Sample records for factors controlling water

  1. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  2. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  3. Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters

    PubMed Central

    DiMento, Brian P.; Mason, Robert P.

    2018-01-01

    Many studies have recognized abiotic photochemical degradation as an important sink of methylmercury (CH3Hg) in sunlit surface waters, but the rate-controlling factors remain poorly understood. The overall objective of this study was to improve our understanding of the relative importance of photochemical reactions in the degradation of CH3Hg in surface waters across a variety of marine ecosystems by extending the range of water types studied. Experiments were conducted using surface water collected from coastal sites in Delaware, New Jersey, Connecticut, and Maine, as well as offshore sites on the New England continental shelf break, the equatorial Pacific, and the Arctic Ocean. Filtered water amended with additional CH3Hg at environmentally relevant concentrations was allowed to equilibrate with natural ligands before being exposed to natural sunlight. Water quality parameters – salinity, dissolved organic carbon, and nitrate – were measured, and specific UV absorbance was calculated as a proxy for dissolved aromatic carbon content. Degradation rate constants (0.87–1.67 day−1) varied by a factor of two across all water types tested despite varying characteristics, and did not correlate with initial CH3Hg concentrations or other environmental parameters. The rate constants in terms of cumulative photon flux values were comparable to, but at the high end of, the range of values reported in other studies. Further experiments investigating the controlling parameters of the reaction observed little effect of nitrate and chloride, and potential for bromide involvement. The HydroLight radiative transfer model was used to compute solar irradiance with depth in three representative water bodies – coastal wetland, estuary, and open ocean – allowing for the determination of water column integrated rates. Methylmercury loss per year due to photodegradation was also modeled across a range of latitudes from the Arctic to the Equator in the three model water types

  4. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada

    USGS Publications Warehouse

    Seiler, R.L.; Stollenwerk, K.G.; Garbarino, J.R.

    2005-01-01

    An investigation of a childhood leukemia cluster by US Centers for Disease Control and Prevention revealed that residents of the Carson Desert, Nevada, are exposed to high levels of W and this prompted an investigation of W in aquifers used as drinking water sources. Tungsten concentrations in 100 ground water samples from all aquifers used as drinking water sources in the area ranged from 0.27 to 742 ??g/l. Ground water in which W concentrations exceed 50 ??g/l principally occurs SE of Fallon in a geothermal area. The principal sources of W in ground water are natural and include erosion of W-bearing mineral deposits in the Carson River watershed upstream of Fallon, and, possibly, upwelling geothermal waters. Ground water in the Fallon area is strongly reducing and reductive dissolution of Fe and Mn oxyhydroxides may be releasing W; however, direct evidence that the metal oxides contain W is not available. Although W and Cl concentrations in the Carson River, a lake, and water from many wells, appear to be controlled by evaporative concentration, evaporation alone cannot explain the elevated W concentrations found in water from some of the wells. Concentrations of W exceeding 50 ??g/l are exclusively associated with Na-HCO3 and Na-Cl water types and pH > 8.0; in these waters, geochemical modeling indicates that W exhibits <10% adsorption. Tungsten concentrations are strongly and positively correlated with As, B, F, and P, indicating either common sources or common processes controlling their concentrations. Geochemical modeling indicates W concentrations are consistent with pH-controlled adsorption of W. The geochemical model PHREEQC was used to calculate IAP values, which were compared with published Ksp values for primary W minerals. FeWO4, MnWO4, Na2WO4, and MgWO4 were undersaturated and CaWO4 and SrWO 4 were approaching saturation. These conclusions are tentative because of uncertainty in the thermodynamic data. The similar behavior of As and W observed in

  5. Drinking water from alternative water sources: differences in beliefs, social norms and factors of perceived behavioural control across eight Australian locations.

    PubMed

    Dolnicar, S; Hurlimann, A

    2009-01-01

    Australia is facing serious challenges in the management of water in various urban and regional locations. Two popular responses to these challenges are increasing supply through alternative water sources such as recycled and desalinated water. However, significant gaps exist in our knowledge of community attitudes to these alternative sources of water, particularly for potable use. This paper reports results from an Australian study of community attitudes to alternative water sources. Sixty six qualitative interviews were held at eight locations with distinctly different water situations. This paper explores all three antecedents to the behaviour of drinking recycled water and desalinated water as postulated by the Theory of Planned Behaviour: attitudes, social norms and factors of perceived behavioural control. Key results indicate that while people hold both positive and negative beliefs (mostly cost, health and environmental concerns) about water from alternative sources, nearly all of them are willing to drink it if the water crisis were to deteriorate further. People also feel they lack knowledge and state that information from scientists would influence their decision to drink recycled and desalinated water most. Friends and relatives are most influential in preventing people from drinking recycled water. The findings reported in this paper have major implications for water policy, and will be of particular interest to water engineers. The paper raises a provocative question: Is it better to avoid public consultation in introducing water from alternative sources?

  6. Control factors and scale analysis of annual river water, sediments and carbon transport in China.

    PubMed

    Song, Chunlin; Wang, Genxu; Sun, Xiangyang; Chang, Ruiying; Mao, Tianxu

    2016-05-11

    Under the context of dramatic human disturbances on river system, the processes that control the transport of water, sediment, and carbon from river basins to coastal seas are not completely understood. Here we performed a quantitative synthesis for 121 sites across China to find control factors of annual river exports (Rc: runoff coefficient; TSSC: total suspended sediment concentration; TSSL: total suspended sediment loads; TOCL: total organic carbon loads) at different spatial scales. The results indicated that human activities such as dam construction and vegetation restoration might have a greater influence than climate on the transport of river sediment and carbon, although climate was a major driver of Rc. Multiple spatial scale analyses indicated that Rc increased from the small to medium scale by 20% and then decreased at the sizable scale by 20%. TSSC decreased from the small to sizeable scale but increase from the sizeable to large scales; however, TSSL significantly decreased from small (768 g·m(-2)·a(-1)) to medium spatial scale basins (258 g·m(-2)·a(-1)), and TOCL decreased from the medium to large scale. Our results will improve the understanding of water, sediment and carbon transport processes and contribute better water and land resources management strategies from different spatial scales.

  7. Identification of key factors affecting the water pollutant concentration in the sluice-controlled river reaches of the Shaying River in China via statistical analysis methods.

    PubMed

    Dou, Ming; Zhang, Yan; Zuo, Qiting; Mi, Qingbin

    2015-08-01

    The construction of sluices creates a strong disturbance in water environmental factors within a river. The change in water pollutant concentrations of sluice-controlled river reaches (SCRRs) is more complex than that of natural river segments. To determine the key factors affecting water pollutant concentration changes in SCRRs, river reaches near the Huaidian Sluice in the Shaying River of China were selected as a case study, and water quality monitoring experiments based on different regulating modes were implemented in 2009 and 2010. To identify the key factors affecting the change rates for the chemical oxygen demand of permanganate (CODMn) and ammonia nitrogen (NH3-N) concentrations in the SCRRs of the Huaidian Sluice, partial correlation analysis, principal component analysis and principal factor analysis were used. The results indicate four factors, i.e., the inflow quantity from upper reaches, opening size of sluice gates, water pollutant concentration from upper reaches, and turbidity before the sluice, which are the common key factors for the CODMn and NH3-N concentration change rates. Moreover, the dissolved oxygen before a sluice is a key factor for the permanganate concentration from CODMn change rate, and the water depth before a sluice is a key factor for the NH3-N concentration change rate. Multiple linear regressions between the water pollutant concentration change rate and key factors were established via multiple linear regression analyses, and the quantitative relationship between the CODMn and NH3-N concentration change rates and key affecting factors was analyzed. Finally, the mechanism of action for the key factors affecting the water pollutant concentration changes was analyzed. The results reveal that the inflow quantity from upper reaches, opening size of sluice gates, permanganate concentration from CODMn from upper reaches and dissolved oxygen before the sluice have a negative influence and the turbidity before the sluice has a positive

  8. Factors controlling the configuration of the fresh-saline water interface in the Dead Sea coastal aquifers: Synthesis of TDEM surveys and numerical groundwater modeling

    USGS Publications Warehouse

    Yechieli, Y.; Kafri, U.; Goldman, M.; Voss, C.I.

    2001-01-01

    TDEM (time domain electromagnetic) traverses in the Dead Sea (DS) coastal aquifer help to delineate the configuration of the interrelated fresh-water and brine bodies and the interface in between. A good linear correlation exists between the logarithm of TDEM resistivity and the chloride concentration of groundwater, mostly in the higher salinity range, close to that of the DS brine. In this range, salinity is the most important factor controlling resistivity. The configuration of the fresh-saline water interface is dictated by the hydraulic gradient, which is controlled by a number of hydrological factors. Three types of irregularities in the configuration of fresh-water and saline-water bodies were observed in the study area: 1. Fresh-water aquifers underlying more saline ones ("Reversal") in a multi-aquifer system. 2. "Reversal" and irregular residual saline-water bodies related to historical, frequently fluctuating DS base level and respective interfaces, which have not undergone complete flushing. A rough estimate of flushing rates may be obtained based on knowledge of the above fluctuations. The occurrence of salt beds is also a factor affecting the interface configuration. 3. The interface steepens towards and adjacent to the DS Rift fault zone. Simulation analysis with a numerical, variable-density flow model, using the US Geological Survey's SUTRA code, indicates that interface steep- ening may result from a steep water-level gradient across the zone, possibly due to a low hydraulic conductivity in the immediate vicinity of the fault.

  9. Investigation of Controlling Factors Impacting Water Quality in Shale Gas Produced Brine

    NASA Astrophysics Data System (ADS)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2014-12-01

    The recent boom in production of natural gas from unconventional reservoirs has generated a substantial increase in the volume of produced brine that must be properly managed to prevent contamination of fresh water resources. Produced brine, which includes both flowback and formation water, is often highly saline and may contain elevated concentrations of naturally occurring radioactive material and other toxic elements. These characteristics present many challenges with regard to designing effective treatment and disposal strategies for shale gas produced brine. We will present results from a series of batch experiments where crushed samples from two shale formations in the Michigan Basin, the Antrim and Utica-Collingwood shales, were brought into contact with synthetic hydraulic fracturing fluids under in situ temperature and pressure conditions. The Antrim has been an active shale gas play for over three decades, while the Utica-Collingwood formation (a grouped reservoir consisting of the Utica shale and Collingwood limestone) is an emerging shale gas play. The goal of this study is to investigate the influence of water-rock interactions in controlling produced water quality. We evaluate toxic element leaching from shale samples in contact with model hydraulic fracturing fluids under system conditions corresponding to reservoir depths up to 1.5 km. Experimental results have begun to elucidate the relative importance of shale mineralogy, system conditions, and chemical additives in driving changes in produced water quality. Initial results indicate that hydraulic fracturing chemical additives have a strong influence on the extent of leaching of toxic elements from the shale. In particular, pH was a key factor in the release of uranium (U) and divalent metals, highlighting the importance of the mineral buffering capacity of the shale. Low pH values persisted in the Antrim and Utica shale experiments and resulted in higher U extraction efficiencies than that

  10. Drinking water: a risk factor for high incidence of esophageal cancer in Anyang, China.

    PubMed

    Cao, Wenbo; Han, Jianying; Yuan, Yi; Xu, Zhixiang; Yang, Shengli; He, Weixin

    2016-06-01

    Anyang is known to be a high-incidence area of esophageal cancer (EC) in China. Among a long list of risk factors, the quality of drinking water was evaluated. We have selected 3806 individuals and collected 550 drinking water samples correspondent with this not-matched case-control survey. There are 531 EC patients included based on Population Cancer Registry from 92 townships, of which 3275 controls with long-lived aged over 90 years and free from EC are used as controls in the same regions. Our result suggests that the quality of drinking water is a highly associated risk factor for EC. The residential ecological environment and the quality of water resource positively link with each other. The analysis of water samples also demonstrated that the concentrations of methyl ethylamine, morpholine, N-methylbenzylamine, nitrate and chloride in water from springs and rivers are higher than those in well and tap water (P = 0.001). Micronuclei formation tests show that well water and tap water in these regions have no mutagenicity.

