investment. Modularity of the factory components, highly flexible product transport mechanisms, and a high level of distributed intelligence are key characteristics of minifactory that enable this adaptation.
Skartland, Liv Kjersti; Mjøs, Svein A; Grung, Bjørn
2011-09-23
The retention behavior of components analyzed by chromatography varies with instrumental settings. Being able to predict how changes in these settings alter the elution pattern is useful, both with regards to component identification, as well as with regards to optimization of the chromatographic system. In this work, it is shown how experimental designs can be used for this purpose. Different experimental designs for response surface modeling of the separation of fatty acid methyl esters (FAME) as function of chromatographic conditions in GC have been evaluated. Full factorial, central composite, Doehlert and Box-Behnken designs were applied. A mixture of 38 FAMEs was separated on a polar cyanopropyl substituted polysilphenylene-siloxane phase capillary column. The temperature gradient, the start temperature of the gradient, and the carrier gas velocity were varied in the experiments. The modeled responses, as functions of chromatographic conditions, were retention time, retention indices, peak widths, separation efficiency and resolution between selected peak pairs. The designs that allowed inclusion of quadratic terms among the predictors performed significantly better than factorial design. Box-Behnken design provided the best results for prediction of retention, but the differences between the central composite, Doehlert and Box-Behnken designs were small. Retention indices could be modeled with much better accuracy than retention times. However, because the errors of predicted tR of closely eluting peaks were highly correlated, models of resolution (Rs) that were based on retention time had errors in the same range as corresponding models based on ECL. Copyright © 2011 Elsevier B.V. All rights reserved.
A Hospital Is Not Just a Factory, but a Complex Adaptive System-Implications for Perioperative Care.
Mahajan, Aman; Islam, Salim D; Schwartz, Michael J; Cannesson, Maxime
2017-07-01
Many methods used to improve hospital and perioperative services productivity and quality of care have assumed that the hospital is essentially a factory, and therefore, that industrial engineering and manufacturing-derived redesign approaches such as Six Sigma and Lean can be applied to hospitals and perioperative services just as they have been applied in factories. However, a hospital is not merely a factory but also a complex adaptive system (CAS). The hospital CAS has many subsystems, with perioperative care being an important one for which concepts of factory redesign are frequently advocated. In this article, we argue that applying only factory approaches such as lean methodologies or process standardization to complex systems such as perioperative care could account for difficulties and/or failures in improving performance in care delivery. Within perioperative services, only noncomplex/low-variance surgical episodes are amenable to manufacturing-based redesign. On the other hand, complex surgery/high-variance cases and preoperative segmentation (the process of distinguishing between normal and complex cases) can be viewed as CAS-like. These systems tend to self-organize, often resist or react unpredictably to attempts at control, and therefore require application of CAS principles to modify system behavior. We describe 2 examples of perioperative redesign to illustrate the concepts outlined above. These examples present complementary and contrasting cases from 2 leading delivery systems. The Mayo Clinic example illustrates the application of manufacturing-based redesign principles to a factory-like (high-volume, low-risk, and mature practice) clinical program, while the Kaiser Permanente example illustrates the application of both manufacturing-based and self-organization-based approaches to programs and processes that are not factory-like but CAS-like. In this article, we describe how factory-like processes and CAS can coexist within a hospital and how self-organization-based approaches can be used to improve care delivery in many situations where manufacturing-based approaches may not be appropriate.
Computer-Assisted Monitoring Of A Complex System
NASA Technical Reports Server (NTRS)
Beil, Bob J.; Mickelson, Eric M.; Sterritt, John M.; Costantino, Rob W.; Houvener, Bob C.; Super, Mike A.
1995-01-01
Propulsion System Advisor (PSA) computer-based system assists engineers and technicians in analyzing masses of sensory data indicative of operating conditions of space shuttle propulsion system during pre-launch and launch activities. Designed solely for monitoring; does not perform any control functions. Although PSA developed for highly specialized application, serves as prototype of noncontrolling, computer-based subsystems for monitoring other complex systems like electric-power-distribution networks and factories.
Bogomilov, M.; Matev, R.; Tsenov, R.; ...
2014-12-08
The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less
Multi-registration of software library resources
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2011-04-05
Data communications, including issuing, by an application program to a high level data communications library, a request for initialization of a data communications service; issuing to a low level data communications library a request for registration of data communications functions; registering the data communications functions, including instantiating a factory object for each of the one or more data communications functions; issuing by the application program an instruction to execute a designated data communications function; issuing, to the low level data communications library, an instruction to execute the designated data communications function, including passing to the low level data communications library a call parameter that identifies a factory object; creating with the identified factory object the data communications object that implements the data communications function according to the protocol; and executing by the low level data communications library the designated data communications function.
Front End for a neutrino factory or muon collider
NASA Astrophysics Data System (ADS)
Neuffer, D.; Snopok, P.; Alexahin, Y.
2017-11-01
A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ 's produced from a proton source target have been developed, initially for neutrino factory scenarios. They require a drift section from the target, a bunching section and a varphi -δ E rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an "HFOFO Snake" configuration that cools both μ+ and μ- transversely and longitudinally. The status of the design is presented and variations are discussed.
Optimization of minoxidil microemulsions using fractional factorial design approach.
Jaipakdee, Napaphak; Limpongsa, Ekapol; Pongjanyakul, Thaned
2016-01-01
The objective of this study was to apply fractional factorial and multi-response optimization designs using desirability function approach for developing topical microemulsions. Minoxidil (MX) was used as a model drug. Limonene was used as an oil phase. Based on solubility, Tween 20 and caprylocaproyl polyoxyl-8 glycerides were selected as surfactants, propylene glycol and ethanol were selected as co-solvent in aqueous phase. Experiments were performed according to a two-level fractional factorial design to evaluate the effects of independent variables: Tween 20 concentration in surfactant system (X1), surfactant concentration (X2), ethanol concentration in co-solvent system (X3), limonene concentration (X4) on MX solubility (Y1), permeation flux (Y2), lag time (Y3), deposition (Y4) of MX microemulsions. It was found that Y1 increased with increasing X3 and decreasing X2, X4; whereas Y2 increased with decreasing X1, X2 and increasing X3. While Y3 was not affected by these variables, Y4 increased with decreasing X1, X2. Three regression equations were obtained and calculated for predicted values of responses Y1, Y2 and Y4. The predicted values matched experimental values reasonably well with high determination coefficient. By using optimal desirability function, optimized microemulsion demonstrating the highest MX solubility, permeation flux and skin deposition was confirmed as low level of X1, X2 and X4 but high level of X3.
NASA Astrophysics Data System (ADS)
Berkelman, Karl
1989-12-01
Recent upgrade project at the Cornell Electron Storage Ring is discussed. Modification was made to make B mesons factory design possible. The CLEO detector has been rebuilt with a new superconducting magnet and a high resolution electromagnetic calorimeter made of cesium iodide scintillators.(AIP)
The Virtual Factory Teaching System (VFTS): Project Review and Results.
ERIC Educational Resources Information Center
Kazlauskas, E. J.; Boyd, E. F., III; Dessouky, M. M.
This paper presents a review of the Virtual Factory Teaching (VFTS) project, a Web-based, multimedia collaborative learning network. The system allows students, working alone or in teams, to build factories, forecast demand for products, plan production, establish release rules for new work into the factory, and set scheduling rules for…
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-08-01
An estimated 85% of the installed base of software is a custom application with a production quantity of one. In practice, almost 100% of military software systems are custom software. Paradoxically, the marginal costs of producing additional units are near zero. So why hasn`t the software market, a market with high design costs and low productions costs evolved like other similar custom widget industries, such as automobiles and hardware chips? The military software industry seems immune to market pressures that have motivated a multilevel supply chain structure in other widget industries: design cost recovery, improve quality through specialization, and enablemore » rapid assembly from purchased components. The primary goal of the ComponentWare Consortium (CWC) technology plan was to overcome barriers to building and deploying mission-critical information systems by using verified, reusable software components (Component Ware). The adoption of the ComponentWare infrastructure is predicated upon a critical mass of the leading platform vendors` inevitable adoption of adopting emerging, object-based, distributed computing frameworks--initially CORBA and COM/OLE. The long-range goal of this work is to build and deploy military systems from verified reusable architectures. The promise of component-based applications is to enable developers to snap together new applications by mixing and matching prefabricated software components. A key result of this effort is the concept of reusable software architectures. A second important contribution is the notion that a software architecture is something that can be captured in a formal language and reused across multiple applications. The formalization and reuse of software architectures provide major cost and schedule improvements. The Unified Modeling Language (UML) is fast becoming the industry standard for object-oriented analysis and design notation for object-based systems. However, the lack of a standard real-time distributed object operating system, lack of a standard Computer-Aided Software Environment (CASE) tool notation and lack of a standard CASE tool repository has limited the realization of component software. The approach to fulfilling this need is the software component factory innovation. The factory approach takes advantage of emerging standards such as UML, CORBA, Java and the Internet. The key technical innovation of the software component factory is the ability to assemble and test new system configurations as well as assemble new tools on demand from existing tools and architecture design repositories.« less
2011-01-01
Background In certain diseases clinical experts may judge that the intervention with the best prospects is the addition of two treatments to the standard of care. This can either be tested with a simple randomized trial of combination versus standard treatment or with a 2 × 2 factorial design. Methods We compared the two approaches using the design of a new trial in tuberculous meningitis as an example. In that trial the combination of 2 drugs added to standard treatment is assumed to reduce the hazard of death by 30% and the sample size of the combination trial to achieve 80% power is 750 patients. We calculated the power of corresponding factorial designs with one- to sixteen-fold the sample size of the combination trial depending on the contribution of each individual drug to the combination treatment effect and the strength of an interaction between the two. Results In the absence of an interaction, an eight-fold increase in sample size for the factorial design as compared to the combination trial is required to get 80% power to jointly detect effects of both drugs if the contribution of the less potent treatment to the total effect is at least 35%. An eight-fold sample size increase also provides a power of 76% to detect a qualitative interaction at the one-sided 10% significance level if the individual effects of both drugs are equal. Factorial designs with a lower sample size have a high chance to be underpowered, to show significance of only one drug even if both are equally effective, and to miss important interactions. Conclusions Pragmatic combination trials of multiple interventions versus standard therapy are valuable in diseases with a limited patient pool if all interventions test the same treatment concept, it is considered likely that either both or none of the individual interventions are effective, and only moderate drug interactions are suspected. An adequately powered 2 × 2 factorial design to detect effects of individual drugs would require at least 8-fold the sample size of the combination trial. Trial registration Current Controlled Trials ISRCTN61649292 PMID:21288326
Task-Based Variability in Children's Singing Accuracy
ERIC Educational Resources Information Center
Nichols, Bryan E.
2016-01-01
The purpose of this study was to explore the effect of task demands on children's singing accuracy. A 2 × 4 factorial design was used to examine the performance of fourth-grade children (N = 120) in solo and doubled response conditions. Each child sang four task types: single pitch, interval, pattern, and the song "Jingle Bells." The…
ERIC Educational Resources Information Center
Huang, Kun; Chen, Ching-Huei; Wu, Wen-Shiuan; Chen, Wei-Yu
2015-01-01
This study investigated how question prompts and feedback influenced knowledge acquisition and cognitive load when learning Newtonian mechanics within a web-based multimedia module. Participants were one hundred eighteen 9th grade students who were randomly assigned to one of four experimental conditions, forming a 2 x 2 factorial design with the…
Selective Trust: Children's Use of Intention and Outcome of Past Testimony
ERIC Educational Resources Information Center
Liu, David; Vanderbilt, Kimberly E.; Heyman, Gail D.
2013-01-01
Children's epistemic vigilance was examined for their reasoning about the intentions and outcomes of informants' past testimony. In a 2 x 2 factorial design, 5- and 6-year-olds witnessed informants offering advice based on the intent to help or deceive others about the location of hidden prizes, with the advice leading to positive or negative…
Effective Use of Multimedia Presentations to Maximize Learning within High School Science Classrooms
ERIC Educational Resources Information Center
Rapp, Eric
2013-01-01
This research used an evidenced-based experimental 2 x 2 factorial design General Linear Model with Repeated Measures Analysis of Covariance (RMANCOVA). For this analysis, time served as the within-subjects factor while treatment group (i.e., static and signaling, dynamic and signaling, static without signaling, and dynamic without signaling)…
Achievement-Based Rewards and Intrinsic Motivation: A Test of Cognitive Mediators
ERIC Educational Resources Information Center
Cameron, Judy; Pierce, W. David; Banko, Katherine M.; Gear, Amber
2005-01-01
This study assessed how rewards impacted intrinsic motivation when students were rewarded for achievement while learning an activity, for performing at a specific level on a test, or for both. Undergraduate university students engaged in a problem-solving activity. The design was a 2 * 2 factorial with 2 levels of reward in a learning phase…
The Idea Factory: An Interactive Intergroup Exercise
ERIC Educational Resources Information Center
Rosh, Lisa; Leach, Evan
2011-01-01
This article outlines the Idea Factory exercise, an interactive exercise designed to help participants examine group, individual, and organizational factors that affect intergroup conflict. Specific emphasis is placed on exploring the relationship between intra- and intergroup dynamics and identifying managerial practices that foster effective…
Replicating systems concepts: Self-replicating lunar factory and demonstration
NASA Technical Reports Server (NTRS)
1982-01-01
Automation of lunar mining and manufacturing facility maintenance and repair is addressed. Designing the factory as an automated, multiproduct, remotely controlled, reprogrammable Lunar Manufacturing Facility capable of constructing duplicates of itself which would themselves be capable of further replication is proposed.
Manufacturing data analytics using a virtual factory representation.
Jain, Sanjay; Shao, Guodong; Shin, Seung-Jun
2017-01-01
Large manufacturers have been using simulation to support decision-making for design and production. However, with the advancement of technologies and the emergence of big data, simulation can be utilised to perform and support data analytics for associated performance gains. This requires not only significant model development expertise, but also huge data collection and analysis efforts. This paper presents an approach within the frameworks of Design Science Research Methodology and prototyping to address the challenge of increasing the use of modelling, simulation and data analytics in manufacturing via reduction of the development effort. The use of manufacturing simulation models is presented as data analytics applications themselves and for supporting other data analytics applications by serving as data generators and as a tool for validation. The virtual factory concept is presented as the vehicle for manufacturing modelling and simulation. Virtual factory goes beyond traditional simulation models of factories to include multi-resolution modelling capabilities and thus allowing analysis at varying levels of detail. A path is proposed for implementation of the virtual factory concept that builds on developments in technologies and standards. A virtual machine prototype is provided as a demonstration of the use of a virtual representation for manufacturing data analytics.
Christofidis, Melany J; Hill, Andrew; Horswill, Mark S; Watson, Marcus O
2016-01-01
To systematically evaluate the impact of several design features on chart-users' detection of patient deterioration on observation charts with early-warning scoring-systems. Research has shown that observation chart design affects the speed and accuracy with which abnormal observations are detected. However, little is known about the contribution of individual design features to these effects. A 2 × 2 × 2 × 2 mixed factorial design, with data-recording format (drawn dots vs. written numbers), scoring-system integration (integrated colour-based system vs. non-integrated tabular system) and scoring-row placement (grouped vs. separate) varied within-participants and scores (present vs. absent) varied between-participants by random assignment. 205 novice chart-users, tested between March 2011-March 2014, completed 64 trials where they saw real patient data presented on an observation chart. Each participant saw eight cases (four containing abnormal observations) on each of eight designs (which represented a factorial combination of the within-participants variables). On each trial, they assessed whether any of the observations were physiologically abnormal, or whether all observations were normal. Response times and error rates were recorded for each design. Participants responded faster (scores present and absent) and made fewer errors (scores absent) using drawn-dot (vs. written-number) observations and an integrated colour-based (vs. non-integrated tabular) scoring-system. Participants responded faster using grouped (vs. separate) scoring-rows when scores were absent, but separate scoring-rows when scores were present. Our findings suggest that several individual design features can affect novice chart-users' ability to detect patient deterioration. More broadly, the study further demonstrates the need to evaluate chart designs empirically. © 2015 John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Akyuz, Halil Ibrahim; Keser, Hafize
2015-01-01
The aim of this study is to investigate the effect of an educational agent, used in online task based learning media, and its form characteristics on problem solving ability perceptions of students. 2x2 factorial design is used in this study. The first study factor is the role of the educational agent and the second factor is form characteristics…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunhai
Similar to a super B-factory, a circular Higgs factory (CHF) will require strong focusing systems near the interaction points and a low-emittance lattice in the arcs to achieve a factory luminosity. At electron beam energy of 125 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at the 2% level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of a CHF. In this paper, an example will be provided to illustrate the beam dynamics in a CHF,more » emphasizing the chromatic optics. Basic optical modules and advanced analysis will be presented. Most importantly, we will show that 2% momentum aperture is achievable.« less
Front End for a neutrino factory or muon collider
Neuffer, David; Snopok, Pavel; Alexahin, Yuri
2017-11-30
A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, initially for neutrino factory scenarios. They require a drift section from the target, a bunching section and a Φ-δE rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both μ + and μ - transversely andmore » longitudinally. Finally, the status of the design is presented and variations are discussed.« less
Sovány, Tamás; Tislér, Zsófia; Kristó, Katalin; Kelemen, András; Regdon, Géza
2016-09-01
The application of the Quality by Design principles is one of the key issues of the recent pharmaceutical developments. In the past decade a lot of knowledge was collected about the practical realization of the concept, but there are still a lot of unanswered questions. The key requirement of the concept is the mathematical description of the effect of the critical factors and their interactions on the critical quality attributes (CQAs) of the product. The process design space (PDS) is usually determined by the use of design of experiment (DoE) based response surface methodologies (RSM), but inaccuracies in the applied polynomial models often resulted in the over/underestimation of the real trends and changes making the calculations uncertain, especially in the edge regions of the PDS. The completion of RSM with artificial neural network (ANN) based models is therefore a commonly used method to reduce the uncertainties. Nevertheless, since the different researches are focusing on the use of a given DoE, there is lack of comparative studies on different experimental layouts. Therefore, the aim of present study was to investigate the effect of the different DoE layouts (2 level full factorial, Central Composite, Box-Behnken, 3 level fractional and 3 level full factorial design) on the model predictability and to compare model sensitivities according to the organization of the experimental data set. It was revealed that the size of the design space could differ more than 40% calculated with different polynomial models, which was associated with a considerable shift in its position when higher level layouts were applied. The shift was more considerable when the calculation was based on RSM. The model predictability was also better with ANN based models. Nevertheless, both modelling methods exhibit considerable sensitivity to the organization of the experimental data set, and the use of design layouts is recommended, where the extreme values factors are more represented. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Thomas, R. E.; Gaines, G. B.
1978-01-01
Recommended design procedures to reduce the complete factorial design by retaining information on anticipated important interaction effects, and by generally giving up information on unconditional main effects are discussed. A hypothetical photovoltaic module used in the test design is presented. Judgments were made of the relative importance of various environmental stresses such as UV radiation, abrasion, chemical attack, temperature, mechanical stress, relative humidity and voltage. Consideration is given to a complete factorial design and its graphical representation, elimination of selected test conditions, examination and improvement of an engineering design, and parametric study. The resulting design consists of a mix of conditional main effects and conditional interactions and represents a compromise between engineering and statistical requirements.
Automation U.S.A.: Overcoming Barriers to Automation.
ERIC Educational Resources Information Center
Brody, Herb
1985-01-01
Although labor unions and inadequate technology play minor roles, the principal barrier to factory automation is "fear of change." Related problems include long-term benefits, nontechnical executives, and uncertainty of factory cost accounting. Industry support for university programs is helping to educate engineers to design, implement, and…
Optimization of permeability for quality improvement by using factorial design
NASA Astrophysics Data System (ADS)
Said, Rahaini Mohd; Miswan, Nor Hamizah; Juan, Ng Shu; Hussin, Nor Hafizah; Ahmad, Aminah; Kamal, Mohamad Ridzuan Mohamad
2017-05-01
Sand castings are used worldwide by the manufacturing process in Metal Casting Industry, whereby the green sand are the commonly used sand mould type in the industry of sand casting. The defects on the surface of casting product is one of the problems in the industry of sand casting. The problems that relates to the defect composition of green sand are such as blowholes, pinholes shrinkage and porosity. Our objective is to optimize the best composition of green sand in order to minimize the occurrence of defects. Sand specimen of difference parameters (Bentonite, Green Sand, Cold dust and water) were design and prepared to undergo permeability test. The 24 factorial design experiment with four factors at difference composition were runs, and the total of 16 runs experiment were conducted. The developed models based on the experimental design necessary models were obtained. The model with a high coefficient of determination (R2=0.9841) and model for predicted and actual fitted well with the experimental data. Using the Analysis of Design Expert software, we identified that bentonite and water are the main interaction effect in the experiments. The optimal settings for green sand composition are 100g silica sand, 21g bentonite, 6.5 g water and 6g coal dust. This composition gives an effect of permeability number 598.3GP.
Al Mamun, Mahfuz; Parvin, Kausar; Yu, Marat; Wan, Jessica; Willan, Samantha; Gibbs, Andrew; Jewkes, Rachel; Naved, Ruchira Tabassum
2018-04-18
Women in Bangladesh experience high rates of Intimate Partner Violence (IPV). IPV is more prevalent against income earning women compared to their non-earning counterparts, and Workplace Violence (WPV) is also common. Such violence is a violation of women's rights, and also constrains them from contributing to their personal growth, household, community and the economy at large. There is limited evidence on what works to prevent IPV and WPV amongst garment workers. This paper describes an evaluation of HERrespect, an intervention which aims to reduce IPV and WPV against female garment workers in and around Dhaka, Bangladesh. The trial employs a quasi-experimental design, with four intervention and four control factories. In the intervention factories a randomly selected cohort of married female line workers, a cohort of male line workers, and all middle management staff received the intervention. The intervention strategies involved (1) gender transformative group-based training for workers and management staff; (2) joint session between workers (15 female and male) and middle-management staff; (3) factory-wide activities; (4) awareness raising among top management; (5) factory policy review and development and 6) a community based campaign. For the evaluation, a cohort of randomly selected female workers and a cohort of selected management staff have been established. All workers (n = 800) and management staff (n = 395) from these cohorts were interviewed at baseline using two different questionnaires, and will be interviewed in the endline, 24 months post-baseline. Intention to treat analysis will be used for assessing the impact of HERrespect, comparing the intervention and control factories. To our knowledge this is the first study that seeks to evaluate the impact on IPV and WPV, of group sessions with female workers, male workers, and management; factory-wide campaigns and a community intervention among female garment workers in Bangladesh. Apart from informing programmers and policy makers about intervention effectiveness in reducing IPV and WPV against female garment workers this study will also present evidence on an intervention tailored to the situation in the garment sector, which makes HERrespect scalable. ClinicalTrials.gov NCT03304015, retrospectively registered on October 06, 2017.
A Mindful Approach to Teaching Emotional Intelligence to Undergraduate Students Online and in Person
ERIC Educational Resources Information Center
Cotler, Jami L.; DiTursi, Dan; Goldstein, Ira; Yates, Jeff; DelBelso, Deb
2017-01-01
In this paper we examine whether emotional intelligence (EI) can be taught online and, if so, what key variables influence the successful implementation of this online learning model. Using a 3 x 2 factorial quasi-experimental design, this mixed-methods study found that a team-based learning environment using a blended teaching approach, supported…
Translational Research in South Africa: Evaluating Implementation Quality Using a Factorial Design
ERIC Educational Resources Information Center
Caldwell, Linda L.; Smith, Edward A.; Collins, Linda M.; Graham, John W.; Lai, Mary; Wegner, Lisa; Vergnani, Tania; Matthews, Catherine; Jacobs, Joachim
2012-01-01
Background: HealthWise South Africa: Life Skills for Adolescents (HW) is an evidence-based substance use and sexual risk prevention program that emphasizes the positive use of leisure time. Since 2000, this program has evolved from pilot testing through an efficacy trial involving over 7,000 youth in the Cape Town area. Beginning in 2011, through…
Iversen, Carol; Druggan, Patrick; Schumacher, Sandra; Lehner, Angelika; Feer, Claudia; Gschwend, Karl; Joosten, Han; Stephan, Roger
2008-01-01
A differential medium, “Cronobacter” screening broth, has been designed to complement agars based on hydrolysis of chromogenic α-glucopyranoside substrates. The broth was evaluated using 329 Enterobacteriaceae strains (229 target isolates), spiked/naturally contaminated samples, and a parallel comparison with current methods for raw materials, line/end products, and factory environment samples. PMID:18310415
Muon Accelerator Program (MAP) | Neutrino Factory | Research Goals
; Committees Research Goals Research & Development Design & Simulation Technology Development Systems Demonstrations Activities MASS Muon Cooling MuCool Test Area MICE Experiment MERIT Muon Collider Research Goals Why Muons at the Energy Frontier? How does it work? Graphics Animation Neutrino Factory Research Goals
ERIC Educational Resources Information Center
Roman, Harry T.
2007-01-01
Technology education is not just about things, systems, and processes. It can also be about history, people, technological change, and impacts on society. In this design challenge, one uses technology education principles and ideas to convert an old factory into a museum and learning center. The challenge with this historical resource is to think…
Oetjen, Janina; Lachmund, Delf; Palmer, Andrew; Alexandrov, Theodore; Becker, Michael; Boskamp, Tobias; Maass, Peter
2016-09-01
A standardized workflow for matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging MS) is a prerequisite for the routine use of this promising technology in clinical applications. We present an approach to develop standard operating procedures for MALDI imaging MS sample preparation of formalin-fixed and paraffin-embedded (FFPE) tissue sections based on a novel quantitative measure of dataset quality. To cover many parts of the complex workflow and simultaneously test several parameters, experiments were planned according to a fractional factorial design of experiments (DoE). The effect of ten different experiment parameters was investigated in two distinct DoE sets, each consisting of eight experiments. FFPE rat brain sections were used as standard material because of low biological variance. The mean peak intensity and a recently proposed spatial complexity measure were calculated for a list of 26 predefined peptides obtained by in silico digestion of five different proteins and served as quality criteria. A five-way analysis of variance (ANOVA) was applied on the final scores to retrieve a ranking of experiment parameters with increasing impact on data variance. Graphical abstract MALDI imaging experiments were planned according to fractional factorial design of experiments for the parameters under study. Selected peptide images were evaluated by the chosen quality metric (structure and intensity for a given peak list), and the calculated values were used as an input for the ANOVA. The parameters with the highest impact on the quality were deduced and SOPs recommended.
Formulation and evaluation of floating tablet of H2-receptor antagonist.
Kesarla, Rajesh S; Vora, Pratik Ashwinbhai; Sridhar, B K; Patel, Gunvant; Omri, Abdelwahab
2015-01-01
Conventional sustained dosage form of ranitidine hydrochloride (HCl) does not prevent frequent administration due to its degradation in colonic media and limited absorption in the upper part of GIT. Ranitidine HCl floating tablet was formulated with sublimation method to overcome the stated problem. Compatibility study for screening potential excipients was carried out using Fourier transform infrared spectroscopy (FT-IR) and differential scanning chromatography (DSC). Selected excipients were further evaluated for optimizing the formulation. Preliminary screening of binder, polymer and sublimating material was based on hardness and drug release, drug release with release kinetics and floating lag time with total floatation time, respectively. Selected excipients were subjected to 3(2) factorial design with polymer and sublimating material as independent factors. Matrix tablets were obtained by using 16/32" flat-faced beveled edges punches followed by sublimation. FT-IR and DSC indicated no significant incompatibility with selected excipients. Klucel-LF, POLYOX WSR N 60 K and l-menthol were selected as binder, polymer and sublimating material, respectively, for factorial design batches after preliminary screening. From the factorial design batches, optimum concentration to release the drug within 12 h was found to be 420 mg of POLYOX and 40 mg of l-menthol. Stability studies indicated the formulation as stable. Ranitidine HCl matrix floating tablets were formulated to release 90% of drug in stomach within 12 h. Hence, release of the drug could be sustained within narrow absorption site. Moreover, the dosage form was found to be floating within a fraction of second independent of the pH of media ensuring a robust formulation.
Kinetic models in industrial biotechnology - Improving cell factory performance.
Almquist, Joachim; Cvijovic, Marija; Hatzimanikatis, Vassily; Nielsen, Jens; Jirstrand, Mats
2014-07-01
An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Unique Study Designs in Nephrology: N-of-1 Trials and Other Designs.
Samuel, Joyce P; Bell, Cynthia S
2016-11-01
Alternatives to the traditional parallel-group trial design may be required to answer clinical questions in special populations, rare conditions, or with limited resources. N-of-1 trials are a unique trial design which can inform personalized evidence-based decisions for the patient when data from traditional clinical trials are lacking or not generalizable. A concise overview of factorial design, cluster randomization, adaptive designs, crossover studies, and n-of-1 trials will be provided along with pertinent examples in nephrology. The indication for analysis strategies such as equivalence and noninferiority trials will be discussed, as well as analytic pitfalls. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
The Operator Guide: An Ambient Persuasive Interface in the Factory
NASA Astrophysics Data System (ADS)
Meschtscherjakov, Alexander; Reitberger, Wolfgang; Pöhr, Florian; Tscheligi, Manfred
In this paper we introduce the context of a semiconductor factory as a promising area for the application of innovative interaction approaches. In order to increase efficiency ambient persuasive interfaces, which influence the operators' behaviour to perform in an optimized way, could constitute a potential strategy. We present insights gained from qualitative studies conducted in a specific semiconductor factory and provide a description of typical work processes and already deployed interfaces in this context. These findings informed the design of a prototype of an ambient persuasive interface within this realm - the "Operator Guide". Its overall aim is to improve work efficiency, while still maintaining a minimal error rate. We provide a detailed description of the Operator Guide along with an outlook of the next steps within a user-centered design approach.
Yang, Rongbing; Nam, Kihoon; Kim, Sung Wan; Turkson, James; Zou, Ye; Zuo, Yi Y; Haware, Rahul V; Chougule, Mahavir B
2017-01-03
Desired characteristics of nanocarriers are crucial to explore its therapeutic potential. This investigation aimed to develop tunable bioresponsive newly synthesized unique arginine grafted poly(cystaminebis(acrylamide)-diaminohexane) [ABP] polymeric matrix based nanocarriers by using L9 Taguchi factorial design, desirability function, and multivariate method. The selected formulation and process parameters were ABP concentration, acetone concentration, the volume ratio of acetone to ABP solution, and drug concentration. The measured nanocarrier characteristics were particle size, polydispersity index, zeta potential, and percentage drug loading. Experimental validation of nanocarrier characteristics computed from initially developed predictive model showed nonsignificant differences (p > 0.05). The multivariate modeling based optimized cationic nanocarrier formulation of <100 nm loaded with hydrophilic acetaminophen was readapted for a hydrophobic etoposide loading without significant changes (p > 0.05) except for improved loading percentage. This is the first study focusing on ABP polymeric matrix based nanocarrier development. Nanocarrier particle size was stable in PBS 7.4 for 48 h. The increase of zeta potential at lower pH 6.4, compared to the physiological pH, showed possible endosomal escape capability. The glutathione triggered release at the physiological conditions indicated the competence of cytosolic targeting delivery of the loaded drug from bioresponsive nanocarriers. In conclusion, this unique systematic approach provides rational evaluation and prediction of a tunable bioresponsive ABP based matrix nanocarrier, which was built on selected limited number of smart experimentation.
Experimental design methods for bioengineering applications.
Keskin Gündoğdu, Tuğba; Deniz, İrem; Çalışkan, Gülizar; Şahin, Erdem Sefa; Azbar, Nuri
2016-01-01
Experimental design is a form of process analysis in which certain factors are selected to obtain the desired responses of interest. It may also be used for the determination of the effects of various independent factors on a dependent factor. The bioengineering discipline includes many different areas of scientific interest, and each study area is affected and governed by many different factors. Briefly analyzing the important factors and selecting an experimental design for optimization are very effective tools for the design of any bioprocess under question. This review summarizes experimental design methods that can be used to investigate various factors relating to bioengineering processes. The experimental methods generally used in bioengineering are as follows: full factorial design, fractional factorial design, Plackett-Burman design, Taguchi design, Box-Behnken design and central composite design. These design methods are briefly introduced, and then the application of these design methods to study different bioengineering processes is analyzed.
Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.
Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens
2015-11-15
Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsugaki, Naohiro; Yamada, Yusuke; Igarashi, Noriyuki
2007-01-19
A private network, physically separated from the facility network, was designed and constructed which covered all the four protein crystallography beamlines at the Photon Factory (PF) and Structural Biology Research Center (SBRC). Connecting all the beamlines in the same network allows for simple authentication and a common working environment for a user who uses multiple beamlines. Giga-bit Ethernet wire-speed was achieved for the communication among the beamlines and SBRC buildings.
Metabolic modelling in the development of cell factories by synthetic biology
Jouhten, Paula
2012-01-01
Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory. PMID:24688669
In-situ implant containing PCL-curcumin nanoparticles developed using design of experiments.
Kasinathan, Narayanan; Amirthalingam, Muthukumar; Reddy, Neetinkumar D; Jagani, Hitesh V; Volety, Subrahmanyam M; Rao, Josyula Venkata
2016-01-01
Polymeric delivery system is useful in reducing pharmacokinetic limitations viz., poor absorption and rapid elimination associated with clinical use of curcumin. Design of experiment is a precise and cost effective tool useful in analyzing the effect of independent variables and their interaction on the product attributes. To evaluate the effect of process variables involved in preparation of curcumin-loaded polycaprolactone (PCL) nanoparticles (CPN). In the present experiment, CPNs were prepared by emulsification solvent evaporation technique. The effect of independent variables on the dependent variable was analyzed using design of experiments. Anticancer activity of CPN was studied using Ehrlich ascites carcinoma (EAC) model. In-situ implant was developed using PLGA as polymer. The effect of independent variables was studied in two stages. First, the effect of drug-polymer ratio, homogenization speed and surfactant concentration on size was studied using factorial design. The interaction of homogenization speed with homogenization time on mean particle size of CPN was then evaluated using central composite design. In the second stage, the effect of these variables (under the conditions optimized for producing particles <500 nm) on percentage drug encapsulation was evaluated using factorial design. CPN prepared under optimized conditions were able to control the development of EAC in Swiss albino mice and enhanced their survival time. PLGA based in-situ implant containing CPN prepared under optimized conditions showed sustained drug release. This implant could be further evaluated for pharmacological activities.
Yorifuji, Takashi; Noguchi, Miyuki; Tsuda, Toshihide; Suzuki, Etsuji; Takao, Soshi; Kashima, Saori; Yanagisawa, Yukio
2012-01-01
After a plastic reprocessing factory began to operate in August 2004, the residents around the factory in Neyagawa, Osaka, Japan, began to complain of symptoms. Therefore, we conducted an exposure assessment and a population-based epidemiological study in 2006. To assess exposure, volatile organic compounds (VOCs) and total VOCs were measured at two locations in the vicinity of the factory. In the population-based study, a total of 3,950 residents were targeted. A self-administered questionnaire was used to collect information about subjects' mucocutaneous or respiratory symptoms. Using logistic regression models, we compared the prevalence of symptoms in July 2006 by employing the farthest area from the factory as a reference, and prevalence odds ratios (PORs) and their 95% confidence intervals (CIs) were estimated. The concentration of total VOCs was higher in the vicinity of the factory. The prevalence of mucocutaneous and respiratory symptoms was the highest among the residents in the closest area to the factory. Some symptoms were significantly increased among the residents within 500 m of the factory compared with residents of an area 2800 m from the factory: e.g., sore throat (POR=3.2, 95% CI: 1.3-8.0), eye itch (POR=3.0, 95% CI: 1.5-6.0), eye discharge (POR=6.0, 95% CI: 2.3-15.9), eczema (POR=3.0, 95% CI: 1.1-7.9) and sputum (POR=2.4, 95% CI: 1.1-5.1). Despite of the limitations of this study, these results imply a possible association of open-air VOCs with mucocutaneous and respiratory symptoms. Because this kind of plasticre cycling factory only recently came into operation, more attention should be paid to the operation of plastic recycling factories in the environment.
Physiological responses of lichens to factorial fumigations with nitric acid and ozone
J. Riddell; P.E. Padgett; T. Nash
2012-01-01
This paper addresses the effects of gaseous nitric acid (HNO3) and ozone (O3), two important air pollutants, on six lichen species with different morphological, ecological, and biological characteristics. The treatment chambers were set up in a factorial design consisting of control chambers, chambers fumigated with HNO
The Use of Factorial Forecasting to Predict Public Response
ERIC Educational Resources Information Center
Weiss, David J.
2012-01-01
Policies that call for members of the public to change their behavior fail if people don't change; predictions of whether the requisite changes will take place are needed prior to implementation. I propose to solve the prediction problem with Factorial Forecasting, a version of functional measurement methodology that employs group designs. Aspects…
The Game Factory: Using Cooperative Games to Promote Pro-Social Behaviour among Children
ERIC Educational Resources Information Center
Street, Helen; Hoppe, David; Kingsbury, David; Ma, Tony
2004-01-01
This study examines the use of a cooperative physical games program "The Game Factory" on social behaviour among children. Children are required to work together towards positive collective outcomes. A pretest-intervention-posttest design is used. Parents and teachers assessed 90 Australian primary school children in two experimental…
Gearing up to the factory of the future
NASA Astrophysics Data System (ADS)
Godfrey, D. E.
1985-01-01
The features of factories and manufacturing techniques and tools of the near future are discussed. The spur to incorporate new technologies on the factory floor will originate in management, who must guide the interfacing of computer-enhanced equipment with traditional manpower, materials and machines. Electronic control with responsiveness and flexibility will be the key concept in an integrated approach to processing materials. Microprocessor controlled laser and fluid cutters add accuracy to cutting operations. Unattended operation will become feasible when automated inspection is added to a work station through developments in robot vision. Optimum shop management will be achieved through AI programming of parts manufacturing, optimized work flows, and cost accounting. The automation enhancements will allow designers to affect directly parts being produced on the factory floor.
Rita C.L.B. Rodrigues; William R. Kenealy; Diane Dietrich; Thomas W. Jeffries
2012-01-01
Response surface methodology (RSM), based on a 22 full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 °C for 90 min. Both DEO...
Mayhew, C; Quinlan, M
1999-01-01
Outsourcing has become increasingly widespread throughout industrialized societies over the past 20 years. Accompanying this has been a renewed growth in home-based work, sometimes using new technologies (telework) but also entailing a re-emergence of old forms, such as clothing outwork, used extensively 100 years ago. A growing body of research indicates that changes to work organization associated with outsourcing adversely affect occupational health and safety (OHS), both for outsourced workers and for those working alongside them. This study assessed the OHS implications of the shift to home-based workers in the Australian clothing industry by systematically comparing the OHS experiences of 100 factory-based workers and 100 outworkers. The level of self-reported injury was over three times higher among outworkers than factory-based workers undertaking similar tasks. The most significant factor explaining this difference was the payment system. All outworkers were paid solely by the piece, whereas factory workers were paid either under a time plus production bonus system or solely on a time basis. While the incidence of injury was far higher among outworkers, factory-based workers paid under an incentive system reported more injuries than those paid solely on a time basis. Increasing injury was correlated with piecework payment systems.
Agoritsas, Thomas; Iserman, Emma; Hobson, Nicholas; Cohen, Natasha; Cohen, Adam; Roshanov, Pavel S; Perez, Miguel; Cotoi, Chris; Parrish, Rick; Pullenayegum, Eleanor; Wilczynski, Nancy L; Iorio, Alfonso; Haynes, R Brian
2014-09-20
Finding current best evidence for clinical decisions remains challenging. With 3,000 new studies published every day, no single evidence-based resource provides all answers or is sufficiently updated. McMaster Premium LiteratUre Service--Federated Search (MacPLUS FS) addresses this issue by looking in multiple high quality resources simultaneously and displaying results in a one-page pyramid with the most clinically useful at the top. Yet, additional logistical and educational barriers need to be addressed to enhance point-of-care evidence retrieval. This trial seeks to test three innovative interventions, among clinicians registered to MacPLUS FS, to increase the quantity and quality of searching for current best evidence to answer clinical questions. In a user-centered approach, we designed three interventions embedded in MacPLUS FS: (A) a web-based Clinical Question Recorder; (B) an Evidence Retrieval Coach composed of eight short educational videos; (C) an Audit, Feedback and Gamification approach to evidence retrieval, based on the allocation of 'badges' and 'reputation scores.' We will conduct a randomized factorial controlled trial among all the 904 eligible medical doctors currently registered to MacPLUS FS at the hospitals affiliated with McMaster University, Canada. Postgraduate trainees (n=429) and clinical faculty/staff (n=475) will be randomized to each of the three following interventions in a factorial design (AxBxC). Utilization will be continuously recorded through clinicians’ accounts that track logins and usage, down to the level of individual keystrokes. The primary outcome is the rate of searches per month per user during the six months of follow-up. Secondary outcomes, measured through the validated Impact Assessment Method questionnaire, include: utility of answers found (meeting clinicians’ information needs), use (application in practice), and perceived usefulness on patient outcomes. Built on effective models for the point-of-care teaching, these interventions approach evidence retrieval as a clinical skill. If effective, they may offer the opportunity to enhance it for a large audience, at low cost, providing better access to relevant evidence across many top EBM resources in parallel. ClinicalTrials.Gov NCT02038439.
Precision control of recombinant gene transcription for CHO cell synthetic biology.
Brown, Adam J; James, David C
2016-01-01
The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology. Copyright © 2015. Published by Elsevier Inc.
Kramer, Randall A.; Mboera, Leonard E. G.; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H.; Paul, Christopher J.; Miranda, Marie Lynn
2014-01-01
The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials. PMID:24840349
Kramer, Randall A; Mboera, Leonard E G; Senkoro, Kesheni; Lesser, Adriane; Shayo, Elizabeth H; Paul, Christopher J; Miranda, Marie Lynn
2014-05-16
The optimization of malaria control strategies is complicated by constraints posed by local health systems, infrastructure, limited resources, and the complex interactions between infection, disease, and treatment. The purpose of this paper is to describe the protocol of a randomized factorial study designed to address this research gap. This project will evaluate two malaria control interventions in Mvomero District, Tanzania: (1) a disease management strategy involving early detection and treatment by community health workers using rapid diagnostic technology; and (2) vector control through community-supported larviciding. Six study villages were assigned to each of four groups (control, early detection and treatment, larviciding, and early detection and treatment plus larviciding). The primary endpoint of interest was change in malaria infection prevalence across the intervention groups measured during annual longitudinal cross-sectional surveys. Recurring entomological surveying, household surveying, and focus group discussions will provide additional valuable insights. At baseline, 962 households across all 24 villages participated in a household survey; 2,884 members from 720 of these households participated in subsequent malariometric surveying. The study design will allow us to estimate the effect sizes of different intervention mixtures. Careful documentation of our study protocol may also serve other researchers designing field-based intervention trials.
