Sample records for factors affecting methane

  1. Factors affecting methane production and mitigation in ruminants.

    PubMed

    Shibata, Masaki; Terada, Fuminori

    2010-02-01

    Methane (CH(4)) is the second most important greenhouse gas (GHG) and that emitted from enteric fermentation in livestock is the single largest source of emissions in Japan. Many factors influence ruminant CH(4) production, including level of intake, type and quality of feeds and environmental temperature. The objectives of this review are to identify the factors affecting CH(4) production in ruminants, to examine technologies for the mitigation of CH(4) emissions from ruminants, and to identify areas requiring further research. The following equation for CH(4) prediction was formulated using only dry matter intake (DMI) and has been adopted in Japan to estimate emissions from ruminant livestock for the National GHG Inventory Report: Y = -17.766 + 42.793X - 0.849X(2), where Y is CH(4) production (L/day) and X is DMI (kg/day). Technologies for the mitigation of CH(4) emissions from ruminants include increasing productivity by improving nutritional management, the manipulation of ruminal fermentation by changing feed composition, the addition of CH(4) inhibitors, and defaunation. Considering the importance of ruminant livestock, it is essential to establish economically feasible ways of reducing ruminant CH(4) production while improving productivity; it is therefore critical to conduct a full system analysis to select the best combination of approaches or new technologies to be applied under long-term field conditions.

  2. ANALYSIS OF FACTORS AFFECTING METHANE GAS RECOVERY FROM SIX LANDFILLS

    EPA Science Inventory

    The report gives results of a pilot study of six U.S. landfills that have methane (CH4) gas recovery systems. NOTE: The study was a first step in developing a field testing program to gather data to identify key variables that affect CH4 generation and to develop an empirical mod...

  3. Sensitivity Analysis Reveals Critical Factors that Affect Wetland Methane Emissions using Soil Biogeochemistry Model

    NASA Astrophysics Data System (ADS)

    Alonso-Contes, C.; Gerber, S.; Bliznyuk, N.; Duerr, I.

    2017-12-01

    Wetlands contribute approximately 20 to 40 % to global sources of methane emissions. We build a Methane model for tropical and subtropical forests, that allows inundated conditions, following the approaches used in more complex global biogeochemical emission models (LPJWhyMe and CLM4Me). The model was designed to replace model formulations with field and remotely sensed collected data for 2 essential drivers: plant productivity and hydrology. This allows us to directly focus on the central processes of methane production, consumption and transport. One of our long term goals is to make the model available to a scientists interested in including methane modeling in their location of study. Sensitivity analysis results help in focusing field data collection efforts. Here, we present results from a pilot global sensitivity analysis of the model order to determine which parameters and processes contribute most to the model's uncertainty of methane emissions. Results show that parameters related to water table behavior, carbon input (in form of plant productivity) and rooting depth affect simulated methane emissions the most. Current efforts include to perform the sensitivity analysis again on methane emissions outputs from an updated model that incorporates a soil heat flux routine and to determine the extent by which the soil temperature parameters affect CH4 emissions. Currently we are conducting field collection of data during Summer 2017 for comparison among 3 different landscapes located in the Ordway-Swisher Biological Station in Melrose, FL. We are collecting soil moisture and CH4 emission data from 4 different wetland types. Having data from 4 wetland types allows for calibration of the model to diverse soil, water and vegetation characteristics.

  4. Methane transport and emissions from soil as affected by water table and vascular plants.

    PubMed

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  5. Methane transport and emissions from soil as affected by water table and vascular plants

    PubMed Central

    2013-01-01

    Background The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions. PMID:24010540

  6. Factors affecting the process of CO2 replacement of CH4 from methane hydrate in sediments - Constrained from experimental results

    NASA Astrophysics Data System (ADS)

    Lu, H.; Hu, G.; Vanderveen, J.; Liu, C.; Ratcliffe, C.; Ripmeester, J.

    2011-12-01

    CO2 replacement of CH4 from methane hydrate has been proposed as a method to produce gas from natural gas hydrate by taking advantage of both the production of natural gas and the sequestration of CO2. To examine the validity of this method DOE/Conoco-Philips is considering having a field test in Alaska. The reaction of CO2 replacing CH4 from methane hydrate has been confirmed to be thermodynamically feasible, but concern is always raised about the reaction kinetics. Some kinetic studies in the system of methane hydrate and liquid or gaseous CO2 have found that the reaction proceeds at a very low rate. Natural gas hydrate occurs in sediments with multi-components and complex structure, so matters will be even more complicated. Up to now, few investigations have been carried out concerning the factors affecting the reaction process of CO2 replacing CH4 from methane hydrate. Experiments were implemented with sands, which were recovered from Mallik 5L-38 well, Mackenzie Delta, Northwest Territory, Canada, sediment that previously contained hydrate although it had been dried completely before our experiments. The water-saturated sands were tightly charged into a plastic bottle (90 mm deep and 60 mm wide), and then this test specimen was sealed in a pressure cell. After methane hydrate was synthesized in the test specimen for 108 days under a pressure of 11 to 8 MPa and a temperature of 3 degrees Celsius, liquid CO2 was introduced into the pressure cell. The conditions under which CO2 was reacted with methane hydrate were ~5.3 MPa and 5 degrees Celsius. After reacting for 15 days, the test specimen was recovered. The test specimen was cut into ~10 mm thick discs, and sub-samples were further taken from each of the discs. In addition to the determination of hydrate saturation and the gas composition, Raman spectroscopic studies were carried out for the sub-samples obtained. The results revealed: 1) less CO2 replacement in the bottom disc of the test specimen as compared

  7. Factors Controlling Methane in Arctic Lakes of Southwest Greenland

    PubMed Central

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region. PMID:27454863

  8. Factors Controlling Methane in Arctic Lakes of Southwest Greenland.

    PubMed

    Northington, Robert M; Saros, Jasmine E

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region.

  9. Temperature and hydrology affect methane emissions from Prairie Pothole Wetlands

    USGS Publications Warehouse

    Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond

    2016-01-01

    The Prairie Pothole Region (PPR) in central North America consists of millions of depressional wetlands that each have considerable potential to emit methane (CH4). Changes in temperature and hydrology in the PPR from climate change may affect methane fluxes from these wetlands. To assess the potential effects of changes in climate on methane emissions, we examined the relationships between flux rates and temperature or water depth using six years of bi-weekly flux measurements during the snow-free period from six temporarily ponded and six permanently ponded wetlands in North Dakota, USA. Methane flux rates were among the highest reported for freshwater wetlands, and had considerable spatial and temporal variation. Methane flux rates increased with increasing temperature and water depth, and were especially high when conditions were warmer and wetter than average (163 ± 28 mg CH4 m−2 h−1) compared to warmer and drier (37 ± 7 mg CH4 m−2 h−1). Methane emission rates from permanent wetlands were less sensitive to changes in temperature and water depth compared to temporary wetlands, likely due to higher sulfate concentrations in permanent wetlands. While the predicted increase in temperature with climate change will likely increase methane emission rates from PPR wetlands, drier conditions could moderate these increases.

  10. Principal Factors for High Performance of Odor and Methane degrading Biocover using Network Analysis

    NASA Astrophysics Data System (ADS)

    Jung, H.; Yun, J.; O, G. C.; Ryu, H. W.; Jeon, J. M.; Cho, K. S.

    2016-12-01

    Methane is 25 times more powerful greenhouse gas than carbon dioxide and plays an important role in global warming. Landfills are one of the biggest methane sources and have emitted 37% of anthropogenic methane in Korea. Applying biocovers in landfills is known to be efficient for the simultaneous mitigation of methane as well as odor which occurs severe civil claims. In this study, three pilot-scale biocovers (2.5mx5mx1m) were constructed in a sanitary landfill at Gwangyang, Korea to establish the optimal operational conditions of biocover. All biocovers are filled with soil, EG microbial agent, food waste compost, and perlite with different combination. Pilot-scale biocovers have been operated since January in this year for simultaneous removal of odor and methane. The concentrations of methane and odors such as ammonia, H2S, methyl mercaptane, methylsulfide, dimetyl disulfide, i-valeraldehyde, and styrene were measured at the inlet and outlet of biocovers each month using GC and HPLC for removal performance evaluation. The biocover with highest removal efficiency eliminated 98.4% of odor and 100.0% of methane. All removal efficiencies of odor measured during experiment are in 81.1 98.4% range, and those of methane are in 3.6 100.0%. Three months later after biocover construction, all biocovers with mixed packing material showed better methane degradation performance than the biocovers packed only with soil. The packing materials of biocovers were sampled during winter (January), spring (April) and summer (July), and their microbial communities were examined based on 16S rDNA using 454 pyrosequencing to detect microbial factors that affects the removal efficiency. Methanotrophs which are known as methane-degradable bacteria take 10 25% of microbial community in biocovers, and most of those found in biocovers are type methanothrophs. Network analysis is performed and principal factors for performance improvement of biocovers are derived. Based on this study, well

  11. Site specific diel methane emission mechanisms in landfills: A field validated process based on vegetation and climate factors.

    PubMed

    Xin, Danhui; Hao, Yongxia; Shimaoka, Takayuki; Nakayama, Hirofumi; Chai, Xiaoli

    2016-11-01

    Diel methane emission fluxes from a landfill that was covered by vegetation were investigated to reveal the methane emission mechanisms based on the interaction of vegetation characteristics and climate factors. The methane emissions showed large variation between daytime and nighttime, and the trend of methane emissions exhibited clear bimodal patterns from both Setaria viridis- and Neyraudia reynaudiana-covered areas. Plants play an important role in methane transportation as well as methane oxidation. The notable decrease in methane emissions after plants were cut suggests that methane transportation via plants is the primary way of methane emissions in the vegetated areas of landfill. Within plants, the methane emission fluxes were enhanced due to a convection mechanism. Given that the methane emission flux is highly correlated with the solar radiation during daytime, the convection mechanism could be attributed to the increase in solar radiation. Whereas the methane emission flux is affected by a combined impact of the wind speed and pedosphere characteristics during nighttime. An improved understanding of the methane emission mechanisms in vegetated landfills is expected to develop a reliable model for landfill methane emissions and to attenuate greenhouse gas emissions from landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock.

    PubMed

    Wolf, Julie; Asrar, Ghassem R; West, Tristram O

    2017-09-29

    Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the US, such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. This may be due to outdated information used to develop these emissions factors. In this study, we update information for cattle and swine by region, based on reported recent changes in animal body mass, feed quality and quantity, milk productivity, and management of animals and manure. We then use this updated information to calculate new livestock methane emissions factors for enteric fermentation in cattle, and for manure management in cattle and swine. Using the new emissions factors, we estimate global livestock emissions of 119.1 ± 18.2 Tg methane in 2011; this quantity is 11% greater than that obtained using the IPCC 2006 emissions factors, encompassing an 8.4% increase in enteric fermentation methane, a 36.7% increase in manure management methane, and notable variability among regions and sources. For example, revised manure management methane emissions for 2011 in the US increased by 71.8%. For years through 2013, we present (a) annual livestock methane emissions, (b) complete annual livestock carbon budgets, including carbon dioxide emissions, and (c) spatial distributions of livestock methane and other carbon fluxes, downscaled to 0.05 × 0.05 degree resolution. Our revised bottom-up estimates of global livestock methane emissions are comparable to recently reported top-down global estimates for recent years, and account for a significant part of the increase in annual methane emissions since 2007. Our results suggest that livestock methane emissions, while not the dominant overall source of global methane emissions, may be a major contributor to the observed annual emissions increases over the 2000s to 2010s. Differences at regional and local scales may help

  13. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  14. Application of harmonic detection technology in methane telemetry

    NASA Astrophysics Data System (ADS)

    Huo, Yuehua; Fan, Weiqiang

    2017-08-01

    Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.

  15. Methane fermentation process for utilization of organic waste

    NASA Astrophysics Data System (ADS)

    Frąc, M.; Ziemiński, K.

    2012-07-01

    Biogas is a renewable and sustainable energy carrier generated via anaerobic digestion of biomass. This fuel is derived from various biomass resources and depending on its origin it contains methane (40-75%), carbon dioxide (20-45%) and some other compounds. The aim of this paper is to present the current knowledge and prospects of using the methane fermentation process to dispose of various types of organic wastes as well as conditions and factors affecting the methane fermentation process.

  16. Methane Emissions from Small Lakes: Dynamics and Distribution Patterns

    NASA Astrophysics Data System (ADS)

    Encinas Fernández, J. M.; Peeters, F.; Hofmann, H.

    2014-12-01

    The dynamics of dissolved methane were measured during three years in five small lakes with different surface areas and maximum water depth. We analyze and compare the horizontal and vertical distribution of dissolved methane within these lakes during different time periods: the stratified period in summer, the autumn overturn, the winter mixing period, and the period from spring to summer stratification. The horizontal distributions of dissolved methane within the lakes suggest that the relation between surface area and maximum water-depth is a key factor determining the heterogeneity of methane concentrations in the surface water. During most of the year littoral zones are the main source of the methane that is emitted to the atmosphere except for the overturn periods. The vertical distributions of temperature and dissolved oxygen within the different seasons affect the vertical distribution of dissolved methane and thus the methane budget within lakes. Anoxic conditions in the hypolimnion and the intense mixing during overturn periods are key factors for the overall annual methane emissions from lakes.

  17. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Julie; Asrar, Ghassem R.; West, Tristram O.

    Background: Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the US, such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. This may be due to outdated information used to develop these emissions factors. In this study, we update information for cattle and swine by region, based on reported recent changes in animal body mass, feed quality and quantity, milk productivity, and management of animals and manure. We then use this updated information to calculatemore » new livestock methane emissions factors for enteric fermentation in cattle, and for manure management in cattle and swine.« less

  18. METHANE EMISSIONS FROM INDUSTRIAL SOURCES

    EPA Science Inventory

    The chapter identifies and describes major industrial sources of methane (CH4) emissions. or each source type examined, it identifies CH4 release points and discusses in detail the factors affecting emissions. t also summarizes and discusses available global and country-specific ...

  19. Methane emission from flooded soils - from microorganisms to the atmosphere

    NASA Astrophysics Data System (ADS)

    Conrad, Ralf

    2016-04-01

    Methane is an important greenhouse gas that is affected by anthropogenic activity. The annual budget of atmospheric methane, which is about 600 million tons, is by more than 75% produced by methanogenic archaea. These archaea are the end-members of a microbial community that degrades organic matter under anaerobic conditions. Flooded rice fields constitute a major source (about 10%) of atmospheric methane. After flooding of soil, anaerobic processes are initiated, finally resulting in the disproportionation of organic matter to carbon dioxide and methane. This process occurs in the bulk soil, on decaying organic debris and in the rhizosphere. The produced methane is mostly ventilated through the plant vascular system into the atmosphere. This system also allows the diffusion of oxygen into the rizosphere, where part of the produced methane is oxidized by aerobic methanotrophic bacteria. More than 50% of the methane production is derived from plant photosynthetic products and is formed on the root surface. Methanocellales are an important group of methanogenic archaea colonizing rice roots. Soils lacking this group seem to result in reduced root colonization and methane production. In rice soil methane is produced by two major paths of methanogenesis, the hydrogenotrophic one reducing carbon dioxide to methane, and the aceticlastic one disproportionating acetate to methane and carbon dioxide. Theoretically, at least two third of the methane should be produced by aceticlastic and the rest by hydrogenotrophic methanogenesis. In nature, however, the exact contribution of the two paths can vary from zero to 100%. Several environmental factors, such as temperature and quality of organic matter affect the path of methane production. The impact of these factors on the composition and activity of the environmental methanogenic microbial community will be discussed.

  20. Environmental factors controlling methane emissions from peatlands in northern Minnesota

    NASA Technical Reports Server (NTRS)

    Dise, Nancy B.; Gorham, Eville; Verry, Elon S.

    1993-01-01

    The environmental factors affecting the emission of methane from peatlands were investigated by correlating CH4 emission data for two years, obtained from five different peatland ecosystems in northern Minnesota, with peat temperature, water table position, and degree of peat humification. The relationship obtained between the CH4 flux and these factors was compared to results from a field manipulation experiment in which the water table was artificially raised in three experimental plots within the driest peatland. It was found that peat temperature, water table position, and degree of peat humification explained 91 percent of the variance in log CH4 flux, successfully predicted annual CH4 emission from individual wetlands, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased CH4 emission by 2.5 and 2.2 times, respectively.

  1. Revised methane emissions factors and spatially distributed annual carbon fluxes for global livestock

    USDA-ARS?s Scientific Manuscript database

    Livestock play an important role in carbon cycling through consumption of biomass and emissions of methane. Recent research suggests that existing bottom-up inventories of livestock methane emissions in the U.S., such as those made using 2006 IPCC Tier 1 livestock emissions factors, are too low. Thi...

  2. Type and amount of organic amendments affect enhanced biogenic methane production from coal and microbial community structure

    USGS Publications Warehouse

    Davis, Katherine J.; Lu, Shipeng; Barnhart, Elliott P.; Parker, Albert E.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Slow rates of coal-to-methane conversion limit biogenic methane production from coalbeds. This study demonstrates that rates of coal-to-methane conversion can be increased by the addition of small amounts of organic amendments. Algae, cyanobacteria, yeast cells, and granulated yeast extract were tested at two concentrations (0.1 and 0.5 g/L), and similar increases in total methane produced and methane production rates were observed for all amendments at a given concentration. In 0.1 g/L amended systems, the amount of carbon converted to methane minus the amount produced in coal only systems exceeded the amount of carbon added in the form of amendment, suggesting enhanced coal-to-methane conversion through amendment addition. The amount of methane produced in the 0.5 g/L amended systems did not exceed the amount of carbon added. While the archaeal communities did not vary significantly, the bacterial populations appeared to be strongly influenced by the presence of coal when 0.1 g/L of amendment was added; at an amendment concentration of 0.5 g/L the bacterial community composition appeared to be affected most strongly by the amendment type. Overall, the results suggest that small amounts of amendment are not only sufficient but possibly advantageous if faster in situcoal-to-methane production is to be promoted.

  3. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  4. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.

    PubMed

    Alavi, Saman; Ripmeester, J A

    2010-04-14

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  5. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  6. Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors.

    PubMed

    Tang, Yue-Qin; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2015-04-01

    Methane fermentation is an attractive technology for the treatment of organic wastes and wastewaters. However, the process is difficult to control, and treatment rates and digestion efficiency require further optimization. Understanding the microbiology mechanisms of methane fermentation is of fundamental importance to improving this process. In this review, we summarize the dynamics of microbial communities in methane fermentation chemostats that are operated using completely stirred tank reactors (CSTRs). Each chemostat was supplied with one substrate as the sole carbon source. The substrates include acetate, propionate, butyrate, long-chain fatty acids, glycerol, protein, glucose, and starch. These carbon sources are general substrates and intermediates of methane fermentation. The factors that affect the structure of the microbial community are discussed. The carbon source, the final product, and the operation conditions appear to be the main factors that affect methane fermentation and determine the structure of the microbial community. Understanding the structure of the microbial community during methane fermentation will guide the design and operation of practical wastewater treatments. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    NASA Astrophysics Data System (ADS)

    Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; Schnürer, A.; Sun, C.

    2015-07-01

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  8. The regulation of methane oxidation in soil

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.

    1995-01-01

    The atmospheric concentration of methane, a greenhouse gas, has more than doubled during the past 200 years. Consequently, identifying the factors influencing the flux of methane into the atmosphere is becoming increasingly important. Methanotrophs, microaerophilic organisms widespread in aerobic soils and sediments, oxidize methane to derive energy and carbon for biomass. In so doing, they play an important role in mitigating the flux of methane into the atmosphere. Several physico-chemical factors influence rates of methane oxidation in soil, including soil diffusivity; water potential; and levels of oxygen, methane, ammonium, nitrate, nitrite, and copper. Most of these factors exert their influence through interactions with methane monooxygenase (MMO), the enzyme that catalyzes the reaction converting methane to methanol, the first step in methane oxidation. Although biological factors such as competition and predation undoubtedly play a role in regulating the methanotroph population in soils, and thereby limit the amount of methane consumed by methanotrophs, the significance of these factors is unknown. Obtaining a better understanding of the ecology of methanotrophs will help elucidate the mechanisms that regulate soil methane oxidation.

  9. Factors influencing the stable carbon isotopic signature of methane from combustion and biomass burning

    NASA Astrophysics Data System (ADS)

    Chanton, Jeffrey P.; Rutkowski, Christine M.; Schwartz, Candace C.; Ward, Darold E.; Boring, Lindsay

    2000-01-01

    Factors controlling the δ13C of methane released by combustion include the combustion efficiency of the fire and the δ13C of the fuel. Smoldering fires produced 13C-depleted methane relative to hot, flaming fires in controlled forest and grassland burns and within a wood stove. Pine forest burns in the southeastern United States produced methane which ranged from -21 to -30‰, while African grassland burns varied from -17 to -26‰, depending upon combustion phase. African woodland burns produced methane at -30‰. In forest burns in the southeastern United States, the δ13C of methane released with smoldering was significantly 13C depleted relative to methane released under hot flaming conditions. Methane released with smoldering was depleted by 2-3‰ relative to the fuel δ13C, but this difference was not significant. The δ13C of methane produced in a variety of wood stove conditions varied from -9 to -25‰ and also depended upon combustion efficiency. Similar results were found for methane produced by gasoline automobile engines, where the δ13C of methane varied from -9 to -22‰. For combustion occurring within the confining chamber of a wood stove or engine the δ13C of methane was clearly 13C enriched relative to the δ13C of the fuel, possibly because of preferential combustion of 12CH4 in the gas phase. Significant quantities of ethylene (up to 25 to 50% of methane concentrations) were produced in southeastern U.S. forest fires, which may have consequences for physiological and reproductive responses of plants in the ecosystem. Methane production in these fires varied from 0.2 to 8.5% of the carbon dioxide production.

  10. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, J.; Hu, C.; Yan, X.

    Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production whilemore » reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4,6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2, conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased

  11. Ranking factors affecting emissions of GHG from incubated agricultural soils.

    PubMed

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-07-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO 3 - ) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L 16 design, comprising 16 experimental units. Within this L 16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N 2 O), methane (CH 4 ) and carbon dioxide (CO 2 ) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO 3 - addition were the main factors affecting N 2 O fluxes, whilst glucose, NO 3 - and soil temperature were the main factors affecting CO 2 and CH 4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time.

  12. Ranking factors affecting emissions of GHG from incubated agricultural soils

    PubMed Central

    García-Marco, S; Ravella, S R; Chadwick, D; Vallejo, A; Gregory, A S; Cárdenas, L M

    2014-01-01

    Agriculture significantly contributes to global greenhouse gas (GHG) emissions and there is a need to develop effective mitigation strategies. The efficacy of methods to reduce GHG fluxes from agricultural soils can be affected by a range of interacting management and environmental factors. Uniquely, we used the Taguchi experimental design methodology to rank the relative importance of six factors known to affect the emission of GHG from soil: nitrate (NO3−) addition, carbon quality (labile and non-labile C), soil temperature, water-filled pore space (WFPS) and extent of soil compaction. Grassland soil was incubated in jars where selected factors, considered at two or three amounts within the experimental range, were combined in an orthogonal array to determine the importance and interactions between factors with a L16 design, comprising 16 experimental units. Within this L16 design, 216 combinations of the full factorial experimental design were represented. Headspace nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) concentrations were measured and used to calculate fluxes. Results found for the relative influence of factors (WFPS and NO3− addition were the main factors affecting N2O fluxes, whilst glucose, NO3− and soil temperature were the main factors affecting CO2 and CH4 fluxes) were consistent with those already well documented. Interactions between factors were also studied and results showed that factors with little individual influence became more influential in combination. The proposed methodology offers new possibilities for GHG researchers to study interactions between influential factors and address the optimized sets of conditions to reduce GHG emissions in agro-ecosystems, while reducing the number of experimental units required compared with conventional experimental procedures that adjust one variable at a time. PMID:25177207

  13. [Methane fluxes of Cyperus malaccensis tidal wetland in Minjiang River estuary].

    PubMed

    Zeng, Cong-Sheng; Wang, Wei-Qi; Zhang, Lin-Hai; Lin, Lu-Ying; Ai, Jin-Quan; Zhang, Wen-Long

    2010-02-01

    By using enclosed static chamber-gas chromatograph techniques, this paper measured the methane fluxes of Cyperus malaccensis tidal wetland in Minjiang River estuary. The diurnal variation of the methane fluxes in summer and winter were in the range of 1.29-2.93 mg x m(-2) x h(-1) and 0.06-0.22 mg x m(-2) x h(-1), respectively. The methane fluxes before flooding, in the process of flooding and ebbing, and after ebbing were 0.11-1.52 mg x m(-2) x h(-1), 0.10-1.05 mg x m(-2) x h(-1), and 0.05-1.70 mg x m(-2) x h(-1), and the monthly averaged fluxes were 0.73, 0.47, and 0.72 mg x m(-2) x h(-1), respectively. The methane fluxes peaked in September and reached the lowest in March, and were significantly lower in the process of flooding and ebbing than before flooding and after ebbing (P < 0.05). The seasonal variation of the methane fluxes was in the order of summer > autumn > spring > winter. Tide was the key factor affecting the diurnal variation of the methane fluxes, while plant growth stage and temperature were the key factors determining the monthly or seasonal variation of the methane fluxes.

  14. How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?

    PubMed

    Wang, Dongbo; Zhao, Jianwei; Zeng, Guangming; Chen, Yinguang; Bond, Philip L; Li, Xiaoming

    2015-10-20

    Recent studies demonstrate that, besides being used for production of biodegradable plastics, poly(hydroxyalkanoate) (PHA) that is accumulated in heterotrophic microorganisms during wastewater treatment has another novel application direction, i.e., being utilized for enhancing methane yield during the anaerobic digestion of waste-activated sludge (WAS). To date, however, the underlying mechanism of how PHA affects methane production remains largely unknown, and this limits optimization and application of the strategy. This study therefore aims to fill this knowledge gap. Experimental results showed that with the increase of sludge PHA levels from 21 to 184 mg/g of volatile suspended solids (VSS) the methane yield linearly increased from 168.0 to 246.1 mL/g of VSS (R(2) = 0.9834). Compared with protein and carbohydrate (the main components of a cell), PHA exhibited a higher biochemical methane potential on a unit VSS basis. It was also found that the increased PHA not only enhanced cell disruption of PHA cells but also benefited the soluble protein conversion of both PHA- and non-PHA cells. Moreover, the reactor fed with higher PHA sludge showed greater sludge hydrolysis and acidification than those fed with the lower PHA sludges. Further investigations using fluorescence in situ hybridization and enzyme analysis revealed that the increased PHA enhanced the abundance of methanogenic Archaea and increased the activities of protease, acetate kinase, and coenzyme F420, which were consistent with the observed methane yield. This work provides insights into PHA-involved WAS digestion systems and may have important implications for future operation of wastewater treatment plants.

  15. Influence of headspace pressure on methane production in Biochemical Methane Potential (BMP) tests.

    PubMed

    Valero, David; Montes, Jesús A; Rico, José Luis; Rico, Carlos

    2016-02-01

    The biochemical methane potential test is the most commonly applied method to determine methane production from organic wastes. One of the parameters measured is the volume of biogas produced which can be determined manometrically by keeping the volume constant and measuring increases in pressure. In the present study, the effect of pressure accumulation in the headspace of the reactors has been studied. Triplicate batch trials employing cocoa shell, waste coffee grounds and dairy manure as substrates have been performed under two headspace pressure conditions. The results obtained in the study showed that headspace overpressures higher than 600mbar affected methane production for waste coffee grounds. On the contrary, headspace overpressures within a range of 600-1000mbar did not affect methane production for cocoa shell and dairy manure. With the analyses performed in the present work it has not been possible to determine the reasons for the lower methane yield value obtained for the waste coffee grounds under high headspace pressures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Root biomass as a major means of affecting methane emissions

    USDA-ARS?s Scientific Manuscript database

    Human activities are contributing to greenhouse gas emissions. Methane, the second most abundant greenhouse gas, is ~25 times more potent in global warming potential than carbon dioxide, and 7-17% of atmospheric methane comes from paddy rice fields. The purpose of the study was to investigate gene...

  17. The determination of methane resources from liquidated coal mines

    NASA Astrophysics Data System (ADS)

    Trenczek, Stanisław

    2017-11-01

    The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.

  18. Effect of quantity and composition of waste on the prediction of annual methane potential from landfills.

    PubMed

    Cho, Han Sang; Moon, Hee Sun; Kim, Jae Young

    2012-04-01

    A study was conducted to investigate the effect of waste composition change on the methane production in landfills. An empirical equation for the methane potential of the mixed waste is derived based on the methane potential values of individual waste components and the compositional ratio of waste components. A correction factor was introduced in the equation and was determined from the BMP and lysimeter tests. The equation and LandGEM were applied for a full size landfill and the annual methane potential was estimated. Results showed that the changes in quantity of waste affected the annual methane potential from the landfill more than the changes of waste composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Root-Associated Methane Oxidation and Methanogenesis: Key Determinants of Wetland Methane Emissions

    NASA Technical Reports Server (NTRS)

    King, G. M.

    1997-01-01

    During the award period, we have assessed the extent and controls of methane oxidation in north temperate wetlands. It is evident that wetlands have been a major global source of atmospheric methane in the past, and are so at present. It is also evident that microbial methane oxidation consumes a variable fraction of total wetland methane production, perhaps 10%-90%. Methane oxidation is thus a potentially important control of wetland methane emission. Our efforts have been designed to determine the extent of the process, its controls, and possible relationships to changes that might be expected in wetlands as a consequence of anthropogenic or climate-related disturbances. Current work, has emphasized controls of methane oxidation associated with rooted aquatic plants. As for the sediment-water interface, we have observed that oxygen availability is a primary limiting factor. Our conclusion is based on several different lines of evidence obtained from in vitro and in situ analyses. First, we have measured the kinetics of methane oxidation by intact plant roots harboring methane-oxidizing bacteria, as well as the kinetics of the methanotrophs themselves. Values for the half-saturation constant (apparent K(sub m)) are approximately 5 microns. These values are roughly equivalent to, or much less than porewater methane concentrations, indicating that uptake is likely saturated with respect to methane, and that some other parameter must limit activity. Methane concentrations in the lacunar spaces at the base of plant stems are also comparable to the half-saturation constants (when expressed as equivalent dissolved concentrations), providing further support for limitation of uptake by parameters other than methane.

  20. Carbon isotope fractionation during microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Barker, James F.; Fritz, Peter

    1981-09-01

    Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.

  1. Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments

    NASA Astrophysics Data System (ADS)

    Sawicka, Joanna E.; Brüchert, Volker

    2017-01-01

    changes in methane formation and methane oxidation rates due to temperature alone. Additional factors such as regional and local hydrostatic pressure changes and coastal submarine groundwater flow may also affect the vertical and lateral transport of methane.

  2. Methane emission from sewers.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows.

    PubMed

    Lopes, J C; de Matos, L F; Harper, M T; Giallongo, F; Oh, J; Gruen, D; Ono, S; Kindermann, M; Duval, S; Hristov, A N

    2016-07-01

    The objective of this crossover experiment was to investigate the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission, methane isotopic composition, and rumen fermentation and microbial profile in lactating dairy cows. The experiment involved 6 ruminally cannulated late-lactation Holstein cows assigned to 2 treatments: control and 3NOP (60 mg/kg of feed dry matter). Compared with the control, 3NOP decreased methane emission by 31% and increased hydrogen emission from undetectable to 1.33 g/d. Methane emissions per kilogram of dry matter intake and milk yield were also decreased 34% by 3NOP. Milk production and composition were not affected by 3NOP, except milk fat concentration was increased compared with the control. Concentrations of total VFA and propionate in ruminal fluid were not affected by treatment, but acetate concentration tended to be lower and acetate-to-propionate ratio was lower for 3NOP compared with the control. The 3NOP decreased the molar proportion of acetate and increase those of propionate, butyrate, valerate, and isovalerate. Deuterium-to-hydrogen ratios of methane and the abundance of (13)CH3D were similar between treatments. Compared with the control, minor (4‰) depletion in the (13)C/(12)C ratio was observed for 3NOP. Genus composition of methanogenic archaea (Methanobrevibacter, Methanosphaera, and Methanomicrobium) was not affected by 3NOP, but the proportion of methanogens in the total cell counts tended to be decreased by 3NOP. Prevotella spp., the predominant bacterial genus in ruminal contents in this experiment, was also not affected by 3NOP. Compared with the control, Ruminococcus and Clostridium spp. were decreased and Butyrivibrio spp. was increased by 3NOP. This experiment demonstrated that a substantial inhibition of enteric methane emission by 3NOP in dairy cows was accompanied with increased hydrogen emission and decreased acetate-to-propionate ratio; however, neither an effect on rumen

  4. High diversity of methanotrophic bacteria in geothermal soils affected by high methane fluxes

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Walter; Gagliano, Antonina Lisa; Quatrini, Paola; Parello, Francesco

    2014-05-01

    Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas 25 times as potent as CO2. Recently, it has been demonstrated that volcanic/geothermal soils act as source, but also as biological filter for methane release to the atmosphere. For long time, volcanic/geothermal soils has been considered inhospitable for methanotrophic microorganisms, but new extremophile methanotrophs belonging to Verrucomicrobia were identified in three different areas (Pozzuoli, Italy; Hell's Gate, New Zealand; Kamchatka, Russia), explaining anomalous behaviours in methane leakages of several geothermal/volcanic sites. Our aim was to increase the knowledge of the relationship between methane emissions from volcanic/geothermal areas and biological methane oxidation, by investigating a geothermal site of Pantelleria island (Italy). Pantelleria Island hosts a high enthalpy geothermal system characterized by high temperature, high CH4 and very low H2S fluxes. Such characteristics are reflected in potentially great supply of methane for methanotrophs and scarce presence of inhibitors of their activity (H2S and NH3) in the Pantelleria soils. Potential methanotrophic activity within these soils was already evidenced by the CH4/CO2 ratio of the flux measurements which was lower than that of the respective fumarolic manifestations indicating a loss of CH4 during the gas travel towards the earth's surface. In this study laboratory incubation experiments using soils sampled at Favara Grande, the main hydrothermal area of Pantelleria, showed very high methane consumption rates (up to 9500 ng CH4 h-1 g-1). Furthermore, microbiological and culture-independent molecular analyses allowed to detect the presence of methanotrophs affiliated to Gamma- and Alpha-Proteobacteria and to the newly discovered acidothermophilic methanotrophs Verrucomicrobia. Culturable methanotrophic Alpha-proteobacteria of the genus Methylocystis were isolated by

  5. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  6. Impact of hydrology on methane flux patterns in a permafrost-affected floodplain in Northeast Siberia

    NASA Astrophysics Data System (ADS)

    Kwon, Min Jung; Beulig, Felix; Kuesel, Kirsten; Wildner, Marcus; Heimann, Martin; Zimov, Nikita; Zimov, Sergei; Goeckede, Mathias

    2015-04-01

    A large fraction of organic carbon stored in Arctic permafrost soil is at risk to be decomposed and released to the atmosphere under climate change. Thawing of ice-rich permafrost will re-structure the surface topography, with potentially significant effects on hydrology: water table depth (WTD) of depressed areas will increase, while that of the surrounding area will decrease. Changes in hydrology will trigger modifications in soil and vegetation, e.g. soil temperature, vegetation and microbial community structure. All of these secondary effects will alter carbon cycle processes, with the magnitude and even sign of the net effect yet unknown. The objective of this study is to investigate effects of drainage on methane fluxes in a floodplain of the Kolyma River near Cherskii, Northeast Siberia. The study site is separated into two areas, one that has been drained since 2004, and a nearby reference site. Methane flux was measured for ~16 weeks during summer and early winter of 2013, and summer of 2014. In addition, to separate different methane emission pathways, plant-mediated methane transport (through aerenchyma) as well as the proportion of ebullition were measured in 2014. Vegetation and microbial community structures were investigated and compared. After a decade of drainage history that lowered WTD by about 20cm in the drained area, Eriophorum (cotton grass) that previously dominated have to a large part been replaced by Carex (tussock-forming sedge) and shrub species. While WTD primarily influenced the methane flux rate, this vegetation change indirectly altered the flux as well in a way that sites with Eriophorum emitted more methane. Concerning the microbial community structure, the relative abundance of methanogen and ratio of methanotrophs to methanogens were well correlated with methane flux rates, implying that the methane flux is highly influenced by microorganisms. As a consequence of these changes, in the drained area less amount of methane was

  7. Mechanistic modeling of microbial interactions at pore to profile scale resolve methane emission dynamics from permafrost soil

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2017-05-01

    The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.

  8. Factors controlling headspace pressure in a manual manometric BMP method can be used to produce a methane output comparable to AMPTS.

    PubMed

    Himanshu, H; Voelklein, M A; Murphy, J D; Grant, J; O'Kiely, P

    2017-08-01

    The manual manometric biochemical methane potential (mBMP) test uses the increase in pressure to calculate the gas produced. This gas production may be affected by the headspace volume in the incubation bottle and by the overhead pressure measurement and release (OHPMR) frequency. The biogas and methane yields of cellulose, barley, silage and slurry were compared with three incubation bottle headspace volumes (50, 90 and 180ml; constant 70ml total medium) and four OHPMR frequencies (daily, each third day, weekly and solely at the end of experiment). The methane yields of barley, silage and slurry were compared with those from an automated volumetric method (AMPTS). Headspace volume and OHPMR frequency effects on biogas yield were mediated mainly through headspace pressure, with the latter having a negative effect on the biogas yield measured and relatively little effect on methane yield. Two mBMP treatments produced methane yields equivalent to AMPTS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure

    USDA-ARS?s Scientific Manuscript database

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion, yet in temperate climate digesters, require a considerable amount of additional heat en...

  10. Studying the Impacts of Environmental Factors and Agricultural Management on Methane Emissions from Rice Paddies Using a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Lin, T. S.; Gahlot, S.; Shu, S.; Jain, A. K.; Kheshgi, H. S.

    2017-12-01

    Continued growth in population is projected to drive increased future demand for rice and the methane emissions associated with its production. However, observational studies of methane emissions from rice have reported seemingly conflicting results and do not all support this projection. In this study we couple an ecophysiological process-based rice paddy module and a methane emission module with a land surface model, Integrated Science Assessment Model (ISAM), to study the impacts of various environmental factors and agricultural management practices on rice production and methane emissions from rice fields. This coupled modeling framework accounts for dynamic rice growth processes with adaptation of photosynthesis, rice-specific phenology, biomass accumulation, leaf area development and structures responses to water, temperature, light and nutrient stresses. The coupled model is calibrated and validated with observations from various rice cultivation fields. We find that the differing results of observational studies can be caused by the interactions of environmental factors, including climate, atmospheric CO2 concentration, and N deposition, and agricultural management practices, such as irrigation and N fertilizer applications, with rice production at spatial and temporal scales.

  11. Exhaled methane concentration profiles during exercise on an ergometer

    PubMed Central

    Szabó, A; Ruzsanyi, V; Unterkofler, K; Mohácsi, Á; Tuboly, E; Boros, M; Szabó, G; Hinterhuber, H; Amann, A

    2016-01-01

    Exhaled methane concentration measurements are extensively used in medical investigation of certain gastrointestinal conditions. However, the dynamics of endogenous methane release is largely unknown. Breath methane profiles during ergometer tests were measured by means of a photoacoustic spectroscopy based sensor. Five methane-producing volunteers (with exhaled methane level being at least 1 ppm higher than room air) were measured. The experimental protocol consisted of 5 min rest—15 min pedalling (at a workload of 75 W)—5 min rest. In addition, hemodynamic and respiratory parameters were determined and compared to the estimated alveolar methane concentration. The alveolar breath methane level decreased considerably, by a factor of 3–4 within 1.5 min, while the estimated ventilation-perfusion ratio increased by a factor of 2–3. Mean pre-exercise and exercise methane concentrations were 11.4 ppm (SD:7.3) and 2.8 ppm (SD:1.9), respectively. The changes can be described by the high sensitivity of exhaled methane to ventilationperfusion ratio and are in line with the Farhi equation. PMID:25749807

  12. Effect of dilution and ash supplement on the bio-methane potential of palm oil mill effluent (POME)

    NASA Astrophysics Data System (ADS)

    Jijai, Sunwanee; Muleng, Saina; Siripatana, Chairat

    2017-08-01

    This study aimed to evaluate the bio-methane potential of POME at different dilutions (100, 80, 60, 40, and 20 percent of initial POME) and different pH dues to different levels of ash supplement. Five different amounts of ash were added to digesters (0, 2, 4, 6, and 8 grams of ash were added to 170 ml of POME respectively). The digesters were operated in batch anaerobic digestion systems at room temperature (28-30 °C) and the experiments were performed in duplicate manner. The results showed that POME without dilution gave highest cumulative biogas (950 ml). However, 80% dilution from original POME gave the highest methane yield (45.83 mL CH4/ gCODadded or 103.13 mL CH4/ gCODremoved). Finally, the results of experiment 2, this adding ash into POME increased pH as well as enhanced the biogas production. It was found that adding ash at the ash:POME ratio of 2 g: 170 ml gave the highest both the cumulative biogas and methane yield (1,520 mL and 218.79 mL CH4/ gCODremoved respectively). The addition of ash in the raw waste of POME gave the pH in the range of criteria and highest bio-methane potential. The modified Gompertz equation, Schnute as well as Monod kinetic models were used to compare the data from the experiments. It was found that the factors that affected included, the bio-methane production and the kinetic parameters (the maximum specific methane production rates (Rm ml/day) and the methane production potential (P, mL)), initial COD, nutrients, levels of dilution, and initial pH (by adding different level of ash). However, λ (lag phase period) was not affected by initial COD and other factors. While Monod kinetics provides valuable insight in explaining what could happen behind the systematic trends.

  13. Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates

    PubMed Central

    Steele, Joshua A.; Ziebis, Wiebke; Scheller, Silvan; Case, David; Reynard, Linda M.; Orphan, Victoria J.

    2017-01-01

    and hydrocarbon exploitation. Nonetheless, quantifying methane metabolism typically involves logistically challenging methods and/or specialized equipment; these impediments have limited our understanding of methane fluxes and reservoirs in natural systems, making effective management difficult. Here, we offer an easily implementable, precise method using monodeuterated methane (CH3D) that advances three specific aims. First, it allows users to directly compare methane consumption rates between different experimental treatments of the same inoculum. Second, by empirically linking the CH3D procedure with the well-established 14C radiocarbon approach, we determine absolute scaling factors that facilitate rate measurements for several aerobic and anaerobic systems of interest. Third, CH3D represents a helpful tool in evaluating the relationship between methane activation and full oxidation in methanotrophic metabolisms. The procedural advantages, consistency, and novel research questions enabled by the CH3D method should prove useful in a wide range of culture-based and environmental microbial systems to further elucidate methane metabolism dynamics. PMID:28861523

  14. Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates.

    PubMed

    Marlow, Jeffrey J; Steele, Joshua A; Ziebis, Wiebke; Scheller, Silvan; Case, David; Reynard, Linda M; Orphan, Victoria J

    2017-01-01

    and hydrocarbon exploitation. Nonetheless, quantifying methane metabolism typically involves logistically challenging methods and/or specialized equipment; these impediments have limited our understanding of methane fluxes and reservoirs in natural systems, making effective management difficult. Here, we offer an easily implementable, precise method using monodeuterated methane (CH 3 D) that advances three specific aims. First, it allows users to directly compare methane consumption rates between different experimental treatments of the same inoculum. Second, by empirically linking the CH 3 D procedure with the well-established 14 C radiocarbon approach, we determine absolute scaling factors that facilitate rate measurements for several aerobic and anaerobic systems of interest. Third, CH 3 D represents a helpful tool in evaluating the relationship between methane activation and full oxidation in methanotrophic metabolisms. The procedural advantages, consistency, and novel research questions enabled by the CH 3 D method should prove useful in a wide range of culture-based and environmental microbial systems to further elucidate methane metabolism dynamics.

  15. Trophic state changes can affect the importance of methane-derived carbon in aquatic food webs.

    PubMed

    Schilder, Jos; van Hardenbroek, Maarten; Bodelier, Paul; Kirilova, Emiliya P; Leuenberger, Markus; Lotter, André F; Heiri, Oliver

    2017-06-28

    Methane-derived carbon, incorporated by methane-oxidizing bacteria, has been identified as a significant source of carbon in food webs of many lakes. By measuring the stable carbon isotopic composition (δ 13 C values) of particulate organic matter, Chironomidae and Daphnia spp. and their resting eggs (ephippia), we show that methane-derived carbon presently plays a relevant role in the food web of hypertrophic Lake De Waay, The Netherlands. Sediment geochemistry, diatom analyses and δ 13 C measurements of chironomid and Daphnia remains in the lake sediments indicate that oligotrophication and re-eutrophication of the lake during the twentieth century had a strong impact on in-lake oxygen availability. This, in turn, influenced the relevance of methane-derived carbon in the diet of aquatic invertebrates. Our results show that, contrary to expectations, methane-derived relative to photosynthetically produced organic carbon became more relevant for at least some invertebrates during periods with higher nutrient availability for algal growth, indicating a proportionally higher use of methane-derived carbon in the lake's food web during peak eutrophication phases. Contributions of methane-derived carbon to the diet of the investigated invertebrates are estimated to have ranged from 0-11% during the phase with the lowest nutrient availability to 13-20% during the peak eutrophication phase. © 2017 The Author(s).

  16. Structural control of coalbed methane production in Alabama

    USGS Publications Warehouse

    Pashin, J.C.; Groshong, R.H.

    1998-01-01

    Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to

  17. Mechanistic modeling of thermo-hydrological processes and microbial interactions at pore to profile scales resolve methane emission dynamics from permafrost soil

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali; Or, Dani

    2017-04-01

    The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates

  18. Role Of Fires On The Global Methane Budget And Atmospheric Methane Increase Since 2006

    NASA Astrophysics Data System (ADS)

    Worden, J.; Bloom, A. A.; Jiang, Z.; Pandey, S.; Walker, T. W.; Worden, H. M.

    2016-12-01

    Since 2006, Methane has increased at an average rate of 7 ppb/year. Satellite based measurements of total column CH4 suggest that 70% of this increase is from N. American (likely fossil fuel) sources whereas surface isotope data attribute the increase almost entirely to emissions from tropical wetlands or agriculture. However, large uncertainties in all components of the methane budget suggest any one source could substantially affect the growth rate of atmospheric methane. Here we examine the role of fires on the recent changes in atmospheric methane. We use satellite measurements of CH4 and CO to show that total land-use related CH4 fire emissions have decreased from 14+/-4 Tg during the 2001-2006 time period to 11+/- 4 Tg for the 2007-2015 time period, consistent with bottom-up estimates. Largest reductions are over S. America and Indonesia, likely as a result of increased rainfall during this time period. Fire emissions of methane are isotopically enhanced relative to fossil fuels and wetlands. Including the effects of fires in a global isotopic box model indicates that fossil fuels can account for 1/3 of the recent increase with the remaining due to biogenic sources.

  19. Geochemical and geological factors controlling the spatial distribution of sulfate-methane transition zone in the Ría de Vigo (NW Spain)

    NASA Astrophysics Data System (ADS)

    Martínez-Carreño, N.; García-Gil, S.; Cartelle, V.; de Blas, E.; Ramírez-Pérez, A. M.; Insua, T. L.

    2017-05-01

    High-resolution seismic profiles, gravity core analysis and radiocarbon data have been used to identify the factors behind the methane production and free gas accumulation in the Ría de Vigo. Lithological and geochemical parameters (sulfate and methane concentration) from seventeen gravity cores were analyzed to characterize the sediment of the ria. The distribution of methane-charged sediments is mainly controlled by the quantity and quality of organic matter. Geochemical analyses reveal minimum methane concentrations ranging between 1 μM and 1 mM in sediments located outside the acoustic gas field, while gas-bearing sediments, show methane concentrations up to 5 mM. A shallowing of the sulfate-methane transition zone (SMTZ) is observed from the outer to the inner area of the ria. The presence of methane in the sulfate reduction zone (SRZ) likely to reflect the existence of methylotropic methanogenesis and/or migration processes of deeper methane gas in the sediments of the Ría de Vigo. The presence of an 'anomalous' high-sulfate concentration layer below the SMTZ in the inner and middle area of the ria, is attributed to the intrusion of sulfate-rich waters from adjacent areas that could be transported laterally through more porous layers.