  11. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters

    NASA Astrophysics Data System (ADS)

    Black, Frank J.; Poulin, Brett A.; Flegal, A. Russell

    2012-05-01

    Photo-decomposition is among the most important mechanisms responsible for degrading monomethylmercury (MMHg) in aquatic systems, but this process is not fully understood. We investigated the relative importance of different factors in controlling the rate of MMHg photo-decomposition in surface waters in experiments using DOM isolated from natural waters. We found no evidence of net abiotic production of MMHg in any dark or light exposed treatments. The average (mean ± s.d.) MMHg photo-decomposition rate constant for all light exposed samples using DOM concentrated from three coastal wetlands was 0.0099 ± 0.0020 E-1m2 (range of 0.006-0.015 E-1m2) when expressed in photon flux from 330-700 nm. This was roughly 3-fold higher than the average MMHg photo-decomposition rate constant in coastal seawater of 0.0032 ± 0.0010 E-1m2. MMHg photo-degradation was highly wavelength dependent. The ratio of MMHg photo-decomposition rate constants, with respect to photon flux, was 400:37:1 for UVB:UVA:PAR. However, when integrated across the entire water column over which MMHg photo-demethylation occurs, PAR was responsible for photo-degrading more MMHg than UVB and UVA combined in the three wetland sites because of the more rapid attenuation of UV light with depth. MMHg half-lives in the wetlands were calculated for the upper 250 cm where photo-degradation occurred, and ranged from 7.6 to 20 days under typical summer sunlight conditions at 37°N. Rates of MMHg photo-decomposition decreased with increasing salinity, and were 27% higher at a salinity of 5 than those at a salinity of 25. This difference could not be accounted for by changes in the complexation of MMHg by DOM and chloride. Differences in MMHg photo-degradation rate constants of up to 18% were measured between treatments using DOM concentrated from three different wetlands. Surprisingly, increasing DOM concentration from 1.5 to 11.3 mg OC L-1 had only a small (6%) effect on MMHg photo-decomposition, which was much

  12. Lack of effect of drinking water barium on cardiovascular risk factors.

    PubMed Central

    Wones, R G; Stadler, B L; Frohman, L A

    1990-01-01

    Higher cardiovascular mortality has been associated in a single epidemiological study with higher levels of barium in drinking water. The purpose of this study was to determine whether drinking water barium at levels found in some U.S. communities alters the known risk factors for cardiovascular disease. Eleven healthy men completed a 10-week dose-response protocol in which diet was controlled (600 mg cholesterol; 40% fat, 40% carbohydrate, 20% protein; sodium and potassium controlled at the subject's pre-protocol estimated intake). Other aspects of the subjects' lifestyles known to affect cardiac risk factors were controlled, and the barium content (as barium chloride) of the drinking water (1.5 L/day) was varied from 0 (first 2 weeks), to 5 ppm (next 4 weeks), to 10 ppm (last 4 weeks). Multiple blood and urine samples, morning and evening blood pressure measurements, and 48-hr electrocardiographic monitoring were performed at each dose of barium. There were no changes in morning or evening systolic or diastolic blood pressures, plasma cholesterol or lipoprotein or apolipoprotein levels, serum potassium or glucose levels, or urine catecholamine levels. There were no arrhythmias related to barium exposure detected on continuous electrocardiographic monitoring. A trend was seen toward increased total serum calcium levels with exposure to barium, which was of borderline statistical significance and of doubtful clinical significance. In summary, drinking water barium at levels of 5 and 10 ppm did not appear to affect any of the known modifiable cardiovascular risk factors. PMID:2384067

  13. Drinking water intake of grazing steers: the role of environmental factors controlling canopy wetness.

    PubMed

    Sun, L Z; Auerswald, K; Wenzel, R; Schnyder, H

    2014-01-01

    Cattle obtain water primarily from the moisture in their feed and from drinking water. On pasture, the moisture content of the diet is influenced by plant tissue water (internal water) and surface moisture (external water), which may include dew, guttation, and intercepted rain, that influence the drinking water requirement. This study investigated the relationship between daily drinking water intake (DWI, L/d) of steers on pasture (19 steers with mean initial BW of approximately 400 kg) and soil and weather factors that are known to affect plant water status (dry matter content) and surface moisture formation and persistence. Daily records of weather conditions and DWI were obtained during 2 grazing seasons with contrasting spring, summer, and autumn rainfall patterns. Plant available water in the soil (PAW, mm) was modeled from actual and potential evapotranspiration and the water-holding capacity of the soil. The DWI averaged over the herd varied among days from 0 to 29 L/d (grazing season mean 9.8 L/d). The DWI on both dry (<0.2 mm rainfall on the corresponding and previous days) and wet (>2 mm) days increased with increasing temperature (mean, maximum, and minimum), sunshine hours, and global radiation and decreasing relative humidity, and the slopes and coefficients of determination were generally greater for wet days. Wind reduced DWI on wet days but had no effect on dry days. The DWI was reduced by up to 4.4 L/d on wet days compared to dry days, but DWI did not correlate with rainfall amount. Increasing PAW decreased DWI by up to >10 L/d on both dry and wet days. These results are all consistent with environmental effects on the water status (dry matter content) of pasture vegetation and canopy surface moisture, the associated effects on grazing-related water intake, and the corresponding balancing changes of DWI. Using the observed relationships with environmental factors, we derived a new model predicting DWI for any soil moisture condition, for both wet

  14. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    USGS Publications Warehouse

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  15. Controllability of Surface Water Networks

    NASA Astrophysics Data System (ADS)

    Riasi, M. Sadegh; Yeghiazarian, Lilit

    2017-12-01

    To sustainably manage water resources, we must understand how to control complex networked systems. In this paper, we study surface water networks from the perspective of structural controllability, a concept that integrates classical control theory with graph-theoretic formalism. We present structural controllability theory and compute four metrics: full and target controllability, control centrality and control profile (FTCP) that collectively determine the structural boundaries of the system's control space. We use these metrics to answer the following questions: How does the structure of a surface water network affect its controllability? How to efficiently control a preselected subset of the network? Which nodes have the highest control power? What types of topological structures dominate controllability? Finally, we demonstrate the structural controllability theory in the analysis of a wide range of surface water networks, such as tributary, deltaic, and braided river systems.

  16. Controlling Factors of the Surface Energy and Water Balances in cities located in cold climate regions

    NASA Astrophysics Data System (ADS)

    Järvi, L.; Grimmond, S. B.; Christen, A.; McFadden, J. P.; Strachan, I. B.

    2016-12-01

    Urban effects on climate are often pronounced in winter due to large anthropogenic heat releases and differences in snow cover between urban and surrounding rural areas. In this study, we simulate energy and water balances in cities characterized by cold winter climates with snow. Eleven urban sites from Helsinki (Finland), Basel (Switzerland), Montreal (Canada) and Minneapolis (USA) are analysed. The sites were selected based on the availability of either measured turbulent fluxes (from eddy covariance) or surface runoff to be used for model evaluation. The sites vary with respect to land cover fractions, irrigation habits and population densities. For example, the plan area fraction of impervious surface varies from 5% in Minneapolis to 84% in Basel. To simulate urban energy and water balances, we use the Surface Urban Energy and Water balance Scheme (SUEWS) model, which has been designed to minimize the number of required input variables and model parameters. For each site, the model is run in an offline mode using measured hourly meteorological data with a time step of 5-min. As the modelled time periods range from one (Basel) to 7.5 years (Helsinki), a wide range of meteorological conditions occur. Our results show how both evaporation and surface runoff are highly dependent on the fraction of impervious surface cover (r > |0.8|) during snow-free periods. However, high year-to-year variability in simulated evaporation and runoff indicates that climatological factors are also important. In winter, the amount and duration of snow cover become import controlling factor in determining the two components of water balance. The shorter the snow cover period is, the larger the cumulative runoff tends to be. Thus, our results suggest that warmer winters with less snow will increase the stress on drainage systems and modify the urban ecosystem via changes in evaporation and Bowen ratio. Also, our results indicate that simply using the fraction of impervious or pervious

  17. Factors controlling the regional distribution of vanadium in ground water

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2010-01-01

    Although the ingestion of vanadium (V) in drinking water may have possible adverse health effects, there have been relatively few studies of V in groundwater. Given the importance of groundwater as a source of drinking water in many areas of the world, this study examines the potential sources and geochemical processes that control the distribution of V in groundwater on a regional scale. Potential sources of V to groundwater include dissolution of V rich rocks, and waste streams from industrial processes. Geochemical processes such as adsorption/desorption, precipitation/dissolution, and chemical transformations control V concentrations in groundwater. Based on thermodynamic data and laboratory studies, V concentrations are expected to be highest in samples collected from oxic and alkaline groundwater. However, the extent to which thermodynamic data and laboratory results apply to the actual distribution of V in groundwater is not well understood. More than 8400 groundwater samples collected in California were used in this study. Of these samples, high (> or = 50 μg/L) and moderate (25 to 49 μg/L) V concentrations were most frequently detected in regions where both source rock and favorable geochemical conditions occurred. The distribution of V concentrations in groundwater samples suggests that significant sources of V are mafic and andesitic rock. Anthropogenic activities do not appear to be a significant contributor of V to groundwater in this study. High V concentrations in groundwater samples analyzed in this study were almost always associated with oxic and alkaline groundwater conditions, which is consistent with predictions based on thermodynamic data.

  18. Quantifying Temporal Variations in Water Resources of the Saq Transboundary Aquifer System and Identification of their Controlling Factors

    NASA Astrophysics Data System (ADS)

    Fallatah, O.; Ahmed, M.; Save, H.; Akanda, A. S.

    2016-12-01

    Abstract: Monthly (April 2002—April 2015) Gravity Recovery and Climate Experiment (GRACE) gravity field solutions, acquired over the Kingdom of Saudi Arabia/Jourdan transboundary aquifer system, the Saq aquifer, were analyzed and spatiotemporally correlated with other relevant land surface models (e.g., GLDAS), remote sensing (e.g., CMAP, NDVI), and field (e.g., water levels) datasets to quantify the temporal variations in the Saq'a water resources and to identify the factors that control these variations. Examination of the GRACE-derived Terrestrial Water Storage (TWS) and Groundwater Storage (GWS) data indicates the following: (1) the Saq aquifer system is witnessing a TWS and GWS depletion rates of -9.05 ± 0.25 mm/yr (-4.84 ± 0.13 km3/yr) and -6.52 ± 0.29 mm/yr (-3.49 ± 0.15 km3/yr), respectively, related to both climatic and anthropogenic factors, (2) the observed TWS depletion rates is partially related to decline in rainfall as evident from comparison of average annual precipitation (AAP) for the investigated period to the previous 23 years (AAP: 1979—2001: 104 mm; 2002—2014: 60 mm), (3) the observed GWS depletion in the Saq aquifer is attributed to groundwater extraction activities for irrigation purposes, and (4) the observed GRACE-derived GWS depletion is highly correlated with the observed water level depletion rates within the investigated wells. Our analysis indicate that the availability of the global monthly GRACE solutions is providing, and will continue to provide, the most practical, informative, and cost-effective tool for monitoring the aquifer systems across the world.

  19. Controlling factors of evaporation and CO2 flux over an open water lake in southeastern margin of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Du, Q.; Liu, H.; Liu, Y.; Wang, L.; Xu, L.