Efficiency in Complexity: Composition and Dynamic Nature of Mimivirus Replication Factories
Milrot, Elad; Mutsafi, Yael; Ben-Dor, Shifra; Levin, Yishai; Savidor, Alon; Kartvelishvily, Elena
2016-01-01
ABSTRACT The recent discovery of multiple giant double-stranded DNA (dsDNA) viruses blurred the consensual distinction between viruses and cells due to their size, as well as to their structural and genetic complexity. A dramatic feature revealed by these viruses as well as by many positive-strand RNA viruses is their ability to rapidly form elaborate intracellular organelles, termed “viral factories,” where viral progeny are continuously generated. Here we report the first isolation of viral factories at progressive postinfection time points. The isolated factories were subjected to mass spectrometry-based proteomics, bioinformatics, and imaging analyses. These analyses revealed that numerous viral proteins are present in the factories but not in mature virions, thus implying that multiple and diverse proteins are required to promote the efficiency of viral factories as “production lines” of viral progeny. Moreover, our results highlight the dynamic and highly complex nature of viral factories, provide new and general insights into viral infection, and substantiate the intriguing notion that viral factories may represent the living state of viruses. IMPORTANCE Large dsDNA viruses such as vaccinia virus and the giant mimivirus, as well as many positive-strand RNA viruses, generate elaborate cytoplasmic organelles in which the multiple and diverse transactions required for viral replication and assembly occur. These organelles, which were termed “viral factories,” are attracting much interest due to the increasing realization that the rapid and continuous production of viral progeny is a direct outcome of the elaborate structure and composition of the factories, which act as efficient production lines. To get new insights into the nature and function of viral factories, we devised a method that allows, for the first time, the isolation of these organelles. Analyses of the isolated factories generated at different times postinfection by mass spectrometry-based proteomics provide new perceptions of their role and reveal the highly dynamic nature of these organelles. PMID:27581975
Quantum computation with realistic magic-state factories
NASA Astrophysics Data System (ADS)
O'Gorman, Joe; Campbell, Earl T.
2017-03-01
Leading approaches to fault-tolerant quantum computation dedicate a significant portion of the hardware to computational factories that churn out high-fidelity ancillas called magic states. Consequently, efficient and realistic factory design is of paramount importance. Here we present the most detailed resource assessment to date of magic-state factories within a surface code quantum computer, along the way introducing a number of techniques. We show that the block codes of Bravyi and Haah [Phys. Rev. A 86, 052329 (2012), 10.1103/PhysRevA.86.052329] have been systematically undervalued; we track correlated errors both numerically and analytically, providing fidelity estimates without appeal to the union bound. We also introduce a subsystem code realization of these protocols with constant time and low ancilla cost. Additionally, we confirm that magic-state factories have space-time costs that scale as a constant factor of surface code costs. We find that the magic-state factory required for postclassical factoring can be as small as 6.3 million data qubits, ignoring ancilla qubits, assuming 10-4 error gates and the availability of long-range interactions.
Choi, Ung-Kyu; Kim, Mi-Hyang; Lee, Nan-Hee
2007-11-01
This study was conducted to find the optimum extraction condition of Gold-Thread for antibacterial activity against Streptococcus mutans using The evolutionary operation-factorial design technique. Higher antibacterial activity was achieved in a higher extraction temperature (R2 = -0.79) and in a longer extraction time (R2 = -0.71). Antibacterial activity was not affected by differentiation of the ethanol concentration in the extraction solvent (R2 = -0.12). The maximum antibacterial activity of clove against S. mutans determined by the EVOP-factorial technique was obtained at 80 degrees C extraction temperature, 26 h extraction time, and 50% ethanol concentration. The population of S. mutans decreased from 6.110 logCFU/ml in the initial set to 4.125 logCFU/ml in the third set.
Hurley, Jane C; Hollingshead, Kevin E; Todd, Michael; Jarrett, Catherine L; Tucker, Wesley J; Angadi, Siddhartha S; Adams, Marc A
2015-09-11
Walking is a widely accepted and frequently targeted health promotion approach to increase physical activity (PA). Interventions to increase PA have produced only small improvements. Stronger and more potent behavioral intervention components are needed to increase time spent in PA, improve cardiometabolic risk markers, and optimize health. Our aim is to present the rationale and methods from the WalkIT Trial, a 4-month factorial randomized controlled trial (RCT) in inactive, overweight/obese adults. The main purpose of the study was to evaluate whether intensive adaptive components result in greater improvements to adults' PA compared to the static intervention components. Participants enrolled in a 2x2 factorial RCT and were assigned to one of four semi-automated, text message-based walking interventions. Experimental components included adaptive versus static steps/day goals, and immediate versus delayed reinforcement. Principles of percentile shaping and behavioral economics were used to operationalize experimental components. A Fitbit Zip measured the main outcome: participants' daily physical activity (steps and cadence) over the 4-month duration of the study. Secondary outcomes included self-reported PA, psychosocial outcomes, aerobic fitness, and cardiorespiratory risk factors assessed pre/post in a laboratory setting. Participants were recruited through email listservs and websites affiliated with the university campus, community businesses and local government, social groups, and social media advertising. This study has completed data collection as of December 2014, but data cleaning and preliminary analyses are still in progress. We expect to complete analysis of the main outcomes in late 2015 to early 2016. The Walking Interventions through Texting (WalkIT) Trial will further the understanding of theory-based intervention components to increase the PA of men and women who are healthy, insufficiently active and are overweight or obese. WalkIT is one of the first studies focusing on the individual components of combined goal setting and reward structures in a factorial design to increase walking. The trial is expected to produce results useful to future research interventions and perhaps industry initiatives, primarily focused on mHealth, goal setting, and those looking to promote behavior change through performance-based incentives. ClinicalTrials.gov NCT02053259; https://clinicaltrials.gov/ct2/show/NCT02053259 (Archived by WebCite at http://www.webcitation.org/6b65xLvmg).
More ethical and more efficient clinical research: multiplex trial design.
Keus, Frederik; van der Horst, Iwan C C; Nijsten, Maarten W
2014-08-14
Today's clinical research faces challenges such as a lack of clinical equipoise between treatment arms, reluctance in randomizing for multiple treatments simultaneously, inability to address interactions and increasingly restricted resources. Furthermore, many trials are biased by extensive exclusion criteria, relatively small sample size and less appropriate outcome measures. We propose a 'Multiplex' trial design that preserves clinical equipoise with a continuous and factorial trial design that will also result in more efficient use of resources. This multiplex design accommodates subtrials with appropriate choice of treatment arms within each subtrial. Clinical equipoise should increase consent rates while the factorial design is the best way to identify interactions. The multiplex design may evolve naturally from today's research limitations and challenges, while principal objections seem absent. However this new design poses important infrastructural, organisational and psychological challenges that need in depth consideration.
Staunton, Liam; Gellert, Paul; Knittle, Keegan; Sniehotta, Falko F
2015-04-01
Correlational evidence suggests that perceived control (PC) and intrinsic motivation (IM), key constructs in social cognitive and self-determination theories, may interact to reinforce behavior change. This proof-of-principle study examines the independent and synergistic effects of interventions to increase PC and IM upon dental flossing frequency. University students (n = 185) were randomized in a 2 × 2 full factorial design to receive two computer-based interventions: one to either increase or decrease PC and another to increase either IM or extrinsic motivation. These constructs were measured immediately post-intervention; flossing behavior was measured 1 week later. The interventions to increase PC and PC/IM had main and interaction effects on flossing, respectively. The PC/IM interaction effect was mediated by increases in PC and IM. Combining interventions to increase PC and IM seems to be a promising avenue of research, which has implications for both theory and intervention development.
In-Factory Learning - Qualification For The Factory Of The Future
NASA Astrophysics Data System (ADS)
Quint, Fabian; Mura, Katharina; Gorecky, Dominic
2015-07-01
The Industry 4.0 vision anticipates that internet technologies will find their way into future factories replacing traditional components by dynamic and intelligent cyber-physical systems (CPS) that combine the physical objects with their digital representation. Reducing the gap between the real and digital world makes the factory environment more flexible, more adaptive, but also more complex for the human workers. Future workers require interdisciplinary competencies from engineering, information technology, and computer science in order to understand and manage the diverse interrelations between physical objects and their digital counterpart. This paper proposes a mixed-reality based learning environment, which combines physical objects and visualisation of digital content via Augmented Reality. It uses reality-based interaction in order to make the dynamic interrelations between real and digital factory visible and tangible. We argue that our learning system does not work as a stand-alone solution, but should fit into existing academic and advanced training curricula.
Arcnet(R) On-Fiber -- A Viable Factory Automation Alternative
NASA Astrophysics Data System (ADS)
Karlin, Geof; Tucker, Carol S.
1987-01-01
Manufacturers need to improve their operating methods and increase their productivity so they can compete successfully in the marketplace. This goal can be achieved through factory automation, and the key to this automation is successful data base management and factory integration. However, large scale factory automation and integration requires effective communications, and this has given rise to an interest in various Local Area Networks or LANs. In a completely integrated and automated factory, the entire organization must have access to the data base, and all departments and functions must be able to communicate with each other. Traditionally, these departments and functions use incompatible equipment, and the ability to make such equipment communicate presents numerous problems. ARCNET, a token-passing LAN which has a significant presence in the office environment today, coupled with fiber optic cable, the cable of the future, provide an effective, low-cost solution to a number of these problems.
Bateman, James; Allen, Maggie E; Kidd, Jane; Parsons, Nick; Davies, David
2012-08-01
Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent). This is a multi-centre randomised 2 x 2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded.In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes. This trial will provide robust evidence to support the effectiveness of different designs of virtual patients, based on student performance and evaluation. The cases and all learning materials will be open access and available on a Creative Commons Attribution-Share-Alike license.
ERIC Educational Resources Information Center
Mercurio, Mia Lynn; Randall, Régine
2016-01-01
Through the study of The Triangle Shirtwaist Factory fire, pre-service art teachers learn the about interdisciplinary design and the importance of using discipline-specific literacy strategies alongside the materials and methods of their craft. The creativity and enthusiasm with which these preservice teachers approached the work convinced us that…
Liu, Xiaonan; Ding, Wentao; Jiang, Huifeng
2017-07-19
Plant natural products (PNPs) are widely used as pharmaceuticals, nutraceuticals, seasonings, pigments, etc., with a huge commercial value on the global market. However, most of these PNPs are still being extracted from plants. A resource-conserving and environment-friendly synthesis route for PNPs that utilizes microbial cell factories has attracted increasing attention since the 1940s. However, at the present only a handful of PNPs are being produced by microbial cell factories at an industrial scale, and there are still many challenges in their large-scale application. One of the challenges is that most biosynthetic pathways of PNPs are still unknown, which largely limits the number of candidate PNPs for heterologous microbial production. Another challenge is that the metabolic fluxes toward the target products in microbial hosts are often hindered by poor precursor supply, low catalytic activity of enzymes and obstructed product transport. Consequently, despite intensive studies on the metabolic engineering of microbial hosts, the fermentation costs of most heterologously produced PNPs are still too high for industrial-scale production. In this paper, we review several aspects of PNP production in microbial cell factories, including important design principles and recent progress in pathway mining and metabolic engineering. In addition, implemented cases of industrial-scale production of PNPs in microbial cell factories are also highlighted.
Factors affecting the incidence of first-quality wheels of Trentingrana cheese.
Bittante, G; Cecchinato, A; Cologna, N; Penasa, M; Tiezzi, F; De Marchi, M
2011-07-01
Trentingrana (or Grana Trentino) is a Protected Designation of Origin hard cheese produced in the eastern Italian Alps by small cooperative dairy factories. To obtain the certification of quality, wheels are evaluated at 9±1 mo of ripening and those classified as first quality are revaluated at 18±1 mo. Traditionally, the assessment is based on 2 sensory features: namely, the external aspect of the wheel and the internal texture; the latter is evaluated through the sound produced by beating the wheel with a special hammer. Traits considered in the study were the percentage of first-quality wheels of total wheels examined at 9±1 (QW(9 mo)) and 18±1 (QW(18 mo)) mo of ripening, and their combination [i.e., the percentage of first-quality wheels at 18±1 mo of ripening of the number of wheels evaluated at 9±1 mo (QW(tot))]. The experimental unit was the batch of 2 mo of production of each of 10 cooperative dairy factories from 2002 to 2008. Data were analyzed with a model that included fixed effects of dairy factory, year and season of production, and interactions between dairy factory and year, and dairy factory and season. The coefficients of determination of the models were 0.57, 0.68, and 0.67 for QW(9mo), QW(18 mo), and QW(tot), respectively. All factors significantly influenced the traits, with dairy factory being the most important source of variation, followed by season and year of production. Remarkable differences were found between the best and the worst dairy factory for QW(9 mo) (11.5%), QW(18 mo) (21.1%), and QW(tot) (25.6%). The first 4 yr of production had a negative effect on the percentage of wheels labeled as first quality and QW(tot) decreased from 74 to 64%; nevertheless, a complete recovery was detected in the following years. The season of production strongly influenced the studied traits with the best results in spring and summer, and the worst in autumn and winter. Compared with average, the 3 best dairy factories were smaller, with smaller associated farms, and showed lower variation across years and seasons of production. Results support the relevance of routinely assessing and monitoring the quality of Trentingrana cheese. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Abdel-Aziz, Omar; Ayad, Miriam F; Tadros, Mariam M
2015-04-05
Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml(-1). The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml(-1). The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml(-1). All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Abdel-Aziz, Omar; Ayad, Miriam F.; Tadros, Mariam M.
2015-04-01
Simple, selective and reproducible spectrofluorimetric and spectrophotometric methods have been developed for the determination of vildagliptin and saxagliptin in bulk and their pharmaceutical dosage forms. The first proposed spectrofluorimetric method is based on the dansylation reaction of the amino group of vildagliptin with dansyl chloride to form a highly fluorescent product. The formed product was measured spectrofluorimetrically at 455 nm after excitation at 345 nm. Beer's law was obeyed in a concentration range of 100-600 μg ml-1. The second proposed spectrophotometric method is based on the charge transfer complex of saxagliptin with tetrachloro-1,4-benzoquinone (p-chloranil). The formed charge transfer complex was measured spectrophotometrically at 530 nm. Beer's law was obeyed in a concentration range of 100-850 μg ml-1. The third proposed spectrophotometric method is based on the condensation reaction of the primary amino group of saxagliptin with formaldehyde and acetyl acetone to form a yellow colored product known as Hantzsch reaction, measured at 342.5 nm. Beer's law was obeyed in a concentration range of 50-300 μg ml-1. All the variables were studied to optimize the reactions' conditions using factorial design. The developed methods were validated and proved to be specific and accurate for quality control of vildagliptin and saxagliptin in their pharmaceutical dosage forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson-Sellers, A.
Land-surface schemes developed for incorporation into global climate models include parameterizations that are not yet fully validated and depend upon the specification of a large (20-50) number of ecological and soil parameters, the values of which are not yet well known. There are two methods of investigating the sensitivity of a land-surface scheme to prescribed values: simple one-at-a-time changes or factorial experiments. Factorial experiments offer information about interactions between parameters and are thus a more powerful tool. Here the results of a suite of factorial experiments are reported. These are designed (i) to illustrate the usefulness of this methodology andmore » (ii) to identify factors important to the performance of complex land-surface schemes. The Biosphere-Atmosphere Transfer Scheme (BATS) is used and its sensitivity is considered (a) to prescribed ecological and soil parameters and (b) to atmospheric forcing used in the off-line tests undertaken. Results indicate that the most important atmospheric forcings are mean monthly temperature and the interaction between mean monthly temperature and total monthly precipitation, although fractional cloudiness and other parameters are also important. The most important ecological parameters are vegetation roughness length, soil porosity, and a factor describing the sensitivity of the stomatal resistance of vegetation to the amount of photosynthetically active solar radiation and, to a lesser extent, soil and vegetation albedos. Two-factor interactions including vegetation roughness length are more important than many of the 23 specified single factors. The results of factorial sensitivity experiments such as these could form the basis for intercomparison of land-surface parameterization schemes and for field experiments and satellite-based observation programs aimed at improving evaluation of important parameters.« less
Sharp, Jamie; Spitters, Tim Wgm; Vermette, Patrick
2018-03-01
Few studies report whole pancreatic tissue culture, as it is a difficult task using traditional culture methods. Here, a factorial design was used to investigate the singular and combinational effects of flow, dissolved oxygen concentration (D.O.) and pulsation on whole mechanically disrupted rat pancreata in a perfusion bioreactor. Whole rat pancreata were cultured for 72 h under defined bioreactor process conditions. Secreted insulin was measured and histological (haematoxylin and eosin (H&E)) as well as immunofluorescent insulin staining were performed and quantified. The combination of flow and D.O. had the most significant effect on secreted insulin at 5 h and 24 h. The D.O. had the biggest effect on tissue histological quality, and pulsation had the biggest effect on the number of insulin-positive structures. Based on the factorial design analysis, bioreactor conditions using high flow, low D.O., and pulsation were selected to further study glucose-stimulated insulin secretion. Here, mechanically disrupted rat pancreata were cultured for 24 h under these bioreactor conditions and were then challenged with high glucose concentration for 6 h and high glucose + IBMX (an insulin secretagogue) for a further 6 h. These cultures secreted insulin in response to high glucose concentration in the first 6 h, however stimulated-insulin secretion was markedly weaker in response to high glucose concentration + IBMX thereafter. After this bioreactor culture period, higher tissue metabolic activity was found compared to that of non-bioreacted static controls. More insulin- and glucagon-positive structures, and extensive intact endothelial structures were observed compared to non-bioreacted static cultures. H&E staining revealed more intact tissue compared to static cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:432-444, 2018. © 2017 American Institute of Chemical Engineers.
Galyean, Anne A; Filliben, James J; Holbrook, R David; Vreeland, Wyatt N; Weinberg, Howard S
2016-11-18
Asymmetric flow field flow fractionation (AF 4 ) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF 4 primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2 (5-1) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF 4 instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2 (5-2) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF 4 instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Recent progress in neutrino factory and muon collider research within the Muon Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. M. Alsharoa; Charles M. Ankenbrandt; Muzaffer Atac
2003-08-01
We describe the status of our effort to realize a first neutrino factory and the progress made in understanding the problems associated with the collection and cooling of muons towards that end. We summarize the physics that can be done with neutrino factories as well as with intense cold beams of muons. The physics potential of muon colliders is reviewed, both as Higgs Factories and compact high energy lepton colliders. The status and timescale of our research and development effort is reviewed as well as the latest designs in cooling channels including the promise of ring coolers in achieving longitudinalmore » and transverse cooling simultaneously. We detail the efforts being made to mount an international cooling experiment to demonstrate the ionization cooling of muons.« less
McKinlay, J B; Burns, R B; Durante, R; Feldman, H A; Freund, K M; Harrow, B S; Irish, J T; Kasten, L E; Moskowitz, M A
1997-02-01
This study examines the influence of six patient characteristics (age, race, socioeconomic status, comorbidities, mobility and presentational style) and two physician characteristics (medical specialty and years of clinical experience) on physicians' clinical decision making behaviour in the evaluation treatment of an unknown and known breast cancer. Physicians' variability and certainty associated with diagnostic and treatment behaviour were also examined. Separate analyses explored the influence of these non-medical factors on physicians' cognitive processes. Using a fractional factorial design, 128 practising physicians were shown two videotaped scenarios and asked about possible diagnoses and medical recommendations. Results showed that physicians displayed considerable variability in response to several patient-based factors. Physician characteristics also emerged as important predictors of clinical behaviour, thus confirming the complexity of the medical decision-making process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Ferella, Francesco
2013-11-15
Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equalmore » to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogomilov, M.; Matev, R.; Tsenov, R.
The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less
THE EXPERIMENTAL DESIGN FOR BeO IRAADIATION EXPERIMENTS ORNL 41-8 AND ORNL 41-9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, D.A.
1962-07-18
The experimental plan for irradiating BeO pellets in Experiments ORNL 41- 8 and ORNL 41-9 was chosen in accordance with the principles of experimental design. The design is known by statisticians as a 2/sup 5/ factorial experiment confound'' in six replications. Five variables---size, density, grain size, temperature and time--are controlled at two levels to form the basic 2i factorial experiment. The sixth variable, neutron flux, is introduced by confounding on higher-order interactions. An explanation is presented in nontechnical language the means by which the aims of the experimenters and the physical conditions affecting the experiment were utilized in constructing themore » experimental design. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heaney, Mike
Statistically designed experiments can save researchers time and money by reducing the number of necessary experimental trials, while resulting in more conclusive experimental results. Surprisingly, many researchers are still not aware of this efficient and effective experimental methodology. As reported in a 2013 article from Chemical & Engineering News, there has been a resurgence of this methodology in recent years (http://cen.acs.org/articles/91/i13/Design-Experiments-Makes-Comeback.html?h=2027056365). This presentation will provide a brief introduction to statistically designed experiments. The main advantages will be reviewed along with the some basic concepts such as factorial and fractional factorial designs. The recommended sequential approach to experiments will be introducedmore » and finally a case study will be presented to demonstrate this methodology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogacz, Slawomir Alex
Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normalmore » conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.« less
Steinrücken, Pia; Mjøs, Svein A; Prestegard, Siv K; Erga, Svein R
2018-01-01
Microalgae with a high content of the omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are of great demand for microalgae-based technologies. An Arctic strain of the diatom Attheya septentrionalis was shown in previous experiments to increase its EPA content from 3.0 to 4.6% of dry weight (DW) in the nutrient-replete exponential phase and nutrient-depleted stationary phase, respectively. In the present study, a factorial-design experiment was used, to investigate this effect in more detail and in combination with varying salinities and irradiances. A mathematical model revealed that both growth phase and salinity, alone and in combination, influenced the EPA content significantly. Maximum EPA values of 7.1% DW were obtained at a salinity of 22 and after 5 days in stationary phase, and might be related to a decreased silica content, an accumulation of storage lipids containing EPA, or both. However, growth rates were lower for low salinity (0.54 and 0.57 d -1 ) than high salinity (0.77 and 0.98 d -1 ) cultures.
Villa-Gomez, D K; Pakshirajan, K; Maestro, R; Mushi, S; Lens, P N L
2015-07-01
The individual and combined effect of the pH, chemical oxygen demand (COD) and SO4 (2-) concentration, metal to sulfide (M/S(2-)) ratio and hydraulic retention time (HRT) on the biological sulfate reduction (SR) process was evaluated in an inverse fluidized bed reactor by factorial design analysis (FDA) and response surface analysis (RSA). The regression-based model of the FDA described the experimental results well and revealed that the most significant variable affecting the process was the pH. The combined effect of the pH and HRT was barely observable, while the pH and COD concentration positive effect (up to 7 and 3 gCOD/L, respectively) enhanced the SR process. Contrary, the individual COD concentration effect only enhanced the COD removal efficiency, suggesting changes in the microbial pathway. The RSA showed that the M/S(2-) ratio determined whether the inhibition mechanism to the SR process was due to the presence of free metals or precipitated metal sulfides.
USDA-ARS?s Scientific Manuscript database
TA study was conducted to compare nutrient flows determined by a reticular sampling technique with those made by sampling of digesta from the omasal canal. Six lactating dairy cows fitted with ruminal cannulas were used in a design with a 3 x 2 factorial arrangement of treatments and 4 periods. Trea...
NASA Technical Reports Server (NTRS)
Nelsen, Lowell V.
1990-01-01
The performance of 360T004, Forth Flight, Redesigned Solid Rocket Motors (RSRM) is assessed in respect to joint sealing issues as seen from post-test inspection of the seals and sealing surfaces. The factory joint disassembly inspections for this flight set were omitted. The decision was based on the rational that there is sufficient information in the present data base, and this would give H-7 refurbishment operations faster turn around time for this set of hardware. The factory joint disassembly inspections will resume for 360H005, Fifth Flight, through 360L007, Seventh Flight, due to a new grease application being in effect during the assembly process. The left hand nozzle was forced into the snubbed position upon splash down. This required unique tooling to be manufactured to perform the disassembly of the internal nozzle joints. This was completed on February 5 and 6, 1990 at the H-5 Clearfield, Utah facility. The RSRM consisting of capture feature, field joints with the J-joint insulation configuration is illustrated. The nozzle-to-case joint design, which includes 100, 7/8-inch radial bolts in conjunction with a wiper O-ring and modified insulation design is also illustrated, as is the ignition system seals and a cross section of the igniter. The configuration of all internal nozzle joints is shown.
The effects of gardening on quality of life in people with stroke.
Ho, Sui-Hua; Lin, Chiuhsiang Joe; Kuo, Fen-Ling
2016-06-27
Compared with traditional rehabilitation, gardening has been viewed as a more occupation-based intervention to help patients improve functional performance. However, there is still a need for evidence-based research into what factors interact to create the beneficial effects of gardening for people who have sustained a cerebral vascular accident (CVA). To explore how plant, gender, and the time after stroke onset influenced improvements in the quality of life of patients in a gardening program. One treatment of tending short-term plants, and another treatment of tending long-term plants were compared. Quality of life improvement was evaluated according to three factors: plant, gender, and the time after stroke onset. The data were analyzed with 2k replicated factorial designs. The 2k factorial design with replication indicated significant effects on both the social role and the family role. For the social role, the interaction of plant and gender difference was significant. For the family role, the significant effects were found on interaction of plant with both gender and the time after stroke onset. Tending plants with different life cycles has varied effects on the quality of life of people who have sustained a CVA. Factors related to gender and the time after stroke onset influenced role competency in this sample.
Computational tools and lattice design for the PEP-II B-Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Irwin, J.; Nosochkov, Y.
1997-02-01
Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT. {copyright} {ital 1997 American Institute of Physics.}
Computational tools and lattice design for the PEP-II B-Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Yunhai; Irwin, John; Nosochkov, Yuri
1997-02-01
Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT.
Assessing factorial invariance of two-way rating designs using three-way methods
Kroonenberg, Pieter M.
2015-01-01
Assessing the factorial invariance of two-way rating designs such as ratings of concepts on several scales by different groups can be carried out with three-way models such as the Parafac and Tucker models. By their definitions these models are double-metric factorially invariant. The differences between these models lie in their handling of the links between the concept and scale spaces. These links may consist of unrestricted linking (Tucker2 model), invariant component covariances but variable variances per group and per component (Parafac model), zero covariances and variances different per group but not per component (Replicated Tucker3 model) and strict invariance (Component analysis on the average matrix). This hierarchy of invariant models, and the procedures by which to evaluate the models against each other, is illustrated in some detail with an international data set from attachment theory. PMID:25620936
Moser, Barry Kurt; Halabi, Susan
2013-01-01
In this paper we develop the methodology for designing clinical trials with any factorial arrangement when the primary outcome is time to event. We provide a matrix formulation for calculating the sample size and study duration necessary to test any effect with a pre-specified type I error rate and power. Assuming that a time to event follows an exponential distribution, we describe the relationships between the effect size, the power, and the sample size. We present examples for illustration purposes. We provide a simulation study to verify the numerical calculations of the expected number of events and the duration of the trial. The change in the power produced by a reduced number of observations or by accruing no patients to certain factorial combinations is also described. PMID:25530661
Adapting Evaluations of Alternative Payment Models to a Changing Environment.
Grannemann, Thomas W; Brown, Randall S
2018-04-01
To identify the most robust methods for evaluating alternative payment models (APMs) in the emerging health care delivery system environment. We assess the impact of widespread testing of alternative payment models on the ability to find credible comparison groups. We consider the applicability of factorial research designs for assessing the effects of these models. The widespread adoption of alternative payment models could effectively eliminate the possibility of comparing APM results with a "pure" control or comparison group unaffected by other interventions. In this new environment, factorial experiments have distinct advantages over the single-model experimental or quasi-experimental designs that have been the mainstay of recent tests of Medicare payment and delivery models. The best prospects for producing definitive evidence of the effects of payment incentives for APMs include fractional factorial experiments that systematically vary requirements and payment provisions within a payment model. © Health Research and Educational Trust.
Factorial Design Approach in Proportioning Prestressed Self-Compacting Concrete.
Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Xing, Feng; Wang, Wei-Lun
2015-03-13
In order to model the effect of mixture parameters and material properties on the hardened properties of, prestressed self-compacting concrete (SCC), and also to investigate the extensions of the statistical models, a factorial design was employed to identify the relative significance of these primary parameters and their interactions in terms of the mechanical and visco-elastic properties of SCC. In addition to the 16 fractional factorial mixtures evaluated in the modeled region of -1 to +1, eight axial mixtures were prepared at extreme values of -2 and +2 with the other variables maintained at the central points. Four replicate central mixtures were also evaluated. The effects of five mixture parameters, including binder type, binder content, dosage of viscosity-modifying admixture (VMA), water-cementitious material ratio (w/cm), and sand-to-total aggregate ratio (S/A) on compressive strength, modulus of elasticity, as well as autogenous and drying shrinkage are discussed. The applications of the models to better understand trade-offs between mixture parameters and carry out comparisons among various responses are also highlighted. A logical design approach would be to use the existing model to predict the optimal design, and then run selected tests to quantify the influence of the new binder on the model.
DKIST enclosure modeling and verification during factory assembly and testing
NASA Astrophysics Data System (ADS)
Larrakoetxea, Ibon; McBride, William; Marshall, Heather K.; Murga, Gaizka
2014-08-01
The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) is unique as, apart from protecting the telescope and its instrumentation from the weather, it holds the entrance aperture stop and is required to position it with millimeter-level accuracy. The compliance of the Enclosure design with the requirements, as of Final Design Review in January 2012, was supported by mathematical models and other analyses which included structural and mechanical analyses (FEA), control models, ventilation analysis (CFD), thermal models, reliability analysis, etc. During the Enclosure Factory Assembly and Testing the compliance with the requirements has been verified using the real hardware and the models created during the design phase have been revisited. The tests performed during shutter mechanism subsystem (crawler test stand) functional and endurance testing (completed summer 2013) and two comprehensive system-level factory acceptance testing campaigns (FAT#1 in December 2013 and FAT#2 in March 2014) included functional and performance tests on all mechanisms, off-normal mode tests, mechanism wobble tests, creation of the Enclosure pointing map, control system tests, and vibration tests. The comparison of the assumptions used during the design phase with the properties measured during the test campaign provides an interesting reference for future projects.
Azevedo de Brito, Wanessa; Gomes Dantas, Monique; Andrade Nogueira, Fernando Henrique; Ferreira da Silva-Júnior, Edeildo; Xavier de Araújo-Júnior, João; Aquino, Thiago Mendonça de; Adélia Nogueira Ribeiro, Êurica; da Silva Solon, Lilian Grace; Soares Aragão, Cícero Flávio; Barreto Gomes, Ana Paula
2017-08-30
Guanylhydrazones are molecules with great pharmacological potential in various therapeutic areas, including antitumoral activity. Factorial design is an excellent tool in the optimization of a chromatographic method, because it is possible quickly change factors such as temperature, mobile phase composition, mobile phase pH, column length, among others to establish the optimal conditions of analysis. The aim of the present work was to develop and validate a HPLC and UHPLC methods for the simultaneous determination of guanylhydrazones with anticancer activity employing experimental design. Precise, exact, linear and robust HPLC and UHPLC methods were developed and validated for the simultaneous quantification of the guanylhydrazones LQM10, LQM14, and LQM17. The UHPLC method was more economic, with a four times less solvent consumption, and 20 times less injection volume, what allowed better column performance. Comparing the empirical approach employed in the HPLC method development to the DoE approach employed in the UHPLC method development, we can conclude that the factorial design made the method development faster, more practical and rational. This resulted in methods that can be employed in the analysis, evaluation and quality control of these new synthetic guanylhydrazones.
Factorial experimental design intended for the optimization of the alumina purification conditions
NASA Astrophysics Data System (ADS)
Brahmi, Mounaouer; Ba, Mohamedou; Hidri, Yassine; Hassen, Abdennaceur
2018-04-01
The objective of this study was to determine the optimal conditions by using the experimental design methodology for the removal of some impurities associated with the alumina. So, three alumina qualities of different origins were investigated under the same conditions. The application of full-factorial designs on the samples of different qualities of alumina has followed the removal rates of the sodium oxide. However, a factorial experimental design was developed to describe the elimination of sodium oxide associated with the alumina. The experimental results showed that chemical analyze followed by XRF prior treatment of the samples, provided a primary idea concerning these prevailing impurities. Therefore, it appeared that the sodium oxide constituted the largest amount among all impurities. After the application of experimental design, analysis of the effectors different factors and their interactions showed that to have a better result, we should reduce the alumina quantity investigated and by against increase the stirring time for the first two samples, whereas, it was necessary to increase the alumina quantity in the case of the third sample. To expand and improve this research, we should take into account all existing impurities, since we found during this investigation that the levels of partial impurities increased after the treatment.
The Shirts on Our Backs: Teleological Perspectives on Factory Safety in Bangladesh
ERIC Educational Resources Information Center
Dhooge, Lucien J.
2016-01-01
This case study addresses the issue of factory safety in the garment industry through an examination of two recent catastrophic failures in Bangladesh. The case study was designed for students in Business Ethics in the MBA curriculum at the Scheller College of Business at the Georgia Institute of Technology. The case study has also been adapted…
ERIC Educational Resources Information Center
Langballe, Ellen Melbye; Falkum, Erik; Innstrand, Siw Tone; Aasland, Olaf Gjerlow
2006-01-01
The Maslach Burnout Inventory--General Survey (MBI-GS) is designed to measure the three subdimensions (exhaustion, cynicism, and professional efficacy) of burnout in a wide range of occupations. This article examines the factorial validity of the MBI-GS across eight different occupational groups in Norway: lawyers, physicians, nurses, teachers,…
Feldt, Taru; Rantanen, Johanna; Hyvönen, Katriina; Mäkikangas, Anne; Huhtala, Mari; Pihlajasaari, Pia; Kinnunen, Ulla
2014-01-01
The present study tested the factorial validity of the 9-item Bergen Burnout Inventory (BBI-9). The BBI-9 is comprised of three core dimensions: (1) exhaustion at work; (2) cynicism toward the meaning of work; and (3) sense of inadequacy at work. The study further investigated whether the three-factor structure of the BBI-9 remains the same across different organizations (group invariance) and measurement time points (time invariance). The factorial group invariance was tested using a cross-sectional design with data pertaining to managers (n=742), and employees working in a bank (n=162), an engineering office (n=236), a public sector organization divided into three service areas: administration (n=102), education and culture (n=581), and social affairs and health (n=1,505). Factorial time invariance was tested using longitudinal data pertaining to managers, with three measurements over a four-year follow-up period. The confirmatory factor analysis revealed that the three-factor structure of the BBI-9 was invariant across cross-sectional samples. The factorial invariance was also supported across measurement times. To conclude, the factorial structure of the BBI-9 was found to remain the same regardless of the sample properties and measurement times.
Patil, Ganesh B; Patil, Nandkishor D; Deshmukh, Prashant K; Patil, Pravin O; Bari, Sanjay B
2016-01-01
Present invention relates to design of nanostructured lipid carriers (NLC) to augment oral bioavailability of Carvedilol (CAR). In this attempt, formulations of CAR-NLCs were prepared with glyceryl-monostearate (GMS) as a lipid, poloxamer 188 as a surfactant and tween 80 as a co-surfactant using high pressure homogenizer by 2(3) factorial design approach. Formed CAR-NLCs were assessed for various performance parameters. Accelerated stability studies demonstrated negligible change in particle size and entrapment efficiency, after storage at specified time up to 3 months. The promising findings in this investigation suggest the practicability of these systems for enhancement of bioavailability of drugs like CAR.
Smart factory in the context of 4th industrial revolution: challenges and opportunities for Romania
NASA Astrophysics Data System (ADS)
Pîrvu, B. C.; Zamfirescu, C. B.
2017-08-01
Manufacturing companies, independent of operation sector and size, must be able to produce lot size one products, just-in-time at a competitive cost. Coping with this high adaptability and short reaction times proves to be very challenging. New approaches must be taken into consideration for designing modular, intelligent and cooperative production systems which are easy to integrate with the entire factory. The coined term for this network of intelligent interacting artefacts system is cyber-physical systems (CPS). CPS is often used in the context of Industry 4.0 - or what many consider the forth industrial revolution. The paper presents an overview of key technological and social requirements to map the Smart Factory vision into reality. Finally, global and Romanian specific challenges hindering the vision of a true Smart Factory to become reality are presented.
Teaching fractional factorial experiments via course delegate designed experiments.
Coleman, S; Antony, J
1999-01-01
Industrial experiments are fundamental in enhancing the understanding and knowledge of a process and product behavior. Designed industrial experiments assist people in understanding, investigating, and improving their processes. The purpose of a designed experiment is to understand which factors might influence the process output and then to determine those factor settings that optimize the process output. Teaching "design of experiments" using textbook examples does not fully shed light on how to identify and formulate the problem, identify factors, and determine the performance of the physical experiment. Presented here is an example of how to teach fractional factorial experiments in a course on designed experiments. Also presented is a practical, hands-on experiment that has been found to be extremely successful in instilling confidence and motivation in course delegates. The experiment provides a great stimulus to the delegates for the application of experimental design in their own work environment.
A reusability and efficiency oriented software design method for mobile land inspection
NASA Astrophysics Data System (ADS)
Cai, Wenwen; He, Jun; Wang, Qing
2008-10-01
Aiming at the requirement from the real-time land inspection domain, a land inspection handset system was presented in this paper. In order to increase the reusability of the system, a design pattern based framework was presented. Encapsulation for command like actions by applying COMMAND pattern was proposed for the problem of complex UI interactions. Integrating several GPS-log parsing engines into a general parsing framework was archived by introducing STRATEGY pattern. A network transmission module based network middleware was constructed. For mitigating the high coupling of complex network communication programs, FACTORY pattern was applied to facilitate the decoupling. Moreover, in order to efficiently manipulate huge GIS datasets, a VISITOR pattern and Quad-tree based multi-scale representation method was presented. It had been proved practically that these design patterns reduced the coupling between the subsystems, and improved the expansibility.
ERIC Educational Resources Information Center
Fortmann, Stephen P.; Killen, Joel D.
1995-01-01
Smokers were randomized using a factorial design to compare nicotine gum use to no gum use, and self-help materials to no materials. Compared with the no-gum group, relapse occurred at a significantly lower rate in the gum group for the entire 12 months of follow-up. There was no significant main effect for the self-help materials and no…
ERIC Educational Resources Information Center
Jin, Seung-A. Annie
2011-01-01
Within the Entertainment-Education (E-E) framework, two experiments examined the effects of avatar-based e-health education targeting college students. Study 1 (between-subjects factorial design experiment: N = 94) tested the effects of message framing in e-learning and the moderating role of students' motivational systems on their enjoyment of…
Sanitary Norms of the Design of Industrial Enterprises. SN 245-71.
1979-07-09
Plants of feed 4ntibiotics. 3. Fish trades. 4. Cattle bases to 1000 heads of given cattle. 5. Shops for production of ferments with surface method of...sirloin with scrap processing shops, fisheries. 9. Shops for production of ferments with deep method of cultivation. 10. Beet sugar plants without pulp...zone by size/dimension 50 a. 1. Confectionery factories. 2. Production of table vinegar . 3. Enterprises tobacco-lov-grade tobacco (tobacco
Robust tests for multivariate factorial designs under heteroscedasticity.
Vallejo, Guillermo; Ato, Manuel
2012-06-01
The question of how to analyze several multivariate normal mean vectors when normality and covariance homogeneity assumptions are violated is considered in this article. For the two-way MANOVA layout, we address this problem adapting results presented by Brunner, Dette, and Munk (BDM; 1997) and Vallejo and Ato (modified Brown-Forsythe [MBF]; 2006) in the context of univariate factorial and split-plot designs and a multivariate version of the linear model (MLM) to accommodate heterogeneous data. Furthermore, we compare these procedures with the Welch-James (WJ) approximate degrees of freedom multivariate statistics based on ordinary least squares via Monte Carlo simulation. Our numerical studies show that of the methods evaluated, only the modified versions of the BDM and MBF procedures were robust to violations of underlying assumptions. The MLM approach was only occasionally liberal, and then by only a small amount, whereas the WJ procedure was often liberal if the interactive effects were involved in the design, particularly when the number of dependent variables increased and total sample size was small. On the other hand, it was also found that the MLM procedure was uniformly more powerful than its most direct competitors. The overall success rate was 22.4% for the BDM, 36.3% for the MBF, and 45.0% for the MLM.
Estimating Power Outage Cost based on a Survey for Industrial Customers
NASA Astrophysics Data System (ADS)
Yoshida, Yoshikuni; Matsuhashi, Ryuji
A survey was conducted on power outage cost for industrial customers. 5139 factories, which are designated energy management factories in Japan, answered their power consumption and the loss of production value due to the power outage in an hour in summer weekday. The median of unit cost of power outage of whole sectors is estimated as 672 yen/kWh. The sector of services for amusement and hobbies and the sector of manufacture of information and communication electronics equipment relatively have higher unit cost of power outage. Direct damage cost from power outage in whole sectors reaches 77 billion yen. Then utilizing input-output analysis, we estimated indirect damage cost that is caused by the repercussion of production halt. Indirect damage cost in whole sectors reaches 91 billion yen. The sector of wholesale and retail trade has the largest direct damage cost. The sector of manufacture of transportation equipment has the largest indirect damage cost.
Study on light and thermal energy of illumination device for plant factory design
NASA Astrophysics Data System (ADS)
Yoshida, A.; Moriuchi, K.; Ueda, Y.; Kinoshita, S.
2018-01-01
To investigate the effect of illumination devices on the yield of crops cultivated in a plant factory, it is necessary to measure the actual cultivation environmental factors related to the plant growth and understand the distribution ratio of light and thermal energy to the electrical energy injected into the illumination device. Based on cultivation results, we found that light intensity greatly affected the growth of plant weight. Regarding the selection of illumination device, its spectral components also affected the morphological change. Lighting experiments using a high frequency (Hf) fluorescent lamp and a light emitting diode (LED) bulb were performed. A certain difference was found in the distribution ratio of light energy to electrical energy between Hf and LED. It was showed that by placing the safety equipment or internal circuits outside the cultivated site, the air conditioning load could be reduced.
Engineering plant metabolism into microbes: from systems biology to synthetic biology.