  20. Pig feeding strategy coupled with effluent management - fresh or stored slurry, solid phase separation - on methane potential and methane conversion factors during storage

    NASA Astrophysics Data System (ADS)

    Jarret, Guillaume; Martinez, José; Dourmad, Jean-Yves

    2011-11-01

    In the guideline for the determination of methane (CH 4) emission from animal manure (IPCC) the amount of CH 4 emitted is generally calculated according to an equation combining the amount of organic matter (OM) or volatile solids excreted, the ultimate CH 4 potential ( B0) of excreta and a system-specific methane conversion factor (MCF, %) that reflects the portion of B0 that is really converted into CH 4. The objective of the present study was to investigate the effect of the modification of dietary crude protein and fibre levels on B0 of pig slurry and on subsequent MCF according to different strategies of slurry management. Five experimental diets differing mainly in their crude protein and fibre content were compared. Two types of measurement of CH 4 emission were performed. The first was the measurement of B0 of slurry using biomethanogene potential (BMP) test. The second consisted in a storage simulation, which was performed on different kinds of effluents: fresh slurry (FSl), stored slurry (SSl), and faeces mixed with water (FaW). The type of diet and the type of effluent affected ( P < 0.001) CH 4 production after 30, 50 and 100 days. Moreover, the interaction between type of effluent and type of diet was significant for CH 4 emission and for MCF. CH 4 production was the highest for BMP, the average production of CH 4 during storage from FaW, FSl and SSl samples representing 77%, 58% and 64% of the B0 value. The dynamic of CH 4 production during BMP tests was rather similar for all dietary treatments whereas it differed for storage simulation studies with significant effects of dietary CP and fibre contents. The results from this study indicate that the type of diet has a significant but rather limited effect on B0 value of effluent. The effect of diet is much more marked on MCF, with lower values for high protein diets, and higher values for high fibre diets. MCF is also affected by manure management, the values measured on separated faeces from urine

  1. Analysis of uncertainties in the estimates of nitrous oxide and methane emissions in the UK's greenhouse gas inventory for agriculture

    NASA Astrophysics Data System (ADS)

    Milne, Alice E.; Glendining, Margaret J.; Bellamy, Pat; Misselbrook, Tom; Gilhespy, Sarah; Rivas Casado, Monica; Hulin, Adele; van Oijen, Marcel; Whitmore, Andrew P.

    2014-01-01

    The UK's greenhouse gas inventory for agriculture uses a model based on the IPCC Tier 1 and Tier 2 methods to estimate the emissions of methane and nitrous oxide from agriculture. The inventory calculations are disaggregated at country level (England, Wales, Scotland and Northern Ireland). Before now, no detailed assessment of the uncertainties in the estimates of emissions had been done. We used Monte Carlo simulation to do such an analysis. We collated information on the uncertainties of each of the model inputs. The uncertainties propagate through the model and result in uncertainties in the estimated emissions. Using a sensitivity analysis, we found that in England and Scotland the uncertainty in the emission factor for emissions from N inputs (EF1) affected uncertainty the most, but that in Wales and Northern Ireland, the emission factor for N leaching and runoff (EF5) had greater influence. We showed that if the uncertainty in any one of these emission factors is reduced by 50%, the uncertainty in emissions of nitrous oxide reduces by 10%. The uncertainty in the estimate for the emissions of methane emission factors for enteric fermentation in cows and sheep most affected the uncertainty in methane emissions. When inventories are disaggregated (as that for the UK is) correlation between separate instances of each emission factor will affect the uncertainty in emissions. As more countries move towards inventory models with disaggregation, it is important that the IPCC give firm guidance on this topic.

  2. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate.

    PubMed

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-21

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d(-1)) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  3. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    PubMed Central

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d−1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery. PMID:26791952

  4. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    NASA Astrophysics Data System (ADS)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  5. Incubation Temperature, But Not Pequi Oil Supplementation, Affects Methane Production, and the Ruminal Microbiota in a Rumen Simulation Technique (Rusitec) System.

    PubMed

    Duarte, Andrea C; Holman, Devin B; Alexander, Trevor W; Kiri, Kerstin; Breves, Gerhard; Chaves, Alexandre V

    2017-01-01

    Lipid supplementation is a promising strategy for methane mitigation in cattle and has been evaluated using several different lipid sources. However, limited studies have assessed the effect of temperature on methane emissions from cattle and changes in incubation temperature have also not been extensively evaluated. The aim of this study was to evaluate the combined effect of pequi oil (high in unsaturated fatty acids) and incubation temperature on fermentation characteristics and microbial communities using the rumen simulation technique. A completely randomized experiment was conducted over a 28-day period using a Rusitec system. The experiment was divided into four periods of 7 days each, the first of which was a 7-day adaptation period followed by three experimental periods. The two treatments consisted of a control diet (no pequi oil inclusion) and a diet supplemented with pequi oil (1.5 mL/day) which increased the dietary fat content to 6% (dry matter, DM-basis). Three fermenter vessels (i.e., replicates) were allocated to each treatment. In the first experimental period, the incubation temperature was maintained at 39°C, decreased to 35°C in the second experimental period and then increased again to 39°C in the third. Pequi oil was continuously supplemented during the experiment. Microbial communities were assessed using high-throughput sequencing of the archaeal and bacterial 16S rRNA gene. Methane production was reduced by 57% following a 4°C decrease in incubation temperature. Supplementation with pequi oil increased the dietary fat content to 6% (DM-basis) but did not affect methane production. Analysis of the microbiota revealed that decreasing incubation temperature to 35°C affected the archaeal and bacterial diversity and richness of liquid-associated microbes, but lipid supplementation did not change microbial diversity.

  6. Aerobic Methane Oxidation in Alaskan Lakes Along a Latitudinal Transect

    NASA Astrophysics Data System (ADS)

    Martinez-Cruz, K. C.; Sepulveda-Jauregui, A.; Walter Anthony, K. M.; Anthony, P.; Thalasso, F.

    2013-12-01

    Karla Martinez-Cruz* **, Armando Sepulveda-Jauregui*, Katey M. Walter Anthony*, Peter Anthony*, and Frederic Thalasso**. * Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska. ** Biotechnology and Bioengineering Department, Cinvestav, Mexico city, D. F., Mexico. Methane (CH4) is the third most important greenhouse gas in the atmosphere, after carbon dioxide and water vapor. Boreal lakes play an important role in the current global warming by contributing as much as 6% of global atmospheric CH4 sources annually. On the other hand, aerobic methane oxidation (methanotrophy) in lake water is a fundamental process in global methane cycling that reduces the amount of CH4 emissions to the atmosphere. Several environmental factors affect aerobic methane oxidation in the water column both directly and indirectly, including concentration of CH4 and O2, temperature and carbon budgets of lakes. We analyzed the potential of aerobic methane oxidation (PMO) rates in incubations of water collected from 30 Alaskan lakes along a north-south transect during winter and summer 2011. Our findings showed an effect of CH4 and O2 concentrations, temperature and yedoma thawing permafrost on PMO activity in the lake water. The highest PMO rates were observed in summer by lakes situated on thawing yedoma permafrost, most of them located in the interior of Alaska. We also estimated that 60-80% of all CH4 produced in Alaskan lakes could be taken up by methanotrophs in the lake water column, showing the significant influence of aerobic methane oxidation of boreal lakes to the global CH4 budget.

  7. Relationship between Maceral of Coal and Coal-bed Methane adsorption ability in Sihe Coalmine of Qinshui Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M. S.; Zou, G. G.; Zhu, R. B.

    2018-05-01

    Maceral components and its content of coal were divided based on the microscopic characteristics of coal. The Langmuir volume and the Langmuir pressure were tested, and the Langmuir volume represents the adsorption capacity of coal. The formation of coal bed methane is affected by the partition of the maceral components in coal. Therefore, the relationship between maceral composition and coal bed methane adsorption capacity of coal was analyzed. The results show that the maceral components of coal are dominated by vitrinite and inertinite in the study area, and the content of inertinite is below 32%. The vitrinite group has a negative linear correlation with the Langmuir volume, and the inertia composition has a positive linear correlation with it. The cellular structures in the inertinite are the main site of coal bed methane enrichment. The microstructure of coal affects the coalbed methane content and the stage of hydrocarbon generation in coal. This indicates that the microstructure of coal is one of the important factors influencing the adsorption capacity of coal seam.

  8. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    PubMed

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.

  9. Short-term landfill methane emissions dependency on wind.

    PubMed

    Delkash, Madjid; Zhou, Bowen; Han, Byunghyun; Chow, Fotini K; Rella, Chris W; Imhoff, Paul T

    2016-09-01

    Short-term (2-10h) variations of whole-landfill methane emissions have been observed in recent field studies using the tracer dilution method for emissions measurement. To investigate the cause of these variations, the tracer dilution method is applied using 1-min emissions measurements at Sandtown Landfill (Delaware, USA) for a 2-h measurement period. An atmospheric dispersion model is developed for this field test site, which is the first application of such modeling to evaluate atmospheric effects on gas plume transport from landfills. The model is used to examine three possible causes of observed temporal emissions variability: temporal variability of surface wind speed affecting whole landfill emissions, spatial variability of emissions due to local wind speed variations, and misaligned tracer gas release and methane emissions locations. At this site, atmospheric modeling indicates that variation in tracer dilution method emissions measurements may be caused by whole-landfill emissions variation with wind speed. Field data collected over the time period of the atmospheric model simulations corroborate this result: methane emissions are correlated with wind speed on the landfill surface with R(2)=0.51 for data 2.5m above ground, or R(2)=0.55 using data 85m above ground, with emissions increasing by up to a factor of 2 for an approximately 30% increase in wind speed. Although the atmospheric modeling and field test are conducted at a single landfill, the results suggest that wind-induced emissions may affect tracer dilution method emissions measurements at other landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. QENS study of methane diffusion in Mo/H-ZSM-5 used for the methane dehydroaromatisation reaction

    NASA Astrophysics Data System (ADS)

    Silverwood, Ian P.; Arán, Miren Agote; González, Ines Lezcano; Kroner, Anna; Beale, Andrew M.

    2018-05-01

    There is commercial interest in understanding the deactivation of Mo loaded H-ZSM-5 catalyst by coke fouling during the methane dehydroaromatization reaction (MDA). The effect of coke on methane diffusion inside the zeolite pores was studied by quasielastic neutron scattering (QENS) measurements on Mo/H-ZSM-5 samples reacted with methane for 0, 7, 25 and 60 min. Catalytic activity of the samples followed by mass spectrometry indicate that the induction period in which Mo species are carburized lasts for ˜9 min; after this period the material shows selectivity to aromatics. Characterization by TGA and N2 physisorption suggest that practically no carbon is deposited during the induction period. The ˜2 wt % of coke formed after one hour of reaction has a negligible effect in the zeolite crystal structurebut a small effect on the micropore volume. The QENS studies show that the methane transport by jump diffusion is however not measurably affected by the accumulated coke in the samples.

  11. Critical Factors Driving the High Volumetric Uptake of Methane in Cu₃(btc)₂.

    PubMed

    Hulvey, Zeric; Vlaisavljevich, Bess; Mason, Jarad A; Tsivion, Ehud; Dougherty, Timothy P; Bloch, Eric D; Head-Gordon, Martin; Smit, Berend; Long, Jeffrey R; Brown, Craig M

    2015-08-26

    A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu3(btc)2 (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu3(btc)2, and its isostructural analogue Cr3(btc)2, show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially. This data unequivocally shows that primary adsorption sites around, and within, the small octahedral cage in the structure are favored over the exposed Cu(2+) or Cr(2+) cations. These results are supported by an exhaustive parallel computational study, and contradict results recently reported using a time-resolved diffraction structure envelope (TRDSE) method. Moreover, the computational study reveals that strong methane binding at the open metal sites is largely due to methane-methane interactions with adjacent molecules adsorbed at the primary sites instead of an electronic interaction with the metal center. Simulated methane adsorption isotherms for Cu3(btc)2 are shown to exhibit excellent agreement with experimental isotherms, allowing for additional simulations that show that modifications to the metal center, ligand, or even tuning the overall binding enthalpy would not improve the working capacity for methane storage over that measured for Cu3(btc)2 itself.

  12. Bioelectrochemical approach for control of methane emission from wetlands.

    PubMed

    Liu, Shentan; Feng, Xiaojuan; Li, Xianning

    2017-10-01

    To harvest electricity and mitigate methane emissions from wetlands, a novel microbial fuel cell coupled constructed wetland (MFC-CW) was assembled with an anode placing in the rhizosphere and a cathode on the water surface. Plant-mediated methane accounted for 71-82% of the total methane fluxes. The bioanode served as an inexhaustible source of electron acceptors and resulted in reduced substantial methane emissions owing to electricigens outcompeting methanogens for carbon and electrons when substrate was deficient. However, when supplying sufficient organic carbon, both electricity and methane increased, indicating that electrogenesis and methanogenesis could co-exist in harmony. Direct methane emission (diffusion/ebullition) and plant-mediated methane emission were affected by operating conditions. Methanogenesis was significantly suppressed (∼98%) at HRT of 96h and with external resistance of 200Ω, accompanied with improved coulombic efficiency of 14.9% and current density of 187mA/m 2 . Contrarily, change of electrode polarity in the rhizosphere led to more methane efflux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Methane storage capacity of the early martian cryosphere

    NASA Astrophysics Data System (ADS)

    Lasue, Jeremie; Quesnel, Yoann; Langlais, Benoit; Chassefière, Eric

    2015-11-01

    Methane is a key molecule to understand the habitability of Mars due to its possible biological origin and short atmospheric lifetime. Recent methane detections on Mars present a large variability that is probably due to relatively localized sources and sink processes yet unknown. In this study, we determine how much methane could have been abiotically produced by early Mars serpentinization processes that could also explain the observed martian remanent magnetic field. Under the assumption of a cold early Mars environment, a cryosphere could trap such methane as clathrates in stable form at depth. The extent and spatial distribution of these methane reservoirs have been calculated with respect to the magnetization distribution and other factors. We calculate that the maximum storage capacity of such a clathrate cryosphere is about 2.1 × 1019-2.2 × 1020 moles of CH4, which can explain sporadic releases of methane that have been observed on the surface of the planet during the past decade (∼1.2 × 109 moles). This amount of trapped methane is sufficient for similar sized releases to have happened yearly during the history of the planet. While the stability of such reservoirs depends on many factors that are poorly constrained, it is possible that they have remained trapped at depth until the present day. Due to the possible implications of methane detection for life and its influence on the atmospheric and climate processes on the planet, confirming the sporadic release of methane on Mars and the global distribution of its sources is one of the major goals of the current and next space missions to Mars.

  14. Potential impact of salinity on methane production from food waste anaerobic digestion.

    PubMed

    Zhao, Jianwei; Liu, Yiwen; Wang, Dongbo; Chen, Fei; Li, Xiaoming; Zeng, Guangming; Yang, Qi

    2017-09-01

    Previous studies have demonstrated that the presence of sodium chloride (NaCl) inhibited the production of methane from food waste anaerobic digestion. However, the details of how NaCl affects methane production from food waste remain unknown by now and the efficient approach to mitigate the impact of NaCl on methane production was seldom reported. In this paper, the details of how NaCl affects methane production was first investigated via a series of batch experiments. Experimental results showed the effect of NaCl on methane production was dosage dependent. Low level of NaCl improved the hydrolysis and acidification but inhibited the process of methanogenesis whereas high level of NaCl inhibit both steps of acidification and methanogenesis. Then an efficient approach, i.e. co-digestion of food waste and waste activated sludge, to mitigate the impact of NaCl on methane production was reported. Finally, the mechanisms of how co-digestion mitigates the effect on methane production caused by NaCl in co-digestion system were revealed. These findings obtained in this work might be of great importance for the operation of methane recovery from food waste in the presence of NaCl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Molecular dynamics study of methane hydrate formation at a water/methane interface.

    PubMed

    Zhang, Junfang; Hawtin, R W; Yang, Ye; Nakagava, Edson; Rivero, M; Choi, S K; Rodger, P M

    2008-08-28

    We present molecular dynamics simulation results of a liquid water/methane interface, with and without an oligomer of poly(methylaminoethylmethacrylate), PMAEMA. PMAEMA is an active component of a commercial low dosage hydrate inhibitor (LDHI). Simulations were performed in the constant NPT ensemble at temperatures of 220, 235, 240, 245, and 250 K and a pressure of 300 bar. The simulations show the onset of methane hydrate growth within 30 ns for temperatures below 245 K in the methane/water systems; at 240 K there is an induction period of ca. 20 ns, but at lower temperatures growth commences immediately. The simulations were analyzed to calculate hydrate content, the propensity for hydrogen bond formation, and how these were affected by both temperature and the presence of the LDHI. As expected, both the hydrogen bond number and hydrate content decreased with increasing temperature, though little difference was observed between the lowest two temperatures considered. In the presence of PMAEMA, the temperature below which sustained hydrate growth occurred was observed to decrease. Some of the implications for the role of PMAEMA in LDHIs are discussed.

  16. Role of microorganisms for cycling of atmospheric constituents, emphasizing the greenhouse gas methane (Invited)

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2013-12-01

    Microorganisms have contributed significantly to the formation of the atmosphere and the habitability of Earth. Microbial methanogenesis probably helped overcoming the faint sun problem on young Earth. Later on, cyanobacterial photosynthesis produced oxygen and thus restricted the life zone of methanogenic microbial communities, which nowadays contribute only about 1% to total carbon cycle. Nevertheless, methanogenesis still dominates the budget of atmospheric methane and contributes significantly to the greenhouse effect. There are numerous habitats, which exchange methane with the atmosphere, and even more in which methane is intensively cycled albeit little emitted. Methane can be a byproduct of chemical reactions in plant leaves, or of aerobic methyl phosphonate consumption in ocean water. Most commonly, however, methane is a stoichiometric catabolic product in the degradation of organic matter by anaerobic microorganisms. The degradation is achieved by a complex microbial community consisting of various species of hydrolytic and fermentative Bacteria that produce hydrogen, carbon dioxide and acetate as major end products, and of methanogenic Archaea that eventually convert these compounds to methane and carbon dioxide. The composition of such methanogenic microbial communities, the rates and paths of methane formation, and the isotopic composition of the produced methane all exhibit quite some variability across the different habitats in which methane is produced from organic matter decomposition, such as flooded soils, lake sediments, peatlands, animal gut systems. The structure of the microbial communities often strongly affects their function. It is a challenging task to understand the environmental and biochemical basis of the interactions of abiotic factors and microorganisms shaping the structure and function of the microbial communities in the different methanogenic habitats.

  17. Inventory of methane emissions from U.S. cattle

    NASA Astrophysics Data System (ADS)

    Westberg, H.; Lamb, B.; Johnson, K. A.; Huyler, M.

    2001-01-01

    Many countries, including the United States, are in the process of inventorying greenhouse gas emissions as a prerequisite for designing control strategies. We have developed a measurement-based inventory of methane emissions from cattle in the United States. Methane emission factors were established for the major livestock groups using an internal tracer method. The groups studied included cows, replacement heifers, slaughter cattle, calves, and bulls in the beef sector and cows plus replacement heifers in the dairy industry. Since methane emission is dependent on the quality and quantity of feed, diets were chosen that are representative of the feed regimes utilized by producers in the United States. Regional cattle populations, obtained from U.S. Department of Agriculture statistics, were combined with the methane emission factors to yield regional emission estimates. The methane totals from the five regions were then summed to give a U.S. inventory of cattle emissions for 1990, 1992, 1994, 1996, and 1998. Annual releases ranged from 6.50 Tg in 1990 to a high of 6.98 Tg in 1996. On a regional scale the North Central region of the United States had the largest methane emissions from livestock followed by the South Central and the West. The beef cow group released the most methane (˜2.5 Tg yr-1) followed by slaughter cattle (˜1.7 Tg yr-1) and dairy cows at about 1.5 Tg yr-1. Methane released by cattle in the United States contributes about 11% of the global cattle source.

  18. How does whole ecosystem warming of a peatland affect methane production and consumption?

    NASA Astrophysics Data System (ADS)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout

  19. Could Methane Oxidation in Lakes Be Enhanced by Eutrophication?

    NASA Astrophysics Data System (ADS)

    Van Grinsven, S.; Villanueva, L.; Harrison, J.; S Sinninghe Damsté, J.

    2017-12-01

    Climate change and eutrophication both affect aquatic ecosystems. Eutrophication is caused by high nutrient inputs, leading to algal blooms, oxygen depletion and disturbances of the natural balances in aquatic systems. Methane, a potent greenhouse gas produced biologically by anaerobic degradation of organic matter, is often released from the sediments of lakes and marine systems to overlying water and the atmosphere. Methane oxidation, a microbial methane consumption process, can limit methane emission from lakes and reservoirs by 50-80%. Here, we studied methane oxidation in a seasonally stratified reservoir: Lacamas Lake in Washington, USA. We found this lake has a large summer storage capacity of methane in its deep water layer, with a very active microbial community capable of oxidizing exceptionally high amounts of methane. The natural presence of terminal electron acceptors is, however, too low to support these high potential rates. Addition of eutrophication-related nutrients such as nitrate and sulfate increased the methane removal rates by 4 to 7-fold. The microbial community was studied using 16S rRNA gene amplicon sequencing and preliminary results indicate the presence of a relatively unknown facultative anaerobic methane oxidizer of the genus Methylomonas, capable of using nitrate as an electron donor. Experiments in which anoxic and oxic conditions were rapidly interchanged showed this facultative anaerobic methane oxidizer has an impressive flexibility towards large, rapid changes in environmental conditions and this feature might be key to the unexpectedly high methane removal rates in eutrophied and anoxic watersheds.

  20. A novel method for estimating methane emissions from underground coal mines: The Yanma coal mine, China

    NASA Astrophysics Data System (ADS)

    Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He

    2017-12-01

    As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.

  1. Global tropospheric methane: An indication of atmosphere-biosphere-climate interactions?

    NASA Technical Reports Server (NTRS)

    Harriss, Robert C.; Sebacher, Daniel I.; Bartlett, Karen B.

    1985-01-01

    Methane is an important atmospheric gas with potentially critical roles in both photochemical and radiation transfer processes. A major natural source of atmospheric methane involves anaerobic fermentation of organic materials in wetland soils and sediments. A data base of field measurements of atmospheric methane was used in the development of a global methane emissions inventory. Calculations support the following hypotheses: (1) Human activities currently produce methane at a rate approximately equal to natural resources (these rapidly increasing anthropogenic sources can explain most of the recent increase observed in tropospheric methane); and (2) Prior to 200 B.P. (before the present), the influence of climate on wetland extent and distribution was probably a dominant factor controlling global biogenic methane emissions to the atmosphere.

  2. [Methane fluxes and controlling factors in the intertidal zone of the Yellow River estuary in autumn].

    PubMed

    Jiang, Huan-Huan; Sun, Zhi-Gao; Wang, Ling-Ling; Mou, Xiao-Jie; Sun, Wan-Long; Song, Hong-Li; Sun, Wen-Guang

    2012-02-01

    The characteristics of methane (CH4) fluxes from tidal wetlands of the Yellow River estuary were observed in situ with static-chamber and GC methods in September and October 2009, and the key factors affecting CH4 fluxes were discussed. From the aspect of space, the CH4 flux ranges in high tidal wetland, middle tidal wetland, low tidal wetland, bare flat are - 0.206-1.264, -0.197-0.431, -0.125-0.659 and -0.742-1.767 mg x (m2 x h)(-1), the day average fluxes are 0.089, 0.038, 0.197 and 0.169 mg x (m2 x h)(-1), respectively, indicating that the tidal wetlands are the sources of CH4 and the source function of CH4 differed among the four study sites, in the order of low tidal wetland > bare flat > high tidal wetland > middle tidal wetland. From the aspect of time, the ranges of CH4 fluxes from the tidal wetland ecosystems are -0.444-1.767 and - 0.742- 1.264 mg x (m2 x h)(-1), and the day average fluxes are 0.218 and 0.028 mg x (m2 x h)(-1) in September and October, respectively. The CH4 fluxes in each tidal wetland in September are higher than those in October except that the high tidal wetland acts as weak sink in September. Further studies indicate that the changes of environmental factors in the Yellow River estuary are complicated, and the CH4 fluxes are affected by multiple factors. The differences of CH4 fluxes characteristics among different tidal wetlands in autumn are probably related to temperature (especially atmospheric temperature) and vegetation growth status, while the effects of water or salinity condition and tide status on the CH4 flux characteristics might not be ignored.

  3. MethaneSat: Detecting Methane Emissions in the Barnett Shale Region

    NASA Astrophysics Data System (ADS)

    Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.

  4. An Aerial ``Sniffer Dog'' for Methane

    NASA Astrophysics Data System (ADS)

    Nathan, Brian; Schaefer, Dave; Zondlo, Mark; Khan, Amir; Lary, David

    2012-10-01

    The Earth's surface and its atmosphere maintain a ``Radiation Balance.'' Any factor which influences this balance is labeled as a mechanism of ``Radiative Forcing'' (RF). Greenhouse Gas (GHG) concentrations are among the most important forcing mechanisms. Methane, the second-most-abundant noncondensing greenhouse gas, is over 25 times more effective per molecule at radiating heat than the most abundant, Carbon Dioxide. Methane is also the principal component of Natural Gas, and gas leaks can cause explosions. Additionally, massive quantities of methane reside (in the form of natural gas) in underground shale basins. Recent technological advancements--specifically the combination of horizontal drilling and hydraulic fracturing--have allowed drillers access to portions of these ``plays'' which were previously unreachable, leading to an exponential growth in the shale gas industry. Presently, very little is known about the amount of methane which escapes into the global atmosphere from the extraction process. By using remote-controlled robotic helicopters equipped with specially developed trace gas laser sensors, we can get a 3-D profile of where and how methane is being released into the global atmosphere.

  5. Effect of packing material on methane activation in a dielectric barrier discharge reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo

    2013-12-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using γ-Al{sub 2}O{sub 3} (sphere), α-Al{sub 2}O{sub 3} (sphere), and γ-Al{sub 2}O{sub 3} (16–20 mesh). Investigations on the surface properties and shape of the three packing materials clearly indicate that methane activation is considerably affected by the material used. Capacitances inside the discharge gap are estimated from charge–voltage plots, and a comparison of the generated and transferred charges for different packing conditions show that the difference in surface properties between γ- and α-phase Al{sub 2}O{sub 3} affects the discharge characteristics. Moreover, all packing conditions show different chargemore » characteristics that are related to the electron density. Finally, the packing material's shape affects the local electron temperature, which is strongly related to methane conversion. The combined results indicate that both microscale and macroscale variations in a packing material affect the discharge characteristics, and a packing material should be considered carefully for effective methane activation.« less

  6. Constraining the relationships between anaerobic oxidation of methane and sulfate reduction under in situ methane concentrations

    NASA Astrophysics Data System (ADS)

    Zhuang, G.; Wegener, G.; Joye, S. B.

    2017-12-01

    The anaerobic oxidation of methane (AOM) is an important microbial metabolism in the global carbon cycle. In marine methane seeps sediment, this process is mediated by syntrophic consortium that includes anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Stoichiometrically in AOM methane oxidation should be coupled to sulfate reduction (SR) in a 1:1 ratio. However, weak coupling of AOM and SR in seep sediments was frequently observed from the ex situ rate measurements, and the metabolic dynamics of AOM and SR under in situ conditions remain poorly understood. Here we investigated the metabolic activity of AOM and SR with radiotracers by restoring in situ methane concentrations under pressure to constrain the in situ relationships between AOM and SR in the cold seep sediments of Gulf of Mexico as well as the sediment-free AOM enrichments cultivated from cold seep of Italian Island Elba or hydrothermal vent of Guaymas Basin5. Surprisingly, we found that AOM rates strongly exceeded those of SR when high pressures and methane concentrations were applied at seep sites of GC600 and GC767 in Gulf of Mexico. With the addition of molybdate, SR was inhibited but AOM was not affected, suggesting the potential coupling of AOM with other terminal processes. Amendments of nitrate, iron, manganese and AQDS to the SR-inhibited slurries did not stimulate or inhibit the AOM activity, indicating either those electron acceptors were not limiting for AOM in the sediments or AOM was coupled to other process (e.g., organic matter). In the ANME enrichments, higher AOM rates were also observed with the addition of high concentrations of methane (10mM and 50 mM). The tracer transfer of CO2 to methane, i.e., the back reaction of AOM, increased with increasing methane concentrations and accounted for 1%-5% of the AOM rates. AOM rates at 10 mM and 50 mM methane concentration were much higher than the SR rates, suggesting those two processes were not tightly coupled

  7. Rice Cluster I, an Important Group of Archaea Producing Methane in Rice Fields

    NASA Astrophysics Data System (ADS)

    Conrad, R.

    2006-12-01

    Rice fields are an important source for the greenhouse gas methane. Methane is a major degradation product of organic matter in the anoxic soil, is partially oxidized in the rhizosphere and is emitted into the atmosphere through the aerenchyma system of the plants. Anaerobic degradation of organic matter by fermenting bacteria eventually results in the production of acetate and hydrogen, the two major substrates for microbial methanogenesis. The community of methanogenic archaea consists of several major orders or families including hydrogen-utilizing Rice Cluster-I (RC-I). Environmental conditions affect the methanogenic degradation process and the community structure of the methanogenic archaea in soil and rhizosphere. For example, populations of acetoclastic Methanosaetaceae and Methanosarcinaceae are enhanced by low and high acetate concentrations, respectively. Stable isotope probing of 16S rRNA showed that RC-I methanogens are mainly active on rice roots and at low H2 concentrations. Growth and population size is largely consistent with energetic conditions. RC-I methanogens on roots seem to be responsible for methane production from plant photosynthates that account for a major part of the emitted methane. Populations of RC-I methanogens in rice field soil are also enhanced at elevated temperatures (40-50°C). Moderately thermophilic members of RC-I methanogens or other methanogenic families were found to be ubiquitously present in soils from rice fields and river marshes. The genome of a RC-I methanogen was completely sequenced out of an enrichment culture using a metagenome approach. Genes found are consistent with life in the rhizosphere and in temporarily drained, oxic soil. We found that the methanogenic community structure on the rice roots is mainly determined by the respective community structure of the soil, but is in addition affected by the rice cultivar. Rice microcosms in which soil and rice roots are mainly colonized by RC-I methanogens produce

  8. Methodology of Estimation of Methane Emissions from Coal Mines in Poland

    NASA Astrophysics Data System (ADS)

    Patyńska, Renata

    2014-03-01

    Based on a literature review concerning methane emissions in Poland, it was stated in 2009 that the National Greenhouse Inventory 2007 [13] was published. It was prepared firstly to meet Poland's obligations resulting from point 3.1 Decision no. 280/2004/WE of the European Parliament and of the Council of 11 February 2004, concerning a mechanism for monitoring community greenhouse gas emissions and for implementing the Kyoto Protocol and secondly, for the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol. The National Greenhouse Inventory states that there are no detailed data concerning methane emissions in collieries in the Polish mining industry. That is why the methane emission in the methane coal mines of Górnośląskie Zagłębie Węglowe - GZW (Upper Silesian Coal Basin - USCB) in Poland was meticulously studied and evaluated. The applied methodology for estimating methane emission from the GZW coal mining system was used for the four basic sources of its emission. Methane emission during the mining and post-mining process. Such an approach resulted from the IPCC guidelines of 2006 [10]. Updating the proposed methods (IPCC2006) of estimating the methane emissions of hard coal mines (active and abandoned ones) in Poland, assumes that the methane emission factor (EF) is calculated based on methane coal mine output and actual values of absolute methane content. The result of verifying the method of estimating methane emission during the mining process for Polish coal mines is the equation of methane emission factor EF.

  9. Seasonal C-13 variations of methane from an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, Neal; Desmarais, David S.; Martens, Christopher S.

    1985-01-01

    Recent analyses of glacial ice suggest that the atmospheric concentration of methane has doubled in the last several hundred years, presumably due to anthropogenic perturbations of the relevant biogeochemical cycles. In principal, carbon isotopic measurements of atmospheric methane would provide information concerning changes in the sources and sinks of methane. The isotopic composition of methane is dependent on the source of the methane carbon, the mechanism of methane synthesis, and the degree and mode of oxidation which the methane has experienced. Unfortunately, few carbon isotopic measurements of atmospheric variations have been reported, so conclusions about temporal isotopic variations cannot be made. Also, before isotopic measurements of atmospheric methane can be used to identify changes in methane isotopic composition from different sources must be obtained. Methane bubbles from the anoxic sediments of Cape Lookout Bight, NC exhibit seasonal C-13 variations. The C-13 values ranged from -58 in August to -64 in the winter months with the evolution of the C-13 enriched gas occurring during periods of peak methane production. Even though a few intramolecular C-13 measurements of the pore water acetate have been made (methyl group, -26 per mil; carbonyl, -6 per mil), it is not clear how the acetate fermentation pathway affects the methane C-13/C-12 composition.

  10. Effect of temperature on methane production from field-scale anaerobic digesters treating dairy manure.

    PubMed

    Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie

    2015-09-01

    Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Tables of critical-flow functions and thermodynamic properties for methane and computational procedures for both methane and natural gas

    NASA Technical Reports Server (NTRS)

    Johnson, R. C.

    1972-01-01

    Procedures for calculating the mass flow rate of methane and natural gas through nozzles are given, along with the FORTRAN 4 subroutines used to make these calculations. Three sets of independent variables are permitted in these routines. In addition to the plenum pressure and temperature, the third independent variable is either nozzle exit pressure, Mach number, or temperature. A critical-flow factor that becomes a convenient means for determining the mass flow rate of methane through critical-flow nozzles is tabulated. Other tables are included for nozzle throat velocity and critical pressure, density, and temperature ratios, along with some thermodynamic properties of methane, including compressibility factor, enthalpy, entropy, specific heat, specific-heat ratio, and speed of sound. These tabulations cover a temperature range from 120 to 600 K and pressures to 3 million N/sq m.

  12. Factors affecting sign retroreflectivity

    DOT National Transportation Integrated Search

    2001-01-01

    This study was undertaken to better understand the factors that may affect road sign retroreflectivity, specifically age and physical orientation. A better understanding of these factors could provide guidance to ODOT in managing its inventory of roa...

  13. Combustion of Methane Hydrate

    NASA Astrophysics Data System (ADS)

    Roshandell, Melika

    from the experimental component of the research was that hydrates can burn completely, and that they burn most rapidly just after ignition and then burn steadily when some of the water in the dissociated zone is allowed to drain away. Excessive surfactant in the water creates a foam layer around the hydrate that acts as an insulator. The layer prevents sufficient heat flux from reaching the hydrate surface below the foam to release additional methane and the hydrate flame extinguishes. No self-healing or ice-freezing processes were observed in any of the combustion experiments. There is some variability, but a typical hydrate flame is receiving between one and two moles of water vapor from the liquid dissociated zone of the hydrate for each mole of methane it receives from the dissociating solid region. This limits the flame temperature to approximately 1800 K. In the theoretical portion of the study, a physical model using an energy balance from methane combustion was developed to understand the energy transfer between the three phases of gas, liquid and solid during the hydrate burn. Also this study provides an understanding of the different factors impacting the hydrate's continuous burn, such as the amount of water vapor in the flame. The theoretical study revealed how the water layer thickness on the hydrate surface, and its effect on the temperature gradient through the dissociated zone, plays a significant role in the hydrate dissociation rate and methane release rate. Motivated by the above mentioned observation from the theoretical analysis, a 1-D two-phase numerical simulation based on a moving front model for hydrate dissociation from a thermal source was developed. This model was focused on the dynamic growth of the dissociated zone and its effect on the dissociation rate. The model indicated that the rate of hydrate dissociation with a thermal source is a function of the dissociated zone thickness. It shows that in order for a continuous dissociation and

  14. Bacterial overgrowth and methane production in children with encopresis.

    PubMed

    Leiby, Alycia; Mehta, Devendra; Gopalareddy, Vani; Jackson-Walker, Susan; Horvath, Karoly

    2010-05-01

    To assess the prevalence of small intestinal bacterial overgrowth (SIBO) and methane production in children with encopresis. Radiographic fecal impaction (FI) scores were assessed in children with secondary, retentive encopresis and compared with the breath test results. Breath tests with hypoosmotic lactulose solution were performed in both the study patients (n = 50) and gastrointestinal control subjects (n = 39) groups. The FI scores were significantly higher in the patients with encopresis who were methane producers (P < .01). SIBO was diagnosed in 21 of 50 (42%) patients with encopresis and 9 of 39 (23%) of control subjects (P = .06). Methane was produced in 56% of the patients with encopresis versus 23.1% of the control subjects in the gastrointestinal group (P < .01). Fasting methane level was elevated in 48% versus 10.3 %, respectively (P < .01). Children with FI and encopresis had a higher prevalence of SIBO, elevated basal methane levels, and higher methane production. Methane production was associated with more severe colonic impaction. Further study is needed to determine whether methane production is a primary or secondary factor in the pathogenesis of SIBO and encopresis.

  15. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  16. Environmental and microbial factors influencing methane and nitrous oxide fluxes in Mediterranean cork oak woodlands: trees make a difference.

    PubMed

    Shvaleva, Alla; Siljanen, Henri M P; Correia, Alexandra; Costa E Silva, Filipe; Lamprecht, Richard E; Lobo-do-Vale, Raquel; Bicho, Catarina; Fangueiro, David; Anderson, Margaret; Pereira, João S; Chaves, Maria M; Cruz, Cristina; Martikainen, Pertti J

    2015-01-01

    Cork oak woodlands (montado) are agroforestry systems distributed all over the Mediterranean basin with a very important social, economic and ecological value. A generalized cork oak decline has been occurring in the last decades jeopardizing its future sustainability. It is unknown how loss of tree cover affects microbial processes that are consuming greenhouse gases in the montado ecosystem. The study was conducted under two different conditions in the natural understory of a cork oak woodland in center Portugal: under tree canopy (UC) and open areas without trees (OA). Fluxes of methane and nitrous oxide were measured with a static chamber technique. In order to quantify methanotrophs and bacteria capable of nitrous oxide consumption, we used quantitative real-time PCR targeting the pmoA and nosZ genes encoding the subunit of particulate methane mono-oxygenase and catalytic subunit of the nitrous oxide reductase, respectively. A significant seasonal effect was found on CH4 and N2O fluxes and pmoA and nosZ gene abundance. Tree cover had no effect on methane fluxes; conversely, whereas the UC plots were net emitters of nitrous oxide, the loss of tree cover resulted in a shift in the emission pattern such that the OA plots were a net sink for nitrous oxide. In a seasonal time scale, the UC had higher gene abundance of Type I methanotrophs. Methane flux correlated negatively with abundance of Type I methanotrophs in the UC plots. Nitrous oxide flux correlated negatively with nosZ gene abundance at the OA plots in contrast to that at the UC plots. In the UC soil, soil organic matter had a positive effect on soil extracellular enzyme activities, which correlated positively with the N2O flux. Our results demonstrated that tree cover affects soil properties, key enzyme activities and abundance of microorganisms and, consequently net CH4 and N2O exchange.

  17. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here wemore » present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.« less

  18. Saturn Methane Image

    NASA Image and Video Library

    2004-03-05

    NASA's Cassini narrow angle camera took this image of Saturn on Feb. 16, 2004, from a distance of 66.1 million kilometers (41.1 million miles) in a special filter which reveals clouds and haze high in the atmosphere. The image scale is 397 kilometers (247 miles) per pixel. The MT2 spectral filter samples a near-infrared region of the electromagnetic spectrum where methane gas absorbs light at a wavelength of 727 nanometers. In the image, methane gas is uniformly mixed with hydrogen, the main gas in Saturn's atmosphere. Dark locales are places of strong methane absorption, relatively free of high clouds; the bright areas are places with high, thick clouds which shield the methane below. Image details reveal a high, thick equatorial cloud and a relatively deep or thin haze encircling the pole, as well as several distinct latitude bands with different cloud height attributes. It also shows a high atmospheric disturbance, just south of the equator, which has persisted throughout the 1990s in images returned by NASA's Hubble Space Telescope. Four of Saturn's moons are visible (clockwise from above right): Enceladus (499 kilometers, or 310 miles across); Mimas (396 kilometers, or 245 miles across); Tethys (1,060 kilometers, or 659 miles across); and Rhea (1,528 kilometers, or 949 miles across). The imaging team enhanced the brightness of Mimas and Enceladus by a factor of three. http://photojournal.jpl.nasa.gov/catalog/PIA05381

  19. Coalbed methane: from hazard to resource

    USGS Publications Warehouse

    Flores, R.M.

    1998-01-01

    Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 yr. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (eg, tunnels, vertical and horizontal drillholes, shsfts) and by drainage boreholes. The 1970s 'energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been pursued vigorously during the past two decades. Since the 1970s research investigations on the causes and effects of coal mine outbursts and gas emissions have led to major advances towards the recovery and development of coalbed methane for commercial use. Thus, coalbed methane as a mining hazard was harnessed as a conventional gas resource.Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 years. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (e.g., tunnels, vertical and horizontal drillholes, shafts) and by drainage boreholes. The 1970's `energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been

  20. Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers

    NASA Astrophysics Data System (ADS)

    Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.

    2008-12-01

    In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed

  1. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane.

    PubMed

    Wang, David T; Gruen, Danielle S; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C; Holden, James F; Hristov, Alexander N; Pohlman, John W; Morrill, Penny L; Könneke, Martin; Delwiche, Kyle B; Reeves, Eoghan P; Sutcliffe, Chelsea N; Ritter, Daniel J; Seewald, Jeffrey S; McIntosh, Jennifer C; Hemond, Harold F; Kubo, Michael D; Cardace, Dawn; Hoehler, Tori M; Ono, Shuhei

    2015-04-24

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. Copyright © 2015, American Association for the Advancement of Science.

  2. Anaerobic oxidation of methane in the Concepción Methane Seep Area, Chilean continental margin

    NASA Astrophysics Data System (ADS)

    Steeb, P.; Linke, P.; Scholz, F.; Schmidt, M.; Liebetrau, V.; Treude, T.

    2012-04-01

    Within subduction zones of active continental margins, large amounts of methane can be mobilized by dewatering processes and transported to the seafloor along migration pathways. A recently discovered seep area located off Concepción (Chile) at water depth between 600 to 1100 mbsl is characterized by active methane vent sites as well as massive carbonates boulders and plates which probably are related to methane seepage in the past. During the SO210 research expedition "Chiflux" (Sept-Oct 2010), sediment from the Concepción Methane Seep Area (CSMA) at the fore arc of the Chilean margin was sampled to study microbial activity related to methane seepage. We sampled surface sediments (0-30cm) from sulfur bacteria mats, as well as clam, pogonophoran, and tubeworm fields with push cores and a TV-guided multicorer system. Anaerobic oxidation of methane (AOM) and sulfate reduction rates were determined using ex-situ radioisotope tracer techniques. Additionally, porewater chemistry of retrieved cores as well as isotopic composition and age record of surrounding authigenic carbonates were analyzed. The shallowest sulfate-methane-transition zone (SMTZ) was identified at 4 cm sediment depth hinting to locally strong fluid fluxes. However, a lack of Cl- anomalies in porewater profiles indicates a shallow source of these fluids, which is supported by the biogenic origin of the methane (δ13C -70‰ PDB). Sulfide and alkalinity was relatively high (up to 20 mM and 40 mEq, respectively). Rates of AOM and sulfate reduction within this area reached magnitudes typical for seeps with variation between different habitat types, indicating a diverse methane supply, which is affecting the depths of the SMTZ. Rates were highest at sulfur a bacteria mats (20 mmol m-2 d-1) followed by a large field of dead clams, a pogonophoran field, a black sediment spot, and a carbonate rich clam field. Lowest rates (0.2 mmol m-2 d-1) were measured in close vicinity to these hot spots. Abundant massive

  3. High resolution and comprehensive techniques to analyze aerobic methane oxidation in mesocosm experiments

    NASA Astrophysics Data System (ADS)

    Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.

    2015-12-01

    Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.

  4. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.

    PubMed

    Reumer, Max; Harnisz, Monika; Lee, Hyo Jung; Reim, Andreas; Grunert, Oliver; Putkinen, Anuliina; Fritze, Hannu; Bodelier, Paul L E; Ho, Adrian

    2018-02-01

    Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA -based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities. IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment

  5. Factors affecting construction performance: exploratory factor analysis

    NASA Astrophysics Data System (ADS)

    Soewin, E.; Chinda, T.

    2018-04-01

    The present work attempts to develop a multidimensional performance evaluation framework for a construction company by considering all relevant measures of performance. Based on the previous studies, this study hypothesizes nine key factors, with a total of 57 associated items. The hypothesized factors, with their associated items, are then used to develop questionnaire survey to gather data. The exploratory factor analysis (EFA) was applied to the collected data which gave rise 10 factors with 57 items affecting construction performance. The findings further reveal that the items constituting ten key performance factors (KPIs) namely; 1) Time, 2) Cost, 3) Quality, 4) Safety & Health, 5) Internal Stakeholder, 6) External Stakeholder, 7) Client Satisfaction, 8) Financial Performance, 9) Environment, and 10) Information, Technology & Innovation. The analysis helps to develop multi-dimensional performance evaluation framework for an effective measurement of the construction performance. The 10 key performance factors can be broadly categorized into economic aspect, social aspect, environmental aspect, and technology aspects. It is important to understand a multi-dimension performance evaluation framework by including all key factors affecting the construction performance of a company, so that the management level can effectively plan to implement an effective performance development plan to match with the mission and vision of the company.

  6. Anaerobic methane oxidation in low-organic content methane seep sediments

    USGS Publications Warehouse

    Pohlman, John W.; Riedel, Michael; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Lapham, Laura; Grabowski, Kenneth S.; Coffin, Richard B.; Spence, George D.

    2013-01-01

    Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.

  7. Methane emissions from MBT landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance atmore » MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order

  8. Soot formation in the methane oxygen and methane/oxygen/hydrogen flame

    NASA Technical Reports Server (NTRS)

    Dauerman, L.; Salser, G. E.

    1972-01-01

    The feasibility of using methane, recovered from carbon dioxide by the Sabatier-Senderens reaction, was investigated as a fuel in a reaction control engine. A problem to be avoided is the emission of soot particles. It is thought that such particles would remain in the environment of the spacecraft and, thereby, adversely affect optical sightings and possibly have an effect upon communications. The initial studies were of a practical nature. The first was the influence of the spatial arrangement of the fuel and oxygen injectors on soot formation. In the second study, inhibition of soot formation was considered. Considering the given situation, it was impractical to use an additive. However, since methanol combustion does not produce soot, and methanol can be produced from methane in situ, the possibility that methanol could act as an inhibitor was studied. In the third study, since these are restartable engines, the effect of shutdown on the rapidity of soot formation was studied.

  9. Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe

    Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions;more » emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August–September, while all others reach their maximum in June–July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing

  10. Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements

    DOE PAGES

    Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe; ...

    2017-07-11

    Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions;more » emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August–September, while all others reach their maximum in June–July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing

  11. Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe; Pison, Isabelle; Tan, Zeli; Zhuang, Qianlai; Crill, Patrick M.; Thornton, Brett F.; Bastviken, David; Dlugokencky, Ed J.; Zimov, Nikita; Laurila, Tuomas; Hatakka, Juha; Hermansen, Ove; Worthy, Doug E. J.

    2017-07-01

    Understanding the recent evolution of methane emissions in the Arctic is necessary to interpret the global methane cycle. Emissions are affected by significant uncertainties and are sensitive to climate change, leading to potential feedbacks. A polar version of the CHIMERE chemistry-transport model is used to simulate the evolution of tropospheric methane in the Arctic during 2012, including all known regional anthropogenic and natural sources, in particular freshwater emissions which are often overlooked in methane modelling. CHIMERE simulations are compared to atmospheric continuous observations at six measurement sites in the Arctic region. In winter, the Arctic is dominated by anthropogenic emissions; emissions from continental seepages and oceans, including from the East Siberian Arctic Shelf, can contribute significantly in more limited areas. In summer, emissions from wetland and freshwater sources dominate across the whole region. The model is able to reproduce the seasonality and synoptic variations of methane measured at the different sites. We find that all methane sources significantly affect the measurements at all stations at least at the synoptic scale, except for biomass burning. In particular, freshwater systems play a decisive part in summer, representing on average between 11 and 26 % of the simulated Arctic methane signal at the sites. This indicates the relevance of continuous observations to gain a mechanistic understanding of Arctic methane sources. Sensitivity tests reveal that the choice of the land-surface model used to prescribe wetland emissions can be critical in correctly representing methane mixing ratios. The closest agreement with the observations is reached when using the two wetland models which have emissions peaking in August-September, while all others reach their maximum in June-July. Such phasing provides an interesting constraint on wetland models which still have large uncertainties at present. Also testing different

  12. Controls on the methane released through ebullition affected by permafrost degradation

    Treesearch

    S.J. Klapstein; M.R. Turetsky; A.D. McGuire; J.W. Harden; C.I. Czimczik; X. Xu; J.P. Chanton; J.M. Waddington

    2014-01-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine...