    2017-12-01

    Erhai lake is located in the southeastern margin of Tibetan Plateau. Based on the 4 years measurement over Erhai lake with eddy covariance technique (EC) from 2012 to 2015, the diurnal and seasonal variations of latent and sensible heat and CO2 fluxes, and their controlling factors over different time scales were analyzed. The diurnal average LE ranged from 31 to 171 Wm-2, while Hs ranged from -31 to 21 Wm-2. Bowen ratio was larger during January and May and smaller during June and October. The lake continued storing heat during January and June, and releasing heat since July. The diurnal average CO2 fluxes during nighttime were higher than the daytime, and carbon uptake was almost observed during the midday time of the day for the whole study period. The annual carbon budget fluctuated from 117.5 to 161.7 g C m-2 a-1, while annual total evaporation (ET) from 1120.8 to 1228.5 mm for the four-years period. The Erhai Lake behaved as a net carbon source over the whole period but carbon uptake was observed during the middle time of each year. The difference between water surface and air temperature (DeltaT) and the product of DeltaT and wind speed were the main controlling factors for Hs from halfhourly to monthly scale. There was significant relationship between wind speed, the product of wind speed and vapor pressure deficit (VPD) and LE on halfhourly and daily scales. The total cloud amount and net radiation (Rn) had a large effect on monthly variation of LE. Photosynthetic active radiation (PAR) and wind speed was mainly responsible for the variation of halfhourly and daily CO2 fluxes, respectively. The total cloud amount was the most important factors controlling for annual total ET. The annual rainfall, water surface temperature was observed to be negatively related with annual CO2 fluxes.

  20. Water deficit-induced changes in transcription factor expression in maize seedlings

    USDA-ARS?s Scientific Manuscript database

    Plants tolerate water deficits by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TFs) directed regulation of transcription within these gene networks is key to eliciting appropriate responses. In this study, reverse tran...

  1. Controlling factors of oligomerization at the water surface: why is isoprene such a unique VOC?

    PubMed

    Ishizuka, Shinnosuke; Fujii, Tomihide; Matsugi, Akira; Sakamoto, Yosuke; Hama, Tetsuya; Enami, Shinichi

    2018-06-06

    Recent studies have shown that atmospheric particles are sufficiently acidic to enhance the uptake of unsaturated volatile organic compounds (VOCs) by triggering acid-catalyzed oligomerization. Controlling factors of oligomerization at the aqueous surfaces, however, remain to be elucidated. Herein, isoprene (2-methyl-1,3-butadiene, ISO), 1,3-butadiene (1,3-b), 1,4-pentadiene (1,4-p), 1-pentene (1-p), and 2-pentene (2-p) vapors are exposed to an acidic water microjet (1 ≤ pH ≤ 5), where cationic products are generated on its surface within ∼10 μs and directly detected using surface-sensitive mass spectrometry. We found that carbocations form at the air-water interface in all the cases, whereas the extent of oligomerization largely depends on the structure in the following order: ISO ≫ 1,3-b > 1,4-p ≫ 1-p ≈ 2-p. Importantly, the cationic oligomerization of ISO yields a protonated decamer ((ISO)10H+, a C50 species of m/z 681.6), while the pentenes 1-p/2-p remain as protonated monomers. We suggest that ISO oligomerization is uniquely facilitated by (1) the resonance stabilization of (ISO)H+ through the formation of a tertiary carbocation with a conjugated C[double bond, length as m-dash]C bond pair, and (2) π-electron enrichment induced by the neighboring methyl group. Experiments in D2O and D2O : H2O mixtures revealed that ISO oligomerization on the acidic water surface proceeds via two competitive mechanisms: chain-propagation and proton-exchange reactions. Furthermore, we found that ISO carbocations undergo addition to relatively inert 1-p, generating hitherto uncharacterized co-oligomers.

  2. Risk factors for tuberculosis in Greenland: case-control study.

    PubMed

    Ladefoged, K; Rendal, T; Skifte, T; Andersson, M; Søborg, B; Koch, A

    2011-01-01

    Despite several efforts aiming at disease control, the incidence of tuberculosis (TB) remains high in Greenland, averaging 131 per 100,000 population during the period 1998-2007. The purpose of the present study was to disclose risk factors for TB. A case-control study was performed among 146 patients diagnosed with TB in the period 2004-2006. For each patient, four healthy age- and sex-matched control persons living in the same district were included. All participants completed a questionnaire regarding socio-demographic and lifestyle factors. Risk factor analyses were carried out using logistic regression models. Factors associated with TB were Inuit ethnicity, living in a small settlement, unemployment, no access to tap water, no bathroom or flushing toilet, underweight, smoking, frequent intake of alcohol and immunosuppressive treatment. The multivariate model showed that Inuit ethnicity (OR 15.3), living in a settlement (OR 5.1), being unemployed (OR 4.1) and frequent alcohol use (OR 3.1) were independent determinants of risk. Unemployment was associated with the highest population-attributable risk (29%). Risk factors associated with living in a settlement should be further explored and an investigation of genetic susceptibility is warranted.

  3. Computer Controlled Microwave Oven System for Rapid Water Content Determination

    DTIC Science & Technology

    1988-11-01

    Codes - .d/or CONTENTS Page PREFACE .................................................................... 1 CONVERSION FACTORS, NON- SI TO SI (METRIC...CONVERSION FACTORS, NON- SI TO SI (METRIC) UNITS OF MEASUREMENT Non- SI units of measurement used in this report can be converted to SI (metric) units as...formula: C = (5/9)(F - 32) . To obtain Kelvin ( K ) readings, use: K = (5/9)(F - 32) + 273.15 3 COMPUTER CONTROLLED MICROWAVE OVEN SYSTEM FOR RAPID WATER

  4. Radium-contaminated water: a risk factor for cancer of the upper digestive tract.

    PubMed

    Hirunwatthanakul, Phatcha; Sriplung, Hutcha; Geater, Alan

    2006-01-01

    There is a high incidence of oral, pharynx and esophagus cancer among males in Na Mom district in Songkhla Province in Thailand, an area where radium concentration in shallow well water is found to be higher than other areas in this province. A population-based case control study was conducted from June to November 2004 to determine the association of oral exposure to radium-contaminated water and cancer of the upper digestive tract in the district.Thirty-two confirmed cases and 128 sex and five-year birth cohort matched neighborhood controls were selected by multistage sampling from six villages in four sub-districts. All subjects were verified to have been permanent residents in the district for more than 10 years. Thirty cases were dead at the time of the study, thus their relatives were interviewed to determine their amount of water drinking, tobacco smoking, alcohol drinking, betel chewing and exposure to other potential risk factors in the past. The other two cases and all controls were directly interviewed. The concentration of radium in shallow well water at the subject's houses was estimated using a contour map of Ra-226 in the water at the location of their residence. The results showed a strong and dose-dependent associationb etween consumption of radium-contaminated shallow well water and cancer of the upper digestive tract. In multivariate analysis controlled for important risk factors of the cancer, the odds ratios for exposure to oral radium consumption 50-100 mBq/day and >100 mBq/day compared with <50 mBq/day were 2.83 (95% CI: 0.50-16.19) and 29.76 (95% CI: 4.39-201.6) respectively. The risk also increased with consumption of fresh water fish which might have been contaminated by dissolved radium in the water. This study offers the first evidence of the association between radium and cancer of the upper digestive tract to the world literature. Further studies with other methods such as area-wide correlation of radium-uranium concentration and the

  5. Environmental and occupational risk factors for progressive supranuclear palsy: Case-control study.

    PubMed

    Litvan, Irene; Lees, Peter S J; Cunningham, Christopher R; Rai, Shesh N; Cambon, Alexander C; Standaert, David G; Marras, Connie; Juncos, Jorge; Riley, David; Reich, Stephen; Hall, Deborah; Kluger, Benzi; Bordelon, Yvette; Shprecher, David R

    2016-05-01

    The cause of progressive supranuclear palsy (PSP) is largely unknown. Based on evidence for impaired mitochondrial activity in PSP, we hypothesized that the disease may be related to exposure to environmental toxins, some of which are mitochondrial inhibitors. This multicenter case-control study included 284 incident PSP cases of 350 cases and 284 age-, sex-, and race-matched controls primarily from the same geographical areas. All subjects were administered standardized interviews to obtain data on demographics, residential history, and lifetime occupational history. An industrial hygienist and a toxicologist unaware of case status assessed occupational histories to estimate past exposure to metals, pesticides, organic solvents, and other chemicals. Cases and controls were similar on demographic factors. In unadjusted analyses, PSP was associated with lower education, lower income, more smoking pack-years, more years of drinking well water, more years living on a farm, more years living 1 mile from an agricultural region, more transportation jobs, and more jobs with exposure to metals in general. However, in adjusted models, only more years of drinking well water was significantly associated with PSP. There was an inverse association with having a college degree. We did not find evidence for a specific causative chemical exposure; higher number of years of drinking well water is a risk factor for PSP. This result remained significant after adjusting for income, smoking, education and occupational exposures. This is the first case-control study to demonstrate PSP is associated with environmental factors. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  6. Modeling Environmental Controls on Tree Water Use at Different Temporal scales

    NASA Astrophysics Data System (ADS)

    Guan, H.; Wang, H.; Simmons, C. T.

    2014-12-01

    Vegetation covers 70% of land surface, significantly influencing water and carbon exchange between land surface and the atmosphere. Vegetation transpiration (Et) contributes 80% of the global terrestrial evapotranspiration, making an adequate illustration of how important vegetation is to any hydrological or climatological applications. Transpiration can be estimated through upscaling from sap flow measurements on selected trees. Alternatively, transpiration (or tree water use for forests) can be correlated with environmental variables or estimated in land surface simulations in which a canopy conductance (gc) model is often used. Transpiration and canopy conductance are constrained by supply and demand control factors. Some previous studies estimated Et and gc considering the stresses from both the supply (soil water condition) and demand (e.g. temperature, vapor pressure deficit, solar radiation) factors, while some only considered the demand controls. In this study, we examined the performance of two types of models at daily and half-hourly scales for transpiration and canopy conductance modelling based on a native species in South Australia. The results show that the significance of soil water condition for Et and gc modelling varies with time scales. The model parameter values also vary across time scales. This result calls for attention in choosing models and parameter values for soil-plant-atmosphere continuum and land surface modeling.

  7. EPA evaluates air, water controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairley, P.

    1996-06-05

    Water and air pollution controls make significant contribution to the economy`s health, according to two EPA reports. Clean water provides billions of dollars in benefits to US industries, says a recently released study; and the agency`s draft report on the benefits of air pollution identifiesmore » $$20 in medical costs avoided for every dollar spent on pollution controls. The Clean Water Industry Coalition (CWIC) says the water report reaffirms the need to {open_quotes}modernize{close_quotes} the Clean Water Act (CWA), but EPA administrator Carol Browner says a CWA {open_quotes}rollback{close_quotes} supported by CWIC and passed by House Republicans last May would have jeopardized industries that depend on clean water by weakening effluent standards. Browner denies that the benefits of clean water as identified by the EPA report would have protected water standards from the bill`s cost-benefit requirements. A draft EPA report on clean air leaked by the American Lung Association estimates that tailpipe and smokestack controls for air pollution saved 79,000 lives and resulted in 15 million fewer respiratory illnesses in 1990 alone. The report assesses the costs and benefits of the Clean Air Act from 1970 to 1990. The cost of federal, state, and local regulations were estimated at $$436 billion over the 20-year span, whereas direct benefits of reduced pollution totaled $6.8 trillion.« less

  8. The psychology of recycled water: Factors predicting disgust and willingness to use

    NASA Astrophysics Data System (ADS)

    Wester, Julia; Timpano, Kiara R.; ćek, Demet; Broad, Kenneth

    2016-04-01

    Water recycling is increasingly recognized as a critical strategy to maintain sustainable water supplies. Yet public acceptance of water recycling often lags behind. It is unclear the degree to which individuals are aware of the role of disgust in their decisions about recycled water, how important anticipated disgust is to willingness to use when controlling for other factors, and what the most effective method of presenting information about water recycling would be to decrease disgust reactions and increase willingness to use. We used a two-pronged approach, combining a survey with open-ended and psychometric measures with an experimental manipulation, in a U.S., web-based sample (N = 428). Only 2% of participants self-identified disgust as important to their decisions about recycled water. When measured directly using a Likert scale, however, anticipated disgust was the strongest predictor of willingness to use recycled water when controlling for individual differences that have been shown to impact willingness to use, including a subscale of individual pathogen disgust sensitivity. Finally, participants were exposed to an educational brochure about water reuse framed either affectively or cognitively or were shown a simple, neutral definition. Exposure to either the affectively or cognitively framed brochures lowered anticipated disgust, but did not significantly affect willingness to use recycled water compared to the neutral condition.