Xu, Peng; Bhan, Namita; Koffas, Mattheos A G
2013-04-01
Plant metabolism represents an enormous repository of compounds that are of pharmaceutical and biotechnological importance. Engineering plant metabolism into microbes will provide sustainable solutions to produce pharmaceutical and fuel molecules that could one day replace substantial portions of the current fossil-fuel based economy. Metabolic engineering entails targeted manipulation of biosynthetic pathways to maximize yields of desired products. Recent advances in Systems Biology and the emergence of Synthetic Biology have accelerated our ability to design, construct and optimize cell factories for metabolic engineering applications. Progress in predicting and modeling genome-scale metabolic networks, versatile gene assembly platforms and delicate synthetic pathway optimization strategies has provided us exciting opportunities to exploit the full potential of cell metabolism. In this review, we will discuss how systems and synthetic biology tools can be integrated to create tailor-made cell factories for efficient production of natural products and fuel molecules in microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cojocaru, C; Khayet, M; Zakrzewska-Trznadel, G; Jaworska, A
2009-08-15
The factorial design of experiments and desirability function approach has been applied for multi-response optimization in pervaporation separation process. Two organic aqueous solutions were considered as model mixtures, water/acetonitrile and water/ethanol mixtures. Two responses have been employed in multi-response optimization of pervaporation, total permeate flux and organic selectivity. The effects of three experimental factors (feed temperature, initial concentration of organic compound in feed solution, and downstream pressure) on the pervaporation responses have been investigated. The experiments were performed according to a 2(3) full factorial experimental design. The factorial models have been obtained from experimental design and validated statistically by analysis of variance (ANOVA). The spatial representations of the response functions were drawn together with the corresponding contour line plots. Factorial models have been used to develop the overall desirability function. In addition, the overlap contour plots were presented to identify the desirability zone and to determine the optimum point. The optimal operating conditions were found to be, in the case of water/acetonitrile mixture, a feed temperature of 55 degrees C, an initial concentration of 6.58% and a downstream pressure of 13.99 kPa, while for water/ethanol mixture a feed temperature of 55 degrees C, an initial concentration of 4.53% and a downstream pressure of 9.57 kPa. Under such optimum conditions it was observed experimentally an improvement of both the total permeate flux and selectivity.
A Survey of the Medical Needs of a Group of Small Factories*
Lee, W. R.
1962-01-01
The present interest in medical services for small factories is matched by the limited objective information which is available on the demand for and needs of such services. As a teaching project, a survey was made of factories with between 30 and 200 employees on an estate in the North West where there was no organized medical service. Unfortunately, time allowed only 22 factories to be visited. The findings, therefore, are regarded as indicative rather than conclusive, but this does not detract from their interest. Factories were visited by two or three postgraduate students who completed a questionnaire designed to standardize their findings. The questionnaire is included as an appendix to this paper. Regarding the demand for medical services, four of the 22 factories were subsidiaries of larger organizations and had part-time medical advice, 14 expressed no interest even if this would have involved no financial commitment, and the remaining four were interested for differing reasons. The needs of the factories in this context were found to be, first, advice and perhaps better supervision of non-mechanical hazards and, secondly, supervision of the first aid arrangements. From the ambulance journey records of the local authority there appeared to be no great demand for local casualty facilities. To meet these needs it is suggested that the functions of the appointed factory doctor might be modified to include wider supervision of non-mechanical hazards and supervision of first aid arrangements. It is also suggested that the National Health Service should form the basis for dealing with those cases requiring more than first aid. PMID:14463582
Industrial systems biology and its impact on synthetic biology of yeast cell factories.
Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens
2016-06-01
Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Liu, Qian; Lei, Bing-Li; An, Jing; Shang, Yu; Zhong, Yu-Fang; Kang, Jia; Wen, Yu
2013-08-01
The single toxicity of diethylstilbestrol (DES) and beta-estradiol 17-valerate (EV) and the joint toxicity of their binary mixtures in equiconcentration to the proliferation of MCF-7 cells were investigated, respectively. Additive index (AI) method was adopted to evaluate the joint toxicity effect. At the same time, 3 x 3 factorial experimental design was used to verify the joint toxiciy types derived from equiconcentration of DES and EV. The results show that the EC50 values of single EV and DES for 24, 48 and 72 h are 6.02, 0.40 and 0.33 nmol x L(-1) and 5.90, 6.98 and 2.90 nmol x L(-1), respectively. The EC50 values of the binary mixtures of DES and EV for 24, 48 and 72 h are 2.33, 0.71 and 0.39 nmol x L(-1). The binary joint effects of DES and EV for 24 h were synergistic, and the joint effects of DES and EV for 48 and 72 h were antagonistic. But synergistic and antagonistic effects are not strong; their values can be found close to the values of additive effects. Factorial experiment results show that combined effects of DES and EV to proliferation of MCF-7 cells for 24, 48 and 72 h three exposure periods are additive effect types. The consistent joint combined effect types can be drawn from both factorial experimental design and equiconcentration ratio of DES and EV to the proliferation of MCF-7 cells. However, the factorial experimental design is simpler and more convenient, and can avoid unnecessary mistakes due to the derivation of EC50 values.
Applications of High Intensity Proton Accelerators
NASA Astrophysics Data System (ADS)
Raja, Rajendran; Mishra, Shekhar
2010-06-01
Superconducting radiofrequency linac development at Fermilab / S. D. Holmes -- Rare muon decay experiments / Y. Kuno -- Rare kaon decays / D. Bryman -- Muon collider / R. B. Palmer -- Neutrino factories / S. Geer -- ADS and its potential / J.-P. Revol -- ADS history in the USA / R. L. Sheffield and E. J. Pitcher -- Accelerator driven transmutation of waste: high power accelerator for the European ADS demonstrator / J. L. Biarrotte and T. Junquera -- Myrrha, technology development for the realisation of ADS in EU: current status & prospects for realisation / R. Fernandez ... [et al.] -- High intensity proton beam production with cyclotrons / J. Grillenberger and M. Seidel -- FFAG for high intensity proton accelerator / Y. Mori -- Kaon yields for 2 to 8 GeV proton beams / K. K. Gudima, N. V. Mokhov and S. I. Striganov -- Pion yield studies for proton driver beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments / S. I. Striganov -- J-Parc accelerator status and future plans / H. Kobayashi -- Simulation and verification of DPA in materials / N. V. Mokhov, I. L. Rakhno and S. I. Striganov -- Performance and operational experience of the CNGS facility / E. Gschwendtner -- Particle physics enabled with super-conducting RF technology - summary of working group 1 / D. Jaffe and R. Tschirhart -- Proton beam requirements for a neutrino factory and muon collider / M. S. Zisman -- Proton bunching options / R. B. Palmer -- CW SRF H linac as a proton driver for muon colliders and neutrino factories / M. Popovic, C. M. Ankenbrandt and R. P. Johnson -- Rapid cycling synchrotron option for Project X / W. Chou -- Linac-based proton driver for a neutrino factory / R. Garoby ... [et al.] -- Pion production for neutrino factories and muon colliders / N. V. Mokhov ... [et al.] -- Proton bunch compression strategies / V. Lebedev -- Accelerator test facility for muon collider and neutrino factory R&D / V. Shiltsev -- The superconducting RF linac for muon collider and neutrino factory - summary of working group 2 / J. Galambos, R. Garoby and S. Geer -- Prospects for a very high power CW SRF linac / R. A. Rimmer -- Indian accelerator program for ADS applications / V. C. Sahni and P. Singh -- Ion accelerator activities at VECC (particularly, operating at low temperature) / R. K. Bhandari -- Chinese efforts in high intensity proton accelerators / S. Fu, J. Wang and S. Fang -- ADSR activity in the UK / R. J. Barlow -- ADS development in Japan / K. Kikuchi -- Project-X, SRF, and very large power stations / C. M. Ankenbrandt, R. P. Johnson and M. Popovic -- Power production and ADS / R. Raja -- Experimental neutron source facility based on accelerator driven system / Y. Gohar -- Transmutation mission / W. S. Yang -- Safety performance and issues / J. E. Cahalan -- Spallation target design for accelerator-driven systems / Y. Gohar -- Design considerations for accelerator transmutation of waste system / W. S. Yang -- Japan ADS program / T. Sasa -- Overview of members states' and IAEA activities in the field of Accelerator Driven Systems (ADS) / A. Stanculescu -- Linac for ADS applications - accelerator technologies / R. W. Garnett and R. L. Sheffield -- SRF linacs and accelerator driven sub-critical systems - summary working groups 3 & 4 / J. Delayen -- Production of Actinium-225 via high energy proton induced spallation of Thorium-232 / J. Harvey ... [et al.] -- Search for the electric dipole moment of Radium-225 / R. J. Holt, Z.-T. Lu and R. Mueller -- SRF linac and material science and medicine - summary of working group 5 / J. Nolen, E. Pitcher and H. Kirk.
Factorial Design Approach in Proportioning Prestressed Self-Compacting Concrete
Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Xing, Feng; Wang, Wei-Lun
2015-01-01
In order to model the effect of mixture parameters and material properties on the hardened properties of, prestressed self-compacting concrete (SCC), and also to investigate the extensions of the statistical models, a factorial design was employed to identify the relative significance of these primary parameters and their interactions in terms of the mechanical and visco-elastic properties of SCC. In addition to the 16 fractional factorial mixtures evaluated in the modeled region of −1 to +1, eight axial mixtures were prepared at extreme values of −2 and +2 with the other variables maintained at the central points. Four replicate central mixtures were also evaluated. The effects of five mixture parameters, including binder type, binder content, dosage of viscosity-modifying admixture (VMA), water-cementitious material ratio (w/cm), and sand-to-total aggregate ratio (S/A) on compressive strength, modulus of elasticity, as well as autogenous and drying shrinkage are discussed. The applications of the models to better understand trade-offs between mixture parameters and carry out comparisons among various responses are also highlighted. A logical design approach would be to use the existing model to predict the optimal design, and then run selected tests to quantify the influence of the new binder on the model. PMID:28787990
Double jeopardy in inferring cognitive processes
Fific, Mario
2014-01-01
Inferences we make about underlying cognitive processes can be jeopardized in two ways due to problematic forms of aggregation. First, averaging across individuals is typically considered a very useful tool for removing random variability. The threat is that averaging across subjects leads to averaging across different cognitive strategies, thus harming our inferences. The second threat comes from the construction of inadequate research designs possessing a low diagnostic accuracy of cognitive processes. For that reason we introduced the systems factorial technology (SFT), which has primarily been designed to make inferences about underlying processing order (serial, parallel, coactive), stopping rule (terminating, exhaustive), and process dependency. SFT proposes that the minimal research design complexity to learn about n number of cognitive processes should be equal to 2n. In addition, SFT proposes that (a) each cognitive process should be controlled by a separate experimental factor, and (b) The saliency levels of all factors should be combined in a full factorial design. In the current study, the author cross combined the levels of jeopardies in a 2 × 2 analysis, leading to four different analysis conditions. The results indicate a decline in the diagnostic accuracy of inferences made about cognitive processes due to the presence of each jeopardy in isolation and when combined. The results warrant the development of more individual subject analyses and the utilization of full-factorial (SFT) experimental designs. PMID:25374545
Hurley, Jane C; Hollingshead, Kevin E; Todd, Michael; Jarrett, Catherine L; Tucker, Wesley J; Angadi, Siddhartha S
2015-01-01
Background Walking is a widely accepted and frequently targeted health promotion approach to increase physical activity (PA). Interventions to increase PA have produced only small improvements. Stronger and more potent behavioral intervention components are needed to increase time spent in PA, improve cardiometabolic risk markers, and optimize health. Objective Our aim is to present the rationale and methods from the WalkIT Trial, a 4-month factorial randomized controlled trial (RCT) in inactive, overweight/obese adults. The main purpose of the study was to evaluate whether intensive adaptive components result in greater improvements to adults’ PA compared to the static intervention components. Methods Participants enrolled in a 2x2 factorial RCT and were assigned to one of four semi-automated, text message–based walking interventions. Experimental components included adaptive versus static steps/day goals, and immediate versus delayed reinforcement. Principles of percentile shaping and behavioral economics were used to operationalize experimental components. A Fitbit Zip measured the main outcome: participants’ daily physical activity (steps and cadence) over the 4-month duration of the study. Secondary outcomes included self-reported PA, psychosocial outcomes, aerobic fitness, and cardiorespiratory risk factors assessed pre/post in a laboratory setting. Participants were recruited through email listservs and websites affiliated with the university campus, community businesses and local government, social groups, and social media advertising. Results This study has completed data collection as of December 2014, but data cleaning and preliminary analyses are still in progress. We expect to complete analysis of the main outcomes in late 2015 to early 2016. Conclusions The Walking Interventions through Texting (WalkIT) Trial will further the understanding of theory-based intervention components to increase the PA of men and women who are healthy, insufficiently active and are overweight or obese. WalkIT is one of the first studies focusing on the individual components of combined goal setting and reward structures in a factorial design to increase walking. The trial is expected to produce results useful to future research interventions and perhaps industry initiatives, primarily focused on mHealth, goal setting, and those looking to promote behavior change through performance-based incentives. Trial Registration ClinicalTrials.gov NCT02053259; https://clinicaltrials.gov/ct2/show/NCT02053259 (Archived by WebCite at http://www.webcitation.org/6b65xLvmg). PMID:26362511
Aydin, Busra; Ozer, Tugba; Oner, Ebru Toksoy; Arga, Kazim Yalcin
2018-03-01
Metabolic systems engineering is being used to redirect microbial metabolism for the overproduction of chemicals of interest with the aim of transforming microbial hosts into cellular factories. In this study, a genome-based metabolic systems engineering approach was designed and performed to improve biopolymer biosynthesis capability of a moderately halophilic bacterium Halomonas smyrnensis AAD6 T producing levan, which is a fructose homopolymer with many potential uses in various industries and medicine. For this purpose, the genome-scale metabolic model for AAD6 T was used to characterize the metabolic resource allocation, specifically to design metabolic engineering strategies for engineered bacteria with enhanced levan production capability. Simulations were performed in silico to determine optimal gene knockout strategies to develop new strains with enhanced levan production capability. The majority of the gene knockout strategies emphasized the vital role of the fructose uptake mechanism, and pointed out the fructose-specific phosphotransferase system (PTS fru ) as the most promising target for further metabolic engineering studies. Therefore, the PTS fru of AAD6 T was restructured with insertional mutagenesis and triparental mating techniques to construct a novel, engineered H. smyrnensis strain, BMA14. Fermentation experiments were carried out to demonstrate the high efficiency of the mutant strain BMA14 in terms of final levan concentration, sucrose consumption rate, and sucrose conversion efficiency, when compared to the AAD6 T . The genome-based metabolic systems engineering approach presented in this study might be considered an efficient framework to redirect microbial metabolism for the overproduction of chemicals of interest, and the novel strain BMA14 might be considered a potential microbial cell factory for further studies aimed to design levan production processes with lower production costs.
Bazazi, Alexander R; Wickersham, Jeffrey A; Wegman, Martin P; Culbert, Gabriel J; Pillai, Veena; Shrestha, Roman; Al-Darraji, Haider; Copenhaver, Michael M; Kamarulzaman, Adeeba; Altice, Frederick L
2017-08-01
Incarcerated people living with HIV and opioid dependence face enormous challenges to accessing evidence-based treatment during incarceration and after release into the community, placing them at risk of poor HIV treatment outcomes, relapse to opioid use and accompanying HIV transmission risk behaviors. Here we describe in detail the design and implementation of Project Harapan, a prospective clinical trial conducted among people living with HIV and opioid dependence who transitioned from prison to the community in Malaysia from 2010 to 2014. This trial involved 2 interventions: within-prison initiation of methadone maintenance therapy and an evidence-based behavioral intervention adapted to the Malaysian context (the Holistic Health Recovery Program for Malaysia, HHRP-M). Individuals were recruited and received the interventions while incarcerated and were followed for 12months after release to assess post-release HIV transmission risk behaviors and a range of other health-related outcomes. Project Harapan was designed as a fully randomized 2×2 factorial trial where individuals would be allocated in equal proportions to methadone maintenance therapy and HHRP-M, methadone maintenance therapy alone, HHRP-M alone, or control. Partway through study implementation, allocation to methadone maintenance therapy was changed from randomization to participant choice; randomization to HHRP-M continued throughout. We describe the justification for this study; the development and implementation of these interventions; changes to the protocol; and screening, enrollment, treatment receipt, and retention of study participants. Logistical, ethical, and analytic issues associated with the implementation of this study are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.
Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.
Liu, Yang; Liu, Ye; Wang, Meng
2017-01-01
The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.
Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering
Liu, Yang; Liu, Ye; Wang, Meng
2017-01-01
The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors. PMID:29089935
Feldt, Taru; RANTANEN, Johanna; HYVÖNEN, Katriina; MÄKIKANGAS, Anne; HUHTALA, Mari; PIHLAJASAARI, Pia; KINNUNEN, Ulla
2013-01-01
The present study tested the factorial validity of the 9-item Bergen Burnout Inventory (BBI-9)1). The BBI-9 is comprised of three core dimensions: (1) exhaustion at work; (2) cynicism toward the meaning of work; and (3) sense of inadequacy at work. The study further investigated whether the three-factor structure of the BBI-9 remains the same across different organizations (group invariance) and measurement time points (time invariance). The factorial group invariance was tested using a cross-sectional design with data pertaining to managers (n=742), and employees working in a bank (n=162), an engineering office (n=236), a public sector organization divided into three service areas: administration (n=102), education and culture (n=581), and social affairs and health (n=1,505). Factorial time invariance was tested using longitudinal data pertaining to managers, with three measurements over a four-year follow-up period. The confirmatory factor analysis revealed that the three-factor structure of the BBI-9 was invariant across cross-sectional samples. The factorial invariance was also supported across measurement times. To conclude, the factorial structure of the BBI-9 was found to remain the same regardless of the sample properties and measurement times. PMID:24366535
NASA Astrophysics Data System (ADS)
Liu, Yuan; Li, Lianqing; Zhao, Lin; Wang, Jiqiang; Liu, Tongyu
2017-12-01
Based on the principle of the fiber Bragg grating, a new type of fiber-optic pressure sensor for axial force measurement of transformer winding is designed, which is designed with the structure of bending plate beam, the optimization of the packaging process, and material of the sensor. Through the calibration experiment to calibrate the sensor, the field test results of the Taikai transformer factory show that the sensitivity of the sensor is 0.133 pm/kPa and the repeatability error is 2.7% FS. The data of the fiber-optic pressure sensor in different positions maintain consistent and repeatable, which can meet the requirement of the real-time monitoring of the axial force of transformer winding.
Designing Studies That Would Address the Multilayered Nature of Health Care
Pennell, Michael; Rhoda, Dale; Hade, Erinn M.; Paskett, Electra D.
2010-01-01
We review design and analytic methods available for multilevel interventions in cancer research with particular attention to study design, sample size requirements, and potential to provide statistical evidence for causal inference. The most appropriate methods will depend on the stage of development of the research and whether randomization is possible. Early on, fractional factorial designs may be used to screen intervention components, particularly when randomization of individuals is possible. Quasi-experimental designs, including time-series and multiple baseline designs, can be useful once the intervention is designed because they require few sites and can provide the preliminary evidence to plan efficacy studies. In efficacy and effectiveness studies, group-randomized trials are preferred when randomization is possible and regression discontinuity designs are preferred otherwise if assignment based on a quantitative score is possible. Quasi-experimental designs may be used, especially when combined with recent developments in analytic methods to reduce bias in effect estimates. PMID:20386057
ERIC Educational Resources Information Center
Videla, Nancy Plankey
2006-01-01
Most studies of lean production are based on surveys of managers. This article examines the labor process under lean production at a high-end garment factory in Central Mexico through ethnographic research, consisting of nine months of work at the factory, and in-depth interviews with 25 managers and 26 workers. The author found that…
Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization of Cell Factories.
Cardoso, João G R; Jensen, Kristian; Lieven, Christian; Lærke Hansen, Anne Sofie; Galkina, Svetlana; Beber, Moritz; Özdemir, Emre; Herrgård, Markus J; Redestig, Henning; Sonnenschein, Nikolaus
2018-04-20
Computational systems biology methods enable rational design of cell factories on a genome-scale and thus accelerate the engineering of cells for the production of valuable chemicals and proteins. Unfortunately, the majority of these methods' implementations are either not published, rely on proprietary software, or do not provide documented interfaces, which has precluded their mainstream adoption in the field. In this work we present cameo, a platform-independent software that enables in silico design of cell factories and targets both experienced modelers as well as users new to the field. It is written in Python and implements state-of-the-art methods for enumerating and prioritizing knockout, knock-in, overexpression, and down-regulation strategies and combinations thereof. Cameo is an open source software project and is freely available under the Apache License 2.0. A dedicated Web site including documentation, examples, and installation instructions can be found at http://cameo.bio . Users can also give cameo a try at http://try.cameo.bio .
Pion Production for Neutrino Factory-challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breton, Florian; Le Couedic, Clement; Soler, F. J. P.
2011-10-06
One of the key issues in the design of a Neutrino Factory target station is the determination of the optimum kinetic energy of the proton beam due to the large uncertainties in simulations of protons impinging on nuclear targets. In this paper we have developed a procedure to correct GEANT4 simulations for the HARP data, and we have determined the yield of muons expected at the front-end of a Neutrino Factory as a function of target material (Be, C, Al, Ta and Pb) and energy (3-12 GeV).The maximum muon yield is found between 5 and 8 GeV for high Zmore » targets and 3 GeV for low Z targets.« less
Taylor, Kaitlyn; Wick, Cheryl; Castada, Hardy; Kent, Kyle; Harper, W James
2013-10-01
Swiss cheese contains more than 200 volatile organic compounds (VOCs). Gas chromatography-mass spectrometry has been utilized for the analysis of volatile compounds in food products; however, it is not sensitive enough to measure VOCs directly in the headspace of a food at low concentrations. Selected ion flow tube mass spectrometry (SIFT-MS) provides a basis for determining the concentrations of VOCs in the head space of the sample in real time at low concentration levels of parts per billion/trillion by volume. Of the Swiss cheese VOCs, relatively few have a major impact on flavor quality. VOCs with odor activity values (OAVs) (concentration/odor threshold) greater than one are considered high-impact flavor compounds. The objective of this study was to utilize SIFT-MS concentrations in conjunction with odor threshold values to determine OAVs thereby identifying high-impact VOCs to use for differentiating Swiss cheese from five factories and identify the factory variability. Seventeen high-impact VOCs were identified for Swiss cheese based on an OAV greater than one in at least 1 of the 5 Swiss cheese factories. Of these, 2,3-butanedione was the only compound with significantly different OAVs in all factories; however, cheese from any pair of factories had multiple statistically different compounds based on OAV. Principal component analysis using soft independent modeling of class analogy statistical differentiation plots, with all of the OAVs, showed differentiation between the 5 factories. Overall, Swiss cheese from different factories was determined to have different OAV profiles utilizing SIFT-MS to determine OAVs of high impact compounds. © 2013 Institute of Food Technologists®
“Habits of employees”: smoking, spies, and shopfloor culture at Hammermill Paper Company.
Wood, Gregory
2011-01-01
As cigarette smoking expanded dramatically during the early twentieth century, it brought more and more workers into conflict with the policies and demands of the manufacturers who employed them. As this paper shows, addiction to nicotine ignited daily struggles over workers’ shopfloor rights and the ability of employers to set rules, establish discipline, and monitor behavior. A specific set of records from the archives of the Hammermill Paper Company, a paper manufacturer once based in Erie, Pennsylvania, provide a unique opportunity to explore the impact of cigarette consumption on labor relations during the era of mass production, as two nosy factory spies probed and documented worker actions and attitudes in the summer of 1915. As a result of their intelligence gathering, the spies discovered a factory-wide work culture rooted in the addictive pleasure of cigarette smoke. This discovery worried them. Worker-smokers needed to dampen their hunger for nicotine with frequent, and often clandestine, breaks from work, typically in defiance of “no-smoking” rules, employer designations for the uses of factory space, and bosses’ demands for continuous production. Highlighting the intersections of the histories of labor, smoking, and addiction, this paper argues that cigarettes were a key battleground in workers’ and managers’ intensifying struggles over who really controlled the industrial shopfloor during the early 1900s.
Microbial Consortia Engineering for Cellular Factories: in vitro to in silico systems
Bernstein, Hans C; Carlson, Ross P
2012-01-01
This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery. PMID:24688677
Front End and HFOFO Snake for a Muon Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, D.; Alexahin, Y.
2015-09-01
A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, for neutrino factory and muon collider scenarios. They require a drift section from the target, a bunching section and amore » $$\\phi-\\delta E$$ rotation section leading into the cooling channel. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both $$\\mu^+$$ and $$\\mu^-$$ transversely and longitudinally. The status of the design is presented and variations are discussed.« less
Development of uniform and predictable battery materials for nickel-cadmium aerospace cells
NASA Technical Reports Server (NTRS)
1971-01-01
Battery materials and manufacturing methods were analyzed with the aim of developing uniform and predictable battery plates for nickel cadmium aerospace cells. A study is presented for the high temperature electrochemical impregnation process for the preparation of nickel cadmium battery plates. This comparative study is set up as a factorially designed experiment to examine both manufacturing and operational variables and any interaction that might exist between them. The manufacturing variables in the factorial design include plaque preparative method, plaque porosity and thickness, impregnation method, and loading, The operational variables are type of duty cycle, charge and discharge rate, extent of overcharge, and depth of discharge.
Particle identification at an asymmetric B Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coyle, P.; Eigen, G.; Hitlin, D.
1991-09-01
Particle identification systems are an important component of any detector at a high-luminosity, asymmetric B Factory. In particular, excellent hadron identification is required to probe CP violation in B{sup 0} decays to CP eigenstates. The particle identification systems discussed below also provide help in separating leptons from hadrons at low momenta. We begin this chapter with a discussion of the physics motivation for providing particle identification, the inherent limitations due to interactions and decays in flight, and the requirements for hermiticity and angular coverage. A special feature of an asymmetric B Factory is the resulting asymmetry in the momentum distributionmore » as a function of polar angle; this will also be quantified and discussed. In the next section the three primary candidates, time-of-flight (TOF), energy loss (dE/dx), and Cerenkov counters, both ring-imaging and threshold, will be briefly described and evaluated. Following this, one of the candidates, a long-drift Cerenkov ring-imaging device, is described in detail to provide a reference design. Design considerations for a fast RICH are then described. A detailed discussion of aerogel threshold counter designs and associated R D conclude the chapter. 56 refs., 64 figs., 13 tabs.« less
Carrillo, Génesis; Bravo, Adriana; Zufall, Carsten
2011-05-11
With the aim of studying the factors involved in on-fiber derivatization of Strecker aldehydes, furfural, and (E)-2-nonenal with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine in beer, factorial designs were applied. The effect of the temperature, time, and NaCl addition on the analytes' derivatization/extraction efficiency was studied through a factorial 2(3) randomized-block design; all of the factors and their interactions were significant at the 95% confidence level for most of the analytes. The effect of temperature and its interactions separated the analytes in two groups. However, a single sampling condition was selected that optimized response for most aldehydes. The resulting method, combining on-fiber derivatization with gas chromatography-mass spectrometry, was validated. Limits of detections were between 0.015 and 1.60 μg/L, and relative standard deviations were between 1.1 and 12.2%. The efficacy of the internal standardization method was confirmed by recovery percentage (73-117%). The method was applied to the determination of aldehydes in fresh beer and after storage at 28 °C.
Optimization of LDL targeted nanostructured lipid carriers of 5-FU by a full factorial design.
Andalib, Sare; Varshosaz, Jaleh; Hassanzadeh, Farshid; Sadeghi, Hojjat
2012-01-01
Nanostructured lipid carriers (NLC) are a mixture of solid and liquid lipids or oils as colloidal carrier systems that lead to an imperfect matrix structure with high ability for loading water soluble drugs. The aim of this study was to find the best proportion of liquid and solid lipids of different types for optimization of the production of LDL targeted NLCs used in carrying 5-Fu by the emulsification-solvent evaporation method. The influence of the lipid type, cholesterol or cholesteryl stearate for targeting LDL receptors, oil type (oleic acid or octanol), lipid and oil% on particle size, surface charge, drug loading efficiency, and drug released percent from the NLCs were studied by a full factorial design. The NLCs prepared by 54.5% cholesterol and 25% of oleic acid, showed optimum results with particle size of 105.8 nm, relatively high zeta potential of -25 mV, drug loading efficiency of 38% and release efficiency of about 40%. Scanning electron microscopy of nanoparticles confirmed the results of dynamic light scattering method used in measuring the particle size of NLCs. The optimization method by a full factorial statistical design is a useful optimization method for production of nanostructured lipid carriers.
Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA
Bogacz, S. A.
2018-02-01
In this paper, we summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz asmore » the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Finally, we consider two cost effective schemes for accelerating muon beams for a stageable Neutrino Factory: exploration of the so-called "dual-use" linac concept, where the same linac structure is used for acceleration of both H - and muons and, alternatively, an SRF-efficient design based on a multi-pass (4.5) "dogbone" RLA, extendable to multi-pass FFAG-like arcs.« less
Ultrasound-assisted extraction for total sulphur measurement in mine tailings.
Khan, Adnan Hossain; Shang, Julie Q; Alam, Raquibul
2012-10-15
A sample preparation method for percentage recovery of total sulphur (%S) in reactive mine tailings based on ultrasound-assisted digestion (USAD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) was developed. The influence of various methodological factors was screened by employing a two-level and three-factor (2(3)) full factorial design and using KZK-1, a sericite schist certified reference material (CRM), to find the optimal combination of studied factors and %S. Factors such as the sonication time, temperature and acid combination were studied, with the best result identified as 20 min of sonication, 80°C temperature and 1 ml of HNO(3):1 ml of HCl, which can achieve 100% recovery for the selected CRM. Subsequently a fraction of the 2(3) full factorial design was applied to mine tailings. The percentage relative standard deviation (%RSD) for the ultrasound method is less than 3.0% for CRM and less than 6% for the mine tailings. The investigated method was verified by X-ray diffraction analysis. The USAD method compared favorably with existing methods such as hot plate assisted digestion method, X-ray fluorescence and LECO™-CNS method. Copyright © 2012 Elsevier B.V. All rights reserved.
Thomas, Gregory P
2004-01-01
The purpose of this study was to establish the factorial construct validity and dimensionality of the Metacognitive Orientation Learning Environment Scale-Science (MOLES-S) which was designed to measure the metacognitive orientation of science classroom learning environments. The metacognitive orientation of a science classroom learning environment is the extent to which psychosocial conditions that are known to enhance students' metacognition are evident within that classroom. The development of items comprising this scale was based on a theoretical understanding of metacognition, learning environments and the development of previous learning environments instruments. Four possible hypothesized structure models, each consistent with the literature, were reviewed and their merits were compared on the basis of empirical data drawn from two populations of 1026 and 1223 Hong Kong secondary school students using confirmatory factor analysis procedures. The scale was calibrated using the Rasch rating scale model using data from the 1223 student sample. The results suggest that there is strong evidence to support the factorial construct validity of the MOLES-S but that, on the basis of the Rasch analysis, there are still suggestions for further refinement and improvement of the MOLES-S.
Working in a Hose Building Factory. Youth Training Scheme. Core Exemplar Work Based Project.
ERIC Educational Resources Information Center
Further Education Staff Coll., Blagdon (England).
This trainer's guide is intended to assist supervisors of work-based career training projects in helping students learn about the operations of a marine hose factory, requisition supplies, rewarp nylon binders, determine the cost of material depreciation, communicate with coworkers, and learn about health and safety procedures. Though specific to…
No Child Left Behind: Factory Models and Business Paradigms
ERIC Educational Resources Information Center
Johnson, Andrew P.
2006-01-01
Because No Child Left Behind (NCLB) is not based on educational research or research-based theory, it offers no new innovations nor does anything to improve the fundamental quality of education. NCLB is built on a rigid, outdated factory model in which students step onto a thirteen-year conveyor belt in kindergarten and progress slowly forward,…
User-oriented design strategies for a Lunar base
NASA Astrophysics Data System (ADS)
Jukola, Paivi
'Form follows function can be translated, among other, to communicate a desire to prioritize functional objectives for a particular design task. Thus it is less likely that a design program for a multi-functional habitat, for an all-purpose vehicle, or for a general community, will lead to most optimal, cost-effective and sustainable solutions. A power plant, a factory, a farm and a research center have over centuries had different logistical and functional requirements, despite of the local culture on various parts around the planet Earth. 'The same size fits all' concept is likely to lead to less user-friendly solutions. The paper proposes to rethink and to investigate alternative strategies to formulate objectives for a Lunar base. Diverse scientific experiments and potential future research programs for the Moon have a number of functional requirements that differ from each other. A crew of 4-6 may not be optimal for the most innovative research. The discussion is based on research of Human Factors and Design for visiting professor lectures for a Lunar base project with Howard University and NASA Marshall Space Center 2009-2010.
Integration of functional safety systems on the Daniel K. Inouye Solar Telescope
NASA Astrophysics Data System (ADS)
Williams, Timothy R.; Hubbard, Robert P.; Shimko, Steve
2016-07-01
The Daniel K. Inouye Solar Telescope (DKIST) was envisioned from an early stage to incorporate a functional safety system to ensure the safety of personnel and equipment within the facility. Early hazard analysis showed the need for a functional safety system. The design used a distributed approach in which each major subsystem contains a PLC-based safety controller. This PLC-based system complies with the latest international standards for functional safety. The use of a programmable controller also allows for flexibility to incorporate changes in the design of subsystems without adversely impacting safety. Various subsystems were built by different contractors and project partners but had to function as a piece of the overall control system. Using distributed controllers allows project contractors and partners to build components as standalone subsystems that then need to be integrated into the overall functional safety system. Recently factory testing was concluded on the major subsystems of the facility. Final integration of these subsystems is currently underway on the site. Building on lessons learned in early factory tests, changes to the interface between subsystems were made to improve the speed and ease of integration of the entire system. Because of the distributed design each subsystem can be brought online as it is delivered and assembled rather than waiting until the entire facility is finished. This enhances safety during the risky period of integration and testing. The DKIST has implemented a functional safety system that has allowed construction of subsystems in geographically diverse locations but that function cohesively once they are integrated into the facility currently under construction.
Working fluid selection for space-based two-phase heat transport systems
NASA Technical Reports Server (NTRS)
Mclinden, Mark O.
1988-01-01
The working fluid for externally-mounted, space-based two-phase heat transport systems is considered. A sequence of screening criteria involving freezing and critical point temperatures and latent heat of vaporization and vapor density are applied to a data base of 860 fluids. The thermal performance of the 52 fluids which pass this preliminary screening are then ranked according to their impact on the weight of a reference system. Upon considering other nonthermal criteria (flammability, toxicity, and chemical stability) a final set of 10 preferred fluids is obtained. The effects of variations in system parameters is investigated for these 10 fluids by means of a factorial design.
BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weathersby, Stephen; Novokhatski, Alexander; /SLAC
2010-02-10
High current B-Factory BPM designs incorporate a button type electrode which introduces a small gap between the button and the beam chamber. For achievable currents and bunch lengths, simulations indicate that electric potentials can be induced in this gap which are comparable to the breakdown voltage. This study characterizes beam induced voltages in the existing PEP-II storage ring collider BPM as a function of bunch length and beam current.
Design of a Communication Scheme in a Modern Factory in Accordance with the Standard of Industry 4.0
NASA Astrophysics Data System (ADS)
Halenár, Igor; Juhásová, Bohuslava; Juhás, Martin
2016-12-01
This article first describes the current state of the problem in the area of communication in modern factories. Next in the article is given a summary of the requirements that must be implemented for the possibility of establishing a compatible and safe communication system. In the final part of the article is given a proposal of communication model suitable for the implementation.
The simulation of air recirculation and fire/explosion phenomena within a semiconductor factory.
I, Yet-Pole; Chiu, Yi-Long; Wu, Shi-Jen
2009-04-30
The semiconductor industry is the collection of capital-intensive firms that employ a variety of hazardous chemicals and engage in the design and fabrication of semiconductor devices. Owing to its processing characteristics, the fully confined structure of the fabrication area (fab) and the vertical airflow ventilation design restrict the applications of traditional consequence analysis techniques that are commonly used in other industries. The adverse situation also limits the advancement of a fire/explosion prevention design for the industry. In this research, a realistic model of a semiconductor factory with a fab, sub-fabrication area, supply air plenum, and return air plenum structures was constructed and the computational fluid dynamics algorithm was employed to simulate the possible fire/explosion range and its severity. The semiconductor factory has fan module units with high efficiency particulate air filters that can keep the airflow uniform within the cleanroom. This condition was modeled by 25 fans, three layers of porous ceiling, and one layer of porous floor. The obtained results predicted very well the real airflow pattern in the semiconductor factory. Different released gases, leak locations, and leak rates were applied to investigate their influence on the hazard range and severity. Common mitigation measures such as a water spray system and a pressure relief panel were also provided to study their potential effectiveness to relieve thermal radiation and overpressure hazards within a fab. The semiconductor industry can use this simulation procedure as a reference on how to implement a consequence analysis for a flammable gas release accident within an air recirculation cleanroom.
de novo computational enzyme design.
Zanghellini, Alexandre
2014-10-01
Recent advances in systems and synthetic biology as well as metabolic engineering are poised to transform industrial biotechnology by allowing us to design cell factories for the sustainable production of valuable fuels and chemicals. To deliver on their promises, such cell factories, as much as their brick-and-mortar counterparts, will require appropriate catalysts, especially for classes of reactions that are not known to be catalyzed by enzymes in natural organisms. A recently developed methodology, de novo computational enzyme design can be used to create enzymes catalyzing novel reactions. Here we review the different classes of chemical reactions for which active protein catalysts have been designed as well as the results of detailed biochemical and structural characterization studies. We also discuss how combining de novo computational enzyme design with more traditional protein engineering techniques can alleviate the shortcomings of state-of-the-art computational design techniques and create novel enzymes with catalytic proficiencies on par with natural enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah
2015-01-25
In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (2(4)) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL(-1) with detection limit of 6.7 ng mL(-1) (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n=7, c=50 ng mL(-1)). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination. Copyright © 2014. Published by Elsevier B.V.
Operating a production pilot factory serving several scientific domains
NASA Astrophysics Data System (ADS)
Sfiligoi, I.; Würthwein, F.; Andrews, W.; Dost, J. M.; MacNeill, I.; McCrea, A.; Sheripon, E.; Murphy, C. W.
2011-12-01
Pilot infrastructures are becoming prominent players in the Grid environment. One of the major advantages is represented by the reduced effort required by the user communities (also known as Virtual Organizations or VOs) due to the outsourcing of the Grid interfacing services, i.e. the pilot factory, to Grid experts. One such pilot factory, based on the glideinWMS pilot infrastructure, is being operated by the Open Science Grid at University of California San Diego (UCSD). This pilot factory is serving multiple VOs from several scientific domains. Currently the three major clients are the analysis operations of the HEP experiment CMS, the community VO HCC, which serves mostly math, biology and computer science users, and the structural biology VO NEBioGrid. The UCSD glidein factory allows the served VOs to use Grid resources distributed over 150 sites in North and South America, in Europe, and in Asia. This paper presents the steps taken to create a production quality pilot factory, together with the challenges encountered along the road.
NASA Astrophysics Data System (ADS)
Nirawati, R.
2018-04-01
This research was conducted to see whether the variation of the solution is acceptable and easy to understand by students with different level of ability so that it can be seen the difference of students ability in facilitating the quadratic form in the upper, middle and lower groups. This research used experimental method with factorial design. Based on the result of final test analysis, there were differences of students ability in upper group, medium group, and lower group in putting squared form based on the use certain variation of solution.
NASA Astrophysics Data System (ADS)
Khair, Amar Sharaf Eldin; Purwanto; RyaSunoko, Henna; Abdullah, Omer Adam
2018-02-01
Spatial analysis is considered as one of the most important science for identifying the most appropriate site for industrialization and also to alleviate the environmental ramifications caused by factories. This study aims at analyzing the Assalaya sugarcane factory site by the use of spatial analysis to determine whether it has ramification on the White Nile River. The methodology employed for this study is Global Position System (GPS) to identify the coordinate system of the study phenomena and other relative factors. The study will also make use Geographical Information System (GIS) to implement the spatial analysis. Satellite data (LandsatDem-Digital Elevation Model) will be considered for the study area and factory in identifying the consequences by analyzing the location of the factory through several features such as hydrological, contour line and geological analysis. Data analysis reveals that the factory site is inappropriate and according to observation on the ground it has consequences on the White Nile River. Based on the finding, the study recommended some suggestions to avoid the aftermath of any factory in general. We have to take advantage of this new technological method to aid in selecting most apt locations for industries that will create an ambient environment.
Rotscholl, Ingo; Trampert, Klaus; Krüger, Udo; Perner, Martin; Schmidt, Franz; Neumann, Cornelius
2015-11-16
To simulate and optimize optical designs regarding perceived color and homogeneity in commercial ray tracing software, realistic light source models are needed. Spectral rayfiles provide angular and spatial varying spectral information. We propose a spectral reconstruction method with a minimum of time consuming goniophotometric near field measurements with optical filters for the purpose of creating spectral rayfiles. Our discussion focuses on the selection of the ideal optical filter combination for any arbitrary spectrum out of a given filter set by considering measurement uncertainties with Monte Carlo simulations. We minimize the simulation time by a preselection of all filter combinations, which bases on factorial design.
NASA Technical Reports Server (NTRS)
1989-01-01
Phase 2 of a conceptual design of an integrated water treatment system to support a space colony is presented. This includes a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use. The system is to supply quality water for biological consumption, farming, residential and industrial use and the water source is assumed to be artesian or subsurface and on Mars. Design criteria and major assumptions are itemized. A general block diagram of the expected treatment system is provided. The design capacity of the system is discussed, including a summary of potential users and the level of treatment required; and, finally, various treatment technologies are described.