  13. Biologically derived fertilizer: A multifaceted bio-tool in methane mitigation.

    PubMed

    Singh, Jay Shankar; Strong, P J

    2016-02-01

    Methane emissions are affected by agricultural practices. Agriculture has increased in scale and intensity because of greater food, feed and energy demands. The application of chemical fertilizers in agriculture, particularly in paddy fields, has contributed to increased atmospheric methane emissions. Using organic fertilizers may improve crop yields and the methane sink potential within agricultural systems, which may be further improved when combined with beneficial microbes (i.e. biofertilizers) that improve the activity of methane oxidizing bacteria such as methanotrophs. Biofertilizers may be an effective tool for agriculture that is environmentally beneficial compared to conventional inorganic fertilizers. This review highlights and discusses the interplay between ammonia and methane oxidizing bacteria, the potential interactions of microbial communities with microbially-enriched organic amendments and the possible role of these biofertilizers in augmenting the methane sink potential of soils. It is suggested that biofertilizer applications should not only be investigated in terms of sustainable agriculture productivity and environmental management, but also in terms of their effects on methanogen and methanotroph populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Mitigation options for methane emissions from rice fields in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R.

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of themore » total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.« less

  15. Methane yield in source-sorted organic fraction of municipal solid waste.

    PubMed

    Davidsson, Asa; Gruvberger, Christopher; Christensen, Thomas H; Hansen, Trine Lund; Jansen, Jes la Cour

    2007-01-01

    Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.

  16. Methanator Fueled Engines for Pollution Control

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  17. Comparison of the methane production potential and biodegradability of kitchen waste from different sources under mesophilic and thermophilic conditions.

    PubMed

    Yang, Ziyi; Wang, Wen; Zhang, Shuyu; Ma, Zonghu; Anwar, Naveed; Liu, Guangqing; Zhang, Ruihong

    2017-04-01

    The methane production potential of kitchen waste (KW) obtained from different sources was compared through mesophilic and thermophilic anaerobic digestion. The methane yields (MYs) obtained with the same KW sample under different temperatures were similar, whereas the MYs obtained with different samples differed significantly. The highest MY obtained in S7 was 54%-60% higher than the lowest MY in S3. The modified Gompertz model was utilized to simulate the methane production process. The maximum production rate of methane under thermophilic conditions was 2%-86% higher than that under mesophilic conditions. The characteristics of different KW samples were studied. In the distribution of total chemical oxygen demand, the diversity of organic compounds of KW was the most dominant factor that affected the potential MYs of KW. The effect of the C/N and C/P ratios or the concentration of metal ions was insignificant. Two typical methods to calculate the theoretical MY (TMY) were compared, the organic composition method can simulate methane production more precisely than the elemental analysis method. Significant linear correlations were found between TMY org and MYs under mesophilic and thermophilic conditions. The organic composition method can thus be utilized as a fast technique to predict the methane production potential of KW.

  18. 2015-16 ENSO Drove Tropical Soil Moisture Dynamics and Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Aronson, E. L.; Dierick, D.; Botthoff, J.; Swanson, A. C.; Johnson, R. F.; Allen, M. F.

    2017-12-01

    The El Niño/Southern Oscillation Event (ENSO) cycle drives large-scale climatic trends globally. Within the new world tropics, El Niño brings dryer weather than the counterpart La Niña. Atmospheric methane growth rates have shown extreme variability over the past three decades. One proposed driver is the proportion of tropical land surface saturated, affecting methane production or consumption. We measured methane flux bimonthly through the transition of 2015-16 ENSO. The date of measurement, across El Niño and La Niña within the typical "rainy" and "dry" seasons, to be the most significant driver of methane flux. Soil moisture varied across this time period, and regulated methane flux. During the strong El Niño, extreme dry soil conditions occurred in a typical "rainy" season month reducing soil moisture. Wetter than usual soil conditions appeared during the "rainy" season month of the moderate La Niña. The dry El Niño soils corresponded to greater methane consumption by tropical forest soils, and a reduced local atmospheric column methane concentration. Conversely, the wet La Niña soils had lower methane consumption and higher local atmospheric column methane concentrations. The ENSO cycle is a strong driver of tropical terrestrial and wetland soil moisture conditions, and can regulate global atmospheric methane dynamics.

  19. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    PubMed Central

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  20. Factors Affecting Medical Service Quality.

    PubMed

    Mosadeghrad, Ali Mohammad

    2014-02-01

    A better understanding of factors influencing quality of medical service can pinpoint better strategies for quality assurance in medical services. This study aimed to identify factors affecting the quality of medical services provided by Iranian physicians. Exploratory in-depth individual interviews were conducted with sixty-four physicians working in various medical institutions in Iran. Individual, organizational and environmental factors enhance or inhibit the quality of medical services. Quality of medical services depends on the personal factors of the physician and patient, and factors pertaining to the healthcare setting and the broader environment. Differences in internal and external factors such as availability of resources, patient cooperation and collaboration among providers affect the quality of medical services and patient outcomes. Supportive leadership, proper planning, education and training and effective management of resources and processes improve the quality of medical services. This article contributes to healthcare theory and practice by developing a conceptual framework for understanding factors that influence medical services quality.

  1. Methane Fingerprinting: Isotopic Methane and Ethane-to-Methane Ratio Analysis Using a Cavity Ring-Down Spectrometer

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Fleck, Derek; Hoffnagle, John

    2016-04-01

    Emissions of Natural gas, and methane (CH4) specifically, have come under increased scrutiny by virtue of methane's 28-36x greenhouse warming potential compared to carbon dioxide (CO2) while accounting for 10% of the total greenhouse gas emissions in the US. Large uncontrolled leaks, such as the recent Aliso Canyon leak, originating from uncapped wells, coal mines and storage facilities have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources, by quantifying δ13C values and C2:C1 ratios, provides the means to understand methane producing processes and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic vs. thermogenic, wet vs dry. In this study we present a fully developed Cavity Ring-Down Spectrometer (CRDS) that precisely measures 12CH4 concentration and its 13CH4 isotope concentration, yielding δ13C measurements, C2H6 concentration, along with CO2 and H2O. This provides real-time continuous measurements without an upfront separation requirement or multiple analyses to derive the origin of the gas samples. The highly sensitive analyzer allows for measurements of scarce molecules down to sub-ppb 1-σ precision in 5 minutes of measurement: with CH4 <0.1ppb, δ13C <1‰ C2H6 <1ppb and CO2 <1ppm. To complement this work, we provide the analysis of different methane sources providing a 2-dimensional mapping of methane sources as functions of δ13C and C2:C1 ratios, which can be thought of as a modified Bernard Plot. This dual ratio mapping can be used to discriminate between naturally occurring biogenic methane sources, naturally occurring enriched thermogenic sources, and natural gas distribution sources. This also shows future promise in aiding gas and oil exploration, in distinguishing oil vs coal gases, as well as a valuable tool in the development of methane sequestration.

  2. Aerobic methane production in surface waters of the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Finke, N.; Crespo-Medina, M.; Schweers, J.; Joye, S. B.

    2011-12-01

    Near surface water of the global oceans often show elevated methane concentrations compared to the water column below with concentrations in supersaturation in regard to the atmosphere (Lamontagne et al. 1973), resulting in a source of this potent greenhouse gas to the atmosphere. The mechanisms leading to methane supersaturation in surface waters remains unclear. Incubations with Trichodesmium-containing Pacific surface water suggested methylphosphonate as potential methane precursor under phosphate limiting conditions (Karl et al. 2008), whereas in phosphate rich Arctic surface waters, DMSP addition stimulated methane production (Damm et al. 2010). Surface waters of the Gulf of Mexico typically exhibit a methane maximum that is conincident with the deep chlorophyll maximum, below the depths where Trichodesmium is abundant. Addition of methylphosphonate, dimethylsulfoniopropionate (DMSP) or methane thiol (MeSH), the proposed methane precursor in DMSP conversion to methane, to oxic sea water did not affect methane production within the chlorophyll maximum at most stations, whereas methyl phosphonate addition stimulated methane production in the surface water and proposed deep Trichodesmium horizon. Pre-filtration of the water through a 10 μm sieve, which eliminated Trichodesmium, or through a 1.2 μm filter, which eliminated additional cyanobacteria such as Synechococcus, did not reduce methane production. Under dark oxic and dark anoxic conditions, however, methane production was reduced 5 and 7-20 fold, respectively, indicating that anerobic methane production in anoxic microniches is not responsible for the methane production. The reduction of methane production under dark conditions suggests that methane production is, in some yet unrecognized way, linked to phototrophic metabolism. Cyanobacteria are likely not responsible for the observed aerobic methane production in the surface waters of the Gulf of Mexico and while methylphosphonate is a potential

  3. Methane Leakage from Oil & Gas Operations. What have we learned from recent studies in the U.S.?

    NASA Astrophysics Data System (ADS)

    Zavala-Araiza, Daniel; Hamburg, Steven

    2016-04-01

    Methane, the principal component of natural gas, is a powerful greenhouse gas. Methane losses from the natural gas supply chain erode the climate benefits of fuel switching to natural gas from other fossil fuels, reducing or eliminating them for several decades or longer. Global data on methane emissions from the oil and gas sector is uncertain and as a consequence, measuring and characterizing methane emissions is critical to the design of effective mitigation strategies. In this work, we synthesize lessons learned from dozens of U.S. studies that characterized methane emissions along each stage of the natural gas supply chain. These results are relevant to the design of methane measurement campaigns outside the U.S. A recurring theme in the research conducted in the U.S. is that public emissions inventories (e.g., The U.S. Environmental Protection Agency's National Greenhouse gas Inventory) tend to underestimate emissions for two key reasons: (1) use of non-representative emission factors and (2) inaccurate activity data (incomplete counts of facilities and equipment). Similarly, the accuracy of emission factors and the effectiveness of mitigation strategies are heavily affected by the existence of low-probability, unpredictable high emitters-which have been observed all along the supply chain- and are spatiotemporally variable. We conducted a coordinated campaign to measure methane emissions in a major gas producing region of the U.S. (Barnett Shale region of Texas) using a diversity of approaches. As part of this study we identified methods for effective quantification of regional fossil methane emissions using atmospheric data (through replicate mass balance flights and source apportionment using methane to ethane ratios) as well as how to build an accurate inventory that includes a statistical estimator that more rigorously captures the magnitude and frequency of high emitters. We found agreement between large-scale atmospheric sampling estimates and source

  4. Engineering of Methane Metabolism in Pichia Pastoris Through Methane Monooxygenase Expression

    NASA Technical Reports Server (NTRS)

    Fleury, Samantha T.; Neff, Lily S.; Galazka, Jonathan M.

    2017-01-01

    Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.

  5. Mars methane engine

    NASA Technical Reports Server (NTRS)

    Bui, Hung; Coletta, Chris; Debois, Alain

    1994-01-01

    The feasibility of an internal combustion engine operating on a mixture of methane, carbon dioxide, and oxygen has been verified by previous design groups for the Mars Methane Engine Project. Preliminary stoichiometric calculations examined the theoretical fuel-air ratios needed for the combustion of methane. Installation of a computer data acquisition system along with various ancillary components will enable the performance of the engine, running on the described methane mixture, to be optimized with respect to minimizing excess fuel. Theoretical calculations for stoichiometric combustion of methane-oxygen-carbon dioxide mixtures yielded a ratio of 1:2:4.79 for a methane-oxygen-carbon dioxide mixture. Empirical data shows the values to be closer to 1:2.33:3.69 for optimum operation.

  6. Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff

    2011-05-15

    Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less

  7. Comparison of physically- and economically-based CO2-equivalences for methane

    NASA Astrophysics Data System (ADS)

    Boucher, O.

    2012-05-01

    There is a controversy on the role methane (and other short-lived species) should play in climate mitigation policies, and there is no consensus on what an optimal methane CO2-equivalence should be. We revisit this question by discussing some aspects of physically-based (i.e. global- warming potential or GWP and global temperature change potential or GTP) and socio-economically-based climate metrics. To this effect we use a simplified global damage potential (GDP) that was introduced by earlier authors and investigate the uncertainties in the methane CO2-equivalence that arise from physical and socio-economic factors. The median value of the methane GDP comes out very close to the widely used methane 100-yr GWP because of various compensating effects. However, there is a large spread in possible methane CO2-equivalences from this metric (1-99% interval: 10.0-42.5; 5-95% interval: 12.5-38.0) that is essentially due to the choice in some socio-economic parameters (i.e. the damage cost function and the discount rate). The main factor differentiating the methane 100-yr GTP from the methane 100-yr GWP and the GDP is the fact that the former metric is an end-point metric, whereas the latter are cumulative metrics. There is some rationale for an increase in the methane CO2-equivalence in the future as global warming unfolds, as implied by a convex damage function in the case of the GDP metric. We also show that a methane CO2-equivalence based on a pulse emission is sufficient to inform multi-year climate policies and emissions reductions, as long as there is enough visibility on CO2 prices and CO2-equivalences for the stakeholders.

  8. Investigating options for attenuating methane emission from Indian rice fields.

    PubMed

    Singh, S N; Verma, Amitosh; Tyagi, Larisha

    2003-08-01

    The development of methods and strategies to reduce the emission of methane from paddy fields is a central component of ongoing efforts to protect the Earth's atmosphere and to avert a possible climate change. It appears from this investigation that there can be more than one strategy to contain methane emission from paddy fields, which are thought to be a major source of methane emission in tropical Asia. Promising among the mitigating options may be water management, organic amendments, fertilizer application and selection of rice cultivars. It is always better to adopt multi-pronged strategies to contain CH4 efflux from rice wetlands. Use of fermented manures with low C/N ratio, application of sulfate-containing chemical fertilizers, selection of low CH4 emitting rice cultivars, and implementation of one or two short aeration periods before the heading stage can be effective options to minimize CH4 emission from paddy fields. Among these strategies, water management, which appears to be the best cost-effective and eco-friendly way for methane mitigation, is only possible when excess water is available for reflooding after short soil drying at the right timing and stage. However, in tropical Asia, rice fields are naturally flooded during the monsoonal rainy season and fully controlled drainage is often impossible. In such situation, water deficits during the vegetative and reproductive stage may drastically affect the rice yields. Thus, care must be taken to mitigate methane emission without affecting rice yields.

  9. Inverse Modeling of Tropospheric Methane Constrained by 13C Isotope in Methane

    NASA Astrophysics Data System (ADS)

    Mikaloff Fletcher, S. E.; Tans, P. P.; Bruhwiler, L. M.

    2001-12-01

    Understanding the budget of methane is crucial to predicting climate change and managing earth's carbon reservoirs. Methane is responsible for approximately 15% of the anthropogenic greenhouse forcing and has a large impact on the oxidative capacity of Earth's atmosphere due to its reaction with hydroxyl radical. At present, many of the sources and sinks of methane are poorly understood, due in part to the large spatial and temporal variability of the methane flux. Model calculations of methane mixing ratios using most process-based source estimates typically over-predict the inter-hemispheric gradient of atmospheric methane. Inverse models, which estimate trace gas budgets by using observations of atmospheric mixing ratios and transport models to estimate sources and sinks, have been used to incorporate features of the atmospheric observations into methane budgets. While inverse models of methane generally tend to find a decrease in northern hemisphere sources and an increase in southern hemisphere sources relative to process-based estimates,no inverse study has definitively associated the inter-hemispheric gradient difference with a specific source process or group of processes. In this presentation, observations of isotopic ratios of 13C in methane and isotopic signatures of methane source processes are used in conjunction with an inverse model of methane to further constrain the source estimates of methane. In order to investigate the advantages of incorporating 13C, the TM3 three-dimensional transport model was used. The methane and carbon dioxide measurements used are from a cooperative international effort, the Cooperative Air Sampling Network, lead by the Climate Monitoring Diagnostics Laboratory (CMDL) at the National Oceanic and Atmospheric Administration (NOAA). Experiments using model calculations based on process-based source estimates show that the inter-hemispheric gradient of δ 13CH4 is not reproduced by these source estimates, showing that the

  10. Analysis of methane biodegradation by Methylosinus trichosporium OB3b

    PubMed Central

    Rodrigues, Andréa dos Santos; Salgado, Belkis Valdman e Andréa Medeiros

    2009-01-01

    The microbial oxidation of methane in the atmosphere is performed by methanotrophic bacteria that use methane as a unique source of carbon and energy. The objective of this work consisted of the investigation of the best conditions of methane biodegradation by methanotrophic bacteria Methylosinus trichosporium OB3b that oxidize it to carbon dioxide, and the use of these microorganisms in monitoring methods for methane. The results showed that M. trichosporium OB3b was capable to degrade methane in a more effective way with an initial microorganism concentration of 0.0700 g.L-1, temperature of 30ºC, pH 6.5 and using 1.79 mmol of methane. In these same conditions, there was no bacterial growth when 2.69 mmol of methane was used. The specific rate of microorganism growth, the conversion factor, the efficiency and the volumetric productivity, for the optimized conditions of biodegradation were, respectively, 0.0324 h-1, 0.6830 gcells/gCH4, 73.73% and 2.7732.10-3 gcells/L.h. The final product of methane microbiological degradation, carbon dioxide, was quantified through the use of a commercial electrode, and, through this, the grade of methane conversion in carbon dioxide was calculated. PMID:24031362

  11. METHANE: INDUSTRIAL SOURCES

    EPA Science Inventory

    The chapter provides qualitative information on the magnitude of industrial sources of methane and, where possible, provides information to allow the reader to quantify methane emissions. One difficulty in quantifying methane emissions from industry is the inconsistent treatment ...

  12. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    NASA Astrophysics Data System (ADS)

    Borowski, Marek; Kuczera, Zbigniew

    2018-03-01

    Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location

  13. Harnessing methane

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The total methane resource in hydrates—ice-like substances found in deep ocean sediments and Arctic permafrost—exceeds the energy content of all other fossil fuel resources,such as coal, oil, and conventional gas, according to the U.S. Geological Survey (USGS).The Methane Hydrate Research and Development Act, signed into law by U.S. President Bill Clinton on May 3, establishes a new federal commitment to developing methane hydrates, which has been touted as a potentially clean energy source that could make the U.S. less dependent on foreign sources of energy. The bill authorizes $47.5 million over five years for the Department of Energy to establish a federal methane hydrate research and development program.

  14. Microbial methane production in oxygenated water column of an oligotrophic lake

    PubMed Central

    Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.

    2011-01-01

    The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233

  15. Methane release from the southern Brazilian margin during the last glacial.

    PubMed

    Portilho-Ramos, R C; Cruz, A P S; Barbosa, C F; Rathburn, A E; Mulitza, S; Venancio, I M; Schwenk, T; Rühlemann, C; Vidal, L; Chiessi, C M; Silveira, C S

    2018-04-13

    Seafloor methane release can significantly affect the global carbon cycle and climate. Appreciable quantities of methane are stored in continental margin sediments as shallow gas and hydrate deposits, and changes in pressure, temperature and/or bottom-currents can liberate significant amounts of this greenhouse gas. Understanding the spatial and temporal dynamics of marine methane deposits and their relationships to environmental change are critical for assessing past and future carbon cycle and climate change. Here we present foraminiferal stable carbon isotope and sediment mineralogy records suggesting for the first time that seafloor methane release occurred along the southern Brazilian margin during the last glacial period (40-20 cal ka BP). Our results show that shallow gas deposits on the southern Brazilian margin responded to glacial-interglacial paleoceanographic changes releasing methane due to the synergy of sea level lowstand, warmer bottom waters and vigorous bottom currents during the last glacial period. High sea level during the Holocene resulted in an upslope shift of the Brazil Current, cooling the bottom waters and reducing bottom current strength, reducing methane emissions from the southern Brazilian margin.

  16. Chemical composition and methane potential of commercial food wastes.

    PubMed

    Lopez, Victoria M; De la Cruz, Florentino B; Barlaz, Morton A

    2016-10-01

    There is increasing interest in anaerobic digestion in the U.S. However, there is little information on the characterization of commercial food waste sources as well as the effect of waste particle size on methane yield. The objective of this research was to characterize four commercial food waste sources: (1) university dining hall waste, (2) waste resulting from prepared foods and leftover produce at a grocery store, (3) food waste from a hotel and convention center, and (4) food preparation waste from a restaurant. Each sample was tested in triplicate 8L batch anaerobic digesters after shredding and after shredding plus grinding. Average methane yields for the university dining, grocery store, hotel, and restaurant wastes were 363, 427, 492, and 403mL/dry g, respectively. Starch exhibited the most complete consumption and particle size did not significantly affect methane yields for any of the tested substrates. Lipids represented 59-70% of the methane potential of the fresh substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Consumption of methane by soils.

    PubMed

    Dueñas, C; Fernández, M C; Carretero, J; Pérez, M; Liger, E

    1994-05-01

    Measurements of the methane flux and methane concentration profiles in soil air are presented. The flux of methane from the soil is calculated by two methods: a) Direct by placing a static open chamber at the soil surface. b) Indirect, using the (222)Rn concentrations profile and the (222)Rn flux in the soil surface in parallel with the methane concentration ((222)Rn calibrated fluxes). The methane flux has been determined in two kinds of soils (sandy and loamy) in the surroundings of Málaga (SPAIN). The directly measured methane fluxes at all investigated sites is higher than methane fluxes derived from "Rn calibrated fluxes". Atmospheric methane is consumed by soils, mean direct flux to the atmosphere were - 0.33 g m(-2)yr-1. The direct methane flux is the same within the measuring error in sandy and loamy soils. The influence of the soil parameters on the methane flux indicates that microbial decomposition of methane is primarily controlled by the transport of methane.

  18. Ecosystem Modelling for Impact Assessment of Possible Methane Leakage during Methane Hydrate Utilization

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Nakano, Y.; Monoe, D.; Oomi, T.; Doi, T.; Nakata, K.; Fukushima, T.

    2005-05-01

    Natural methane hydrate has been scientifically studied as a carbon reservoir globally. However, in Japan, the potential for energy resource has been industrially highlighted. There is less domestic oil and natural gas resources in Japan, but many potential deposition areas for methane hydrate in ocean around Japan are the reasons. Less CO2 discharge from methane compared with coal, oil and conventional natural gas when the same calorie value we get is considered as the advantage for energy resource. However, because methane hydrate distributes in shallower sediment layer in ocean floor, accidental leakage of methane may occur while we utilize methane hydrate. Methane itself has 21-times impact on the greenhouse effect, if it reaches the atmosphere. Therefore, it is necessary to estimate the behavior in the environment after the leakage, if we want to use methane hydrate as energy resource. The mass balance after leakage of methane on seafloor and in water column is numerically studied through the analyses of methane emissions from natural cold seepages and hydrothermal activities in this research. The outline structure of mass balance ecosystem model creating is introduced and some preliminary examination results from the test calculation are discussed.

  19. Methane photochemistry and methane production on Neptune

    NASA Technical Reports Server (NTRS)

    Romani, P. N.; Atreya, S. K.

    1988-01-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus.

  20. Factors controlling the concentration of methane and other volatiles in groundwater and soil-gas around a waste site

    NASA Astrophysics Data System (ADS)

    Barber, C.; Davis, G. B.; Briegel, D.; Ward, J. K.

    1990-01-01

    The concentration of methane in groundwater and soil-gas in the vicinity of a waste landfill on an unconfined sand aquifer has been investigated in detail. These data have been used to evaluate techniques which use volatile organic compounds in soil-gas as indicators of groundwater contamination. Simple one-dimensional models of gas advection and diffusion have been adapted for use in the study. Lateral advection of gas in the unsaturated sand was found to be seasonal and was most noticeable in winter when the profile was wet; a mean velocity of 1 m d - was measured from breakthrough of a helium tracer in an injection test. The effects of advection on trace concentrations of methane in soil-gas were limited to within 150-200m from the waste site and resulted from pressure gradients brought about by positive gas pressures in the landfill, and also as a result of ebullition (gas bubbling) from contaminated groundwater. The distribution of methane in soil-gas at shallow (2m) depth gave a general indication of the direction of movement of contaminants with groundwater in close proximity to the landfill. Outside this zone, diffusional transport of methane from groundwater to soil-gas occurred and methane in soil-gas sampled close to the water table was found to be a useful indicator of contaminated groundwater. Modelling the exchange of volatiles between aqueous and gas phases indicates that a wide range of organic compounds, particularly those with Henry's Law constants greater than 2.5 × 10 t-2 kPam 3mol -1, would have potential for use as indicators of pollution, if these were present in groundwater and they behaved relatively conservatively. In general, the principal factors controlling the concentration of these volatiles in soil-gas were the concentration gradient at the water table and capillary fringe and the ratio of diffusion coefficients in the saturated and unsaturated zones.

  1. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    PubMed

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  2. A new method to study simultaneous methane oxidation and methane production in soils

    NASA Astrophysics Data System (ADS)

    Andersen, B. L.; Bidoglio, G.; Leip, A.; Rembges, D.

    1998-12-01

    Results of laboratory experiments show that 14C-labeled methane added to soil was consumed faster than atmospheric 12C methane. This implies a source of methane, presumably through methanogenesis, in a soil that is a net consumer of atmospheric methane. The soil was well-drained forest soil from Ispra, Italy. An undisturbed sample was taken with a steel corer and incubated under oxic conditions in a jar. Headspace samples were taken at time intervals and analyzed for total methane by gas chromatography and analyzed for 14C methane by liquid scintillation counting. Fluxes calculated from the decreasing headspace mixing ratios were, for example, -6.5 and -7.1 μmol m-2 hr-1 for 12C methane and 14C methane, respectively. A simple model is considered which reproduces reasonably well the observed mixing ratios as function of time.

  3. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed Central

    Veneman, Jolien B.; Muetzel, Stefan; Hart, Kenton J.; Faulkner, Catherine L.; Moorby, Jon M.; Perdok, Hink B.; Newbold, Charles J.

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  4. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    PubMed

    Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.

  5. Quorum Sensing in a Methane-Oxidizing Bacterium.

    PubMed

    Puri, Aaron W; Schaefer, Amy L; Fu, Yanfen; Beck, David A C; Greenberg, E Peter; Lidstrom, Mary E

    2017-03-01

    Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of Methylobacter tundripaludum , a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that M. tundripaludum produces primarily N -3-hydroxydecanoyl-l-homoserine lactone (3-OH-C 10 -HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by M. tundripaludum in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium. IMPORTANCE Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph Methylobacter tundripaludum and use both chemical and genetic methods to characterize this system at the molecular level. Copyright © 2017 American Society for

  6. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  7. Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    PubMed Central

    Aronson, Emma L.; Allison, Steven D.; Helliker, Brent R.

    2013-01-01

    Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5–15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and calls for novel approaches in order to predict future atmospheric methane trends. This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms. In particular, we focus on published efforts to connect community composition and diversity of methane-cycling microbial communities to observed rates of methane flux. We find abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels. These responses vary by ecosystem and associated vegetation type. This information will be useful in process-based models of ecosystem methane flux responses to shifts in environmental and climatic parameters. PMID:23966984

  8. Rising methane emissions from northern wetlands associated with sea ice decline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less

  9. Rising methane emissions from northern wetlands associated with sea ice decline.

    PubMed

    Parmentier, Frans-Jan W; Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J; Zhuang, Qianlai; Christensen, Torben R; McGuire, A David

    2015-09-16

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tg CH 4  yr -1 higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.

  10. Rising methane emissions from northern wetlands associated with sea ice decline

    DOE PAGES

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Mi, Yanjiao; ...

    2015-09-10

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tgmore » CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.« less

  11. Rising methane emissions from northern wetlands associated with sea ice decline

    USGS Publications Warehouse

    Parmentier, Frans-Jan W.; Zhang, Wenxin; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David

    2015-01-01

    The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.

  12. Rising methane emissions from northern wetlands associated with sea ice decline

    PubMed Central

    Zhang, Wenxin; Mi, Yanjiao; Zhu, Xudong; van Huissteden, Jacobus; Hayes, Daniel J.; Zhuang, Qianlai; Christensen, Torben R.; McGuire, A. David

    2015-01-01

    Abstract The Arctic is rapidly transitioning toward a seasonal sea ice‐free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process‐based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high‐latitude emissions for 2005–2010 were, on average, 1.7 Tg CH4 yr−1 higher compared to 1981–1990 due to a sea ice‐induced, autumn‐focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions. PMID:27667870

  13. Methane Emissions from Upland Forests

    NASA Astrophysics Data System (ADS)

    Megonigal, Patrick; Pitz, Scott; Wang, Zhi-Ping

    2016-04-01

    Global budgets ascribe 4-10% of atmospheric methane sinks to upland soils and assume that soils are the sole surface for methane exchange between upland forests and the atmosphere. The dogma that upland forests are uniformly atmospheric methane sinks was challenged a decade ago by the discovery of abiotic methane production from plant tissue. Subsequently a variety of relatively cryptic microbial and non-microbial methane sources have been proposed that have the potential to emit methane in upland forests. Despite the accumulating evidence of potential methane sources, there are few data demonstrating actual emissions of methane from a plant surface in an upland forest. We report direct observations of methane emissions from upland tree stems in two temperate forests. Stem methane emissions were observed from several tree species that dominate a forest located on the mid-Atlantic coast of North America (Maryland, USA). Stem emissions occurred throughout the growing season while soils adjacent to the trees simultaneously consumed methane. Scaling fluxes by stem surface area suggested the forest was a net methane source during a wet period in June, and that stem emissions offset 5% of the soil methane sink on an annual basis. High frequency measurements revealed diurnal cycles in stem methane emission rates, pointing to soils as the methane source and transpiration as the most likely pathway for gas transport. Similar observations were made in an upland forest in Beijing, China. However, in this case the evidence suggested the methane was not produced in soils, but in the heartwood by microbial or non-microbial processes. These data challenge the concept that forests are uniform sinks of methane, and suggest that upland forests are smaller methane sinks than previously estimated due to stem emissions. Tree emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration.

  14. Solubility of aqueous methane under metastable conditions: implications for gas hydrate nucleation.

    PubMed

    Guo, Guang-Jun; Rodger, P Mark

    2013-05-30

    To understand the prenucleation stage of methane hydrate formation, we measured methane solubility under metastable conditions using molecular dynamics simulations. Three factors that influence solubility are considered: temperature, pressure, and the strength of the modeled van der Waals attraction between methane and water. Moreover, the naturally formed water cages and methane clusters in the methane solutions are analyzed. We find that both lowering the temperature and increasing the pressure increase methane solubility, but lowering the temperature is more effective than increasing the pressure in promoting hydrate nucleation because the former induces more water cages to form while the latter makes them less prevalent. With an increase in methane solubility, the chance of forming large methane clusters increases, with the distribution of cluster sizes being exponential. The critical solubility, beyond which the metastable solutions spontaneously form hydrate, is estimated to be ~0.05 mole fraction in this work, corresponding to the concentration of 1.7 methane molecules/nm(3). This value agrees well with the cage adsorption hypothesis of hydrate nucleation.

  15. Methane-Powered Vehicles

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid methane is beginning to become an energy alternative to expensive oil as a power source for automotive vehicles. Methane is the principal component of natural gas, costs less than half as much as gasoline, and its emissions are a lot cleaner than from gasoline or diesel engines. Beech Aircraft Corporation's Boulder Division has designed and is producing a system for converting cars and trucks to liquid methane operation. Liquid methane (LM) is a cryogenic fuel which must be stored at a temperature of 260 degrees below zero Fahrenheit. The LM system includes an 18 gallon fuel tank in the trunk and simple "under the hood" carburetor conversion equipment. Optional twin-fuel system allows operator to use either LM or gasoline fuel. Boulder Division has started deliveries for 25 vehicle conversions and is furnishing a liquid methane refueling station. Beech is providing instruction for Northwest Natural Gas, for conversion of methane to liquid state.

  16. Effect of three pretreatment techniques on the chemical composition and on the methane yields of Opuntia ficus-indica (prickly pear) biomass.

    PubMed

    Calabrò, P S; Catalán, E; Folino, A; Sánchez, A; Komilis, D

    2018-01-01

    Opuntia ficus-indica (OFI) is an emerging biomass that has the potential to be used as substrate in anaerobic digestion. The goal of this work was to investigate the effect of three pretreatment techniques (thermal, alkaline, acidic) on the chemical composition and the methane yield of OFI biomass. A composite experimental design with three factors and two to three levels was implemented, and regression modelling was employed using a total of 10 biochemical methane potential (BMP) tests. The measured methane yields ranged from 289 to 604 NmL/gVS added ; according to the results, only the acidic pretreatment (HCl) was found to significantly increase methane generation. However, as the experimental values were quite high with regards to the theoretical methane yield of the substrate, this effect still needs to be confirmed via further research. The alkaline pretreatment (NaOH) did not noticeably affect methane yields (an average reduction of 8% was recorded), despite the fact that it did significantly reduce the lignin content. Thermal pretreatment had no effect on the methane yields or the chemical composition. Scanning electron microscopy images revealed changes in the chemical structure after the addition of NaOH and HCl. Modelling of the cumulated methane production by the Gompertz modified equation was successful and aided in understanding kinetic advantages linked to some of the pretreatments. For example, the alkaline treatment (at the 20% dosage) at room temperature resulted to a μ max (maximum specific methane production rate [NmLCH 4 /(gVS added ·d)]) equal to 36.3 against 18.6 for the control.

  17. Anthropogenic emissions of methane in the United States

    PubMed Central

    Miller, Scot M.; Wofsy, Steven C.; Michalak, Anna M.; Kort, Eric A.; Andrews, Arlyn E.; Biraud, Sebastien C.; Dlugokencky, Edward J.; Eluszkiewicz, Janusz; Fischer, Marc L.; Janssens-Maenhout, Greet; Miller, Ben R.; Miller, John B.; Montzka, Stephen A.; Nehrkorn, Thomas; Sweeney, Colm

    2013-01-01

    This study quantitatively estimates the spatial distribution of anthropogenic methane sources in the United States by combining comprehensive atmospheric methane observations, extensive spatial datasets, and a high-resolution atmospheric transport model. Results show that current inventories from the US Environmental Protection Agency (EPA) and the Emissions Database for Global Atmospheric Research underestimate methane emissions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our study indicates that emissions due to ruminants and manure are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane source estimates is particularly pronounced in the south-central United States, where we find total emissions are ∼2.7 times greater than in most inventories and account for 24 ± 3% of national emissions. The spatial patterns of our emission fluxes and observed methane–propane correlations indicate that fossil fuel extraction and refining are major contributors (45 ± 13%) in the south-central United States. This result suggests that regional methane emissions due to fossil fuel extraction and processing could be 4.9 ± 2.6 times larger than in EDGAR, the most comprehensive global methane inventory. These results cast doubt on the US EPA’s recent decision to downscale its estimate of national natural gas emissions by 25–30%. Overall, we conclude that methane emissions associated with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts than indicated by existing inventories. PMID:24277804

  18. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs

    PubMed Central

    Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM. PMID:29621295

  19. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs.

    PubMed

    Zhang, Fan; Ma, Geng; Liu, Xiao; Tao, Yunqi; Feng, Dan; Li, Rui

    2018-01-01

    Hydraulic fracturing can improve the permeability of coalbed methane (CBM) reservoirs effectively, which is of great significance to the commercial production of CBM. However, the efficiency of hydraulic fracturing is affected by multiple factors. The mechanism of fracture initiation, morphology and propagation in CBM reservoirs is not clear and need to be further explored. Hydraulic fracturing experiment is an accurate tool to explore these mechanisms. The quantity of experimental coal rock is large and processing method is complex, so specimen made of similar materials was applied to replace coal rock. The true triaxial hydraulic fracturing experimental apparatus, 3D scanning device for coal rock section were applied to carry out hydraulic fracturing experiment. The results show that the initiation pressure is inversely proportional to the horizontal stress difference (Δσ) and positively related to fracturing fluid injection rate. When vertical stress (σv) is constant, the initiation pressure and fracture width decrease with the increasing of Δσ. Natural fractures can be connected by main fracture when propagates perpendicular to the direction of minimum horizontal stress (σh), then secondary fractures and fracture network form in CBM reservoirs. When two stresses of crustal stress are close and far different from the third one, the fracture morphology and propagation become complex. Influenced by perforations and filtration of fracturing fluid in specimen, fracturing fluid flows to downward easily after comparing horizontal well fracturing with vertical well fracturing. Fracture width increases with the decreasing of elastic modulus, the intensity of fracture is positively related with the elastic modulus of coal rock. The research results can provide theoretical basis and technical support for the efficient development of CBM.

  20. Reducing the effect on the environment by collecting methane plumes.

    NASA Astrophysics Data System (ADS)

    Nakamura, R.; Aoyama, C.

    2017-12-01

    Often times, seeping methane plumes can be observed in the vicinity of surface layer methane hydrate. Greenhouse effect of methane gas is approximately 25 times that of carbon dioxide. This is a big influence on the environment. From the investigation performed in 2006 at Umitaka Kaikyaku of the Sea of Japan, the annual amount of methane gas seeping naturally from seafloor was 7.7×105m3/per m2. Methane plume is one of the important factors in considering carbon cycle. In order to collect seeping methane plumes naturally, a method using dome-shaped film was examined. In March, 2016, experiment was performed in the northeast coast of Sado Island in the Sea of Japan using ROV to collect bubbles with a film, using ROV at methane plume gushing point of 150m depth. Bubbles rising into the tubes from dome-shaped film were observed. In June, 2017, another investigation was performed in Umitaka Kaikyaku in offshore Joetsu at Sea of Japan. ROV was used at 890m depth and the experiment was performed with domes made of various materials and shapes. In this study, the author will describe the investigation result.

  1. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  2. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.

    PubMed

    Patra, Amlan Kumar; Yu, Zhongtang

    2013-07-01

    Headspace gas composition and bicarbonate concentrations in media can affect methane production and other characteristics of rumen fermentation in in vitro gas production systems, but these 2 important factors have not been evaluated systematically. In this study, these 2 factors were investigated with respect to gas and methane production, in vitro digestibility of feed substrate, and volatile fatty acid (VFA) profile using in vitro gas production techniques. Three headspace gas compositions (N2+ CO2+ H2 in the ratio of 90:5:5, CO2, and N2) with 2 substrate types (alfalfa hay only, and alfalfa hay and a concentrate mixture in a 50:50 ratio) in a 3×2 factorial design (experiment 1) and 3 headspace compositions (N2, N2 + CO2 in a 50:50 ratio, and CO2) with 3 bicarbonate concentrations (80, 100, and 120 mM) in a 3×3 factorial design (experiment 2) were evaluated. In experiment 1, total gas production (TGP) and net gas production (NGP) was the lowest for CO2, followed by N2, and then the gas mixture. Methane concentration in headspace gas after fermentation was greater for CO2 than for N2 and the gas mixture, whereas total methane production (TMP) and net methane production (NMP) were the greatest for CO2, followed by the gas mixture, and then N2. Headspace composition did not affect in vitro digestibility or the VFA profile, except molar percentages of propionate, which were greater for CO2 and N2 than for the gas mixture. Methane concentration in headspace gas, TGP, and NGP were affected by the interaction of headspace gas composition and substrate type. In experiment 2, increasing concentrations of CO2 in the headspace decreased TGP and NGP quadratically, but increased the concentrations of methane, NMP, and in vitro fiber digestibility linearly, and TMP quadratically. Fiber digestibility, TGP, and NGP increased linearly with increasing bicarbonate concentrations in the medium. Concentrations of methane and NMP were unaffected by bicarbonate concentration, but

  3. Hydrologic controls of methane dynamics in a karst subterranean estuary

    NASA Astrophysics Data System (ADS)

    Brankovits, D.; Pohlman, J.; Ganju, N. K.; Lowell, N. S.; Roth, E.; Lapham, L.

    2017-12-01

    Subterranean estuaries extend into carbonate landmasses where abundant cave networks influence the hydrology and biogeochemistry of the coastal aquifer environment. Enhanced density stratification between meteoric freshwater and saline groundwater facilitates the development of sharp salinity and redox gradients associated with the production and consumption of methane, a potent greenhouse gas. These processes impact methane-dynamics in the coastal zone and provide nutritive resources for the cave-adapted estuarine food web in this oligotrophic habitat. These observations were based on sampling in discrete time periods, leaving questions about the effects of temporally dynamic hydrology on the production, consumption and transport of methane. In this study, we evaluated hydro-biogeochemical controls of methane dynamics in a subterranean estuary to quantify the magnitude of the methane sink in the coastal karst platform of the Yucatan Peninsula, Mexico. We deployed osmotically-driven sampling devices (OsmoSamplers) in flooded cave passages to document temporal variability in methane concentrations and δ13C values, as well as major ions in the groundwater. Water level, current velocities, water and air temperatures, and precipitation were also monitored. Using these records, we built an integrated model to provide a first-order calculation on methane consumption rates for the coastal aquifer. The year-long water chemistry record reveals higher source concentrations of methane in the dry season (5849 ± 1198 nM) than in the wet season (4265 ± 778 nM) with depleted δ13C values (-65.4 ± 2.1 ‰) throughout the year. Our analyses suggest the methane sink potential and ecosystem function are significantly affected by precipitation induced hydrological changes within the tropical subterranean karst estuary.

  4. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. The Synthesis and Characterization of Tetrakis [(p - amino phenoxy) methyl] methane

    NASA Astrophysics Data System (ADS)

    Peng, Yongli; Zou, Qian

    2017-06-01

    In order to solve the shortcomings of the cured epoxy resin poor toughness, this paper proceeded from the structural design of curing agent to synthesize a special curing agent tetrakis [(p-aminophenoxy) methyl] methane which containing both Benzene ring and amino group. A Symmetric compound of tetrakis [(p - acetamidophenoxy) methyl] methane was prepared by using simple and easy to get pentaerythritoltetratosylate and acetaminophen for raw materials, after Williamson etherification reaction intermediates for synthesis of a symmetrical structure of the compound tetrakis [(p-acetamido phenoxy) methyl] methane, then hydrolysed under acidic conditions it can be tetrakis [(p-amino phenoxy) methyl] methane. The influence of reaction time, reaction temperature and reactant ratio to production yield of tetrakis [(p - acetamidophenoxy) methyl] methane was studied by orthogonal experiment of three factors and three levels, and get the optimal process parameters: the reaction time: 16 h, the reaction temperature: 170 °C, reactant ratio, 1:5. The Structure of tetrakis [(p - acetamidophenoxy) methyl] methane and tetrakis [(p-amino phenoxy) methyl] methane were characterized by infrared and 1H-NMR.

  6. Health and Safety Management for Small-scale Methane Fermentation Facilities

    NASA Astrophysics Data System (ADS)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  7. Granular Carbon-Based Electrodes as Cathodes in Methane-Producing Bioelectrochemical Systems

    PubMed Central

    Liu, Dandan; Roca-Puigros, Marta; Geppert, Florian; Caizán-Juanarena, Leire; Na Ayudthaya, Susakul P.; Buisman, Cees; ter Heijne, Annemiek

    2018-01-01

    Methane-producing bioelectrochemical systems generate methane by using microorganisms to reduce carbon dioxide at the cathode with external electricity supply. This technology provides an innovative approach for renewable electricity conversion and storage. Two key factors that need further attention are production of methane at high rate, and stable performance under intermittent electricity supply. To study these key factors, we have used two electrode materials: granular activated carbon (GAC) and graphite granules (GG). Under galvanostatic control, the biocathodes achieved methane production rates of around 65 L CH4/m2catproj/d at 35 A/m2catproj, which is 3.8 times higher than reported so far. We also operated all biocathodes with intermittent current supply (time-ON/time-OFF: 4–2′, 3–3′, 2–4′). Current-to-methane efficiencies of all biocathodes were stable around 60% at 10 A/m2catproj and slightly decreased with increasing OFF time at 35 A/m2catproj, but original performance of all biocathodes was recovered soon after intermittent operation. Interestingly, the GAC biocathodes had a lower overpotential than the GG biocathodes, with methane generation occurring at −0.52 V vs. Ag/AgCl for GAC and at −0.92 V for GG at a current density of 10 A/m2catproj. 16S rRNA gene analysis showed that Methanobacterium was the dominant methanogen and that the GAC biocathodes experienced a higher abundance of proteobacteria than the GG biocathodes. Both cathode materials show promise for the practical application of methane-producing BESs. PMID:29946543

  8. Factors Affecting Tocopherol Concentrations in Soybean Seeds.

    PubMed

    Carrera, Constanza S; Seguin, Philippe

    2016-12-21

    Soybean seeds contain several health-beneficial compounds, including tocopherols, which are used by the nutraceutical and functional food industries. Soybean tocopherol concentrations are, however, highly variable. Large differences observed in tocopherol concentrations among soybean genotypes together with the relatively simple biosynthetic pathway involving few genes support the feasibility of selecting for high-tocopherol soybean. Tocopherol concentrations are also highly influenced by environmental factors and field management. Temperature during seed filling and soil moisture appear to be the main factors affecting tocopherol concentrations; other factors such as soil fertility and solar radiation also affect concentrations and composition. Field management decisions including seeding date, row spacing, irrigation, and fertilization also affect tocopherols. Knowledge of factors affecting soybean tocopherols is essential to develop management strategies that will lead to the production of seeds with consistent target concentrations that will meet the needs of the nutraceutical and functional food industries.

  9. The future of methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howell, D.G.

    1995-12-31

    Natural gas, mainly methane, produces lower CO{sub 2}, CO, NO{sub x}, SO{sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce ca. 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates ofmore » recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions steming from the need to drill an enormous number of wells, many in ecologically sensitive areas. Until all these aspects of methane are better understood, its future role in the world`s energy mix will remain uncertain. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity and importance of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.« less

  10. Martian methane plume models for defining Mars rover methane source search strategies

    NASA Astrophysics Data System (ADS)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  11. Effects of Environmental Conditions on an Urban Wetland's Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Naor Azrieli, L.; Morin, T. H.; Bohrer, G.; Schafer, K. V.; Brooker, M.; Mitsch, W. J.

    2013-12-01

    Methane emissions from wetlands are the largest natural source of uncertainty in the global methane (CH4) budget. Wetlands are highly productive ecosystems with a large carbon sequestration potential. While wetlands are a net sink for carbon dioxide, they also release methane, a potent greenhouse gas. To effectively develop wetland management techniques, it is important to properly calculate the carbon budget of wetlands by understand the driving factors of methane fluxes. We constructed an eddy flux covariance system in the Olentangy River Wetland Research Park, a series of created and restored wetland in Columbus Ohio. Through the use of high frequency open path infrared gas analyzer (IRGA) sensors, we have continuously monitored the methane fluxes associated with the wetland since May 2011. To account for the heterogeneous landscape surrounding the tower, a footprint analysis was used to isolate data originating from within the wetland. Continuous measurements of the meteorological and environmental conditions at the wetlands coinciding with the flux measurements allow the interactions between methane fluxes and the climate and ecological forcing to be studied. The wintertime daily cycle of methane peaks around midday indicating a typical diurnal pattern in cold months. In the summer, the peak shifts to earlier in the day and also includes a daily peak occurring at approximately 10 AM. We believe this peak is associated with the onset of photosynthesis in Typha latifolia flushing methane from the plant's air filled tissue. Correlations with methane fluxes include latent heat flux, soil temperature, and incoming radiation. The connection to radiation may be further evidence of plant activity as a driver of methane fluxes. Higher methane fluxes corresponding with higher soil temperature indicates that warmer days stimulate the methanogenic consortium. Further analysis will focus on separating the methane fluxes into emissions from different terrain types within

  12. Web-based Factors Affecting Online Purchasing Behaviour

    NASA Astrophysics Data System (ADS)

    Ariff, Mohd Shoki Md; Sze Yan, Ng; Zakuan, Norhayati; Zaidi Bahari, Ahamad; Jusoh, Ahmad

    2013-06-01

    The growing use of internet and online purchasing among young consumers in Malaysia provides a huge prospect in e-commerce market, specifically for B2C segment. In this market, if E-marketers know the web-based factors affecting online buyers' behaviour, and the effect of these factors on behaviour of online consumers, then they can develop their marketing strategies to convert potential customers into active one, while retaining existing online customers. Review of previous studies related to the online purchasing behaviour in B2C market has point out that the conceptualization and empirical validation of the online purchasing behaviour of Information and Communication Technology (ICT) literate users, or ICT professional, in Malaysia has not been clearly addressed. This paper focuses on (i) web-based factors which online buyers (ICT professional) keep in mind while shopping online; and (ii) the effect of web-based factors on online purchasing behaviour. Based on the extensive literature review, a conceptual framework of 24 items of five factors was constructed to determine web-based factors affecting online purchasing behaviour of ICT professional. Analysis of data was performed based on the 310 questionnaires, which were collected using a stratified random sampling method, from ICT undergraduate students in a public university in Malaysia. The Exploratory factor analysis performed showed that five factors affecting online purchase behaviour are Information Quality, Fulfilment/Reliability/Customer Service, Website Design, Quick and Details, and Privacy/Security. The result of Multiple Regression Analysis indicated that Information Quality, Quick and Details, and Privacy/Security affect positively online purchase behaviour. The results provide a usable model for measuring web-based factors affecting buyers' online purchase behaviour in B2C market, as well as for online shopping companies to focus on the factors that will increase customers' online purchase.