  9. Hydroecological factors governing surface water flow on a low-gradient floodplain

    USGS Publications Warehouse

    Harvey, J.W.; Schaffranek, R.W.; Noe, G.B.; Larsen, L.G.; Nowacki, D.J.; O'Connor, B.L.

    2009-01-01

    Interrelationships between hydrology and aquatic ecosystems are better understood in streams and rivers compared to their surrounding floodplains. Our goal was to characterize the hydrology of the Everglades ridge and slough floodplain ecosystem, which is valued for the comparatively high biodiversity and connectivity of its parallel-drainage features but which has been degraded over the past century in response to flow reductions associated with flood control. We measured flow velocity, water depth, and wind velocity continuously for 3 years in an area of the Everglades with well-preserved parallel-drainage features (i.e., 200-m wide sloughs interspersed with slightly higher elevation and more densely vegetated ridges). Mean daily flow velocity averaged 0.32 cm s-1 and ranged between 0.02 and 0.79 cm s-1. Highest sustained velocities were associated with flow pulses caused by water releases from upstream hydraulic control structures that increased flow velocity by a factor of 2-3 on the floodplain for weeks at a time. The highest instantaneous measurements of flow velocity were associated with the passage of Hurricane Wilma in 2005 when the inverse barometric pressure effect increased flow velocity up to 5 cm s-1 for several hours. Time-averaged flow velocities were 29% greater in sloughs compared to ridges because of marginally higher vegetative drag in ridges compared to sloughs, which contributed modestly (relative to greater water depth and flow duration in sloughs compared to ridges) to the predominant fraction (86%) of total discharge through the landscape occurring in sloughs. Univariate scaling relationships developed from theory of flow through vegetation, and our field data indicated that flow velocity increases with the square of water surface slope and the fourth power of stem diameter, decreases in direct proportion with increasing frontal area of vegetation, and is unrelated to water depth except for the influence that water depth has in controlling

  10. Factors affecting sustainability of rural water schemes in Swaziland

    NASA Astrophysics Data System (ADS)

    Peter, Graciana; Nkambule, Sizwe E.

    The Millennium Development Goal (MDG) target to reduce the proportion of people without sustainable access to safe drinking water by the year 2015 has been met as of 2010, but huge disparities exist. Some regions, particularly Sub-Saharan Africa are lagging behind it is also in this region where up to 30% of the rural schemes are not functional at any given time. There is need for more studies on factors affecting sustainability and necessary measures which when implemented will improve the sustainability of rural water schemes. The main objective of this study was to assess the main factors affecting the sustainability of rural water schemes in Swaziland using a Multi-Criteria Analysis Approach. The main factors considered were: financial, social, technical, environmental and institutional. The study was done in Lubombo region. Fifteen functional water schemes in 11 communities were studied. Data was collected using questionnaires, checklist and focused group discussion guide. A total of 174 heads of households were interviewed. Statistical Package for Social Sciences (SPSS) was used to analyse the data and to calculate sustainability scores for water schemes. SPSS was also used to classify sustainability scores according to sustainability categories: sustainable, partially sustainable and non-sustainable. The averages of the ratings for the different sub-factors studied and the results on the sustainability scores for the sustainable, partially sustainable and non-sustainable schemes were then computed and compared to establish the main factors influencing sustainability of the water schemes. The results indicated technical and social factors as most critical while financial and institutional, although important, played a lesser role. Factors which contributed to the sustainability of water schemes were: functionality; design flow; water fetching time; ability to meet additional demand; use by population; equity; participation in decision making on operation and

  11. Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India.

    PubMed

    Chaudhuri, Kaberi; Manna, Suman; Sarma, Kakoli Sen; Naskar, Pankaj; Bhattacharyya, Somenath; Bhattacharyya, Maitree

    2012-10-19

    Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November'08 to October'11. Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were influenced by the bacterial abundance

  12. Physicochemical and biological factors controlling water column metabolism in Sundarbans estuary, India

    PubMed Central

    2012-01-01

    Background Sundarbans is the single largest deltaic mangrove forest in the world, formed at estuarine phase of the Ganges - Brahmaputra river system. Primary productivity of marine and coastal phytoplankton contributes to 15% of global oceanic production. But unfortunately estuarine dynamics of tropical and subtropical estuaries have not yet received proper attention in spite of the fact that they experience considerable anthropogenic interventions and a baseline data is required for any future comparison. This study is an endeavor to this end to estimate the primary productivity (gross and net), community respiration and nitrification rates in different rivers and tidal creeks around Jharkhali island, a part of Sundarbans estuary surrounded by the mangrove forest during a period of three years starting from November’08 to October’11. Results Various physical and chemical parameters of water column like pH, temperature, conductivity, dissolved oxygen, turbidity, suspended particulate matter, secchi disc index, tidal fluctuation and tidal current velocity, standing crop and nutrients were measured along with water column productivity. Relationship of net water column productivity with algal biomass (standing crop), nutrient loading and turbidity were determined experimentally. Correlations of bacterial abundance with community respiration and nitrification rates were also explored. Annual integrated phytoplankton production rate of this tidal estuary was estimated to be 151.07 gC m-2 y-1. Gross primary productivity showed marked inter annual variation being lowest in monsoon and highest in postmonsoon period. Conclusion Average primary production was a function of nutrient loading and light penetration in the water column. High aquatic turbidity, conductivity and suspended particulate matter were the limiting factors to attenuate light penetration with negative influence on primary production. Community respiration and nitrification rates of the estuary were

  13. Water-controlled wealth of nations.

    PubMed

    Suweis, Samir; Rinaldo, Andrea; Maritan, Amos; D'Odorico, Paolo

    2013-03-12

    Population growth is in general constrained by food production, which in turn depends on the access to water resources. At a country level, some populations use more water than they control because of their ability to import food and the virtual water required for its production. Here, we investigate the dependence of demographic growth on available water resources for exporting and importing nations. By quantifying the carrying capacity of nations on the basis of calculations of the virtual water available through the food trade network, we point to the existence of a global water unbalance. We suggest that current export rates will not be maintained and consequently we question the long-term sustainability of the food trade system as a whole. Water-rich regions are likely to soon reduce the amount of virtual water they export, thus leaving import-dependent regions without enough water to sustain their populations. We also investigate the potential impact of possible scenarios that might mitigate these effects through (i) cooperative interactions among nations whereby water-rich countries maintain a tiny fraction of their food production available for export, (ii) changes in consumption patterns, and (iii) a positive feedback between demographic growth and technological innovations. We find that these strategies may indeed reduce the vulnerability of water-controlled societies.

  14. Long-term variability in the water budget and its controls in an oak-dominated temperate forest

    Treesearch

    Jing Xie; Ge Sun; Hou-Sen Chu; Junguo Liu; Steven G. McNulty; Asko Noormets; Ranjeet John; Zutao Ouyang; Tianshan Zha; Haitao Li; Wenbin Guan; Jiquan Chen

    2014-01-01

    Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi-year water budget (2004–2010) and quantified environmental controls on an evapotranspiration (ET) in a...

  15. Exposure to well water and pesticides in Parkinson's disease: a case-control study in the Madrid area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Jimenez, F.J.; Mateo, D.; Gimenez-Roldan, S.

    1992-01-01

    Past exposure to well water and pesticides was assessed in 128 unselected Parkinson's disease (PD) patients and 256 age and sex-matched controls. All were residents in a defined urban area of Madrid, Spain. In keeping with other reports, we found that exposure to well water might be a factor associated with the likelihood of developing PD, though only prolonged exposures of 30 years or longer were significantly different between PD and controls (p less than 0.02). In contrast, past exposure to pesticides did not appear to be associated with an increased risk of developing PD. Prolonged well water drinking antedatingmore » the development of PD was not associated with early onset of the disease, nor did such cases progress to greater disability. Future case-control studies addressing prolonged well water consumption as a risk factor in PD should look for differences in the content of substances other than pesticides in the water as determined by the source of water to which patients may have been specifically exposed.« less

  16. Enhanced water vapor separation by temperature-controlled aligned-multiwalled carbon nanotube membranes.

    PubMed

    Jeon, Wonjae; Yun, Jongju; Khan, Fakhre Alam; Baik, Seunghyun

    2015-09-14

    Here we present a new strategy of selectively rejecting water vapor while allowing fast transport of dry gases using temperature-controlled aligned-multiwalled carbon nanotubes (aligned-MWNTs). The mechanism is based on the water vapor condensation at the entry region of nanotubes followed by removing aggregated water droplets at the tip of the superhydrophobic aligned-MWNTs. The first condensation step could be dramatically enhanced by decreasing the nanotube temperature. The permeate-side relative humidity was as low as ∼17% and the helium-water vapor separation factor was as high as 4.62 when a helium-water vapor mixture with a relative humidity of 100% was supplied to the aligned-MWNTs. The flow through the interstitial space of the aligned-MWNTs allowed the permeability of single dry gases an order of magnitude higher than the Knudsen prediction regardless of membrane temperature. The water vapor separation performance of hydrophobic polytetrafluoroethylene membranes could also be significantly enhanced at low temperatures. This work combines the membrane-based separation technology with temperature control to enhance water vapor separation performance.

  17. Environmental factors controlling fluxes of dimethyl sulfide in a New Hampshire fen

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.

    1992-01-01

    The major environmental factors controlling fluxes of dimethyl sulfide (DMS) in a Sphagnum-dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum DMS emissions occurred in summer with minima in the late fall. Temperature was the major environmental factor controlling these variabilities. There was also some evidence that the changes in water table height might have contributed to the seasonable variability in DMS emission. The influence of the water table was greater during periods of elevated temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound (VSC) in the surface of the water table. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved MDS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere suggesting that the peat surface was a source of VSC's in the peatland. VCS in peatlands seemed to be produced primarily by microbial processes in the anoxic surface layers of the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct source of VSC's. However, they increased transport of DMS from the peat surface to the atmosphere.

  18. Controlling factors of the OMZ in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Resplandy, L.; Lévy, M.; Bopp, L.; Echevin, V.; Pous, S.; Sarma, V. V. S. S.; Kumar, D.