Meischl, Florian; Kirchler, Christian Günter; Jäger, Michael Andreas; Huck, Christian Wolfgang; Rainer, Matthias
2018-02-01
We present a novel method for the quantitative determination of the clean-up efficiency to provide a calculated parameter for peak purity through iterative fitting in conjunction with design of experiments. Rosemary extracts were used and analyzed before and after solid-phase extraction using a self-fabricated mixed-mode sorbent based on poly(N-vinylimidazole/ethylene glycol dimethacrylate). Optimization was performed by variation of washing steps using a full three-level factorial design and response surface methodology. Separation efficiency of rosmarinic acid from interfering compounds was calculated using an iterative fit of Gaussian-like signals and quantifications were performed by the separate integration of the two interfering peak areas. Results and recoveries were analyzed using Design-Expert® software and revealed significant differences between the washing steps. Optimized parameters were considered and used for all further experiments. Furthermore, the solid-phase extraction procedure was tested and compared with commercial available sorbents. In contrast to generic protocols of the manufacturers, the optimized procedure showed excellent recoveries and clean-up rates for the polymer with ion exchange properties. Finally, rosemary extracts from different manufacturing areas and application types were studied to verify the developed method for its applicability. The cleaned-up extracts were analyzed by liquid chromatography with tandem mass spectrometry for detailed compound evaluation to exclude any interference from coeluting molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Laforest, Sophie; Lorthios-Guilledroit, Agathe; Nour, Kareen; Parisien, Manon; Fournier, Michel; Ellemberg, Dave; Guay, Danielle; Desgagnés-Cyr, Charles-Émile; Bier, Nathalie
2017-01-01
This study examined the effects on attitudes and lifestyle behavior of "Jog your Mind," a multi-factorial community-based program promoting cognitive vitality among seniors with no known cognitive impairment. A quasi-experimental study was conducted. Twenty-three community organizations were assigned either to the experimental group…
The Efficiency of Split Panel Designs in an Analysis of Variance Model
Wang, Wei-Guo; Liu, Hai-Jun
2016-01-01
We consider split panel design efficiency in analysis of variance models, that is, the determination of the cross-sections series optimal proportion in all samples, to minimize parametric best linear unbiased estimators of linear combination variances. An orthogonal matrix is constructed to obtain manageable expression of variances. On this basis, we derive a theorem for analyzing split panel design efficiency irrespective of interest and budget parameters. Additionally, relative estimator efficiency based on the split panel to an estimator based on a pure panel or a pure cross-section is present. The analysis shows that the gains from split panel can be quite substantial. We further consider the efficiency of split panel design, given a budget, and transform it to a constrained nonlinear integer programming. Specifically, an efficient algorithm is designed to solve the constrained nonlinear integer programming. Moreover, we combine one at time designs and factorial designs to illustrate the algorithm’s efficiency with an empirical example concerning monthly consumer expenditure on food in 1985, in the Netherlands, and the efficient ranges of the algorithm parameters are given to ensure a good solution. PMID:27163447
Advanced Envelope Research for Factory Built Housing, Phase 3. Design Development and Prototyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, E.; Kessler, B.; Mullens, M.
2014-01-01
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less
Advanced Envelope Research for Factory Built Housing, Phase 3 -- Design Development and Prototyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, E.; Kessler, B.; Mullens, M.
2014-01-01
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research -- stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less
2018-01-01
author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation...hurricane that hit Puerto Rico this last summer knocked out the factory that makes the local anesthetic used in this study—ropivacaine—and, so our enrollment...was halted because ropivacaine cannot be purchased in the United States. It is unclear when the factory will begin producing ropivacaine again; but
Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates.
Aldor, Ilana S; Keasling, Jay D
2003-10-01
Implementing several metabolic engineering strategies, either individually or in combination, it is possible to construct microbial plastic factories to produce a variety of polyhydroxyalkanoate (PHA) biopolymers with desirable structures and material properties. Approaches include external substrate manipulation, inhibitor addition, recombinant gene expression, host cell genome manipulation and, most recently, protein engineering of PHA biosynthetic enzymes. In addition, mathematical models and molecular methods can be used to elucidate metabolically engineered systems and to identify targets for performance improvement.
Vanegas, Katherina García; Lehka, Beata Joanna; Mortensen, Uffe Hasbro
2017-02-08
The yeast Saccharomyces cerevisiae is increasingly used as a cell factory. However, cell factory construction time is a major obstacle towards using yeast for bio-production. Hence, tools to speed up cell factory construction are desirable. In this study, we have developed a new Cas9/dCas9 based system, SWITCH, which allows Saccharomyces cerevisiae strains to iteratively alternate between a genetic engineering state and a pathway control state. Since Cas9 induced recombination events are crucial for SWITCH efficiency, we first developed a technique TAPE, which we have successfully used to address protospacer efficiency. As proof of concept of the use of SWITCH in cell factory construction, we have exploited the genetic engineering state of a SWITCH strain to insert the five genes necessary for naringenin production. Next, the naringenin cell factory was switched to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell factory construction.
Jiang, Ying; Zhang, Yue; Banks, Charles; Heaven, Sonia; Longhurst, Philip
2017-11-15
The requirement of trace elements (TE) in anaerobic digestion process is widely documented. However, little is understood regarding the specific requirement of elements and their critical concentrations under different operating conditions such as substrate characterisation and temperature. In this study, a flask batch trial using fractional factorial design is conducted to investigate volatile fatty acids (VFA) anaerobic degradation rate under the influence of the individual and combined effect of six TEs (Co, Ni, Mo, Se, Fe and W). The experiment inoculated with food waste digestate, spiked with sodium acetate and sodium propionate both to 10 g/l. This is followed by the addition of a selection of the six elements in accordance with a 2 6-2 fractional factorial principle. The experiment is conducted in duplicate and the degradation of VFA is regularly monitored. Factorial effect analysis on the experimental results reveals that within these experimental conditions, Se has a key role in promoting the degradation rates of both acetic and propionic acids; Mo and Co are found to have a modest effect on increasing propionic acid degradation rate. It is also revealed that Ni shows some inhibitory effects on VFA degradation, possibly due to its toxicity. Additionally, regression coefficients for the main and second order effects are calculated to establish regression models for VFA degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Car Assembly Line Efficiency Improvement by Lean Principle
NASA Astrophysics Data System (ADS)
Sawassalung, Suwalee; Chutima, Parames
2017-06-01
This research aimed to increase the efficiency of actual working time to compare to design standard time ratio (DSTR) as per analysing process of Lean System of the assembly line in a car manufacturer in Thailand. Currently, the case study factory and its group of factories, which have many branches all over the world, have competed with each other on quality, delivered time and production cost. The production cost which can reduce without affecting quality and acceptable by clients is the manpower cost. The index of competition is DSTR. The factory now has DSTR of 6.13 and DSTR of the assembly department is 4.24 which is very high comparing to other departments. The low DSTR indicates that the factory has good quality. The ways to solve the problem are to apply the following tools, i.e. Lean principle, Value Stream Mapping (VSM), Waste Analysis and ECRS. After implementing the above tools, the results showed that DSTR decreased from 4.24 to 4.06 or 4.25%.
A new programming metaphor for image processing procedures
NASA Technical Reports Server (NTRS)
Smirnov, O. M.; Piskunov, N. E.
1992-01-01
Most image processing systems, besides an Application Program Interface (API) which lets users write their own image processing programs, also feature a higher level of programmability. Traditionally, this is a command or macro language, which can be used to build large procedures (scripts) out of simple programs or commands. This approach, a legacy of the teletypewriter has serious drawbacks. A command language is clumsy when (and if! it attempts to utilize the capabilities of a multitasking or multiprocessor environment, it is but adequate for real-time data acquisition and processing, it has a fairly steep learning curve, and the user interface is very inefficient,. especially when compared to a graphical user interface (GUI) that systems running under Xll or Windows should otherwise be able to provide. ll these difficulties stem from one basic problem: a command language is not a natural metaphor for an image processing procedure. A more natural metaphor - an image processing factory is described in detail. A factory is a set of programs (applications) that execute separate operations on images, connected by pipes that carry data (images and parameters) between them. The programs function concurrently, processing images as they arrive along pipes, and querying the user for whatever other input they need. From the user's point of view, programming (constructing) factories is a lot like playing with LEGO blocks - much more intuitive than writing scripts. Focus is on some of the difficulties of implementing factory support, most notably the design of an appropriate API. It also shows that factories retain all the functionality of a command language (including loops and conditional branches), while suffering from none of the drawbacks outlined above. Other benefits of factory programming include self-tuning factories and the process of encapsulation, which lets a factory take the shape of a standard application both from the system and the user's point of view, and thus be used as a component of other factories. A bare-bones prototype of factory programming was implemented under the PcIPS image processing system, and a complete version (on a multitasking platform) is under development.
Babbin, Steven F.; Yin, Hui-Qing; Rossi, Joseph S.; Redding, Colleen A.; Paiva, Andrea L.; Velicer, Wayne F.
2015-01-01
The Self-Efficacy Scale for Sun Protection consists of two correlated factors with three items each for Sunscreen Use and Avoidance. This study evaluated two crucial psychometric assumptions, factorial invariance and scale reliability, with a sample of adults (N = 1356) participating in a computer-tailored, population-based intervention study. A measure has factorial invariance when the model is the same across subgroups. Three levels of invariance were tested, from least to most restrictive: (1) Configural Invariance (nonzero factor loadings unconstrained); (2) Pattern Identity Invariance (equal factor loadings); and (3) Strong Factorial Invariance (equal factor loadings and measurement errors). Strong Factorial Invariance was a good fit for the model across seven grouping variables: age, education, ethnicity, gender, race, skin tone, and Stage of Change for Sun Protection. Internal consistency coefficient Alpha and factor rho scale reliability, respectively, were .84 and .86 for Sunscreen Use, .68 and .70 for Avoidance, and .78 and .78 for the global (total) scale. The psychometric evidence demonstrates strong empirical support that the scale is consistent, has internal validity, and can be used to assess population-based adult samples. PMID:26457203
NASA Astrophysics Data System (ADS)
Paíga, Paula; Silva, Luís M. S.; Delerue-Matos, Cristina
2016-10-01
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 22 factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2017-01-01
Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, David; Snopok, Pavel; Alexahin, Yuri
A neutrino factory or muon collider requires the capture and cooling of a large number of muons. Scenarios for capture, bunching, phase-energy rotation and initial cooling of μ’s produced from a proton source target have been developed, initially for neutrino factory scenarios. They require a drift section from the target, a bunching section and a Φ-δE rotation section leading into the cooling channel. Important concerns are rf limitations within the focusing magnetic fields and large losses in the transport. The currently preferred cooling channel design is an “HFOFO Snake” configuration that cools both μ + and μ - transversely andmore » longitudinally. Finally, the status of the design is presented and variations are discussed.« less
Process parameters in the manufacture of ceramic ZnO nanofibers made by electrospinning
NASA Astrophysics Data System (ADS)
Nonato, Renato C.; Morales, Ana R.; Rocha, Mateus C.; Nista, Silvia V. G.; Mei, Lucia H. I.; Bonse, Baltus C.
2017-01-01
Zinc oxide (ZnO) nanofibers were prepared by electrospinning under different conditions using a solution of poly(vinyl alcohol) and zinc acetate as precursor. A 23 factorial design was made to study the influence of the process parameters in the electrospinning (collector distance, flow rate and voltage), and a 22 factorial design was made to study the influence of the calcination process (time and temperature). SEM images were made to analyze the fiber morphology before and after calcination process, and the images were made to measure the nanofiber diameter. X-ray diffraction was made to analyze the total precursor conversion to ZnO and the elimination of the polymeric carrier.
Experimental Design For Photoresist Characterization
NASA Astrophysics Data System (ADS)
Luckock, Larry
1987-04-01
In processing a semiconductor product (from discrete devices up to the most complex products produced) we find more photolithographic steps in wafer fabrication than any other kind of process step. Thus, the success of a semiconductor manufacturer hinges on the optimization of their photolithographic processes. Yet, we find few companies that have taken the time to properly characterize this critical operation; they are sitting in the "passenger's seat", waiting to see what will come out, hoping that the yields will improve someday. There is no "black magic" involved in setting up a process at its optimum conditions (i.e. minimum sensitivity to all variables at the same time). This paper gives an example of a real world situation for optimizing a photolithographic process by the use of a properly designed experiment, followed by adequate multidimensional analysis of the data. Basic SPC practices like plotting control charts will not, by themselves, improve yields; the control charts are, however, among the necessary tools used in the determination of the process capability and in the formulation of the problems to be addressed. The example we shall consider is the twofold objective of shifting the process average, while tightening the variance, of polysilicon line widths. This goal was identified from a Pareto analysis of yield-limiting mechanisms, plus inspection of the control charts. A key issue in a characterization of this type of process is the number of interactions between variables; this example rules out two-level full factorial and three-level fractional factorial designs (which cannot detect all of the interactions). We arrive at an experiment with five factors at five levels each. A full factorial design for five factors at three levels would require 3125 wafers. Instead, we will use a design that allows us to run this experiment with only 25 wafers, for a significant reduction in time, materials and manufacturing interruption in order to complete the experiment. An optimum solution is then determined via response surface analysis and a series of 3-D and contour plots are shown. The offset between the mask dimensions and poly CD at the optimum operating conditions is discussed with respect to yield, profits and return-on-investment. The expert system used for process optimization covers all types of process steps, producing the best custom designed experiment based on the actual equipment used. The knowledge base contains parameter lists, by machine make and model, ranked by sensitivity and controllability. One option allows 3-D spatial characterization of equipment. For the purpose of this presentation, we will assume that we want to optimize a photo-lithographic process used for polysilicon pattern definition and that we have determined minimum and maximum line widths, based on electrical yield requirements of the product. For this MOS process, the minimum critical dimension (CD) for the poly gate was determined by punchthrough voltage, threshold voltage, etc., while the maximum CD was determined from other performance factors like access time. We will start with the product engineer's analysis.
Design and Simulation Plant Layout Using Systematic Layout Planning
NASA Astrophysics Data System (ADS)
Suhardini, D.; Septiani, W.; Fauziah, S.
2017-12-01
This research aims to design the factory layout of PT. Gunaprima Budiwijaya in order to increase production capacity. The problem faced by this company is inappropriate layout causes cross traffic on the production floor. The re-layout procedure consist of these three steps: analysing the existing layout, designing plant layout based on SLP and evaluation and selection of alternative layout using Simulation Pro model version 6. Systematic layout planning is used to re-layout not based on the initial layout. This SLP produces four layout alternatives, and each alternative will be evaluated based on two criteria, namely cost of material handling using Material Handling Evaluation Sheet (MHES) and processing time by simulation. The results showed that production capacity is increasing as much as 37.5% with the addition of the machine and the operator, while material handling cost was reduced by improvement of the layout. The use of systematic layout planning method reduces material handling cost of 10,98% from initial layout or amounting to Rp1.229.813,34.
Deep eutectic solvent-based valorization of spent coffee grounds.
Yoo, Da Eun; Jeong, Kyung Min; Han, Se Young; Kim, Eun Mi; Jin, Yan; Lee, Jeongmi
2018-07-30
Spent coffee grounds (SCGs) are viewed as a valuable resource for useful bioactive compounds, such as chlorogenic acids and flavonoids, and we suggest an eco-friendly and efficient valorization method. A series of choline chloride-based deep eutectic solvents (DESs) were tested as green extraction solvents for use with ultrasound-assisted extraction. Extraction efficiency was evaluated based on total phenolic content (TPC), total flavonoid content, total chlorogenic acids, and/or anti-oxidant activity. A binary DES named HC-6, which was composed of 1,6-hexanediol:choline chloride (molar ratio 7:1) was designed to produce the highest efficiency. Experimental conditions were screened and optimized for maximized efficiency using a two-level fractional factorial design and a central composite design, respectively. As a result, the proposed method presented significantly enhanced TPC and anti-oxidant activity. In addition, phenolic compounds could be easily recovered from extracts at high recovery yields (>90%) by adsorption chromatography. Copyright © 2018 Elsevier Ltd. All rights reserved.
Asphaltic concrete overlays of rigid and flexible pavements : final report.
DOT National Transportation Integrated Search
1980-10-01
This study evaluated the effect of a given thickness of asphaltic concrete overlay in rehabilitating 53 test sections conforming to the experiment design. This factorial design specified various levels of traffic intensity and overlay thickness for b...
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Huang, Guo H.
2011-12-01
Groundwater pollution has gathered more and more attention in the past decades. Conducting an assessment of groundwater contamination risk is desired to provide sound bases for supporting risk-based management decisions. Therefore, the objective of this study is to develop an integrated fuzzy stochastic approach to evaluate risks of BTEX-contaminated groundwater under multiple uncertainties. It consists of an integrated interval fuzzy subsurface modeling system (IIFMS) and an integrated fuzzy second-order stochastic risk assessment (IFSOSRA) model. The IIFMS is developed based on factorial design, interval analysis, and fuzzy sets approach to predict contaminant concentrations under hybrid uncertainties. Two input parameters (longitudinal dispersivity and porosity) are considered to be uncertain with known fuzzy membership functions, and intrinsic permeability is considered to be an interval number with unknown distribution information. A factorial design is conducted to evaluate interactive effects of the three uncertain factors on the modeling outputs through the developed IIFMS. The IFSOSRA model can systematically quantify variability and uncertainty, as well as their hybrids, presented as fuzzy, stochastic and second-order stochastic parameters in health risk assessment. The developed approach haw been applied to the management of a real-world petroleum-contaminated site within a western Canada context. The results indicate that multiple uncertainties, under a combination of information with various data-quality levels, can be effectively addressed to provide supports in identifying proper remedial efforts. A unique contribution of this research is the development of an integrated fuzzy stochastic approach for handling various forms of uncertainties associated with simulation and risk assessment efforts.
NASA Technical Reports Server (NTRS)
Brice, R.; Mosley, J.; Willis, D.; Coleman, K.; Martin, C.; Shelby, L.; Kelley, U.; Renfro, E.; Griffith, G.; Warsame, A.
1989-01-01
In a continued effort to design a surface-based factory on Mars for the production of oxygen and water, the Design Group at Prairie View A&M University made a preliminary study of the surface and atmospheric composition on Mars and determined the mass densities of the various gases in the martian atmosphere. Based on the initial studies, the design group determined oxygen and water to be the two products that could be produced economically under the martian conditions. Studies were also made on present production techniques to obtain water and oxygen. Analyses were made to evaluate the current methods of production that were adaptable to the martian conditions. The detailed report was contained in an Interim Report submitted to NASA/USRA in Aug. of 1986. Even though the initial effort was the production of oxygen and water, we found it necessary to produce some diluted gases that can be mixed with oxygen to constitute 'breathable' air. In Phase 2--Task 1A, the Prairie View A&M University team completed the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and storage of water for future use. The design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, and residential and industrial use. The design has also been completed. Phase 2--Task 1C is the present task for the Prairie View Design Team. This is a continuation of the previous task, and the continuation of this effort is the investigation into the extraction of water from beneath the surface and an alternative method of extraction from ice formations on the surface of Mars if accessible. In addition to investigation of water extraction, a system for computer control of extraction and treatment was developed with emphasis on fully automated control with robotic repair and maintenance. It is expected that oxygen- and water-producing plants on Mars will be limited in the amount of human control that will be available to operate large and/or isolated plants. Therefore, it is imperative that computers be integrated into plant operation with the capability to maintain life support systems and analyze and replace defective parts or systems with no human interface.
Prior, Maria; Elouafkaoui, Paula; Elders, Andrew; Young, Linda; Duncan, Eilidh M; Newlands, Rumana; Clarkson, Jan E; Ramsay, Craig R
2014-04-24
Antibiotic prescribing in dentistry accounts for 9% of total antibiotic prescriptions in Scottish primary care. The Scottish Dental Clinical Effectiveness Programme (SDCEP) published guidance in April 2008 (2nd edition, August 2011) for Drug Prescribing in Dentistry, which aims to assist dentists to make evidence-based antibiotic prescribing decisions. However, wide variation in prescribing persists and the overall use of antibiotics is increasing. RAPiD is a 12-month partial factorial cluster randomised trial conducted in NHS General Dental Practices across Scotland. Its aim is to compare the effectiveness of individualised audit and feedback (A&F) strategies for the translation into practice of SDCEP recommendations on antibiotic prescribing. The trial uses routinely collected electronic healthcare data in five aspects of its design in order to: identify the study population; apply eligibility criteria; carry out stratified randomisation; generate the trial intervention; analyse trial outcomes. Eligibility was determined on contract status and a minimum level of recent NHS treatment provision. All eligible dental practices in Scotland were simultaneously randomised at baseline either to current audit practice or to an intervention group. Randomisation was stratified by single-handed/multi-handed practices. General dental practitioners (GDPs) working at intervention practices will receive individualised graphical representations of their antibiotic prescribing rate from the previous 14 months at baseline and an update at six months. GDPs could not be blinded to their practice allocation. Intervention practices were further randomised using a factorial design to receive feedback with or without: a health board comparator; a supplementary text-based intervention; additional feedback at nine months. The primary outcome is the total antibiotic prescribing rate per 100 courses of treatment over the year following delivery of the baseline intervention. A concurrent qualitative process evaluation will apply theory-based approaches using the Consolidated Framework for Implementation Research to explore the acceptability of the interventions and the Theoretical Domains Framework to identify barriers and enablers to evidence-based antibiotic prescribing behaviour by GDPs. RAPiD will provide a robust evaluation of A&F in dentistry in Scotland. It also demonstrates that linked administrative datasets have the potential to be used efficiently and effectively across all stages of an randomised controlled trial. Current Controlled Trials ISRCTN49204710.
2014-01-01
Background Antibiotic prescribing in dentistry accounts for 9% of total antibiotic prescriptions in Scottish primary care. The Scottish Dental Clinical Effectiveness Programme (SDCEP) published guidance in April 2008 (2nd edition, August 2011) for Drug Prescribing in Dentistry, which aims to assist dentists to make evidence-based antibiotic prescribing decisions. However, wide variation in prescribing persists and the overall use of antibiotics is increasing. Methods RAPiD is a 12-month partial factorial cluster randomised trial conducted in NHS General Dental Practices across Scotland. Its aim is to compare the effectiveness of individualised audit and feedback (A&F) strategies for the translation into practice of SDCEP recommendations on antibiotic prescribing. The trial uses routinely collected electronic healthcare data in five aspects of its design in order to: identify the study population; apply eligibility criteria; carry out stratified randomisation; generate the trial intervention; analyse trial outcomes. Eligibility was determined on contract status and a minimum level of recent NHS treatment provision. All eligible dental practices in Scotland were simultaneously randomised at baseline either to current audit practice or to an intervention group. Randomisation was stratified by single-handed/multi-handed practices. General dental practitioners (GDPs) working at intervention practices will receive individualised graphical representations of their antibiotic prescribing rate from the previous 14 months at baseline and an update at six months. GDPs could not be blinded to their practice allocation. Intervention practices were further randomised using a factorial design to receive feedback with or without: a health board comparator; a supplementary text-based intervention; additional feedback at nine months. The primary outcome is the total antibiotic prescribing rate per 100 courses of treatment over the year following delivery of the baseline intervention. A concurrent qualitative process evaluation will apply theory-based approaches using the Consolidated Framework for Implementation Research to explore the acceptability of the interventions and the Theoretical Domains Framework to identify barriers and enablers to evidence-based antibiotic prescribing behaviour by GDPs. Discussion RAPiD will provide a robust evaluation of A&F in dentistry in Scotland. It also demonstrates that linked administrative datasets have the potential to be used efficiently and effectively across all stages of an randomised controlled trial. Trial registration Current Controlled Trials ISRCTN49204710 PMID:24758164
Employers' social contacts and their hiring behavior in a factorial survey.
Di Stasio, Valentina; Gërxhani, Klarita
2015-05-01
We investigate whether referrals from employers' business and professional contacts matter in the hiring process. Additionally, we examine whether the effect of referrals varies depending on: (1) the signaling role of education during the hiring process, and (2) applicants' level of education. Based on a combination of a factorial survey and an experimental design with a sample of English employers, we measure the effect of referrals on employers' hiring assessments. We find only weak evidence that referred applicants are considered more trainable than otherwise identical applicants that do not have a tie with the employer. More detailed analyses show that referrals do matter for employers who consider education a noisy signal, in line with the argument that informal recruitment can represent a strategy for employers to compensate for poor signaling. Referrals are especially beneficial for highly educated applicants, probably because employers need some guarantee against possible wage or turnover costs. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuo, Peng-Hsuan; Zhang, Bo-Cong; Su, Chie-Shaan; Liu, Jun-Jen; Sheu, Ming-Thau
2017-08-01
In this study, cooling sonocrystallization was used to recrystallize an active pharmaceutical ingredient, sulfathiazole, using methanol as the solvent. The effects of three operating parameters-sonication intensity, sonication duration, and solution concentration-on the recrystallization were investigated by using a 2k factorial design. The solid-state properties of sulfathiazole, including the mean particle size, crystal habit, and polymorphic form, were analyzed. Analysis of variance showed that the effect of the sonication intensity, cross-interaction effect of sonication intensity/sonication duration, and cross-interaction effect of sonication intensity/solution concentration on the recrystallization were significant. The results obtained using the 2k factorial design indicated that a combination of high sonication intensity and long sonication duration is not favorable for sonocrystallization, especially at a high solution concentration. A comparison of the solid-state properties of the original and the recrystallized sulfathiazole revealed that the crystal habit of the recrystallized sulfathiazole was more regular and that its mean particle size could be reduced to approximately 10 μm. Furthermore, the analytical results obtained using the PXRD, DSC, and FTIR spectroscopy indicated that the polymorphic purity of sulfathiazole improved from the original Form III/IV mixture to Form III after sonocrystallization.
NASA Astrophysics Data System (ADS)
Sudhakar, Beeravelli; Krishna, Mylangam Chaitanya; Murthy, Kolapalli Venkata Ramana
2016-01-01
The aim of the present study was to formulate and evaluate the ritonavir-loaded stealth liposomes by using 32 factorial design and intended to delivered by parenteral delivery. Liposomes were prepared by ethanol injection method using 32 factorial designs and characterized for various physicochemical parameters such as drug content, size, zeta potential, entrapment efficiency and in vitro drug release. The optimization process was carried out using desirability and overlay plots. The selected formulation was subjected to PEGylation using 10 % PEG-10000 solution. Stealth liposomes were characterized for the above-mentioned parameters along with surface morphology, Fourier transform infrared spectrophotometer, differential scanning calorimeter, stability and in vivo pharmacokinetic studies in rats. Stealth liposomes showed better result compared to conventional liposomes due to effect of PEG-10000. The in vivo studies revealed that stealth liposomes showed better residence time compared to conventional liposomes and pure drug solution. The conventional liposomes and pure drug showed dose-dependent pharmacokinetics, whereas stealth liposomes showed long circulation half-life compared to conventional liposomes and pure ritonavir solution. The results of statistical analysis showed significance difference as the p value is (<0.05) by one-way ANOVA. The result of the present study revealed that stealth liposomes are promising tool in antiretroviral therapy.
Krishnan, Suneeta; Gambhir, Shalini; Luecke, Ellen; Jagannathan, Latha
2016-10-01
We describe the evaluation of a participatory, garment factory-based intervention to promote gender equity. The intervention comprised four campaigns focused on gender and violence against women, alcoholism, sexual and reproductive health, and HIV/AIDS, which were implemented using information displays (standees and posters) and interactive methods (street play, one-to-one interactions, experience-sharing, and health camps). Each campaign lasted six days and the entire intervention was implemented over 10 months. We evaluated the intervention using a quasi-experimental design in which one factory served as the intervention site and a second as a delayed control. Two mobile-phone-based cross-sectional surveys were conducted at baseline and 12 months with separate systematic random samples of employees from each site. Data on socio-demographic characteristics and knowledge and attitudes related to gender equity, intimate partner violence (IPV) and alcohol use were assessed, and differences in these variables associated with the intervention were examined using difference-in-difference estimation. Analyses of data from 835 respondents revealed substantial, statistically significant improvements in attitudes related to gender equity, unacceptability of IPV, and awareness of IPV and alcohol-related support services. In conclusion, our study offers compelling evidence on the effectiveness of workplace-based interventions in advancing gender equity.
Quantitative metabolomics of the thermophilic methylotroph Bacillus methanolicus.
Carnicer, Marc; Vieira, Gilles; Brautaset, Trygve; Portais, Jean-Charles; Heux, Stephanie
2016-06-01
The gram-positive bacterium Bacillus methanolicus MGA3 is a promising candidate for methanol-based biotechnologies. Accurate determination of intracellular metabolites is crucial for engineering this bacteria into an efficient microbial cell factory. Due to the diversity of chemical and cell properties, an experimental protocol validated on B. methanolicus is needed. Here a systematic evaluation of different techniques for establishing a reliable basis for metabolome investigations is presented. Metabolome analysis was focused on metabolites closely linked with B. methanolicus central methanol metabolism. As an alternative to cold solvent based procedures, a solvent-free quenching strategy using stainless steel beads cooled to -20 °C was assessed. The precision, the consistency of the measurements, and the extent of metabolite leakage from quenched cells were evaluated in procedures with and without cell separation. The most accurate and reliable performance was provided by the method without cell separation, as significant metabolite leakage occurred in the procedures based on fast filtration. As a biological test case, the best protocol was used to assess the metabolome of B. methanolicus grown in chemostat on methanol at two different growth rates and its validity was demonstrated. The presented protocol is a first and helpful step towards developing reliable metabolomics data for thermophilic methylotroph B. methanolicus. This will definitely help for designing an efficient methylotrophic cell factory.
Rapid prototyping 3D virtual world interfaces within a virtual factory environment
NASA Technical Reports Server (NTRS)
Kosta, Charles Paul; Krolak, Patrick D.
1993-01-01
On-going work into user requirements analysis using CLIPS (NASA/JSC) expert systems as an intelligent event simulator has led to research into three-dimensional (3D) interfaces. Previous work involved CLIPS and two-dimensional (2D) models. Integral to this work was the development of the University of Massachusetts Lowell parallel version of CLIPS, called PCLIPS. This allowed us to create both a Software Bus and a group problem-solving environment for expert systems development. By shifting the PCLIPS paradigm to use the VEOS messaging protocol we have merged VEOS (HlTL/Seattle) and CLIPS into a distributed virtual worlds prototyping environment (VCLIPS). VCLIPS uses the VEOS protocol layer to allow multiple experts to cooperate on a single problem. We have begun to look at the control of a virtual factory. In the virtual factory there are actors and objects as found in our Lincoln Logs Factory of the Future project. In this artificial reality architecture there are three VCLIPS entities in action. One entity is responsible for display and user events in the 3D virtual world. Another is responsible for either simulating the virtual factory or communicating with the real factory. The third is a user interface expert. The interface expert maps user input levels, within the current prototype, to control information for the factory. The interface to the virtual factory is based on a camera paradigm. The graphics subsystem generates camera views of the factory on standard X-Window displays. The camera allows for view control and object control. Control or the factory is accomplished by the user reaching into the camera views to perform object interactions. All communication between the separate CLIPS expert systems is done through VEOS.
Life cycle inventory for palm based plywood: A gate-to-gate case study
NASA Astrophysics Data System (ADS)
Ahmad, Shamim; Sahid, Ismail; Subramaniam, Vijaya; Muhamad, Halimah; Mokhtar, Anis
2013-11-01
The oil palm industry heavily relies on the world market. It is essential to ensure that the oil palm industry is ready to meet the demands and expectation of these overseas customers on the environmental performance of the oil palm industry. Malaysia produces 13.9 million tons of oil palm biomass including oil palm trunk (OPT), frond and empty fruits bunches (EFB) annually. OPT felled in some oil palm plantations during replanting is transported to various industries and one such industry is the plywood factories. In order to gauge the environmental performance of the use of OPT as plywood a Life Cycle Assessment (LCA) study was conducted for palm based plywood. LCA is an important tool to assess the environmental performance of a product or process. Life cycle inventory (LCI) is the heart of a LCA study. This LCI study has a gate-to-gate system boundary and the functional unit is 1 m3 palm plywood produced and covers three types of plywood; Moisture Resistance Plywood (MR), Weather Boiling Proof Plywood Grade 1 (WBP Grade 1) at Factory D and Weather Boiling Proof Plywood Grade 2 (WBP Grade 2) at Factory E. Both factories use two different types of drying processes; conventional drying at Factory D and kiln drying at Factory E. This inventory data was collected from two factories (D and E) representing 40% of Malaysia palm plywood industry. The inputs are mainly the raw materials which are the oil palm trunks and tropical wood veneers and the energy from diesel and electricity from grid which is mainly used for the drying process. The other inputs include water, urea formaldehyde, phenol formaldehyde, flour and melamine powder. The outputs are the biomass waste which consists of oil palm trunk off-cut and emission from boiler. Generally, all types of plywood production use almost same materials and processing methods in different quantities. Due to the different process efficiency, Factory D uses less input of raw materials and energy compared to Factory E.
Asphaltic concrete overlays of rigid and flexible pavements : interim report No. 1.
DOT National Transportation Integrated Search
1977-09-01
This study evaluated the effect of a given thickness of asphaltic concrete overlay in rehabilitating 53 test sections conforming to the experiment design. This factorial design specified various levels of traffic intensity and overlay thickness for b...
ERIC Educational Resources Information Center
Hudson, C. A.
1982-01-01
Advances in factory computerization (computer-aided design and computer-aided manufacturing) are reviewed, including discussions of robotics, human factors engineering, and the sociological impact of automation. (JN)
Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T
2015-06-01
A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.
NASA Astrophysics Data System (ADS)
Calì, M.; Santarelli, M. G. L.; Leone, P.
Gas Turbine Technologies (GTT) and Politecnico di Torino, both located in Torino (Italy), have been involved in the design and installation of a SOFC laboratory in order to analyse the operation, in cogenerative configuration, of the CHP 100 kW e SOFC Field Unit, built by Siemens-Westinghouse Power Corporation (SWPC), which is at present (May 2005) starting its operation and which will supply electric and thermal power to the GTT factory. In order to take the better advantage from the analysis of the on-site operation, and especially to correctly design the scheduled experimental tests on the system, we developed a mathematical model and run a simulated experimental campaign, applying a rigorous statistical approach to the analysis of the results. The aim of this work is the computer experimental analysis, through a statistical methodology (2 k factorial experiments), of the CHP 100 performance. First, the mathematical model has been calibrated with the results acquired during the first CHP100 demonstration at EDB/ELSAM in Westerwoort. After, the simulated tests have been performed in the form of computer experimental session, and the measurement uncertainties have been simulated with perturbation imposed to the model independent variables. The statistical methodology used for the computer experimental analysis is the factorial design (Yates' Technique): using the ANOVA technique the effect of the main independent variables (air utilization factor U ox, fuel utilization factor U F, internal fuel and air preheating and anodic recycling flow rate) has been investigated in a rigorous manner. Analysis accounts for the effects of parameters on stack electric power, thermal recovered power, single cell voltage, cell operative temperature, consumed fuel flow and steam to carbon ratio. Each main effect and interaction effect of parameters is shown with particular attention on generated electric power and stack heat recovered.
Comparison of accelerator physics issues for symmetric and asymmetric B-factory rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tigner, M.
1990-10-10
A systematic comparison of accelerator physics issues from the beam-beam interaction to single particle stability including ring and IR layout, synchrotron radiation and lost particle backgrounds, and single and multi-bunch instabilities is given. While some practical handicap probably accrues to the asymmetric design because of its extra constraints, the differences in the two approaches tend to be obscured by larger issues such as how to achieve the enormous increases in luminosity demanded of a b-factory.
Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology.
Hoss, Udo; Budiman, Erwin Satrya
2017-05-01
The use of commercially available continuous glucose monitors for diabetes management requires sensor calibrations, which until recently are exclusively performed by the patient. A new development is the implementation of factory calibration for subcutaneous glucose sensors, which eliminates the need for user calibrations and the associated blood glucose tests. Factory calibration means that the calibration process is part of the sensor manufacturing process and performed under controlled laboratory conditions. The ability to move from a user calibration to factory calibration is based on several technical requirements related to sensor stability and the robustness of the sensor manufacturing process. The main advantages of factory calibration over the conventional user calibration are: (a) more convenience for the user, since no more fingersticks are required for calibration and (b) elimination of use errors related to the execution of the calibration process, which can lead to sensor inaccuracies. The FreeStyle Libre ™ and FreeStyle Libre Pro ™ flash continuous glucose monitoring systems are the first commercially available sensor systems using factory-calibrated sensors. For these sensor systems, no user calibrations are required throughout the sensor wear duration.
Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology
Budiman, Erwin Satrya
2017-01-01
Abstract The use of commercially available continuous glucose monitors for diabetes management requires sensor calibrations, which until recently are exclusively performed by the patient. A new development is the implementation of factory calibration for subcutaneous glucose sensors, which eliminates the need for user calibrations and the associated blood glucose tests. Factory calibration means that the calibration process is part of the sensor manufacturing process and performed under controlled laboratory conditions. The ability to move from a user calibration to factory calibration is based on several technical requirements related to sensor stability and the robustness of the sensor manufacturing process. The main advantages of factory calibration over the conventional user calibration are: (a) more convenience for the user, since no more fingersticks are required for calibration and (b) elimination of use errors related to the execution of the calibration process, which can lead to sensor inaccuracies. The FreeStyle Libre™ and FreeStyle Libre Pro™ flash continuous glucose monitoring systems are the first commercially available sensor systems using factory-calibrated sensors. For these sensor systems, no user calibrations are required throughout the sensor wear duration. PMID:28541139
Advanced continuous cultivation methods for systems microbiology.
Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo
2015-09-01
Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.
NASA Astrophysics Data System (ADS)
Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi
2010-06-01
Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.
A research factory for polymer microdevices: muFac
NASA Astrophysics Data System (ADS)
Anthony, Brian W.; Hardt, David E.; Hale, Melinda; Zarrouati, Nadege
2010-02-01
As part of our research on the manufacturing science of micron scale polymer-based devices, an automated production cell has been developed to explore its use in a volume manufacturing environment. This "micro-factory" allows the testing of models and hardware that have resulted from research on material characterization and simulation, tooling and equipment design and control, and process control and metrology. More importantly it has allowed us to identify the problems that exist between and within unit-processes. This paper details our efforts to produce basic micro-fluidic products in high volume at acceptable production rates and quality levels. The device chosen for our first product is a simple binary micromixer with 40×50 micron channel cross section manufactured by embossing of PMMA. The processes in the cell include laser cutting and drilling, hot embossing, thermal bonding and high-speed inspection of the components. Our goal is to create a "lights-out" factory that can make long production runs (e.g. an 8 hour shift) at high rates (Takt time of less than 3 minutes) with consistent quality. This contrasts with device foundries where prototypes in limited quantities but with high variety are the goal. Accordingly, rate and yield are dominant factors in this work, along with the need for precise material handling strategies. Production data will be presented to include process run charts, sampled functional testing of the products and measures of the overall system throughput.
Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L; Hallström, Björn M; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N; Andersson-Svahn, Helene; Nielsen, Jens
2015-08-25
There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.
Keurhorst, M; Anderson, P; Heinen, M; Bendtsen, Preben; Baena, Begoña; Brzózka, Krzysztof; Colom, Joan; Deluca, Paolo; Drummond, Colin; Kaner, Eileen; Kłoda, Karolina; Mierzecki, Artur; Newbury-Birch, Dorothy; Okulicz-Kozaryn, Katarzyna; Palacio-Vieira, Jorge; Parkinson, Kathryn; Reynolds, Jillian; Ronda, Gaby; Segura, Lidia; Słodownik, Luiza; Spak, Fredrik; van Steenkiste, Ben; Wallace, Paul; Wolstenholme, Amy; Wojnar, Marcin; Gual, Antoni; Laurant, M; Wensing, M
2016-07-16
Brief interventions in primary healthcare are cost-effective in reducing drinking problems but poorly implemented in routine practice. Although evidence about implementing brief interventions is growing, knowledge is limited with regard to impact of initial role security and therapeutic commitment on brief intervention implementation. In a cluster randomised factorial trial, 120 primary healthcare units (PHCUs) were randomised to eight groups: care as usual, training and support, financial reimbursement, and the opportunity to refer patients to an internet-based brief intervention (e-BI); paired combinations of these three strategies, and all three strategies combined. To explore the impact of initial role security and therapeutic commitment on implementing brief interventions, we performed multilevel linear regression analyses adapted to the factorial design. Data from 746 providers from 120 PHCUs were included in the analyses. Baseline role security and therapeutic commitment were found not to influence implementation of brief interventions. Furthermore, there were no significant interactions between these characteristics and allocated implementation groups. The extent to which providers changed their brief intervention delivery following experience of different implementation strategies was not determined by their initial attitudes towards alcohol problems. In future research, more attention is needed to unravel the causal relation between practitioners' attitudes, their actual behaviour and care improvement strategies to enhance implementation science. ClinicalTrials.gov: NCT01501552.
Effects of public health interventions on industrial emissions and ambient air in Cartagena, Spain.
Cirera, Lluís; Rodríguez, Miguel; Giménez, Joaquín; Jiménez, Enrique; Saez, Marc; Guillén, José-Jesús; Medrano, José; Martínez-Victoria, María-Aurelia; Ballester, Ferran; Moreno-Grau, Stella; Navarro, Carmen
2009-03-01
Ten years of public health interventions on industrial emissions to clean air were monitored for the Mediterranean city of Cartagena. During the 1960s, a number of large chemical and non-ferrous metallurgical factories were established that significantly deteriorated the city's air quality. By the 1970s, the average annual air concentration of sulfur dioxide (SO2) ranged from 200 to 300 microg/m3 (standard conditions units). In 1979, the Spanish government implemented an industrial intervention plan to improve the performance of factories and industrial air pollution surveillance. Unplanned urban development led to residential housing being located adjacent to three major factories. Factory A produced lead, factory B processed zinc from ore concentrates, and factory C produced sulfuric acid and phosphates. This, in combination with the particular abrupt topography and frequent atmospheric thermal inversions, resulted in the worsening of air quality and heightening concern for public health. In 1990, the City Council authorized the immediate intervention at these factories to reduce or shut down production if ambient levels of SO2 or total suspended particles (TSP) exceeded a time-emission threshold in pre-established meteorological contexts. The aim of this research was to assess the appropriateness and effectiveness of the intervention plan implemented from 1992 to 2001 to abate industrial air pollution. The maximum daily 1-h ambient air level of SO2, NO2, and TSP pollutants was selected from one of the three urban automatic stations, designed to monitor ambient air quality around industrial emissions sources. The day on which an intervention took place to reduce and/or interrupt industrial production by factory and pollutant was defined as a control day, and the day after an intervention as a post-control day. To assess the short-term intervention effect on air quality, an ecological time series design was applied, using regression analysis in generalized additive models, focusing on day-to-day variations of ambient air pollutants levels. Two indicators were estimated: (a) appropriateness, the ratio between mean levels of the pollutant for control days versus the other days, and (b) effectiveness, the ratio between mean levels of the pollutant for post-control days versus the other days. Ratios in regression analyses were adjusted for trend, seasonality, temperature, humidity and atmospheric pressure, calendar day, and special events as well as the other pollutants. A total of 702 control days were made on the factories' industrial production during the 10-year period. Fifteen reductions and five shutdown control days took place at factory A for ambient air SO2. At factory B, more controls were carried out for the SO2 pollutant in the years 1992-1993 and 1997. At factory C, the control days for SO2 decreased from 59 reductions and 14 shutdowns to a minimum from 1995 onwards, whereas the controls on TSP were more frequent, reaching a maximum of 99 reductions and 47 shutdowns in the last year. SO2 ambient air mean levels ranged from 456 to 699 microg/m(3) among factories on reduction control days and between 624 and 1,010 microg/m(3) on shutdown days. The TSP ambient air mean levels were 428 and 506 microg/m(3) on reduction and shutdown days, respectively. For all types of control days and factories, a mean ratio of 104% (95% confidence interval [CI] 88 to 121) in SO(2) levels was obtained and a mean ratio of 67% (95% CI 59 to 75) in TSP levels. Post-control days at all factories showed a mean ratio of -16% (95% CI -7 to -24) in SO(2) levels and a mean ratio of -13% (95% CI -7 to -19) in TSP levels. Interventions on industrial production based on the urban SO(2) and TSP ambient air levels were justified by the high concentrations detected. The best assessment of the interventions' effectiveness would have been to utilize the ambient air pollutant concentration readings from the entire time of the production shutdowns or reductions; however, the daily hourly maximum turned out to be a useful indicator because of meteorological factors influencing the diurnal concentration profile. A substantial number of interventions were carried out from 1 to 3 AM: , when vehicular traffic was minimum. On the other hand, atmospheric stability undergoes diurnal cycling in the autumn-winter period due to thermal inversion, which reaches maximum levels around daybreak. Therefore, this increases the ambient air levels and justified the interventions carried out at daybreak in spite of the traffic influence. All the interventions for SO(2) and TSP were carried out when the measured ambient air levels of pollutants were exceeded, which shows the appropriateness of the intervention program. This excess was greater when intervening on SO(2) than on the TSP levels. For both ambient air levels of SO(2) and TSP, significant drops in air pollution were achieved from all three factories following activity reductions. The production shutdown controls were very effective, because they returned excess levels, higher than in the reduction controls, to everyday mean values. The Cartagena City observational system of intermittent control has proven to effectively reduce industrial emissions' impact on ambient air quality. This experienced model approach could serve well in highly polluted industrial settings. From a public health perspective, studies are needed to assess that the industrial interventions to control air pollution were related to healthier human populations. Legislation was needed to allow the public administration to take direct actions upon the polluting industries.