  13. Modeling sulfate reduction in methane hydrate-bearing continental margin sediments: Does a sulfate-methane transition require anaerobic oxidation of methane?

    USGS Publications Warehouse

    Malinverno, A.; Pohlman, J.W.

    2011-01-01

    The sulfate-methane transition (SMT), a biogeochemical zone where sulfate and methane are metabolized, is commonly observed at shallow depths (1-30 mbsf) in methane-bearing marine sediments. Two processes consume sulfate at and above the SMT, anaerobic oxidation of methane (AOM) and organoclastic sulfate reduction (OSR). Differentiating the relative contribution of each process is critical to estimate methane flux into the SMT, which, in turn, is necessary to predict deeper occurrences of gas hydrates in continental margin sediments. To evaluate the relative importance of these two sulfate reduction pathways, we developed a diagenetic model to compute the pore water concentrations of sulfate, methane, and dissolved inorganic carbon (DIC). By separately tracking DIC containing 12C and 13C, the model also computes ??13C-DIC values. The model reproduces common observations from methane-rich sediments: a well-defined SMT with no methane above and no sulfate below and a ??13C-DIC minimum at the SMT. The model also highlights the role of upward diffusing 13C-enriched DIC in contributing to the carbon isotope mass balance of DIC. A combination of OSR and AOM, each consuming similar amounts of sulfate, matches observations from Site U1325 (Integrated Ocean Drilling Program Expedition 311, northern Cascadia margin). Without AOM, methane diffuses above the SMT, which contradicts existing field data. The modeling results are generalized with a dimensional analysis to the range of SMT depths and sedimentation rates typical of continental margins. The modeling shows that AOM must be active to establish an SMT wherein methane is quantitatively consumed and the ??13C-DIC minimum occurs. The presence of an SMT generally requires active AOM. Copyright 2011 by the American Geophysical Union.

  14. Methane, Black Carbon, and Ethane Emissions from Natural Gas Flares in the Bakken Shale, North Dakota.

    PubMed

    Gvakharia, Alexander; Kort, Eric A; Brandt, Adam; Peischl, Jeff; Ryerson, Thomas B; Schwarz, Joshua P; Smith, Mackenzie L; Sweeney, Colm

    2017-05-02

    Incomplete combustion during flaring can lead to production of black carbon (BC) and loss of methane and other pollutants to the atmosphere, impacting climate and air quality. However, few studies have measured flare efficiency in a real-world setting. We use airborne data of plume samples from 37 unique flares in the Bakken region of North Dakota in May 2014 to calculate emission factors for BC, methane, ethane, and combustion efficiency for methane and ethane. We find no clear relationship between emission factors and aircraft-level wind speed or between methane and BC emission factors. Observed median combustion efficiencies for methane and ethane are close to expected values for typical flares according to the US EPA (98%). However, we find that the efficiency distribution is skewed, exhibiting log-normal behavior. This suggests incomplete combustion from flares contributes almost 1/5 of the total field emissions of methane and ethane measured in the Bakken shale, more than double the expected value if 98% efficiency was representative. BC emission factors also have a skewed distribution, but we find lower emission values than previous studies. The direct observation for the first time of a heavy-tail emissions distribution from flares suggests the need to consider skewed distributions when assessing flare impacts globally.

  15. Simplifiying global biogeochemistry models to evaluate methane emissions

    NASA Astrophysics Data System (ADS)

    Gerber, S.; Alonso-Contes, C.

    2017-12-01

    Process-based models are important tools to quantify wetland methane emissions, particularly also under climate change scenarios, evaluating these models is often cumbersome as they are embedded in larger land-surface models where fluctuating water table and the carbon cycle (including new readily decomposable plant material) are predicted variables. Here, we build on these large scale models but instead of modeling water table and plant productivity we provide values as boundary conditions. In contrast, aerobic and anaerobic decomposition, as well as soil column transport of oxygen and methane are predicted by the model. Because of these simplifications, the model has the potential to be more readily adaptable to the analysis of field-scale data. Here we determine the sensitivity of the model to specific setups, parameter choices, and to boundary conditions in order to determine set-up needs and inform what critical auxiliary variables need to be measured in order to better predict field-scale methane emissions from wetland soils. To that end we performed a global sensitivity analysis that also considers non-linear interactions between processes. The global sensitivity analysis revealed, not surprisingly, that water table dynamics (both mean level and amplitude of fluctuations), and the rate of the carbon cycle (i.e. net primary productivity) are critical determinants of methane emissions. The depth-scale where most of the potential decomposition occurs also affects methane emissions. Different transport mechanisms are compensating each other to some degree: If plant conduits are constrained, methane emissions by diffusive flux and ebullition compensate to some degree, however annual emissions are higher when plants help to bypass methanotrophs in temporally unsaturated upper layers. Finally, while oxygen consumption by plant roots help creating anoxic conditions it has little effect on overall methane emission. Our initial sensitivity analysis helps guiding

  16. Tidal influence on subtropical estuarine methane emissions

    NASA Astrophysics Data System (ADS)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period

  17. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    NASA Astrophysics Data System (ADS)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    transport. Two concepts of gas-tracer-test applications in termite mounds are presented, together with 3D photogrammetric approaches to estimate volume, surface area and internal gas volume of termite mounds that enables acuare scaling of methane production and consumption. In a further phase of the project, the application of these methods in a comprehensive field survey in the Australian savanna ecosystem will give insights into major driving factors of MOX in termite mounds, a major driver of nutrient cycling in this extensive tropical ecosystem.

  18. Interactions between nitrogen cycling and methane oxidation in the pelagic waters of the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Joye, S. B.; Weber, S.; Battles, J.; Montoya, J. P.

    2014-12-01

    Methane is an important greenhouse gas that plays a critical role in climate variation. Although a variety of marine methane sources and sinks have been identified, key aspects of the fate of methane in the ocean remain poorly constrained. At cold seeps in the Gulf of Mexico and elsewhere, methane is introduced into the overlying water column via fluid escape from the seabed. We quantified the fate of methane in the water column overlying seafloor cold seeps, in a brine basin, and at several control sites. Our goals were to determine the factors that regulated methane consumption and assimilation and to explore how these controlling factors varied among and between sites. In particular, we examined the impact of nitrogen availability on methane oxidation and studied the ability of methane oxidizing bacteria to fix molecular nitrogen. Methane oxidation rates were highest in the methane rich bottom waters of natural hydrocabron seeps. At these sites, inorganic nitrogen addition stimulated methane oxidation in laboratory experiments. In vitro shipboard experiments revealed that rates of methane oxidation and nitrogen fixation were correlated strongly, suggesting that nitrogen fixation may have been mediated by methanotrophic bacteria. The highest rates of methane oxidation and nitrogen fixation were observed in the deepwater above at natural hydrocarbon seeps. Rates of methane oxidation were substantial along the chemocline of a brine basin but in these ammonium-rich brines, addition of inorganic nitrogen had little impact on methane oxidation suggesting that methanotrophy in these waters were not nitrogen limited. Control sites exhibited the lowest methane concentrations and methane oxidation rates but even these waters exhibited substantial potential for methane oxidation when methane and inorganic nitrogen concentrations were increased. Together, these data suggest that the availability of inorganic nitrogen plays a critical role in regulating methane oxidation in

  19. Optimization of biogenic methane production from coal

    DOE PAGES

    Fuertez, John; Nguyen, Van; McLennan, John D.; ...

    2017-09-29

    Given continuously increasing global energy needs, diversified efforts have been made to find and exploit new natural gas resources. These include coalbed methane (CBM), which represents an important global, unconventional source of natural gas. Efforts have been underway for some time to more effectively generate methane in-situ in coal plays by introduction of nutrients and/or microbial consortia. However, much is still to be learned about the limitations and environmental conditions that support microbial growth and are conducive to biogenic methane production from coal. Here we evaluated environmental conditions that led to increased methane production from subbituminous coal by introducing amore » foreign methanogenic consortium that included Methanobacterium sp. Furthermore, we used a central composite design (CCD) to explore a broad range of operational conditions, examine the effects of the important environmental factors, such as temperature, pH and salt concentration, and query a feasible region of operation to maximize methane production from coal. An anticipated detrimental effect of NaCl concentration on methane production was observed for the consortium assessed. The range of feasible operational conditions comprised initial pH values between 4.2 and 6.8, temperatures between 23 °C and 37 °C, and NaCl concentrations between 3.7 mg/cm 3 and 9.0 mg/cm 3. Coal biogasification was optimal for this consortium at an initial pH value of 5.5, at 30 °C, and at a NaCl concentration 3.7 mg/cm 3 (i.e., 145,165 ppm, which is 25.6 sft 3/ton).« less

  20. Optimization of biogenic methane production from coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuertez, John; Nguyen, Van; McLennan, John D.

    Given continuously increasing global energy needs, diversified efforts have been made to find and exploit new natural gas resources. These include coalbed methane (CBM), which represents an important global, unconventional source of natural gas. Efforts have been underway for some time to more effectively generate methane in-situ in coal plays by introduction of nutrients and/or microbial consortia. However, much is still to be learned about the limitations and environmental conditions that support microbial growth and are conducive to biogenic methane production from coal. Here we evaluated environmental conditions that led to increased methane production from subbituminous coal by introducing amore » foreign methanogenic consortium that included Methanobacterium sp. Furthermore, we used a central composite design (CCD) to explore a broad range of operational conditions, examine the effects of the important environmental factors, such as temperature, pH and salt concentration, and query a feasible region of operation to maximize methane production from coal. An anticipated detrimental effect of NaCl concentration on methane production was observed for the consortium assessed. The range of feasible operational conditions comprised initial pH values between 4.2 and 6.8, temperatures between 23 °C and 37 °C, and NaCl concentrations between 3.7 mg/cm 3 and 9.0 mg/cm 3. Coal biogasification was optimal for this consortium at an initial pH value of 5.5, at 30 °C, and at a NaCl concentration 3.7 mg/cm 3 (i.e., 145,165 ppm, which is 25.6 sft 3/ton).« less

  1. Detecting Methane Leaks

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D.

    1984-01-01

    Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.

  2. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production

    PubMed Central

    Hristov, Alexander N.; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W.; Harper, Michael T.; Weeks, Holley L.; Branco, Antonio F.; Moate, Peter J.; Deighton, Matthew H.; Williams, S. Richard O.; Kindermann, Maik; Duval, Stephane

    2015-01-01

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries. PMID:26229078

  3. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production.

    PubMed

    Hristov, Alexander N; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W; Harper, Michael T; Weeks, Holley L; Branco, Antonio F; Moate, Peter J; Deighton, Matthew H; Williams, S Richard O; Kindermann, Maik; Duval, Stephane

    2015-08-25

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries.

  4. Regulation of Methane Oxidation in a Freshwater Wetland by Water Table Changes and Anoxia

    NASA Technical Reports Server (NTRS)

    Roslev, Peter; King, Gary M.

    1996-01-01

    The effects of water table fluctuations and anoxia on methane emission and methane oxidation were studied in a freshwater marsh. Seasonal aerobic methane oxidation rates varied between 15% and 76% of the potential diffusive methane flux (diffusive flux in the absence of aerobic oxidation). On an annual basis, approximately 43% of the methane diffusing into the oxic zone was oxidized before reaching the atmosphere. The highest methane oxidation was observed when the water table was below the peat surface. This was confirmed in laboratory experiments where short-term decreases in water table levels increased methane oxidation but also net methane emission. Although methane emission was generally not observed during the winter, stems of soft rush (Juncus effusus) emitted methane when the marsh was ice covered. Indigenous methanotrophic bacteria from the wetiand studied were relatively anoxia tolerant. Surface peat incubated under anoxic conditions maintained 30% of the initial methane oxidation capacity after 32 days of anoxia. Methanotrophs from anoxic peat initiated aerobic methane oxidation relatively quickly after oxygen addition (1-7 hours). These results were supported by culture experiments with the methanotroph Methylosinus trichosporium OB3b. This organism maintained a greater capacity for aerobic methane oxidation when starved under anoxic compared to oxic conditions. Anoxic incubation of M. trichosporium OB3b in the presence of sulfide (2 mM) and a low redox potential (-110 mV) did not decrease the capacity for methane oxidation relative to anoxic cultures incubated without sulfide. The results suggest that aerobic methane oxidation was a major regulator of seasonal methane emission front the investigated wetland. The observed water table fluctuations affected net methane oxidation presumably due to associated changes in oxygen gradients. However, changes from oxic to anoxic conditions in situ had relatively little effect on survival of the methanotrophic

  5. Short-term effect of acetate and ethanol on methane formation in biogas sludge.

    PubMed

    Refai, Sarah; Wassmann, Kati; Deppenmeier, Uwe

    2014-08-01

    Biochemical processes in biogas plants are still not fully understood. Especially, the identification of possible bottlenecks in the complex fermentation processes during biogas production might provide potential to increase the performance of biogas plants. To shed light on the question which group of organism constitutes the limiting factor in the anaerobic breakdown of organic material, biogas sludge from different mesophilic biogas plants was examined under various conditions. Therefore, biogas sludge was incubated and analyzed in anaerobic serum flasks under an atmosphere of N2/CO2. The batch reactors mirrored the conditions and the performance of the full-scale biogas plants and were suitable test systems for a period of 24 h. Methane production rates were compared after supplementation with substrates for syntrophic bacteria, such as butyrate, propionate, or ethanol, as well as with acetate and H2+CO2 as substrates for methanogenic archaea. Methane formation rates increased significantly by 35 to 126 % when sludge from different biogas plants was supplemented with acetate or ethanol. The stability of important process parameters such as concentration of volatile fatty acids and pH indicate that ethanol and acetate increase biogas formation without affecting normally occurring fermentation processes. In contrast to ethanol or acetate, other fermentation products such as propionate, butyrate, or H2 did not result in increased methane formation rates. These results provide evidence that aceticlastic methanogenesis and ethanol-oxidizing syntrophic bacteria are not the limiting factor during biogas formation, respectively, and that biogas plant optimization is possible with special focus on methanogenesis from acetate.

  6. Coalbed Methane Outreach Program

    EPA Pesticide Factsheets

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  7. Split-estate negotiations: the case of coal-bed methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayley H. Chouinard; Christina Steinhoff

    Coal-bed methane is an emerging contributor to the US energy supply. Split estates, where landowners control the surface and the energy companies lease the rights to the underground gas from the federal government, often impede successful negotiations for methane extraction. We provide an extensive form representation of the dynamic game of the negotiation process for subsurface access. We then solve for a set of Nash equilibrium outcomes associated with the split estate negotiations. By examining the optimal offers we can identify methods to improve the likelihood of negotiations that do not break down and result in the gas developer resortingmore » to the use of a bond. We examine how changes in transaction costs or entitlements will affect the outcomes, and support our finds with anecdotal evidence from actual negotiations for coal-bed methane access. 55 refs.« less

  8. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    PubMed

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Application of a methane carbon isotope analyzer for the investigation of δ13C of methane emission measured by the automatic chamber method in an Arctic Tundra

    NASA Astrophysics Data System (ADS)

    Mastepanov, Mikhail; Christensen, Torben

    2014-05-01

    Methane emissions have been monitored by an automatic chamber method in Zackenberg valley, NE Greenland, since 2006 as a part of Greenland Ecosystem Monitoring (GEM) program. During most of the seasons the measurements were carried out from the time of snow melt (June-July) until freezing of the active layer (October-November). Several years of data, obtained by the same method, instrumentation and at exactly the same site, provided a unique opportunity for the analysis of interannual methane flux patterns and factors affecting their temporal variability. The start of the growing season emissions was found to be closely related to a date of snow melt at the site. Despite a large between year variability of this date (sometimes more than a month), methane emission started within a few days after, and was increasing for the next about 30 days. After this peak of emission, it slowly decreased and stayed more or less constant or slightly decreasing during the rest of the growing season (Mastepanov et al., Biogeosciences, 2013). During the soil freezing, a second peak of methane emission was found (Mastepanov et al., Nature, 2008); its amplitude varied a lot between the years, from almost undetectable to comparable with total growing season emissions. Analysis of the multiyear emission patterns (Mastepanov et al., Biogeosciences, 2013) led to hypotheses of different sources for the spring, summer and autumn methane emissions, and multiyear cycles of accumulation and release of these components to the atmosphere. For the further investigation of this it was decided to complement the monitoring system with a methane carbon isotope analyzer (Los Gatos Research, USA). The instrument was installed during 2013 field season and was successfully operating until the end of the measurement campaign (27 October). Detecting both 12C-CH4 and 13C-CH4 concentrations in real time (0.5 Hz) during automatic chamber closure (15 min), the instrument was providing data for determination of

  10. Factors Affecting Wound Healing

    PubMed Central

    Guo, S.; DiPietro, L.A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336

  11. Factors affecting wound healing.

    PubMed

    Guo, S; Dipietro, L A

    2010-03-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds.

  12. Historical methane hydrate project review

    USGS Publications Warehouse

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  13. Following Carbon Isotopes from Methane to Molecules

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.

    2017-12-01

    Continuous-flow methods introduced by Hayes (Matthews and Hayes, 1978; Freeman et al., 1990; Hayes et al., 1990) for compound-specific isotope analyses (CSIA) transformed how we study the origins and fates of organic compounds. This analytical revolution launched several decades of research in which researchers connect individual molecular structures to diverse environmental and climate processes affecting their isotopic profiles. Among the first applications, and one of the more dramatic isotopically, was tracing the flow of natural methane into cellular carbon and cellular biochemical constituents. Microbial oxidation of methane can be tracked by strongly 13C-depleted organic carbon in early Earth sedimentary environments, in marine and lake-derived biomarkers in oils, and in modern organisms and their environments. These signatures constrain microbial carbon cycling and inform our understanding of ocean redox. The measurement of molecular isotopes has jumped forward once again, and it is now possible to determine isotope abundances at specific positions within increasingly complex organic structures. In addition, recent analytical developments have lowered sample sensitivity limits of CSIA to picomole levels. These new tools have opened new ways to measure methane carbon in the natural environment and within biochemical pathways. This talk will highlight how molecular isotope methods enable us to follow the fate of methane carbon in complex environments and along diverse metabolic pathways, from trace fluids to specific carbon positions within microbial biomarkers.

  14. Methane rescues retinal ganglion cells and limits retinal mitochondrial dysfunction following optic nerve crush.

    PubMed

    Wang, Ruobing; Sun, Qinglei; Xia, Fangzhou; Chen, Zeli; Wu, Jiangchun; Zhang, Yuelu; Xu, Jiajun; Liu, Lin

    2017-06-01

    Secondary degeneration is a common event in traumatic central nervous system disorders, which involves neuronal apoptosis and mitochondrial dysfunction. Exogenous methane exerts the therapeutic effects in many organ injury. Our study aims to investigate the potential neuroprotection of methane in a rat model of optic nerve crush (ONC). Adult male Sprague-Dawley rats were subjected to ONC and administrated intraperitoneally with methane-saturated or normal saline (10 ml/kg) once per day for one week after ONC. The retinal ganglion cells (RGCs) density was assessed by hematoxylin and eosin staining and Fluoro-Gold retrogradely labeling. Visual function was evaluated by flash visual evoked potentials (FVEP). The retinal apoptosis was measured by terminal-deoxy-transferase-mediated dUTP nick end labeling (TUNEL) assay and the expression of apoptosis-related factors, such as phosphorylated Bcl-2-associated death promoter (pBAD), phosphorylated glycogen synthase kinase-3β (pGSK-3β), Bcl-2 associated X protein (Bax) and Bcl-2 extra large (Bcl-xL). Retinal mitochondrial function was assessed by the mRNA expressions of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), the mitochondrial DNA (mtDNA) copy number, citrate synthase activity and ATP content. Methane treatment significantly improved the RGC loss and visual dysfunction following ONC. As expected, methane also remarkably inhibited the retinal neural apoptosis, such as the fewer TUNEL-positive cells in ganglion cell layer, accompanied by the up-regulations of anti-apoptotic factors (pGSK-3β, pBAD, Bcl-xL) and the down-regulation of pro-apoptotic factor (Bax). Furthermore, methane treatment suppressed up-regulations of critical mitochondrial components (PGC-1α, NRF1 and TFAM) mRNA and mtDNA copy number, as well as improved the reduction of functional mitochondria markers, including citrate synthase

  15. Reconstructing Methane Emission Events in the Arctic Ocean: Observations from the Past to Present

    NASA Astrophysics Data System (ADS)

    Panieri, G.; Mienert, J.; Fornari, D. J.; Torres, M. E.; Lepland, A.

    2015-12-01

    Methane hydrates are ice-like crystals that are present along continental margins, occurring in the pore space of deep sediments or as massive blocks near the seafloor. They form in high pressure and low temperature environments constrained by thermodynamic stability, and supply of methane. In the Arctic, gas hydrates are abundant, and the methane released by their destabilization can affect local to global carbon budgets and cycles, ocean acidification, and benthic community survival. With the aim to locate in space and time the periodicity of methane venting, CAGE is engaged in a vast research program in the Arctic, a component of which comprises the analyses of numerous sediment cores and correlative geophysical and geochemical data from different areas. Here we present results from combined analyses of biogenic carbonate archives along the western Svalbard Margin, which reveal past methane venting events in this region. The reconstruction of paleo-methane discharge is complicated by precipitation of secondary carbonate on foraminifera shells, driven by an increase in alkalinity during anaerobic oxidation of methane (AOM). The biogeochemical processes involved in methane cycling and processes that drive methane migration affect the depth where AOM occurs, with relevance to secondary carbonate formation. Our results show the value and complexity of separating primary vs. secondary signals in bioarchives with relevance to understanding fluid-burial history in methane seep provinces. Results from our core analyses are integrated with observations made during the CAGE15-2 cruise in May 2015, when we deployed a towed vehicle equipped with camera, multicore and water sampling capabilities. The instrument design was based on the Woods Hole Oceanographic Institution (WHOI) MISO TowCam sled equipped with a deep-sea digital camera and CTD real-time system. Sediment sampling was visually-guided using this system. In one of the pockmarks along the Vestnesa Ridge where high

  16. Binding of methane to activated mineral surfaces - a methane sink on Mars?

    NASA Astrophysics Data System (ADS)

    Nørnberg, P.; Knak Jensen, S. J.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, Ebbe; Iversen, J. J.; Kondrup, J. C.

    2015-10-01

    Tumbling experiments that simulate the wind erosion of quartz grains in an atmosphere of 13 C-enriched methane are reported. The eroded grains are analyzed by 13C and 29 Si solid-state NMR techniques after several months of tumbling. The analysis shows that methane has reacted with the eroded surface to form covalent Si-CH3 bonds, which stay intact for temperatures up to at least 250oC. These findings offer a model for a methane sink that might explain the fast disappearance of methane on Mars.

  17. Project identification for methane reduction options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of themore » projects, and additional gains which come from the projects.« less

  18. Carbon Isotope Biogeochemistry of Methane from Anoxic Sediments

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.

    1993-01-01

    The isotopic composition of naturally occurring methane was used to constrain the tropospheric budget of that radiatively active gas. Numerous studies have shown that the isotopic composition is not constant, even for a specific source, and may vary temporally and spatially. The objective was to develop a process-level model that reproduced the seasonal variations in the C-13/C-12 composition of methane observed at the coastal site, Cape Lookout Bight, NC. Details of the mass balance are provided. Experiments and models designed to determine what factors incluence C-13/C-12 ratio of dissolved CO2 are reported. All the factors described were combined in a model that faithfully reproduces the seasonal C-13/C-12 variations observed at Cape Lookout. The model is described.

  19. Model Analysis of the Factors Regulating Trends and Variability of Methane, Carbon Monoxide and OH: 1. Model Validation

    NASA Technical Reports Server (NTRS)

    Elshorbany, Y. F.; Strode, S.; Wang, J.; Duncan, B.

    2014-01-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG). Its 100-year global warming potential (GWP) is 25 times larger than that for carbon dioxide. The 100-yr integrated GWP of CH4 is sensitive to changes in OH levels. Methane's atmospheric growth rate was estimated to be more than 10 ppb yr(exp -1) in 1998 but less than zero in 2001, 2004 and 2005 (Kirschke et al., 2013). Since 2006, the CH4 is increasing again. This phenomena is yet not well understood. Oxidation of CH4 by OH is the main loss process, thus affecting the oxidizing capacity of the atmosphere and contributing to the global ozone background. Current models typically use an annual cycle of offline OH fields to simulate CH4. The implemented OH fields in these models are typically tuned so that simulated CH4 growth rates match that measured. For future and climate simulations, the OH tuning technique may not be suitable. In addition, running full chemistry, multi-decadal CH4 simulations is a serious challenge and currently, due to computational intensity, almost impossible.

  20. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties

    NASA Astrophysics Data System (ADS)

    Liu, Fanfan; Zhou, Aiguo; Chen, Jinfeng; Jia, Jin; Zhou, Weijia; Wang, Libo; Hu, Qianku

    2017-09-01

    Here we reported the preparation of Ti3C2 MXene and Ti2C MXene by etching Ti3AlC2 and Ti2AlC with various fluoride salts in hydrochloric acid (HCl), including lithium fluoride (LiF), sodium fluoride (NaF), potassium fluoride (KF), and ammonium fluoride (NH4F). As-prepared Ti2C was further delaminated by urea, dimethylsulfoxide or ammonium hydroxide. Based on theoretical calculation and XPS results, the type of positive ions (Li+, Na+, K+, or NH4+) in etchant solution affect the surface structure of prepared MXene, which, in turn, affects the methane adsorption properties of MXene. The highest methane adsorption capacity is 8.5 cm3/g for Ti3C2 and 11.6 cm3/g for Ti2C. MXenes made from LiF and NH4F can absorb methane under high pressure and can keep methane under normal pressure, these MXenes may have important application on capturing methane or other hazardous gas molecules. MXenes made from NaF and KF can absorb methane under high pressure and release methane under low pressure. They can have important application in the adsorb storage of nature gas.

  1. Experimental investigations about the effect of trace amount of propane on the formation of mixed hydrates of methane and propane

    NASA Astrophysics Data System (ADS)

    Cai, W.; Lu, H.; Huang, X.

    2016-12-01

    In natural gas hydrates, some heavy hydrocarbons are always detected in addition to methane. However, it is still not well understood how the trace amount of heavy gas affect the hydrate properties. Intensive studies have been carried out to study the thermodynamic properties and structure types of mixed gases hydrates, but comparatively few investigations have been carried out on the cage occupancies of guest molecules in mixed gases hydrates. For understanding how trace amount of propane affects the formation of mixed methane-propane hydrates, X-ray diffraction, Raman spectroscopy, and gas chromatography were applied to the synthesized mixed methane-propane hydrate specimens, to get their structural characteristics (structure type, structural parameters, cage occupancy, etc.) and gas compositions. The mixed methane-propane hydrates were prepared by reacting fine ice powders with various gas mixtures of methane and propane. When the propane content was below 0.4%, the hydrates synthesized were found containing both sI methane hydrate and sII methane-propane hydrate; while the hydrates were found always sII when propane was over certain content. Detail studies about the cage occupancies of propane and methane in sII hydrate revealed that: 1) with the increase in propane content of methane-propane mixture, the occupancy of propane in large cage increased as accompanied with the decrease in methane occupancy in large cage, however the occupancy of methane in small cage didn't experience significant change; 2) temperature and pressure seemed no obvious influence on cage occupancy.

  2. Factors Affecting Sign Retroreflectivity : final report.

    DOT National Transportation Integrated Search

    2001-01-01

    This study was undertaken to better understand the factors that may affect road sign retroreflectivity, specifically age and physical orientation. A better understanding of these factors could provide guidance to ODOT in managing its inventory of roa...

  3. Towards an inventory of methane emissions from manure management that is responsive to changes on Canadian farms

    NASA Astrophysics Data System (ADS)

    VanderZaag, A. C.; MacDonald, J. D.; Evans, L.; Vergé, X. P. C.; Desjardins, R. L.

    2013-09-01

    Methane emissions from manure management represent an important mitigation opportunity, yet emission quantification methods remain crude and do not contain adequate detail to capture changes in agricultural practices that may influence emissions. Using the Canadian emission inventory methodology as an example, this letter explores three key aspects for improving emission quantification: (i) obtaining emission measurements to improve and validate emission model estimates, (ii) obtaining more useful activity data, and (iii) developing a methane emission model that uses the available farm management activity data. In Canada, national surveys to collect manure management data have been inconsistent and not designed to provide quantitative data. Thus, the inventory has not been able to accurately capture changes in management systems even between manure stored as solid versus liquid. To address this, we re-analyzed four farm management surveys from the past decade and quantified the significant change in manure management which can be linked to the annual agricultural survey to create a continuous time series. In the dairy industry of one province, for example, the percentage of manure stored as liquid increased by 300% between 1991 and 2006, which greatly affects the methane emission estimates. Methane emissions are greatest from liquid manure, but vary by an order of magnitude depending on how the liquid manure is managed. Even if more complete activity data are collected on manure storage systems, default Intergovernmental Panel on Climate Change (IPCC) guidance does not adequately capture the impacts of management decisions to reflect variation among farms and regions in inventory calculations. We propose a model that stays within the IPCC framework but would be more responsive to farm management by generating a matrix of methane conversion factors (MCFs) that account for key factors known to affect methane emissions: temperature, retention time and inoculum. This

  4. Future methane emissions from animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anastasi, C.; Simpson, V.J.

    1993-04-20

    The authors project future methane emissions from animals to the year 2025. They review the present estimated sources of methane from enteric fermentation in animals. Ruminant animals produce the highest concentrations of methane. Methane is a byproduct of anaerobic breakdown of carbohydrates by microbes in the digestive tract of herbatious animals. In general the methane production depends on the variety of animal, the quality of the feed, and the feeding level. Since cattle, sheep, and buffalo account for roughly 91% of all animal methane emission, they only study these animals in detail. Results suggest a rise in methane production ofmore » roughly 1% per year averaged through 2025. Increasing levels are found to originate from developed countries even though the feedstock levels are lower.« less

  5. Global Methane Initiative

    EPA Pesticide Factsheets

    The Global Methane Initiative promotes cost-effective, near-term methane recovery through partnerships between developed and developing countries, with participation from the private sector, development banks, and nongovernmental organizations.

  6. Valuing the ozone-related health benefits of methane emission controls

    DOE PAGES

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    2015-06-29

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonnemore » methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.« less

  7. Valuing the ozone-related health benefits of methane emission controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarofim, Marcus C.; Waldhoff, Stephanie T.; Anenberg, Susan C.

    Methane is a greenhouse gas that oxidizes to form ground-level ozone, itself a greenhouse gas and a health-harmful air pollutant. Reducing methane emissions will both slow anthropogenic climate change and reduce ozone-related mortality. We estimate the benefits of reducing methane emissions anywhere in the world for ozone-related premature mortality globally and for eight geographic regions. Our methods are consistent with those used by the US Government to estimate the social cost of carbon (SCC). We find that the global short- and long-term premature mortality benefits due to reduced ozone production from methane mitigation are (2011) $790 and $1775 per tonnemore » methane, respectively. These correspond to approximately 70 and 150 % of the valuation of methane’s global climate impacts using the SCC after extrapolating from carbon dioxide to methane using global warming potential estimates. Results for monetized benefits are sensitive to a number of factors, particularly the choice of elasticity to income growth used when calculating the value of a statistical life. The benefits increase for emission years further in the future. Regionally, most of the global mortality benefits accrue in Asia, but 10 % accrue in the United States. As a result, this methodology can be used to assess the benefits of methane emission reductions anywhere in the world, including those achieved by national and multinational policies.« less

  8. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    USGS Publications Warehouse

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  9. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    NASA Astrophysics Data System (ADS)

    Weinstein, Alexander; Navarrete, Luis; Ruppel, Carolyn; Weber, Thomas C.; Leonte, Mihai; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Scranton, Mary I.; Kessler, John D.

    2016-10-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern U.S. Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6-24 kmol methane per day). These analyses suggest that the emitted methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH.

  10. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach.

    PubMed

    Guyader, J; Eugène, M; Nozière, P; Morgavi, D P; Doreau, M; Martin, C

    2014-11-01

    A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance-covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=-30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R 2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.

  11. Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain).

    PubMed

    Nieto, P P; Hidalgo, D; Irusta, R; Kraut, D

    2012-01-01

    An inventory of agro-food industry organic waste streams with a high potential for biogas transformation was studied in a logistically viable area (Cider Region, Asturias, Spain). Three industries were selected as the most viable ones: livestock, dairy and beverage. The potential for methane production from six wastes (beverage waste, BW; milled apple waste, MA; milk waste, MK; yogurt waste, YG; fats and oils from dairy wastewater treatment, F&O and cattle manure, CM) at five different substrate:inoculum ratios (0.25, 0.50, 0.75, 1.00 and 1.50) was evaluated in laboratory batch assays. Obtained methane yields ranged from 202-549 mL STP CH(4)·g VS waste(-1), and the methane content in biogas ranged from 58-76%. The ultimate practical biochemical methane potentials were slightly affected by the substrate:inoculum ratio. The estimation of the regional fluxes of waste and methane potentials suggests anaerobic digestion as a sustainable solution for the valorization of the organic wastes generated in this Region.

  12. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries.

    PubMed

    Hwang, In Yeub; Lee, Seung Hwan; Choi, Yoo Seong; Park, Si Jae; Na, Jeong Geol; Chang, In Seop; Kim, Choongik; Kim, Hyun Cheol; Kim, Yong Hwan; Lee, Jin Won; Lee, Eun Yeol

    2014-12-28

    Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.

  13. Methane - fuel for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGeer, P.; Durbin, E.

    1982-01-01

    The 20 invited papers presented at the world conference on alternative fuel entitled 'Methane - fuel for the future' form the basis of this book. Papers discuss: the availability of alternative fuels (natural gas, biomass conversion to methane, methane from coal conversion); technological adaptions for alternative fuels (e.g. natural gas fueled engines, methane and diesel engines); commercial experience with alternative fuel programs. (e.g. retailing of methane); and some national programs for alternative fuels. One paper has been abstracted separately.

  14. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 5: ACTIVITY FACTORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  15. Methane Painting

    NASA Image and Video Library

    2015-09-07

    Why does Saturn look like it's been painted with a dark brush in this infrared image, but Dione looks untouched? Perhaps an artist with very specific tastes in palettes? The answer is methane. This image was taken in a wavelength that is absorbed by methane. Dark areas seen here on Saturn are regions with thicker clouds, where light has to travel through more methane on its way into and back out of the atmosphere. Since Dione (698 miles or 1,123 kilometers across) doesn't have an atmosphere rich in methane the way Saturn does, it does not experience similar absorption -- the sunlight simply bounces off its icy surface. Shadows of the rings are seen cast onto the planet at lower right. This view looks toward Saturn from the unilluminated side of the rings, about 0.3 degrees below the ring plane. The image was taken with the Cassini spacecraft wide-angle camera on May 27, 2015 using a spectral filter which preferentially admits wavelengths of near-infrared light centered at 728 nanometers. http://photojournal.jpl.nasa.gov/catalog/PIA18336

  16. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph

    2016-04-01

    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  17. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  18. Understanding Natural Gas Methane Leakage from Buried Pipelines as Affected by Soil and Atmospheric Conditions - Field Scale Experimental and Modeling Study

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Mitton, M.; Moradi, A.; Chamindu, D. K.

    2017-12-01

    Reducing the amount of leaked natural gas (NG) from pipelines from production to use has become a high priority in efforts to cut anthropogenic emissions of methane. In addition to environmental impacts, NG leakage can cause significant economic losses and safety failures such as fires and explosions. However, tracking and evaluating NG pipeline leaks requires a better understanding of the leak from the source to the detector as well as more robust quantification methods. Although recent measurement-based approaches continue to make progress towards this end, efforts are hampered due to the complexity of leakage scenarios. Sub- surface transport of leaked NG from pipelines occurs through complex transport pathways due to soil heterogeneities and changes in soil moisture. Furthermore, it is affected by variable atmospheric conditions such as winds, frontal passages and rain. To better understand fugitive emissions from NG pipelines, we developed a field scale testbed that simulates low pressure gas leaks from pipe buried in soil. The system is equipped with subsurface and surface sensors to continuously monitor changes in soil and atmospheric conditions (e.g. moisture, pressure, temperature) and methane concentrations. Using this testbed, we are currently conducting a series of gas leakage experiments to study of the impact of subsurface (e.g. soil moisture, heterogeneity) and atmospheric conditions (near-surface wind and temperature) on the detected gas signals and establish the relative importance of the many pathways for methane migration between the source and the sensor location. Accompanying numerical modeling of the system using the multiphase transport simulator TOUGH2-EOS7CA demonstrates the influence of leak location and direction on gas migration. These findings will better inform leak detectors of the leak severity before excavation, aiding with safety precautions and work order categorization for improved efficiency.

  19. Continuing developments in the search for Martian atmospheric methane

    NASA Astrophysics Data System (ADS)

    Fonti, S.; Roush, T. L.; Chizek, M. R.; Liuzzi, G.; Mancarella, F.; Murphy, J. R.; Blanco, A.

    2012-12-01

    In recent years, the possible presence of a tiny, but meaningful, quantity of methane in the Martian atmosphere has been suggested [1-6] and widely debated [7] within the community, due to the important consequences it may have on our understanding of the planet's evolution. In this framework, and looking forward to the results of the planned search by the Sample Analysis at Mars instrument on-board the recently landed Mars Science Laboratory, the work of Fonti and Marzo [5] is particularly interesting. Using a statistical clustering technique, they analysed ~3x106 Thermal Emission Spectrometer spectra, spanning three Martian years. The results for principal Ls values (0, 90, 180, 270) suggest a temporal variation of the gas content with an annual cycle and a recurrent spatial distribution. In addition a preliminary temporal comparison with the well-known water vapour cycle and dust aerosol opacity has suggested interesting temporal phase correlations among the three atmospheric components. The possible implications of such findings have not been fully explored yet, due to the time and effort necessary to improve the temporal resolution of the data beyond the original four Ls values per year. Before undertaking such demanding effort, we have decided to improve our confidence in the results, currently affected by uncertainty of about 30 % on the derived methane abundance, focusing on the effects of the inhomogeneity in the original dataset that is linked to the presence of some anomalous spectra. Additionally, to better understand how the statistical procedure is affecting the clustering of the spectra, we have applied it to a set of synthetic Martian spectra that were generated by varying a relevant number of atmosphere and surface parameters. The clustering results for the artificial data set have then been compared to the known properties used to create it. [1] Krasnopolsky, V.A., Maillard, J.P., and Owen, T.C. 2004. Detection of methane in the martian atmosphere

  20. The effects of acid deposition on sulfate reduction and methane production in peatlands

    NASA Technical Reports Server (NTRS)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  1. Bioassay for estimating the biogenic methane-generating potential of coal samples

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Warwick, Peter D.; Corum, Margo D.; Cohn, Alexander G.; Bunnell, Joseph E.; Clark, Arthur C.; Orem, William H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80 µmol methane/g coal (56 scf/ton or 1.75 cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0–23 µmol/g (up to 16 scf/ton or 0.5 cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the

  2. Comparison of physically- and economically-based CO2-equivalences for methane

    NASA Astrophysics Data System (ADS)

    Boucher, O.

    2012-01-01

    There is a controversy on the role methane (and other short-lived species) should play in climate mitigation policies and no consensus on what an optimal methane CO2-equivalence should be. We revisit this question by discussing the relative merits of physically-based (i.e. Global Warming Potential or GWP and Global Temperature change Potential or GTP) and socio-economically-based climate metrics. To this effect we use a simplified Global Damage Potential (GDP) that was introduced by earlier authors and investigate the uncertainties in the methane CO2-equivalence that arise from physical and socio-economic factors. The median value of the methane GDP comes out very close to the widely used methane 100-year GWP because of various compensating effects. However there is a large spread in possible methane CO2-equivalences (1-99% interval: 10.0-42.5; 5-95% interval: 12.5-38.0) that is essentially due to the choice in some socio-economic parameters (i.e. the damage cost function and the discount rate). The methane 100-year GTP falls outside these ranges. It is legitimate to increase the methane CO2-equivalence in the future as global warming unfolds. While changes in biogeochemical cycles and radiative efficiencies cause some small changes to physically-based metrics, a systematic increase in the methane CO2-equivalence can only be achieved by some ad-hoc shortening of the time horizon. In contrast using a convex damage cost function provides a natural increase in the methane CO2-equivalence for the socio-economically-based metrics. We also show that a methane CO2-equivalence based on a pulse emission is sufficient to inform multi-year climate policies and emissions reductions as long as there is some degree of visibility on CO2 prices and CO2-equivalences.

  3. Increasing the concentration of linolenic acid in diets fed to Jersey cows in late lactation does not affect methane production

    USDA-ARS?s Scientific Manuscript database

    Oil and fat products has shown to reduce methane, however, limited research compares different fat sources effects on methane production. A study using 8 multiparous (325 ± 17 DIM) (mean ± SD) lactating dairy cows, was conducted to determine effects of feeding canola/tallow vs. extruded byproduct co...

  4. Production of Methane and Water from Crew Plastic Waste

    NASA Technical Reports Server (NTRS)

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  5. Widespread abiotic methane in chromitites.

    PubMed

    Etiope, G; Ifandi, E; Nazzari, M; Procesi, M; Tsikouras, B; Ventura, G; Steele, A; Tardini, R; Szatmari, P

    2018-06-07

    Recurring discoveries of abiotic methane in gas seeps and springs in ophiolites and peridotite massifs worldwide raised the question of where, in which rocks, methane was generated. Answers will impact the theories on life origin related to serpentinization of ultramafic rocks, and the origin of methane on rocky planets. Here we document, through molecular and isotopic analyses of gas liberated by rock crushing, that among the several mafic and ultramafic rocks composing classic ophiolites in Greece, i.e., serpentinite, peridotite, chromitite, gabbro, rodingite and basalt, only chromitites, characterized by high concentrations of chromium and ruthenium, host considerable amounts of 13 C-enriched methane, hydrogen and heavier hydrocarbons with inverse isotopic trend, which is typical of abiotic gas origin. Raman analyses are consistent with methane being occluded in widespread microfractures and porous serpentine- or chlorite-filled veins. Chromium and ruthenium may be key metal catalysts for methane production via Sabatier reaction. Chromitites may represent source rocks of abiotic methane on Earth and, potentially, on Mars.

  6. Thermal Modeling and Management of Solid Oxide Fuel Cells Operating with Internally Reformed Methane

    NASA Astrophysics Data System (ADS)

    Wu, Yiyang; Shi, Yixiang; Cai, Ningsheng; Ni, Meng

    2018-06-01

    A detailed three-dimensional mechanistic model of a large-scale solid oxide fuel cell (SOFC) unit running on partially pre-reformed methane is developed. The model considers the coupling effects of chemical and electrochemical reactions, mass transport, momentum and heat transfer in the SOFC unit. After model validation, parametric simulations are conducted to investigate how the methane pre-reforming ratio affects the transport and electrochemistry of the SOFC unit. It is found that the methane steam reforming reaction has a "smoothing effect", which can achieve more uniform distributions of gas compositions, current density and temperature among the cell plane. In the case of 1500 W/m2 power density output, adding 20% methane absorbs 50% of internal heat production inside the cell, reduces the maximum temperature difference inside the cell from 70 K to 22 K and reduces the cathode air supply by 75%, compared to the condition of completely pre-reforming of methane. Under specific operating conditions, the pre-reforming ratio of methane has an optimal range for obtaining a good temperature distribution and good cell performance.

  7. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  8. Analysis of operational methane emissions from pressure relief valves from biogas storages of biogas plants.

    PubMed

    Reinelt, Torsten; Liebetrau, Jan; Nelles, Michael

    2016-10-01

    The study presents the development of a method for the long term monitoring of methane emissions from pressure relief valves (PRV(1)) of biogas storages, which has been verified during test series at two PRVs of two agricultural biogas plants located in Germany. The determined methane emission factors are 0.12gCH4kWhel(-1) (0.06% CH4-loss, within 106days, 161 triggering events, winter season) from biogas plant A and 6.80/7.44gCH4kWhel(-1) (3.60/3.88% CH4-loss, within 66days, 452 triggering events, summer season) from biogas plant B. Besides the operational state of the biogas plant (e.g. malfunction of the combined heat and power unit), the mode of operation of the biogas flare, which can be manually or automatically operated as well as the atmospheric conditions (e.g. drop of the atmospheric pressure) can also affect the biogas emission from PRVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Methane Production by Microbial Mats Under Low Sulfate Concentrations

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.; Hoehler, Tori M.; Thamdrup, Bo; Albert, Dan; Carpenter, Steven P.; Hogan, Mary; Turk, Kendra; DesMarais, David J.

    2003-01-01

    Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulfate concentrations ([SO4]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm paleoclemates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulfate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [SO4=] (ca. 70 mM) and "Archean" [SO4] (less than 0.2 mM). At low [SO4], primary production in the mats was essentially unaffected, while rates of sulfate reduction decreased by a factor of three, and methane fluxes increased by up to ten-fold. However, remineralization by methanogenesis still amounted to less than 0.4 % of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats w-ere probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low- environmental levels oxygen and sulfate.

  10. Age Learning Factors Affecting Pilot Education.

    ERIC Educational Resources Information Center

    Torbert, Brison

    This document, intended for pilot education and flight safety specialists, consists chiefly of a review of the literature on physiological factors that affect pilot education and an examination of environmental factors that should be scrutinized in order to improve the effectiveness of aviation learning facilities. The physiological factors…

  11. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  12. Methane-Stimulated Benthic Marine Nitrogen Fixation at Deep-Sea Methane Seeps

    NASA Astrophysics Data System (ADS)

    Dekas, A. E.; Orphan, V.

    2011-12-01

    Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. Although current measurements of N2 production and consumption in the oceans indicate that the nitrogen cycle is not balanced, recent findings on the limits of nitrogen fixation suggest that the perceived imbalance is an artifact of an incomplete assessment of marine diazotrophy. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. In the present study we investigate the distribution and magnitude of benthic marine diazotrophy at several active deep-sea methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). Using 15N2 and 15NH4 sediment incubation experiments followed by single-cell (FISH-NanoSIMS) and bulk isotopic analysis (EA-IRMS), we observed total protein synthesis (15N uptake from 15NH4) and nitrogen fixation (15N update from 15N2). The highest rates of nitrogen fixation observed in the methane seep sediment incubation experiments were over an order of magnitude greater than those previously published from non-seep deep-sea sediments (Hartwig and Stanley, Deep-Sea Research, 1978, 25:411-417). However, methane seep diazotrophy appears to be highly spatially variable, with sediments exhibiting no nitrogen fixation originating only centimeters away from sediments actively incorporating 15N from 15N2. The greatest spatial variability in diazotrophy was observed with depth in the sediment, and corresponded to steep gradients in sulfate and methane. The maximum rates of nitrogen fixation were observed within the methane-sulfate transition zone, where organisms mediating the anaerobic oxidation of methane are typically in high abundance. Additionally, incubation

  13. The isotopic composition of methane in polar ice cores

    NASA Technical Reports Server (NTRS)

    Craig, H.; Chou, C. C.; Welhan, J. A.; Stevens, C. M.; Engelkemeir, A.