    2012-05-01

    In-situ observations indicate that the Arabian Sea oxygen minimum zone (OMZ) is only weakly influenced by the strong seasonal cycle of ocean dynamic and biogeochemistry forced by the asian monsoon system and it is spatially decorrelated from the coastal upwelling systems where the biological production is the strongest. In this study we examine the factors controlling the seasonality and the spatial distribution of the OMZ in the Arabian Sea using a coupled bio-physical model. We find that the oxygen concentration in the OMZ displays a seasonal cycle with an amplitude of 5-15 % of the annual mean oxygen concentration. The OMZ is ventilated by lateral ventilation along the western boundary current and in the coastal undercurrent along India during the summer monsoon and by coastal downwelling and negative Ekman pumping during the fall intermonsoon and winter monsoon. This ventilation is counterbalanced by strong coastal upwelling and positive Ekman pumping of low oxygen waters at the base of the OMZ during the spring intermonsoon. Although the factors controlling the OMZ seasonality are associated with the men circulation, we find that mesoscale dynamics modulates them by limiting the vertical ventilation during winter and enhancing it through lateral advection during the rest of the year. Processes explaining the establishment and spatial distribution of the OMZ were quantified using a perturbation experiment initialised with no OMZ. As expected, the oxygen depletion is triggered by strong biological activity in central Arabian Sea during winter and in western and eastern boundary coastal upwelling systems during summer. We find that the 3-D ocean dynamic largely controls the spatial distribution of the OMZ. The eastward shift ensues from the northward lateral transport of ventilated waters along the western and eastern coasts and the advection offshore of low oxygen waters formed in the upwelling system.

  19. Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yongqiang; Xie, Quan; Sari, Ahmad

    Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less

  20. Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs

    DOE PAGES

    Chen, Yongqiang; Xie, Quan; Sari, Ahmad; ...

    2017-11-21

    Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less

  1. Factors controlling bacteria and protists in selected Mazurian eutrophic lakes (North-Eastern Poland) during spring

    PubMed Central

    2013-01-01

    Background The bottom-up (food resources) and top-down (grazing pressure) controls, with other environmental parameters (water temperature, pH) are the main factors regulating the abundance and structure of microbial communities in aquatic ecosystems. It is still not definitively decided which of the two control mechanisms is more important. The significance of bottom-up versus top-down controls may alter with lake productivity and season. In oligo- and/or mesotrophic environments, the bottom-up control is mostly important in regulating bacterial abundances, while in eutrophic systems, the top-down control may be more significant. Results The abundance of bacteria, heterotrophic (HNF) and autotrophic (ANF) nanoflagellates and ciliates, as well as bacterial production (BP) and metabolically active cells of bacteria (CTC, NuCC, EST) were studied in eutrophic lakes (Mazurian Lake District, Poland) during spring. The studied lakes were characterized by high nanoflagellate (mean 17.36 ± 8.57 × 103 cells ml-1) and ciliate abundances (mean 59.9 ± 22.4 ind. ml-1) that were higher in the euphotic zone than in the bottom waters, with relatively low bacterial densities (4.76 ± 2.08 × 106 cells ml-1) that were lower in the euphotic zone compared to the profundal zone. Oligotrichida (Rimostrombidium spp.), Prostomatida (Urotricha spp.) and Scuticociliatida (Histiobalantium bodamicum) dominated in the euphotic zone, whereas oligotrichs Tintinnidium sp. and prostomatids Urotricha spp. were most numerous in the bottom waters. Among the staining methods used to examine bacterial cellular metabolic activity, the lowest percentage of active cells was recorded with the CTC (1.5–15.4%) and EST (2.7–14.2%) assay in contrast to the NuCC (28.8–97.3%) method. Conclusions In the euphotic zone, the bottom-up factors (TP and DOC concentrations) played a more important role than top-down control (grazing by protists) in regulating bacterial numbers and activity

  2. Modulation of quorum sensing-controlled virulence factors by Nymphaea tetragona (water lily) extract.

    PubMed

    Hossain, Md Akil; Lee, Seung-Jin; Park, Ji-Yong; Reza, Md Ahsanur; Kim, Tae-Hwan; Lee, Ki-Ja; Suh, Joo-Won; Park, Seung-Chun

    2015-11-04

    Nymphaea tetragona is a widely distributed ornamental species with ethnomedicinal uses in the treatment of diarrhea, dysentery, eruptive fevers, and infections. The anti-infectious activities of this herb have already been assessed to clarify its traditional use as a medicine. In this study, we aimed to verify the inhibitory effects of N. tetragona 50% methanol extract (NTME) on quorum sensing (QS)-controlled virulence factors of bacteria since QS and its virulence factors are novel targets for antimicrobial therapy. The antibacterial activity of this extract was evaluated against Chromobacterium violaceum and Pseudomonas aeruginosa. The inhibition of the violacein pigment of C. violaceum by NTME was determined qualitative and quantitative using standard methods. The effects of NTME on swarming motility, biofilm viability, pyocyanin production, and LasA protease activity were evaluated using P. aeruginosa. Finally, the in vitro and in vivo cytotoxicity of NTME were verified by MTT assay and oral administration to rats, respectively. The extract had concentration-dependent antibacterial activity against gram-negative bacteria. NTME at 1/2× minimum inhibitory concentration (MIC), 1× MIC and 2× MIC significantly lowered the levels of violacein of C. violaceum compared to that of the control. The swarming motility of P. aeruginosa was inhibited by ≥70% by treatment with 1/2× MIC of NTME. There were remarkable reductions in pyocyanin production and LasA protease activity in the overnight culture supernatant of P. aeruginosa supplemented with NTME when compared with that of the untreated control. The confocal micrographs of 24h biofilms of P. aeruginosa exposed to NTME exhibited a lower number of live cells than the control. No toxic effect was observed in in vitro and in vivo cytotoxicity assays of NTME. NTME was demonstrated to have significant concentration-dependent inhibitory effects on quorum sensing-mediated virulence factors of bacteria with non

  3. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    pollution loads and influencing factors resulted that unsewered population had higher impact on river water quality. For TN, atmospheric N deposition was taking effect. Continuous development of sewerage system and its expansion along with the pace of urbanization could be the pragmatic option to maintain river water quality in Hadano basin. However, influence of agricultural loads and atmospheric N on water quality cannot be denied for the proper water quality management of Hadano basin. It was found that if the proportion of sewered population could be increased from 72% to 86%, corresponding loads of COD and TP could be decreased by about 41% and 45% respectively. As per the development trend of sewerage system in Hadano basin for last 10 years, unsewered population could be reduced to its half by 2014, provided that the expansion of sewerage system continues at same rate. Regarding TN, its proper control is complicated as atmospheric N is propagated to regional and sometimes to global extent. Further study on the relationship between TN and atmospheric N deposition should be conducted for the proper management of TN in the river water.

  4. Factors determining water treatment behavior for the prevention of cholera in Chad.

    PubMed

    Lilje, Jonathan; Kessely, Hamit; Mosler, Hans-Joachim

    2015-07-01

    Cholera is a well-known and feared disease in developing countries, and is linked to high rates of morbidity and mortality. Contaminated drinking water and the lack of sufficient treatment are two of the key causes of high transmission rates. This article presents a representative health survey performed in Chad to inform future intervention strategies in the prevention and control of cholera. To identify critical psychological factors for behavior change, structured household interviews were administered to N = 1,017 primary caregivers, assessing their thoughts and attitudes toward household water treatment according to the Risk, Attitude, Norm, Ability, and Self-regulation model. The intervention potential for each factor was estimated by analyzing differences in means between groups of current performers and nonperformers of water treatment. Personal risk evaluation for diarrheal diseases and particularly for cholera was very low among the study population. Likewise, the perception of social norms was found to be rather unfavorable for water treatment behaviors. In addition, self-reported ability estimates (self-efficacy) revealed some potential for intervention. A mass radio campaign is proposed, using information and normative behavior change techniques, in combination with community meetings focused on targeting abilities and personal commitment to water treatment. © The American Society of Tropical Medicine and Hygiene.

  5. The role of non-thermal factors in the control of skin blood flow during exercise.

    PubMed Central

    Nielsen, B.

    1986-01-01

    Arguments in favor of the importance of non-thermal factors in the control of skin circulation are presented. Such factors include exercise, posture, water and electrolyte balance, state of training, and acclimatization. The first three factors probably elicit their effects via high- and low-pressure baroreceptors, while the mechanisms involved for the remainder are unknown. PMID:3529655

  6. Water heater control module

    DOEpatents

    Hammerstrom, Donald J

    2013-11-26

    An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.

  7. Dominant factors in controlling marine gas pools in South China

    USGS Publications Warehouse

    Xu, S.; Watney, W.L.

    2007-01-01

    In marine strata from Sinian to Middle Triassic in South China, there develop four sets of regional and six sets of local source rocks, and ten sets of reservoir rocks. The occurrence of four main formation periods in association with five main reconstruction periods, results in a secondary origin for the most marine gas pools in South China. To improve the understanding of marine gas pools in South China with severely deformed geological background, the dominant control factors are discussed in this paper. The fluid sources, including the gas cracked from crude oil, the gas dissolved in water, the gas of inorganic origin, hydrocarbons generated during the second phase, and the mixed pool fluid source, were the most significant control factors of the types and the development stage of pools. The period of the pool formation and the reconstruction controlled the pool evolution and the distribution on a regional scale. Owing to the multiple periods of the pool formation and the reconstruction, the distribution of marine gas pools was complex both in space and in time, and the gas in the pools is heterogeneous. Pool elements, such as preservation conditions, traps and migration paths, and reservoir rocks and facies, also served as important control factors to marine gas pools in South China. Especially, the preservation conditions played a key role in maintaining marine oil and gas accumulations on a regional or local scale. According to several dominant control factors of a pool, the pool-controlling model can be constructed. As an example, the pool-controlling model of Sinian gas pool in Weiyuan gas field in Sichuan basin was summed up. ?? Higher Education Press and Springer-Verlag 2007.

  8. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Lin; Garzione, Carmala N.

    2017-02-01

    Debates persist about the interpretations of stable isotope based proxies for the surface uplift of the central-northern Tibetan Plateau. These disputes arise from the uncertain relationship between elevation and the δ18 O values of meteoric waters, based on modern patterns of isotopes in precipitation and surface waters. We present a large river water data set (1,340 samples) covering most parts of the Tibetan Plateau to characterize the spatial variability and controlling factors of their isotopic compositions. Compared with the amount-weighted mean annual oxygen isotopic values of precipitation, we conclude that river water is a good substitute for isotopic studies of precipitation in the high flat (e.g., elevation >3,300 m) interior of the Tibetan Plateau in the mean annual timescale. We construct, for the first time based on field data, contour maps of isotopic variations of meteoric waters (δ18 O, δD and d-excess) on the Tibetan Plateau. In the marginal mountainous regions of the Plateau, especially the southern through eastern margins, the δ18 O and δD values of river waters decrease with increasing mean catchment elevation, which can be modeled as a Rayleigh distillation process. However, in the interior of the Plateau, northward increasing trends in δ18 O and δD values are pronounced and present robust linear relations; d-excess values are lower than the marginal regions and exhibit distinct contrasts between the eastern (8 ‰- 12 ‰) and western (<8‰) Plateau. We suggest that these isotopic features of river waters in the interior of the Tibetan Plateau result from the combined effects of: 1) mixing of different moisture sources transported by the South Asian monsoon and Westerly winds; 2) contribution of moisture from recycled surface water; and 3) sub-cloud evaporation. We further provide a sub-cloud evaporation modified Rayleigh distillation and mixing model to simulate the isotopic variations in the western Plateau. Results of this work

  9. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    PubMed

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  10. Studies on kinetics of water quality factors to establish water transparency model in Neijiang River, China.

    PubMed

    Li, Ronghui; Pan, Wei; Guo, Jinchuan; Pang, Yong; Wu, Jianqiang; Li, Yiping; Pan, Baozhu; Ji, Yong; Ding, Ling

    2014-05-01

    The basis for submerged plant restoration in surface water is to research the complicated dynamic mechanism of water transparency. In this paper, through the impact factor analysis of water transparency, the suspended sediment, dissolved organic matter, algae were determined as three main impactfactors for water transparency of Neijiang River in Eastern China. And the multiple regression equation of water transparency and sediment concentration, permanganate index, chlorophyll-a concentration was developed. Considering the complicated transport and transformation of suspended sediment, dissolved organic matter and algae, numerical model of them were developed respectively for simulating the dynamic process. Water transparency numerical model was finally developed by coupling the sediment, water quality, and algae model. These results showed that suspended sediment was a key factor influencing water transparency of Neijiang River, the influence of water quality indicated by chemical oxygen demand and algal concentration indicated by chlorophyll a were indeterminate when their concentrations were lower, the influence was more obvious when high concentrations are available, such three factors showed direct influence on water transparency.