Benoit, Isabelle; Coutard, Bruno; Oubelaid, Rachid; Asther, Marcel; Bignon, Christophe
2007-09-01
Hydrolysis of plant biomass is achieved by the combined action of enzymes secreted by microorganisms and directed against the backbone and the side chains of plant cell wall polysaccharides. Among side chains degrading enzymes, the feruloyl esterase A (FAEA) specifically removes feruloyl residues. Thus, FAEA has potential applications in a wide range of industrial processes such as paper bleaching or bio-ethanol production. To gain insight into FAEA hydrolysis activity, we solved its crystal structure. In this paper, we report how the use of four consecutive factorial approaches (two incomplete factorials, one sparse matrix, and one full factorial) allowed expressing in Escherichia coli, refolding and then crystallizing Aspergillus niger FAEA in 6 weeks. Culture conditions providing the highest expression level were determined using an incomplete factorial approach made of 12 combinations of four E. coli strains, three culture media and three temperatures (full factorial: 36 combinations). Aspergillus niger FAEA was expressed in the form of inclusion bodies. These were dissolved using a chaotropic agent, and the protein was purified by affinity chromatography on Ni column under denaturing conditions. A suitable buffer for refolding the protein eluted from the Ni column was found using a second incomplete factorial approach made of 96 buffers (full factorial: 3840 combinations). After refolding, the enzyme was further purified by gel filtration, and then crystallized following a standard protocol: initial crystallization conditions were found using commercial crystallization screens based on a sparse matrix. Crystals were then optimized using a full factorial screen.
2010-01-01
Background Earlier diagnosis followed by multi-factorial cardiovascular risk intervention may improve outcomes in Type 2 Diabetes Mellitus (T2DM). Latent phase identification through screening requires structured, appropriately targeted population-based approaches. Providers responsible for implementing screening policy await evidence of clinical and cost effectiveness from randomised intervention trials in screen-detected T2DM cases. UK South Asians are at particularly high risk of abnormal glucose tolerance and T2DM. To be effective national screening programmes must achieve good coverage across the population by identifying barriers to the detection of disease and adapting to the delivery of earlier care. Here we describe the rationale and methods of a systematic community screening programme and randomised controlled trial of cardiovascular risk management within a UK multiethnic setting (ADDITION-Leicester). Design A single-blind cluster randomised, parallel group trial among people with screen-detected T2DM comparing a protocol driven intensive multi-factorial treatment with conventional care. Methods ADDITION-Leicester consists of community-based screening and intervention phases within 20 general practices coordinated from a single academic research centre. Screening adopts a universal diagnostic approach via repeated 75g-Oral Glucose Tolerance Tests within an eligible non-diabetic population of 66,320 individuals aged 40-75 years (25-75 years South Asian). Volunteers also provide detailed medical and family histories; complete health questionnaires, undergo anthropometric measures, lipid profiling and a proteinuria assessment. Primary outcome is reduction in modelled Coronary Heart Disease (UKPDS CHD) risk at five years. Seven thousand (30% of South Asian ethnic origin) volunteers over three years will be recruited to identify a screen-detected T2DM cohort (n = 285) powered to detected a 6% relative difference (80% power, alpha 0.05) between treatment groups at one year. Randomisation will occur at practice-level with newly diagnosed T2DM cases receiving either conventional (according to current national guidelines) or intensive (algorithmic target-driven multi-factorial cardiovascular risk intervention) treatments. Discussion ADDITION-Leicester is the largest multiethnic (targeting >30% South Asian recruitment) community T2DM and vascular risk screening programme in the UK. By assessing feasibility and efficacy of T2DM screening, it will inform national disease prevention policy and contribute significantly to our understanding of the health care needs of UK South Asians. Trial registration Clinicaltrial.gov (NCT00318032). PMID:20170482
"Mixing" as an ethnoetiology of HIV/AIDS in Malaysia's multinational factories.
Root, Robin
2006-09-01
Minah Karan, the stigmatizing label appended to Malay factory women in the 1980s, signaled a dangerous female sexuality that risked spreading beyond the factory gates and infecting Malaysia's idea(l)s of its traditional kampung culture. This article narrates how Minah Karan, as the former antihero of development, was reconstituted in the 1990s, with the government's labeling of factories as "high-risk settings" for HIV/AIDS. This is an ethnoetiology based not on any evidential epidemiological data but on the racial and gendered "mixing" that transpires behind factory walls: a fear that the "mixing of the sexes" means ipso facto "sexual mixing" among the races. The article demonstrates how importation of the high-risk label articulates at the local level the new and contested linkages, economic, religious, and scientific, constitutive of globalization. The pragmatic nature and imperatives of this high-risk process are discerned in factory women's accounts of how they negotiate the interactional imperatives of factory work, because transnational structures of productivity violate the social boundaries that have long connoted political stability, moral integrity, ethnic community, and individual safety. The article concludes by questioning whether ethnoetiologies, especially when they concern sexual networks, become social etiologies, because this would locate ethnoetiologies as central to conventional public health praxis rather than as ethnographic exotica in the margins.
USDA-ARS?s Scientific Manuscript database
Experimental designs developed to address mixtures are ideally suited for many areas of experimental biology including pheromone blend studies because they address the confounding of proportionality and concentration intrinsic to factorial and one-factor-at-a-time designs. Geometric multivariate des...
Pasovic, L; Utheim, T P; Reppe, S; Khan, A Z; Jackson, C J; Thiede, B; Berg, J P; Messelt, E B; Eidet, J R
2018-04-09
Storage of human retinal pigment epithelium (hRPE) can contribute to the advancement of cell-based RPE replacement therapies. The present study aimed to improve the quality of stored hRPE cultures by identifying storage medium additives that, alone or in combination, contribute to enhancing cell viability while preserving morphology and phenotype. hRPE cells were cultured in the presence of the silk protein sericin until pigmentation. Cells were then stored for 10 days in storage medium plus sericin and either one of 46 different additives. Individual effects of each additive on cell viability were assessed using epifluorescence microscopy. Factorial design identified promising additive combinations by extrapolating their individual effects. Supplementing the storage medium with sericin combined with adenosine, L-ascorbic acid and allopurinol resulted in the highest cell viability (98.6 ± 0.5%) after storage for three days, as measured by epifluorescence microscopy. Flow cytometry validated the findings. Proteomics identified 61 upregulated and 65 downregulated proteins in this storage group compared to the unstored control. Transmission electron microscopy demonstrated the presence of melanosomes after storage in the optimized medium. We conclude that the combination of adenosine, L-ascorbic acid, allopurinol and sericin in minimal essential medium preserves RPE pigmentation while maintaining cell viability during storage.
Ali, Nadia; Peebles, David
2013-02-01
We report three experiments investigating the ability of undergraduate college students to comprehend 2 x 2 "interaction" graphs from two-way factorial research designs. Factorial research designs are an invaluable research tool widely used in all branches of the natural and social sciences, and the teaching of such designs lies at the core of many college curricula. Such data can be represented in bar or line graph form. Previous studies have shown, however, that people interpret these two graphical forms differently. In Experiment 1, participants were required to interpret interaction data in either bar or line graphs while thinking aloud. Verbal protocol analysis revealed that line graph users were significantly more likely to misinterpret the data or fail to interpret the graph altogether. The patterns of errors line graph users made were interpreted as arising from the operation of Gestalt principles of perceptual organization, and this interpretation was used to develop two modified versions of the line graph, which were then tested in two further experiments. One of the modifications resulted in a significant improvement in performance. Results of the three experiments support the proposed explanation and demonstrate the effects (both positive and negative) of Gestalt principles of perceptual organization on graph comprehension. We propose that our new design provides a more balanced representation of the data than the standard line graph for nonexpert users to comprehend the full range of relationships in two-way factorial research designs and may therefore be considered a more appropriate representation for use in educational and other nonexpert contexts.
Modular transportable superconducting magnetic energy systems
NASA Technical Reports Server (NTRS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-01-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
Modular transportable superconducting magnetic energy systems
NASA Astrophysics Data System (ADS)
Lieurance, Dennis; Kimball, Foster; Rix, Craig
1995-04-01
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given application should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.
Machado, Morgana de Medeiros; Savi, Bruna Martinello; Perucchi, Mariana Borges; Benedetti, Alessandro; Oliveira, Luis Felipe Silva; Bernardin, Adriano Michael
2018-06-01
The aim of this work was to determine the effect of temperature, precursor and dripping time on the crystallite size of ZnO nanoparticles synthesized by controlled precipitation according a 2k full factorial design. ZnCl2, Zn(NO3)2 and NaOH were used as precursors. After synthesis, the nano crystalline powder was characterized by XRD (Cu Kα), UV-Vis, and HR-TEM. The nano ZnO particles presented a crystallite size between 210 and 260 Å (HR-TEM and XRD). The results show that the crystallite size depends on the type of precursor and temperature of synthesis, but not on the dripping time.
Synchrotron radiation beamline to study radioactive materials at the Photon Factory
NASA Astrophysics Data System (ADS)
Konishi, Hiroyuki; Yokoya, Akinari; Shiwaku, Hideaki; Motohashi, Haruhiko; Makita, Tomoko; Kashihara, Yasuharu; Hashimoto, Shinya; Harami, Taikan; Sasaki, Teikichi A.; Maeta, Hiroshi; Ohno, Hideo; Maezawa, Hideki; Asaoka, Seiji; Kanaya, Noriichi; Ito, Kenji; Usami, Noriko; Kobayashi, Katsumi
1996-02-01
Design and construction of a new beamline have been described. The beamline is housed in a specially designed area controlled for radioactive materials at the Photon Factory (PF) in the National Laboratory for High Energy Physics (KEK). The beamline system consists of a front-end and two branchlines. One of the branchlines is used for X-ray photoelectron spectroscopy and radiation biology in the energy range of 1.8-6 keV and the other for X-ray diffractometry and XAFS studies as well as radiation biology in the range of 4-20 keV. The former was particularly equipped for the protection against accidental scattering of radioactive materials both inside and outside of the vacuum system.
Engineering tolerance to industrially relevant stress factors in yeast cell factories.
Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M
2017-06-01
The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.
Comparison of Grouping Schemes for Exposure to Total Dust in Cement Factories in Korea.
Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seung Hee; Ryu, Hyang-Woo; Park, Donguk
2015-08-01
The purpose of this study was to evaluate grouping schemes for exposure to total dust in cement industry workers using non-repeated measurement data. In total, 2370 total dust measurements taken from nine Portland cement factories in 1995-2009 were analyzed. Various grouping schemes were generated based on work process, job, factory, or average exposure. To characterize variance components of each grouping scheme, we developed mixed-effects models with a B-spline time trend incorporated as fixed effects and a grouping variable incorporated as a random effect. Using the estimated variance components, elasticity was calculated. To compare the prediction performances of different grouping schemes, 10-fold cross-validation tests were conducted, and root mean squared errors and pooled correlation coefficients were calculated for each grouping scheme. The five exposure groups created a posteriori by ranking job and factory combinations according to average dust exposure showed the best prediction performance and highest elasticity among various grouping schemes. Our findings suggest a grouping method based on ranking of job, and factory combinations would be the optimal choice in this population. Our grouping method may aid exposure assessment efforts in similar occupational settings, minimizing the misclassification of exposures. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Engineering tolerance to industrially relevant stress factors in yeast cell factories
Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.
2017-01-01
Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408
Paíga, Paula; Silva, Luís M S; Delerue-Matos, Cristina
2016-10-01
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, E.; Mullens, M.; Rath, P.
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing new envelope technologies. This work is part of a multi-phase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysismore » of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall design with exterior continuous insulation (CI). Phase 3, completed in two stages, continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.« less
Formulation of topical bioadhesive gel of aceclofenac using 3-level factorial design.
Singh, Sanjay; Parhi, Rabinarayan; Garg, Anuj
2011-01-01
The objective of this work was to develop bioadhesive topical gel of Aceclofenac with the help of response-surface approach. Experiments were performed according to a 3-level factorial design to evaluate the effects of two independent variables [amount of Poloxamer 407 (PL-407 = X1) and hydroxypropylmethyl cellulose K100 M (HPMC = X2)] on the bioadhesive character of gel, rheological property of gel (consistency index), and in-vitro drug release. The best model was selected to fit the data. Mathematical equation was generated by Design Expert® software for the model which assists in determining the effect of independent variables. Response surface plots were also generated by the software for analyzing effect of the independent variables on the response. Quadratic model was found to be the best for all the responses. Both independent variable (X1 and X2) were found to have synergistic effect on bioadhesion (Y1) but the effect of HPMC was more pronounced than PL-407. Consistency index was enhanced by increasing the level of both independent variables. An antagonistic effect of both independent variables was found on cumulative percentage release of drug in 2 (Y3) and 8 h (Y4). Both independent variables approximately equally contributed the antagonistic effect on Y3 whereas antagonistic effect of HPMC was more pronounced than PL-407. The effect of formulation variables on the product characteristics can be easily predicted and precisely interpreted by using a 3-level factorial experimental design and generated quadratic mathematical equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research - stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective alternative envelope designs. In the near term, these technologies will play a central role in meeting stringent energy code requirements. For manufactured homes, the thermal requirements, last updated by statute in 1994, will move up to the more rigorous IECC 2012 levels in 2013, the requirements of which are consistent with site built and modular housing. This places added urgency on identifying envelope technologies that the industry can implement in the short timeframe. The primary goal of this research is to develop wall designs that meet themore » thermal requirements based on 2012 IECC standards. Given the affordable nature of manufactured homes, impact on first cost is a major consideration in developing the new envelope technologies. This work is part of a four-phase, multi-year effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three selected methods for building high performance wall systems. Phase 2 focused on the development of viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped critique and select the most viable solution to move further in the research — stud walls with continuous exterior insulation. Phase 3, the subject of the current report, focused on the design development of the selected wall concept and explored variations on the use of exterior foam insulation. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing.« less
El-Shenawy, Ahmed A; Ahmed, Mahmoud M; Mansour, Heba F; Abd El Rasoul, Saleh
2017-08-01
The present study planed to develop new fast dissolving tablets (FDTs) of torsemide. Solid dispersions (SDs) of torsemide and sorbitol (3:1) or polyvinylpyrrolidone (PVP) k25 were prepared. The prepared SDs were evaluated for in-vitro dissolution. Fourier transform infrared spectroscopy and differential scanning calorimetry for SDs revealed no drug/excipient interactions and transformation of torsemide to the amorphous form. Torsemide/sorbitol SD was selected for formulation of torsemide FDTs by direct compression method. Box-Bhenken factorial design was employed to design 15 formulations using croscarmellose sodium and crospovidone at different concentrations. The response surface methodology was used to analyze the effect of changing these concentrations (independent variables) on disintegration time (Y 1 ), percentage friability (Y 2 ), and amount torsemide released at 10 min. The physical mixtures of torsemide and the used excipients were evaluated for angle of repose, Hausner's ratio, and Carr's index. The prepared FDTs tablets were evaluated for wetting and disintegration time, weight variation, drug content, percentage friability, thickness, hardness, and in vitro release. Based on the in-vitro results and factorial design characterization, F10 and F7 were selected for bioavailability studies following administration to Albino New Zealand rabbits. They showed significantly higher C max and (AUC 0-12 ) and shorter T max than those obtained after administration of the corresponding ordinary commercial Torseretic ® tablets. Stability study was conducted for F10 that showed good stability upon storage at 30°C/75% RH and 40°C/75% RH for 3 months.
The Industrial Base and National Security: A New Strategy
1993-04-01
addresses this issue in her article entitled, " Managing Innovation on the Factory Floor": Manufacturing managers often buy the most advanced...Incentives Program." Government Contract Number MDA903-85-C-0139 Final Report, 1986. 31 11. Tyre, Marcie J. " Managing Innovation On The Factory Floor
The 1820 Census of Manufactures. Teaching with Documents.
ERIC Educational Resources Information Center
Potter, Lee Ann; Schamel, Wynell
1999-01-01
Reviews the emergence of employment opportunities for women outside the home. Focuses specifically on the Dover Cotton Factory in Dover, New Hampshire. Provides a reproduction of the page from the 1820 Census of Manufactures that contains information about the Dover Cotton Factory. (Contains document based teaching activities.) (CMK)
Making Connections: After the Factories Revisited.
ERIC Educational Resources Information Center
Rosenfeld, Stuart A.; Bergman, Edward M.
This analysis of employment patterns in the American South extends a 1985 report, "After the Factories: Changing Employment Patterns in the Rural South," which was based on the years between 1977-1982. The 1985 report included Texas, but this analysis includes only the 12 Southern Growth Policies Board (SGPB) member states. This new…
Assessment of Tooth Wear Among Glass Factory Workers: WHO 2013 Oral Health Survey
Bhat, Nagesh; Asawa, Kailash; Tak, Mridula; Bapat, Salil; Gupta, Vivek Vardhan
2015-01-01
Background Glass factory workers are often exposed to the hazardous environment that leads to deleterious oral health and subsequently, general health. We planned to determine the effects of the particulates present in the milieu on the tooth wear among workers. Aim To assess tooth wear among glass factory workers in Jaipur, Rajasthan, India. Settings and Design A descriptive cross-sectional survey was conducted among 936 glass workers in Jaipur, Rajasthan, India from January-June 2014. Materials and Methods A survey proforma was designed for tooth wear evaluation with the help of WHO Oral Health Assessment form 2013 (for adults). Information regarding oral health practices, adverse habits and dietary habits, demographic details was gathered and clinical parameters were recorded. Statistical Analysis The Chi–square test, t–test, One-way Analysis of Variance and a Stepwise multiple linear regression analysis. Results The most prevalent form of erosion was enamel erosion (589, 62.93%) with few subjects of deeper dentinal erosion and the difference was statistically significant (p=0.001). Dental erosion was found to be higher among males compared to females. Years of experience and educational status were identified as best predictors for dental erosion. Conclusion It was concluded that there was considerable evidence of dental erosion found among the factory workers. Due to ignorance on social, cultural and health aspects, professional approach with regular dental care services for detection of early symptoms and planning of preventive strategies is warranted. PMID:26436050
Planning of dairy farm and dairy plant based ecotourism
NASA Astrophysics Data System (ADS)
Sarnyoto, A. S.; Tama, I. P.; Tantrika, C. F. M.
2017-06-01
One of a dairy production company producing pasteurized milk and yoghurt drink, whose brand has widely known in East Java, has a factory plant in Batu City, one of tourism destinations in Indonesia. Behind the factory plant, there is a vacant land with an estimated total area of 2.3 ha and a vacant cowshed which had not been used for cattle ranching. Because of that, the company planned to develop the vacant land as a dairy farm and plant based ecotourism. In addition, dairy farm and dairy plant based tourism attractions are still rarely found in Batu. Thus, the first aim of this study was to analyse the potencies of the company that related to future plans of ecotourism built. The second aim was to set up the strategies that can be done in order to actualize the ecotourism project. The next aim was to plan the ecotourism, especially the facilities planning and the facilities arrangement on the vacant land. Strategic management approach was used to analyse the potencies and to determine the strategies. To select the proper facilities, tourists were asked to give appraisal by using questionnaire. Appraisal result was mapped onto four quadrants spatial map to see advantages and shortcomings of each facility along with choosing the right facilities to be built. Those facilities and tourist activities were compared with ecotourism criteria to make sure that the facilities were appropriate to provide not only entertainment but also ecotourism function. To arrange the chosen facilities, the step in Systematic Layout Planning were conducted to generate a propose layout of facilities arrangement. Based on potencies analysis, in Internal-External matrix, the company current position was on quadrant 2 (grow and build), with the most appropriate strategy was intensive or integrative. The proposed strategies were to build the new infrastructure, to renovate cowshed, and to add new tourism facilities on the land. There were 11 selected facilities based on MDS. Moreover, based on SLP, a facility layout had been designed and been proposed to be built on the vacant land behind the factory as the new ecotourism destination.
NASA Astrophysics Data System (ADS)
Salleh, Emee Marina; Ramakrishnan, Sivakumar; Hussain, Zuhailawati
2014-06-01
The biodegradable nature of magnesium (Mg) makes it a most highlighted and attractive to be used as implant materials. However, rapid corrosion rate of Mg alloys especially in electrolytic aqueous environment limits its performance. In this study, Mg alloy was mechanically milled by incorporating manganese (Mn) as alloying element. An attempt was made to study both effect of mechanical alloying and subsequent consolidation processes on the bulk properties of Mg-Mn alloys. 2k-2 factorial design was employed to determine the significant factors in producing Mg alloy which has properties closes to that of human bones. The design considered six factors (i.e. milling time, milling speed, weight percentage of Mn, compaction pressure, sintering temperature and sintering time). Density and hardness were chosen as the responses for assessing the most significant parameters that affected the bulk properties of Mg-Mn alloys. The experimental variables were evaluated using ANOVA and regression model. The main parameter investigated was compaction pressure.
NASA Astrophysics Data System (ADS)
Musthak, Md.; Madhavi, M.; Ahsanullah, F. M.
2017-08-01
Carbon nanotubes (CNT's) are attracting scientific and industrial interest by virtue of their outstanding characteristics. The present research problem deals with the fabrication and characterization of E-glass fiber composites enhanced by carbon nanotubes. In the present study, three factors with two levels are considered. Hence, the design is called 23 full factorial design of experiment. The process parameters considered for the present problem are weight of multi-walled carbon nanotubes, process to disperse nano-particles in resin, and orientation of woven fabric. In addition, their levels considered for the experiment are higher level (+1) and lower level (-1). Fabrication of E-glass fiber composites was carried out according to design, and the specimens were prepared with respect to the ASTM standards D3039-76 and tensile testing was performed. The results show that the nano-particulated composite plate can be manufactured by considering lower level nano-particles stirred with probe sonicator and plied-up with hybrid orientation.
1984-06-29
effort that requires hard copy documentation. As a result, there are generally numerous delays in providing current quality information. In the FoF...process have had fixed controls or were based on " hard -coded" information. A template, for example, is hard -coded information defining the shape of a...represents soft-coded control information. (Although manual handling of punch tapes still possess some of the limitations of " hard -coded" controls
NASA Technical Reports Server (NTRS)
1981-01-01
The manufacturing cost of a General Electric 12 meter diameter concentrator was estimated. This parabolic dish concentrator for solar thermal system was costed in annual production volumes of 100 - 1,000 - 5,000 - 10,000 - 50,000 100,000 - 400,000 and 1,000,000 units. Presented for each volume are the costs of direct labor, material, burden, tooling, capital equipment and buildings. Also presented is the direct labor personnel and factory space requirements. All costs are based on early 1981 economics.
Translational Research in South Africa: Evaluating Implementation Quality Using a Factorial Design
Smith, Edward A.; Collins, Linda M.; Graham, John W.; Lai, Mary; Wegner, Lisa; Vergnani, Tania; Matthews, Catherine; Jacobs, Joachim
2012-01-01
Background HealthWise South Africa: Life Skills for Adolescents (HW) is an evidence-based substance use and sexual risk prevention program that emphasizes the positive use of leisure time. Since 2000, this program has evolved from pilot testing through an efficacy trial involving over 7,000 youth in the Cape Town area. Beginning in 2011, through 2015, we are undertaking a new study that expands HW to all schools in the Metro South Education District. Objective This paper describes a research study designed in partnership with our South African collaborators that examines three factors hypothesized to affect the quality and fidelity of HW implementation: enhanced teacher training; teacher support, structure and supervision; and enhanced school environment. Methods Teachers and students from 56 schools in the Cape Town area will participate in this study. Teacher observations are the primary means of collecting data on factors affecting implementation quality. These factors address the practical concerns of teachers and schools related to likelihood of use and cost-effectiveness, and are hypothesized to be “active ingredients” related to high-quality program implementation in real-world settings. An innovative factorial experimental design was chosen to enable estimation of the individual effect of each of the three factors. Results Because this paper describes the conceptualization of our study, results are not yet available. Conclusions The results of this study may have both substantive and methodological implications for advancing Type 2 translational research. PMID:22707870
Gray, Alastair
2017-01-01
Increasing numbers of economic evaluations are conducted alongside randomised controlled trials. Such studies include factorial trials, which randomise patients to different levels of two or more factors and can therefore evaluate the effect of multiple treatments alone and in combination. Factorial trials can provide increased statistical power or assess interactions between treatments, but raise additional challenges for trial‐based economic evaluations: interactions may occur more commonly for costs and quality‐adjusted life‐years (QALYs) than for clinical endpoints; economic endpoints raise challenges for transformation and regression analysis; and both factors must be considered simultaneously to assess which treatment combination represents best value for money. This article aims to examine issues associated with factorial trials that include assessment of costs and/or cost‐effectiveness, describe the methods that can be used to analyse such studies and make recommendations for health economists, statisticians and trialists. A hypothetical worked example is used to illustrate the challenges and demonstrate ways in which economic evaluations of factorial trials may be conducted, and how these methods affect the results and conclusions. Ignoring interactions introduces bias that could result in adopting a treatment that does not make best use of healthcare resources, while considering all interactions avoids bias but reduces statistical power. We also introduce the concept of the opportunity cost of ignoring interactions as a measure of the bias introduced by not taking account of all interactions. We conclude by offering recommendations for planning, analysing and reporting economic evaluations based on factorial trials, taking increased analysis costs into account. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28470760
Mathematical models of cell factories: moving towards the core of industrial biotechnology.
Cvijovic, Marija; Bordel, Sergio; Nielsen, Jens
2011-09-01
Industrial biotechnology involves the utilization of cell factories for the production of fuels and chemicals. Traditionally, the development of highly productive microbial strains has relied on random mutagenesis and screening. The development of predictive mathematical models provides a new paradigm for the rational design of cell factories. Instead of selecting among a set of strains resulting from random mutagenesis, mathematical models allow the researchers to predict in silico the outcomes of different genetic manipulations and engineer new strains by performing gene deletions or additions leading to a higher productivity of the desired chemicals. In this review we aim to summarize the main modelling approaches of biological processes and illustrate the particular applications that they have found in the field of industrial microbiology. © 2010 The Authors. Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Accomplishments of the heavy electron particle accelerator program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, D.; Stratakis, D.; Palmer, M.
The Muon Accelerator Program (MAP) has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of heavy lepton colliders (HLCs) from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (more » $$\\bar{ve}$$) and $$\\bar{vμ}$$ (νμ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and the precise physics goals become apparent.« less
Muon Sources for Particle Physics - Accomplishments of the Muon Accelerator Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, D.; Stratakis, D.; Palmer, M.
The Muon Accelerator Program (MAP) completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using a μ storage ring (MSR) for neutrinos, and establishing that MSRs could provide factory-level intensities of νe (ν more » $$\\bar{e}$$) and ν $$\\bar{μ}$$) (ν μ) beams. The key components of the collider and neutrino factory systems were identified. Feasible designs and detailed simulations of all of these components were obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent« less
Enhancing the Effectiveness of Smoking Treatment Research: Conceptual Bases and Progress
Baker, Timothy B.; Collins, Linda M.; Mermelstein, Robin; Piper, Megan E.; Schlam, Tanya R.; Cook, Jessica W.; Bolt, Daniel M.; Smith, Stevens S.; Jorenby, Douglas E.; Fraser, David; Loh, Wei-Yin; Theobald, Wendy E.; Fiore, Michael C.
2015-01-01
Background and aims A chronic care strategy could potentially enhance the reach and effectiveness of smoking treatment by providing effective interventions for all smokers, including those who are initially unwilling to quit. This paper describes the conceptual bases of a National Cancer Institute-funded research program designed to develop an optimized, comprehensive, chronic care smoking treatment. Methods This research is grounded in three methodological approaches: 1) the Phase-Based Model, which guides the selection of intervention components to be experimentally evaluated for the different phases of smoking treatment (motivation, preparation, cessation, and maintenance); 2) the Multiphase Optimization Strategy (MOST), which guides the screening of intervention components via efficient experimental designs and, ultimately, the assembly of promising components into an optimized treatment package; and 3) pragmatic research methods, such as electronic health record recruitment, that facilitate the efficient translation of research findings into clinical practice. Using this foundation and working in primary care clinics, we conducted three factorial experiments (reported in three accompanying articles) to screen 15 motivation, preparation, cessation, and maintenance phase intervention components for possible inclusion in a chronic care smoking treatment program. Results This research identified intervention components with relatively strong evidence of effectiveness at particular phases of smoking treatment and it demonstrated the efficiency of the MOST approach in terms both of the number of intervention components tested and of the richness of the information yielded. Conclusions A new, synthesized research approach efficiently evaluates multiple intervention components to identify promising components for every phase of smoking treatment. Many intervention components interact with one another, supporting the use of factorial experiments in smoking treatment development. PMID:26581974
Mechanistic analysis of Zein nanoparticles/PLGA triblock in situ forming implants for glimepiride.
Ahmed, Osama Abdelhakim Aly; Zidan, Ahmed Samir; Khayat, Maan
2016-01-01
The study aims at applying pharmaceutical nanotechnology and D-optimal fractional factorial design to screen and optimize the high-risk variables affecting the performance of a complex drug delivery system consisting of glimepiride-Zein nanoparticles and inclusion of the optimized formula with thermoresponsive triblock copolymers in in situ gel. Sixteen nanoparticle formulations were prepared by liquid-liquid phase separation method according to the D-optimal fractional factorial design encompassing five variables at two levels. The responses investigated were glimepiride entrapment capacity (EC), particle size and size distribution, zeta potential, and in vitro drug release from the prepared nanoparticles. Furthermore, the feasibility of embedding the optimized Zein-based glimepiride nanoparticles within thermoresponsive triblock copolymers poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) in in situ gel was evaluated for controlling glimepiride release rate. Through the systematic optimization phase, improvement of glimepiride EC of 33.6%, nanoparticle size of 120.9 nm with a skewness value of 0.2, zeta potential of 11.1 mV, and sustained release features of 3.3% and 17.3% drug released after 2 and 24 hours, respectively, were obtained. These desirability functions were obtained at Zein and glimepiride loadings of 50 and 75 mg, respectively, utilizing didodecyldimethylammonium bromide as a stabilizer at 0.1% and 90% ethanol as a common solvent. Moreover, incorporating this optimized formulation in triblock copolymers-based in situ gel demonstrated pseudoplastic behavior with reduction of drug release rate as the concentration of polymer increased. This approach to control the release of glimepiride using Zein nanoparticles/triblock copolymers-based in situ gel forming intramuscular implants could be useful for improving diabetes treatment effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, E.; Mullens, M.; Rath, P.
The Advanced Envelope Research effort will provide factory homebuilders with high performance, cost-effective envelope designs that can be effectively integrated into the plant production process while meeting the thermal requirements of the 2012 IECC standards. This work is part of a multiphase effort. Phase 1 identified seven envelope technologies and provided a preliminary assessment of three methods for building high performance walls. Phase 2 focused on developing viable product designs, manufacturing strategies, addressing code and structural issues, and cost analysis of the three selected options. An industry advisory committee helped narrow the research focus to perfecting a stud wall designmore » with exterior continuous insulation (CI). This report describes Phase 3, which was completed in two stages and continued the design development effort, exploring and evaluating a range or methods for applying CI to factory built homes. The scope also included material selection, manufacturing and cost analysis, and prototyping and testing. During this phase, a home was built with CI, evaluated, and placed in service. The experience of building a mock up wall section with CI and then constructing on line a prototype home resolved important concerns about how to integrate the material into the production process. First steps were taken toward finding least expensive approaches for incorporating CI in standard factory building practices and a preliminary assessment suggested that even at this early stage the technology is attractive when viewed from a life cycle cost perspective.« less
Panić, Sanja; Rakić, Dušan; Guzsvány, Valéria; Kiss, Erne; Boskovic, Goran; Kónya, Zoltán; Kukovecz, Ákos
2015-12-01
The aim of this work was to evaluate significant factors affecting the thiamethoxam adsorption efficiency using oxidized multi-walled carbon nanotubes (MWCNTs) as adsorbents. Five factors (initial solution concentration of thiamethoxam in water, temperature, solution pH, MWCNTs weight and contact time) were investigated using 2V(5-1) fractional factorial design. The obtained linear model was statistically tested using analysis of variance (ANOVA) and the analysis of residuals was used to investigate the model validity. It was observed that the factors and their second-order interactions affecting the thiamethoxam removal can be divided into three groups: very important, moderately important and insignificant ones. The initial solution concentration was found to be the most influencing parameter on thiamethoxam adsorption from water. Optimization of the factors levels was carried out by minimizing those parameters which are usually critical in real life: the temperature (energy), contact time (money) and weight of MWCNTs (potential health hazard), in order to maximize the adsorbed amount of the pollutant. The results of maximal adsorbed thiamethoxam amount in both real and optimized experiments indicate that among minimized parameters the adsorption time is one that makes the largest difference. The results of this study indicate that fractional factorial design is very useful tool for screening the higher number of parameters and reducing the number of adsorption experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Team table: a framework and tool for continuous factory planning
NASA Astrophysics Data System (ADS)
Sihn, Wilfried; Bischoff, Juergen; von Briel, Ralf; Josten, Marcus
2000-10-01
Growing market turbulences and shorter product life cycles require a continuous adaptation of factory structures resulting in a continuous factory planning process. Therefore a new framework is developed which focuses on configuration and data management process integration. This enable an online system performance evaluation based on continuous availability of current data. The use of this framework is especially helpful and will guarantee high cost and time savings, when used in the early stages of the planning, called the concept or rough planning phase. The new framework is supported by a planning round table as a tool for team-based configuration processes integrating the knowledge of all persons involved in planning processes. A case study conducted at a German company shows the advantages which can be achieved by implementing the new framework and methods.
D-OPTIMAL EXPERIMENTAL DESIGNS TO TEST FOR DEPARTURE FROM ADDITIVITY IN A FIXED-RATIO MIXTURE RAY.
Humans are exposed to mixtures of environmental compounds. A regulatory assumption is that the mixtures of chemicals act in an additive manner. However, this assumption requires experimental validation. Traditional experimental designs (full factorial) require a large number of e...
Development of braided rope engine seals
NASA Technical Reports Server (NTRS)
Ko, Frank K.; Cai, Zhong; Mutharasan, Rajakkannu; Steinetz, Bruce M.
1994-01-01
In this study, after reviewing current seal design concepts, the potential of textile structures for seal design is examined from the material, structural, and fabrication points of view. Braided structures are identified as potential candidates for hypersonic seal structures because of their conformability and design flexibility. A large family of braided structures using 2-D and 3-D architecture can be designed using well established methods to produce a wide range of braiding yarn orientation for wear resistance as well as seal porosity control. As a first demonstration of the approach, 2-D braided fiberglass seals were fabricated according to a factorial design experiment by varying braiding angles, fractional longitudinal fibers, and preload pressure levels. Factorial diagrams and response surfaces were constructed to elucidate the inter-relationship of the braiding parameters as well as the effect of preload pressures on leakage resistance of the seal. It was found that seal resistance is a strong function of fractional longitudinal fiber content. As braiding angle increases, seal leakage resistance increases, especially at high preload pressures and in seals having high proportion of longitudinal fibers.
Microbially induced and microbially catalysed precipitation: two different carbonate factories
NASA Astrophysics Data System (ADS)
Meister, Patrick
2016-04-01
The landmark paper by Schlager (2003) has revealed three types of benthic carbonate production referred to as "carbonate factories", operative at different locations at different times in Earth history. The tropical or T-factory comprises the classical platforms and fringing reefs and is dominated by carbonate precipitation by autotrophic calcifying metazoans ("biotically controlled" precipitation). The cool or C-factory is also biotically controlled but via heterotrophic, calcifying metazoans in cold and deep waters at the continental margins. A further type is the mud-mound or M-factory, where carbonate precipitation is supported by microorganisms but not controlled by a specific enzymatic pathway ("biotically induced" precipitation). How exactly the microbes influence precipitation is still poorly understood. Based on recent experimental and field studies, the microbial influence on modern mud mound and microbialite growth includes two fundamentally different processes: (1) Metabolic activity of microbes may increase the saturation state with respect to a particular mineral phase, thereby indirectly driving the precipitation of the mineral phase: microbially induced precipitation. (2) In a situation, where a solution is already supersaturated but precipitation of the mineral is inhibited by a kinetic barrier, microbes may act as a catalyser, i.e. they lower the kinetic barrier: microbially catalysed precipitation. Such a catalytic effect can occur e.g. via secreted polymeric substances or specific chemical groups on the cell surface, at which the minerals nucleate or which facilitate mechanistically the bonding of new ions to the mineral surface. Based on these latest developments in microbialite formation, I propose to extend the scheme of benthic carbonate factories of Schlager et al. (2003) by introducing an additional branch distinguishing microbially induced from microbially catalysed precipitation. Although both mechanisms could be operative in a M-factory, and it is difficult to distinguish their products, their cause is very different. A Mi-factory ("i" for induced) is predominant under low carbonate saturation in normal seawater; a Mc-factory ("c" for catalysed) is operative in higher-alkalinity waters. The latter conditions may not only occur in shallow seas restricted from open sea water but may also have occurred in the aftermath of catastrophic events (e.g. P/T boundary) or during the Precambrian, before the onset of metazoan calcifiers. Thus, adding the additional distinction between microbially induced and microbially catalysed precipitation would allow the application of Schlager's concept of benthic carbonate factories beyond the Phanerozoic and probably over the entire Earth history.
Family context assessment in a public health study.
Velasco, David; Sánchez de Miguel, Manuel; Egurza, Maitane; Arranz, Enrique; Aranbarri, Aritz; Fano, Eduardo; Ibarluzea, Jesús
2014-01-01
To analyze the factorial structure of a new instrument to assess the quality of the family context (Etxadi-Gangoiti Scale) in a sample from the Gipuzkoa cohort of the Environment and Childhood (Infancia y Medio Ambiente [INMA]) study. Families in a sample of 433 two-year-old children were assessed in a home visit with subsequent analysis of the factorial structure and psychometric properties of the data. An exploratory factorial analysis (principal axis factoring and varimax rotation) and a confirmatory factorial analysis were carried out; partial confirmation of the original factorial structure of the instrument was obtained, which revealed the following factorial structures. Subscale (1): promotion of cognitive and linguistic development, social skills, psychomotor skills, and pretend play and imitation; subscale (2): promotion of independence and self-esteem, provision of optimal frustration, social and emotional quality of the relationship, and absence of physical punishment; subscale (3): paternal involvement, low exposure to family conflict, low frequency of family conflict, relationship with the extended family, social support, diversity of experiences, low frequency of stressful events, and low parental perception of stress. The structure of the original instrument structure was partially confirmed, which was attributed to the characteristics of the sample. We stress the importance of the variability obtained in the evaluation of the families, as well as of adequate indicators of reliability in such evaluation. The new instrument could be used in public health to identify deficient family contexts and to design preventive interventions focused on parenting skills. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.
Quality and Quantity of Sorghum Hydroponic Fodder from Different Varieties and Harvest Time
NASA Astrophysics Data System (ADS)
Chrisdiana, R.
2018-02-01
This experiment was designed to compare different varieties and harvest time of sorghum hydroponic fodder based on nutrient content and biomass production. Experimental design for fodder productivity was completely randomized design with 2 x 3 factorial, i.e., sorghum varieties (KD 4 and Super-1) and time of harvesting the sorghum hydroponic fodder (8,12 and 16 d). Total biomass and DM production, were affected significantly (p<0.05) on harvest time. Total biomass and nutrient content were increased in longer harvest time. The nutrient content were increased with decreasing total value of DM. Super-1 varieties produce larger biomass and nutrient content higher than KD4 (p<0.05). Based on sorghum hidroponic fodder quality and quantity, sorghum hidroponic fodder with Super-1 varieties harvested at 12 d had a good quality of fodder and it can be alternative of technology providing quality forage and land saving with a short time planting period and continous production.
NASA Astrophysics Data System (ADS)
Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.
1997-02-01
Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.
Swain, Kalpana; Pattnaik, Satyanarayan; Mallick, Subrata; Chowdary, Korla Appana
2009-01-01
In the present investigation, controlled release gastroretentive floating drug delivery system of theophylline was developed employing response surface methodology. A 3(2) randomized full factorial design was developed to study the effect of formulation variables like various viscosity grades and contents of hydroxypropyl methylcellulose (HPMC) and their interactions on response variables. The floating lag time for all nine experimental trial batches were less than 2 min and floatation time of more than 12 h. Theophylline release from the polymeric matrix system followed non-Fickian anomalous transport. Multiple regression analysis revealed that both viscosity and content of HPMC had statistically significant influence on all dependent variables but the effect of these variables found to be nonlinear above certain threshold values.
Response surface methodology, often supported by factorial designs, is the classical experimental approach that is widely accepted for detecting and characterizing interactions among chemicals in a mixture. In an effort to reduce the experimental effort as the number of compound...