    1988-01-01

    Air bubbles in polar ice cores indicate that about 300 years ago the atmospheric mixing ratio of methane began to increase rapidly. Today the mixing ratio is about 1.7 parts per million by volume, and, having doubled once in the past several hundred years, it will double again in the next 60 years if current rates continue. Carbon isotope ratios in methane up to 350 years in age have been measured with as little as 25 kilograms of polar ice recovered in 4-meter-long ice-core segments. The data show that: (1) in situ microbiology or chemistry has not altered the ice-core methane concentrations, and (2) that the carbon-13 to carbon-12 ratio of atmospheric CH4 in ice from 100 years and 300 years ago was about 2 per mil lower than at present. Atmospheric methane has a rich spectrum of isotopic sources: the ice-core data indicate that anthropogenic burning of the earth's biomass is the principal cause of the recent C-13H4 enrichment, although other factors may also contribute.

  14. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-07

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  15. Process-based modelling of the methane balance in periglacial landscapes (JSBACH-methane)

    NASA Astrophysics Data System (ADS)

    Kaiser, Sonja; Göckede, Mathias; Castro-Morales, Karel; Knoblauch, Christian; Ekici, Altug; Kleinen, Thomas; Zubrzycki, Sebastian; Sachs, Torsten; Wille, Christian; Beer, Christian

    2017-01-01

    A detailed process-based methane module for a global land surface scheme has been developed which is general enough to be applied in permafrost regions as well as wetlands outside permafrost areas. Methane production, oxidation and transport by ebullition, diffusion and plants are represented. In this model, oxygen has been explicitly incorporated into diffusion, transport by plants and two oxidation processes, of which one uses soil oxygen, while the other uses oxygen that is available via roots. Permafrost and wetland soils show special behaviour, such as variable soil pore space due to freezing and thawing or water table depths due to changing soil water content. This has been integrated directly into the methane-related processes. A detailed application at the Samoylov polygonal tundra site, Lena River Delta, Russia, is used for evaluation purposes. The application at Samoylov also shows differences in the importance of the several transport processes and in the methane dynamics under varying soil moisture, ice and temperature conditions during different seasons and on different microsites. These microsites are the elevated moist polygonal rim and the depressed wet polygonal centre. The evaluation shows sufficiently good agreement with field observations despite the fact that the module has not been specifically calibrated to these data. This methane module is designed such that the advanced land surface scheme is able to model recent and future methane fluxes from periglacial landscapes across scales. In addition, the methane contribution to carbon cycle-climate feedback mechanisms can be quantified when running coupled to an atmospheric model.

  16. Vibrational Mode-Specific Reaction of Methane with a Nickel Surface

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2004-03-01

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic scale description of this important gas-surface reaction. To elucidate its dynamics, we have performed quantum state resolved studies of vibrationally excited methane reacting on the Ni(100) surface using pulsed laser and molecular beam techniques. We observed up to a factor of 5 greater reaction probability for methane-d2 with two quanta of excitation in one C-H bond versus a nearly isoenergetic state with one quanta in each of two C-H bonds. The observed reactivities point to a transition state structure which has one of the C-H bonds significantly elongated. Our results also clearly exclude the possibility of statistical models correctly describing the mechanism of this process and emphasize the importance of full-dimensional calculations of the reaction dynamics.

  17. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.

  18. Evaluating the influences of mixing strategies on the Biochemical Methane Potential test.

    PubMed

    Wang, Bing; Björn, Annika; Strömberg, Sten; Nges, Ivo Achu; Nistor, Mihaela; Liu, Jing

    2017-01-01

    Mixing plays an important role in the Biochemical Methane Potential (BMP) test, but only limited efforts have been put into it. In this study, various mixing strategies were applied to evaluate the influences on the BMP test, i.e., no mixing, shaking in water bath, shake manually once per day (SKM), automated unidirectional and bidirectional mixing. The results show that the effects of mixing are prominent for the most viscous substrate investigated, as both the highest methane production and highest maximal daily methane production were obtained at the highest mixing intensity. However, the organic removal efficiencies were not affected, which might offer evidence that mixing helps the release of gases trapped in digester liquid. Moreover, mixing is required for improved methane production when the digester content is viscous, conversely, mixing is unnecessary or SKM might be sufficient for the BMP test if the digester content is quite dilute or the substrate is easily degraded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The influence of fat and hemicellulose on methane production and energy utilization in lactating Jersey cattle.

    PubMed

    Drehmel, O R; Brown-Brandl, T M; Judy, J V; Fernando, S C; Miller, P S; Hales, K E; Kononoff, P J

    2018-06-13

    Feeding fat to lactating dairy cows may reduce methane production. Relative to cellulose, fermentation of hemicellulose is believed to result in less methane; however, these factors have not been studied simultaneously. Eight multiparous, lactating Jersey cows averaging (±SD) 98 ± 30.8 d in milk and body weight of 439.3 ± 56.7 kg were used in a twice-replicated 4 × 4 Latin square to determine the effects of fat and hemicellulose on energy utilization and methane production using a headbox-type indirect calorimetry method. To manipulate the concentration of fat, porcine tallow was included at either 0 or 2% of the diet dry matter. The concentration of hemicellulose was adjusted by manipulating the inclusion rate of corn silage, alfalfa hay, and soybean hulls resulting in either 11.3 or 12.7% hemicellulose (dry matter basis). The resulting factorial arrangement of treatments were low fat low hemicellulose (LFLH), low fat high hemicellulose (LFHH), high fat low hemicellulose (HFLH), and high fat high hemicellulose (HFHH). Neither fat nor hemicellulose affected dry matter intake, averaging 16.2 ± 1.18 kg/d across treatments. Likewise, treatments did not affect milk production, averaging 23.0 ± 1.72 kg/d, or energy-corrected milk, averaging 30.1 ± 2.41 kg/d. The inclusion of fat tended to reduce methane produced per kilogram of dry matter intake from 24.9 to 23.1 ± 1.59 L/kg, whereas hemicellulose had no effect. Increasing hemicellulose increased neutral detergent fiber (NDF) digestibility from 43.0 to 51.1 ± 2.35%. Similarly, increasing hemicellulose concentration increased total intake of digestible NDF from 6.62 to 8.42 ± 0.89 kg/d, whereas fat had no effect. Methane per unit of digested NDF tended to decrease from 64.8 to 49.2 ± 9.60 L/kg with increasing hemicellulose, whereas fat had no effect. An interaction between hemicellulose and fat content on net energy balance (milk plus tissue energy) was observed. Specifically, increasing hemicellulose in low

  20. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helene Hilger; James Oliver; Jean Bogner

    2009-03-31

    but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.« less

  1. Archaebacterial Fuel Production: Methane from Biomass.

    ERIC Educational Resources Information Center

    Lennox, John E.; And Others

    1983-01-01

    Discusses microbial production of methane from biomass. Topics include methogens (bacteria producing methane), ecology of methanogenesis, methanogenesis in ruminant/nonruminant and other environments, role of methanogenesis in nature, and methane production in sewage treatment plants. Also discusses construction of methane digesters (and related…

  2. Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate.

    PubMed

    Cunha, Camila S; Veloso, Cristina M; Marcondes, Marcos I; Mantovani, Hilario C; Tomich, Thierry R; Pereira, Luiz Gustavo R; Ferreira, Matheus F L; Dill-McFarland, Kimberly A; Suen, Garret

    2017-12-01

    The evaluation of how the gut microbiota affects both methane emissions and animal production is necessary in order to achieve methane mitigation without production losses. Toward this goal, the aim of this study was to correlate the rumen microbial communities (bacteria, archaea, and fungi) of high (HP), medium (MP), and low milk producing (LP), as well as dry (DC), Holstein dairy cows in an actual tropical production system with methane emissions and animal production traits. Overall, DC cows emitted more methane, followed by MP, HP and LP cows, although HP and LP cow emissions were similar. Using next-generation sequencing, it was found that bacteria affiliated with Christensenellaceae, Mogibacteriaceae, S24-7, Butyrivibrio, Schwartzia, and Treponema were negatively correlated with methane emissions and showed positive correlations with digestible dry matter intake (dDMI) and digestible organic matter intake (dOMI). Similar findings were observed for archaea in the genus Methanosphaera. The bacterial groups Coriobacteriaceae, RFP12, and Clostridium were negatively correlated with methane, but did not correlate with dDMI and dOMI. For anaerobic fungal communities, no significant correlations with methane or animal production traits were found. Based on these findings, it is suggested that manipulation of the abundances of these microbial taxa may be useful for modulating methane emissions without negatively affecting animal production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Methane Emission by Camelids

    PubMed Central

    Dittmann, Marie T.; Runge, Ullrich; Lang, Richard A.; Moser, Dario; Galeffi, Cordula; Kreuzer, Michael; Clauss, Marcus

    2014-01-01

    Methane emissions from ruminant livestock have been intensively studied in order to reduce contribution to the greenhouse effect. Ruminants were found to produce more enteric methane than other mammalian herbivores. As camelids share some features of their digestive anatomy and physiology with ruminants, it has been proposed that they produce similar amounts of methane per unit of body mass. This is of special relevance for countrywide greenhouse gas budgets of countries that harbor large populations of camelids like Australia. However, hardly any quantitative methane emission measurements have been performed in camelids. In order to fill this gap, we carried out respiration chamber measurements with three camelid species (Vicugna pacos, Lama glama, Camelus bactrianus; n = 16 in total), all kept on a diet consisting of food produced from alfalfa only. The camelids produced less methane expressed on the basis of body mass (0.32±0.11 L kg−1 d−1) when compared to literature data on domestic ruminants fed on roughage diets (0.58±0.16 L kg−1 d−1). However, there was no significant difference between the two suborders when methane emission was expressed on the basis of digestible neutral detergent fiber intake (92.7±33.9 L kg−1 in camelids vs. 86.2±12.1 L kg−1 in ruminants). This implies that the pathways of methanogenesis forming part of the microbial digestion of fiber in the foregut are similar between the groups, and that the lower methane emission of camelids can be explained by their generally lower relative food intake. Our results suggest that the methane emission of Australia's feral camels corresponds only to 1 to 2% of the methane amount produced by the countries' domestic ruminants and that calculations of greenhouse gas budgets of countries with large camelid populations based on equations developed for ruminants are generally overestimating the actual levels. PMID:24718604

  4. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC

    DOE PAGES

    Paudel, Rajendra; Mahowald, Natalie M.; Hess, Peter G. M.; ...

    2016-03-10

    An understanding of potential factors controlling methane emissions from natural wetlands is important to accurately project future atmospheric methane concentrations. Here, we examine the relative contributions of climatic and environmental factors, such as precipitation, temperature, atmospheric CO 2 concentration, nitrogen deposition, wetland inundation extent, and land-use and land-cover change, on changes in wetland methane emissions from preindustrial to present day (i.e., 1850-2005). We apply a mechanistic methane biogeochemical model integrated in the Community Land Model version 4.5 (CLM4.5), the land component of the Community Earth System Model. The methane model explicitly simulates methane production, oxidation, ebullition, transport through aerenchyma ofmore » plants, and aqueous and gaseous diffusion. We conduct a suite of model simulations from 1850 to 2005, with all changes in environmental factors included, and sensitivity studies isolating each factor. Globally, we estimate that preindustrial methane emissions were higher by 10% than present-day emissions from natural wetlands, with emissions changes from preindustrial to the present of +15%, -41%, and -11% for the high latitudes, temperate regions, and tropics, respectively. The most important change is due to the estimated change in wetland extent, due to the conversion of wetland areas to drylands by humans. This effect alone leads to higher preindustrial global methane fluxes by 33% relative to the present, with the largest change in temperate regions (+80%). These increases were partially offset by lower preindustrial emissions due to lower CO 2 levels (10%), shifts in precipitation (7%), lower nitrogen deposition (3%), and changes in land-use and land-cover (2%). Cooler temperatures in the preindustrial regions resulted in our simulations in an increase in global methane emissions of 6% relative to present day. Much of the sensitivity to these perturbations is mediated in the model by

  5. Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, Rajendra; Mahowald, Natalie M.; Hess, Peter G. M.

    An understanding of potential factors controlling methane emissions from natural wetlands is important to accurately project future atmospheric methane concentrations. Here, we examine the relative contributions of climatic and environmental factors, such as precipitation, temperature, atmospheric CO 2 concentration, nitrogen deposition, wetland inundation extent, and land-use and land-cover change, on changes in wetland methane emissions from preindustrial to present day (i.e., 1850-2005). We apply a mechanistic methane biogeochemical model integrated in the Community Land Model version 4.5 (CLM4.5), the land component of the Community Earth System Model. The methane model explicitly simulates methane production, oxidation, ebullition, transport through aerenchyma ofmore » plants, and aqueous and gaseous diffusion. We conduct a suite of model simulations from 1850 to 2005, with all changes in environmental factors included, and sensitivity studies isolating each factor. Globally, we estimate that preindustrial methane emissions were higher by 10% than present-day emissions from natural wetlands, with emissions changes from preindustrial to the present of +15%, -41%, and -11% for the high latitudes, temperate regions, and tropics, respectively. The most important change is due to the estimated change in wetland extent, due to the conversion of wetland areas to drylands by humans. This effect alone leads to higher preindustrial global methane fluxes by 33% relative to the present, with the largest change in temperate regions (+80%). These increases were partially offset by lower preindustrial emissions due to lower CO 2 levels (10%), shifts in precipitation (7%), lower nitrogen deposition (3%), and changes in land-use and land-cover (2%). Cooler temperatures in the preindustrial regions resulted in our simulations in an increase in global methane emissions of 6% relative to present day. Much of the sensitivity to these perturbations is mediated in the model by

  6. Ruminant Methane δ (13C/12C) - Values: Relation to Atmospheric Methane

    NASA Astrophysics Data System (ADS)

    Rust, Fleet

    1981-03-01

    The δ (13C/12C) - values of methane produced by fistulated steers, dairy cattle, and wethers, and dairy and beef cattle herds show a bimodal distribution that appears to be correlated with the plant type (C3 or C4, that is, producing either a three- or a four-carbon acid in the first step of photosynthesis) consumed by the animals. These results indicate that cattle and sheep, on a global basis, release methane with an average δ (13C/12C) value of -60 and -63 per mil, respectively. Together they are a source of atmospheric methane whose δ (13C/12C) is similar to published values for marsh gas and cannot explain the 20 per mil higher values for atmospheric methane.

  7. A multi-year Record of Total Column and Lower-Tropospheric Methane

    NASA Astrophysics Data System (ADS)

    Worden, J.; Yin, Y.; Frankenberg, C.; Bloom, A. A.

    2017-12-01

    Evaluating carbon / climate interactions and feedbacks and their effects on global fluxes of methane require a record of well-calibrated and validated methane data that is long enough to span several perturbations to rain and drought related to ENSO or other climactic perturbations along with the spatial sampling that can infer how these changes in the water and carbon cycles affect methane fluxes from wetlands and fires. Here we describe the first version of a decadal scale record of total column and lower-tropospheric methane derived from reflected sunlight and thermal IR measurements (SCIAMACHY, GOSAT, TES, and AIRS). We describe the validation of these data sets using independent data such as from TCCON, the surface network, and aircraft and how they can be inter-calibrated using a global atmospheric model as a transfer function to construct a long-term data record. We show how the new lower-tropospheric measurements can potentially provide new insights into wetland fluxes and how they vary inter-annually with rainfall and temperature perturbations.

  8. High performance biological methanation in a thermophilic anaerobic trickle bed reactor.

    PubMed

    Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad

    2017-12-01

    In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The potential for biologically catalyzed anaerobic methane oxidation on ancient Mars.

    PubMed

    Marlow, Jeffrey J; Larowe, Douglas E; Ehlmann, Bethany L; Amend, Jan P; Orphan, Victoria J

    2014-04-01

    This study examines the potential for the biologically mediated anaerobic oxidation of methane (AOM) coupled to sulfate reduction on ancient Mars. Seven distinct fluids representative of putative martian groundwater were used to calculate Gibbs energy values in the presence of dissolved methane under a range of atmospheric CO2 partial pressures. In all scenarios, AOM is exergonic, ranging from -31 to -135 kJ/mol CH4. A reaction transport model was constructed to examine how environmentally relevant parameters such as advection velocity, reactant concentrations, and biomass production rate affect the spatial and temporal dependences of AOM reaction rates. Two geologically supported models for ancient martian AOM are presented: a sulfate-rich groundwater with methane produced from serpentinization by-products, and acid-sulfate fluids with methane from basalt alteration. The simulations presented in this study indicate that AOM could have been a feasible metabolism on ancient Mars, and fossil or isotopic evidence of this metabolic pathway may persist beneath the surface and in surface exposures of eroded ancient terrains.

  10. Physical and Mechanical Properties of Surface Sediments and methane hydrate-bearing sediments in the Shenhu area of South China Sea

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Shen, Z.; Jia, Y.

    2017-12-01

    Methane hydrates are superior energy resources and potential predisposing factors of geohazard. With the success in China's persistent exploitation of methane hydrates in the Shenhu area of South China Sea for 60 days, there is an increasing demand for detailed knowledge of sediment properties and hazard assessment in this area. In this paper, the physical and mechanical properties of both the surface sediments and methane hydrate-bearing sediments (MHBS) in the exploitation area, the Shenhu area of South China Sea, were investigated using laboratory geotechnical experiments, and triaxial tests were carried out on remolded sediment samples using a modified triaxial apparatus. The results show that sediments in this area are mainly silt with high moisture content, high plasticity, low permeability and low shear strength. The moisture content and permeability decrease while the shear strength increases with the increasing depth. The elastic modulus and peak strength of MHBS increase with the increasing effective confining pressure and higher hydrate saturation. The cohesion increases with higher hydrate saturation while the internal friction angle is barely affected by hydrate saturation. The obtained results demonstrate clearly that methane hydrates have significant impacts on the physical and mechanical properties of sediments and there is still a wide gap in knowledge about MHBS.

  11. Environmental Factors Affecting Preschoolers' Motor Development

    ERIC Educational Resources Information Center

    Venetsanou, Fotini; Kambas, Antonis

    2010-01-01

    The process of development occurs according to the pattern established by the genetic potential and also by the influence of environmental factors. The aim of the present study was to focus on the main environmental factors affecting motor development. The review of the literature revealed that family features, such as socioeconomic status,…

  12. Photocatalytic conversion of methane to methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R.

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifiermore » product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.« less

  13. Methane oxidation in an intensively cropped tropical rice field soil under long-term application of organic and mineral fertilizers.

    PubMed

    Nayak, D R; Babu, Y Jagadeesh; Datta, A; Adhya, T K

    2007-01-01

    Methane (CH4) oxidation is the only known biological sink process for mitigating atmospheric and terrestrial emissions of CH4, a major greenhouse gas. Methane oxidation in an alluvial soil planted to rice (Oryza sativa L.) under long-term application of organic (compost with a C/N ratio of 21.71), and mineral fertilizers was measured in a field-cum-laboratory incubation study. Oxidation rates were quantified in terms of decrease in the concentration of CH4 in the headspace of incubation vessels and expressed as half-life (t(1)2) values. Methane oxidation rates significantly differed among the treatments and growth stages of the rice crop. Methane oxidation rates were high at the maximum tillering and maturity stages, whereas they were low at grain-filling stage. Methane oxidation was low (t(1)2) = 15.76 d) when provided with low concentration of CH4. On the contrary, high concentration of CH4 resulted in faster oxidation (t(1)2) = 6.67 d), suggesting the predominance of "low affinity oxidation" in rice fields. Methane oxidation was stimulated following the application of mineral fertilizers or compost implicating nutrient limitation as one of the factors affecting the process. Combined application of compost and mineral fertilizer, however, inhibited CH4 oxidation probably due to N immobilization by the added compost. The positive effect of mineral fertilizer on CH4 oxidation rate was evident only at high CH4 concentration (t(1)2 = 4.80 d), while at low CH4 concentration their was considerable suppression (t(1) = 17.60 d). Further research may reveal that long-term application of fertilizers, organic or inorganic, may not inhibit CH4 oxidation.

  14. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests.

    PubMed

    Strömberg, Sten; Nistor, Mihaela; Liu, Jing

    2014-11-01

    The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2(4) full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors' impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors' influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A laboratory study of anaerobic oxidation of methane in the presence of methane hydrate

    NASA Astrophysics Data System (ADS)

    Solem, R.; Bartlett, D.; Kastner, M.; Valentine, D.

    2003-12-01

    In order to mimic and study the process of anaerobic methane oxidation in methane hydrate regions we developed four high-pressure anaerobic bioreactors, designed to incubate environmental sediment samples, and enrich for populations of microbes associated with anaerobic methane oxidation (AMO). We obtained sediment inocula from a bacterial mat at the southern Hydrate Ridge, Cascadia, having cell counts approaching 1010 cells/cc. Ultimately, our goal is to produce an enriched culture of these microbes for characterization of the biochemical processes and chemical fluxes involved, as well as the unique adaptations required for, AMO. Molecular phylogenetic information along with results from fluorescent in situ hybridization indicate that consortia of Archaea and Bacteria are present which are related to those previously described for marine sediment AMO environments. Using a medium of enriched seawater and sediment in a 3:1 ratio, the system was incubated at 4° C under 43 atm of methane pressure; the temperature and pressure were kept constant. We have followed the reactions for seven months, particularly the vigorous consumption rates of dissolved sulfate and alkalinity production, as well as increases in HS-, and decreases in Ca concentrations. We also monitored the dissolved inorganic C (DIC) δ 13C values. The data were reproduced, and indicated that the process is extremely sensitive to changes in methane pressure. The rates of decrease in sulfate and increase in alkalinity concentrations were complimentary and showed considerable linearity with time. When the pressure in the reactor was decreased below the methane hydrate stability field, following the methane hydrate dissociation, sulfate reduction abruptly decreased. When the pressure was restored all the reactions returned to their previous rates. Much of the methane oxidation activity in the reactor is believed to occur in association with the methane hydrate. Upon the completion of one of the experiments

  16. Comparison of Field Measurements to Methane Emissions ...

    EPA Pesticide Factsheets

    Due to both technical and economic limitations, estimates of methane emissions from landfills rely primarily on models. While models are easy to implement, there is uncertainty due to the use of parameters that are difficult to validate. The objective of this research was to compare modeled emissions using several greenhouse gas (GHG) emissions reporting protocols including: (1) Intergovernmental Panel on Climate Change (IPCC); (2) U.S. Environmental Protection Agency Greenhouse Gas Reporting Program (EPA GHGRP); (3) California Air Resources Board (CARB); (4) Solid Waste Industry for Climate Solutions (SWICS); and (5) an industry model from the Dutch waste company Afvalzorg, with measured data collected over 3 calendar years from a young landfill with no gas collection system. By working with whole landfill measurements of fugitive methane emissions and methane oxidation, the collection efficiency could be set to zero, thus eliminating one source of parameter uncertainty. The models consistently overestimated annual methane emissions by a factor ranging from 4 – 32.Varying input parameters over reasonable ranges reduced this range to 1.3 - 8. Waste age at the studied landfill was less than four years and the results suggest the need for measurements at additional landfills to evaluate the accuracy of the tested models to young landfills. This is a submission to a peer reviewed journal. The paper discusses landfill emission measurements and models for a new la

  17. Electricity from methane by reversing methanogenesis

    PubMed Central

    McAnulty, Michael J.; G. Poosarla, Venkata; Kim, Kyoung-Yeol; Jasso-Chávez, Ricardo; Logan, Bruce E.; Wood, Thomas K.

    2017-01-01

    Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency. PMID:28513579

  18. Electricity from methane by reversing methanogenesis

    NASA Astrophysics Data System (ADS)

    McAnulty, Michael J.; G. Poosarla, Venkata; Kim, Kyoung-Yeol; Jasso-Chávez, Ricardo; Logan, Bruce E.; Wood, Thomas K.

    2017-05-01

    Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency.

  19. Methane clathrates in the solar system.

    PubMed

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  20. First determination of volume changes and enthalpies of the high-pressure decomposition reaction of the structure H methane hydrate to the cubic structure I methane hydrate and fluid methane.

    PubMed

    Ogienko, Andrey G; Tkacz, Marek; Manakov, Andrey Yu; Lipkowski, Janusz

    2007-11-08

    Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.

  1. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    NASA Astrophysics Data System (ADS)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  2. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps

    DOE PAGES

    Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...

    2014-09-22

    Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less

  3. Transcontinental Surface Validation of Satellite Observations of Enhanced Methane Anomalies Associated with Fossil Fuel Industrial Methane Emissions

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Culling, D.; Schneising, O.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.

    2012-12-01

    A ground-based, transcontinental (Florida to California - i.e., satellite-scale) survey was conducted to understand better the role of fossil fuel industrial (FFI) fugitive emissions of the potent greenhouse gas, methane. Data were collected by flame ion detection gas chromatography (Fall 2010) and by a cavity ring-down sensor (Winter 2012) from a nearly continuously moving recreational vehicle, allowing 24/7 data collection. Nocturnal methane measurements for similar sources tended to be higher compared to daytime values, sometime significantly, due to day/night meteorological differences. Data revealed strong and persistent FFI methane sources associated with refining, a presumed major pipeline leak, and several minor pipeline leaks, a coal loading plant, and areas of active petroleum production. Data showed FFI source emissions were highly transient and heterogeneous; however, integrated over these large-scale facilities, methane signatures overwhelmed that of other sources, creating clearly identifiable plumes that were well elevated above ambient. The highest methane concentration recorded was 39 ppm at an active central valley California production field, while desert values were as low as 1.80 ppm. Surface methane data show similar trends with strong emissions correlated with FFI on large (4° bin) scales and positive methane anomalies centered on the Gulf Coast area of Houston, home to most of US refining capacity. Comparison with SCIAMACHY and GOSAT satellite data show agreement with surface data in the large-scale methane spatial patterns. Positive satellite methane anomalies in the southeast and Mexico largely correlated with methane anthropogenic and wetland inventory models suggests most strong ground methane anomalies in the Gulf of Mexico region were related to dominant FFI input for most seasons. Wind advection played a role, in some cases confounding a clear relationship. Results are consistent with a non-negligible underestimation of the FFI

  4. Methane emission during municipal wastewater treatment.

    PubMed

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only.

    PubMed

    Pan, Yao; Abell, Guy C J; Bodelier, Paul L E; Meima-Franke, Marion; Sessitsch, Angela; Bodrossy, Levente

    2014-08-01

    Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.

  6. Copper enhances the activity and salt resistance of mixed methane-oxidizing communities.

    PubMed

    van der Ha, David; Hoefman, Sven; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2010-08-01

    Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L(-1) NH (4) (+) -N had no significant influence on the activity nor did a temperature increase from 28 degrees C to 35 degrees C. On the other hand, addition of 0.64 mg L(-1) of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L(-1). At a concentration of 11 g NaCl L(-1), almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L(-1) NH (4) (+) -N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.

  7. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function.

    PubMed

    Poulose, Shibu M; Miller, Marshall G; Scott, Tammy; Shukitt-Hale, Barbara

    2017-11-01

    Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging. © 2017 American Society for Nutrition.

  8. Cryptic Methane Emissions from Upland Forest Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megonigal, Patrick; Pitz, Scott

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) developmore » the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.« less

  9. Using Mass Spectroscopy to Examine Wetland Carbon Flow from Plants to Methane

    NASA Astrophysics Data System (ADS)

    Waldo, N.; Tfaily, M. M.; Moran, J.; Hu, D.; Cliff, J. B.; Gough, H. L.; Chistoserdova, L.; Beck, D.; Neumann, R. B.

    2017-12-01

    In the anoxic soil of wetlands, microbes produce methane (CH4), a greenhouse gas. Prior studies have documented an increase in CH4 emissions as plant productivity increases, likely due to plants releasing more labile organic carbon from roots. But in the field, it is difficult to separate changes in plant productivity and root carbon exudation from other seasonal changes that can affect methane emissions, e.g. temperature. Clarifying the role that root exudation plays in fueling methane production is important because increasing atmospheric temperatures and CO2 levels are projected to increase plant productivity and exudation. To advance understanding of climate-methane feedbacks, this study tracked the flow of carbon from plants into the wetland rhizosphere as plant productivity increased in controlled laboratory conditions. We grew Carex aquatilis, a wetland sedge, in peat-filled rootboxes. Both early and late during the plant growth cycle, we exposed plants to headspace 13CO2, which the plants fixed. Some of this labeled carbon was exuded by the roots and used by rhizosphere microbes. We tracked the isotope ratio of emitted CH4 to establish the time required for plant-released carbon to fuel methanogenesis, and to determine the relative contribution of plant-derived carbon to total CH4 emission. We destructively harvested root and rhizosphere samples from various locations that we characterized by isotope ratio mass spectrometry (MS) to determine isotopic enrichment and therefore relative abundance of root exudates. We analyzed additional aliquots of rhizosphere soil by Fourier transform ion cyclotron resonance MS to track chemical changes in soil carbon as root exudates were converted into methane. To advance mechanistic understanding of the synergistic and competitive microbial interactions that affect methane dynamics in the wetland rhizosphere, we used fluorescence in-situ hybridization to visualize microbial community composition and spatial associations

  10. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor

    USGS Publications Warehouse

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    METHANE is a greenhouse gas whose concentration in the atmosphere is increasing1-3 Much of this methane is derived from the metabolism of methane-generating (methanogenic) bacteria4,5, and over the past two decades much has been learned about the ecology of methanogens; specific inhibitors of methanogenesis, such as 2-bromoethanesulphonic acid, have proved useful in this regard6. In contrast, although much is known about the biochemistry of methane-oxidizing (methanotrophic) bacteria7, ecological investigations have been hampered by the lack of an analogous specific inhibitor6. Methanotrophs limit the flux of methane to the atmosphere from sediments8,9 and consume atmospheric methane10, but the quantitative importance of methanotrophy in the global methane budget is not well known5. Methylfluoride (CH3F) is known to inhibit oxygen consumption by Methylococcus capsulatus11, and to inhibit the oxidation of 14CH4 to 14CO2 by endosymbionts in mussel gill tissues12. Here we report that methylfluoride (MF) inhibits the oxidation of methane by methane monooxygenase, and by using methylfluoride in field investigations, we find that methanotrophic bacteria can consume more than 90% of the methane potentially available.

  11. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.

    PubMed

    Yalcinkaya, Sedat; Malina, Joseph F

    2015-06-01

    relationship and allowed estimation of key performance parameters that provide additional insight into the factors affecting biochemical methane potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer.

    PubMed

    Gao, Yaohuan; Ryu, Hodon; Rittmann, Bruce E; Hussain, Abid; Lee, Hyung-Sool

    2017-10-01

    A biofilm anode acclimated with growth media containing acetate, then acetate+methane, and finally methane alone produced electrical current in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for the bacterial domain (93%) in the biofilm anode, while methanogens (Methanocorpusculum labreanum and Methanosaeta concilii) accounted for 82% of the total archaeal clones in the biofilm. Fluorescence in situ hybridization (FISH) imaging clearly showed a biofilm of mixed bacteria and archaea, suggesting a syntrophic interaction between them for performing anaerobic oxidation of methane (AOM) in the biofilm anode. Measured cumulative coulombs were linearly correlated to the methane-gas concentration in the range of 10-99.97% (R 2 ≥0.99) when the measurement was sustained for at least 50min Thus, cumulative coulombs over 50min could be used to quantify the methane concentration in gas samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Evaluating the Effects of Surface Properties on Methane Detection with the Airborne Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG)

    NASA Astrophysics Data System (ADS)

    Ayasse, A.; Thorpe, A. K.; Roberts, D. A.; Aubrey, A. D.; Dennison, P. E.; Thompson, D. R.; Frankenberg, C.

    2016-12-01

    Atmospheric methane has been increasing since the industrial revolution and is thought to be responsible for about 25% of global radiative forcing (Hofman et al., 2006; Montzka et al., 2011). Given the importance of methane to global climate, it is essential that we identify methane sources to better understand the proportion of emissions coming from various sectors. Recently the Airborne Visible-Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) has proven to be a valuable instrument for mapping methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). However, it is important to determine how land cover and albedo affect the ability of AVIRIS-NG to detect methane. This study aims to quantify the effect these surface properties have on detection. To do so we are using a synthetic AVIRIS-NG image that has multiple land cover types, albedos, and methane concentrations and applying the Cluster Tunes Matched Filter (CTMF) algorithm (Funk et al. 2001, Thorpe et al., 2013) to detect methane enhancements within the image. CTMF results are compared to the surface properties to characterize how different surface properties affect detection. We will also evaluate the effect of surface properties with examples of methane plumes observed from oil fields and manure ponds in the San Joaquin Valley of California, two important methane sources (Figure 1). Initial results suggest that darker surfaces, such as water absent sun glint, will make detecting the methane signal challenging, while bright surfaces such as dry soils produce a much clearer signal. Characterizing the effect of surface properties on methane detection is of increasing importance given the application of this technology will likely expand to map methane across a diverse range of emission sources. Figure 1. AVIRIS-NG image acquired Apr. 29, 2015. True color image with a superimposed methane plume from a manure pond. Bright surfaces, such as the dirt road, provide a better

  14. Enhanced carbon monoxide utilization in methanation process

    DOEpatents

    Elek, Louis F.; Frost, Albert C.

    1984-01-01

    Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

  15. Methane in Sediments From Three Tropical, Coastal Lagoons on the Yucatan Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Young, B.; Paytan, A.; Miller, L.; Herrera-Silveira, J.

    2002-12-01

    coastal ecosystems. Laboratory experiments using sediment from the upper 20 cm in Celestun lagoon resulted in high rates of biogenic production of methane from the addition of trimethylamine, hydrogen, and, while additions of formate and acetate stimulated methane production to a lesser extent. This indicates that methane production in these sediments may be highly responsive to natural or anthropogenic changes in substrate availability. By synthesizing laboratory data and extensive field measurements from the lagoons, we hope to shed light on the factors controlling methane cycling in these sediments, and to better estimate methane flux to the atmosphere from these ecosystems.

  16. Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion

    DOE PAGES

    Willis, Joshua J.; Gallo, Alessandro; Sokaras, Dimosthenis; ...

    2017-10-09

    To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH 4 to CO 2 and H 2O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of threemore » important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO 2), acidic (Al 2O 3), and redox-active (Ce 0.8Zr 0.2O 2) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. Furthermore, this study clarifies contrasting reports in the literature about the active phase and stability of Pd

  17. Systematic Structure–Property Relationship Studies in Palladium-Catalyzed Methane Complete Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, Joshua J.; Gallo, Alessandro; Sokaras, Dimosthenis

    To limit further rising levels in methane emissions from stationary and mobile sources and to enable promising technologies based on methane, the development of efficient combustion catalysts that completely oxidize CH 4 to CO 2 and H 2O at low temperatures in the presence of high steam concentrations is required. Palladium is widely considered as one of the most promising materials for this reaction, and a better understanding of the factors affecting its activity and stability is crucial to design even more improved catalysts that efficiently utilize this precious metal. Here we report a study of the effect of threemore » important variables (particle size, support, and reaction conditions including water) on the activity of supported Pd catalysts. We use uniform palladium nanocrystals as catalyst precursors to prepare a library of well-defined catalysts to systematically describe structure–property relationships with help from theory and in situ X-ray absorption spectroscopy. With this approach, we confirm that PdO is the most active phase and that small differences in reaction rates as a function of size are likely due to variations in the surface crystal structure. We further demonstrate that the support exerts a limited influence on the PdO activity, with inert (SiO 2), acidic (Al 2O 3), and redox-active (Ce 0.8Zr 0.2O 2) supports providing similar rates, while basic (MgO) supports show remarkably lower activity. Finally, we show that the introduction of steam leads to a considerable decrease in rates that is due to coverage effects, rather than structural and/or phase changes. Altogether, the data suggest that to further increase the activity and stability of Pd-based catalysts for methane combustion, increasing the surface area of supported PdO phases while avoiding strong adsorption of water on the catalytic surfaces is required. Furthermore, this study clarifies contrasting reports in the literature about the active phase and stability of Pd

  18. Factors affecting dignity of patients with multiple sclerosis.

    PubMed

    Sharifi, Simin; Borhani, Fariba; Abbaszadeh, Abbas

    2016-12-01

    MS is one of the most common chronic diseases of the nervous system. Apart from disease progression, other complications such as unemployment, separation and divorce could potentially threat patients' dignity. Most of the previous studies have been done of maintaining patients' dignity in interaction with healthcare team, but studies on affecting factors of dignity in chronic patients in the society and in interaction with usual people are scarce. We aimed to investigate factors affecting dignity of Iranian patients with MS in daily living and in interaction of them with the society. In this qualitative study, 13 patients with multiple sclerosis were chosen by purposive sampling and semi-structured interviews were conducted until data saturation. The study was done in Tehran, the capital city of Iran. Factors affecting dignity were classified as 'personal factors' and 'social factors'. Personal factors consist of the following subcategories: patients' communication with self, patients' knowledge, patients' values and beliefs and patients' resources. Social factors include others' communication with patients, social knowledge, social values and beliefs and social resources. Multiple personal and social factors interfere in perceived patient dignity. In fact, interaction between personal and social factors can be influential in final perceived dignity. By focusing on whole aspects of the patients' lives, we can identify dignity-promoting or dignity-threatening factors and help patients maintain their dignity by taking appropriate measures for moderating threatening factors and improving dignity enhancing ones. © 2016 Nordic College of Caring Science.

  19. Temporal variation of aerobic methane oxidation over a tidal cycle in a wetland of northern Taiwan.

    NASA Astrophysics Data System (ADS)

    Lee, T. Y.; Wang, P. L.; Lin, L. H.

    2017-12-01

    Aerobic methanotrophy plays an important role in controlling methane emitted from wetlands. However, the activity of aerobic methanotrophy regulated by temporal fluctuation of oxygen and methane supply in tidal wetlands is not well known. This study aims to examine the dynamics of methane fluxes and potential aerobic methane consumption rates in a tidal wetland of northern Taiwan, where the variation of environmental characteristics, such as sulfate and methane concentration in pore water has been demonstrated during a tidal cycle. Two field campaigns were carried out in December of 2016 and March of 2017. Fluxes of methane emission, methane concentrations in surface sediments and oxygen profiles were measured at different tidal phases. Besides, batch incubations were conducted on surface sediments in order to quantify potential microbial methane consumption rates and to derive the kinetic parameters for aerobic methanotrophy. Our results demonstrated temporal changes of the surface methane concentration and the methane emission flux during a tidal cycle, while the oxygen flux into the sediment was kept at a similar magnitude. The methane flux was low when the surface was exposed for both shortest and longest periods of time. The potential aerobic methane oxidation rate was high for sample collected from the surface sediments exposed the longest. No correlation could be found between the potential aerobic methane oxidation rate and either the oxygen downward flux or methane emission flux. The decoupled relationships between these observed rates and fluxes suggest that, rather than aerobic methanotrophy, heterotrophic respirations exert a profound control on oxygen flux, and the methane emission is not only been affected by methane consumption but also methane production at depths. The maximum potential rate and the half saturation concentration determined from the batch incubations were high for the surface sediments collected in low tide, suggesting that aerobic

  20. Global diffusive fluxes of methane in marine sediments

    NASA Astrophysics Data System (ADS)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (<200 m water depth). Using anaerobic oxidation as a nearly quantitative sink for methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  1. Consumption of atmospheric methane by tundra soils

    NASA Technical Reports Server (NTRS)

    Whalen, S. C.; Reeburgh, W. S.

    1990-01-01

    The results of field and laboratory experiments on methane consumption by tundra soils are reported. For methane concentrations ranging from below to well above ambient, moist soils are found to consume methane rapidly; in nonwaterlogged soils, equilibration with atmospheric methane is fast relative to microbial oxidation. It is concluded that lowering of the water table in tundra as a resulting from a warmer, drier climate will decrease methane fluxes and could cause these areas to provide negative feedback for atmospheric methane.

  2. Temporal variability of methane fluxes in West Siberian taiga bogs and its implications for estimating regional methane emission

    NASA Astrophysics Data System (ADS)

    Sabrekov, Alexander; Ilyasov, Danil; Terentieva, Irina; Glagolev, Mikhail; Maksyutov, Shamil

    2017-04-01

    The West Siberia Lowland (WSL) is the biggest peatland area in Eurasia and is situated in the high latitudes experiencing enhanced rate of climate change. During 2015-16 summer periods, seasonal measurements of methane emission were made at the field station «Mukhrino» in the WSL middle taiga zone. The study was made at 3 wetland ecosystem types covering 80% of the taiga wetland area: i) waterlogged hollows or depressed areas with water level above the moss surface, ii) oligotrophic hollows or depressed parts of bogs with water level beneath the moss surface, iii) forested bogs with dwarf shrubs-sphagnum vegetation. Seven series of measurements were made by a static chamber method in 2016 and four series - in 2015. In 2015, we observed non-typical weather conditions including early dry spring and short cold rainy summer. Oppositely, weather conditions in 2016 were closer to average long-term with warmer drier summer. Significant difference between these years allowed analyzing the temporal variability and its sources. Average methane flux rates from forested bogs were 0.57 mgCH4/m2/h in 2016 and 0.33 mgCH4/m2/h in 2015. Seasonal dynamic during both years had similar concave downward shape. The highest fluxes were observed in June and were corresponded to the highest WTL, the main limiting factor of emission from forested bogs. The lowest fluxes in July were related to the low WTL combining with the highest temperature of upper methanotrophy layer. Average methane flux rates from oligotrophic hollows were 7.18 mgCH4/m2/h in 2016 and 4.28 mgCH4/m2/h in 2015. Seasonal dynamic of methane emission was indistinct in 2015. On the contrary, in 2016 it had regular seasonal pattern with peak emissions in July, which were four times higher than in 2015. WTL was not the limiting factor for CH4 emission from oligotrophic hollows, because even in the driest ones it was only 10 cm below the surface. Thus, the difference between peak emissions in 2015 and 2016 was mainly related

  3. Methane-producing bacteria - Natural fractionations of the stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Games, L. M.; Hayes, J. M.; Gunsalus, R. P.

    1978-01-01

    Procedures for determining the C-13/C-12 fractionation factors for methane-producing bacteria are described, and the fractionation factors (CO2/CH4) for the reduction of CO2 to CH4 by pure cultures are 1.045 for Methanosarcina barkeri at 40 C, 1.061 for Methanobacterium strain M.o.H. at 40 C, and 1.025 for Methanobacterium thermoautotrophicum at 65 C. The data are consistent with the field determinations if fractionation by acetate dissimilation approximates fractionations observed in natural environments. In other words, the acetic acid used by acetate dissimilating bacteria, if they play an important role in natural methane production, must have an intramolecular isotopic fractionation (CO2H/CH3) approximating the observed CO2/CH4 fractionation.

  4. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer

    EPA Science Inventory

    A biofilm anode acclimated with acetate, acetate+methane, and methane growth media for over three years produced a steady current density of 1.6-2.3 mA/m^2 in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for...

  5. Emissions of Methane and Other Hydrocarbons Due to Wellbore Leaks

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; Mansfield, M. L.

    2013-12-01

    The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. However, EPA and others have acknowledged that current air emissions factors and inventories for many oil and gas-related source categories are inadequate or lacking entirely. One potentially important emissions source is leakage of natural gas from wellbores. This phenomenon has long been recognized to occur, but no attempt has been made to quantify emission rates of gas leaked from wellbores to the atmosphere. Soil gas measurements carried out by USGS over the last several years in Utah's oil and gas fields have shown that, while concentrations of methane in soils near many wells are low, soil gas near some wells can contain more than 10% methane, indicating that underground leakage is occurring. In summer 2013 we carried out a campaign to measure the emission rate of methane and other hydrocarbons from soils near wells in two oil and gas fields in Utah. We measured emissions from several locations on some well pads to determine the change in emission rate with distance from well heads, and we measured at non-well sites in the same fields to determine background emission rates. Methane emission rates at some wells exceeded 3 g m-2 h-1, while emission rates at other wells were similar to background levels, and a correlation was observed between soil gas methane concentrations and methane emission rates from the soil. We used these data to estimate total methane and hydrocarbon emission rates from these two fields.

  6. Test-area surface tension calculation of the graphene-methane interface: Fluctuations and commensurability

    NASA Astrophysics Data System (ADS)

    d'Oliveira, H. D.; Davoy, X.; Arche, E.; Malfreyt, P.; Ghoufi, A.

    2017-06-01

    The surface tension (γ) of methane on a graphene monolayer is calculated by using the test-area approach. By using a united atom model to describe methane molecules, strong fluctuations of surface tension as a function of the surface area of the graphene are evidenced. In contrast with the liquid-vapor interfaces, the use of a larger cutoff does not fully erase the fluctuations in the surface tension. Counterintuitively, the description of methane and graphene from the Optimized Potentials for Liquid Simulations all-atom model and a flexible model, respectively, led to a lessening in the surface tension fluctuations. This result suggests that the origin of fluctuations in γ is due to a model-effect rather than size-effects. We show that the molecular origin of these fluctuations is the result of a commensurable organization between both graphene and methane. This commensurable structure can be avoided by describing methane and graphene from a flexible force field. Although differences in γ with respect to the model have been often reported, it is the first time that the model drastically affects the physics of a system.

  7. The Application of Methane Clumped Isotope Measurements to Determine the Source of Large Methane Seeps in Alaskan Lakes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Eiler, J. M.; Sessions, A. L.; Walter Anthony, K. M.

    2014-12-01

    Natural methane emissions from the Arctic present an important potential feedback to global warming. Arctic methane emissions may come from either active microbial sources or from deep fossil reservoirs released by the thawing of permafrost and melting of glaciers. It is often difficult to distinguish between and quantify contributions from these methane sources based on stable isotope data. Analyses of methane clumped isotopes (isotopologues with two or more rare isotopes such as 13CH3D) can complement traditional stable isotope-based classifications of methane sources. This is because clumped isotope abundances (for isotopically equilibrated systems) are a function of temperature and can be used to identify pathways of methane generation. Additionally, distinctive effects of mixing on clumped isotope abundances make this analysis valuable for determining the origins of mixed gasses. We find large variability in clumped isotope compositions of methane from seeps in several lakes, including thermokarst lakes, across Alaska. At Lake Sukok in northern Alaska we observe the emission of dominantly thermogenic methane, with a formation temperature of at least 100° C. At several other lakes we find evidence for mixing between thermogenic methane and biogenic methane that forms in low-temperature isotopic equilibrium. For example, at Eyak Lake in southeastern Alaska, analysis of three methane samples results in a distinctive isotopic mixing line between a high-temperature end-member that formed between 100-170° C, and a biogenic end-member that formed in isotopic equilibrium between 0-20° C. In this respect, biogenic methane in these lakes resembles observations from marine gas seeps, oil degradation, and sub-surface aquifers. Interestingly, at Goldstream Lake in interior Alaska, methane with strongly depleted clumped-isotope abundances, indicative of disequilibrium gas formation, is found, similar to observations from methanogen culture experiments.

  8. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  9. Thermal properties of methane gas hydrates

    USGS Publications Warehouse

    Waite, William F.

    2007-01-01

    Gas hydrates are crystalline solids in which molecules of a “guest” species occupy and stabilize cages formed by water molecules. Similar to ice in appearance (fig. 1), gas hydrates are stable at high pressures and temperatures above freezing (0°C). Methane is the most common naturally occurring hydrate guest species. Methane hydrates, also called simply “gas hydrates,” are extremely concentrated stores of methane and are found in shallow permafrost and continental margin sediments worldwide. Brought to sea-level conditions, methane hydrate breaks down and releases up to 160 times its own volume in methane gas. The methane stored in gas hydrates is of interest and concern to policy makers as a potential alternative energy resource and as a potent greenhouse gas that could be released from sediments to the atmosphere and ocean during global warming. In continental margin settings, methane release from gas hydrates also is a potential geohazard and could cause submarine landslides that endanger offshore infrastructure. Gas hydrate stability is sensitive to temperature changes. To understand methane release from gas hydrate, the U.S. Geological Survey (USGS) conducted a laboratory investigation of pure methane hydrate thermal properties at conditions relevant to accumulations of naturally occurring methane hydrate. Prior to this work, thermal properties for gas hydrates generally were measured on analog systems such as ice and non-methane hydrates or at temperatures below freezing; these conditions limit direct comparisons to methane hydrates in marine and permafrost sediment. Three thermal properties, defined succinctly by Briaud and Chaouch (1997), are estimated from the experiments described here: - Thermal conductivity, λ: if λ is high, heat travels easily through the material. - Thermal diffusivity, κ: if κ is high, it takes little time for the temperature to rise in the material. - Specific heat, cp: if cp is high, it takes a great deal of heat to

  10. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  11. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    PubMed Central

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  12. Methane seeps along boundaries of receding glaciers in Alaska and Greenland

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.