  11. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65

    PubMed Central

    Snow, Wanda M.; Pahlavan, Payam S.; Djordjevic, Jelena; McAllister, Danielle; Platt, Eric E.; Alashmali, Shoug; Bernstein, Michael J.; Suh, Miyoung; Albensi, Benedict C.

    2015-01-01

    Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory. PMID:26635523

  12. Risk factors for sporadic Giardia infection in the USA: a case-control study in Colorado and Minnesota.

    PubMed

    Reses, H E; Gargano, J W; Liang, J L; Cronquist, A; Smith, K; Collier, S A; Roy, S L; Vanden Eng, J; Bogard, A; Lee, B; Hlavsa, M C; Rosenberg, E S; Fullerton, K E; Beach, M J; Yoder, J S

    2018-05-09

    Giardia duodenalis is the most common intestinal parasite of humans in the USA, but the risk factors for sporadic (non-outbreak) giardiasis are not well described. The Centers for Disease Control and Prevention and the Colorado and Minnesota public health departments conducted a case-control study to assess risk factors for sporadic giardiasis in the USA. Cases (N = 199) were patients with non-outbreak-associated laboratory-confirmed Giardia infection in Colorado and Minnesota, and controls (N = 381) were matched by age and site. Identified risk factors included international travel (aOR = 13.9; 95% CI 4.9-39.8), drinking water from a river, lake, stream, or spring (aOR = 6.5; 95% CI 2.0-20.6), swimming in a natural body of water (aOR = 3.3; 95% CI 1.5-7.0), male-male sexual behaviour (aOR = 45.7; 95% CI 5.8-362.0), having contact with children in diapers (aOR = 1.6; 95% CI 1.01-2.6), taking antibiotics (aOR = 2.5; 95% CI 1.2-5.0) and having a chronic gastrointestinal condition (aOR = 1.8; 95% CI 1.1-3.0). Eating raw produce was inversely associated with infection (aOR = 0.2; 95% CI 0.1-0.7). Our results highlight the diversity of risk factors for sporadic giardiasis and the importance of non-international-travel-associated risk factors, particularly those involving person-to-person transmission. Prevention measures should focus on reducing risks associated with diaper handling, sexual contact, swimming in untreated water, and drinking untreated water.

  13. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  14. Model Predictive Control application for real time operation of controlled structures for the Water Authority Noorderzijlvest, The Netherlands

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan

    2015-04-01

    In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.

  15. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  16. High-Performance Integrated Control of water quality and quantity in urban water reservoirs

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.; Goedbloed, A.

    2015-11-01

    This paper contributes a novel High-Performance Integrated Control framework to support the real-time operation of urban water supply storages affected by water quality problems. We use a 3-D, high-fidelity simulation model to predict the main water quality dynamics and inform a real-time controller based on Model Predictive Control. The integration of the simulation model into the control scheme is performed by a model reduction process that identifies a low-order, dynamic emulator running 4 orders of magnitude faster. The model reduction, which relies on a semiautomatic procedural approach integrating time series clustering and variable selection algorithms, generates a compact and physically meaningful emulator that can be coupled with the controller. The framework is used to design the hourly operation of Marina Reservoir, a 3.2 Mm3 storm-water-fed reservoir located in the center of Singapore, operated for drinking water supply and flood control. Because of its recent formation from a former estuary, the reservoir suffers from high salinity levels, whose behavior is modeled with Delft3D-FLOW. Results show that our control framework reduces the minimum salinity levels by nearly 40% and cuts the average annual deficit of drinking water supply by about 2 times the active storage of the reservoir (about 4% of the total annual demand).

  17. Influencing factors for household water quality improvement in reducing diarrhoea in resource-limited areas.

    PubMed

    Zin, Thant; Mudin, Kamarudin D; Myint, Than; Naing, Daw K S; Sein, Tracy; Shamsul, B S

    2013-01-01

    Water and sanitation are major public health issues exacerbated by rapid population growth, limited resources, disasters and environmental depletion. This study was undertaken to study the influencing factors for household water quality improvement for reducing diarrhoea in resource-limited areas. Data were collected from articles and reviews from relevant randomized controlled trials, new articles, systematic reviews and meta-analyses from PubMed, World Health Organization (WHO), United Nations Children's Fund (UNICEF) and WELL Resource Centre For Water, Sanitation And Environmental Health. Water quality on diarrhoea prevention could be affected by contamination during storage, collection and even at point-of-use. Point-of-use water treatment (household-based) is the most cost-effective method for prevention of diarrhoea. Chemical disinfection, filtration, thermal disinfection, solar disinfection and flocculation and disinfection are five most promising household water treatment methodologies for resource-limited areas. Promoting household water treatment is most essential for preventing diarrhoeal disease. In addition, the water should be of acceptable taste, appropriate for emergency and non-emergency use.

  18. Evaluation of stem water potential and other tree and stand variables as risk factors for Phytophthora ramorum canker development in coast live oak

    Treesearch

    Tedmund J. Swiecki; Elizabeth Bernhardt

    2002-01-01

    We conducted a case-control study to examine the role of water stress and various other factors on the development of Phytophthora ramorum cankers in symptomatic (case) and symptomless (control) coast live oak (Quercus agrifolia) and tanoak (Lithocarpus densiflorus). Midday stem water potential (SWP) in ...

  19. Kinetics, mechanisms, and influencing factors on the treatment of haloacetonitriles (HANs) in water by two household heating devices.

    PubMed

    Shi, Wendong; Wang, Lei; Chen, Baiyang

    2017-04-01

    Haloacetonitriles (HANs) are a group of nitrogenous disinfection by-products (DBPs) commonly found in treated water with potential carcinogenic, cytotoxic, and genotoxic risks. In order to control HANs and understand their real intake levels by people via drinking water, this study evaluated a list of structural, operational, and environmental factors affecting the treatment of HANs by two domestic heating devices, i.e., an electric boiler and a microwave oven. Results show that the concentrations of HANs decreased exponentially over time with increasing temperature, water turbulence, and bubbles, and the phenomena were most likely due to a combined effect of volatilization and hydrolysis. Among HANs, the lability increased with increasing halogenation degrees (i.e., tri- > di- > mono- HANs) yet decreasing halogen molecular weights (i.e., Cl- > Br- > I- HANs); such trends were well captured by quantitative structure activity relationship models (R 2  = 0.99). Operational factors played critical roles in controlling HANs too, including the rate of heating, water volume, water temperature at time of pouring, cooling method, and capping condition, suggesting that people could benefit from proper handling methods and procedures. In addition, HANs added to tap water exhibited higher removals than those added to ultrapure water, probably because of the presence of free chlorine in tap water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Physiological Stimulating Factor of Water Intake during and after Dry Forage Feeding in Large-type Goats.

    PubMed

    Van Thang, Tran; Sunagawa, Katsunori; Nagamine, Itsuki; Kishi, Tetsuya; Ogura, Go

    2012-04-01

    When ruminants consume dry forage, they also drink large volumes of water. The objective of this study was to clarify which factor produced when feed boluses enter the rumen is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period in large-type goats fed on dry forage for 2 h twice daily. Six large-type male esophageal- and ruminal-fistulated goats (crossbred Japanese Saanen/Nubian, aged 2 to 6 years, weighing 85.1±4.89 kg) were used in two experiments. In experiment 1, the water deprivation (WD) control and the water availability (WA) treatment were conducted to compare changes in water intake during and after dry forage feeding. In experiment 2, a normal feeding conditions (NFC) control and a feed bolus removal (FBR) treatment were carried out to investigate whether decrease in circulating plasma volume or increase in plasma osmolality is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period. The results of experiment 1 showed that in the WA treatment, small amounts of water were consumed during the first hour of feeding while the majority of water intake was observed during the second hour of the 2 h feeding period. Therefore, the amounts of water consumed in the second hour of the 2 h feeding period accounted for 82.8% of the total water intake. The results of experiment 2 indicated that in comparison with the NFC control, decrease in plasma volume in the FBR treatment, which was indicated by increase in hematocrit and plasma total protein concentrations, was higher (p<0.05) in the second hour of the 2 h feeding period. However, plasma osmolality in the FBR treatment was lower (p<0.05) than compared to the NFC control from 30 min after the start of feeding. Therefore, thirst level in the FBR treatment was 82.7% less (p<0.01) compared with that in the NFC control upon conclusion of the 30 min drinking period. The results of the study indicate that the increased

  1. A Physiological Stimulating Factor of Water Intake during and after Dry Forage Feeding in Large-type Goats

    PubMed Central

    Van Thang, Tran; Sunagawa, Katsunori; Nagamine, Itsuki; Kishi, Tetsuya; Ogura, Go

    2012-01-01

    When ruminants consume dry forage, they also drink large volumes of water. The objective of this study was to clarify which factor produced when feed boluses enter the rumen is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period in large-type goats fed on dry forage for 2 h twice daily. Six large-type male esophageal- and ruminal-fistulated goats (crossbred Japanese Saanen/Nubian, aged 2 to 6 years, weighing 85.1±4.89 kg) were used in two experiments. In experiment 1, the water deprivation (WD) control and the water availability (WA) treatment were conducted to compare changes in water intake during and after dry forage feeding. In experiment 2, a normal feeding conditions (NFC) control and a feed bolus removal (FBR) treatment were carried out to investigate whether decrease in circulating plasma volume or increase in plasma osmolality is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period. The results of experiment 1 showed that in the WA treatment, small amounts of water were consumed during the first hour of feeding while the majority of water intake was observed during the second hour of the 2 h feeding period. Therefore, the amounts of water consumed in the second hour of the 2 h feeding period accounted for 82.8% of the total water intake. The results of experiment 2 indicated that in comparison with the NFC control, decrease in plasma volume in the FBR treatment, which was indicated by increase in hematocrit and plasma total protein concentrations, was higher (p<0.05) in the second hour of the 2 h feeding period. However, plasma osmolality in the FBR treatment was lower (p<0.05) than compared to the NFC control from 30 min after the start of feeding. Therefore, thirst level in the FBR treatment was 82.7% less (p<0.01) compared with that in the NFC control upon conclusion of the 30 min drinking period. The results of the study indicate that the increased

  2. Professional Development for Water Quality Control Personnel.

    ERIC Educational Resources Information Center

    Shepard, Clinton Lewis

    This study investigated the availability of professional development opportunities for water quality control personnel in the midwest. The major objective of the study was to establish a listing of educational opportunities for the professional development of water quality control personnel and to compare these with the opportunities technicians…

  3. Factors controlling stream water nitrate and phosphor loads during precipitation events

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J. C.; van der Velde, Y.; van Geer, F. G.; de Rooij, G. H.; Broers, H. P.; Bierkens, M. F. P.