Applications of Chemiluminescence in the Teaching of Experimental Design
ERIC Educational Resources Information Center
Krawczyk, Tomasz; Slupska, Roksana; Baj, Stefan
2015-01-01
This work describes a single-session laboratory experiment devoted to teaching the principles of factorial experimental design. Students undertook the rational optimization of a luminol oxidation reaction, using a two-level experiment that aimed to create a long-lasting bright emission. During the session students used only simple glassware and…
ERIC Educational Resources Information Center
Arata, Barbara
The purpose of the curriculum guide is to introduce the exploratory student to the fundamental skills and knowledge necessary for employment in the garment industry, from factory to design room. It was developed for a six or seven-week exploratory program for ninth or tenth grade students. The manual provides an introduction to the different areas…
Evaluation of an Online "Teachable Moment" Dietary Intervention
ERIC Educational Resources Information Center
Marks, Leah; Ogden, Jane
2017-01-01
Purpose: The purpose of this paper is to evaluate an online "teachable moment" intervention to promote healthy eating for overweight and food intolerance symptoms. Design/methodology/approach: The study involves a 2×2 factorial design with two conditions: group (weight loss vs food intolerance) and condition (intervention vs control).…
Computer-assisted design in perceptual-motor skills research
NASA Technical Reports Server (NTRS)
Rogers, C. A., Jr.
1974-01-01
A categorization was made of independent variables previously found to be potent in simple perceptual-motor tasks. A computer was then used to generate hypothetical factorial designs. These were evaluated in terms of literature trends and pragmatic criteria. Potential side-effects of machine-assisted research strategy were discussed.
Evaluating perceptual integration: uniting response-time- and accuracy-based methodologies.
Eidels, Ami; Townsend, James T; Hughes, Howard C; Perry, Lacey A
2015-02-01
This investigation brings together a response-time system identification methodology (e.g., Townsend & Wenger Psychonomic Bulletin & Review 11, 391-418, 2004a) and an accuracy methodology, intended to assess models of integration across stimulus dimensions (features, modalities, etc.) that were proposed by Shaw and colleagues (e.g., Mulligan & Shaw Perception & Psychophysics 28, 471-478, 1980). The goal was to theoretically examine these separate strategies and to apply them conjointly to the same set of participants. The empirical phases were carried out within an extension of an established experimental design called the double factorial paradigm (e.g., Townsend & Nozawa Journal of Mathematical Psychology 39, 321-359, 1995). That paradigm, based on response times, permits assessments of architecture (parallel vs. serial processing), stopping rule (exhaustive vs. minimum time), and workload capacity, all within the same blocks of trials. The paradigm introduced by Shaw and colleagues uses a statistic formally analogous to that of the double factorial paradigm, but based on accuracy rather than response times. We demonstrate that the accuracy measure cannot discriminate between parallel and serial processing. Nonetheless, the class of models supported by the accuracy data possesses a suitable interpretation within the same set of models supported by the response-time data. The supported model, consistent across individuals, is parallel and has limited capacity, with the participants employing the appropriate stopping rule for the experimental setting.
Feldman, H A; McKinlay, J B; Potter, D A; Freund, K M; Burns, R B; Moskowitz, M A; Kasten, L E
1997-01-01
OBJECTIVE: To study nonmedical influences on the doctor-patient interaction. A technique using simulated patients and "real" doctors is described. DATA SOURCES: A random sample of physicians, stratified on such characteristics as demographics, specialty, or experience, and selected from commercial and professional listings. STUDY DESIGN: A medical appointment is depicted on videotape by professional actors. The patient's presenting complaint (e.g., chest pain) allows a range of valid interpretation. Several alternative versions are taped, featuring the same script with patient-actors of different age, sex, race, or other characteristics. Fractional factorial design is used to select a balanced subset of patient characteristics, reducing costs without biasing the outcome. DATA COLLECTION: Each physician is shown one version of the videotape appointment and is asked to describe how he or she would diagnose or treat such a patient. PRINCIPAL FINDINGS: Two studies using this technique have been completed to date, one involving chest pain and dyspnea and the other involving breast cancer. The factorial design provided sufficient power, despite limited sample size, to demonstrate with statistical significance various influences of the experimental and stratification variables, including the patient's gender and age and the physician's experience. Persistent recruitment produced a high response rate, minimizing selection bias and enhancing validity. CONCLUSION: These techniques permit us to determine, with a degree of control unattainable in observational studies, whether medical decisions as described by actual physicians and drawn from a demographic or professional group of interest, are influenced by a prescribed set of nonmedical factors. PMID:9240285
Ozgüney, I; Ozcan, I; Ertan, G; Güneri, T
2007-01-01
The preparation of ketoprofen (KP) sustained release (SR) suppositories was designed according to the 3(2) x 2(1) factorial design as three different KP:Eudragit RL 100 ratios (1:0.5, 1:1, 1:2), three particle sizes of prepared granules (250-500, 500-710, and 710-1000 microm) and two different PEG 400:PEG 6000 ratios (40:60, 50:50). The conventional KP suppositories were also prepared by using Witepsol H 15, Massa Estarinum B, Cremao and the mixture of PEG 400:PEG 6000. The dissolution studies of suppositories prepared were carried out according to the USP XXIII basket method in the phosphate buffer (pH = 7.2) at 50 rpm, and it was shown that the dissolution time was sustained up to 8 hours. According to the results of the factorial design, the most important independent variable on t50 and t80 was drug:polymer ratios. The log of partition coefficient of KP was determined as 1.46, showing the high affinity to the oily phase. n exponent and kinetic studies were conducted to explain diffusion mechanism, and it is understood that if the inert KP:Eudragit RL 100 ratio is increased in the particles, the Fickian difusion dominates and the best kinetic turns to Higuchi from the Hixson-Crowell. There is neither crystalline form of KP nor degradation product in the suppositories detected with the differential scanning calorimetry (DSC) studies. In addition to these studies, antiinflammatory activity of SR suppositories also determined that it was significantly extended according to the conventional suppositories.
A systems-level approach for metabolic engineering of yeast cell factories.
Kim, Il-Kwon; Roldão, António; Siewers, Verena; Nielsen, Jens
2012-03-01
The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Modular transportable superconducting magnetic Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieurance, D.; Kimball, F.; Rix, C.
1994-12-31
Design and cost studies were performed for the magnet components of mid-size (1-5 MWh), cold supported SMES systems using alternative configurations. The configurations studied included solenoid magnets, which required onsite assembly of the magnet system, and toroid and racetrack configurations which consisted of factory assembled modules. For each configuration, design concepts and cost information were developed for the major features of the magnet system including the conductor, electrical insulation, and structure. These studies showed that for mid-size systems, the costs of solenoid and toroid magnet configurations are comparable and that the specific configuration to be used for a given applicationmore » should be based upon customer requirements such as limiting stray fields or minimizing risks in development or construction.« less
Investigation of Machine-ability of Inconel 800 in EDM with Coated Electrode
NASA Astrophysics Data System (ADS)
Karunakaran, K.; Chandrasekaran, M.
2017-03-01
The Inconel 800 is a high temperature application alloy which is classified as a nickel based super alloy. It has wide scope in aerospace engineering, gas Turbine etc. The machine-ability studies were found limited on this material. Hence This research focuses on machine-ability studies on EDM of Inconel 800 with Silver Coated Electrolyte Copper Electrode. The purpose of coating on electrode is to reduce tool wear. The factors pulse on Time, Pulse off Time and Peck Current were considered to observe the responses of surface roughness, material removal rate, tool wear rate. Taguchi Full Factorial Design is employed for Design the experiment. Some specific findings were reported and the percentage of contribution of each parameter was furnished
2016-09-15
18] under the context of robust parameter design for simulation. Bellucci’s technique is used in this research, primarily because the interior -point...Fundamentals of Radial Basis Neural Network (RBNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.2.2.2 Design of Experiments...with Neural Nets . . . . . . . . . . . . . 31 1.2.2.3 Factorial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.2.4
The Use of Visual Advance Organizers for Learning Earth Science Concepts.
ERIC Educational Resources Information Center
Weisberg, Joseph S.
This study was designed to determine whether advance organizers in the form of visual aids might serve the same function as Ausubel's verbal advance organizers. The basic design of the study consisted of a 4 X 3 X 2 ANOVA factorial design. Ninety-six eighth-grade students were involved in the study. One group was exposed to a physiographic diagram…
ERIC Educational Resources Information Center
Walton, Richard E.
A significant change is under way in the organization and management of work. The work force can be managed in two ways, one based on control and the other based on commitment. The traditional--or control-oriented--approach took shape in the early 1900s in response to the division of work into small, fixed jobs for which individuals were held…
NASA Technical Reports Server (NTRS)
Trinh, LU; Merrow, Mark; Coons, Russ; Iezzi, Gabrielle; Palarz, Howard M.; Nguyen, Marc H.; Spitzer, Mike; Cubbage, Sam
1989-01-01
A concept for a space station to be placed in low lunar orbit in support of the eventual establishment of a permanent moon base is proposed. This space station would have several functions: (1) a complete support facility for the maintenance of the permanent moon base and its population; (2) an orbital docking area to facilitate the ferrying of materials and personnel to and from Earth; (3) a zero gravity factory using lunar raw materials to grow superior GaAs crystals for use in semiconductors and mass produce inexpensive fiber glass; and (4) a space garden for the benefit of the air food cycles. The mission scenario, design requirements, and technology needs and developments are included as part of the proposal.
Improvement of an automated protein crystal exchange system PAM for high-throughput data collection
Hiraki, Masahiko; Yamada, Yusuke; Chavas, Leonard M. G.; Wakatsuki, Soichi; Matsugaki, Naohiro
2013-01-01
Photon Factory Automated Mounting system (PAM) protein crystal exchange systems are available at the following Photon Factory macromolecular beamlines: BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. The beamline AR-NE3A has been constructed for high-throughput macromolecular crystallography and is dedicated to structure-based drug design. The PAM liquid-nitrogen Dewar can store a maximum of three SSRL cassettes. Therefore, users have to interrupt their experiments and replace the cassettes when using four or more of them during their beam time. As a result of investigation, four or more cassettes were used in AR-NE3A alone. For continuous automated data collection, the size of the liquid-nitrogen Dewar for the AR-NE3A PAM was increased, doubling the capacity. In order to check the calibration with the new Dewar and the cassette stand, calibration experiments were repeatedly performed. Compared with the current system, the parameters of the novel system are shown to be stable. PMID:24121334
Characterization and control of thread mould in cheese.
Basílico, J C; debasílico, M Z; Chiericatti, C; Vinderola, C G
2001-06-01
The origin of a mould responsible for the contamination of an Argentinian cheese factory was identified and several antifungal treatments were assessed. Moulds were isolated and identified from vacuum-packed hard cheeses, from the environment and from the surfaces of the factory. A suspension conidia test containing different fungicides was performed; another assay involved the fumigation with p-OH fenilsalicidamide. Only Phoma glomerata was found in all of the mouldy cheeses, and was also obtained from different environments and machine surfaces. The most effective treatments against P. glomerata isolates were 0.5% (w/v) natamycin and 2% (v/v) parabens. Fumigation with p-OH fenilsalicidamide showed no satisfactory results. P. glomerata is an important thread mould-contaminating agent in vacuum-packed hard cheeses. Taking into account the survival of the conidia of the P. glomerata isolates to different antifungal treatments, the sources of contamination need to be controlled by designing a good factory layout.
Vision-Based Sensor for Early Detection of Periodical Defects in Web Materials
Bulnes, Francisco G.; Usamentiaga, Rubén; García, Daniel F.; Molleda, Julio
2012-01-01
During the production of web materials such as plastic, textiles or metal, where there are rolls involved in the production process, periodically generated defects may occur. If one of these rolls has some kind of flaw, it can generate a defect on the material surface each time it completes a full turn. This can cause the generation of a large number of surface defects, greatly degrading the product quality. For this reason, it is necessary to have a system that can detect these situations as soon as possible. This paper presents a vision-based sensor for the early detection of this kind of defects. It can be adapted to be used in the inspection of any web material, even when the input data are very noisy. To assess its performance, the sensor system was used to detect periodical defects in hot steel strips. A total of 36 strips produced in ArcelorMittal Avilés factory were used for this purpose, 18 to determine the optimal configuration of the proposed sensor using a full-factorial experimental design and the other 18 to verify the validity of the results. Next, they were compared with those provided by a commercial system used worldwide, showing a clear improvement. PMID:23112629
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko
2010-06-23
Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable ofmore » handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.« less
The pH dependence of silicon-iron interaction in rats.
Jia, X; Emerick, R J; Kayongo-Male, H
1997-01-01
A 2 x 2 x 3 factorial experiment was conducted to study the pH dependence of a silicon-iron interaction in vivo. The dietary treatments used in the factorial design were the following (mg/kg of diet): silicon, 0 and 500; iron, 35 and 187; acid-base, ammonium chloride as 0.5% of total diet (acidic), sodium bicarbonate as 1.0% of total diet (basic), or no supplementation of acid or base (control). The supplementation of 500 mg silicon/kg of diet increased plasma-iron concentration in rats fed the acidic or control diets, but not in rats fed the basic diet. A high dietary-iron level suppressed copper absorption and utilization and subsequently imposed a negative effect on its own utilization. An increase in the plasma total-cholesterol concentration caused by high dietary-iron level was likely a consequence of the antagonistic effect of iron on copper absorption and utilization. The use of cupric sulfate pentahydrate as the dietary-copper source in this study resulted in plasma copper concentrations that were approximately twice those obtained in a related study using cupric carbonate. Also, a 42% coefficient of variation (C.V.) for plasma-copper concentrations of rats fed cupric sulfate in this study was greatly reduced from the C.V. = 108% previously associated with the dietary cupric carbonate.
Accelerator Physics Working Group Summary
NASA Astrophysics Data System (ADS)
Li, D.; Uesugi, T.; Wildnerc, E.
2010-03-01
The Accelerator Physics Working Group addressed the worldwide R&D activities performed in support of future neutrino facilities. These studies cover R&D activities for Super Beam, Beta Beam and muon-based Neutrino Factory facilities. Beta Beam activities reported the important progress made, together with the research activity planned for the coming years. Discussion sessions were also organized jointly with other working groups in order to define common ground for the optimization of a future neutrino facility. Lessons learned from already operating neutrino facilities provide key information for the design of any future neutrino facility, and were also discussed in this meeting. Radiation damage, remote handling for equipment maintenance and exchange, and primary proton beam stability and monitoring were among the important subjects presented and discussed. Status reports for each of the facility subsystems were presented: proton drivers, targets, capture systems, and muon cooling and acceleration systems. The preferred scenario for each type of possible future facility was presented, together with the challenges and remaining issues. The baseline specification for the muon-based Neutrino Factory was reviewed and updated where required. This report will emphasize new results and ideas and discuss possible changes in the baseline scenarios of the facilities. A list of possible future steps is proposed that should be followed up at NuFact10.
Wang, Lihua; Weng, Shaofan; Wen, Sheng; Shi, Tingming; Sun, Gangtao; Zeng, Yuyu; Qi, Cheng; Chen, Weihong
2013-01-15
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) have been reported as possible carcinogenic hazards to humans. However, epidemiological studies on their carcinogenic roles are limited. The current study was designed to determine the concentrations and characteristics of PCDD/Fs and evaluate their association with cancer mortality in exposed workers in one automobile foundry factory. PCDD/F levels in factory and surrounding environment were analyzed through air and settling dust sampling. The cancer mortalities among workers in this foundry factory were calculated using data from a cohort study. The results showed that the PCDD/F concentrations of air in workplace ranged 0.36-2.25 pg World Health Organization-Toxic Equivalent (WHO-TEQ) Nm(-3) (average 1.01 pg WHO-TEQ Nm(-3)), which were 1.16-7.26 times higher than those outside the factory. The PCDD/F concentrations of settling dust in the workplace ranged 3.34-18.64 pg WHO-TEQ g(-1) (average 8.25 pg WHO-TEQ g(-1)), which were lower than those just outside the factory (average 16.13 pg WHO-TEQ g(-1)). Furthermore, a cohort study of workers in this factory with average follow-up of 24.52 years showed that cancer was the leading cause of death, with significant elevated mortality (standardized mortality ratio (SMR)=1.70, 95% confidence interval (CI): 1.35-2.13) among workers, when compared with Chinese national mortality. The cancer mortality among front-line workers was increased significantly (adjusted relative risk (RR)=1.73, 95% CI: 1.14-2.60), particularly among melting and casting workers, when compared with that among assistant workers. Our results indicated that there was a dose-response relationship between PCDD/F exposure and cancer mortality among foundry workers. Copyright © 2012 Elsevier B.V. All rights reserved.
On The Modeling of Educational Systems: II
ERIC Educational Resources Information Center
Grauer, Robert T.
1975-01-01
A unified approach to model building is developed from the separate techniques of regression, simulation, and factorial design. The methodology is applied in the context of a suburban school district. (Author/LS)
Studies on a novel doughnut-shaped minitablet for intraocular drug delivery.
Choonara, Yahya E; Pillay, Viness; Carmichael, Trevor; Danckwerts, Michael P
2007-12-28
The objective of this study was to evaluate the effect of 2 independent formulation variables on the drug release from a novel doughnut-shaped minitablet (DSMT) in order to optimize formulations for intraocular drug delivery. Formulations were based on a 3(2) full-factorial design. The 2 independent variables were the concentration of Resomer (% wt/wt) and the type of Resomer grade (RG502, RG503, and RG504), respectively. The evaluated response was the drug release rate constant computed from a referenced marketed product and in vitro drug release data obtained at pH 7.4 in simulated vitreous humor. DSMT devices were prepared containing either of 2 model drugs, ganciclovir or foscarnet, using a Manesty F3 tableting press fitted with a novel central-rod, punch, and die setup. Dissolution data revealed biphasic drug release behavior with 55% to 60% drug released over 120 days. The inherent viscosity of the various Resomer grades and the concentration were significant to achieve optimum release rate constants. Using the resultant statistical relationships with the release rate constant as a response, the optimum formulation predicted for devices formulated with foscarnet was 70% wt/wt of Resomer RG504, while 92% wt/wt of Resomer RG503 was ideal for devices formulated with ganciclovir. The results of this study revealed that the full-factorial design was a suitable tool to predict an optimized formulation for prolonged intraocular drug delivery.
Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine
Chintalapudi, Ramprasad; Murthy, T. E. G. K.; Lakshmi, K. Rajya; Manohar, G. Ganesh
2015-01-01
Background: The aim of the present study was to formulate and optimize the self-emulsifying drug delivery systems (SEDDS) of nevirapine (NVP) by use of 22 factorial designs to enhance the oral absorption of NVP by improving its solubility, dissolution rate, and diffusion profile. SEDDS are the isotropic mixtures of oil, surfactant, co-surfactant and drug that form oil in water microemulsion when introduced into the aqueous phase under gentle agitation. Materials and Methods: Solubility of NVP in different oils, surfactants, and co-surfactants was determined for the screening of excipients. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations with the help of data obtained through the maximum micro emulsion region containing combinations of oil, surfactant, and co-surfactant. The formulations of SEDDS were optimized by 22 factorial designs. Results: The optimum formulation of SEDDS contains 32.5% oleic acid, 44.16% tween 20, and 11.9% polyethylene glycol 600 as oil, surfactant, and co-surfactant respectively. The SEDDS was evaluated for the following drug content, self-emulsification time, rheological properties, zeta potential, in vitro diffusion studies, thermodynamic stability studies, and in vitro dissolution studies. An increase in dissolution was achieved by SEDDS compared to pure form of NVP. Conclusion: Overall, this study suggests that the dissolution and oral bioavailability of NVP could be improved by SEDDS technology. PMID:26682191
Abd-Elrasheed, Eman; Nageeb El-Helaly, Sara; El-Ashmoony, Manal M; Salah, Salwa
2018-05-01
Intranasal zaleplon solid dispersion was formulated to enhance the solubility, bioavailability and deliver an effective therapy. Zaleplon belongs to Class II drugs, and undergoes extensive first-pass metabolism after oral absorption exhibiting 30% bioavailability. A 2 3 full-factorial design was chosen for the investigation of solid dispersion formulations. The effects of different variables include drug to carrier ratio (1:1 and 1:2), carrier type (polyethylene glycol 4000 and poloxamer 407), and preparation method (solvent evaporation and freeze drying) on different dissolution parameters were studied. The dependent variables determined from the in vitro characterization and their constraints were set as follows: minimum mean dissolution time, maximum dissolution efficiency and maximum percentage release. Numerical optimization was performed according to the constraints set based on the utilization of desirability functions. Differential scanning calorimetry, infrared spectroscopy, X-ray diffraction and scanning electron microscopy were performed. Ex vivo estimation of nasal cytotoxicity and assessment of the γ-aminobutyric acid level in plasma and brain 1 h after nasal SD administration in rabbits compared to the oral market product were conducted. The selected ZP-SD, with a desirability 0.9, composed of poloxamer 407 at drug to carrier ratio 1:2 successfully enhanced the bioavailability showing 44% increase in GABA concentration than the marketed tablets.
Argenta, Débora Fretes; de Mattos, Cristiane Bastos; Misturini, Fabíola Dallarosa; Koester, Leticia Scherer; Bassani, Valquiria Linck; Simões, Cláudia Maria Oliveira; Teixeira, Helder Ferreira
2014-01-01
The aim of this study was to optimize topical nanoemulsions containing genistein, by means of a 23 full factorial design based on physicochemical properties and skin retention. The experimental arrangement was constructed using oil type (isopropyl myristate or castor oil), phospholipid type (distearoylphosphatidylcholine [DSPC] or dioleylphosphaditylcholine [DOPC]), and ionic cosurfactant type (oleic acid or oleylamine) as independent variables. The analysis of variance showed effect of third order for particle size, polydispersity index, and skin retention of genistein. Nanoemulsions composed of isopropyl myristate/DOPC/oleylamine showed the smallest diameter and highest genistein amount in porcine ear skin whereas the formulation composed of isopropyl myristate/DSPC/oleylamine exhibited the lowest polydispersity index. Thus, these two formulations were selected for further studies. The formulations presented positive ζ potential values (>25 mV) and genistein content close to 100% (at 1 mg/mL). The incorporation of genistein in nanoemulsions significantly increased the retention of this isoflavone in epidermis and dermis, especially when the formulation composed by isopropyl myristate/DOPC/oleylamine was used. These results were supported by confocal images. Such formulations exhibited antiherpetic activity in vitro against herpes simplex virus 1 (strain KOS) and herpes simplex virus 22 (strain 333). Taken together, the results show that the genistein-loaded nanoemulsions developed in this study are promising options in herpes treatment. PMID:25336951
Irwin, K; Bertrand, J; Mibandumba, N; Mbuyi, K; Muremeri, C; Mukoka, M; Munkolenkole, K; Nzilambi, N; Bosenge, N; Ryder, R
1991-01-01
As a first step in designing an AIDS prevention program at a large factory in Kinshasa, Zaire, we collected information on attitudes towards human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) from factory foremen and their wives. Trained moderators conducted twelve focus group discussions (from November through December 1987) that addressed knowledge, attitudes and beliefs about HIV infection and AIDS. In general, participants were familiar with HIV infection and AIDS and considered these conditions leading health problems in Kinshasa. Although participants had a fairly accurate understanding of the causes of HIV infection, modes of transmission and preventive measures, many myths and misconceptions existed. Many participants did not believe that condom use would consistently prevent infection through sexual intercourse. Participants strongly favored the counseling of seropositive persons but showed less consensus about whether the spouse of a seropositive person should be notified of the partner's test result. Participants predicted that couples in which one member is seropositive and the other is not would experience marital discord and friction with family, neighbors and co-workers. These findings were applied to the development of a counseling and educational program for seropositive factory employees and their spouses.
D'Ambrosio, Antonio; Heiser, Willem J
2016-09-01
Preference rankings usually depend on the characteristics of both the individuals judging a set of objects and the objects being judged. This topic has been handled in the literature with log-linear representations of the generalized Bradley-Terry model and, recently, with distance-based tree models for rankings. A limitation of these approaches is that they only work with full rankings or with a pre-specified pattern governing the presence of ties, and/or they are based on quite strict distributional assumptions. To overcome these limitations, we propose a new prediction tree method for ranking data that is totally distribution-free. It combines Kemeny's axiomatic approach to define a unique distance between rankings with the CART approach to find a stable prediction tree. Furthermore, our method is not limited by any particular design of the pattern of ties. The method is evaluated in an extensive full-factorial Monte Carlo study with a new simulation design.
Rapid Prototyping of Microbial Cell Factories via Genome-scale Engineering
Si, Tong; Xiao, Han; Zhao, Huimin
2014-01-01
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. PMID:25450192
ERIC Educational Resources Information Center
Pruett, Steven R.; Deiches, Jon; Pfaller, Joseph; Moser, Erin; Chan, Fong
2014-01-01
Objective: To determine the factorial validity of the Internal and External Motivation to Respond without Prejudice toward People with Disabilities Scale (D-IMS/EMS). Design: A quantitative descriptive design using factor analysis. Participants: 233 rehabilitation counseling and rehabilitation services students. Results: Both exploratory and…
VISUAL AND AUDIO PRESENTATION IN MACHINE PROGRAMED INSTRUCTION. FINAL REPORT.
ERIC Educational Resources Information Center
ALLEN, WILLIAM H.
THIS STUDY WAS PART OF A LARGER RESEARCH PROGRAM AIMED TOWARD DEVELOPMENT OF PARADIGMS OF MESSAGE DESIGN. OBJECTIVES OF THREE PARALLEL EXPERIMENTS WERE TO EVALUATE INTERACTIONS OF PRESENTATION MODE, PROGRAM TYPE, AND CONTENT AS THEY AFFECT LEARNER CHARACTERISTICS. EACH EXPERIMENT USED 18 TREATMENTS IN A FACTORIAL DESIGN WITH RANDOMLY SELECTED…
An Empirical Study of Eight Nonparametric Tests in Hierarchical Regression.
ERIC Educational Resources Information Center
Harwell, Michael; Serlin, Ronald C.
When normality does not hold, nonparametric tests represent an important data-analytic alternative to parametric tests. However, the use of nonparametric tests in educational research has been limited by the absence of easily performed tests for complex experimental designs and analyses, such as factorial designs and multiple regression analyses,…
... representatives are factory-trained accessibility specialists in ramp design and installation and will provide a free evaluation and consultation to determine what ramp is best for your needs. Video Series Free From Falls Some MS symptoms and treatments ...
[Questionnaire to assess advertising campaigns impact about HIV/AIDS prevention].
Bretón-López, Juana; Buela-Casal, Gualberto
2006-08-01
Present work is concerned with a questionnaire aimed to the impact evaluation of a selection of Spanish advertising campaigns about HIV/AIDS prevention. The work objective is to determine reliability and factorial structure of the instrument. It is described the designed questionnaire and its three scales (affective impact scale, cognitive impact scale and behavioural intention impact scale). The sample was composed by 405 high school teenagers to who were projected the advertising campaigns. So, teenagers filled the designed questionnaire. From a theoretical and psychometric point of view, data show the instrument is appropriate about internal consistency and factorial structure. The final goal of the questionnaire is to become useful tool to assess the persuasive effectiveness of the advertising campaigns within the HIV/AIDS network, as an intervention of primary prevention to reduce the expansion of epidemic.
Novel Starch-PVA Polymer for Microparticle Preparation and Optimization Using Factorial Design Study
Chattopadhyay, Helen; De, Amit Kumar; Datta, Sriparna
2015-01-01
The aim of our present work was to optimize the ratio of a very novel polymer, starch-polyvinyl alcohol (PVA), for controlled delivery of Ornidazole. Polymer-coated drug microparticles were prepared by emulsion method. Microscopic study, scanning electron microscopic study, and atomic force microscopic study revealed that the microparticles were within 10 micrometers of size with smooth spherical shape. The Fourier transform infrared spectroscopy showed absence of drug polymer interaction. A statistical 32 full factorial design was used to study the effect of different concentration of starch and PVA on the drug release profile. The three-dimensional plots gave us an idea about the contribution of each factor on the release kinetics. Hence this novel polymer of starch and polyvinyl alcohol can be utilized for control release of the drug from a targeted delivery device. PMID:27347511
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, C.; Hester, R.
Summaries are given on the technical progress on three tasks of this project. Monomer and polymer synthesis discusses the preparation of 1(7-aminoheptyloxymethyl)naphthalene and poly(maleic anhydride-alt-ethyl vinyl ether). Task 2, Characterization of molecular structure, discusses terpolymer solution preparation, UV analysis, fluorescence analysis, low angle laser light scattering, and viscometry. The paper discusses the effects of hydrophobic groups, the effect of pH, the effect of electrolyte addition, and photophysical studies. Task 3, Solution properties, describes the factorial experimental design for characterizing polymer solutions by light scattering, the light scattering test model, orthogonal factorial test design, linear regression in coded space, confidence levelmore » for coded space test mode coefficients, coefficients of the real space test model, and surface analysis of the model equations.« less
Jan, Show-Li; Shieh, Gwowen
2016-08-31
The 2 × 2 factorial design is widely used for assessing the existence of interaction and the extent of generalizability of two factors where each factor had only two levels. Accordingly, research problems associated with the main effects and interaction effects can be analyzed with the selected linear contrasts. To correct for the potential heterogeneity of variance structure, the Welch-Satterthwaite test is commonly used as an alternative to the t test for detecting the substantive significance of a linear combination of mean effects. This study concerns the optimal allocation of group sizes for the Welch-Satterthwaite test in order to minimize the total cost while maintaining adequate power. The existing method suggests that the optimal ratio of sample sizes is proportional to the ratio of the population standard deviations divided by the square root of the ratio of the unit sampling costs. Instead, a systematic approach using optimization technique and screening search is presented to find the optimal solution. Numerical assessments revealed that the current allocation scheme generally does not give the optimal solution. Alternatively, the suggested approaches to power and sample size calculations give accurate and superior results under various treatment and cost configurations. The proposed approach improves upon the current method in both its methodological soundness and overall performance. Supplementary algorithms are also developed to aid the usefulness and implementation of the recommended technique in planning 2 × 2 factorial designs.
NASA Astrophysics Data System (ADS)
Krishnan, Thulasirajan; Purushothaman, Revathi
2017-07-01
There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.
A factorial design experiment as a pilot study for noninvasive genetic sampling.
Renan, Sharon; Speyer, Edith; Shahar, Naama; Gueta, Tomer; Templeton, Alan R; Bar-David, Shirli
2012-11-01
Noninvasive genetic sampling has increasingly been used in ecological and conservation studies during the last decade. A major part of the noninvasive genetic literature is dedicated to the search for optimal protocols, by comparing different methods of collection, preservation and extraction of DNA from noninvasive materials. However, the lack of quantitative comparisons among these studies and the possibility that different methods are optimal for different systems make it difficult to decide which protocol to use. Moreover, most studies that have compared different methods focused on a single factor - collection, preservation or extraction - while there could be interactions between these factors. We designed a factorial experiment, as a pilot study, aimed at exploring the effect of several collection, preservation and extraction methods, and the interactions between them, on the quality and amplification success of DNA obtained from Asiatic wild ass (Equus hemionus) faeces in Israel. The amplification success rates of one mitochondrial DNA and four microsatellite markers differed substantially as a function of collection, preservation and extraction methods and their interactions. The most efficient combination for our system integrated the use of swabs as a collection method with preservation at -20 °C and with the Qiagen DNA Stool Kit with modifications as the DNA extraction method. The significant interaction found between the collection, preservation methods and the extraction methods reinforces the importance of conducting a factorial design experiment, rather than examining each factor separately, as a pilot study before initiating a full-scale noninvasive research project. © 2012 Blackwell Publishing Ltd.
Delivering the "Learning Factory"?: Evidence on HR Roles in Contemporary Manufacturing
ERIC Educational Resources Information Center
Barton, Harry; Delbridge, Rick
2006-01-01
Purpose: The purpose of this paper is to evidence the emergence of new forms of work organisation which if observed could be seen as consistent with the concept of the "learning factory". This is attempted through reporting the views of those workers engaged in team based operations and reflects upon the emerging role of first-line and…
Agile manufacturing: The factory of the future
NASA Technical Reports Server (NTRS)
Loibl, Joseph M.; Bossieux, Terry A.
1994-01-01
The factory of the future will require an operating methodology which effectively utilizes all of the elements of product design, manufacturing and delivery. The process must respond rapidly to changes in product demand, product mix, design changes or changes in the raw materials. To achieve agility in a manufacturing operation, the design and development of the manufacturing processes must focus on customer satisfaction. Achieving greatest results requires that the manufacturing process be considered from product concept through sales. This provides the best opportunity to build a quality product for the customer at a reasonable rate. The primary elements of a manufacturing system include people, equipment, materials, methods and the environment. The most significant and most agile element in any process is the human resource. Only with a highly trained, knowledgeable work force can the proper methods be applied to efficiently process materials with machinery which is predictable, reliable and flexible. This paper discusses the affect of each element on the development of agile manufacturing systems.
De Benedictis, Lorenzo; Huck, Christian
2016-12-01
The optimization of near-infrared spectroscopic parameters was realized via design of experiments. With this new approach objectivity can be integrated into conventional, rather subjective approaches. The investigated factors are layer thickness, number of scans and temperature during measurement. Response variables in the full factorial design consisted of absorption intensity, signal-to-noise ratio and reproducibility of the spectra. Optimized factorial combinations have been found to be 0.5mm layer thickness, 64 scans and 25°C ambient temperature for liquid milk measurements. Qualitative analysis of milk indicated a strong correlation of environmental factors, as well as the feeding of cattle with respect to the change in milk composition. This was illustrated with the aid of near-infrared spectroscopy and the previously optimized parameters by detection of altered fatty acids in milk, especially by the fatty acid content (number of carboxylic functions) and the fatty acid length. Copyright © 2016 Elsevier Ltd. All rights reserved.
Factorial analysis of trihalomethanes formation in drinking water.
Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James
2010-06-01
Disinfection of drinking water reduces pathogenic infection, but may pose risks to human health through the formation of disinfection byproducts. The effects of different factors on the formation of trihalomethanes were investigated using a statistically designed experimental program, and a predictive model for trihalomethanes formation was developed. Synthetic water samples with different factor levels were produced, and trihalomethanes concentrations were measured. A replicated fractional factorial design with center points was performed, and significant factors were identified through statistical analysis. A second-order trihalomethanes formation model was developed from 92 experiments, and the statistical adequacy was assessed through appropriate diagnostics. This model was validated using additional data from the Drinking Water Surveillance Program database and was applied to the Smiths Falls water supply system in Ontario, Canada. The model predictions were correlated strongly to the measured trihalomethanes, with correlations of 0.95 and 0.91, respectively. The resulting model can assist in analyzing risk-cost tradeoffs in the design and operation of water supply systems.
Schneiderman, Steven J; Johnson, Roger W; Menkhaus, Todd J; Gilcrease, Patrick C
2015-03-01
While softwoods represent a potential feedstock for second generation ethanol production, compounds present in their hydrolysates can inhibit fermentation. In this study, a novel Design of Experiments (DoE) approach was used to identify significant inhibitory effects on Saccharomyces cerevisiae D5A for the purpose of guiding kinetic model development. Although acetic acid, furfural and 5-hydroxymethyl furfural (HMF) were present at potentially inhibitory levels, initial factorial experiments only identified ethanol as a significant rate inhibitor. It was hypothesized that high ethanol levels masked the effects of other inhibitors, and a subsequent factorial design without ethanol found significant effects for all other compounds. When these non-ethanol effects were accounted for in the kinetic model, R¯(2) was significantly improved over an ethanol-inhibition only model (R¯(2)=0.80 vs. 0.76). In conclusion, when ethanol masking effects are removed, DoE is a valuable tool to identify significant non-ethanol inhibitors and guide kinetic model development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Recirculating linacs for a neutrino factory - Arc optics design and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alex Bogacz; Valeri Lebedev
2001-10-21
A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190MeV/c and proceeding to 50GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice design choices. The resultingmore » arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less
Mohamed, Lagzouli; Kettani, Youssfi El; Ali, Aitounejjar; Mohamed, Elyachioui; Mohamed, Jadal
2017-01-01
Glucoamylase is among the most important enzymes in biotechnology. The present study aims to determine better conditions for growth and glucoamylase production by Candida guilliermondii and to reduce the overall cost of the medium using Box-Behnken design with one central point and response surface methodology. Box-Behnken factorial design based on three levels was carried out to obtain optimal medium combination of five independent variables such as initial pH, soluble starch, CH4N2O, yeast extract and MgSO4. Forty one randomized mediums were incubated in flask on a rotary shaker at 105 rpm for 72 h at 30°C. The production of biomass was found to be pH and starch dependent, maximum production when the starch concentration was 8 g L-1 and the initial pH was 6, while maximum glucoamylase production was found at 6.5 of initial pH, 4 g L-1 yeast extract and 6 g L-1 starch, whereas yeast extract and urea were highly significant, but interacted negatively. Box-Behnken factorial design used for the analysis of treatment combinations gave a second-order polynomial regression model with R2 = 0.976 for Biomass and R2 = 0.981 for glucoamylase. The final biomass and glucoamylase activity obtained was very close to the calculated parameters according to the p-values (p<0.001), the predicted optimal parameters were confirmed and provides a basis for further studies in baking additives and in the valuation of starch waste products.
Modeling and Recovery of Iron (Fe) from Red Mud by Coal Reduction
NASA Astrophysics Data System (ADS)
Zhao, Xiancong; Li, Hongxu; Wang, Lei; Zhang, Lifeng
Recovery of Fe from red mud has been studied using statistically designed experiments. The effects of three factors, namely: reduction temperature, reduction time and proportion of additive on recovery of Fe have been investigated. Experiments have been carried out using orthogonal central composite design and factorial design methods. A model has been obtained through variance analysis at 92.5% confidence level.
Ray, Chad A; Patel, Vimal; Shih, Judy; Macaraeg, Chris; Wu, Yuling; Thway, Theingi; Ma, Mark; Lee, Jean W; Desilva, Binodh
2009-02-20
Developing a process that generates robust immunoassays that can be used to support studies with tight timelines is a common challenge for bioanalytical laboratories. Design of experiments (DOEs) is a tool that has been used by many industries for the purpose of optimizing processes. The approach is capable of identifying critical factors and their interactions with a minimal number of experiments. The challenge for implementing this tool in the bioanalytical laboratory is to develop a user-friendly approach that scientists can understand and apply. We have successfully addressed these challenges by eliminating the screening design, introducing automation, and applying a simple mathematical approach for the output parameter. A modified central composite design (CCD) was applied to three ligand binding assays. The intra-plate factors selected were coating, detection antibody concentration, and streptavidin-HRP concentrations. The inter-plate factors included incubation times for each step. The objective was to maximize the logS/B (S/B) of the low standard to the blank. The maximum desirable conditions were determined using JMP 7.0. To verify the validity of the predictions, the logS/B prediction was compared against the observed logS/B during pre-study validation experiments. The three assays were optimized using the multi-factorial DOE. The total error for all three methods was less than 20% which indicated method robustness. DOE identified interactions in one of the methods. The model predictions for logS/B were within 25% of the observed pre-study validation values for all methods tested. The comparison between the CCD and hybrid screening design yielded comparable parameter estimates. The user-friendly design enables effective application of multi-factorial DOE to optimize ligand binding assays for therapeutic proteins. The approach allows for identification of interactions between factors, consistency in optimal parameter determination, and reduced method development time.
Occupational hazards and safety measures amongst the paint factory workers in lagos, Nigeria.
Awodele, Olufunsho; Popoola, Temidayo D; Ogbudu, Bawo S; Akinyede, Akin; Coker, Herbert A B; Akintonwa, Alade
2014-06-01
The manufacture of paint involves a variety of processes that present with medical hazards. Safety initiatives are hence introduced to limit hazard exposures and promote workplace safety. This aim of this study is to assess the use of available control measures/initiatives in selected paint factories in Lagos West Senatorial District, Nigeria. A total of 400 randomly selected paint factory workers were involved in the study. A well-structured World Health Organization standard questionnaire was designed and distributed to the workers to elicit information on awareness to occupational hazards, use of personal protective devices, and commonly experienced adverse symptoms. Urine samples were obtained from 50 workers randomly selected from these 400 participants, and the concentrations of the heavy metals (lead, cadmium, arsenic, and chromium) were determined using atomic absorption spectroscopy. The results show that 72.5% of the respondents are aware of the hazards associated with their jobs; 30% have had formal training on hazards and safety measures; 40% do not use personal protective devices, and 90% of the respondents reported symptoms relating to hazard exposure. There was a statistically significant (p < 0.05) increase in the mean heavy metal concentrations in the urine samples obtained from paint factory workers as compared with nonfactory workers. The need to develop effective frameworks that will initiate the integration and ensure implementation of safety regulations in paint factories is evident. Where these exist, there is a need to promote adherence to these practice guidelines.
Chamratrithirong, Aphichat; Ford, Kathleen; Punpuing, Sureeporn; Prasartkul, Pramote
2017-12-01
Vulnerability to Human Immunodeficiency Virus (HIV) infection among factory workers is a global problem. This study investigated the effectiveness of an intervention to increase AIDS knowledge, perceived accessibility to condoms and condom use among young factory workers in Thailand. The intervention was a workplace program designed to engage the private sector in HIV prevention. A cross-sectional survey conducted in 2008 to measure program outcomes in factories in Thailand was used in this study. The workplace intervention included the development of policies for management of HIV-positive employees, training sessions for managers and workers, and distribution of educational materials and condoms. A multi-level analysis was used to investigate the effect of HIV/AIDS prevention program components at the workplace on HIV/AIDS knowledge, perceived accessibility to condoms and condom use with regular sexual partners among 699 young factory workers (aged 18-24 years), controlling for their individual socio-demographic characteristics. Interventions related to the management and services component including workplace AIDS policy formulation, condom services programs and behavioral change campaigns were found to be significantly related to increased AIDS knowledge, perceived accessibility to condoms and condom use with regular partners. The effect of the HIV/AIDS training for managers, peer leaders and workers was positive but not statistically significant. With some revision of program components, scaling up of workplace interventions and the engagement of the private sector in HIV prevention should be seriously considered.
Need and supply gap in occupational health manpower in India.
Sharma, Kavya; Zodpey, Sanjay P; Tiwari, Rajnarayan R
2013-07-01
Industrial growth in India has resulted in increased employment opportunities, thereby inflating the size of the workforce engaged in both organized and unorganized sectors. This workforce is exposed to various occupational factors at workplace and hence is susceptible to occupational diseases, which requires trained occupational health manpower. The present study is undertaken to estimate the need and supply gap of occupational health manpower, based on present regulations. The total workforce in the organized sector in India is 26.92 million. There are 254,951 working registered industrial factories in India, with about 11.16 million workers. These factories have employed 6953 factory medical officers (FMOs) and 2308 safety officers (SOs). Hence, for 26.92 million of total workforce engaged in organized sector, we would require a total of 16,728 FMOs and 5619 SOs, thereby estimating the deficit of 58% for FMOs and 59% for SOs based on current ratio of employment.