    2012-12-01

    Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca

  13. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    PubMed

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Oceanic Methane Concentrations in Three Mexican Regions

    EPA Science Inventory

    The atmospheric concentration of methane has increased significantly over the last several decades. Methane is an important greenhouse gas, and it is important to better quantify methane sources and sinks. Dissolved methane in the ocean is produced by biological and hydrothermal ...

  15. 2004 Methane and Nitrous Oxide Emissions from Manure Management in South Africa

    PubMed Central

    Moeletsi, Mokhele Edmond; Tongwane, Mphethe Isaac

    2015-01-01

    Simple Summary Livestock manure management is one of the main sources of greenhouse gas (GHG) emissions in South Africa producing mainly methane and nitrous oxide. The emissions from this sub-category are dependent on how manure is stored. Liquid-stored manure predominantly produces methane while dry-based manure enhances mainly production of nitrous oxide. Intergovernmental Panel on Climate Change (IPCC) guidelines were utilized at different tier levels in estimating GHG emissions from manure management. The results show that methane emissions are relatively higher than nitrous oxide emissions with 3104 Gg and 2272 Gg respectively in carbon dioxide global warming equivalent. Abstract Manure management in livestock makes a significant contribution towards greenhouse gas emissions in the Agriculture; Forestry and Other Land Use category in South Africa. Methane and nitrous oxide emissions are prevalent in contrasting manure management systems; promoting anaerobic and aerobic conditions respectively. In this paper; both Tier 1 and modified Tier 2 approaches of the IPCC guidelines are utilized to estimate the emissions from South African livestock manure management. Activity data (animal population, animal weights, manure management systems, etc.) were sourced from various resources for estimation of both emissions factors and emissions of methane and nitrous oxide. The results show relatively high methane emissions factors from manure management for mature female dairy cattle (40.98 kg/year/animal), sows (25.23 kg/year/animal) and boars (25.23 kg/year/animal). Hence, contributions for pig farming and dairy cattle are the highest at 54.50 Gg and 32.01 Gg respectively, with total emissions of 134.97 Gg (3104 Gg CO2 Equivalent). Total nitrous oxide emissions are estimated at 7.10 Gg (2272 Gg CO2 Equivalent) and the three main contributors are commercial beef cattle; poultry and small-scale beef farming at 1.80 Gg; 1.72 Gg and 1.69 Gg respectively. Mitigation options

  16. The Methane to Carbon Dioxide Ratio Produced during Peatland Decomposition and a Simple Approach for Distinguishing This Ratio

    NASA Astrophysics Data System (ADS)

    Chanton, J.; Hodgkins, S. B.; Cooper, W. T.; Glaser, P. H.; Corbett, J. E.; Crill, P. M.; Saleska, S. R.; Rich, V. I.; Holmes, B.; Hines, M. E.; Tfaily, M.; Kostka, J. E.

    2014-12-01

    greater production of methane. Changing climatic conditions may alter the balance of the factors which affect the CO2/CH4 ratio by changing the water balance of the peatland, nutrient status, or temperature.

  17. Rumen and Cecum Microbiomes in Reindeer (Rangifer tarandus tarandus) Are Changed in Response to a Lichen Diet and May Affect Enteric Methane Emissions

    PubMed Central

    Hagen, Live H.; Ishaq, Suzanne L.; Zamanzadeh, Mirzaman; Wright, André-Denis G.; Pope, Phillip B.; Sundset, Monica A.

    2016-01-01

    Reindeer (Rangifer tarandus tarandus) are large Holarctic herbivores whose heterogeneous diet has led to the development of a unique gastrointestinal microbiota, essential for the digestion of arctic flora, which may include a large proportion of lichens during winter. Lichens are rich in plant secondary metabolites, which may affect members of the gut microbial consortium, such as the methane-producing methanogenic archaea. Little is known about the effect of lichen consumption on the rumen and cecum microbiotas and how this may affect methanogenesis in reindeer. Here, we examined the effects of dietary lichens on the reindeer gut microbiota, especially methanogens. Samples from the rumen and cecum were collected from two groups of reindeer, fed either lichens (Ld: n = 4), or a standard pelleted feed (Pd: n = 3). Microbial densities (methanogens, bacteria and protozoa) were quantified using quantitative real-time PCR and methanogen and bacterial diversities were determined by 454 pyrosequencing of the 16S rRNA genes. In general, the density of methanogens were not significantly affected (p>0.05) by the intake of lichens. Methanobrevibacter constituted the main archaeal genus (>95% of reads), with Mbr. thaueri CW as the dominant species in both groups of reindeer. Bacteria belonging to the uncharacterized Ruminococcaceae and the genus Prevotella were the dominant phylotypes in the rumen and cecum, in both diets (ranging between 16–38% total sequences). Bacteria belonging to the genus Ruminococcus (3.5% to 0.6%; p = 0.001) and uncharacterized phylotypes within the order Bacteroidales (8.4% to 1.3%; p = 0.027), were significantly decreased in the rumen of lichen-fed reindeer, but not in the cecum (p = 0.2 and p = 0.087, respectively). UniFrac-based analyses showed archaeal and bacterial libraries were significantly different between diets, in both the cecum and the rumen (vegan::Adonis: pseudo-F<0.05). Based upon previous literature, we suggest that the altered

  18. [Sources of Methane in the Boreal Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In determining the global methane budget the sources of methane must be balanced with the sinks and atmospheric inventory. The approximate contribution of the different methane sources to the budget has been establish showing the major terrestrial inputs as rice, wetlands, bogs, fens, and tundra. Measurements and modeling of production in these sources suggest that temperature, water table height and saturation along with substratum composition are important in controlling methane production and emission. The isotopic budget of 13 C and D/H in methane can be used as a tool to clarify the global budget. This approach has achieved success at constraining the inputs. Studies using the isotopic approach place constraints on global methane production from different sources. Also, the relation between the two biogenic production pathways, acetate fermentation and CO2 reduction, and the effect of substratum composition can be made using isotope measurements shows the relation between the different biogenic, thermogenic and anthropogenic sources of methane as a function of the carbon and hydrogen isotope values for each source and the atmosphere, tropospheric composition. Methane emissions from ponds and fens are a significant source in the methane budget of the boreal region. An initial study in 1993 and 1994 on the isotopic composition of this methane source and the isotopic composition in relation to oxidation of methane at the sediment surface of the ponds or fen was conducted as part of our BOREAS project. The isotopic composition of methane emitted by saturated anoxic sediment is dependent on the sediment composition and geochemistry, but will be influenced by in situ oxidation, in part, a function of rooted plant activity. The influence of oxidation mediated by rooted plant activities on the isotopic composition of methane is not well known and will depend on the plant type, sediment temperature, and numerous other variables. Information on this isotopic composition

  19. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the

  20. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  1. Mapping Pluto Methane Ice

    NASA Image and Video Library

    2015-09-24

    The Ralph/LEISA infrared spectrometer on NASA's New Horizons spacecraft mapped compositions across Pluto's surface as it flew past the planet on July 14, 2015. On the left, a map of methane ice abundance shows striking regional differences, with stronger methane absorption indicated by the brighter purple colors, and lower abundances shown in black. Data have only been received so far for the left half of Pluto's disk. At right, the methane map is merged with higher-resolution images from the spacecraft's Long Range Reconnaissance Imager (LORRI). http://photojournal.jpl.nasa.gov/catalog/PIA19953

  2. Vibrational Mode-Specific Reaction of Methane on a Nickel Surface

    NASA Astrophysics Data System (ADS)

    Beck, Rainer D.; Maroni, Plinio; Papageorgopoulos, Dimitrios C.; Dang, Tung T.; Schmid, Mathieu P.; Rizzo, Thomas R.

    2003-10-01

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics.

  3. Vibrational mode-specific reaction of methane on a nickel surface.

    PubMed

    Beck, Rainer D; Maroni, Plinio; Papageorgopoulos, Dimitrios C; Dang, Tung T; Schmid, Mathieu P; Rizzo, Thomas R

    2003-10-03

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics.

  4. 77 FR 40032 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of methane...

  5. Seasonal variability of stratospheric methane: implications for constraining tropospheric methane budgets using total column observations

    NASA Astrophysics Data System (ADS)

    Saad, Katherine M.; Wunch, Debra; Deutscher, Nicholas M.; Griffith, David W. T.; Hase, Frank; De Mazière, Martine; Notholt, Justus; Pollard, David F.; Roehl, Coleen M.; Schneider, Matthias; Sussmann, Ralf; Warneke, Thorsten; Wennberg, Paul O.

    2016-11-01

    Global and regional methane budgets are markedly uncertain. Conventionally, estimates of methane sources are derived by bridging emissions inventories with atmospheric observations employing chemical transport models. The accuracy of this approach requires correctly simulating advection and chemical loss such that modeled methane concentrations scale with surface fluxes. When total column measurements are assimilated into this framework, modeled stratospheric methane introduces additional potential for error. To evaluate the impact of such errors, we compare Total Carbon Column Observing Network (TCCON) and GEOS-Chem total and tropospheric column-averaged dry-air mole fractions of methane. We find that the model's stratospheric contribution to the total column is insensitive to perturbations to the seasonality or distribution of tropospheric emissions or loss. In the Northern Hemisphere, we identify disagreement between the measured and modeled stratospheric contribution, which increases as the tropopause altitude decreases, and a temporal phase lag in the model's tropospheric seasonality driven by transport errors. Within the context of GEOS-Chem, we find that the errors in tropospheric advection partially compensate for the stratospheric methane errors, masking inconsistencies between the modeled and measured tropospheric methane. These seasonally varying errors alias into source attributions resulting from model inversions. In particular, we suggest that the tropospheric phase lag error leads to large misdiagnoses of wetland emissions in the high latitudes of the Northern Hemisphere.

  6. Bio-methane from an-aerobic digestion using activated carbon adsorption.

    PubMed

    Farooq, Muhammad; Bell, Alexandra H; Almustapha, M N; Andresen, John M

    2017-08-01

    There is an increasing global demand for carbon-neutral bio-methane from an-aerobic digestion (AD) to be injected into national gas grids. Bio-gas, a methane -rich energy gas, is produced by microbial decomposition of organic matter through an-aerobic conditions where the presence of carbon dioxide and hydrogen sulphide affects its performance. Although the microbiological process in the AD can be tailored to enhance the bio-gas composition, physical treatment is needed to convert the bio-gas into bio-methane. Water washing is the most common method for upgrading bio-gas for bio-methane production, but its large use of water is challenging towards industrial scale-up. Hence, the present study focuses on scale-up comparison of water washing with activated-carbon adsorption using HYSYS and Aspen Process Economic Analyzer. The models show that for plants processing less than 500 m 3 /h water scrubbing was cost effective compared with activated carbon. However, against current fossil natural-gas cost of about 1 p/kWh in the UK both relied heavily on governmental subsidies to become economically feasible. For plants operating at 1000 m 3 /hr, the treatment costs were reduced to below 1.5 p/kWh for water scrubbing and 0.9 p/kWh for activated carbon where the main benefits of activated carbon were lower capital and operating costs and virtually no water losses. It is envisioned that this method can significantly aid the production of sustainable bio-methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Laser induced spark ignition of methane-oxygen mixtures

    NASA Technical Reports Server (NTRS)

    Santavicca, D. A.; Ho, C.; Reilly, B. J.; Lee, T.-W.

    1991-01-01

    Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed.

  8. 30 CFR 27.22 - Methane detector component.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane detector component. 27.22 Section 27.22... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.22 Methane detector component. (a) A methane detector component shall be suitably constructed for incorporation in or...

  9. Isotopic Composition of Methane and Inferred Methanogenic Substrates Along a Salinity Gradient in a Hypersaline Microbial Mat System

    NASA Astrophysics Data System (ADS)

    Potter, Elyn G.; Bebout, Brad M.; Kelley, Cheryl A.

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC δ13C values ranged from -6.7 to -13.5%, and DIC δ13C values ranged from -1.4 to -9.6%. These values were similar to previously reported values. The δ13C values of methane ranged from -49.6 to -74.1%; the methane most enriched in 13C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  10. Isotopic composition of methane and inferred methanogenic substrates along a salinity gradient in a hypersaline microbial mat system.

    PubMed

    Potter, Elyn G; Bebout, Brad M; Kelley, Cheryl A

    2009-05-01

    The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.

  11. The influence of fat and hemicellulose on methane production and energy utilization in lactating Jersey cattle

    USDA-ARS?s Scientific Manuscript database

    Feeding fat to lactating dairy cows may reduce methane production. Relative to cellulose, fermentation of hemicellulose is believed to result in less methane; however, these factors have not been studied simultaneously. Eight multiparous, lactating Jersey cows averaging 98 ± 30.8 DIM and BW of 439.3...

  12. Ebullitive methane emissions from oxygenated wetland streams

    USGS Publications Warehouse

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  13. Electrochemical methane sensor

    DOEpatents

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  14. Methane hydrates in nature - Current knowledge and challenges

    USGS Publications Warehouse

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  15. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  16. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  17. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  18. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  19. 30 CFR 27.21 - Methane-monitoring system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...

  20. Constructing a Spatially Resolved Methane Emission Inventory of Natural Gas Production and Distribution over Contiguous United States

    NASA Astrophysics Data System (ADS)

    Li, X.; Omara, M.; Adams, P. J.; Presto, A. A.

    2017-12-01

    Methane is the second most powerful greenhouse gas after Carbon Dioxide. The natural gas production and distribution accounts for 23% of the total anthropogenic methane emissions in the United States. The boost of natural gas production in U.S. in recent years poses a potential concern of increased methane emissions from natural gas production and distribution. The Emission Database for Global Atmospheric Research (Edgar) v4.2 and the EPA Greenhouse Gas Inventory (GHGI) are currently the most commonly used methane emission inventories. However, recent studies suggested that both Edgar v4.2 and the EPA GHGI largely underestimated the methane emission from natural gas production and distribution in U.S. constrained by both ground and satellite measurements. In this work, we built a gridded (0.1° Latitude ×0.1° Longitude) methane emission inventory of natural gas production and distribution over the contiguous U.S. using emission factors measured by our mobile lab in the Marcellus Shale, the Denver-Julesburg Basin, and the Uintah Basin, and emission factors reported from other recent field studies for other natural gas production regions. The activity data (well location and count) are mostly obtained from the Drillinginfo, the EPA Greenhouse Gas Reporting Program (GHGRP) and the U.S. Energy Information Administration (EIA). Results show that the methane emission from natural gas production and distribution estimated by our inventory is about 20% higher than the EPA GHGI, and in some major natural gas production regions, methane emissions estimated by the EPA GHGI are significantly lower than our inventory. For example, in the Marcellus Shale, our estimated annual methane emission in 2015 is 600 Gg higher than the EPA GHGI. We also ran the GEOS-Chem methane simulation to estimate the methane concentration in the atmosphere with our built inventory, the EPA GHGI and the Edgar v4.2 over the nested North American Domain. These simulation results showed differences in

  1. Controls on Methane Occurrences in Shallow Aquifers Overlying the Haynesville Shale Gas Field, East Texas.

    PubMed

    Nicot, Jean-Philippe; Larson, Toti; Darvari, Roxana; Mickler, Patrick; Slotten, Michael; Aldridge, Jordan; Uhlman, Kristine; Costley, Ruth

    2017-07-01

    Understanding the source of dissolved methane in drinking-water aquifers is critical for assessing potential contributions from hydraulic fracturing in shale plays. Shallow groundwater in the Texas portion of the Haynesville Shale area (13,000 km 2 ) was sampled (70 samples) for methane and other dissolved light alkanes. Most samples were derived from the fresh water bearing Wilcox formations and show little methane except in a localized cluster of 12 water wells (17% of total) in a approximately 30 × 30 km 2 area in Southern Panola County with dissolved methane concentrations less than 10 mg/L. This zone of elevated methane is spatially associated with the termination of an active fault system affecting the entire sedimentary section, including the Haynesville Shale at a depth more than 3.5 km, and with shallow lignite seams of Lower Wilcox age at a depth of 100 to 230 m. The lignite spatial extension overlaps with the cluster. Gas wetness and methane isotope compositions suggest a mixed microbial and thermogenic origin with contribution from lignite beds and from deep thermogenic reservoirs that produce condensate in most of the cluster area. The pathway for methane from the lignite and deeper reservoirs is then provided by the fault system. © 2017, National Ground Water Association.

  2. Tree-mediated methane emissions from tropical and temperate peatlands.

    NASA Astrophysics Data System (ADS)

    Pangala, S. R.; Gauci, V.; Hornibrook, E. R. C.; Gowing, D. J.

    2012-04-01

    Methane production and transport processes in peatlands are fairly well understood, but growing evidence for emission of methane through trees has highlighted the need to revisit methane transport processes. In wetland trees, morphological adaptations such as development of hypertrophied lenticels, aerenchyma and adventitious roots in response to soil anoxia mediates gas transport, transporting both oxygen from the atmosphere to oxygen-deprived roots and soil-produced methane from the root-zone to the atmosphere. Although, tree-mediated methane emissions from temperate tree species have been confirmed, methane emissions from tropical tree species and processes that control tree-mediated methane emissions remain unclear. This study explains the role of trees in transporting soil-produced methane to the atmosphere and uncovers the principal mechanisms of tree-mediated methane emissions. Methane emissions from eight tropical tree species and two temperate tree species were studied in situ. The mechanisms and controls on tree-mediated methane emissions were investigated using three year old common alder (Alnus glutinosa; 50 trees) grown under two artificially controlled water-table positions. Methane fluxes from whole mesocosms, the soil surface and tree stems were measured using static closed chambers. Both temperate and tropical tree species released significant quantities of methane, with tropical trees dominating ecosystem level methane fluxes. In temperate peatlands, both the methane gas transport mechanism and quantity of methane emitted from stems is tree-species dependent. In Alnus glutinosa, no correlations were observed between stomatal behaviour and tree-mediated methane emissions, however, stem methane emissions were positively correlated with both stem lenticel density and dissolved soil methane concentration. In Alnus glutinosa, no emissions were observed from leaf surfaces. The results demonstrate that exclusion of tree-mediated methane emissions from

  3. Statistical assessment of dumpsite soil suitability to enhance methane bio-oxidation under interactive influence of substrates and temperature.

    PubMed

    Bajar, Somvir; Singh, Anita; Kaushik, C P; Kaushik, Anubha

    2017-05-01

    Biocovers are considered as the most effective and efficient way to treat methane (CH 4 ) emission from dumpsites and landfills. Active methanotrophs in the biocovers play a crucial role in reduction of emissions through microbiological methane oxidation. Several factors affecting methane bio-oxidation (MOX) have been well documented, however, their interactive effect on the oxidation process needs to be explored. Therefore, the present study was undertaken to investigate the suitability of a dumpsite soil to be employed as biocover, under the influence of substrate concentrations (CH 4 and O 2 ) and temperature at variable incubation periods. Statistical design matrix of Response Surface Methodology (RSM) revealed that MOX rate up to 69.58μgCH 4 g -1 dw h -1 could be achieved under optimum conditions. MOX was found to be more dependent on CH 4 concentration at higher level (30-40%, v/v), in comparison to O 2 concentration. However, unlike other studies MOX was found in direct proportionality relationship with temperature within a range of 25-35°C. The results obtained with the dumpsite soil biocover open up a new possibility to provide improved, sustained and environmental friendly systems to control even high CH 4 emissions from the waste sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of ensembles on methane hydrate nucleation kinetics.

    PubMed

    Zhang, Zhengcai; Liu, Chan-Juan; Walsh, Matthew R; Guo, Guang-Jun

    2016-06-21

    By performing molecular dynamics simulations to form a hydrate with a methane nano-bubble in liquid water at 250 K and 50 MPa, we report how different ensembles, such as the NPT, NVT, and NVE ensembles, affect the nucleation kinetics of the methane hydrate. The nucleation trajectories are monitored using the face-saturated incomplete cage analysis (FSICA) and the mutually coordinated guest (MCG) order parameter (OP). The nucleation rate and the critical nucleus are obtained using the mean first-passage time (MFPT) method based on the FS cages and the MCG-1 OPs, respectively. The fitting results of MFPT show that hydrate nucleation and growth are coupled together, consistent with the cage adsorption hypothesis which emphasizes that the cage adsorption of methane is a mechanism for both hydrate nucleation and growth. For the three different ensembles, the hydrate nucleation rate is quantitatively ordered as follows: NPT > NVT > NVE, while the sequence of hydrate crystallinity is exactly reversed. However, the largest size of the critical nucleus appears in the NVT ensemble, rather than in the NVE ensemble. These results are helpful for choosing a suitable ensemble when to study hydrate formation via computer simulations, and emphasize the importance of the order degree of the critical nucleus.

  5. 40 CFR 721.4820 - Methane, bromodifluoro-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methane, bromodifluoro-. 721.4820... Substances § 721.4820 Methane, bromodifluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as methane, bromodifluoro- is subject to reporting under...

  6. 40 CFR 721.4820 - Methane, bromodifluoro-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methane, bromodifluoro-. 721.4820... Substances § 721.4820 Methane, bromodifluoro-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as methane, bromodifluoro- is subject to reporting under...

  7. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming

    2015-04-01

    Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Voytek, Mary A.; Corum, Margo D.; Orem, William H.

    2010-01-01

    Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.

  9. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    USGS Publications Warehouse

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  10. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, C.S.; Albert, D.B.; Alperin, M.J.

    Methane concentrations in the pore waters of Eckernfoerde Bay in the German Baltic Sea generally reach gas bubble saturation values within the upper meter of the sediment column. The depth at which saturation occurs is controlled by a balance between rates of methane production, consumption (oxidation), and transport. The relative importance of anaerobic methane oxidation (AMO) in controlling dissolved and gas bubble methane distributions in the bay's sediments is indirectly revealed through methane concentration versus depth profiles, depth variations in the stable C and H isotope composition of methane, and the C isotope composition of total dissolved inorganic carbon ({Sigma}CO{submore » 2}). Direct radiotracer measurements indicate that AMO rates of over 15 mM/yr are focused at the base of the sulfate reduction zone. Diagenetic equations that describe the depth destructions of the {delta}{sup 13}C and {delta}D values of methane reproduce isotopic shifts observed throughout the methane oxidation zone and are best fit with kinetic isotope fractionation factors of 1.012 {+-} 0.001 and 1.120 {plus{underscore}minus} 0.020 respectively.« less

  11. Methane Hydrate Formation in Thick Sand Reservoirs: Long-range Gas Transport or Short-range Methane Diffusion?

    NASA Astrophysics Data System (ADS)

    You, K.; Flemings, P. B.

    2016-12-01

    We developed two 2-D numerical models to simulate hydrate formation by long range methane gas transport and short-range methane diffusion. We interpret that methane hydrates in thick sands are most likely formed by long range gas transport where methane gas is transported upward into the hydrate stability zone (HSZ) under buoyancy and locally forms hydrate to its stability limit. In short-range methane diffusion, methane is generated locally by biodegradation of organic matter in mud and diffused into bounding sands where it forms hydrate. We could not simulate enough methane transport by diffusion to account for its observed concentration in thick sands. In our models, we include the capillary effect on dissolved methane solubility and on the hydrate phase boundary, sedimentation and different compaction in sand and mud, fracture generation as well as the fully coupled multiphase flow and multicomponent transport. We apply our models to a 12 meter-thick hydrate-bearing sand layer at Walker Ridge 313, Northern Gulf of Mexico. With the long-range gas transport, hydrate saturation is greater than 90% and salinity is increased from seawater to about 8 wt.% through the entire sand. With short-range diffusion, hydrate saturation is more than 90% at the sand base and is less than 10% in the overlying section; salinity is close to seawater when sand is deposited to 800 meter below seafloor by short-range methane diffusion. With short-range diffusion, the amount of hydrate formed is much less than that interpreted from the well log data. Two transient gas layers separated by a hydrate layer are formed from short-range diffusion caused by capillary effect. This could be interpreted as a double bottom simulating reflector. This study provides further insights into different hydrate formation mechanisms, and could serve as a base to confirm the hydrate formation mechanism in fields.

  12. Influence of headspace flushing on methane production in Biochemical Methane Potential (BMP) tests.

    PubMed

    Koch, Konrad; Bajón Fernández, Yadira; Drewes, Jörg E

    2015-06-01

    The influence of headspace flushing on the specific methane (CH4) production of blank samples with just inoculum in Biochemical Methane Potential (BMP) tests was studied. The three most common ways were applied: flushing with nitrogen (N2) gas, flushing with a mixture of N2 and CO2 (80/20 v/v), and no flushing. The results revealed that removing the oxygen is crucial to avoid aerobic respiration, which caused both hindered activity of methanogens and loss of methane potential. Furthermore it was demonstrated that 20% of CO2 in the flush gas increased significantly the methane production by over 20% compared to the flushing with pure N2. In order to mimic the same headspace conditions as in full-scale treatment plants, using a flush gas with a similar CO2 concentration as the expected biogas is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization of Methane Emission Sources Using Genetic Algorithms and Atmospheric Transport Modeling

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Cervone, G.; Barkley, Z.; Lauvaux, T.; Deng, A.; Miles, N.; Richardson, S.

    2016-12-01

    Fugitive methane emission rates for the Marcellus shale area are estimated using a genetic algorithm that finds optimal weights to minimize the error between simulated and observed concentrations. The overall goal is to understand the relative contribution of methane due to Shale gas extraction. Methane sensors were installed on four towers located in northeastern Pennsylvania to measure atmospheric concentrations since May 2015. Inverse Lagrangian dispersion model runs are performed from each of these tower locations for each hour of 2015. Simulated methane concentrations at each of the four towers are computed by multiplying the resulting footprints from the atmospheric simulations by thousands of emission sources grouped into 11 classes. The emission sources were identified using GIS techniques, and include conventional and unconventional wells, different types of compressor stations, pipelines, landfills, farming and wetlands. Initial estimates for each source are calculated based on emission factors from EPA and few regional studies. A genetic algorithm is then used to identify optimal emission rates for the 11 classes of methane emissions and to explore extreme events and spatial and temporal structures in the emissions associated with natural gas activities.

  14. Methane Pyrolysis and Disposing Off Resulting Carbon

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is wasteful of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduced the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (1) recover hydrogen from the excess methane produced by the S/E process, (2) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (3) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. Hydrogen may be obtained from methane by pyrolysis in the temperature range 10000-12000C. The main reaction products are hydrogen and carbon, though very small amounts of higher hydrocarbons, including aromatic hydrocarbons are formed. The conversion efficiency is about 95% at 12000C. One needs to distinguish between thermodynamic equilibrium conversion and conversion limited by kinetics in a finite reactor.

  15. Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks: Thermal, Electrical and Stress Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.

    2006-04-07

    This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anodemore » ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.« less

  16. Economic and Cultural Factors Affecting University Excellence

    ERIC Educational Resources Information Center

    Jabnoun, Naceur

    2009-01-01

    Purpose: The ranking of top universities in the world has generated increased interest in the factors that enhance university performance. The purpose of this paper is to identify economic and cultural factors that affect the number of top ranking universities in each country. Design/methodology/approach: This paper first identifies the number of…

  17. Evidence for methane in Martian meteorites

    PubMed Central

    Blamey, Nigel J. F.; Parnell, John; McMahon, Sean; Mark, Darren F.; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R. M.; Banerjee, Neil R.; Flemming, Roberta L.

    2015-01-01

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity. PMID:26079798

  18. Evidence for methane in Martian meteorites.

    PubMed

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  19. The effect of elevated methane pressure on methane hydrate dissociation

    USGS Publications Warehouse

    Circone, S.; Stern, L.A.; Kirby, S.H.

    2004-01-01

    Methane hydrate, equilibrated at P, T conditions within the hydrate stability field, was rapidly depressurized to 1.0 or 2.0 MPa and maintained at isobaric conditions outside its stability field, while the extent and rate of hydrate dissociation was measured at fixed, externally maintained temperatures between 250 and 288 K. The dissociation rate decreases with increasing pressure at a given temperature. Dissociation rates at 1.0 MPa parallel the complex, reproducible T-dependence previously observed between 250 and 272 K at 0.1 MPa. The lowest rates were observed near 268 K, such that >50% of the sample can persist for more than two weeks at 0.1 MPa to more than a month at 1 and 2 MPa. Varying the pressure stepwise in a single experiment increased or decreased the dissociation rate in proportion to the rates observed in the isobaric experiments, similar to the rate reversibility previously observed with stepwise changes in temperature at 0.1 MPa. At fixed P, T conditions, the rate of methane hydrate dissociation decreases monotonically with time, never achieving a steady rate. The relationship between time (t) and the extent of hydrate dissociation is empirically described by: Evolved gas (%) = A??tB where the pre-exponential term A ranges from 0 to 16% s-B and the exponent B is generally <1. Based on fits of the dissociation results to Equation 1 for the full range of temperatures (204 to 289 K) and pressures (0.1 to 2.0 MPa) investigated, the derived parameters can be used to predict the methane evolution curves for pure, porous methane hydrate to within ??5%. The effects of sample porosity and the presence of quartz sand and seawater on methane hydrate dissociation are also described using Equation 1.

  20. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and

  1. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    PubMed Central

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  2. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.

    PubMed

    Deutzmann, Joerg S; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-12-23

    Anaerobic methane oxidation coupled to denitrification, also known as "nitrate/nitrite-dependent anaerobic methane oxidation" (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 µmol CH4⋅m(-2)⋅d(-1)) and actual rates calculated from microsensor profiles (31-437 µmol CH4⋅m(-2)⋅d(-1)) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones.

  3. State-of-the-art in coalbed methane drilling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

    2008-09-15

    The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less

  4. ENVIRONMENTAL FACTORS AFFECTING BREAST CANCER SUSCEPTIBILITY

    EPA Science Inventory

    Environmental Factors Affecting Breast Cancer Susceptibility
    Suzanne. E. Fenton
    US EPA, ORD, MD-67 NHEERL, Reproductive Toxicology Division, Research Triangle Park, NC 27711.

    Breast cancer is still the most common malignancy afflicting women in the Western world. Alt...

  5. 30 CFR 75.342 - Methane monitors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors. 75.342 Section 75.342 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.342 Methane monitors. (a)(1) MSHA approved methane monitors shall be installed on all face cutting machines, continuous miners, longwall face...

  6. 30 CFR 75.342 - Methane monitors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors. 75.342 Section 75.342 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.342 Methane monitors. (a)(1) MSHA approved methane monitors shall be installed on all face cutting machines, continuous miners, longwall face...

  7. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    PubMed Central

    Catlett, Jennie L.; Ortiz, Alicia M.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  8. Microbial Methane Fermentation Kinetics for Toxicant Exposure.

    DTIC Science & Technology

    1981-08-31

    percent of digester contents daily. Bauchcp (1967) used chloroform as a specific inhibitor for methane formation in suspensions of rumen fluid. Other...washout. -wt 113 ,YO. it i L ,. . , . . . - _ TABLE OF CONTENTS I temn Page ABSTRACT................ . . ...... . ... .. .. .. .. .. .. .. INTRODUCTION...several environmental factors (McCarty, 1964; Dague, 1968; Metcalf and Eddy, 1979). The reactor contents should be free of dis- solved oxygen and other

  9. Factors Affecting Radon Concentration in Houses

    NASA Astrophysics Data System (ADS)

    Al-Sharif, Abdel-Latif; Abdelrahman, Y. S.

    2001-03-01

    The dangers to the human health upon exposure to radon and its daughter products is the main motivation behind the vast number of studies performed to find the concentration of radon in our living environment, including our houses. The presence of radon and its daughter products in houses are due to various sources including building materials and the soil under the houses. Many factors affect radon concentration in our houses, the elevation above ground level,ventilation, building materials and room usage being among these factors. In our paper, we discuss the effect of elevation above ground level, room usage and ventilation on the Radon concentration in houses. The faculty residences of the Mu'tah University (Jordan) were chosen in our study. Our results showed that the concentration of radon decreases with elevation. Ventilation rate was also found to affect radon concentration, where low concentrations observed for areas with good ventilation.

  10. Widespread methane leakage from the sea floor on the northern US Atlantic margin

    USGS Publications Warehouse

    Skarke, Adam; Ruppel, Carolyn; Kodis, Mali'o; Brothers, Daniel S.; Lobecker, Elizabeth A.

    2014-01-01

    Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic communities and energy resources. Global methane flux from seabed cold seeps has only been estimated for continental shelves, at 8 to 65 Tg CH4 yr−1, yet other parts of marine continental margins are also emitting methane. The US Atlantic margin has not been considered an area of widespread seepage, with only three methane seeps recognized seaward of the shelf break. However, massive upper-slope seepage related to gas hydrate degradation has been predicted for the southern part of this margin, even though this process has previously only been recognized in the Arctic. Here we use multibeam water-column backscatter data that cover 94,000 km2 of sea floor to identify about 570 gas plumes at water depths between 50 and 1,700 m between Cape Hatteras and Georges Bank on the northern US Atlantic passive margin. About 440 seeps originate at water depths that bracket the updip limit for methane hydrate stability. Contemporary upper-slope seepage there may be triggered by ongoing warming of intermediate waters, but authigenic carbonates observed imply that emissions have continued for more than 1,000 years at some seeps. Extrapolating the upper-slope seep density on this margin to the global passive margin system, we suggest that tens of thousands of seeps could be discoverable.

  11. Metagenomics in methane seep detection and studies of the microbial methane sediment filter

    NASA Astrophysics Data System (ADS)

    Gunn Rike, Anne; Håvelsrud, Othilde Elise; Haverkamp, Thomas; Kristensen, Tom; Jakobsen, Kjetill

    2013-04-01

    Metanotrophic prokaryotes with their capacity to oxidize methane to biomass and CO2 contribute considerably in reduction of the global methane emission from oceans. Metagenomic studies of seabed sediments represent a new approach to detect marine methane seeps and to study whether the inhabiting microbial consortium represent a microbial methane filter. We have used next generation high throughput DNA sequencing technology to study microbial consortia and their potential metabolic processes in marine sediment samples from the Håkon Mosby mud volcano (HMMV) in the Barents Sea, the Tonya Seep in the Coal Oil Point area in California and from the pockmarked area at the Troll oil and gas field in the North Sea. Annotation of archaeal reads from the HMMV metagenome resulted in hits to all enzymes supposed to be involved in the anaerobic oxidation of methane (AOM) carried out by anaerobic methanotrophic archaea (ANME). The presence of several ANME taxa at HMMV has previously been well described (1). The stratification analysis of the Tonya seep sediment showed that both aerobic and anaerobic methanotrophs were present at both layers investigated, although total archaea, ANME-1, ANME-2 and ANME-3 were overabundant in the deepest layer. Several sulphate reducing taxa (possibly syntrophic ANME partners) were detected. The Tonya Seep sediment represent a robust methane filter where presently dominating methanotrophic taxa could be replaced by less abundant methanotrophs should the environmental conditions change (2). In the Troll pockmarked sediments several methanotrophic taxa including ANME-1, ANME-2 and candidate division NC10 were detected although there was an overabundance of autotrophic nitrifiers (e.g. Nitrosopumilis, Nitrococcus, Nitrospira) using CO2 as the carbon source. Methane migrating upwards through the sediments is probably oxidized to CO2 in AOM resulting in an upward CO2 flux. The CO2 entering the seafloor may contribute to maintain the pockmark structure

  12. Factors affecting caregivers' ability to make environmental modifications.

    PubMed

    Messecar, D C

    2000-12-01

    This study explored factors that family caregivers described as affecting their ability to use environmental modifications. Intensive interviews and participant observation were used to collect detailed data from 24 primary family caregivers. Several factors that affect the caregivers' ability to implement modification strategies were identified in the analysis. These factors included attributes of the elderly individual, attributes of the modification, quality of the caregiver-elderly relationship, caregivers' skills, personal resources of the caregiver, and the informal and formal supports available. Of these factors, the most important were the salient skills that caregivers need to implement environmental modifications. These findings point to the importance of caregivers receiving skills training in this important dimension of caregiving. Intervention should be based on a collaborative approach that ensures the caregiver and care receiver's needs and preferences are respected.

  13. Impact of different antibiotics on methane production using waste-activated sludge: mechanisms and microbial community dynamics.

    PubMed

    Mustapha, Nurul Asyifah; Sakai, Kenji; Shirai, Yoshihito; Maeda, Toshinari

    2016-11-01

    Anaerobic digestion is an effective method for reducing the by-product of waste-activated sludge (WAS) from wastewater treatment plants and for producing bioenergy from WAS. However, only a limited number of studies have attempted to improve anaerobic digestion by targeting the microbial interactions in WAS. In this study, we examined whether different antibiotics positively, negatively, or neutrally influence methane fermentation by evaluating changes in the microbial community and functions in WAS. Addition of azithromycin promoted the microbial communities related to the acidogenic and acetogenic stages, and a high concentration of soluble proteins and a high activity of methanogens were detected. Chloramphenicol inhibited methane production but did not affect the bacteria that contribute to the hydrolysis, acidogenesis, and acetogenesis digestion stages. The addition of kanamycin, which exhibits the same methane productivity as a control (antibiotic-free WAS), did not affect all of the microbial communities during anaerobic digestion. This study demonstrates the simultaneous functions and interactions of diverse bacteria and methanogenic Archaea in different stages of the anaerobic digestion of WAS. The ratio of Caldilinea, Methanosarcina, and Clostridium may correspond closely to the trend of methane production in each antibiotic. The changes in microbial activities and function by antibiotics facilitate a better understanding of bioenergy production.

  14. Methane and other hydrocarbon gases in sediment from the southeastern North American continental margin

    USGS Publications Warehouse

    Kvenvolden, K.A.; Lorenson, T.D.

    2000-01-01

    Residual concentrations and distributions of hydrocarbon gases from methane to n-heptane were measured in sediments at seven sites on Ocean Drilling Program (ODP) Leg 164. Three sites were drilled at the Cape Fear Diapir of the Carolina Rise, and one site was drilled on the Blake Ridge Diapir. Methane concentrations at these sites result from microbial generation which is influenced by the amount of pore-water sulfate and possible methane oxidation. Methane hydrate was found at the Blake Ridge Diapir site. The other hydrocarbon gases at these sites are likely the produce of early microbial processes. Three sites were drilled on a transect of holes across the crest of the Blake Ridge. The base of the zone of gas-hydrate occurrence was penetrated at all three sites. Trends in hydrocarbon gas distributions suggest that methane is microbial in origin and that the hydrocarbon gas mixture is affected by diagenesis, outgassing, and, near the surface, by microbial oxidation. Methane hydrate was recovered at two of these three sites, although gas hydrate is likely present at all three sites. The method used here for determining amounts of residual hydrocarbon gases has its limitations and provides poor assessment of gas distributions, particularly in the stratigraphic interval below about ~ 100 mbsf. One advantage of the method, however, is that it yields sufficient quantities of gas for other studies such as isotopic determinations.

  15. Mechanistic insights into heterogeneous methane activation

    DOE PAGES

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; ...

    2017-01-11

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less

  16. Mechanistic insights into heterogeneous methane activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less

  17. Effect of silane concentration on the supersonic combustion of a silane/methane mixture

    NASA Technical Reports Server (NTRS)

    Northam, G. B.; Mclain, A. G.; Pellett, G. L.; Diskin, G. S.

    1986-01-01

    A series of direct connect combustor tests was conducted to determine the effect of silane concentration on the supersonic combustion characteristics of silane/methane mixtures. Shock tube ignition delay data indicated more than an order of magnitude reduction in ignition delay times for both 10 and 20 percent silane/methane mixtures as compared to methane. The ignition delay time of the 10 percent mixture was only a factor of 2.3 greater than that of the 20 percent mixture. Supersonic combustion tests were conducted with the fuel injected into a model scramjet combustor. The combustor was mounted at the exit of a Mach 2 nozzle and a hydrogen fired heater was used to provide a variation in test gas total temperature. Tests using the 20 percent silane/methane mixture indicated considerable combustion enhancement when compared to methane alone. This mixture had an autoignition total temperature of 1650 R. This autoignition temperature can be contrasted with 2330 R for hydrogen and 1350 R for a 20 percent silane/hydrogen mixture in similar hardware. Methane without the silane additive did not autoignite in this configuration at total temperatures as high as 3900 R, the maximum temperature at which tests were conducted. Supersonic combustion tests with the silane concentration reduced to 10 percent indicated little improvement in combustion performance over pure methane. The addition of 20 percent silane to methane resulted in a pyrophoric fuel with good supersonic combustion performance. Reducing the silane concentration below this level, however, yielded a less pyrophoric fuel that exhibited poor supersonic combustion performance.

  18. Development of a life-cycle fugitive methane emissions model utilizing device level emissions and activity factors

    NASA Astrophysics Data System (ADS)

    Englander, J.; Brandt, A. R.

    2017-12-01

    There has been numerous studies in quantifying the scale of fugitive emissions from across the natural gas value chain. These studies have typically focused on either specific types of equipment (such as valves) or on a single part of the life-cycle of natural gas production (such as gathering stations).1,2 However it has been demonstrated that average emissions factors are not sufficient for representing leaks in the natural gas system.3 In this work, we develop a robust estimate of fugitive emissions rates by incorporating all publicly available studies done at the component up to the process level. From these known studies, we create a database of leaks with normalized nomenclature from which leak estimates can be drawn from actual leak observations. From this database, and parameterized by meta-data such as location, scale of study, or placement in the life-cycle, we construct stochastic emissions factors specific for each process unit. This will be an integrated tool as part of the Oil production greenhouse gas estimator (OPGEE) as well as the Fugitive Emissions Abatement Simulation Toolkit (FEAST) models to enhances their treatment of venting and fugitive emissions, and will be flexible to include user provided data and input parameters.4,51. Thoma, ED et al. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions. J. Environ. Prot. 2017. 2. Marchese, AJ et al. Methane Emissions from United States Natural Gas Gathering and Processing. ES&T 2015. doi:10.1021/acs.est.5b02275 3. Brandt, AR et al. Methane Leaks from Natural Gas Systems Follow Extreme Distributions. ES&T 2016. doi:10.1021/acs.est.6b04303 4. El-Houjeiri, HM et al. An open-source LCA tool estimating greenhouse gas emissions from crude oil production using field characteristics. ES&T 2013. doi: 10.1021/es304570m 5. Kemp, CE et al. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source `Virtual Gas Field' Simulator. ES&T 2016. doi:10.1021/acs.est.5b

  19. The design of a PC-based real-time system for monitoring Methane and Oxygen concentration in biogas production

    NASA Astrophysics Data System (ADS)

    Yantidewi, M.; Muntini, M. S.; Deta, U. A.; Lestari, N. A.

    2018-03-01

    Limited fossil fuels nowadays trigger the development of alternative energy, one of which is biogas. Biogas is one type of bioenergy in the form of fermented gases of organic materials such as animal waste. The components of gases present in biogas and affect the biogas production are various, such as methane and oxygen. The biogas utilization will be more optimal if both gases concentration (in this case is methane and oxygen concentration) can be monitored. Therefore, this research focused on designing the monitoring system of methane and oxygen concentration in biogas production in real-time. The results showed that the instrument system was capable of monitoring and recording the data of gases (methane and oxygen) concentration in biogas production in every second.

  20. Methane mitigation shows significant benefits towards achieving the 1.5 degree target.

    NASA Astrophysics Data System (ADS)

    Collins, W.; Webber, C.; Cox, P. M.; Huntingford, C.; Lowe, J. A.; Sitch, S.

    2017-12-01

    Most analyses of allowable carbon emissions to achieve the 1.5 degree target implicitly assume that the ratio of CO2 to non-CO2 greenhouse gases remains near constant, and that all radiative forcing factors have similar impacts on land and ocean carbon storage. Here we determine how plausible reductions in methane emissions will make the carbon targets more feasible. We account for the latest estimates of the methane radiative effect as well as the indirect effects of methane on ozone. We particularly address the differing effects of methane and CO2 mitigation on the land carbon storage including via reduced concentrations of surface ozone. The methodology uses an intermediate complexity climate model (IMOGEN) coupled to a land surface model (JULES) which represents the details of the terrestrial carbon cycle. The carbon emissions inputs to IMOGEN are varied to find allowable pathways consistent with the Paris 1.5 K or 2.0 K targets. The IMOGEN physical parameters are altered to represent the climate characteristics of 38 CMIP5 models (such as climate sensitivity) to provide bounds on the range of allowable CO2 emissions. We examine the effects of three different methane mitigation options that are broadly consistent with the ranges in the SSP scenarios: little mitigation, cost-optimal mitigation, and maximal mitigation. The land and ocean carbon storage increases with methane mitigation, allowing more flexibility in CO2 emission reduction. This is mostly since CO2 fertilisation is reduced less with high methane mitigation, with a small contribution from reduced plant damage with lower surface ozone levels.

  1. Ruminant methane delta(/sup 13/C//sup 12/C) values: relation to atmospheric methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rust, F.

    1981-03-06

    The delta(/sup 13/C//sup 12/C) - values of methane produced by fistulated steers, dairy cattle, and wethers, and dairy and beef cattle herds show a bimodal distribution that appears to be correlated with the plant type (C/sub 3/ or C/sub 4/, that is, producing either a three- or a four-carbon acid in the first step of photosynthesis) consumed by the animals. These results indicate that cattle and sheep, on a global basis, release methane with an average delta(/sup 13/C//sup 12/C) value of -60 and -63 per mil, respectively. Together they are a source of atmospheric methane whose delta(/sup 13/C//sup 12/C) ismore » similar to published values for marsh gas and cannot explain the 20 per mil higher values for atmospheric methane.« less

  2. Small Molecule Catalysts for Harvesting Methane Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, S. E.; Ceron-Hernandez, M.; Oakdale, J.

    As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseousmore » methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.« less

  3. Aqueous Mesocosm Techniques Enabling the Real-Time Measurement of the Chemical and Isotopic Kinetics of Dissolved Methane and Carbon Dioxide.

    PubMed

    Chan, Eric W; Kessler, John D; Shiller, Alan M; Joung, DongJoo; Colombo, Frank

    2016-03-15

    Previous studies of microbially mediated methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on what factor(s) are limiting in these types of environments. These factors include the availability of methane, O2, trace metals, nutrients, the density of cell population, and the influence that CO2 production may have on pH. To look at this process in its entirety, we developed an automated mesocosm incubation system with a Dissolved Gas Analysis System (DGAS) coupled to a myriad of analytical tools to monitor chemical changes during methane oxidation. Here, we present new high temporal resolution techniques for investigating dissolved methane and carbon dioxide concentrations and stable isotopic dynamics during aqueous mesocosm and pure culture incubations. These techniques enable us to analyze the gases dissolved in solution and are nondestructive to both the liquid media and the analyzed gases enabling the investigation of a mesocosm or pure culture experiment in a completely closed system, if so desired.

  4. Which factors affect software projects maintenance cost more?

    PubMed

    Dehaghani, Sayed Mehdi Hejazi; Hajrahimi, Nafiseh

    2013-03-01

    The software industry has had significant progress in recent years. The entire life of software includes two phases: production and maintenance. Software maintenance cost is increasingly growing and estimates showed that about 90% of software life cost is related to its maintenance phase. Extraction and considering the factors affecting the software maintenance cost help to estimate the cost and reduce it by controlling the factors. In this study, the factors affecting software maintenance cost were determined then were ranked based on their priority and after that effective ways to reduce the maintenance costs were presented. This paper is a research study. 15 software related to health care centers information systems in Isfahan University of Medical Sciences and hospitals function were studied in the years 2010 to 2011. Among Medical software maintenance team members, 40 were selected as sample. After interviews with experts in this field, factors affecting maintenance cost were determined. In order to prioritize the factors derived by AHP, at first, measurement criteria (factors found) were appointed by members of the maintenance team and eventually were prioritized with the help of EC software. Based on the results of this study, 32 factors were obtained which were classified in six groups. "Project" was ranked the most effective feature in maintenance cost with the highest priority. By taking into account some major elements like careful feasibility of IT projects, full documentation and accompany the designers in the maintenance phase good results can be achieved to reduce maintenance costs and increase longevity of the software.