    2009-04-01

    Pollution of surface waters in densely populated areas with intensive land use is a serious threat to their ecological, industrial and recreational utilization. European and national manure policies and several regional and local pilot projects aim at reducing pollution loads to surface waters. For the evaluation of measures, water authorities and environmental research institutes are putting a lot of effort into monitoring surface water quality. Fro regional surface water quality monitoring, the measurement locations are usually situated in the downstream part of the catchment to represent a larger area. The monitoring frequency is usually low (e.g. monthly), due to the high costs for sampling and analysis. As a consequence, human induced trends in nutrient loads and concentrations in these monitoring data are often concealed by the large variability of surface water quality caused by meteorological variations. Because natural surface water quality variability is poorly understood, large uncertainties occur in the estimates of (trends in) nutrient loads or average concentrations. This study aims at uncertainty reduction in the estimates of mean concentrations and loads of N and P from regional monitoring data. For this purpose, we related continuous N and P records of stream water to variations in precipitation, discharge, groundwater level and tube drain discharge. A specially designed multi scale experimental setup was installed in an agricultural lowland catchment in The Netherlands. At the catchment outlet, continuous measurements of water quality and discharge were performed from July 2007-January 2009. At an experimental field within the catchment continuous measurements of precipitation, groundwater levels and tube drain discharges were collected. 20 significant rainfall events with a variety of antecedent conditions, durations and intensities were selected for analysis. Singular and multiple regression analysis was used to identify relations between the

  4. Factors controlling stream water nitrate and phosphor loads during precipitation events

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; van der Velde, Y.; van Geer, F.; de Rooij, G. H.; Broers, H.; Bierkens, M. F.

    2009-12-01

    Pollution of surface waters in densely populated areas with intensive land use is a serious threat to their ecological, industrial and recreational utilization. European and national manure policies and several regional and local pilot projects aim at reducing pollution loads to surface waters. For the evaluation of measures, water authorities and environmental research institutes are putting a lot of effort into monitoring surface water quality. Within regional surface water quality monitoring networks, the measurement locations are usually situated in the downstream part of the catchment to represent a larger area. The monitoring frequency is usually low (e.g. monthly), due to the high costs for sampling and analysis. As a consequence, human induced trends in nutrient loads and concentrations in these monitoring data are often concealed by the large variability of surface water quality caused by meteorological variations. Because this natural variability in surface water quality is poorly understood, large uncertainties occur in the estimates of (trends in) nutrient loads or average concentrations. This study aims at uncertainty reduction in the estimates of mean concentrations and loads of N and P from regional monitoring data. For this purpose, we related continuous records of stream water N and P concentrations to easier and cheaper to collect quantitative data on precipitation, discharge, groundwater level and tube drain discharge. A specially designed multi scale experimental setup was installed in an agricultural lowland catchment in The Netherlands. At the catchment outlet, continuous measurements of water quality and discharge were performed from July 2007-January 2009. At an experimental field within the catchment we collected continuous measurements of precipitation, groundwater levels and tube drain discharges. 20 significant rainfall events with a variety of antecedent conditions, durations and intensities were selected for analysis. Singular and

  5. Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Menon, Surabi

    2005-01-01

    The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.

  6. [Fifty years of fluoridation of public water supplies in Brazil: benefits for the control of dental caries].

    PubMed

    Ramires, Irene; Buzalaf, Marília Afonso Rabelo

    2007-01-01

    Fluoridation of public water supplies is among the most important public health measures for control of dental caries. Through a review of the literature, this study intends to reaffirm the importance and scope of fluoridation for caries control, as this is acknowledged as one of the most effective ways of ensuring the constant presence of fluoride in the oral cavity, which is vital for controlling caries. Water fluoridation is rated as an important factor for reducing caries, meaning that it should be maintained and also monitored, ensuring adequate fluoride levels for controlling caries while avoiding dental fluorosis.

  7. Risk Factors for Sporadic Domestically Acquired Campylobacter Infections in Norway 2010-2011: A National Prospective Case-Control Study.

    PubMed

    MacDonald, Emily; White, Richard; Mexia, Ricardo; Bruun, Tone; Kapperud, Georg; Lange, Heidi; Nygård, Karin; Vold, Line

    2015-01-01

    Campylobacteriosis is the most frequently reported food- and waterborne infection in Norway. We investigated the risk factors for sporadic Campylobacter infections in Norway in order to identify areas where control and prevention measures could be improved. A national prospective case-control study of factors associated with Campylobacter infection was conducted from July 2010 to September 2011. Cases were recruited from the Norwegian Surveillance System of Communicable Diseases (MSIS). Controls were randomly selected from the Norwegian Population Registry. Cases and controls were mailed a paper questionnaire with a prepaid return envelope. Univariable analyses using logistic regression were conducted for all exposures. A final parsimonious multivariable model was developed using regularized/penalized logistic regression, and adjusted odds ratios were calculated. A total of 995 cases and 1501 controls were included in the study (response proportion 55% and 30%, respectively). Exposures that had significant increases in odds of Campylobacter infection in multivariable analysis were drinking water directly from river, stream, or lake (OR: 2.96), drinking purchased bottled water (OR: 1.78), eating chicken (1.69), eating meat that was undercooked (OR: 1.77), eating food made on a barbecue (OR: 1.55), living on a farm with livestock (OR: 1.74), having a dog in the household (OR: 1.39), and having household water supply serving fewer than 20 houses (OR: 1.92). Consumption of poultry and untreated water remain important sources of Campylobacter infection in Norway, despite ongoing control efforts. The results justify the need for strengthening education for consumers and food handlers about the risks of cross-contamination when preparing poultry and with consuming raw or undercooked chicken. The public should also be reminded to take precautions when drinking untreated water in nature and ensure continued vigilance in order to protect and maintain the quality of water

  8. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  9. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  10. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  11. The influence of calcium and magnesium in drinking water and diet on cardiovascular risk factors in individuals living in hard and soft water areas with differences in cardiovascular mortality

    PubMed Central

    Nerbrand, Christina; Agréus, Lars; Lenner, Ragnhild Arvidsson; Nyberg, Per; Svärdsudd, Kurt

    2003-01-01

    Background The role of water hardness as a risk factor for cardiovascular disease has been widely investigated and evaluated as regards regional differences in cardiovascular disease. This study was performed to evaluate the relation between calcium and magnesium in drinking water and diet and risk factors for cardiovascular disease in individuals living in hard and soft water areas with considerable differences in cardiovascular mortality. Methods A random sample of 207 individuals living in two municipalities characterised by differences in cardiovascular mortality and water hardness was invited for an examination including a questionnaire about health, social and living conditions and diet. Intake of magnesium and calcium was calculated from the diet questionnaire with special consideration to the use of local water. Household water samples were delivered by each individual and were analysed for magnesium and calcium. Results In the total sample, there were positive correlations between the calcium content in household water and systolic blood pressure (SBP) and negative correlations with s-cholesterol and s-LDL-cholesterol. No correlation was seen with magnesium content in household water to any of the risk factors. Calcium content in diet showed no correlation to cardiovascular risk factors. Magnesium in diet was positively correlated to diastolic blood pressure (DBP). In regression analyses controlled for age and sex 18.5% of the variation in SBP was explained by the variation in BMI, HbA1c and calcium content in water. Some 27.9% of the variation in s-cholesterol could be explained by the variation in s-triglycerides (TG), and calcium content in water. Conclusions This study of individuals living in soft and hard water areas showed significant correlations between the content of calcium in water and major cardiovascular risk factors. This was not found for magnesium in water or calcium or magnesium in diet. Regression analyses indicated that calcium content

  12. Factors Controlling Water Volumes and Release Rates in Martian Outflow Channels

    NASA Technical Reports Server (NTRS)

    Wilson, L.; Head, J. W.; Leask, H. J.; Ghatan, G.; Mitchell, K. L.

    2004-01-01

    We discuss estimates of water fluxes on Mars and suggest that many are overestimates. Even so, we can only explain very high martian outflow rates by either unusually permeable aquifer systems or sudden release of shallow concentrations of water.

  13. Water Pollution Control Industry

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1974

    1974-01-01

    A special report on the state of the water pollution control industry reveals that due to forthcoming federal requirements, sales and the backlogs should increase; problems may ensue because of shortages of materials and inflation. Included are reports from various individual companies. (MLB)

  14. Advancing infection control in dental care settings: factors associated with dentists' implementation of guidelines from the Centers for Disease Control and Prevention.

    PubMed

    Cleveland, Jennifer L; Bonito, Arthur J; Corley, Tammy J; Foster, Misty; Barker, Laurie; Gordon Brown, G; Lenfestey, Nancy; Lux, Linda

    2012-10-01

    The authors set out to identify factors associated with implementation by U.S. dentists of four practices first recommended in the Centers for Disease Control and Prevention's Guidelines for Infection Control in Dental Health-Care Settings-2003. In 2008, the authors surveyed a stratified random sample of 6,825 U.S. dentists. The response rate was 49 percent. The authors gathered data regarding dentists' demographic and practice characteristics, attitudes toward infection control, sources of instruction regarding the guidelines and knowledge about the need to use sterile water for surgical procedures. Then they assessed the impact of those factors on the implementation of four recommendations: having an infection control coordinator, maintaining dental unit water quality, documenting percutaneous injuries and using safer medical devices, such as safer syringes and scalpels. The authors conducted bivariate analyses and proportional odds modeling. Responding dentists in 34 percent of practices had implemented none or one of the four recommendations, 40 percent had implemented two of the recommendations and 26 percent had implemented three or four of the recommendations. The likelihood of implementation was higher among dentists who acknowledged the importance of infection control, had practiced dentistry for less than 30 years, had received more continuing dental education credits in infection control, correctly identified more surgical procedures that require the use of sterile water, worked in larger practices and had at least three sources of instruction regarding the guidelines. Dentists with practices in the South Atlantic, Middle Atlantic or East South Central U.S. Census divisions were less likely to have complied. Implementation of the four recommendations varied among U.S. dentists. Strategies targeted at raising awareness of the importance of infection control, increasing continuing education requirements and developing multiple modes of instruction may

  15. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  16. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  17. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  18. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  19. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    NASA Astrophysics Data System (ADS)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  20. Framework Design and Influencing Factor Analysis of a Water Environmental Functional Zone-Based Effluent Trading System.

    PubMed

    Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao

    2016-10-01

    The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.

  1. Framework Design and Influencing Factor Analysis of a Water Environmental Functional Zone-Based Effluent Trading System

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Han, Zhaoxing; Li, Shuang; Shen, Zhenyao

    2016-10-01

    The efficacy of traditional effluent trading systems is questionable due to their neglect of seasonal hydrological variation and the creation of upstream hot spots within a watershed. Besides, few studies have been conducted to distinguish the impacts of each influencing factor on effluent trading systems outputs. In this study, a water environmental functional zone-based effluent trading systems framework was configured and a comprehensive analysis of its influencing factors was conducted. This proposed water environmental functional zone-based effluent trading systems was then applied for the control of chemical oxygen demand in the Beiyun River watershed, Beijing, China. Optimal trading results highlighted the integration of water quality constraints and different hydrological seasons, especially for downstream dischargers. The optimal trading of each discharger, in terms of pollutant reduction load and abatement cost, is greatly influenced by environmental and political factors such as background water quality, the location of river assessment points, and tradable discharge permits. In addition, the initial permit allowance has little influence on the market as a whole but does impact the individual discharger. These results provide information that is critical to understanding the impact of policy design on the functionality of an effluent trading systems.

  2. Risk factors for the transmission of diarrhoea in children: a case-control study in rural Malaysia.

    PubMed

    Knight, S M; Toodayan, W; Caique, W C; Kyi, W; Barnes, A; Desmarchelier, P

    1992-08-01

    In response to a recorded increasing incidence of diarrhoea in Tumpat District, Malaysia, a case-control study was performed to identify modifiable risk factors for the transmission of diarrhoea, in children aged 4-59 months. Ninety-eight pairs of children, matched on age and sex, were recruited prospectively from health centres. Exposure status was determined during a home visit. Interviewers were 'blinded' as to the disease status of each child. Odds ratios were measured through matched pair analysis and conditional logistic regression. Risk factors for diarrhoea identified were: reported--drinking of unboiled water, storage of cooked food before consumption and bottle feeding; and observations--animals inside the house and absence of washing water in latrines. Water quality, source of drinking water, reported hand washing behaviour, indiscriminate defecation by children, cup use and the absence of a functional latrine were not associated with diarrhoea. Nonsignificant associations were found for: accessibility of washing water source, type of water storage container and use of fly covers for food.