Paz, Beatriz; Vázquez, José A; Riobó, Pilar; Franco, José M
2006-10-01
A complete first order orthogonal plan was used to optimize the growth and the production of yessotoxin (YTX) by the dinoflagellate Protoceratium reticulatum in culture by controlling salinity, temperature and irradiance. Initially, an approach to the kinetic data of cellular density and YTX production for each one of the experimental design conditions was performed. The P. reticulatum growth and YTX production were fitted to logistical equations and to a first-order kinetic model, respectively. The parameters obtained from this adjustment were used as dependent variables for the formulation of the empirical equations of the factorial design tested. The results showed that in practically all the cases for both, P. reticulatum growth and YTX production, irradiance is the primary independent variable and has a positive effect in the range 50-90 micromol photons m(-2) s(-1). Additionally, in certain specific cases, temperature reveals significant positive effects when maintained between 15 and 23 degrees C and salinity in the range of 20-34 displays negative effects. Despite the narrow ranges used in the work, results showed the suitability of factorial analysis to evaluate the optimal conditions for growth and yessotoxin production by the dinoflagellate P. reticulatum.
Biadglegne, Fantahun; Tessema, Belay; Kibret, Mulugeta; Abera, Bayeh; Huruy, Kahsay; Anagaw, Belay; Mulu, Andargachew
2009-10-01
The consumption of bottled drinking water is becoming increasing in Ethiopia. As a result there has been a growing concern about the chemical, physical and bacteriological quality of this product. Studies on the chemical, physical and bacteriological quality of bottled water is quite scarce in Ethiopia. This study was therefore aimed to assess the physicochemical and bacteriological qualities of three factories of bottled drinking water products produced in Amhara region. A Laboratory based comparative study was conducted to evaluate the physicochemical and bacteriological quality of three factories of bottled drinking water produced in Amhara region. Analysis on the quality of bottled drinking water from the sources, wholesalers and retailers were made with World Health Organization and Quality and Standards Authority of Ethiopia recommendations. Triplicate samples from three types of bottled drinking water were randomly collected and analyzed from June, 2006 to December, 2006. A total of 108 commercial bottled drinking water samples were analyzed. The result showed that except pH of factory A all the physicochemical parameters analyzed were with in the recommended limits. The pH value of factory A tested from sources is 5.3 and from wholesalers and retailers is 5.5 and 5.3, respectively, which is below the normal value set by World Health Organization (6.5-8.0) and Quality and Standards Authority of Ethiopia (6.0-8.5). Our analyses also demonstrated that 2 (16.7%) of the samples tested from sources and 1 (8.3%) from wholesalers of factory B were contaminated with total coliforms, where as 2 (16.7%) samples from retailers were also contaminated with total coliforms. On the other hand, 1 (8.3%) of the samples tested from wholesalers and 2 (16.7%) of the samples tested from retailers of factory A were also contaminated with total coliforms. Total coliforms were not detected from all samples of factory C, fecal coliforms were not also isolated from all samples. Percent of coefficient of variation showed that variations in total coliforms counts were significant with in the samples of both factory A and B (CV > 10%). Based on the recommended limit of World Health Organization and Quality and Standards Authority of Ethiopia, 7.4% of bottled drinking water sold commercially could be considered unfit for human consumption. Consumers of bottled water should be aware of this.
NASA Astrophysics Data System (ADS)
Nakano, Masaru; Kubota, Fumiko; Inamori, Yutaka; Mitsuyuki, Keiji
Manufacturing system designers should concentrate on designing and planning manufacturing systems instead of spending their efforts on creating the simulation models to verify the design. This paper proposes a method and its tool to navigate the designers through the engineering process and generate the simulation model automatically from the design results. The design agent also supports collaborative design projects among different companies or divisions with distributed engineering and distributed simulation techniques. The idea was implemented and applied to a factory planning process.
Interim Design Report for the International Design Study for a Neutrino Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choubey, S.; Gandhi, R.; Goswami, S.
2011-10-01
The starting point for the International Design Study for the Neutrino Factory (the IDS-NF) was the output of the earlier International Scoping Study for a future Neutrino Factory and super-beam facility (the ISS). The accelerator facility described in section 2 incorporates the improvements that have been derived from the substantial amount of work carried out within the Accelerator Working Group. Highlights of these improvements include: (1) Initial concepts for the implementation of the proton driver at each of the three example sites, CERN, FNAL, and RAL; (2) Detailed studies of the energy deposition in the target area; (3) A reductionmore » in the length of the muon beam phase-rotation and bunching systems; (4) Detailed analyses of the impact of the risk that stray magnetic field in the accelerating cavities in the ionization cooling channel will reduce the maximum operating gradient. Several alternative ionization-cooling lattices have been developed as fallback options to mitigate this technical risk; (5) Studies of particle loss in the muon front-end and the development of strategies to mitigate the deleterious effects of such losses; (6) The development of more complete designs for the muon linac and re-circulating linacs; (7) The development of a design for the muon FFAG that incorporates insertions for injection and extraction; and (8) Detailed studies of diagnostics in the decay ring. Other sub-systems have undergone a more 'incremental' evolution; an indication that the design of the Neutrino Factory has achieved a degree of maturity. The design of the neutrino detectors described in section 3 has been optimized and the Detector Working Group has made substantial improvements to the simulation and analysis of the Magnetized Iron Neutrino Detector (MIND) resulting in an improvement in the overall neutrino-detection efficiency and a reduction in the neutrino-energy threshold. In addition, initial consideration of the engineering of the MIND has generated a design that is feasible and a finite element analysis of the toroidal magnetic field to produce a realistic field map has been carried out. Section 3 also contains, for the first time, a specification for the near-detector systems and a demonstration that the neutrino flux can be determined with a precision of 1% through measurements of inverse muon decay at the near detector. The performance of the facility, the work of the Physics and Performance Evaluation Group, is described in section 1. The effect of the improved MIND performance is to deliver a discovery reach for CP-invariance violation in the lepton sector, the determination of the mass hierarchy, and of {theta}{sub 13} that extends down to values of sin{sup 2} 2{theta}{sub 13} {approx} 5 x 10{sup -5} and is robust against systematic uncertainties. In addition, the improved neutrino-energy threshold has allowed an indicative analysis of the kind of re-optimization of the facility that could be carried out should {theta}{sub 13} be found close to the current upper bound. The results presented in section 1 demonstrate that the discovery reach as well as the precision with which the oscillation parameters can be measured at the baseline Neutrino Factory is superior to that of other proposed facilities for all possible values of sin{sup 2} 2{theta}{sub 13}.« less
Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W
2017-05-01
The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.
Jakobson, Christopher M; Tullman-Ercek, Danielle; Mangan, Niall M
2018-05-29
Natural biochemical systems are ubiquitously organized both in space and time. Engineering the spatial organization of biochemistry has emerged as a key theme of synthetic biology, with numerous technologies promising improved biosynthetic pathway performance. One strategy, however, may produce disparate results for different biosynthetic pathways. We use a spatially resolved kinetic model to explore this fundamental design choice in systems and synthetic biology. We predict that two example biosynthetic pathways have distinct optimal organization strategies that vary based on pathway-dependent and cell-extrinsic factors. Moreover, we demonstrate that the optimal design varies as a function of kinetic and biophysical properties, as well as culture conditions. Our results suggest that organizing biosynthesis has the potential to substantially improve performance, but that choosing the appropriate strategy is key. The flexible design-space analysis we propose can be adapted to diverse biosynthetic pathways, and lays a foundation to rationally choose organization strategies for biosynthesis.
Feasibility study tool for semi-rigid joints design of high-rise buildings steel structures
NASA Astrophysics Data System (ADS)
Bagautdinov, Ruslan; Monastireva, Daria; Bodak, Irina; Potapova, Irina
2018-03-01
There are many ways to consider the final cost of the high-rise building structures and to define, which of their different variations are the most effective from different points of view. The research of Jaakko Haapio is conducted in Tampere University of Technology, which aims to develop a method that allows determining the manufacturing and installation costs of steel structures already at the tender phase while taking into account their details. This paper is aimed to make the analysis of the Feature-Based Costing Method for skeletal steel structures proposed by Jaakko Haapio. The most appropriate ways to improve the tool and to implement it in the Russian circumstances for high-rise building design are derived. Presented tool can be useful not only for the designers but, also, for the steel structures manufacturing organizations, which can help to utilize BIM technologies in the organization process and controlling on the factory.
ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Blanford; E. Keldrauk; M. Laufer
2010-09-20
Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement,more » and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.« less
Predictive microbiology for cosmetics based on physicals, chemicals and concentration parameters.
Ghalleb, S; De Vaugelade, S; Sella, O; Lavarde, M; Mielcarek, C; Pense-Lheritier, A-M; Pirnay, S
2015-02-01
Challenge test (CT) is essential to assure the efficiency of the preservative system in products. A previous study realized by our staff in 2012, carried out to evaluate the influence of three parameters (ethanol, pH and water) on the microbiological cosmetics products conservation. Following this work, a correlation between aw (based on the glycerine concentration) and the selected parameter has been demonstrated. In the present study, smaller limits of ethanol, pH and glycerine were applied to determinate CT necessity. Sixteen stables O/W cosmetics creams with different concentration of ethanol (1-19%), glycerine (3-16%) and different pH (6-11) were formulated. To evaluate the efficiency of the different formulations, CTs were performed according to the International Standard ISO 11930:2012. To determine the influence of the parameters, a D-optimal plan generated by Design Expert(®) was applied. Design of Experiments software offers to plan, estimate and control the statistics and models for factorial and no-factorial designs. Challenge tests results show that 10 formula passed criteria A, two passed criteria B and four are not conform. Mostly, an ethanol concentration higher than 16% exempts products of CT. It has been shown that an ethanol concentration between 10.5% and 16%, and an glycerine concentration >10%; or if the ethanol concentration is between 5% and 10.5%, glycerine is >6% and pH is ≥10, the CT is not required. Ethanol has a significant impact on conservation and especially when it is correlated with glycerine and pH. Finally, a glycerine concentration higher than 16% exempts products of CT. Following the analysis of the different concentration, a correlation between glycerine and ethanol that directly influence microbiological protection of cosmetics products has been established. Indeed, by controlling ethanol, pH and glycerine, many products may be exempted from the CT. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Design and analysis of mixed cropping experiments for indigenous Pacific Islands
Mareko P. Tofinga
1993-01-01
Mixed cropping (including agroforestry) often gives yield advan-tages as opposed to monocropping. Many criteria have been used to assess yield advantage in crop mixtures. Some of these are presented. In addition, the relative merits of replacement, additive and bivariate factorial designs are discussed. The concepts of analysis of mixed cropping are applied to an...
Effects of Computer Animation Instructional Package on Students' Achievement in Practical Biology
ERIC Educational Resources Information Center
Hamzat, Abdulrasaq; Bello, Ganiyu; Abimbola, Isaac Olakanmi
2017-01-01
This study examined the effects of computer animation instructional package on secondary school students' achievement in practical biology in Ilorin, Nigeria. The study adopted a pre-test, post-test, control group, non-randomised and nonequivalent quasi-experimental design, with a 2x2x3 factorial design. Two intact classes from two secondary…
ERIC Educational Resources Information Center
Perkins, Kyle
In this paper four classes of procedures for measuring the instructional sensitivity of reading comprehension test items are reviewed. True experimental designs are not recommended because some of the most important reading comprehension variables do not lend themselves to experimental manipulation. "Ex post facto" factorial designs are…
Effect of fescue toxicosis on ruminal kinetics, nitrogen and energy balance in Holstein steers
USDA-ARS?s Scientific Manuscript database
This study was designed to examine alteration of ruminal kinetics, as well as N and energy balance during fescue toxicosis. Six ruminally cannulated Holstein steers (BW=217 ±7 kg) were weight-matched into pairs and pair-fed throughout a cross-over design experiment with a 2x2 factorial treatment str...
ERIC Educational Resources Information Center
Ezeudu, F. O.; Chiaha, G. T. U.; Eze, J. U.
2013-01-01
The study was designed to develop and factorially validate an instrument for measuring teaching practice skills of chemistry student-teachers in University of Nigeria, Nsukka. Two research questions guided the study. The design of the study was instrumentation. All the chemistry student-teachers in the Department of Science Education, University…
Research on the ITOC based scheduling system for ship piping production
NASA Astrophysics Data System (ADS)
Li, Rui; Liu, Yu-Jun; Hamada, Kunihiro
2010-12-01
Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.
Patel, Prinesh N; Karakam, Vijaya Saradhi; Samanthula, Gananadhamu; Ragampeta, Srinivas
2015-10-01
Quality-by-design-based methods hold greater level of confidence for variations and greater success in method transfer. A quality-by-design-based ultra high performance liquid chromatography method was developed for the simultaneous assay of sumatriptan and naproxen along with their related substances. The first screening was performed by fractional factorial design comprising 44 experiments for reversed-phase stationary phases, pH, and organic modifiers. The results of screening design experiments suggested phenyl hexyl column and acetonitrile were the best combination. The method was further optimized for flow rate, temperature, and gradient time by experimental design of 20 experiments and the knowledge space was generated for effect of variable on response (number of peaks ≥ 1.50 - resolution). Proficient design space was generated from knowledge space by applying Monte Carlo simulation to successfully integrate quantitative robustness metrics during optimization stage itself. The final method provided the robust performance which was verified and validated. Final conditions comprised Waters® Acquity phenyl hexyl column with gradient elution using ammonium acetate (pH 4.12, 0.02 M) buffer and acetonitrile at 0.355 mL/min flow rate and 30°C. The developed method separates all 13 analytes within a 15 min run time with fewer experiments compared to the traditional quality-by-testing approach. ©2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tuberculosis in the workplace: developing partnerships with the garment industries in Bangladesh.
Zafar Ullah, A N; Huque, R; Husain, A; Akter, S; Akter, H; Newell, J N
2012-12-01
To implement and evaluate a public-private partnership model involving garment factories to reduce the tuberculosis (TB) burden in this workforce. We used operational research to develop and evaluate a mechanism for effective and sustainable TB control in workplaces in three areas of Dhaka, Bangladesh. Strategies, protocols, guides and tools were developed with stakeholders. We assessed the impact of the project using quantitative and qualitative measures: changes in TB outcomes were calculated using standard indicators based on factory and DOTS centre records; changes in TB care-seeking behaviour were assessed using qualitative in-depth interviews with factory managers and medical personnel, and focus group discussions with factory workers, including TB patients. The project brought positive changes in knowledge, attitudes and practices of managers, workers and health care providers on TB care and control. During 2008-2010, a total of 3372 workers from a workforce of 69,000 were referred for sputum microscopy and 598 were diagnosed with smear-positive TB, 145 of whom received care at their workplace. The overall treatment success rate was 100%. It is feasible to engage factories in TB control activities in Bangladesh, and thereby increase case notifications and improve treatment outcomes.
IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers
NASA Astrophysics Data System (ADS)
Ferrario, M.; Alesini, D.; Alessandroni, M.; Anania, M. P.; Andreas, S.; Angelone, M.; Arcovito, A.; Arnesano, F.; Artioli, M.; Avaldi, L.; Babusci, D.; Bacci, A.; Balerna, A.; Bartalucci, S.; Bedogni, R.; Bellaveglia, M.; Bencivenga, F.; Benfatto, M.; Biedron, S.; Bocci, V.; Bolognesi, M.; Bolognesi, P.; Boni, R.; Bonifacio, R.; Boscherini, F.; Boscolo, M.; Bossi, F.; Broggi, F.; Buonomo, B.; Calo, V.; Catone, D.; Capogni, M.; Capone, M.; Cassou, K.; Castellano, M.; Castoldi, A.; Catani, L.; Cavoto, G.; Cherubini, N.; Chirico, G.; Cestelli-Guidi, M.; Chiadroni, E.; Chiarella, V.; Cianchi, A.; Cianci, M.; Cimino, R.; Ciocci, F.; Clozza, A.; Collini, M.; Colo, G.; Compagno, A.; Contini, G.; Coreno, M.; Cucini, R.; Curceanu, C.; Curciarello, F.; Dabagov, S.; Dainese, E.; Davoli, I.; Dattoli, G.; De Caro, L.; De Felice, P.; De Leo, V.; Dell Agnello, S.; Della Longa, S.; Delle Monache, G.; De Spirito, M.; Di Cicco, A.; Di Donato, C.; Di Gioacchino, D.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Dodaro, A.; Doria, A.; Dosselli, U.; Drago, A.; Dupraz, K.; Escribano, R.; Esposito, A.; Faccini, R.; Ferrari, A.; Filabozzi, A.; Filippetto, D.; Fiori, F.; Frasciello, O.; Fulgentini, L.; Gallerano, G. P.; Gallo, A.; Gambaccini, M.; Gatti, C.; Gatti, G.; Gauzzi, P.; Ghigo, A.; Ghiringhelli, G.; Giannessi, L.; Giardina, G.; Giannini, C.; Giorgianni, F.; Giovenale, E.; Giulietti, D.; Gizzi, L.; Guaraldo, C.; Guazzoni, C.; Gunnella, R.; Hatada, K.; Iannone, M.; Ivashyn, S.; Jegerlehner, F.; Keeffe, P. O.; Kluge, W.; Kupsc, A.; Labate, L.; Levi Sandri, P.; Lombardi, V.; Londrillo, P.; Loreti, S.; Lorusso, A.; Losacco, M.; Lukin, A.; Lupi, S.; Macchi, A.; Magazù, S.; Mandaglio, G.; Marcelli, A.; Margutti, G.; Mariani, C.; Mariani, P.; Marzo, G.; Masciovecchio, C.; Masjuan, P.; Mattioli, M.; Mazzitelli, G.; Merenkov, N. P.; Michelato, P.; Migliardo, F.; Migliorati, M.; Milardi, C.; Milotti, E.; Milton, S.; Minicozzi, V.; Mobilio, S.; Morante, S.; Moricciani, D.; Mostacci, A.; Muccifora, V.; Murtas, F.; Musumeci, P.; Nguyen, F.; Orecchini, A.; Organtini, G.; Ottaviani, P. L.; Pace, C.; Pace, E.; Paci, M.; Pagani, C.; Pagnutti, S.; Palmieri, V.; Palumbo, L.; Panaccione, G. C.; Papadopoulos, C. F.; Papi, M.; Passera, M.; Pasquini, L.; Pedio, M.; Perrone, A.; Petralia, A.; Petrarca, M.; Petrillo, C.; Petrillo, V.; Pierini, P.; Pietropaolo, A.; Pillon, M.; Polosa, A. D.; Pompili, R.; Portoles, J.; Prosperi, T.; Quaresima, C.; Quintieri, L.; Rau, J. V.; Reconditi, M.; Ricci, A.; Ricci, R.; Ricciardi, G.; Ricco, G.; Ripani, M.; Ripiccini, E.; Romeo, S.; Ronsivalle, C.; Rosato, N.; Rosenzweig, J. B.; Rossi, A. A.; Rossi, A. R.; Rossi, F.; Rossi, G.; Russo, D.; Sabatucci, A.; Sabia, E.; Sacchetti, F.; Salducco, S.; Sannibale, F.; Sarri, G.; Scopigno, T.; Sekutowicz, J.; Serafini, L.; Sertore, D.; Shekhovtsova, O.; Spassovsky, I.; Spadaro, T.; Spataro, B.; Spinozzi, F.; Stecchi, A.; Stellato, F.; Surrenti, V.; Tenore, A.; Torre, A.; Trentadue, L.; Turchini, S.; Vaccarezza, C.; Vacchi, A.; Valente, P.; Venanzoni, G.; Vescovi, S.; Villa, F.; Zanotti, G.; Zema, N.; Zobov, M.; Zomer, F.
2014-03-01
This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities.
Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection
Climent, Enric; Pelegri-Sebastia, Jose; Sogorb, Tomas; Talens, J. B.; Chilo, Jose
2017-01-01
In this paper, we describe a new low-cost and portable electronic nose instrument, the Multisensory Odor Olfactory System MOOSY4. This prototype is based on only four metal oxide semiconductor (MOS) gas sensors suitable for IoT technology. The system architecture consists of four stages: data acquisition, data storage, data processing, and user interfacing. The designed eNose was tested with experiment for detection of volatile components in water pollution, as a dimethyl disulphide or dimethyl diselenide or sulphur. Therefore, the results provide evidence that odor information can be recognized with around 86% efficiency, detecting smells unwanted in the water and improving the quality control in bottled water factories. PMID:28825645
Putting Automated Visual Inspection Systems To Work On The Factory Floor: What's Missing?
NASA Astrophysics Data System (ADS)
Waltz, Frederick M.; Snyder, Michael A.; Batchelor, Bruce G.
1990-02-01
Machine vision systems and other automated visual inspection (AVI) systems have been proving their usefulness in factories for more than a decade. In spite of this, the number of installed systems is far below the number that could profitably be employed. In the opinion of the authors, the primary reason for this is the high cost of customizing vision systems to meet applications requirements. A three-part approach to this problem has proven to be useful: 1. A multi-phase paradigm for customer interaction, system specification, system development, and system installation; 2. A powerful and easy-to-use system development environment, including a a flexible laboratory lighting setup, plus software-based tools to assist in the design of image acquisition systems, b. an image processing environment with a very large repertoire of image processing and feature extraction operations and an easy-to-use command interpreter having macro capabilities, and c. an image analysis environment with high-level constructs, a flexible and powerful syntax, and a "seamless" interface to the image processing level; and 3. A moderately-priced high-speed "target" system fully compatible with the development environment, so that algorithms developed thereon can be transferred directly to the factory environment without further development costs or reprogramming. Items 1 and 2 are covered in other papers1,23,4,5 and are touched on here only briefly. Item 3 is the main subject of this paper. Our major motivation in presenting this paper is to offer suggestions to vendors developing commercial boards and systems, in hopes that the special needs of industrial inspection can be met.
Mielniczuk, Emilia; Łaguna, Mariola
2018-02-16
The first aim of the study reported in this article was to test the factorial structure of job-related affect in a Polish sample. The second aim was to develop the Polish adaptation of the Warr's job-related affective well-being measure published in 1990, which is designed to assess 4 types of affect at work: anxiety, comfort, depression, enthusiasm. A longitudinal study design with 2 measurement times was used for verifying the psychometric properties of the Polish version of the measure. The final sample consisted of 254 Polish employees from different professions. Participants were asked to fill in a set of questionnaires consisting of measures capturing job-related affective well-being, mood, and turnover intention. The first step of analysis was to test the theoretically-based structure of the job-related affective well-being measure in a Polish sample. The confirmatory factor analysis revealed that a 4-factor model best describes the structure of the measure in comparison to 5 alternative models. Next, reliability of this measure was assessed. All scales achieved good internal consistency and acceptable test-retest reliability after 2 weeks. Finally, the convergent and discriminant validity as well as the criterion and predictive validity of all job-related affective well-being scales was confirmed, based on correlations between job-related affect and mood as well as turnover intention. The results suggest that the Polish adaptation of Warr's job-related affective well-being measure can be used by scientists as well as by practitioners who aim at assessing 4 types of affective well-being at a work context. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
2016-09-01
leadership. Subjects were randomly assigned to one of four groups to conduct a mixed- design experiment; the design included a 2 x 2 factorial component...The experimental design should have resulted in baseline groups that were representative of the target population; therefore, one would expect...1983; Sheridan, 2015). “SRK provides a language in which to talk about types of behavior as a basis for system design . It provides a basis on which
2006-08-15
This image composite shows a part of the Orion constellation surveyed by NASA Spitzer Space Telescope. The shape of the main image was designed by astronomers to roughly follow the shape of Orion cloud A, an enormous star-making factory.
NASA Technical Reports Server (NTRS)
Daiello, R. V.
1977-01-01
A general technology assessment and manufacturing cost analysis was presented. A near-term (1982) factory design is described, and the results of an experimental production study for the large-scale production of flat-panel silicon and solar-cell arrays are detailed.
Cost effectiveness of ergonomic redesign of electronic motherboard.
Sen, Rabindra Nath; Yeow, Paul H P
2003-09-01
A case study to illustrate the cost effectiveness of ergonomic redesign of electronic motherboard was presented. The factory was running at a loss due to the high costs of rejects and poor quality and productivity. Subjective assessments and direct observations were made on the factory. Investigation revealed that due to motherboard design errors, the machine had difficulty in placing integrated circuits onto the pads, the operators had much difficulty in manual soldering certain components and much unproductive manual cleaning (MC) was required. Consequently, there were high rejects and occupational health and safety (OHS) problems, such as, boredom and work discomfort. Also, much labour and machine costs were spent on repairs. The motherboard was redesigned to correct the design errors, to allow more components to be machine soldered and to reduce MC. This eliminated rejects, reduced repairs, saved US dollars 581495/year and improved operators' OHS. The customer also saved US dollars 142105/year on loss of business.
Sensitivity analysis and nonlinearity assessment of steam cracking furnace process
NASA Astrophysics Data System (ADS)
Rosli, M. N.; Sudibyo, Aziz, N.
2017-11-01
In this paper, sensitivity analysis and nonlinearity assessment of cracking furnace process are presented. For the sensitivity analysis, the fractional factorial design method is employed as a method to analyze the effect of input parameters, which consist of four manipulated variables and two disturbance variables, to the output variables and to identify the interaction between each parameter. The result of the factorial design method is used as a screening method to reduce the number of parameters, and subsequently, reducing the complexity of the model. It shows that out of six input parameters, four parameters are significant. After the screening is completed, step test is performed on the significant input parameters to assess the degree of nonlinearity of the system. The result shows that the system is highly nonlinear with respect to changes in an air-to-fuel ratio (AFR) and feed composition.
The Role of Synthetic Biology in the Design of Microbial Cell Factories for Biofuel Production
Colin, Verónica Leticia; Rodríguez, Analía; Cristóbal, Héctor Antonio
2011-01-01
Insecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology. Recent progress in synthetic biology has accelerated the ability to analyze, construct, and/or redesign microbial metabolic pathways with unprecedented precision, in order to permit biofuel production that is amenable to industrial applications. The review presented here focuses specifically on the role of synthetic biology in the design of microbial cell factories for efficient production of biodiesel. PMID:22028591
Jagathjothi, N; Amanullah, M Mohamed; Muthukrishnan, P
2013-11-15
Pot culture and field experiments were carried out at the Common Effluent Treatment Plant (CETP), Dindigul during kharif 2011-12 to investigate the influence of irrigation of treated tannery effluent along with domestic wastewater on growth, yield attributes and yield of cotton. The pot culture was in a factorial completely randomized design and field experiment laid out in factorial randomized block design with four replications. The results revealed that the mixing proportion of 25% Treated Tannery Effluent (TTE)+75% domestic wastewater (DWW) application recorded taller plants, higher dry matter production, number of sympodial branches plant(-1), number of fruiting points plant(-1), number of bolls plant(-1) and seed cotton yield with yield reduction of 15.28 and 16.11% compared to normal water irrigation under pot culture and field experiment, respectively. Regarding amendments, gypsum application registered higher seed cotton yield followed by VAM.
Accelerator structure and beam transport system for the KEK photon factory injector
NASA Astrophysics Data System (ADS)
Sato, Isamu
1980-11-01
The injector is a 2.5 GeV electron linac which serves multiple purposes, being not only the injector for the various storage rings of the Photon Factory but also for the next planned project, the TRISTAN RING, and also as an intense electron or γ-ray source for research on phenomena in widely diverse scientific fields. The accelerator structure and beam transport system for the linac were designed with the greatest care in order to avoid beam blow-up difficulties, and also to be as suitable as possible to enable the economical mass production of the accelerator guides and focusing magnets.
Rapid prototyping of microbial cell factories via genome-scale engineering.
Si, Tong; Xiao, Han; Zhao, Huimin
2015-11-15
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories. Copyright © 2014 Elsevier Inc. All rights reserved.
Compact scanning transmission x-ray microscope at the photon factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeichi, Yasuo, E-mail: yasuo.takeichi@kek.jp; Inami, Nobuhito; Ono, Kanta
We report the design and performance of a compact scanning transmission X-ray microscope developed at the Photon Factory. Piezo-driven linear stages are used as coarse stages of the microscope to realize excellent compactness, mobility, and vibrational and thermal stability. An X-ray beam with an intensity of ∼10{sup 7} photons/s was focused to a diameter of ∼40 nm at the sample. At the soft X-ray undulator beamline used with the microscope, a wide range of photon energies (250–1600 eV) is available. The microscope has been used to research energy materials and in environmental sciences.
Garcia, Antonio F.; Acosta, Melina; Pirani, Saifa; Edwards, Daniel; Osman, Augustine
2017-01-01
We describe 2 studies designed to evaluate scores on the Multidimensional Shame-related Response Inventory-21 (MSRI-21), a recently developed instrument that measures affective and behavioral responses to shame. The inventory assesses shame-related responses in 3 categories: negative self-evaluation, fear of social consequences, and maladaptive behavior tendency. For Study 1, (N = 743) undergraduates completed the MSRI-21. Confirmatory factor analysis supported the validity of the MSRI-21 3-factor structure. Latent variable modeling of coefficient-α provided strong evidence for the internal consistency of scores on each scale. In Study 2, (N = 540) undergraduates completed the instrument along with 5 concurrent measures chosen for clinical significance. Achievement of factorial invariance supported the use of MSRI-21 scale scores to make valid mean comparisons across gender. In addition, MSRI-21 scale scores were associated as expected with scores on measures of self-harm, suicide, and other risk factors. Taken together, results of 2 studies support the internal consistency reliability, factorial validity, factorial invariance, and convergent validity of scores on the MSRI-21. Further work is needed to assess the temporal stability of the MSRI-21 scale scores, invariance across clinical status and other groupings, item-level measurement properties, and viability in highly symptomatic samples. PMID:28182490
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, materials costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structure. Key technologies, such as large crown panel fabrication, were pursued for low cost. An intricate bond panel design and manufacturing concept were selected based on the efforts of the Design Build Team. The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and use of low cost materials forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing costs by 18 pct. and weight by 45 pct. relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
Recirculating linacs for a neutrino factory - Arc optics design and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valeri Lebedev; S. Bogacz
2001-10-25
A conceptual lattice design for a muon accelerator based on recirculating linacs (Nucl. Instr. and Meth. A 472 (2001) 499, these proceedings) is presented here. The challenge of accelerating and transporting a large phase space of short-lived muons is answered here by presenting a proof-of-principle lattice design for a recirculating linac accelerator. It is the centerpiece of a chain of accelerators consisting of a 3 GeV linac and two consecutive recirculating linear accelerators, which facilitates acceleration starting after ionization cooling at 190 MeV/c and proceeding to 50 GeV. Beam transport issues for large-momentum-spread beams are accommodated by appropriate lattice designmore » choices. The resulting arc optics is further optimized with a sextupole correction to suppress chromatic effects contributing to the emittance dilution. The presented proof-of-principle design of the arc optics with horizontal separation of multi-pass beams can be extended to all passes in both recirculating linacs.« less
Composite fuselage crown panel manufacturing technology
NASA Technical Reports Server (NTRS)
Willden, Kurtis; Metschan, S.; Grant, C.; Brown, T.
1992-01-01
Commercial fuselage structures contain significant challenges in attempting to save manufacturing costs with advanced composite technology. Assembly issues, material costs, and fabrication of elements with complex geometry are each expected to drive the cost of composite fuselage structures. Boeing's efforts under the NASA ACT program have pursued key technologies for low-cost, large crown panel fabrication. An intricate bond panel design and manufacturing concepts were selected based on the efforts of the Design Build Team (DBT). The manufacturing processes selected for the intricate bond design include multiple large panel fabrication with the Advanced Tow Placement (ATP) process, innovative cure tooling concepts, resin transfer molding of long fuselage frames, and utilization of low-cost material forms. The process optimization for final design/manufacturing configuration included factory simulations and hardware demonstrations. These efforts and other optimization tasks were instrumental in reducing cost by 18 percent and weight by 45 percent relative to an aluminum baseline. The qualitative and quantitative results of the manufacturing demonstrations were used to assess manufacturing risks and technology readiness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adey, D.; Appleby, R. B.; Bayes, R.
Neutrino beams produced from the decay of muons in a racetrack-like decay ring (the so called Neutrino Factory) provide a powerful way to study neutrino oscillation physics and, in addition, provide unique beams for neutrino interaction studies. The Neutrinos from STORed Muons (nuSTORM) facility uses a neutrino factory-like design. Due to the particular nature of nuSTORM, it can also provide an intense, very pure, muon neutrino beam from pion decay. This so-called 'Neo-conventional' muon-neutrino beam from nuSTORM makes nuSTORM a hybrid neutrino factory. Here in this paper we describe the facility and give a detailed description of the neutrino beamsmore » that are available and the precision to which they can be characterized. We then show its potential for a neutrino interaction physics program and present sensitivity plots that indicate how well the facility can perform for short-baseline oscillation searches. Lastly, we comment on the performance potential of a 'Neo-conventional' muon neutrino beam optimized for long-baseline neutrino-oscillation physics.« less
NASA Astrophysics Data System (ADS)
Yong, Chin-Khian
2013-09-01
A partially confounded factorial conjoint choice experiments design was used to examine the monetary value of the willingness to pay for E-book Reader's attributes. Conjoint analysis is an efficient, cost-effective, and most widely used quantitative method in marketing research to understand consumer preferences and value trade-off. Value can be interpreted by customer or consumer as the received of multiple benefits from a price that was paid. The monetary value of willingness to pay for battery life, internal memory, external memory, screen size, text to Speech, touch screen, and converting handwriting to digital text of E-book reader were estimated in this study. Due to the significant interaction effect of the attributes with the price, the monetary values for the seven attributes were found to be different at different values of odds of purchasing versus not purchasing. The significant interactions effects were one of the main contribution of the partially confounded factorial conjoint choice experiment.
2010-01-01
Background The life-time incidence of low back pain is high and diagnoses of spinal stenosis and disc prolapse are increasing. Consequently, there is a steady rise in surgical interventions for these conditions. Current evidence suggests that while the success of surgery is incomplete, it is superior to conservative interventions. A recent survey indicates that there are large differences in the type and intensity of rehabilitation, if any, provided after spinal surgery as well as in the restrictions and advice given to patients in the post-operative period. This trial will test the hypothesis that functional outcome following two common spinal operations can be improved by a programme of post-operative rehabilitation that combines professional support and advice with graded active exercise and/or an educational booklet based on evidence-based messages and advice. Methods/Design The study design is a multi-centre, factorial, randomised controlled trial with patients stratified by surgeon and operative procedure. The trial will compare the effectiveness and cost-effectiveness of a rehabilitation programme and an education booklet for the postoperative management of patients undergoing discectomy or lateral nerve root decompression, each compared with "usual care"using a 2 × 2 factorial design. The trial will create 4 sub-groups; rehabilitation-only, booklet-only, rehabilitation-plus-booklet, and usual care only. The trial aims to recruit 344 patients, which equates to 86 patients in each of the four sub-groups. All patients will be assessed for functional ability (through the Oswestry Disability Index - a disease specific functional questionnaire), pain (using visual analogue scales), and satisfaction pre-operatively and then at 6 weeks, 3, 6 and 9 months and 1 year post-operatively. This will be complemented by a formal analysis of cost-effectiveness. Discussion This trial will determine whether the outcome of spinal surgery can be enhanced by either a post-operative rehabilitation programme or an evidence-based advice booklet or a combination of the two and as such will contribute to our knowledge on how to manage spinal surgery patients in the post-operative period. Trial Registration Current controlled trials ISRCTN46782945 UK CRN ID: 2670 PMID:20102625
Xiong, Lilin; Huang, Xiao; Li, Jie; Mao, Peng; Wang, Xiang; Wang, Rubing; Tang, Meng
2018-06-13
Indoor physical environments appear to influence learning efficiency nowadays. For improvement in learning efficiency, environmental scenarios need to be designed when occupants engage in different learning tasks. However, how learning efficiency is affected by indoor physical environment based on task types are still not well understood. The present study aims to explore the impacts of three physical environmental factors (i.e., temperature, noise, and illuminance) on learning efficiency according to different types of tasks, including perception, memory, problem-solving, and attention-oriented tasks. A 3 × 4 × 3 full factorial design experiment was employed in a university classroom with 10 subjects recruited. Environmental scenarios were generated based on different levels of temperature (17 °C, 22 °C, and 27 °C), noise (40 dB(A), 50 dB(A), 60 dB(A), and 70 dB(A)) and illuminance (60 lx, 300 lx, and 2200 lx). Accuracy rate (AC), reaction time (RT), and the final performance indicator (PI) were used to quantify learning efficiency. The results showed ambient temperature, noise, and illuminance exerted significant main effect on learning efficiency based on four task types. Significant concurrent effects of the three factors on final learning efficiency was found in all tasks except problem-solving-oriented task. The optimal environmental scenarios for top learning efficiency were further identified under different environmental interactions. The highest learning efficiency came in thermoneutral, relatively quiet, and bright conditions in perception-oriented task. Subjects performed best under warm, relatively quiet, and moderately light exposure when recalling images in the memory-oriented task. Learning efficiency peaked to maxima in thermoneutral, fairly quiet, and moderately light environment in problem-solving process while in cool, fairly quiet and bright environment with regard to attention-oriented task. The study provides guidance for building users to conduct effective environmental intervention with simultaneous controls of ambient temperature, noise, and illuminance. It contributes to creating the most suitable indoor physical environment for improving occupants learning efficiency according to different task types. The findings could further supplement the present indoor environment-related standards or norms with providing empirical reference on environmental interactions.
Schäfer, Sarah K; Weidner, Kathrin Julia; Hoppner, Jorge; Becker, Nicolas; Friedrich, Dana; Stokes, Caroline S; Lammert, Frank; Köllner, Volker
2017-12-04
Currently, a suitable questionnaire in German language is not available to monitor the progression and evaluate the severity of irritable bowel syndrome (IBS). Therefore, this study aimed to translate the Gastrointestinal Symptom Rating Scale for Irritable Bowel Syndrome (GSRS-IBS) into German and to evaluate its psychometric qualities and factorial structure. This study is based on a total sample of 372 participants [62.6% female, mean age = 41 years (SD = 17 years)]. 17.5% of the participants had a diagnosis of IBS, 19.9% were receiving treatment for chronic inflammatory bowel disease, 12.1% of the participants were recruited from a psychosomatic clinic, and 50.5% belonged to a control group. All participants completed the German version of GSRS-IBS (called Reizdarm-Fragebogen, RDF), as well as the Gießen Subjective Complaints List (GBB-24) and the Hospital Anxiety and Depression Scale - German version (HADS-D). The internal consistency of the RDF total scale was at least satisfactory in all subsamples (Cronbach's Alpha between .77 and .92), and for all subscales (Cronbach's Alpha between .79 and .91). The item difficulties (between .25 and .73) and the item-total correlations (between .48 and .83) were equally satisfactory. Principal axis analysis revealed a four-factorial structure of the RDF items, which mainly resembled the structure of the English original. Convergent validity was established based on substantial and significant correlations with the stomach-complaint scale of the GBB-24 (r = .71; p < .01) and the anxiety (r = .42; p < .01) and depression scales (r = .43; p < .01) of the HADS-D. The German version of the GSRS-IBS RDF proves to be an effective, reliable, and valid questionnaire for the assessment of symptom severity in IBS, which can be used in clinical practice as well as in clinical studies.
Swami, Viren; Barron, David; Weis, Laura; Voracek, Martin; Stieger, Stefan; Furnham, Adrian
2017-01-01
A number scales have been developed to measure conspiracist ideation, but little attention has been paid to the factorial validity of these scales. We reassessed the psychometric properties of four widely-used scales, namely the Belief in Conspiracy Theories Inventory (BCTI), the Conspiracy Mentality Questionnaire (CMQ), the Generic Conspiracist Beliefs Scale (GCBS), and the One-Item Conspiracy Measure (OICM). Eight-hundred-and-three U.S. adults completed all measures, along with measures of endorsement of 9/11 and anti-vaccination conspiracy theories. Through both exploratory and confirmatory factor analysis, we found that only the BCTI had acceptable factorial validity. We failed to confirm the factor structures of the CMQ and the GBCS, suggesting these measures had poor factorial validity. Indices of convergent validity were acceptable for the BCTI, but weaker for the other measures. Based on these findings, we provide suggestions for the future refinement in the measurement of conspiracist ideation.
Swami, Viren; Barron, David; Weis, Laura; Voracek, Martin; Stieger, Stefan; Furnham, Adrian
2017-01-01
A number scales have been developed to measure conspiracist ideation, but little attention has been paid to the factorial validity of these scales. We reassessed the psychometric properties of four widely-used scales, namely the Belief in Conspiracy Theories Inventory (BCTI), the Conspiracy Mentality Questionnaire (CMQ), the Generic Conspiracist Beliefs Scale (GCBS), and the One-Item Conspiracy Measure (OICM). Eight-hundred-and-three U.S. adults completed all measures, along with measures of endorsement of 9/11 and anti-vaccination conspiracy theories. Through both exploratory and confirmatory factor analysis, we found that only the BCTI had acceptable factorial validity. We failed to confirm the factor structures of the CMQ and the GBCS, suggesting these measures had poor factorial validity. Indices of convergent validity were acceptable for the BCTI, but weaker for the other measures. Based on these findings, we provide suggestions for the future refinement in the measurement of conspiracist ideation. PMID:28231266
Method for Assessing the Integrated Risk of Soil Pollution in Industrial and Mining Gathering Areas
Guan, Yang; Shao, Chaofeng; Gu, Qingbao; Ju, Meiting; Zhang, Qian
2015-01-01
Industrial and mining activities are recognized as major sources of soil pollution. This study proposes an index system for evaluating the inherent risk level of polluting factories and introduces an integrated risk assessment method based on human health risk. As a case study, the health risk, polluting factories and integrated risks were analyzed in a typical industrial and mining gathering area in China, namely, Binhai New Area. The spatial distribution of the risk level was determined using a Geographic Information System. The results confirmed the following: (1) Human health risk in the study area is moderate to extreme, with heavy metals posing the greatest threat; (2) Polluting factories pose a moderate to extreme inherent risk in the study area. Such factories are concentrated in industrial and urban areas, but are irregularly distributed and also occupy agricultural land, showing a lack of proper planning and management; (3) The integrated risks of soil are moderate to high in the study area. PMID:26580644
Experimenting `learn by doing' and `learn by failing'
NASA Astrophysics Data System (ADS)
Pozzi, Rossella; Noè, Carlo; Rossi, Tommaso
2015-01-01
According to the literature, in recent years, developing experiential learning has fulfilled the requirement of a deep understanding of lean philosophy by engineering students, demonstrating the advantages and disadvantages of some of the key principles of lean manufacturing. On the other hand, the literature evidences how some kinds of game-based experiential learning overlook daily difficulties, which play a central role in manufacturing systems. To fill the need of a game overcoming such lack of vision, an innovative game direct in-field, named Kart Factory, has been developed. Actual production shifts are simulated, while keeping all the elements peculiar to a real production set (i.e. complexity, effort, safety). The working environment is a real pedal car assembly department, the products to be assembled have relevant size and weight (i.e. up to 35 kg approximately), and the provided tools are real production equipment (e.g. keys, screwdrivers, trans-pallets, etc.). Due to the need to maximise the impact on students, a labour-intensive process characterises the production department. The whole training process is based on three educational principles: Experience Value Principle, Error Value Principle, and Team Value Principle. As the 'learn by doing' and 'learn by failing' are favoured, the theory follows the practice, while crating the willingness to 'do' instead of just designing or planning. The gathered data prove the Kart Factory's effectiveness in reaching a good knowledge of lean concepts, notwithstanding the students' initial knowledge level.