  5. The Late Holocene Atmospheric Methane Budget Reconstructed from Ice Cores

    NASA Astrophysics Data System (ADS)

    Mitchell, Logan E.

    provides an important constraint on changes in the latitudinal distribution of sources. We used this constraint and an 8-box global methane chemical transport model to examine the Early Anthropogenic Hypothesis which posits that humans began influencing climate thousands of years ago by increasing greenhouse gas emissions and preventing the onset of the next ice age. I found that most of the increase in methane sources over this time came from tropical regions with a smaller contribution coming from the extratropical northern hemisphere. Based on previous modeling estimates of natural methane source changes, I found that the increase in the southern hemisphere tropical methane emissions was likely natural and that the northern hemispheric increase in methane emissions was likely due to anthropogenic activities. These results also provide new constraints on the total magnitude of pre-industrial anthropogenic methane emissions, which I found to be between the high and low estimates that have been previously published in the literature. For the final component of my thesis I assembled a coalition of scientists to investigate the effects of layering on the process of air enclosure in ice at WAIS Divide. Air bubbles are trapped in ice 60-100m below the surface of an ice sheet as snow compacts into solid ice in a region that is known as the Lock-In Zone (LIZ). The details of this process are not known and in the absence of direct measurements previous researchers have assumed it to be a smooth process. This project utilized high-resolution methane and air content measurements as well as density of ice, delta15N of N2, and bubble number density measurements to show that air entrapment is affected by high frequency (mm scale) layering in the density of ice within the LIZ. I show that previous parameterizations of the bubble closure process in firn models have not accounted for this variability and present a new parameterization which does. This has implications for interpreting

  6. Municipal solid waste characterization and its assessment for potential methane generation: a case study.

    PubMed

    Mor, Suman; Ravindra, Khaiwal; De Visscher, Alex; Dahiya, R P; Chandra, A

    2006-12-01

    There has been a significant increase in municipal solid waste (MSW) generation in India during the last few decades and its management has become a major issue because the poor waste management practices affect the health and amenity of the cities. In the present study, various physico-chemical parameters of the MSW were analyzed to characterize the waste dumped at Gazipur landfill site in Delhi, India, which shows that it contains a high fraction of degradable organic components. The decomposition of organic components produces methane, a significant contributor to global warming. Based on the waste composition, waste age and the total amount dumped, a first-order decay model (FOD) was applied to estimate the methane generation potential of the Gazipur landfill site, which yields an estimate of 15.3 Gg/year. This value accounts to about 1-3% of existing Indian landfill methane emission estimates. Based on the investigation of Gazipur landfill, we estimate Indian landfill methane emissions at 1.25 Tg/year or 1.68 Tg/year of methane generation potential. These values are within the range of existing estimates. A comparison of FOD with a recently proposed triangular model was also performed and it shows that both models can be used for the estimation of methane generation. However, the decrease of the emission after closure is more gradual in the case of the first-order model, leading to larger gas production predictions after more than 10 years of closure. The regional and global implications of national landfill methane emission are also discussed.

  7. 40 CFR 60.700 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compounds (TOC) (less methane and ethane) in the vent stream less than 300 ppmv as measured by Method 18 or... maximum production rate at which the affected facility will be operated, or 180 days after the initial... limits in these standards are expressed in terms of TOC, measured as TOC less methane and ethane. This...

  8. 40 CFR 60.700 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compounds (TOC) (less methane and ethane) in the vent stream less than 300 ppmv as measured by Method 18 or... maximum production rate at which the affected facility will be operated, or 180 days after the initial... limits in these standards are expressed in terms of TOC, measured as TOC less methane and ethane. This...

  9. Solubility of methane in water: the significance of the methane-water interaction potential.

    PubMed

    Konrad, Oliver; Lankau, Timm

    2005-12-15

    The influence of the methane-water interaction potential on the value of the Henry constant obtained from molecular dynamics simulations was investigated. The SPC, SPC/E, MSPC/E, and TIP3P potentials were used to describe water and the OPLS-UA and TraPPE potentials for methane. Nonbonding interactions between unlike atoms were calculated both with one of four mixing rules and with our new methane-water interaction potential. The Henry constants obtained from simulations using any of the mixing rules differed significantly from the experimental ones. Good agreement between simulation and experiment was achieved with the new potential over the whole temperature range.

  10. Measurements of methane emissions at natural gas production sites in the United States.

    PubMed

    Allen, David T; Torres, Vincent M; Thomas, James; Sullivan, David W; Harrison, Matthew; Hendler, Al; Herndon, Scott C; Kolb, Charles E; Fraser, Matthew P; Hill, A Daniel; Lamb, Brian K; Miskimins, Jennifer; Sawyer, Robert F; Seinfeld, John H

    2013-10-29

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67-3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ± 200 Gg). The estimate for comparable source categories in the EPA national inventory is ~1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production).

  11. Measurements of methane emissions at natural gas production sites in the United States

    PubMed Central

    Allen, David T.; Torres, Vincent M.; Thomas, James; Sullivan, David W.; Harrison, Matthew; Hendler, Al; Herndon, Scott C.; Kolb, Charles E.; Fraser, Matthew P.; Hill, A. Daniel; Lamb, Brian K.; Miskimins, Jennifer; Sawyer, Robert F.; Seinfeld, John H.

    2013-01-01

    Engineering estimates of methane emissions from natural gas production have led to varied projections of national emissions. This work reports direct measurements of methane emissions at 190 onshore natural gas sites in the United States (150 production sites, 27 well completion flowbacks, 9 well unloadings, and 4 workovers). For well completion flowbacks, which clear fractured wells of liquid to allow gas production, methane emissions ranged from 0.01 Mg to 17 Mg (mean = 1.7 Mg; 95% confidence bounds of 0.67–3.3 Mg), compared with an average of 81 Mg per event in the 2011 EPA national emission inventory from April 2013. Emission factors for pneumatic pumps and controllers as well as equipment leaks were both comparable to and higher than estimates in the national inventory. Overall, if emission factors from this work for completion flowbacks, equipment leaks, and pneumatic pumps and controllers are assumed to be representative of national populations and are used to estimate national emissions, total annual emissions from these source categories are calculated to be 957 Gg of methane (with sampling and measurement uncertainties estimated at ±200 Gg). The estimate for comparable source categories in the EPA national inventory is ∼1,200 Gg. Additional measurements of unloadings and workovers are needed to produce national emission estimates for these source categories. The 957 Gg in emissions for completion flowbacks, pneumatics, and equipment leaks, coupled with EPA national inventory estimates for other categories, leads to an estimated 2,300 Gg of methane emissions from natural gas production (0.42% of gross gas production). PMID:24043804

  12. Atmospheric methane in the 21st century: what does the future hold? (Invited)

    NASA Astrophysics Data System (ADS)

    Nisbet, E. G.; Dlugokencky, E. J.; Manning, M. R.; Houweling, S.; Lowry, D.; Fisher, R. E.; France, J. L.; Warwick, N. J.; Pyle, J. A.

    2013-12-01

    . However, burning is agriculturally wasteful of nutrients and causes major regional air pollution events, whereas fire control is relatively easy and thus deliberate tropical biomass burning may decrease, unless it becomes dominated by extremes in drought. Methane sinks may either increase or decrease. A warmer and wetter world would tend to increase the uptake by soil methanotrophy, but the predominant sink is oxidation which depends on hydroxyl (OH). Future changes in OH and hence methane lifetime are hard to predict and some of the CH4 increase that started in 2007 may be attributed to either a decrease in OH or to a change in its spatial distribution. A range of other anthropogenic factors on atmospheric chemistry, such as likely reduction in Asian urban pollution, can affect OH and the CH4 budget. Thus, while anthropogenic methane emissions are currently increasing, improvements in technology together with better detection and regulation systems can stabilize or reduce them. In contrast, both future natural emissions and the OH sink remain problematic and demand careful monitoring. Methane's past history shows it is a potent climate lever, capable of rapid change with fast-acting and hard to predict feedbacks, so it needs to be diligently watched.

  13. New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents.

    PubMed

    Sultan, Nabil; Garziglia, Sébastien; Ruffine, Livio

    2016-05-27

    Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria's coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries.

  14. The methane production of poultry slaughtering residues and effects of pre-treatments on the methane production of poultry feather.

    PubMed

    Salminen, E; Einola, J; Rintala, J

    2003-09-01

    The biological methane production rate and yield of different poultry slaughtering residues were studied. Poultry offal, blood, and bonemeal were rich in proteins and lipids and showed high methane yields, 0.7-0.9, 0.5, and 0.6-0.7 m3 kg(-1) volatile solids(added), respectively (270-340, 100, and 150-170 m3 ton(-1) wet weight). Blood and bonemeal produced methane rapidly, whereas the methane production of offal was more delayed probably due to long-chain fatty acid inhibition. The length of delay depended on the source and concentration of inoculum and incubation temperature, sewage sludge at 35 degrees C having the shortest delay of a few days, while granular sludge did not produce methane within 94 days of incubation. Feather showed a somewhat lower methane yield, 0.21 m3 kg(-1) volatile solids(added) (50 m3 ton(-1) wet weight). Combined thermal (120 degrees C, 5 min) and enzymatic (commercial alkaline endopeptidase, 2-10 g l(-1)) pre-treatments increased its methane yield by 37 to 51%. Thermal (70-120 degrees C, 5-60 min), chemical (NaOH 2-10 g l(-1), 2-24 h), and enzymatic pre-treatments were less effective, with methane yield increasing by 5 to 32%. Based on the present results, anaerobic digestion of the studied poultry slaughtering residues appears a promising possibility because of the high methane yield and nitrogen content of these residues (8 to 14% N of total solids), whereas pre-treatments were shown to improve the methane production of feather.

  15. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    NASA Astrophysics Data System (ADS)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of <30 ppb and <10 ppb, respectively at <1 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10 ppm in a single measurement. Furthermore, a high precision methane only mode is available for surveying and locating leakage with a 1-σ precision of <3 ppb. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS in order to visualize horizontal plane gas propagation.

  16. Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific.

    PubMed

    Juottonen, Heli; Kotiaho, Mirkka; Robinson, Devin; Merilä, Päivi; Fritze, Hannu; Tuittila, Eeva-Stiina

    2015-09-01

    Vegetation and water table are important regulators of methane emission in peatlands. Microform variation encompasses these factors in small-scale topographic gradients of dry hummocks, intermediate lawns and wet hollows. We examined methane production and oxidization among microforms in four boreal bogs that showed more variation of vegetation within a bog with microform than between the bogs. Potential methane production was low and differed among bogs but not consistently with microform. Methane oxidation followed water table position with microform, showing higher rates closer to surface in lawns and hollows than in hummocks. Methanogen community, analysed by mcrA terminal restriction fragment length polymorphism and dominated by Methanoregulaceae or 'Methanoflorentaceae', varied strongly with bog. The extent of microform-related variation of methanogens depended on the bog. Methanotrophs identified as Methylocystis spp. in pmoA denaturing gradient gel electrophoresis similarly showed effect of bog, and microform patterns were stronger within individual bogs. Our results suggest that methane-cycling microbes in boreal Sphagnum bogs with seemingly uniform environmental conditions may show strong site-dependent variation. The bog-intrinsic factor may be related to carbon availability but contrary to expectations appears to be unrelated to current surface vegetation, calling attention to the origin of carbon substrates for microbes in bogs. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Catalytic aromatization of methane.

    PubMed

    Spivey, James J; Hutchings, Graham

    2014-02-07

    Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.

  18. Preslaughter factors affecting poultry meat quality chapter 2.

    USDA-ARS?s Scientific Manuscript database

    Poultry meat quality is affected by numerous antemortem factors, in particular those occurring during the last 24 hours that the bird is alive. These short term factors influence carcass yield (live shrink), carcass defects (bruising, broken/dislocated bones), carcass microbiological contamination, ...

  19. Methane flux from coastal salt marshes

    NASA Technical Reports Server (NTRS)

    Bartlett, K. B.; Harriss, R. C.; Sebacher, D. I.

    1985-01-01

    It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.

  20. Methane from shallow seep areas of the NW Svalbard Arctic margin does not reach the sea surface

    NASA Astrophysics Data System (ADS)

    Silyakova, Anna; Greinert, Jens; Jansson, Pär; Ferré, Bénédicte

    2015-04-01

    Methane, an important greenhouse gas, leaks from large areas of the Arctic Ocean floor. One overall question is how much methane passes from the seabed through the water column, potentially reaching the atmosphere. Transport of methane from the ocean floor into and through the water column depends on many factors such as distribution of gas seeps, microbial methane oxidation, and ambient oceanographic conditions, which may trigger a change in seep activity. From June-July 2014 we investigated dissolved methane in the water column emanating from the "Prins Karls Forland seeps" area offshore the NW Svalbard Arctic margin. Measurements of the spatial variability of dissolved methane in the water column included 65 CTD stations located in a grid covering an area of 30 by 15 km. We repeated an oceanographic transect twice in a week for time lapse studies, thus documenting significant temporal variability in dissolved methane above one shallow seep site (~100 m water depth). Analysis of both nutrient concentrations and dissolved methane in water samples from the same transect, reveal striking similarities in spatial patterns of both dissolved methane and nutrients indicating that microbial community is involved in methane cycling above the gas seepage. Our preliminary results suggest that although methane release can increase in a week's time, providing twice as much dissolved gas to the water column, no methane from a seep reaches the sea surface. Instead it spreads horizontally under the pycnocline. Yet microbial communities react rapidly to the methane supply above gas seepage areas and may also have an important role as an effective filter, hindering methane release from the ocean to the atmosphere during rapid methane ebullition. This study is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259.

  1. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGES

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time

  2. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Marcos Y.; Holler, Thomas; Goldhammer, Tobias; Wegener, Gunter; Pohlman, John W.; Brunner, Benjamin; Kuypers, Marcel M. M.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2014-03-01

    Collectively, marine sediments comprise the largest reservoir of methane on Earth. The flux of methane from the sea bed to the overlying water column is mitigated by the sulphate-dependent anaerobic oxidation of methane by marine microbes within a discrete sedimentary horizon termed the sulphate-methane transition zone. According to conventional isotope systematics, the biological consumption of methane leaves a residue of methane enriched in 13C (refs , , ). However, in many instances the methane within sulphate-methane transition zones is depleted in 13C, consistent with the production of methane, and interpreted as evidence for the intertwined anaerobic oxidation and production of methane. Here, we report results from experiments in which we incubated cultures of microbial methane consumers with methane and low levels of sulphate, and monitored the stable isotope composition of the methane and dissolved inorganic carbon pools over time. Residual methane became progressively enriched in 13C at sulphate concentrations above 0.5 mM, and progressively depleted in 13C below this threshold. We attribute the shift to 13C depletion during the anaerobic oxidation of methane at low sulphate concentrations to the microbially mediated carbon isotope equilibration between methane and carbon dioxide. We suggest that this isotopic effect could help to explain the 13C-depletion of methane in subseafloor sulphate-methane transition zones.

  3. Studying methane migration mechanisms at Walker Ridge, Gulf of Mexico, via 3D methane hydrate reservoir modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nole, Michael; Daigle, Hugh; Mohanty, Kishore

    We have developed a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ microbial methanogenesis, the influence of pore size contrast on solubility gradients, and the impact of salt exclusion from the hydrate phase on dissolved methane equilibrium in pore water. Using environmental parameters from Walker Ridge in the Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. We find that with sufficient methane beingmore » supplied by organic methanogenesis in the clays, a 200x pore size contrast between clays and sands allows for a strong enough concentration gradient to significantly drop the concentration of methane hydrate in clays immediately surrounding a thin sand layer, a phenomenon that is observed in well log data. Building upon previous work, our simulations account for the increase in sand-clay solubility contrast with depth from about 1.6% near the top of the sediment column to 8.6% at depth, which leads to a progressive strengthening of the diffusive flux of methane with time. By including an exponentially decaying organic methanogenesis input to the clay lithology with depth, we see a decrease in the aqueous methane supplied to the clays surrounding the sand layer with time, which works to further enhance the contrast in hydrate saturation between the sand and surrounding clays. Significant diffusive methane transport is observed in a clay interval of about 11m above the sand layer and about 4m below it, which matches well log observations. The clay-sand pore size contrast alone is not enough to completely eliminate hydrate (as observed in logs), because the diffusive flux of aqueous methane due to a contrast in pore size occurs slower than the rate at which methane is supplied via organic

  4. Reversing methanogenesis to capture methane for liquid biofuel precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti

    Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) frommore » a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl 3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl 3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using 13C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. Lastly, we anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.« less

  5. Reversing methanogenesis to capture methane for liquid biofuel precursors

    DOE PAGES

    Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti; ...

    2016-01-14

    Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) frommore » a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl 3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl 3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using 13C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. Lastly, we anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.« less

  6. Methane on Mars: Measurements and Possible Origins

    NASA Technical Reports Server (NTRS)

    Mumma, Michael J.; Villanueva, Geronimo L.; Novak, Robert E.; Radeva, Yana L.; Kaufl, H. Ulrich; Tokunaga, Alan; Encrenaz, Therese; Hartogh, Paul

    2011-01-01

    The presence of abundant methane in Earth's atmosphere (1.6 parts per million) requires sources other than atmospheric chemistry. Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane has been sought for nearly 40 years because of its potential biological significance, but it was detected only recently [1-5]. Its distribution on the planet is found to be patchy and to vary with time [1,2,4,5], suggesting that methane is released recently from the subsurface in localized areas, and is then rapidly destroyed [1,6]. Before 2000, searchers obtained sensitive upper limits for methane by averaging over much of Mars' dayside hemisphere, using data acquired by Marsorbiting spacecraft (Mariner 9) and Earth-based observatories (Kitt Peak National Observatory, Canada- France-Hawaii Telescope, Infrared Space Observatory). These negative findings suggested that methane should be searched at higher spatial resolution since the local abundance could be significantly larger at active sites. Since 2001, searches for methane have emphasized spatial mapping from terrestrial observatories and from Mars orbit (Mars Express).

  7. High-resolution inversion of methane emissions in the Southeast US using SEAC4RS aircraft observations of atmospheric methane: anthropogenic and wetland sources

    NASA Astrophysics Data System (ADS)

    Sheng, Jian-Xiong; Jacob, Daniel J.; Turner, Alexander J.; Maasakkers, Joannes D.; Sulprizio, Melissa P.; Bloom, A. Anthony; Andrews, Arlyn E.; Wunch, Debra

    2018-05-01

    We use observations of boundary layer methane from the SEAC4RS aircraft campaign over the Southeast US in August-September 2013 to estimate methane emissions in that region through an inverse analysis with up to 0.25° × 0.3125° (25×25 km2) resolution and with full error characterization. The Southeast US is a major source region for methane including large contributions from oil and gas production and wetlands. Our inversion uses state-of-the-art emission inventories as prior estimates, including a gridded version of the anthropogenic EPA Greenhouse Gas Inventory and the mean of the WetCHARTs ensemble for wetlands. Inversion results are independently verified by comparison with surface (NOAA/ESRL) and column (TCCON) methane observations. Our posterior estimates for the Southeast US are 12.8 ± 0.9 Tg a-1 for anthropogenic sources (no significant change from the gridded EPA inventory) and 9.4 ± 0.8 Tg a-1 for wetlands (27 % decrease from the mean in the WetCHARTs ensemble). The largest source of error in the WetCHARTs wetlands ensemble is the land cover map specification of wetland areal extent. Our results support the accuracy of the EPA anthropogenic inventory on a regional scale but there are significant local discrepancies for oil and gas production fields, suggesting that emission factors are more variable than assumed in the EPA inventory.

  8. Raman studies of methane-ethane hydrate metastability.

    PubMed

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  9. Top-down constraints on methane and non-methane hydrocarbon emissions in the US Four Corners

    NASA Astrophysics Data System (ADS)

    Petron, G.; Miller, B. R.; Vaughn, B. H.; Kofler, J.; Mielke-Maday, I.; Sherwood, O.; Schwietzke, S.; Conley, S.; Sweeney, C.; Dlugokencky, E. J.; White, A. B.; Tans, P. P.; Schnell, R. C.

    2017-12-01

    A NASA and NOAA supported field campaign took place in the US Four Corners in April 2015 to further investigate a regional "methane hotspot" detected from space. The Four Corners region is home to the fossil fuel rich San Juan Basin, which extends between SE Colorado and NE New Mexico. The area has been extracting coal, oil and natural gas for decades. Degassing from the Fruitland coal outcrop on the Colorado side has also been reported. Instrumented aircraft, vans and ground based wind profilers were deployed for the campaign with the goal to quantify and attribute methane and non-methane hydrocarbon emissions in the region. A new comprehensive analysis of the campaign data sets will be presented and top-down emission estimates for methane and ozone precursors will be compared with available bottom-up estimates.

  10. Measurements of Atmospheric Methane and 13C/12C of Atmospheric Methane from Flask Air Samples (1999)

    DOE Data Explorer

    Quay, Paul [School of Oceanography, University of Washington; Stutsman, Johnny [School of Oceanography, University of Washington

    1999-01-01

    This database offers precise measurements of atmospheric methane and 13C/12C in atmospheric methane from flask air samples collected at eight sites worldwide and aboard NOAA cruises in the Pacific Ocean. The eight sites include Olympic Peninsula, Washington; Cape Grim, Tasmania; Fraserdale, Ontario; Marshall Islands; Baring Head, New Zealand; Mauna Loa, Hawaii; Point Barrow, Alaska; and American Samoa. The measurements span the period 1988 to mid-1996. These data are useful for global methane budget analyses and for determining the atmospheric isotopic composition of methane. All isotopic measurements have been corrected for standard drift.

  11. FACTORS ADVERSELY AFFECTING AMPHIBIAN POPULATIONS IN THE US

    EPA Science Inventory

    Factors known or suspected to be adversely affecting native amphibian populations in the US were identified using information from species accounts written in a standardized format by multiple authors in a forthcoming book. Specific adverse factors were identified for 53 (58%) of...

  12. Method for the photocatalytic conversion of methane

    DOEpatents

    Noceti, R.P.; Taylor, C.E.; D`Este, J.R.

    1998-02-24

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time. 3 figs.

  13. Method for the photocatalytic conversion of methane

    DOEpatents

    Noceti, Richard P.; Taylor, Charles E.; D'Este, Joseph R.

    1998-01-01

    A method for converting methane to methanol is provided comprising subjecting the methane to visible light in the presence of a catalyst and an electron transfer agent. Another embodiment of the invention provides for a method for reacting methane and water to produce methanol and hydrogen comprising preparing a fluid containing methane, an electron transfer agent and a photolysis catalyst, and subjecting said fluid to visible light for an effective period of time.

  14. Factors affecting radiographers' organizational commitment.

    PubMed

    Akroyd, Duane; Jackowski, Melissa B; Legg, Jeffrey S

    2007-01-01

    A variety of factors influence employees' attitudes toward their workplace and commitment to the organization that employs them. However, these factors have not been well documented among radiologic technologists. To determine the predictive ability of selected organizational, leadership, work-role and demographic variables on organizational commitment for a national sample of radiographers. Three thousand radiographers registered by the American Registry of Radiologic Technologists working full time in clinical settings were surveyed by mail regarding their commitment to their employers, leadership within the organization that employs them, employer support and demographic information. Overall, radiographers were found to have only a moderate level of commitment to their employers. Among the factors that significantly affected commitment were the radiographer's educational level, perceived level of organizational support, role clarity and organizational leadership. The results of this study could provide managers and supervisors with insights on how to empower and challenge radiographers and offer opportunities that will enhance radiographers' commitment to the organization, thus reducing costly turnover and improving employee performance.

  15. The California Baseline Methane Survey

    NASA Astrophysics Data System (ADS)

    Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.

    2017-12-01

    The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.

  16. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry

    PubMed Central

    Li, Panpan; Altaf, Naveed; Zhu, Mingyuan; Li, Jiangbing; Dai, Bin; Wang, Qiang

    2018-01-01

    CH4 as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH4 catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO2 methanation reaction is one of the potent technologies for CO2 valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs) precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research. PMID:29385064

  17. Oceanic methane hydrate: The character of the Blake Ridge hydrate stability zone, and the potential for methane extraction

    USGS Publications Warehouse

    Max, M.D.; Dillon, William P.

    1998-01-01

    Oceanic methane hydrates are mineral deposits formed from a crystalline 'ice' of methane and water in sea-floor sediments (buried to less than about 1 km) in water depths greater than about 500 m; economic hydrate deposits are probably restricted to water depths of between 1.5 km and 4 km. Gas hydrates increase a sediment's strength both by 'freezing' the sediment and by filling the pore spaces in a manner similar to water-ice in permafrost. Concentrated hydrate deposits may be underlain by significant volumes of methane gas, and these localities are the most favourable sites for methane gas extraction operations. Seismic reflection records indicate that trapped gas may blow-out naturally, causing large-scale seafloor collapse. In this paper, we consider both the physical properties and the structural integrity of the hydrate stability zone and the associated free gas deposits, with special reference to the Blake Ridge area, SE US offshore, in order to help establish a suitable framework for the safe, efficient, and economic recovery of methane from oceanic gas hydrates. We also consider the potential effects of the extraction of methane from hydrate (such as induced sea-floor faulting, gas venting, and gas-pocket collapse). We assess the ambient pressure effect on the production of methane by hydrate dissociation, and attempt to predict the likelihood of spontaneous gas flow in a production situation.Oceanic methane hydrates are mineral sits formed from a crystalline `ice' of methane and water in sea-floor sediments (buried to less than about 1 km) in water depths greater than about 500 m; economic hydrate deposits are probably restricted to water depths of between 1.5 km and 4 km. Gas hydrates increase a sediment's strength both by `freezing' the sediment and by filling the pore spaces in a manner similar to water-ice in permafrost. Concentrated hydrate deposits may be underlain by significant volumes of methane gas, and these localities are the most favourable

  18. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil

    PubMed Central

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-01-01

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710

  19. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil.

    PubMed

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-09-29

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.

  20. Satellite-derived methane hotspot emission estimates using a fast data-driven method

    NASA Astrophysics Data System (ADS)

    Buchwitz, Michael; Schneising, Oliver; Reuter, Maximilian; Heymann, Jens; Krautwurst, Sven; Bovensmann, Heinrich; Burrows, John P.; Boesch, Hartmut; Parker, Robert J.; Somkuti, Peter; Detmers, Rob G.; Hasekamp, Otto P.; Aben, Ilse; Butz, André; Frankenberg, Christian; Turner, Alexander J.

    2017-05-01

    find a factor of 5-8 higher emissions compared to EDGAR, albeit with large uncertainty. Major methane emission sources in this region are oil/gas and livestock. Our findings corroborate recently published studies based on aircraft and satellite measurements and new bottom-up estimates reporting significantly underestimated methane emissions of oil/gas and/or livestock in this area in EDGAR.

  1. Biogeochemistry of microbial coal-bed methane

    USGS Publications Warehouse

    Strc, D.; Mastalerz, Maria; Dawson, K.; MacAlady, J.; Callaghan, A.V.; Wawrik, B.; Turich, C.; Ashby, M.

    2011-01-01

    Microbial methane accumulations have been discovered in multiple coal-bearing basins over the past two decades. Such discoveries were originally based on unique biogenic signatures in the stable isotopic composition of methane and carbon dioxide. Basins with microbial methane contain either low-maturity coals with predominantly microbial methane gas or uplifted coals containing older, thermogenic gas mixed with more recently produced microbial methane. Recent advances in genomics have allowed further evaluation of the source of microbial methane, through the use of high-throughput phylogenetic sequencing and fluorescent in situ hybridization, to describe the diversity and abundance of bacteria and methanogenic archaea in these subsurface formations. However, the anaerobic metabolism of the bacteria breaking coal down to methanogenic substrates, the likely rate-limiting step in biogenic gas production, is not fully understood. Coal molecules are more recalcitrant to biodegradation with increasing thermal maturity, and progress has been made in identifying some of the enzymes involved in the anaerobic degradation of these recalcitrant organic molecules using metagenomic studies and culture enrichments. In recent years, researchers have attempted lab and subsurface stimulation of the naturally slow process of methanogenic degradation of coal. Copyright ?? 2011 by Annual Reviews. All rights reserved.

  2. Crenothrix are major methane consumers in stratified lakes.

    PubMed

    Oswald, Kirsten; Graf, Jon S; Littmann, Sten; Tienken, Daniela; Brand, Andreas; Wehrli, Bernhard; Albertsen, Mads; Daims, Holger; Wagner, Michael; Kuypers, Marcel Mm; Schubert, Carsten J; Milucka, Jana

    2017-09-01

    Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N 2 O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.

  3. Methane oxidation in Saanich Inlet during summer stratification

    NASA Technical Reports Server (NTRS)

    Ward, B. B.; Kilpatrick, K. A.; Wopat, A. E.; Minnich, E. C.; Lidstrom, M. E.

    1989-01-01

    Saanich Inlet, British Columbia, an fjord on the southeast coast of Vancouver Island, typically stratifies in summer, leading to the formation of an oxic-anoxic interface in the water column and accumulation of methane in the deep water. The results of methane concentration measurements in the water column of the inlet at various times throughout the summer months in 1983 are presented. Methane gradients and calculated diffusive fluxes across the oxic-anoxic interface increased as the summer progressed. Methane distribution and consumption in Saanich Inlet were studied in more detail during August 1986. At this time, a typical summer stratification with an oxic-anoxic interface around 140 m was present. At the interface, steep gradients in nutrient concentrations, bacterial abundance and methane concentration were observed. Methane oxidation was detected in the aerobic surface waters and in the anaerobic deep layer, but highest rates occurred in a narrow layer at the oxic-anoxic interface. Estimated methane oxidation rates were suffcient to consume 100 percent of the methane provided by diffusive flux from the anoxic layer. Methane oxidation is thus a mechanism whereby atmospheric flux from anoxic waters is minimized.

  4. Refining Field Measurements of Methane Flux Rates from Abandoned Oil and Gas Wells

    NASA Astrophysics Data System (ADS)

    Lagron, C. S.; Kang, M.; Riqueros, N. S.; Jackson, R. B.

    2015-12-01

    Recent studies in Pennsylvania demonstrate the potential for significant methane emissions from abandoned oil and gas wells. A subset of tested wells was high emitting, with methane flux rates up to seven orders of magnitude greater than natural fluxes (up to 105 mg CH4/hour, or about 2.5LPM). These wells contribute disproportionately to the total methane emissions from abandoned oil and gas wells. The principles guiding the chamber design have been developed for lower flux rates, typically found in natural environments, and chamber design modifications may reduce uncertainty in flux rates associated with high-emitting wells. Kang et al. estimate errors of a factor of two in measured values based on previous studies. We conduct controlled releases of methane to refine error estimates and improve chamber design with a focus on high-emitters. Controlled releases of methane are conducted at 0.05 LPM, 0.50 LPM, 1.0 LPM, 2.0 LPM, 3.0 LPM, and 5.0 LPM, and at two chamber dimensions typically used in field measurements studies of abandoned wells. As most sources of error tabulated by Kang et al. tend to bias the results toward underreporting of methane emissions, a flux-targeted chamber design modification can reduce error margins and/or provide grounds for a potential upward revision of emission estimates.

  5. Methane Pyrolysis and Disposing Off Resulting Carbon

    NASA Technical Reports Server (NTRS)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is a waste of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduce the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (i) recover hydrogen from the excess methane produced by the S/E process, (ii) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (iii) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. The goals of a research program on recovery of hydrogen from methane are (in descending priority order): 1) Study the kinetics of pyrolysis to arrive at a pyrolysis reactor design that produces high yields in a confined volume at the lowest possible operating temperature; 2) Study the kinetics of carbon burnoff to determine whether high yields can be obtained in a confined volume at acceptable operating temperatures; and 3) Investigate catalytic techniques for depositing carbon as a fine soot which can be physically separated from the reactor. In the JPL program, we have made significant

  6. 30 CFR 57.22308 - Methane monitors (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (III mines). 57.22308 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22308 Methane monitors (III mines). (a) Methane monitors shall be installed on continuous mining machines and longwall mining systems. (b) The...

  7. 30 CFR 57.22308 - Methane monitors (III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (III mines). 57.22308 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22308 Methane monitors (III mines). (a) Methane monitors shall be installed on continuous mining machines and longwall mining systems. (b) The...

  8. Factors Affecting Faculty Web Portal Usability

    ERIC Educational Resources Information Center

    Bringula, Rex P.; Basa, Roselle S.

    2011-01-01

    The study investigated the factors that might significantly affect web portal usability. Results of the study were intended to serve as inputs for faculty web portal development of the University of the East-Manila. Descriptive statistics utilized questionnaire data from 82 faculty members. The data showed that most of the respondents were…

  9. APPROACH FOR ESTIMATING GLOBAL LANDFILL METHANE EMISSIONS

    EPA Science Inventory

    The report is an overview of available country-specific data and modeling approaches for estimating global landfill methane. Current estimates of global landfill methane indicate that landfills account for between 4 and 15% of the global methane budget. The report describes an ap...

  10. 76 FR 59667 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane...-5600. SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory...

  11. Elucidation of the biosynthesis of the methane catalyst coenzyme F430

    PubMed Central

    Moore, Simon J.; Sowa, Sven T.; Schuchardt, Christopher; Deery, Evelyne; Lawrence, Andrew D.; Ramos, José Vazquez; Billig, Susan; Birkemeyer, Claudia; Chivers, Peter T.; Howard, Mark J.; Rigby, Stephen E. J.; Layer, Gunhild; Warren, Martin J.

    2017-01-01

    Summary Methane biogenesis in methanogens is mediated by methyl-coenzyme M reductase, an enzyme that is also responsible for the utilisation of methane through anaerobic methane oxidation. The enzyme employs an ancillary factor called coenzyme F430, a nickel-containing modified tetrapyrrole that promotes catalysis through a novel methyl radical/Ni(II)-thiolate intermediate. However, the biosynthesis of coenzyme F430 from the common primogenitor uroporphyrinoge III, incorporating 11 steric centres into the macrocycle, has remained poorly understood although the pathway must involve chelation, amidation, macrocyclic ring reduction, lactamisation and carbocyclic ring formation. We have now identified the proteins that catalyse coenzyme F430 biosynthesis from sirohydrochlorin, termed CfbA-E, and shown their activity. The research completes our understanding of how nature is able to construct its repertoire of tetrapyrrole-based life pigments, permitting the development of recombinant systems to utilise these metalloprosthetic groups more widely. PMID:28225763

  12. Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.

    1989-01-01

    The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.

  13. Low Calorie Diet Affects Aging-Related Factors

    MedlinePlus

    ... Research News From NIH Low Calorie Diet Affects Aging-Related Factors Past Issues / Summer 2006 Table of ... project sponsored by the NIH's National Institute on Aging (NIA) to learn more about the effects of ...

  14. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Greg

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Projectmore » Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.« less

  15. Mars Methane highs unrelated to comets

    NASA Astrophysics Data System (ADS)

    Roos-Serote, Maarten; Atreya, Sushil K.; Webster, Chris; Mahaffy, Paul

    2016-10-01

    Until the Curiosity Rover arrived at Mars, all measurements of methane were done by remote sensing, either from Earth or from orbiting spacecraft, using a variety of different instruments and under different observing conditions. The Curiosity Rover's Sample Analysis at Mars (SAM) / Tunable Laser Spectrometer (TLS) has carried out systematic measurements of martian methane from Gale crater for two consecutive martian years (31 - 33, starting in October 2012). Meteoric material interacts with the martian atmosphere when Mars passes through a meteoroid stream left behind by cometary bodies orbiting the Sun. Predictions show that 33 such events are likely to occur during the martian year. It has been suggested that the organics present in this material trigger the formation of methane in the atmosphere, and thus these events could possibly be an explanation for the observed variations in the methane abundance. In a recent paper, Fries et al. [2016] argued that all measurements of high methane concentrations are within 16 days of a predicted meteor shower event, and that as such there is a correlation. We present a new analysis including seven new data points that were not available previously. All these new measurements show low methane values. Some of the new measurements were deliberately taken at the same Ls when high values of methane were measured in the previous martian year, showing that the high methane measurements are likely not seasonal, as would be expected if they were connected to meteor shower events. In our analysis we take into account all the predicted meteor events and search for any correlation drawn between these events and the level of methane in the atmosphere. We conclude that whether we consider individual data points, apply statistical analysis, or consider different time spans between measurements and the occurrence of meteor events, or possible supply of organic material from comets, there is no evidence for such a correlation in the

  16. Methane and Trichloroethylene Degradation by Methylosinus trichosporium OB3b Expressing Particulate Methane Monooxygenase

    PubMed Central

    Lontoh, Sonny; Semrau, Jeremy D.

    1998-01-01

    Whole-cell assays of methane and trichloroethylene (TCE) consumption have been performed on Methylosinus trichosporium OB3b expressing particulate methane monooxygenase (pMMO). From these assays it is apparent that varying the growth concentration of copper causes a change in the kinetics of methane and TCE degradation. For M. trichosporium OB3b, increasing the copper growth concentration from 2.5 to 20 μM caused the maximal degradation rate of methane (Vmax) to decrease from 300 to 82 nmol of methane/min/mg of protein. The methane concentration at half the maximal degradation rate (Ks) also decreased from 62 to 8.3 μM. The pseudo-first-order rate constant for methane, Vmax/Ks, doubled from 4.9 × 10−3 to 9.9 × 10−3 liters/min/mg of protein, however, as the growth concentration of copper increased from 2.5 to 20 μM. TCE degradation by M. trichosporium OB3b was also examined with varying copper and formate concentrations. M. trichosporium OB3b grown with 2.5 μM copper was unable to degrade TCE in both the absence and presence of an exogenous source of reducing equivalents in the form of formate. Cells grown with 20 μM copper, however, were able to degrade TCE regardless of whether formate was provided. Without formate the Vmax for TCE was 2.5 nmol/min/mg of protein, while providing formate increased the Vmax to 4.1 nmol/min/mg of protein. The affinity for TCE also increased with increasing copper, as seen by a change in Ks from 36 to 7.9 μM. Vmax/Ks for TCE degradation by pMMO also increased from 6.9 × 10−5 to 5.2 × 10−4 liters/min/mg of protein with the addition of formate. From these whole-cell studies it is apparent that the amount of copper available is critical in determining the oxidation of substrates in methanotrophs that are expressing only pMMO. PMID:16349516

  17. Differentiation of pre-existing trapped methane from thermogenic methane in an igneous-intruded coal by hydrous pyrolysis

    USGS Publications Warehouse

    Dias, Robert F.; Lewan, Michael D.; Birdwell, Justin E.; Kotarba, Maciej J.

    2014-01-01

    So as to better understand how the gas generation potential of coal changes with increasing rank, same-seam samples of bituminous coal from the Illinois Basin that were naturally matured to varying degrees by the intrusion of an igneous dike were subjected to hydrous pyrolysis (HP) conditions of 360 °C for 72 h. The accumulated methane in the reactor headspace was analyzed for δ13C and δ2H, and mol percent composition. Maximum methane production (9.7 mg/g TOC) occurred in the most immature samples (0.5 %Ro), waning to minimal methane values at 2.44 %Ro (0.67 mg/g TOC), and rebounding to 3.6 mg/g TOC methane in the most mature sample (6.76 %Ro). Methane from coal with the highest initial thermal maturity (6.76 %Ro) shows no isotopic dependence on the reactor water and has a microbial δ13C value of −61‰. However, methane from coal of minimal initial thermal maturity (0.5 %Ro) shows hydrogen isotopic dependence on the reaction water and has a δ13C value of −37‰. The gas released from coals under hydrous pyrolysis conditions represents a quantifiable mixture of ancient (270 Ma) methane (likely microbial) that was generated in situ and trapped within the rock during the rapid heating by the dike, and modern (laboratory) thermogenic methane that was generated from the indigenous organic matter due to thermal maturation induced by hydrous pyrolysis conditions. These findings provide an analytical framework for better assessment of natural gas sources and for differentiating generated gas from pre-existing trapped gas in coals of various ranks.

  18. 30 CFR 75.1324 - Methane concentration and tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane concentration and tests. 75.1324... Methane concentration and tests. (a) No shot shall be fired in an area that contains 1.0 volume percent or more of methane. (b) Immediately before shots are fired, the methane concentration in a working place...

  19. 30 CFR 75.1324 - Methane concentration and tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane concentration and tests. 75.1324... Methane concentration and tests. (a) No shot shall be fired in an area that contains 1.0 volume percent or more of methane. (b) Immediately before shots are fired, the methane concentration in a working place...

  20. What Factors Affect Response to Ads? A Perspective.

    ERIC Educational Resources Information Center

    Rotzoll, Kim B.

    The concept of "frame of reference" offers a perspective from which to examine the many factors which affect advertising response. The advertiser is interested in affecting two types of overt behavior. First, the individual is induced to select a particular stimulus (the advertisement) from competing stimuli (such as other people, noise,…

  1. Optical constants of liquid and solid methane

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.; Orton, Glenn S.

    1994-01-01

    The optical constants n(sub r) + in(sub i) of liquid methane and phase 1 solid methane were determined over the entire spectral range by the use of various data sources published in the literature. Kramers-Kronig analyses were performed on the absorption spectra of liquid methane at the boiling point (111 K) and the melting point (90 K) and on the absorption spectra of phase 1 solid methane at the melting point and at 30 K. Measurements of the static dielectric constant at these temperatures and refractive indices determined over limited spectral ranges were used as constraints in the analyses. Applications of methane optical properties to studies of outer solar system bodies are described.

  2. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, Tim; Bahk, Jang-Jun; Frye, Matt

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, butmore » these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.« less

  3. Analysis of Present Day and Future OH and Methane Lifetime in the ACCMIP Simulations

    NASA Technical Reports Server (NTRS)

    Voulgarakis, A.; Naik, V.; Lamarque, J. -F.; Shindell, D. T.; Young, P. J.; Prather, M. J.; Wild, O.; Field, R. D.; Bergmann, D.; Cameron-Smith P.; hide

    2013-01-01

    Results from simulations performed for the Atmospheric Chemistry and Climate Modeling Intercomparison Project (ACCMIP) are analysed to examine how OH and methane lifetime may change from present day to the future, under different climate and emissions scenarios. Present day (2000) mean tropospheric chemical lifetime derived from the ACCMIP multi-model mean is 9.8+/-1.6 yr (9.3+/-0.9 yr when only including selected models), lower than a recent observationally-based estimate, but with a similar range to previous multi-model estimates. Future model projections are based on the four Representative Concentration Pathways (RCPs), and the results also exhibit a large range. Decreases in global methane lifetime of 4.5 +/- 9.1% are simulated for the scenario with lowest radiative forcing by 2100 (RCP 2.6), while increases of 8.5+/-10.4% are simulated for the scenario with highest radiative forcing (RCP 8.5). In this scenario, the key driver of the evolution of OH and methane lifetime is methane itself, since its concentration more than doubles by 2100 and it consumes much of the OH that exists in the troposphere. Stratospheric ozone recovery, which drives tropospheric OH decreases through photolysis modifications, also plays a partial role. In the other scenarios, where methane changes are less drastic, the interplay between various competing drivers leads to smaller and more diverse OH and methane lifetime responses, which are difficult to attribute. For all scenarios, regional OH changes are even more variable, with the most robust feature being the large decreases over the remote oceans in RCP8.5. Through a regression analysis, we suggest that differences in emissions of non-methane volatile organic compounds and in the simulation of photolysis rates may be the main factors causing the differences in simulated present day OH and methane lifetime. Diversity in predicted changes between present day and future OH was found to be associated more strongly with differences in

  4. 78 FR 26337 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane.... SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory Committee is to...

  5. 75 FR 9886 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  6. 78 FR 37536 - Methane Hydrate Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  7. Chamber-Based Estimates of Methane Production in Coastal Estuarine Systems in Southern California

    NASA Astrophysics Data System (ADS)

    Brigham, B.; Lipson, D.; Lai, C.

    2008-12-01

    Wetland systems are believed to produce between 100 - 231 Tg CH4 yr-1 which is roughly 20% of global methane emissions. The uncertainty in methane emissions models stem from the lack of detailed information about methane gas production within regional wetland systems. The aim of this study is to report the range of methane fluxes observed along salinity gradients at two San Diego coastal wetland systems, the Tijuana Estuary (Tijuana River National Estuarine Research Reserve) and the Peñasquitos Lagoon (Torrey Pines State Park Reserve). Soil water samples are used to elucidate factors responsible for the observed variation in methane fluxes. Air samples were subsequently collected from the headspace of a static soil chamber and stored in pre- evacuated vials. Methane concentrations were analyzed within hours after collection by gas chromatography in the laboratory. The chemical and physical properties of the soil, including salinity, pH, redox potential and temperature are measured with a hand-held probe nearby soil collars. The biological properties of the soil, including dissolved organic carbon, nitrate, and ammonia levels are measured from soil water samples in the laboratory. We find that saline sites under direct tidal influence produced methane fluxes ranging from -3.10 to 9.10 (mean 2.18) mg CH4 m-2 day-1. We also find that brackish sites (0.6 to 3.2 ppt in salinity) with fresh water input from residential runoff at the Peñasquitos Lagoon produced methane fluxes ranging from 0.53 to 192.10 (mean 33.34) mg CH4 m-2 day-1. Sampling was done over the course of 5 weeks during August-September of 2008. We hypothesize that the contrasting methane fluxes found between the saline and the brackish sites is due primarily to the different salinity, and in turn sulfate levels found at the two sites. The reduction of sulfate to produce energy is more energetically favorable than the reduction of carbon dioxide to produce methane. Thus the presence of sulfate may act as

  8. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake.

    PubMed

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2014-07-01

    Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction of stored methane emitted to the atmosphere during overturn may be substantially larger and the fraction of stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from small lakes, may be an important aspect to consider for impact assessments of climate warming on the methane emissions from lakes.

  9. Biomimetic methane oxidation

    NASA Astrophysics Data System (ADS)

    Watkins, B. E.; Droege, M. W.; Taylor, R. T.; Satcher, J. H.

    1992-06-01

    Methane monooxygenase (MMO) is an enzyme found in methanotrophs that catalyses the selective oxidation of methane to methanol. MMO is protein complex one component of which is a binuclear metal center containing oxygenase. We have completed one round of a design/synthesis/evaluation cycle in the development of coordination complexes that mimic the structure/function of the MMO active site. One of these, a binuclear, coordinately-asymmetric copper complex, is capable of oxidizing cyclohexane to a mixture of cyclohexanol and cyclohexanone in the presence of hydrogen peroxide.

  10. Changes in methane emission and microbial community structure in a Phragmites australis-expanding tidal marsh of a temperature region

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, J.; Kang, H.

    2017-12-01

    Phragmites australis is one of the representative vegetation of coastal wetlands which is distributed in North America, East Asia and European Countries. In North America, P. australis has invaded large areas of coastal wetlands, which causes various ecological problems such as increases in methane emission and reduction in biodiversity. In South Korea, P. australis is rapidly expanded in tidal marshes in Suncheon Bay. The expansion of P. australis enhanced methane emission by increasing dissolved organic carbon and soil moisture, and changing in relative abundances of methanogen, methanotroph, and sulfate reducing bacteria. Microbial community structure might be also shifted and affect methane cycle, but accurate observation on microbial community structure has not been fully illustrated yet. Therefore, we tried to monitor the changing microbial community structure due to P. australis expansion by using Next Generation Sequencing (NGS). NGS results showed that microbial community was substantially changed with the expansion. We also observed seasonal variations and chronosequence of microbial community structures along the expansion of P. australis, which showed distinctive changing patterns. P. australis expansion substantially affected microbial community structure in tidal marsh which may play an important role in methane cycle in tidal marshes.

  11. 30 CFR 75.323 - Actions for excessive methane.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...

  12. 30 CFR 75.323 - Actions for excessive methane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...

  13. 30 CFR 75.323 - Actions for excessive methane.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...

  14. 30 CFR 75.323 - Actions for excessive methane.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...

  15. 30 CFR 75.323 - Actions for excessive methane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...

  16. Effect of methane partial pressure on the performance of a membrane biofilm reactor coupling methane-dependent denitrification and anammox.

    PubMed

    Cai, Chen; Hu, Shihu; Chen, Xueming; Ni, Bing-Jie; Pu, Jiaoyang; Yuan, Zhiguo

    2018-10-15

    Complete nitrogen removal has recently been demonstrated by integrating anaerobic ammonium oxidation (anammox) and denitrifying anaerobic methane oxidation (DAMO) processes. In this work, the effect of methane partial pressure on the performance of a membrane biofilm reactor (MBfR) consisting of DAMO and anammox microorganisms was evaluated. The activities of DAMO archaea and DAMO bacteria in the biofilm increased significantly with increased methane partial pressure, from 367 ± 9 and 58 ± 22 mg-N L -1 d -1 to 580 ± 12 and 222 ± 22 mg-N L -1 d -1 , respectively, while the activity of anammox bacteria only increased slightly, when the methane partial pressure was elevated from 0.24 to 1.39 atm in the short-term batch tests. The results were supported by a long-term (seven weeks) continuous test, when the methane partial pressure was dropped from 1.39 to 0.78 atm. The methane utilization efficiency was always above 96% during both short-term and long-term tests. Taken together, nitrogen removal rate (especially the nitrate reduction rate by DAMO archaea) and methane utilization efficiency could be maintained at high levels in a broad range of methane partial pressure (0.24-1.39 atm in this study). In addition, a previously established DAMO/anammox biofilm model was used to analyze the experimental data. The observed impacts of methane partial pressure on biofilm activity were well explained by the modeling results. These results suggest that methane partial pressure can potentially be used as a manipulated variable to control reaction rates, ultimately to maintain high nitrogen removal efficiency, according to nitrogen loading rate. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Development and testing of an electrochemical methane sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekhar, Praveen K.; Kysar, Jesse; Brosha, Eric Lanich

    In this article, the development of an electrochemical methane sensor is presented. The mixed potential based sensor is based on tin doped indium oxide (ITO) and platinum electrodes and yttria-stabilized zirconia (YSZ) electrolyte. The sensor was fabricated using the inexpensive tape-cast method. The sensor responded to methane with a response time of 15 s. The staircase response to methane indicated a 44 mV sensor response to 100 ppm of methane. The sensor response indicated a log-linear relationship with the methane concentration. Upon 500 h of sensor testing, a 5% reduction in methane sensitivity was observed. The cross-sensitivity study on themore » sensor indicated minimal interference to NO, NO 2, and CO 2. To improve the sensitivity to methane, a signal conditioning method referred to as the pulsed discharge technique (PDT) was applied. Finally, a fourfold increase in methane sensitivity was observed when the sensor was subjected to PDT. Future studies include the miniaturization of the sensor with integrated heater design.« less

  18. Development and testing of an electrochemical methane sensor

    DOE PAGES

    Sekhar, Praveen K.; Kysar, Jesse; Brosha, Eric Lanich; ...

    2016-01-12

    In this article, the development of an electrochemical methane sensor is presented. The mixed potential based sensor is based on tin doped indium oxide (ITO) and platinum electrodes and yttria-stabilized zirconia (YSZ) electrolyte. The sensor was fabricated using the inexpensive tape-cast method. The sensor responded to methane with a response time of 15 s. The staircase response to methane indicated a 44 mV sensor response to 100 ppm of methane. The sensor response indicated a log-linear relationship with the methane concentration. Upon 500 h of sensor testing, a 5% reduction in methane sensitivity was observed. The cross-sensitivity study on themore » sensor indicated minimal interference to NO, NO 2, and CO 2. To improve the sensitivity to methane, a signal conditioning method referred to as the pulsed discharge technique (PDT) was applied. Finally, a fourfold increase in methane sensitivity was observed when the sensor was subjected to PDT. Future studies include the miniaturization of the sensor with integrated heater design.« less

  19. Continuous catalytic decomposition of methane

    NASA Technical Reports Server (NTRS)

    Clifford, J. E.; Hillenbrand, L. J.; Kim, B. C.; Kolic, E. S.; Zupan, J.

    1973-01-01

    Water is conserved by employing sequence of reactions whereby 75 percent of methane from Sabatier reaction is decomposed to solid carbon and hydrogen; hydrogen is then separated from residual methane and utilized in usual Sabatier reaction to reduce remaining metabolic carbon dioxide.

  20. Incentives for methane mitigation and energy-efficiency improvements in the case of Ukraine's natural gas transmission system

    NASA Astrophysics Data System (ADS)

    Roshchanka, Volha; Evans, Meredydd

    2014-06-01

    Reducing methane losses is a concern for climate change policy and energy policy. The energy sector is the major source of anthropogenic methane emissions into the atmosphere in Ukraine. Reducing methane emissions and avoiding combustion can be very cost-effective, but various barriers prevent such energy-efficiency measures from taking place. To date, few examples of industry-wide improvements exist. One example of substantial investments into upgrading natural gas transmission system comes from Ukraine's natural gas transmission company, Ukrtransgaz. The company's investments into system upgrades, along with a 34% fall in throughput, resulted in reduction of Ukrtransgaz system's own consumption of natural gas by 68% in 2011 compared to the level in 2005. Evaluating reductions in methane emissions is challenging because of lack of accurate data and gaps in accounting methodologies. At the same time, Ukraine's transmission system has undergone improvements that, at the very least, have contained methane emissions, if not substantially reduced them. In this paper, we describe recent developments in Ukraine's natural gas transmission system and analyze the incentives that forced the sector to pay close attention to its methane losses. Ukraine is one of the most energy-intensive countries, among the largest natural gas consumers in the world, and a significant emitter of methane. The country is also dependent on imports of natural gas. A combination of several factors has created conditions for successful reductions in methane emissions and combustion. These factors include: an eightfold increase in the price of imported natural gas; comprehensive domestic environmental and energy policies, such as the Laws of Ukraine on Protecting the Natural Environment and on Air Protection; policies aimed at integration with European Union's energy market and accession to the Energy Community Treaty; and the country's participation in international cooperation on environment, such

  1. Are methane production and cattle performance related?

    USDA-ARS?s Scientific Manuscript database

    Methane is a product of fermentation of feed in ruminant animals. Approximately 2 -12% of the gross energy consumed by cattle is released through enteric methane production. There are three primary components that contribute to the enteric methane footprint of an animal. Those components are dry ...

  2. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  3. Affective and Social Factors in a Project-Based Writing Course

    ERIC Educational Resources Information Center

    Kathpalia, Sujata Surinder; Heah, Carmel

    2011-01-01

    Much of the work in academic writing has focused on the cognitive rather than the affective and social aspects involved in project-based writing. Emphasis in past research has been on skills and processes of writing rather than on affective factors such as motivation, attitudes, feelings or social factors involving intrapersonal and interpersonal…

  4. Substrate-Related Factors Affecting Enzymatic Saccharification of Lignocelluloses: Our Recent Understanding

    Treesearch

    Shao-Yuan Leu; J.Y. Zhu

    2013-01-01

    Enzymatic saccharification of cellulose is a key step in conversion of plant biomass to advanced biofuel and chemicals. Many substrate-related factors affect saccharification. Rather than examining the role of each individual factor on overall saccharification efficiency, this study examined how each factor affects the three basic processes of a heterogeneous...

  5. Crenothrix are major methane consumers in stratified lakes

    PubMed Central

    Oswald, Kirsten; Graf, Jon S; Littmann, Sten; Tienken, Daniela; Brand, Andreas; Wehrli, Bernhard; Albertsen, Mads; Daims, Holger; Wagner, Michael; Kuypers, Marcel MM; Schubert, Carsten J; Milucka, Jana

    2017-01-01

    Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth’s natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an ‘unusual’ methane monooxygenase (MMO), which was only distantly related to ‘classical’ MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N2O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane. PMID:28585934

  6. Methane yield enhancement via electroporation of organic waste.

    PubMed

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar

    2017-08-01

    An experimental study with pulsed electric field (PEF) pre-treatment was conducted to investigate its effect on methane production. PEF pre-treatment converts organic solids into soluble and colloidal forms, increasing bioavailability for anaerobic microorganisms participating in methane generation process. The substrates tested were landfill leachate and fruit/vegetable. Three treatment intensities of 15, 30, and 50kWh/m 3 were applied to investigate the influence of pre-treatment on methane production via biochemical methane potential test. Threshold treatment intensity was found to be around 30kWh/m 3 for landfill leachate beyond which the methane production enhanced linearly with increase in intensity. Methane production of the landfill leachate significantly increased up to 44% with the highest intensity. The result of pulsed electric field pre-treatment on fruit/vegetable showed that 15kWh/m 3 was the intensity by which the highest amount of methane (up to 7%) was achieved. Beyond this intensity, the methane production decreased. Chemical oxygen demand removals were increased up to 100% for landfill leachate and 17% for fruit/vegetable, compared to the untreated slurries. Results indicate that the treatment intensity has a significant effect on the methane production and biosolid removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Emerging Methane Sources: A Bang or Whimper? (Invited)

    NASA Astrophysics Data System (ADS)

    Harriss, R. C.

    2013-12-01

    In this presentation we examine two emerging methane emission sources that may further accelerate climate change in the 21st century: 1) Will fugitive methane emissions associated with the development of unconventional natural gas resources pose a significant threat of accelerating climate change? 2) Will continued warming of Arctic regions destabilize permafrost and methane hydrates rapidly increasing global atmospheric methane that results in a catastrophic climate change emergency? These risks are currently described in two different guises, with unconventional gas as persistent and gradually unfolding threat and Arctic rapid warming and release of methane as a low-probability event that could in an instant change everything. Current research is far from answering the question of whether these emerging methane sources will lead to a climate change bang or whimper. Both issues reflect the need to understand complex environmental and engineered systems as they interact with social and economic forces. While the evolution of energy systems favors methane as a contemporary transition fuel, researchers and practitioners need to address the fugitive methane leakage, reliability, and safety of natural gas systems. The concept of a methane bridge as a viable direction to decarbonization is appealing; it's just not as big or fast a step as many scientists want.

  8. Evidence of Sulfate-Dependent Anaerobic Methane Oxidation within an Area Impacted by Coalbed Methane-Related Gas Migration

    NASA Astrophysics Data System (ADS)

    Wolfe, A. L.; Wikin, R. T.

    2017-12-01

    We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Over a 17-month study period, water samples were obtained from domestic water wells and monitoring wells located within the impacted area, and analyzed for 245 constituents, including organic compounds, nutrients, major and trace elements, dissolved gases, and isotopic tracers for carbon, sulfur, oxygen, and hydrogen. Multiple lines of evidence suggest that sulfate-dependent methane biodegradation, which involves the oxidation of methane (CH4) to carbon dioxide (CO2) using sulfate (SO42-) as the terminal electron acceptor, is occurring: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher molecular weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. Groundwater-methane attenuation is linked to the production of dissolved sulfide, and elevated dissolved sulfide concentrations represent an undesirable secondary water quality impact. The biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic, chromium, cobalt, nickel, and lead, likely due to the microbial production of hydrogen sulfide, which favors stabilization of metals in aquifer solids.

  9. Potential methane reservoirs beneath Antarctica.

    PubMed

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H

    2012-08-30

    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.

  10. Microbiologic factors affecting Clostridium difficile recurrence.

    PubMed

    Chilton, C H; Pickering, D S; Freeman, J

    2018-05-01

    Recurrent Clostridium difficile infection (rCDI) places a huge economic and practical burden on healthcare facilities. Furthermore, rCDI may affect quality of life, leaving patients in an rCDI cycle and dependant on antibiotic therapy. To discuss the importance of microbiologic factors in the development of rCDI. Literature was drawn from a search of PubMed from 2000 onwards with the search term 'recurrent Clostridium difficile infection' and further references cited within these articles. Meta-analyses and systematic reviews have shown that CDI and rCDI risk factors are similar. Development of rCDI is attendant on many factors, including immune status or function, comorbidities and concomitant treatments. Studies suggest that poor bacterial diversity is correlated with clinical rCDI. Narrow-spectrum gut microflora-sparing antimicrobials (e.g. surotomycin, cadazolid, ridinilazole) are in development for CDI treatment, while microbiota therapeutics (faecal microbiota transplantation, nontoxigenic C. difficile, stool substitutes) are increasingly being explored. rCDI can only occur when viable C. difficile spores are present, either within the gut lumen after infection or when reacquired from the environment. C. difficile spore germination can be influenced by gut environmental factors resulting from dysbiosis, and spore outgrowth may be affected stage by some antimicrobials (e.g. fidaxomicin, ramoplanin, oritavancin). rCDI is a significant challenge for healthcare professionals, requiring a multifaceted approach; optimized infection control to minimize reinfection; C. difficile-targeted antibiotics to minimize dysbiosis; and gut microflora restoration to promote colonization resistance. These elements should be informed by our understanding of the microbiologic factors involved in both C. difficile itself and the gut microbiome. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Laboratory Study of Methane Flux from Acid Sulphate Soil in South Kalimantan

    NASA Astrophysics Data System (ADS)

    Annisa, W.; Cahyana, D.; Syahbuddin, H.; Rachman, A.

    2017-06-01

    Addition of organic matter in waterlogged conditions will enhance methanogenesis process that produces greenhouse gases. Fresh organic material is considered reactive because it contains carbons that is subject to decompose, therefore, when it exposed to acid sulphate soil, both in natural condition (aeration required) and intensive (aeration not required) will lower the value of redox potential. This experiment aimed to determine the flux of methane (CH4) from various locally available organic materials applied to acid sulphate soil. The experiment was arranged in factorial design with two factors. The first factor was the source of organic matter, i.e. fresh rice straw, fresh purun, fresh cattle manure, composted rice straw, composted purun and composted cattle manure, and control. The second factor was the management of organic matter i.e. placed on the soil surface with no tillage and mixed with soil during tillage. The results showed that application of fresh organic matter into inundated acid sulphate soil increased CH4 fluxes up to 23.78 µg CH4 g1 d1 which was higher than from composted organic matter (4.327 µg CH4.g1.d1). Methane flux due to organic matter management was significantly negatively (p=0.001) correlated with soil redox potential (Eh) with R2 of - 0.76. Organic matter placed on the soil surface with no tillage produced methane flux ranged from 0.33 to 20.78 g CH4 g1 d1, which was lower than methane flux produced from organic matter mixed with soil during tillage (0.38 to 27.27 g CH4 g1 d1). Composting organic matter before application and mixing them with the soil through tillage are highly recommended to reduce greenhouse gas emissions from cultivated acid sulphate soils.

  12. Investigations of Methane Production in Hypersaline Environments

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  13. A Methane Balloon Inflation Chamber

    ERIC Educational Resources Information Center

    Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe

    2005-01-01

    The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.

  14. Distribution and Emission of Methane in Nakdong Estuary

    NASA Astrophysics Data System (ADS)

    Ryu, J.; An, S.

    2014-12-01

    Despite a small area, coastal areas contribute most to the oceanic methane flux. A wide range of methane fluxes have been reported in the coastal areas, but limited data were presented for Korean coastal areas. The air and surface water was sampled in Nakdong Estuary where the barrage had been constructed, and methane concentrations were measured using Gas Chromatography. To see the influence of the barrage, surface water was sampled outside and inside the barrage respectively. In the expectation that methane distribution would be different depending on the tides, surface water outside the barrage was collected at high and low tide respectively. Headspace technique and Membrane Inlet Mass Spectrometry were also used. The average atmospheric concentration (1.82ppm) was lower than the global average concentration expected from the IPCC scenario. The concentrations of water inside the barrage (average 173nM) were similar to those measured in other rivers but in the lower side. The average concentrations outside the barrage (52nM at high tide, 85nM at low tide) were lower than those measured in other coastal areas, but of the same order of magnitude as the European tidal estuaries. Methane concentrations in Nakdong estuary were higher than the methane concentration equilibrated with the atmosphere. The spatial variability of methane concentration in Nakdong estuary seems to be the result of the fresh (high methane) and sea (low methane) water mixing. Meanwhile large tidal flat area in Nakdong estuary should play a major role in methane dynamics and methane flux measurements during sediment incubation were conducted to evaluate the immersion/emersion cycle and photosynthesis by MPB (micro phyto benthos) effect.

  15. Methane oxidation at a surface-sealed boreal landfill.

    PubMed

    Einola, Juha; Sormunen, Kai; Lensu, Anssi; Leiskallio, Antti; Ettala, Matti; Rintala, Jukka

    2009-07-01

    Methane oxidation was studied at a closed boreal landfill (area 3.9 ha, amount of deposited waste 200,000 tonnes) equipped with a passive gas collection and distribution system and a methane oxidative top soil cover integrated in a European Union landfill directive-compliant, multilayer final cover. Gas wells and distribution pipes with valves were installed to direct landfill gas through the water impermeable layer into the top soil cover. Mean methane emissions at the 25 measuring points at four measurement times (October 2005-June 2006) were 0.86-6.2 m(3) ha(-1) h(-1). Conservative estimates indicated that at least 25% of the methane flux entering the soil cover at the measuring points was oxidized in October and February, and at least 46% in June. At each measurement time, 1-3 points showed significantly higher methane fluxes into the soil cover (20-135 m(3) ha(-1) h(-1)) and methane emissions (6-135 m(3) ha(-1) h(-1)) compared to the other points (< 20 m(3) ha(-1) h(-1) and < 10 m(3) ha(-1) h(-1), respectively). These points of methane overload had a high impact on the mean methane oxidation at the measuring points, resulting in zero mean oxidation at one measurement time (November). However, it was found that by adjusting the valves in the gas distribution pipes the occurrence of methane overload can be to some extent moderated which may increase methane oxidation. Overall, the investigated landfill gas treatment concept may be a feasible option for reducing methane emissions at landfills where a water impermeable cover system is used.

  16. Laser beam methane detector

    NASA Technical Reports Server (NTRS)

    Hinkley, E. D., Jr.

    1981-01-01

    Instrument uses infrared absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak detector on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.

  17. Methane Content Estimation in DuongHuy Coal Mine

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Thinh; Mijał, Waldemar; Dang, Vu Chi; Nguyen, Thi Tuyet Mai

    2018-03-01

    Methane hazard has always been considered for underground coal mining as it can lead to methane explosion. In Quang Ninh province, several coal mines such as Mạo Khe coal mine, Khe Cham coal mine, especially Duong Huy mine that have high methane content. Experimental data to examine contents of methane bearing coal seams at different depths are not similar in Duong coal mine. In order to ensure safety, this report has been undertaken to determine a pattern of changing methane contents of coal seams at different exploitation depths in Duong Huy underground coal mine.

  18. Methane emissions from different coastal wetlands in New England, US

    NASA Astrophysics Data System (ADS)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  19. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows.

    PubMed

    Stoldt, Ann-Kathrin; Derno, Michael; Das, Gürbüz; Weitzel, Joachim M; Wolffram, Siegfried; Metges, Cornelia C

    2016-03-01

    Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia.

    PubMed

    Osudar, Roman; Liebner, Susanne; Alawi, Mashal; Yang, Sizhong; Bussmann, Ingeborg; Wagner, Dirk

    2016-08-01

    Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Source apportionment of methane using a triple isotope approach - Method development and application in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Steinbach, Julia; Holmstrand, Henry; Semiletov, Igor; Shakhova, Natalia; Shcherbakova, Kseniia; Kosmach, Denis; Sapart, Célia J.; Gustafsson, Örjan

    2015-04-01

    We present a method for measurements of the stable and radiocarbon isotope systems of methane in seawater and sediments. The triple isotope characterization of methane is useful in distinguishing different sources and for improving our understanding of biogeochemical processes affecting methane in the water column. D14C-CH4 is an especially powerful addition to stable isotope analyses in distinguishing between thermogenic and biogenic origins of the methane. Such measurements require large sample sizes, due to low natural abundance of the radiocarbon in CH4. Our system for sample collection, methane extraction and purification builds on the approach by Kessler and Reeburgh (Limn. & Ocean. Meth., 2005). An in-field system extracts methane from 30 -120 l water or 1-2 l sediment (depending on the in-situ methane concentration) by purging the samples with Helium to transfer the dissolved methane to the headspace and circulating it through cryogenically cooled absorbent traps where methane is collected. The in-field preparation eliminates the risks of storage and transport of large seawater quantities and subsequent leakage of sample gas as well as ongoing microbial processes and chemical reactions that may alter the sample composition. In the subsequent shore-based treatment, a laboratory system is used to purify and combust the collected CH4 to AMS-amenable CO2. Subsamples from the methane traps are analyzed for stable isotopes and compared to stable isotope measurements directly measured from small water samples taken in parallel, to correct for any potential fractionation occurring during this process. The system has been successfully tested and used on several shorter shipboard expeditions in the Baltic Sea and on a long summer expedition across the Arctic Ocean. Here we present the details of the method and testing, as well as first triple isotope field data from two cruises to the Landsort Deep area in the Central Baltic Sea.

  2. Methane production, oxidation and emission in United Kingdom peatlands and the effect of anions from acid rain

    NASA Astrophysics Data System (ADS)

    Watson, Andrea

    The production, oxidation and emission of methane in UK peatlands was investigated. The main field study site was Ellergower Moss, Dumfriesshire where the peat was characterised by hollows (water-filled depressions) and hummocks (raised vegetative areas). The pathways of carbon flow in peat under hummocks and hollows were determined and compared on a seasonal basis. Methane emissions were significantly greater from hollows than hummocks (0.88 mols and 0.07 mols CH4 m-2 y-1 respectively). Methane emission rates varied seasonally e.g. for hollows were 0.04 mmols CH4 m-2 d-1 for January and 2.3 mmols CH4 m-2 d-1 for June. Methane emissions were modulated by biological methane oxidation by 0% of methane produced in the winter months, increasing during spring until 97% of methane produced was oxidised in the summer months. Both methane oxidation and methanogenesis were strongly temperature dependant with Q10 values of 2.2 and 16, respectively. Rates of methane oxidation potential (MOP) were greatest between 4-8 cm depths below the level of the water table, and were located above the most active zone of methanogenesis (8-16 cm depths below the water table levels). This enabled vertically diffusing methane to be utilised by methanotrophic bacteria, providing a very efficient filter for methane. Methanogenesis was limited by hydrogen availability in the peat, but not by acetate, suggesting that methane was produced by hydrogenophilic methanogenic bacteria (MB), rather than acetate utilising MB. Acid rain pollutants were found to significantly affect carbon flow, with sulphate deposition causing a seasonal inhibition in methanogenesis. Carbon flow predominated through sulphate reduction in the winter and spring months (sulphate reduction to methane production ratio was 1008 and 189, for hummocks and hollows respectively) when sulphate was freely available and when temperatures were low. During the summer when temperatures increased and sulphate became limited carbon flow

  3. Abiotic production of methane in terrestrial planets.

    PubMed

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  4. In Situ Analyses of Methane Oxidation Associated with the Roots and Rhizomes of a Bur Reed, Sparganium Eurycarpum, in a Maine Wetland

    NASA Technical Reports Server (NTRS)

    King, Gary M.

    1996-01-01

    Methane oxidation associated with the belowground tissues of a common aquatic macrophyte, the burweed Sparganium euryearpum, was assayed in situ by a chamber technique with acetylene or methyl fluoride as a methanotrophic inhibitor at a headspace concentration of 3 to 4%. Acetylene and methyl fluoride inhibited both methane oxidation and peat methanogenesis. However, inhibition of methanogenesis resulted in no obvious short-term effect on methane fluxes. Since neither inhibitor adversely affected plant metabolism and both inhibited methanotrophy equally well, acetylene was employed for routine assays because of its low cost and ease of use. Root-associated methanotrophy consumed a variable but significant fraction of the total potential methane flux; values varied between 1 and 58% (mean +/- standard deviation, 27.0% +/- 6.0%), with no consistent temporal or spatial pattern during late summer. The absolute amount of methane oxidized was not correlated with the total potential methane flux; this suggested that parameters other than methane availability (e.g., oxygen availability) controlled the rates of methane oxidation. Estimates of diffusive methane flux and oxidation at the peat surface indicated that methane emission occurred primarily through aboveground plant tissues; the absolute magnitude of methane oxidation was also greater in association with roots than at the peat surface. However, the relative extent of oxidation was greater at the latter locus.

  5. Zero valent iron significantly enhances methane production from waste activated sludge by improving biochemical methane potential rather than hydrolysis rate.

    PubMed

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-05

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  6. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    PubMed Central

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-01-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244

  7. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  8. Estimates of methane and ethane emissions from the Texas Barnett Shale

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Yacovitch, T.; Petron, G.; Wolter, S.; Conley, S. A.; Hardesty, R. M.; Brewer, A.; Kofler, J.; Newberger, T.; Herndon, S.; Miller, B. R.; Montzka, S. A.; Rella, C.; Crosson, E.; Tsai, T.; Tans, P. P.

    2013-12-01

    The recent development of horizontal drilling technology by the oil and gas industry has dramatically increased onshore U.S. natural gas and oil production in the last several years. This production boom has led to wide-spread interest from the policy and scientific communities in quantifying the climate impact of the use of natural gas as a replacement for coal. Because the primary component of natural gas is methane, a powerful greenhouse gas, natural gas leakage into the atmosphere affects its climate impact. Several recent scientific field studies have focused on using atmospheric measurements to estimate this leakage in different producing basins. Methane can be measured precisely with commercial analyzers, and deployment of such analyzers on aircraft, coupled with meteorological measurements, can allow scientists to estimate emissions from regions of concentrated production. Ethane and other light hydrocarbons, also components of raw gas, can be used as tracers for differentiating natural gas emissions from those of other methane sources, such as agriculture or landfills, which do not contain any non-methane hydrocarbons such as ethane. Here we present results from one such field campaign in the Barnett Shale near Fort Worth, Texas, in March 2013. Several 4-hour flights were conducted over the natural gas and oil production region with a small single-engine aircraft instrumented with analyzers for measuring ambient methane, carbon monoxide, carbon dioxide, and ethane at high frequencies (0.3-1Hz). The aircraft also measured horizontal winds, temperature, humidity, and pressure, and collected whole air samples in flasks analyzed later for several light hydrocarbons. In addition to the aircraft, a ground-based High-Resolution Doppler Lidar was deployed in the basin to measure profiles of horizontal winds and estimate the boundary layer height 24 hours a day over the campaign period. The aircraft and lidar measurements are used together to estimate methane and

  9. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  10. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  11. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  12. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  13. 46 CFR 154.703 - Methane (LNG).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  14. Methane emission by bubbling from Gatun Lake, Panama

    NASA Technical Reports Server (NTRS)

    Keller, Michael; Stallard, Robert F.

    1994-01-01

    We studied methane emission by bubbling from Gatun Lake, Panama, at water depths of less than 1 m to about 10 m. Gas bubbles were collected in floating traps deployed during 12- to 60-hour observation periods. Comparison of floating traps and floating chambers showed that about 98% of methane emission occurred by bubbling and only 2% occurred by diffusion. Average methane concentration of bubbles at our sites varied from 67% to 77%. Methane emission by bubbling occurred episodically, with greatest rates primarily between the hours of 0800 and 1400 LT. Events appear to be triggered by wind. The flux of methane associated with bubbling was strongly anticorrelated with water depth. Seasonal changes in water depth caused seasonal variation of methane emission. Bubble methane fluxes through the lake surface into the atmosphere measured during 24-hour intervals were least (10-200 mg/m2/d) at deeper sites (greater than 7 m) and greatest (300-2000 mg/m2/d) at shallow sites (less than 2 m).

  15. Need for a marginal methodology in assessing natural gas system methane emissions in response to incremental consumption.

    PubMed

    Mac Kinnon, Michael; Heydarzadeh, Zahra; Doan, Quy; Ngo, Cuong; Reed, Jeff; Brouwer, Jacob

    2018-05-17

    Accurate quantification of methane emissions from the natural gas system is important for establishing greenhouse gas inventories and understanding cause and effect for reducing emissions. Current carbon intensity methods generally assume methane emissions are proportional to gas throughput so that increases in gas consumption yield linear increases in emitted methane. However, emissions sources are diverse and many are not proportional to throughput. Insights into the causal drivers of system methane emissions, and how system-wide changes affect such drivers are required. The development of a novel cause-based methodology to assess marginal methane emissions per unit of fuel consumed is introduced. The carbon intensities of technologies consuming natural gas are critical metrics currently used in policy decisions for reaching environmental goals. For example, the low-carbon fuel standard in California uses carbon intensity to determine incentives provided. Current methods generally assume methane emissions from the natural gas system are completely proportional to throughput. The proposed cause-based marginal emissions method will provide a better understanding of the actual drivers of emissions to support development of more effective mitigation measures. Additionally, increasing the accuracy of carbon intensity calculations supports the development of policies that can maximize the environmental benefits of alternative fuels, including reducing greenhouse gas emissions.

  16. Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy.

    PubMed

    Cha, Minjun; Shin, Kyuchul; Lee, Huen; Moudrakovski, Igor L; Ripmeester, John A; Seo, Yutaek

    2015-02-03

    In this study, the kinetics of methane replacement with carbon dioxide and nitrogen gas in methane gas hydrate prepared in porous silica gel matrices has been studied by in situ (1)H and (13)C NMR spectroscopy. The replacement process was monitored by in situ (1)H NMR spectra, where about 42 mol % of the methane in the hydrate cages was replaced in 65 h. Large amounts of free water were not observed during the replacement process, indicating a spontaneous replacement reaction upon exposing methane hydrate to carbon dioxide and nitrogen gas mixture. From in situ (13)C NMR spectra, we confirmed that the replacement ratio was slightly higher in small cages, but due to the composition of structure I hydrate, the amount of methane evolved from the large cages was larger than that of the small cages. Compositional analysis of vapor and hydrate phases was also carried out after the replacement reaction ceased. Notably, the composition changes in hydrate phases after the replacement reaction would be affected by the difference in the chemical potential between the vapor phase and hydrate surface rather than a pore size effect. These results suggest that the replacement technique provides methane recovery as well as stabilization of the resulting carbon dioxide hydrate phase without melting.

  17. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strömberg, Sten, E-mail: sten.stromberg@biotek.lu.se; Nistor, Mihaela, E-mail: mn@bioprocesscontrol.com; Liu, Jing, E-mail: jing.liu@biotek.lu.se

    Highlights: • The evaluated factors introduce significant systematic errors (10–38%) in BMP tests. • Ambient temperature (T) has the most substantial impact (∼10%) at low altitude. • Ambient pressure (p) has the most substantial impact (∼68%) at high altitude. • Continuous monitoring of T and p is not necessary for kinetic calculations. - Abstract: The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the currentmore » study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2{sup 4} full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world.« less

  18. Ductile flow of methane hydrate

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  19. Factors affecting strategic plan implementation using interpretive structural modeling (ISM).

    PubMed

    Bahadori, Mohammadkarim; Teymourzadeh, Ehsan; Tajik, Hamidreza; Ravangard, Ramin; Raadabadi, Mehdi; Hosseini, Seyed Mojtaba

    2018-06-11

    Purpose Strategic planning is the best tool for managers seeking an informed presence and participation in the market without surrendering to changes. Strategic planning enables managers to achieve their organizational goals and objectives. Hospital goals, such as improving service quality and increasing patient satisfaction cannot be achieved if agreed strategies are not implemented. The purpose of this paper is to investigate the factors affecting strategic plan implementation in one teaching hospital using interpretive structural modeling (ISM). Design/methodology/approach The authors used a descriptive study involving experts and senior managers; 16 were selected as the study sample using a purposive sampling method. Data were collected using a questionnaire designed and prepared based on previous studies. Data were analyzed using ISM. Findings Five main factors affected strategic plan implementation. Although all five variables and factors are top level, "senior manager awareness and participation in the strategic planning process" and "creating and maintaining team participation in the strategic planning process" had maximum drive power. "Organizational structure effects on the strategic planning process" and "Organizational culture effects on the strategic planning process" had maximum dependence power. Practical implications Identifying factors affecting strategic plan implementation is a basis for healthcare quality improvement by analyzing the relationship among factors and overcoming the barriers. Originality/value The authors used ISM to analyze the relationship between factors affecting strategic plan implementation.

  20. Evidence of sulfate-dependent anaerobic methane oxidation ...

    EPA Pesticide Factsheets

    The rapid development of unconventional gas resources has been accompanied by an increase in public awareness regarding the potential effects of drilling operations on drinking water sources. Incidents have been reported involving blowouts (e.g., Converse County, WY; Lawrence Township, PA; Aliso Canyon, CA) and home/property explosions (e.g., Bainbridge Township, OH; Dimock, PA; Huerfano County, CO) caused by methane migration in the subsurface within areas of natural gas development. We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Results show persistent secondary water quality impacts related to the biodegradation of methane. We identify four distinct characteristics of groundwater methane attenuation in the Poison Canyon aquifer: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher-molecular-weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. We also show that the biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic,

  1. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  2. The interaction of climate change and methane hydrates

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Kessler, John D.

    2017-01-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  3. The interaction of climate change and methane hydrates

    NASA Astrophysics Data System (ADS)

    Ruppel, Carolyn D.; Kessler, John D.

    2017-03-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  4. Exploring paraprofessional and classroom factors affecting teacher supervision.

    PubMed

    Irvin, Dwight W; Ingram, Paul; Huffman, Jonathan; Mason, Rose; Wills, Howard

    2018-02-01

    Paraprofessionals serve a primary role in supporting students with disabilities in the classroom, which necessitates teachers' supervision as a means to improve their practice. Yet, little is known regarding what factors affect teacher supervision. We sought to identify how paraprofessional competence and classroom type affected the levels of teacher direction. We administered an adapted version of the Paraprofessional Needs, Knowledge & Tasks Survey and the Survey for Teachers Supervising Paraprofessionals to teachers supervising paraprofessionals in elementary schools. Structural Equation Modeling was used to examine the link between paraprofessional competence and classroom factors affecting the level of teacher supervision. Our results indicated that when teachers perceived paraprofessionals as being more skilled, they provided more supervision, and when more supervision was provided the less they thought paraprofessionals should be doing their assigned tasks. Additionally, paraprofessionals working in classrooms with more students with mild disabilities received less supervision than paraprofessionals working in classrooms with more students with moderate-to-severe disabilities. Those paraprofessionals in classrooms serving mostly children with mild disabilities were also perceived as having lower levels of skill competence than those serving in classrooms with students with more moderate-to-severe disabilities. By understanding the factors that affect teacher supervision, policy and professional development opportunities can be refined/developed to better support both supervising teachers and paraprofessionals and, in turn, improve the outcomes of children with disabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effects of low oxygen concentrations on aerobic methane oxidation in seasonally hypoxic coastal waters

    NASA Astrophysics Data System (ADS)

    Steinle, Lea; Maltby, Johanna; Treude, Tina; Kock, Annette; Bange, Hermann W.; Engbersen, Nadine; Zopfi, Jakob; Lehmann, Moritz F.; Niemann, Helge

    2017-03-01

    Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from which it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter, reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the south-western Baltic Sea (Eckernförde Bay). We found that MOx rates generally increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol L-1 d-1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 2.4-19.0 times more methane was oxidized than emitted to the atmosphere, whereas about the same amount was consumed and emitted during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2-220 µmol L-1 revealed a submicromolar oxygen optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidized methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results

  6. Martian dust storms as a possible sink of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  7. Martian Methane From a Cometary Source: A Hypothesis

    NASA Technical Reports Server (NTRS)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  8. Methane to bioproducts: the future of the bioeconomy?

    PubMed

    Pieja, Allison J; Morse, Molly C; Cal, Andrew J

    2017-12-01

    Methanotrophs have been studied since the 1970s, but interest has increased tremendously in recent years due to their potential to transform methane into valuable bioproducts. The vast quantity of available methane and the low price of methane as natural gas have helped to spur this interest. The most well-studied, biologically-derived products from methane include methanol, polyhydroxyalkanoates, and single cell protein. However, many other high-interest chemicals such as biofuels or high-value products such as ectoine could be made industrially relevant through metabolic engineering. Although challenges must be overcome to achieve commercialization of biologically manufactured methane-to-products, taking a holistic view of the production process or radically re-imagining pathways could lead to a future bioeconomy with methane as the primary feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Distribution and origin of groundwater methane in the Wattenberg oil and gas field of northern Colorado.

    PubMed

    Li, Huishu; Carlson, Kenneth H

    2014-01-01

    Public concerns over potential environmental contamination associated with oil and gas well drilling and fracturing in the Wattenberg field in northeast Colorado are increasing. One of the issues of concern is the migration of oil, gas, or produced water to a groundwater aquifer resulting in contamination of drinking water. Since methane is the major component of natural gas and it can be dissolved and transported with groundwater, stray gas in aquifers has elicited attention. The initial step toward understanding the environmental impacts of oil and gas activities, such as well drilling and fracturing, is to determine the occurrence, where it is and where it came from. In this study, groundwater methane data that has been collected in response to a relatively new regulation in Colorado is analyzed. Dissolved methane was detected in 78% of groundwater wells with an average concentration of 4.0 mg/L and a range of 0-37.1 mg/L. Greater than 95% of the methane found in groundwater wells was classified as having a microbial origin, and there was minimal overlap between the C and H isotopic characterization of the produced gas and dissolved methane measured in the aquifer. Neither density of oil/gas wells nor distance to oil/gas wells had a significant impact on methane concentration suggesting other important factors were influencing methane generation and distribution. Thermogenic methane was detected in two aquifer wells indicating a potential contamination pathway from the producing formation, but microbial-origin gas was by far the predominant source of dissolved methane in the Wattenberg field.

  10. News from the "blowout", a man-made methane pockmark in the North Sea: chemosynthetic communities and microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Steinle, Lea I.; Wilfert, Philipp; Schmidt, Mark; Bryant, Lee; Haeckel, Matthias; Lehmann, Moritz F.; Linke, Peter; Sommer, Stefan; Treude, Tina; Niemann, Helge

    2013-04-01

    The accidental penetration of a base-Quaternary shallow gas pocket by a drilling rig in 1990 caused a "blowout" in the British sector of the North Sea (57°55.29' N, 01°37.86' E). Large quantities of methane have been seeping out of this man-made pockmark ever since. As the onset of gas seepage is well constrained, this site can be used as a natural laboratory to gain information on the development of methane oxidizing microbial communities at cold seeps. During an expedition with the R/V Celtic Explorer in July and August 2012, we collected sediments by video-guided push-coring with an ROV (Kiel 6000) along a gradient from inside the crater (close to where a jet of methane bubbles enters the water column) outwards. We also sampled the water column in a grid above the blowout at three different depths. In this presentation, we provide evidence for the establishment of methanotrophic communities in the sediment (AOM communities) on a time scale of decades. Furthermore, we will report data on methane concentrations and anaerobic methane oxidation rates in the sediment. Finally, we will also discuss the spatial distribution of methane and aerobic methane oxidation rates in the water column.

  11. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    PubMed Central

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  12. Protective effects of methane-rich saline on diabetic retinopathy via anti-inflammation in a streptozotocin-induced diabetic rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jiangchun; Wang, Ruobing; Ye, Zhouheng

    As the commonest complication of diabetes mellitus (DM), diabetic retinopathy (DR) is a neuro-vascular disease with chronic inflammatory. Methane could exert potential therapeutic interest in inflammatory pathologies in previous studies. Our study aims to evaluate the protective effects of methane-rich saline on DR and investigate the potential role of related MicroRNA (miRNA) in diabetic rats. Streptozotocin-induced diabetic Sprague–Dawley rats were injected intraperitoneally with methane-rich or normal saline (5 ml/kg) daily for eight weeks. Morphology changes and blood-retinal barrier (BRB) permeability were assessed by hematoxylin eosin staining and Evans blue leakage. Retinal inflammatory cytokines levels of tumor necrosis factor-α (TNF-α) and interleukin-1βmore » (IL1-β) were evaluated by immunohistochemistry. Retinal protein expressions of glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) were determined by western blotting. Retinal miRNA expressions were examined by miRNA-specific microarray, verified by quantitative RT-PCR and predicted by GO enrichment and KEGG pathway analysis. There was no significant changes in blood glucose level and body weight of diabetic rats with methane-rich or normal saline treatment, but the decreased retinal thickness, retinal ganglial cell loss and BRB breakdown were all significantly suppressed by methane treatment. DM-induced retinal overexpressions of TNF-α, IL-1β, GFAP and VEGF were also significantly ameliorated. Moreover, the methane treatment significantly up-regulated retinal levels of miR-192-5p (related to apoptosis and tyrosine kinase signaling pathway) and miR-335 (related to proliferation, oxidative stress and leukocyte). Methane exerts protective effect on DR via anti-inflammation, which may be related to the regulatory mechanism of miRNAs. - Highlights: • Methane exerts protective effect on diabetic retinopathy via anti-inflammation. • Therapeutic effect of

  13. Development of methane and nitrous oxide emission factors for the biomass fired circulating fluidized bed combustion power plant.

    PubMed

    Cho, Chang-Sang; Sa, Jae-Hwan; Lim, Ki-Kyo; Youk, Tae-Mi; Kim, Seung-Jin; Lee, Seul-Ki; Jeon, Eui-Chan

    2012-01-01

    This study makes use of this distinction to analyze the exhaust gas concentration and fuel of the circulating fluidized bed (CFB) boiler that mainly uses wood biomass, and to develop the emission factors of Methane (CH(4)), Nitrous oxide (N(2)O). The fuels used as energy sources in the subject working sites are Wood Chip Fuel (WCF), RDF and Refused Plastic Fuel (RPF) of which heating values are 11.9 TJ/Gg, 17.1 TJ/Gg, and 31.2 TJ/Gg, respectively. The average concentrations of CH(4) and N(2)O were measured to be 2.78 ppm and 7.68 ppm, respectively. The analyzed values and data collected from the field survey were used to calculate the emission factor of CH(4) and N(2)O exhausted from the CFB boiler. As a result, the emission factors of CH(4) and N(2)O are 1.4 kg/TJ (0.9-1.9 kg/TJ) and 4.0 kg/TJ (2.9-5.3 kg/TJ) within a 95% confidence interval. Biomass combined with the combustion technology for the CFB boiler proved to be more effective in reducing the N(2)O emission, compared to the emission factor of the CFB boiler using fossil fuel.

  14. Methane oxidation associated to submerged brown-mosses buffers methane emissions from Siberian polygonal peatlands

    NASA Astrophysics Data System (ADS)

    Liebner, Susanne; Zeyer, Josef; Knoblauch, Christian

    2010-05-01

    Circumpolar peatlands store roughly 18 % of the globally stored carbon in soils [based on 1, 2]. Also, northern wetlands and tundra are a net source of methane (CH4), an effective greenhouse gas (GHG), with an estimated annual CH4 release of 7.2% [3] or 8.1% [4] of the global total CH4 emission. Although it is definite that Arctic tundra significantly contributes to the global methane emissions in general, regional variations in GHG fluxes are enormous. CH4 fluxes of polygonal tundra within the Siberian Lena Delta, for example, were reported to be low [5, 6], particularly at open water polygonal ponds and small lakes [7] which make up around 10 % of the delta's surface. Low methane emissions from polygonal ponds oppose that Arctic permafrost thaw ponds are generally known to emit large amounts of CH4 [8]. Combining tools of biogeochemistry and molecular microbiology, we identified sinks of CH4 in polygonal ponds from the Lena Delta that were not considered so far in GHG studies from Arctic wetlands. Pore water CH4 profiling in polygonal ponds on Samoylov, a small island in the central part of the Lena Delta, revealed a pronounced zone of CH4 oxidation near the vegetation surface in submerged layers of brown-mosses. Here, potential CH4 oxidation was an order of magnitude higher than in non-submerged mosses and in adjacent bulk soil. We could additionally show that this moss associated methane oxidation (MAMO) is hampered when exposure of light is prevented. Shading of plots with submerged Scorpidium scorpioides inhibited MAMO leading to higher CH4 concentrations and an increase in CH4 fluxes by a factor of ~13. Compared to non-submerged mosses, the submerged mosses also showed significantly lower δ13C values indicating that they use carbon dioxide derived from methane oxidation for photosynthesis. Applying stable isotope probing of DNA, type II methanotrophs were identified to be responsible for the oxidation of CH4 in the submerged Scorpidium scorpioides. Our

  15. Coal-bed methane potential in Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campen, E.

    1991-06-01

    Montana's coal resources are the second largest of the US, with coal underlying approximately 35% of the state. These resources are estimated at 478 billion tons. Associated coal-bed methane resources are estimated to be 14 tcf. The coals of Montana range from Jurassic to early Tertiary in age and from lignite to low-volatile bituminous in rank. Thickness, rank, maceral composition, and proximate and ultimate analyses all vary vertically and laterally. The state contains eight major coal resource areas. A large percentage of Montana's coal consists of the Paleocene Fort Union lignites of eastern Montana, generally considered of too low amore » rank to contain significant methane resources. Most of the state's other coal deposits are higher in rank and contain many recorded methane shows. During Cretaceous and Tertiary times, regressive-transgressive cycles resulted in numerous coal-bearing sequences. Major marine regressions allowed the formation of large peat swamps followed by transgressions which covered the swamps with impervious marine shales, preventing the already forming methane from escaping. About 75% of Montana's coal is less than 1,000 ft below the ground's surface, making it ideal for methane production. Associated water appears to be fresh, eliminating environmental problems. Pipelines are near to most of the major coal deposits. Exploration for coal-bed methane in Montana is still in its infancy but at this time shows commercial promise.« less

  16. Demonstration of an ethane spectrometer for methane source identification.

    PubMed

    Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E

    2014-07-15

    Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.

  17. Abiotic Production of Methane in Terrestrial Planets

    PubMed Central

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  18. Methane-oxidizing seawater microbial communities from an Arctic shelf

    NASA Astrophysics Data System (ADS)

    Uhlig, Christiane; Kirkpatrick, John B.; D'Hondt, Steven; Loose, Brice

    2018-06-01

    Marine microbial communities can consume dissolved methane before it can escape to the atmosphere and contribute to global warming. Seawater over the shallow Arctic shelf is characterized by excess methane compared to atmospheric equilibrium. This methane originates in sediment, permafrost, and hydrate. Particularly high concentrations are found beneath sea ice. We studied the structure and methane oxidation potential of the microbial communities from seawater collected close to Utqiagvik, Alaska, in April 2016. The in situ methane concentrations were 16.3 ± 7.2 nmol L-1, approximately 4.8 times oversaturated relative to atmospheric equilibrium. The group of methane-oxidizing bacteria (MOB) in the natural seawater and incubated seawater was > 97 % dominated by Methylococcales (γ-Proteobacteria). Incubations of seawater under a range of methane concentrations led to loss of diversity in the bacterial community. The abundance of MOB was low with maximal fractions of 2.5 % at 200 times elevated methane concentration, while sequence reads of non-MOB methylotrophs were 4 times more abundant than MOB in most incubations. The abundances of MOB as well as non-MOB methylotroph sequences correlated tightly with the rate constant (kox) for methane oxidation, indicating that non-MOB methylotrophs might be coupled to MOB and involved in community methane oxidation. In sea ice, where methane concentrations of 82 ± 35.8 nmol kg-1 were found, Methylobacterium (α-Proteobacteria) was the dominant MOB with a relative abundance of 80 %. Total MOB abundances were very low in sea ice, with maximal fractions found at the ice-snow interface (0.1 %), while non-MOB methylotrophs were present in abundances similar to natural seawater communities. The dissimilarities in MOB taxa, methane concentrations, and stable isotope ratios between the sea ice and water column point toward different methane dynamics in the two environments.

  19. Transformations in methane hydrates

    USGS Publications Warehouse

    Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Shu, J.; Mao, Ho-kwang; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.

    2000-01-01

    Detailed study of pure methane hydrate in a diamond cell with in situ optical, Raman, and x-ray microprobe techniques reveals two previously unknown structures, structure II and structure H, at high pressures. The structure II methane hydrate at 250 MPa has a cubic unit cell of a = 17.158(2) A?? and volume V = 5051.3(13) A??3; structure H at 600 MPa has a hexagonal unit cell of a = 11.980(2) A??, c = 9.992(3) A??, and V = 1241.9(5) A??3. The compositions of these two investigated phases are still not known. With the effects of pressure and the presence of other gases in the structure, the structure II phase is likely to dominate over the known structure I methane hydrate within deep hydrate-bearing sediments underlying continental margins.

  20. Seasonal Rates of Methane Oxidation in Anoxic Marine Sediments

    PubMed Central

    Iversen, Niels; Blackburn, T. Henry

    1981-01-01

    Methane concentrations and rates of methane oxidation were measured in intact sediment cores from an inshore marine sediment at Jutland, Denmark. The rates of methane oxidation, determined by the appearance of 14CO2 from injected 14CH4, varied with sediment depth and season. Most methane oxidation was anoxic, but oxygen may have contributed to methane oxidation at the sediment surface. Cumulative rates (0- to 12-cm depth) for methane oxidation at Kysing Fjord were 3.34, 3.48, 8.60, and 17.04 μmol m−2 day−1 for April (4°C), May (13°C), July (17°C), and August (21°C), respectively. If all of the methane was oxidized by sulfate, it would account for only 0.01 to 0.06% of the sulfate reduction. The data indicate that methane was produced, in addition to being oxidized, in the 0- to 18-cm sediment stratum. PMID:16345784