Toward precision smoking cessation treatment I: Moderator results from a factorial experiment.
Piper, Megan E; Schlam, Tanya R; Cook, Jessica W; Smith, Stevens S; Bolt, Daniel M; Loh, Wei-Yin; Mermelstein, Robin; Collins, Linda M; Fiore, Michael C; Baker, Timothy B
2017-02-01
The development of tobacco use treatments that are effective for all smokers is critical to improving clinical and public health. The Multiphase Optimization Strategy (MOST) uses highly efficient factorial experiments to evaluate multiple intervention components for possible inclusion in an optimized tobacco use treatment. Factorial experiments permit analyses of the influence of patient characteristics on main and interaction effects of multiple, relatively discrete, intervention components. This study examined whether person-factor and smoking characteristics moderated the main or interactive effects of intervention components on 26-week self-reported abstinence rates. This fractional factorial experiment evaluated six smoking cessation intervention components among primary care patients (N=637): Prequit Nicotine Patch vs. None, Prequit Nicotine Gum vs. None, Preparation Counseling vs. None, Intensive Cessation In-Person Counseling vs. Minimal, Intensive Cessation Telephone Counseling vs. Minimal, and 16 vs. 8 Weeks of Combination Nicotine Replacement Therapy (NRT; nicotine patch+nicotine gum). Both psychiatric history and smoking heaviness moderated intervention component effects. In comparison with participants with no self-reported history of a psychiatric disorder, those with a positive history showed better response to 16- vs. 8-weeks of combination NRT, but a poorer response to counseling interventions. Also, in contrast to light smokers, heavier smokers showed a poorer response to counseling interventions. Heavy smokers and those with psychiatric histories demonstrated a differential response to intervention components. This research illustrates the use of factorial designs to examine the interactions between person characteristics and relatively discrete intervention components. Future research is needed to replicate these findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ANTAGONISM OF CHLOROBENZENE-INDUCED HEPATOTOXICITY BY LINDANE
In a 2x2 factorial designed experiment involving chlorobenzene and gamma-hexachlorocyclohexane (lindane), the hepatotoxicity induced by a challenge dose of chlorobenzene was altered by the pretreatments due to selective changes in various metabolic pathways. These changes resulte...
Adedokun, S A; Pescatore, A J; Ford, M J; Jacob, J P; Helmbrecht, A
2017-09-01
The effect of dietary electrolyte balance (DEB), energy source (ES), and length of feeding of nitrogen-free diet (NFD) on ileal endogenous amino acid (EAA) loss in mg/kg dry matter intake (DMI) was evaluated in broiler chickens. In Experiment 1, 720 chickens consisting of 15 replicate cages with 6 chickens/replicate were used. Treatments were arranged in a 2 × 2 × 2 factorial and consisted of 4 NFD with 2 levels (low or high) of DEB and 2 ES [corn starch (CS) or dextrose (DX)], and 2 sampling time-points (diets were fed for either 72 h (d 16 to 19) or 120 h (d 16 to 21). Experiment 2 used 360 chickens in a 2 × 2 factorial arrangement of treatments with 2 levels (low or high) of DEB and 2 ES (CS or DX). Diets were fed for 72 h (d 18 to 21). All birds had access to feed and water on an ad libitum basis. Data were analyzed using the GLM procedure of SAS appropriate for a completely randomized design for a factorial arrangement of treatments. For Experiment 1, there were interactions (P < 0.05) between the 3 main factors for nitrogen and all the AA except Trp. Broilers that were fed DX-based NFD with high DEB for 72 h had the highest (P < 0.05) EAA losses. In Experiment 2, there was no interaction between DEB and ES except for His and Lys. When ileal EAA losses from birds fed the low DEB, CS-based NFD were used to standardize apparent ileal digestibility values from a previous study, there was no effect of length of feeding on standardized ileal AA digestibility values. In conclusion, DX-based NFD with high DEB increased endogenous AA loses. Despite differences in ileal EAA losses from CS-based NFD, standardized ileal AA digestibility values were not influenced by the length of feeding of NFD. Based on the results from these studies, NFD could be fed for 72 h without influencing SIAAD values. © 2017 Poultry Science Association Inc.
Cryogenics for the MuCool Test Area (MTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darve, Christine; Norris, Barry; Pei, Liu-Jin
2005-09-01
MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R&D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH{sub 2}) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN{sub 2} and LH{sub 2}. The latter dictates stringent system design for hazardous locations.more » The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R&D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less
Cryogenics for the MuCool Test Area (MTA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darve, Christine; Norris, Barry; Pei, Liujin
2006-03-20
MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. Themore » cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.« less
ERIC Educational Resources Information Center
Bliss, Clifford; Giles, Bob
This unit for fourth grade and high school includes elements of careers, economics and free enterprise for fourth graders and elements of problem solving and design, manufacturing, drafting, and woodworking for high school students. The unit is taught in both the fourth grade and the high school classrooms. The unit involves planning, designing,…
Post-Fisherian Experimentation: From Physical to Virtual
Jeff Wu, C. F.
2014-04-24
Fisher's pioneering work in design of experiments has inspired further work with broader applications, especially in industrial experimentation. Three topics in physical experiments are discussed: principles of effect hierarchy, sparsity, and heredity for factorial designs, a new method called CME for de-aliasing aliased effects, and robust parameter design. The recent emergence of virtual experiments on a computer is reviewed. Here, some major challenges in computer experiments, which must go beyond Fisherian principles, are outlined.
Permutation testing of orthogonal factorial effects in a language-processing experiment using fMRI.
Suckling, John; Davis, Matthew H; Ooi, Cinly; Wink, Alle Meije; Fadili, Jalal; Salvador, Raymond; Welchew, David; Sendur, Levent; Maxim, Vochita; Bullmore, Edward T
2006-05-01
The block-paradigm of the Functional Image Analysis Contest (FIAC) dataset was analysed with the Brain Activation and Morphological Mapping software. Permutation methods in the wavelet domain were used for inference on cluster-based test statistics of orthogonal contrasts relevant to the factorial design of the study, namely: the average response across all active blocks, the main effect of speaker, the main effect of sentence, and the interaction between sentence and speaker. Extensive activation was seen with all these contrasts. In particular, different vs. same-speaker blocks produced elevated activation in bilateral regions of the superior temporal lobe and repetition suppression for linguistic materials (same vs. different-sentence blocks) in left inferior frontal regions. These are regions previously reported in the literature. Additional regions were detected in this study, perhaps due to the enhanced sensitivity of the methodology. Within-block sentence suppression was tested post-hoc by regression of an exponential decay model onto the extracted time series from the left inferior frontal gyrus, but no strong evidence of such an effect was found. The significance levels set for the activation maps are P-values at which we expect <1 false-positive cluster per image. Nominal type I error control was verified by empirical testing of a test statistic corresponding to a randomly ordered design matrix. The small size of the BOLD effect necessitates sensitive methods of detection of brain activation. Permutation methods permit the necessary flexibility to develop novel test statistics to meet this challenge.
Summary of the Optics, IR, Injection, Operations, Reliability and Instrumentation Working Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wienands, U.; /SLAC; Funakoshi, Y.
2012-04-20
The facilities reported on are all in a fairly mature state of operation, as evidenced by the very detailed studies and correction schemes that all groups are working on. First- and higher-order aberrations are diagnosed and planned to be corrected. Very detailed beam measurements are done to get a global picture of the beam dynamics. More than other facilities the high-luminosity colliders are struggling with experimental background issues, mitigation of which is a permanent challenge. The working group dealt with a very wide rage of practical issues which limit performance of the machines and compared their techniques of operations andmore » their performance. We anticipate this to be a first attempt. In a future workshop in this series, we propose to attempt more fundamental comparisons of each machine, including design parameters. For example, DAPHNE and KEKB employ a finite crossing angle. The minimum value of {beta}*{sub y} attainable at KEKB seems to relate to this scheme. Effectiveness of compensation solenoids and turn-by-turn BPMs etc. should be examined in more detail. In the near future, CESR-C and VEPP-2000 will start their operation. We expect to hear important new experiences from these machines; in particular VEPP-2000 will be the first machine to have adopted round beams. At SLAC and KEK, next generation B Factories are being considered. It will be worthwhile to discuss the design issues of these machines based on the experiences of the existing factory machines.« less
de Sena, Amanda Reges; Barros Oliveira, Flávio Manoel; Campos Leite, Tonny Cley; Evaristo da Silva Nascimento, Talita Camila; Moreira, Keila Aparecida; de Assis, Sandra Aparecida
2017-10-21
The aims of the current study are to assess the influence of polyethylene glycol (PEG) concentration, molar mass, pH, and citrate concentrations on aqueous biphasic systems based on 2 4 factorial designs, as well as to check their capacity to purify tannase secreted by Aspergillus tamarii URM 7115. Tannase was produced through submerged fermentation at 26°C for 67 h in Czapeck-Dox modified broth and added with yeast extract and tannic acid. The factorial design was followed to assess the influence of PEG molar mass (M PEG 600; 4,000 and 8,000 g/ mol), and PEG (C PEG 20.0; 22.0 and 24.0% w/w) and citrate concentrations (C CIT 15.0, 17.5, and 20.0%, w/w), as well as of pH (6.0, 7.0, and 8.0) on the response variables; moreover, partition coefficient (K), yield (Y), and purification factor (PF) were analyzed. The most suitable parameters to purify tannase secreted by A. tamarii URM 7115 through a biphasic system were 600 (g/mol) M PEG , 24% (w/w) C PEG , 15% (w/w) C CIT at pH 6.0 and they resulted in 6.33 enzyme partition, 131.25% yield, 19.80 purification factor and 195.08 selectivity. Tannase secreted by A. tamarii URM 7115 purified through aqueous biphasic systems composed of PEG/citrate can be used for industrial purposes, since it presents suitable purification factor and yield.
Proposed variations of the stepped-wedge design can be used to accommodate multiple interventions.
Lyons, Vivian H; Li, Lingyu; Hughes, James P; Rowhani-Rahbar, Ali
2017-06-01
Stepped-wedge design (SWD) cluster-randomized trials have traditionally been used for evaluating a single intervention. We aimed to explore design variants suitable for evaluating multiple interventions in an SWD trial. We identified four specific variants of the traditional SWD that would allow two interventions to be conducted within a single cluster-randomized trial: concurrent, replacement, supplementation, and factorial SWDs. These variants were chosen to flexibly accommodate study characteristics that limit a one-size-fits-all approach for multiple interventions. In the concurrent SWD, each cluster receives only one intervention, unlike the other variants. The replacement SWD supports two interventions that will not or cannot be used at the same time. The supplementation SWD is appropriate when the second intervention requires the presence of the first intervention, and the factorial SWD supports the evaluation of intervention interactions. The precision for estimating intervention effects varies across the four variants. Selection of the appropriate design variant should be driven by the research question while considering the trade-off between the number of steps, number of clusters, restrictions for concurrent implementation of the interventions, lingering effects of each intervention, and precision of the intervention effect estimates. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada
2011-08-15
Highlights: > Landfill leachates can be treated effectively by catalytic wet oxidation. > Addition of H{sub 2}O{sub 2} in the presence of transition metals promotes degradation. > Factorial design evaluates the statistically significant operating conditions. > H{sub 2}O{sub 2}, reaction time and temperature are critical in determining performance. - Abstract: The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30 min), temperature (160-200 deg. C), Cu{sup 2+} concentration (250-750 mg L{sup -1}) and H{sub 2}O{sub 2} concentration (0-1500 mgmore » L{sup -1}) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920 mg L{sup -1}, was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45 min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H{sub 2}O{sub 2} to reactive hydroxyl radicals. WAO at 2.5 MPa oxygen partial pressure advanced treatment further; for example, 22 min of oxidation at 200 deg. C, 250 mg L{sup -1} Cu{sup 2+} and 0-1500 mg L{sup -1} H{sub 2}O{sub 2} resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H{sub 2}O{sub 2} concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H{sub 2}O{sub 2} concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.« less
Watkins, Edward; Newbold, Alexandra; Tester-Jones, Michelle; Javaid, Mahmood; Cadman, Jennifer; Collins, Linda M; Graham, John; Mostazir, Mohammod
2016-10-06
Depression is a global health challenge. Although there are effective psychological and pharmaceutical interventions, our best treatments achieve remission rates less than 1/3 and limited sustained recovery. Underpinning this efficacy gap is limited understanding of how complex psychological interventions for depression work. Recent reviews have argued that the active ingredients of therapy need to be identified so that therapy can be made briefer, more potent, and to improve scalability. This in turn requires the use of rigorous study designs that test the presence or absence of individual therapeutic elements, rather than standard comparative randomised controlled trials. One such approach is the Multiphase Optimization Strategy, which uses efficient experimentation such as factorial designs to identify active factors in complex interventions. This approach has been successfully applied to behavioural health but not yet to mental health interventions. A Phase III randomised, single-blind balanced fractional factorial trial, based in England and conducted on the internet, randomized at the level of the patient, will investigate the active ingredients of internet cognitive-behavioural therapy (CBT) for depression. Adults with depression (operationalized as PHQ-9 score ≥ 10), recruited directly from the internet and from an UK National Health Service Improving Access to Psychological Therapies service, will be randomized across seven experimental factors, each reflecting the presence versus absence of specific treatment components (activity scheduling, functional analysis, thought challenging, relaxation, concreteness training, absorption, self-compassion training) using a 32-condition balanced fractional factorial design (2 IV 7-2 ). The primary outcome is symptoms of depression (PHQ-9) at 12 weeks. Secondary outcomes include symptoms of anxiety and process measures related to hypothesized mechanisms. Better understanding of the active ingredients of efficacious therapies, such as CBT, is necessary in order to improve and further disseminate these interventions. This study is the first application of a component selection experiment to psychological interventions in depression and will enable us to determine the main effect of each treatment component and its relative efficacy, and cast light on underlying mechanisms, so that we can systematically enhance internet CBT. Current Controlled Trials ISRCTN24117387 . Registered 26 August 2014.
An intelligent CNC machine control system architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.J.; Loucks, C.S.
1996-10-01
Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore » platform-independent software.« less
Núñez, Eutimio Gustavo Fernández; Faintuch, Bluma Linkowski; Teodoro, Rodrigo; Wiecek, Danielle Pereira; da Silva, Natanael Gomes; Papadopoulos, Minas; Pelecanou, Maria; Pirmettis, Ioannis; de Oliveira Filho, Renato Santos; Duatti, Adriano; Pasqualini, Roberto
2011-04-01
The objective of this study was the development of a statistical approach for radiolabeling optimization of cysteine-dextran conjugates with Tc-99m tricarbonyl core. This strategy has been applied to the labeling of 2-propylene-S-cysteine-dextran in the attempt to prepare a new class of tracers for sentinel lymph node detection, and can be extended to other radiopharmaceuticals for different targets. The statistical routine was based on three-level factorial design. Best labeling conditions were achieved. The specific activity reached was 5 MBq/μg. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Jadhav, Sushant Bhimrao; Kumar, C Kiran; Bandichhor, Rakeshwar; Bhosale, P N
2016-01-25
A new UPLC-TOF/MS compatible, reverse phase-stability indicating method was developed for determination of Omeprazole (OMP) and its related substances in pharmaceutical dosage forms by implementing Design of Experiment (DoE) i.e. two level full factorial Design (2(3)+3 center points=11 experiments) to understand the Critical Method Parameters (CMP) and its relation with Critical Method Attribute (CMA); to ensure robustness of the method. The separation of eleven specified impurities including conversion product of OMP related compound F (13) and G (14) i.e. Impurity-I (1), OMP related compound-I (11) and OMP 4-chloro analog (12) was achieved in a single method on Acquity BEH shield RP18 100 × 2.1 mm, 1.7 μm column, with inlet filter (0.2 μm) using gradient elution and detector wavelength at 305 nm and validated in accordance with ICH guidelines and found to be accurate, precise, reproducible, robust and specific. The drug was found to degrade extensively in heat, humidity and acidic conditions and forms unknown degradation products during stability studies. The same method was used for LC-MS analysis to identify m/z and fragmentation of maximum unknown impurities (Non-Pharmacopoeial) i.e. Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9) formed during stability studies. Based on the results, degradation pathway for the drug has been proposed and synthesis of identified impurities i.e. impurities (Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9)) are discussed in detail to ensure in-depth understanding of OMP and its related impurities and optimum performance during lifetime of the product. Copyright © 2015. Published by Elsevier B.V.
Fractional Factorial Design to Investigate Stromal Cell Regulation of Macrophage Plasticity
Barminko, Jeffrey A.; Nativ, Nir I.; Schloss, Rene; Yarmush, Martin L.
2018-01-01
Understanding the regulatory networks which control specific macrophage phenotypes is essential in identifying novel targets to correct macrophage mediated clinical disorders, often accompanied by inflammatory events. Since mesenchymal stromal cells (MSCs) have been shown to play key roles in regulating immune functions predominantly via a large number of secreted products, we used a fractional factorial approach to streamline experimental evaluation of MSC mediated inflammatory macrophage regulation. Our macrophage reprogramming metrics, human bone marrow MSC attenuation of macrophage pro-inflammatory M1 TNFα secretion and simultaneous enhanced expression of the M2 macrophage marker, CD206, were used as analysis endpoints. Objective evaluation of a panel of MSC secreted mediators indicated that PGE2 alone was sufficient in facilitating macrophage reprogramming, while IL4 only provided partial reprogramming. Inhibiting stromal cell PGE2 secretion with Indomethacin, reversed the macrophage reprogramming effect. PGE2 reprogramming was mediated through the EP4 receptor and indirectly through the CREB signaling pathway as GSK3 specific inhibitors induced M1 macrophages to express CD206. This reprogramming pathway functioned independently from the M1 suppression pathway, as neither CREB nor GSK3 inhibition reversed PGE2 TNF-α secretion attenuation. In conclusion, fractional factorial experimental design identified stromal derived PGE2 as the factor most important in facilitating macrophage reprogramming, albeit via two unique pathways. PMID:24891120
Control of workers’ exposure to xylene in a pesticide production factory
Mohammadyan, M; Baharfar, Y
2015-01-01
Background: Acute and chronic exposure to xylene can result in a range of negative health effects. However, xylene is widely used and emitted in the air of workplaces. Objectives: To evaluate xylene vapor concentrations to guide the design and evaluation of a local exhaust ventilation (LEV) system to reduce exposure in a pesticide production factory. Method: A real time volatile organic compound (VOC) monitor was used to determine the workers’ time-weighted average (TWA) exposure. A LEV system was designed, and then, workers’ exposure to xylene vapor was evaluated. Results: We found that worker’s exposure to xylene (4.7±5.5 ppm) was lower than the standards recommended by the American Conference of Governmental Industrial Hygienists (ACGIH) and the Occupational safety and health administration (OSHA). Despite the low TWA exposures, the short-term exposures for some workers were higher than STEL levels. Three canopy hoods were designed and installed with capture velocities of 0.508 m second−1 and duct velocity of 10.16 m second−1. Conclusion: We found that an exhaust ventilation system had a significantly reduced occupational exposure to xylene vapor. PMID:25487643
Factors that influence the tribocharging of pulverulent materials in compressed-air devices
NASA Astrophysics Data System (ADS)
Das, S.; Medles, K.; Mihalcioiu, A.; Beleca, R.; Dragan, C.; Dascalescu, L.
2008-12-01
Tribocharging of pulverulent materials in compressed-air devices is a typical multi-factorial process. This paper aims at demonstrating the interest of using the design of experiments methodology in association with virtual instrumentation for quantifying the effects of various process varaibles and of their interactions, as a prerequisite for the development of new tribocharging devices for industrial applications. The study is focused on the tribocharging of PVC powders in compressed-air devices similar to those employed in electrostatic painting. A classical 2 full-factorial design (3 factors at two levels) was employed for conducting the experiments. The response function was the charge/mass ratio of the material collected in a modified Faraday cage, at the exit of the tribocharging device. The charge/mass ratio was found to increase with the injection pressure and the vortex pressure in the tribocharging device, and to decrease with the increasing of the feed rate. In the present study an in-house design of experiments software was employed for statistical analysis of experimental data and validation of the experimental model.
Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten
2012-01-01
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.
Proposed variations of the stepped-wedge design can be used to accommodate multiple interventions
Lyons, Vivian H; Li, Lingyu; Hughes, James P; Rowhani-Rahbar, Ali
2018-01-01
Objective Stepped wedge design (SWD) cluster randomized trials have traditionally been used for evaluating a single intervention. We aimed to explore design variants suitable for evaluating multiple interventions in a SWD trial. Study Design and Setting We identified four specific variants of the traditional SWD that would allow two interventions to be conducted within a single cluster randomized trial: Concurrent, Replacement, Supplementation and Factorial SWDs. These variants were chosen to flexibly accommodate study characteristics that limit a one-size-fits-all approach for multiple interventions. Results In the Concurrent SWD, each cluster receives only one intervention, unlike the other variants. The Replacement SWD supports two interventions that will not or cannot be employed at the same time. The Supplementation SWD is appropriate when the second intervention requires the presence of the first intervention, and the Factorial SWD supports the evaluation of intervention interactions. The precision for estimating intervention effects varies across the four variants. Conclusion Selection of the appropriate design variant should be driven by the research question while considering the trade-off between the number of steps, number of clusters, restrictions for concurrent implementation of the interventions, lingering effects of each intervention, and precision of the intervention effect estimates. PMID:28412466
Jeong, Sung-Eun; Park, Jae-Kweon; Kim, Jeong-Dong; Chang, In-Jeong; Hong, Seong-Joo; Kang, Sung-Ho; Lee, Choul-Gyun
2008-12-01
Statistical experimental designs; involving (i) a fractional factorial design (FFD) and (ii) a central composite design (CCD) were applied to optimize the culture medium constituents for production of a unique antifreeze protein by the Antartic microalgae Chaetoceros neogracile. The results of the FFD suggested that NaCl, KCl, MgCl2, and Na2SiO3 were significant variables that highly influenced the growth rate and biomass production. The optimum culture medium for the production of an antifreeze protein from C. neogracile was found to be Kalleampersandrsquor;s artificial seawater, pH of 7.0ampersandplusmn;0.5, consisting of 28.566 g/l of NaCl, 3.887 g/l of MgCl2, 1.787 g/l of MgSO4, 1.308 g/l of CaSO4, 0.832 g/l of K2SO4, 0.124 g/l of CaCO3, 0.103 g/l of KBr, 0.0288 g/l of SrSO4, and 0.0282 g/l of H3BO3. The antifreeze activity significantly increased after cells were treated with cold shock (at -5oC) for 14 h. To the best of our knowledge, this is the first report demonstrating an antifreeze-like protein of C. neogracile.
Moorthy, Arun S; Eberl, Hermann J
2014-04-01
Fermentation reactor systems are a key platform in studying intestinal microflora, specifically with respect to questions surrounding the effects of diet. In this study, we develop computational representations of colon fermentation reactor systems as a way to assess the influence of three design elements (number of reactors, emptying mechanism, and inclusion of microbial immobilization) on three performance measures (total biomass density, biomass composition, and fibre digestion efficiency) using a fractional-factorial experimental design. It was determined that the choice of emptying mechanism showed no effect on any of the performance measures. Additionally, it was determined that none of the design criteria had any measurable effect on reactor performance with respect to biomass composition. It is recommended that model fermentation systems used in the experimenting of dietary effects on intestinal biomass composition be streamlined to only include necessary system design complexities, as the measured performance is not benefited by the addition of microbial immobilization mechanisms or semi-continuous emptying scheme. Additionally, the added complexities significantly increase computational time during simulation experiments. It was also noted that the same factorial experiment could be directly adapted using in vitro colon fermentation systems. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Wong, Norman C H; Nisbett, Gwendelyn S; Harvell, Lindsey A
2017-04-01
This study utilizes Terror Management Theory (TMT) to examine differences between eliciting social death and physical death anxiety related to smoking, smoking attitudes, and quitting intent among college students. Moreover, an important TMT variable-self-esteem-was used as a moderator. A 2 × 3 between-subjects factorial design crossed smoking-based self-esteem (low, high) with mortality salience manipulation (health-focused, social-focused, control). Results suggest while both making health-focused salient and making social-focused mortality salient were effective at getting smokers to quit, there was less effect for health-focused mortality salience on those whose self-esteem is strongly tied to smoking. Effect of social-focused mortality salience was more pronounced among participants who highly linked self-esteem with smoking. For smokers with low smoking-based self-esteem, both health-focused and social-focused mortality salience were effective at motivating attitude change toward smoking and quitting intentions. Implications for smoking cessation ad design and TMT are discussed.
Translations on North Korea No. 622
1978-10-13
Pyongyang Power Station 5 July Electric Factory Hamhung Machine Tool Factory Kosan Plastic Pipe Factory Sog’wangea Plastic Pipe Factory 8...August Factory Double Chollima Hamhung Disabled Veterans’ Plastic Goods Factory Mangyongdae Machine Tool Factory Kangso Coal Mine Tongdaewon Garment...21 Jul 78 p 4) innovating in machine tool production (NC 21 Jul 78 p 2) in 40 days of the 蔴 days of combat" raised coal production 10 percent
Musk as a Pheromone? Didactic Exercise.
ERIC Educational Resources Information Center
Bersted, Chris T.
A classroom/laboratory exercise has been used to introduce college students to factorial research designs, differentiate between interpretations for experimental and quasi-experimental variables, and exemplify application of laboratory research methods to test practical questions (advertising claims). The exercise involves having randomly divided…
The bioscouring performance of four polygalacturonase enzymes
USDA-ARS?s Scientific Manuscript database
Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) analyses of greige cotton fabrics bioscoured with a combination of ultrasound and endo- and exo-polygalacturonase enzymes obtained from Rhizopus sp. fungi were used in a fractional factorial design experiment to examine their perform...
1983-06-01
program specifically designed to solve IME equations. The IME measure is a useful index because it translates system performance characteristics of...8.0 SUMMARY The purpose of this study was to design the field evaluation of a camou- flage system in such a manner that the camoufleur could...analysis of complex factorial designs and their associated systems of confounding ((44), [46)) and to the introduction of incomplete block designs . My
A new efficient mixture screening design for optimization of media.
Rispoli, Fred; Shah, Vishal
2009-01-01
Screening ingredients for the optimization of media is an important first step to reduce the many potential ingredients down to the vital few components. In this study, we propose a new method of screening for mixture experiments called the centroid screening design. Comparison of the proposed design with Plackett-Burman, fractional factorial, simplex lattice design, and modified mixture design shows that the centroid screening design is the most efficient of all the designs in terms of the small number of experimental runs needed and for detecting high-order interaction among ingredients. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.
Mobile Monitoring and Embedded Control System for Factory Environment
Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai
2013-01-01
This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642
Mobile monitoring and embedded control system for factory environment.
Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai
2013-12-17
This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.
Exploring time series retrieved from cardiac implantable devices for optimizing patient follow-up
Guéguin, Marie; Roux, Emmanuel; Hernández, Alfredo I; Porée, Fabienne; Mabo, Philippe; Graindorge, Laurence; Carrault, Guy
2008-01-01
Current cardiac implantable devices (ID) are equipped with a set of sensors that can provide useful information to improve patient follow-up and to prevent health deterioration in the postoperative period. In this paper, data obtained from an ID with two such sensors (a transthoracic impedance sensor and an accelerometer) are analyzed in order to evaluate their potential application for the follow-up of patients treated with a cardiac resynchronization therapy (CRT). A methodology combining spatio-temporal fuzzy coding and multiple correspondence analysis (MCA) is applied in order to: i) reduce the dimensionality of the data and provide new synthetic indices based on the “factorial axes” obtained from MCA, ii) interpret these factorial axes in physiological terms and iii) analyze the evolution of the patient’s status by projecting the acquired data into the plane formed by the first two factorial axes named “factorial plane”. In order to classify the different evolution patterns, a new similarity measure is proposed and validated on simulated datasets, and then used to cluster observed data from 41 CRT patients. The obtained clusters are compared with the annotations on each patient’s medical record. Two areas on the factorial plane are identified, one being correlated with a health degradation of patients and the other with a stable clinical state. PMID:18838359
Angermayr, S Andreas; Hellingwerf, Klaas J
2013-09-26
Oxygenic photosynthesis will have a key role in a sustainable future. It is therefore significant that this process can be engineered in organisms such as cyanobacteria to construct cell factories that catalyze the (sun)light-driven conversion of CO2 and water into products like ethanol, butanol, or other biofuels or lactic acid, a bioplastic precursor, and oxygen as a byproduct. It is of key importance to optimize such cell factories to maximal efficiency. This holds for their light-harvesting capabilities under, for example, circadian illumination in large-scale photobioreactors. However, this also holds for the "dark" reactions of photosynthesis, that is, the conversion of CO2, NADPH, and ATP into a product. Here, we present an analysis, based on metabolic control theory, to estimate the optimal capacity for product formation with which such cyanobacterial cell factories have to be equipped. Engineered l-lactic acid producing Synechocystis sp. PCC6803 strains are used to identify the relation between production rate and enzymatic capacity. The analysis shows that the engineered cell factories for l-lactic acid are fully limited by the metabolic capacity of the product-forming pathway. We attribute this to the fact that currently available promoter systems in cyanobacteria lack the genetic capacity to a provide sufficient expression in single-gene doses.
NASA Astrophysics Data System (ADS)
Xu, Ye; Wang, Ling; Wang, Shengyao; Liu, Min
2014-09-01
In this article, an effective hybrid immune algorithm (HIA) is presented to solve the distributed permutation flow-shop scheduling problem (DPFSP). First, a decoding method is proposed to transfer a job permutation sequence to a feasible schedule considering both factory dispatching and job sequencing. Secondly, a local search with four search operators is presented based on the characteristics of the problem. Thirdly, a special crossover operator is designed for the DPFSP, and mutation and vaccination operators are also applied within the framework of the HIA to perform an immune search. The influence of parameter setting on the HIA is investigated based on the Taguchi method of design of experiment. Extensive numerical testing results based on 420 small-sized instances and 720 large-sized instances are provided. The effectiveness of the HIA is demonstrated by comparison with some existing heuristic algorithms and the variable neighbourhood descent methods. New best known solutions are obtained by the HIA for 17 out of 420 small-sized instances and 585 out of 720 large-sized instances.
Redesigning metabolism based on orthogonality principles
Pandit, Aditya Vikram; Srinivasan, Shyam; Mahadevan, Radhakrishnan
2017-01-01
Modifications made during metabolic engineering for overproduction of chemicals have network-wide effects on cellular function due to ubiquitous metabolic interactions. These interactions, that make metabolic network structures robust and optimized for cell growth, act to constrain the capability of the cell factory. To overcome these challenges, we explore the idea of an orthogonal network structure that is designed to operate with minimal interaction between chemical production pathways and the components of the network that produce biomass. We show that this orthogonal pathway design approach has significant advantages over contemporary growth-coupled approaches using a case study on succinate production. We find that natural pathways, fundamentally linked to biomass synthesis, are less orthogonal in comparison to synthetic pathways. We suggest that the use of such orthogonal pathways can be highly amenable for dynamic control of metabolism and have other implications for metabolic engineering. PMID:28555623
NASA Astrophysics Data System (ADS)
Zhao, H.; Fu, C.; Yu, D.; Wang, Z.; Hu, T.; Ruan, M.
2018-03-01
The design and optimization of the Electromagnetic Calorimeter (ECAL) are crucial for the Circular Electron Positron Collider (CEPC) project, a proposed future Higgs/Z factory. Following the reference design of the International Large Detector (ILD), a set of silicon-tungsten sampling ECAL geometries are implemented into the Geant4 simulation, whose performance is then scanned using Arbor algorithm. The photon energy response at different ECAL longitudinal structures is analyzed, and the separation performance between nearby photon showers with different ECAL transverse cell sizes is investigated and parametrized. The overall performance is characterized by a set of physics benchmarks, including νν H events where Higgs boson decays into a pair of photons (EM objects) or gluons (jets) and Z→τ+τ- events. Based on these results, we propose an optimized ECAL geometry for the CEPC project.
Kumari, Neeraj; Pathak, Kamla
2012-01-01
In situ gelling syringeable periodontal sol capable of dual controlled delivery of metronidazole benzoate and serratiopeptidase was designed based on 2(3) factorial design with drug, poloxamer 407 and aerosil as independent variables and sol gel transition characteristics, %CDR(48h) and palatability as responses. The sols had agreeable taste, were mucoadhesive, syringeable and inverted into gels at periodontal cavity temperature. F8 with optimal drug release was identified as the best formulation. The dispersion characteristics of poloxamer significantly affected the pharmacotechnical properties of the in situ gelling systems. Extra design checkpoint generated using Design Expert software 8.02 (Stat-Ease, USA) validated the experimental design. Thus a thermoreversible, in situ gelling and syringeable periodontal sol with acceptable taste characteristics that offered controlled release of metronidazole benzoate and serratiopeptidase was developed for application into the periodontal pocket. The developed optimized sol was satisfactory in terms of taste, syringeability, palatability and incorporation of serratiopeptidase as anti-inflammatory agent, has the potential of developing a therapeutically efficacious system for treatment of periodontal inflammatory anaerobic infections.
2018-03-01
Results are compared to a previous study using a similar design of experiments but different simulation software. The baseline scenario for exploring the...behaviors are mimicked in this research, enabling Solem’s MANA results to be compared to our LITMUS’ results. By design , the principal difference...missions when using the second order NOLH, and compares favorably with the over six million in the full factorial design . 3. Advantages of Cluster
Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko
2017-01-01
We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.
Formulation of wax oxybenzone microparticles using a factorial approach.
Gomaa, Y A; Darwish, I A; Boraei, N A; El-Khordagui, L K
2010-01-01
Oxybenzone wax microparticles (MPs) were prepared by the hydrophobic congealable disperse phase method. The formulation of oxybenzone-loaded MPs was optimized using a 2⁴ experimental design. Factorial analysis indicated that the main MP characteristics were influenced by initial drug loading, emulsification speed, emulsifier concentration and hydrophilic-lipophilic balance. MPs were spherical with 50.5–88.1 μm size range, 17.8–38.9 drug content in mg/100 mg MPs and 33.1–87.2% oxybenzone release in 1 h. A wide range of sunscreen delivery systems suitable for different formulation purposes were generated which may contribute to the advanced formulation of sunscreen products with improved performance.
Defective Reduction in Automotive Headlining Manufacturing Process
NASA Astrophysics Data System (ADS)
Rittichai, Saranya; Chutima, Parames
2016-05-01
In an automobile parts manufacturing company, currently the headlining process has a lot of wastes resulting in a high cost of quality per year. In this paper, the Six Sigma method is used to reduce the defects in the headlining process. Cause-and-effect matrix and failure mode and effect analysis (FMEA) were adopted to screen the factors that affect the quality of headlining. The 2k-1 fractional factorials design was also use to determine the potential preliminary root causes. The full factorial experiments was conducted to identify appropriate settings of the significant factors. The result showed that the process can reduce the defects of headlining from 12.21% to 6.95%
Hooper, Scott L; Burstein, Helaine J
2014-11-18
Internalization-based hypotheses of eukaryotic origin require close physical association of host and symbiont. Prior hypotheses of how these associations arose include chance, specific metabolic couplings between partners, and prey-predator/parasite interactions. Since these hypotheses were proposed, it has become apparent that mixed-species, close-association assemblages (biofilms) are widespread and predominant components of prokaryotic ecology. Which forces drove prokaryotes to evolve the ability to form these assemblages are uncertain. Bacteria and archaea have also been found to form membrane-lined interconnections (nanotubes) through which proteins and RNA pass. These observations, combined with the structure of the nuclear envelope and an energetic benefit of close association (see below), lead us to propose a novel hypothesis of the driving force underlying prokaryotic close association and the origin of eukaryotes. Respiratory proton transport does not alter external pH when external volume is effectively infinite. Close physical association decreases external volume. For small external volumes, proton transport decreases external pH, resulting in each transported proton increasing proton motor force to a greater extent. We calculate here that in biofilms this effect could substantially decrease how many protons need to be transported to achieve a given proton motor force. Based as it is solely on geometry, this energetic benefit would occur for all prokaryotes using proton-based respiration. This benefit may be a driving force in biofilm formation. Under this hypothesis a very wide range of prokaryotic species combinations could serve as eukaryotic progenitors. We use this observation and the discovery of prokaryotic nanotubes to propose that eukaryotes arose from physically distinct, functionally specialized (energy factory, protein factory, DNA repository/RNA factory), obligatorily symbiotic prokaryotes in which the protein factory and DNA repository/RNA factory cells were coupled by nanotubes and the protein factory ultimately internalized the other two. This hypothesis naturally explains many aspects of eukaryotic physiology, including the nuclear envelope being a folded single membrane repeatedly pierced by membrane-bound tubules (the nuclear pores), suggests that species analogous or homologous to eukaryotic progenitors are likely unculturable as monocultures, and makes a large number of testable predictions. This article was reviewed by Purificación López-García and Toni Gabaldón.
Curcic, Marijana; Buha, Aleksandra; Stankovic, Sanja; Milovanovic, Vesna; Bulat, Zorica; Đukić-Ćosić, Danijela; Antonijević, Evica; Vučinić, Slavica; Matović, Vesna; Antonijevic, Biljana
2017-02-01
The objective of this study was to assess toxicity of Cd and BDE-209 mixture on haematological parameters in subacutely exposed rats and to determine the presence and type of interactions between these two chemicals using multiple factorial regression analysis. Furthermore, for the assessment of interaction type, an isobologram based methodology was applied and compared with multiple factorial regression analysis. Chemicals were given by oral gavage to the male Wistar rats weighing 200-240g for 28days. Animals were divided in 16 groups (8/group): control vehiculum group, three groups of rats were treated with 2.5, 7.5 or 15mg Cd/kg/day. These doses were chosen on the bases of literature data and reflect relatively high Cd environmental exposure, three groups of rats were treated with 1000, 2000 or 4000mg BDE-209/kg/bw/day, doses proved to induce toxic effects in rats. Furthermore, nine groups of animals were treated with different mixtures of Cd and BDE-209 containing doses of Cd and BDE-209 stated above. Blood samples were taken at the end of experiment and red blood cells, white blood cells and platelets counts were determined. For interaction assessment multiple factorial regression analysis and fitted isobologram approach were used. In this study, we focused on multiple factorial regression analysis as a method for interaction assessment. We also investigated the interactions between Cd and BDE-209 by the derived model for the description of the obtained fitted isobologram curves. Current study indicated that co-exposure to Cd and BDE-209 can result in significant decrease in RBC count, increase in WBC count and decrease in PLT count, when compared with controls. Multiple factorial regression analysis used for the assessment of interactions type between Cd and BDE-209 indicated synergism for the effect on RBC count and no interactions i.e. additivity for the effects on WBC and PLT counts. On the other hand, isobologram based approach showed slight antagonism for the effects on RBC and WBC while no interactions were proved for the joint effect on PLT count. These results confirm that the assessment of interactions between chemicals in the mixture greatly depends on the concept or method used for this evaluation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Modelling of End Milling of AA6061-TiCp Metal Matrix Composite
NASA Astrophysics Data System (ADS)
Vijay Kumar, S.; Cheepu, Muralimohan; Venkateswarlu, D.; Asohan, P.; Senthil Kumar, V.
2018-03-01
The metal-matrix composites (MMCs) are used in various applications hence lot of research has been carried out on MMCs. To increase the properties of Al-based MMCs many ceramic reinforcements have been identified, among which TiC is played vital role because of its properties like high hardness, stiffness and wear resistance. In the present work, a neural network and statistical modelling approach is going to use for the prediction of surface roughness (Ra) and cutting forces in computerised numerical control milling machine. Experiments conducted on a CNC milling machine based on the full factorial design and resulted data used to train and checking the network performance. The sample prepared from in-situ technique and heat treated to get uniform properties. The ANN model has shown satisfactory performance comparatively.
Reliability and validity of an Internet traumatic stress survey with a college student sample.
Fortson, Beverly L; Scotti, Joseph R; Del Ben, Kevin S; Chen, Yi-Chuen
2006-10-01
The reliability and validity of Internet-based questionnaires were assessed in a sample of undergraduates (N = 411) by comparing data collected via the Internet with data collected in a more traditional format. A 2 x 2 x 2 repeated measures factorial design was used, forming four groups: Paper-Paper, Paper-Internet, Internet-Paper, and Internet-Internet. Scores on measures of trauma exposure, depression, and posttraumatic stress symptoms formed the dependent variables. Statistical analyses demonstrated that the psychometric properties of Internet-based questionnaires are similar to those established via formats that are more traditional. Questionnaire format and presentation order did not affect rates of psychological symptoms endorsed by participants. Researchers can feel comfortable that Internet data collection is a viable--and reliable--means for conducting trauma research.
USDA-ARS?s Scientific Manuscript database
This study was designed to examine alteration of ruminal kinetics, as well as N and energy balance during fescue toxicosis. Six ruminally cannulated Holstein steers (BW=217 ±7 kg) were weight-matched into pairs and pair-fed throughout a cross-over design experiment with a 2x2 factorial treatment str...
ERIC Educational Resources Information Center
Agboghoroma, Tim E.; Oyovwi, E. O.
2015-01-01
This study evaluated the effect of students' academic achievement on identified difficult concepts or topics in Senior Secondary School Biology in Delta State, Nigeria. The study was quasi-experimental and the design was a 2X2 factorial non-randomized pretest-posttest control group design. The sample was drawn from intact classes from four…
ERIC Educational Resources Information Center
Yilmaz, Ramazan; Keser, Hafize
2017-01-01
The aim of the present study is to reveal the impact of the interactive environment and metacognitive support (MS) in online learning on academic achievement and transactional distance (TD). The study is designed as 2 × 2 factorial design, and both qualitative and quantitative research techniques are used. The study was carried out on 127…