  3. Environmental sustainability control by water resources carrying capacity concept: application significance in Indonesia

    NASA Astrophysics Data System (ADS)

    Djuwansyah, M. R.

    2018-02-01

    This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

  4. Ground-water contamination and legal controls in Michigan

    USGS Publications Warehouse

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  5. 33 CFR 222.5 - Water control management (ER 1110-2-240).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Water control management (ER 1110... ARMY, DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.5 Water control management (ER 1110-2-240). (a... Engineers in carrying out water control management activities, including establishment of water control...

  6. 33 CFR 222.5 - Water control management (ER 1110-2-240).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Water control management (ER 1110... ARMY, DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.5 Water control management (ER 1110-2-240). (a... Engineers in carrying out water control management activities, including establishment of water control...

  7. 33 CFR 222.5 - Water control management (ER 1110-2-240).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Water control management (ER 1110... ARMY, DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.5 Water control management (ER 1110-2-240). (a... Engineers in carrying out water control management activities, including establishment of water control...

  8. 33 CFR 222.5 - Water control management (ER 1110-2-240).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Water control management (ER 1110... ARMY, DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.5 Water control management (ER 1110-2-240). (a... Engineers in carrying out water control management activities, including establishment of water control...

  9. 33 CFR 222.5 - Water control management (ER 1110-2-240).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Water control management (ER 1110... ARMY, DEPARTMENT OF DEFENSE ENGINEERING AND DESIGN § 222.5 Water control management (ER 1110-2-240). (a... Engineers in carrying out water control management activities, including establishment of water control...

  10. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macknick, Jordan; Newmark, Robin; Heath, Garvin

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  11. 6. VIEW OF SPILLWAY TIMBERS AND WATER CONTROL BOX, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF SPILLWAY TIMBERS AND WATER CONTROL BOX, SHOWING WATER CONTROL BOX WITH LOWERED LAKE LEVEL - Three Bears Lake & Dams, Water Control Box, North of Marias Pass, East Glacier Park, Glacier County, MT

  12. Three phase power factor controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A power control circuit for a three phase induction motor is described. Power factors for the three phases are summed to provide a control signal, and this control signal is particularly filtered and then employed to control the duty cycle of each phase of input power to the motor.

  13. Quality-control design for surface-water sampling in the National Water-Quality Network

    USGS Publications Warehouse

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  14. Full-scale studies of factors related to coliform regrowth in drinking water.

    PubMed

    LeChevallier, M W; Welch, N J; Smith, D B

    1996-07-01

    An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence

  15. Full-scale studies of factors related to coliform regrowth in drinking water.

    PubMed Central

    LeChevallier, M W; Welch, N J; Smith, D B

    1996-01-01

    An 18-month survey of 31 water systems in North America was conducted to determine the factors that contribute to the occurrence of coliform bacteria in drinking water. The survey included analysis of assimilable organic carbon (AOC), coliforms, disinfectant residuals, and operational parameters. Coliform bacteria were detected in 27.8% of the 2-week sampling periods and were associated with the following factors: filtration, temperature, disinfectant type and disinfectant level, AOC level, corrosion control, and operational characteristics. Four systems in the study that used unfiltered surface water accounted for 26.6% of the total number of bacterial samples collected but 64.3% (1,013 of 1,576) of the positive coliform samples. The occurrence of coliform bacteria was significantly higher when water temperatures were > 15 degrees C. For filtered systems that used free chlorine, 0.97% of 33,196 samples contained coliform bacteria, while 0.51% of 35,159 samples from chloraminated systems contained coliform bacteria. The average density of coliform bacteria was 35 times higher in free-chlorinated systems than in chloraminated water (0.60 CFU/100 ml for free-chlorinated water compared with 0.017 CFU/100 ml for chloraminated water). Systems that maintained dead-end free chlorine levels of < 0.2 mg/liter or monochloramine levels of < 0.5 mg/liter had substantially more coliform occurrences than systems that maintained higher disinfectant residuals. Free-chlorinated systems with AOC levels greater than 100 micrograms/liter had 82% more coliform-positive samples and 19 times higher coliform levels than free-chlorinated systems with average AOC levels less than 99 micrograms/liter. Systems that maintained a phosphate-based corrosion inhibitor and limited the amount of unlined cast iron pipe had fewer coliform bacteria. Several operational characteristics of the treatment process or the distribution system were also associated with increased rates of coliform occurrence

  16. Risk Factors for Sporadic Domestically Acquired Campylobacter Infections in Norway 2010–2011: A National Prospective Case-Control Study

    PubMed Central

    Mexia, Ricardo; Bruun, Tone; Kapperud, Georg; Lange, Heidi; Nygård, Karin; Vold, Line

    2015-01-01

    Background Campylobacteriosis is the most frequently reported food- and waterborne infection in Norway. We investigated the risk factors for sporadic Campylobacter infections in Norway in order to identify areas where control and prevention measures could be improved. Methods A national prospective case-control study of factors associated with Campylobacter infection was conducted from July 2010 to September 2011. Cases were recruited from the Norwegian Surveillance System of Communicable Diseases (MSIS). Controls were randomly selected from the Norwegian Population Registry. Cases and controls were mailed a paper questionnaire with a prepaid return envelope. Univariable analyses using logistic regression were conducted for all exposures. A final parsimonious multivariable model was developed using regularized/penalized logistic regression, and adjusted odds ratios were calculated. Results A total of 995 cases and 1501 controls were included in the study (response proportion 55% and 30%, respectively). Exposures that had significant increases in odds of Campylobacter infection in multivariable analysis were drinking water directly from river, stream, or lake (OR: 2.96), drinking purchased bottled water (OR: 1.78), eating chicken (1.69), eating meat that was undercooked (OR: 1.77), eating food made on a barbecue (OR: 1.55), living on a farm with livestock (OR: 1.74), having a dog in the household (OR: 1.39), and having household water supply serving fewer than 20 houses (OR: 1.92). Conclusions Consumption of poultry and untreated water remain important sources of Campylobacter infection in Norway, despite ongoing control efforts. The results justify the need for strengthening education for consumers and food handlers about the risks of cross-contamination when preparing poultry and with consuming raw or undercooked chicken. The public should also be reminded to take precautions when drinking untreated water in nature and ensure continued vigilance in order to

  17. Modeling a hierarchical structure of factors influencing exploitation policy for water distribution systems using ISM approach

    NASA Astrophysics Data System (ADS)

    Jasiulewicz-Kaczmarek, Małgorzata; Wyczółkowski, Ryszard; Gładysiak, Violetta

    2017-12-01

    Water distribution systems are one of the basic elements of contemporary technical infrastructure of urban and rural areas. It is a complex engineering system composed of transmission networks and auxiliary equipment (e.g. controllers, checkouts etc.), scattered territorially over a large area. From the water distribution system operation point of view, its basic features are: functional variability, resulting from the need to adjust the system to temporary fluctuations in demand for water and territorial dispersion. The main research questions are: What external factors should be taken into account when developing an effective water distribution policy? Does the size and nature of the water distribution system significantly affect the exploitation policy implemented? These questions have shaped the objectives of research and the method of research implementation.

  18. Water, sanitation and hygiene related risk factors for soil-transmitted helminth and Giardia duodenalis infections in rural communities in Timor-Leste.

    PubMed

    Campbell, Suzy J; Nery, Susana V; D'Este, Catherine A; Gray, Darren J; McCarthy, James S; Traub, Rebecca J; Andrews, Ross M; Llewellyn, Stacey; Vallely, Andrew J; Williams, Gail M; Amaral, Salvador; Clements, Archie C A

    2016-11-01

    There is little evidence on prevalence or risk factors for soil transmitted helminth infections in Timor-Leste. This study describes the epidemiology, water, sanitation and hygiene, and socioeconomic risk factors of STH and intestinal protozoa amongst communities in Manufahi District, Timor-Leste. As part of a cluster randomised controlled trial, a baseline cross-sectional survey was conducted across 18 villages, with data from six additional villages. Stool samples were assessed for soil transmitted helminth and protozoal infections using quantitative PCR (qPCR) and questionnaires administered to collect water, sanitation and hygiene and socioeconomic data. Risk factors for infection were assessed using multivariable mixed-effects logistic regression, stratified by age group (preschool, school-aged and adult). Overall, soil transmitted helminth prevalence was 69% (95% Confidence Interval 67-71%), with Necator americanus being most common (60%; 95% Confidence Interval 58-62%) followed by Ascaris spp. (24%; 95% Confidence Interval 23-26%). Ascaris-N. americanus co-infection was common (17%; 95% Confidence Interval 15%-18%). Giardia duodenalis was the main protozoan identified (13%; 95% Confidence Interval 11-14%). Baseline water, sanitation and hygiene infrastructure and behaviours were poor. Although risk factors varied by age of participants and parasite species, risk factors for N. americanus infection included, generally, age in years, male sex, and socioeconomic quintile. Risk factors for Ascaris included age in years for children, and piped water to the yard for adults. In this first known assessment of community-based prevalence and associated risk factors in Timor-Leste, soil transmitted helminth infections were highly prevalent, indicating a need for soil transmitted helminth control. Few associations with water, sanitation and hygiene were evident, despite water, sanitation and hygiene being generally poor. In our water, sanitation and hygiene we will

  19. Commercialization of the power factor controller

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The purpose of the Motor Power Controller, also known as the Power Factor Controller, is to improve power factor and reduce power dissipation in induction motors operating below full load. These purposes were studied and tested in detail. The Motor Power Controller is capable of raising power factors from 0.2 to 0.8 and results in energy savings. It was found that many motors, in their present operating applications, are classified as unstable. The electronic nature of the controller vs. the electrical nature of the motor, compound this problem due to the differences in response time of the two devices. Many tests were successfully completed, the most indicating greater savings than anticipated. Also, there was an effect on efficiency which was not included in the calculations.

  20. A HUMAN FACTORS META MODEL FOR U.S. NUCLEAR POWER PLANT CONTROL ROOM MODERNIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joe, Jeffrey C.

    Over the last several years, the United States (U.S.) Department of Energy (DOE) has sponsored human factors research and development (R&D) and human factors engineering (HFE) activities through its Light Water Reactor Sustainability (LWRS) program to modernize the main control rooms (MCR) of commercial nuclear power plants (NPP). Idaho National Laboratory (INL), in partnership with numerous commercial nuclear utilities, has conducted some of this R&D to enable the life extension of NPPs (i.e., provide the technical basis for the long-term reliability, productivity, safety, and security of U.S. NPPs). From these activities performed to date, a human factors meta model formore » U.S. NPP control room modernization can now be formulated. This paper discusses this emergent HFE meta model for NPP control room modernization, with the goal of providing an integrated high level roadmap and guidance on how to perform human factors R&D and HFE for those in the U.S. nuclear industry that are engaging in the process of upgrading their MCRs.« less

  1. Factors controlling soil water and stream water aluminum concentrations after a clearcut in a forested watershed with calcium-poor soils

    USGS Publications Warehouse

    McHale, M.R.; Burns, Douglas A.; Lawrence, G.B.; Murdoch, Peter S.

    2007-01-01

    The 24 ha Dry Creek watershed in the Catskill Mountains of southeastern New York State USA was clearcut during the winter of 1996-1997. The interactions among acidity, nitrate (NO3- ), aluminum (Al), and calcium (Ca2+) in streamwater, soil water, and groundwater were evaluated to determine how they affected the speciation, solubility, and concentrations of Al after the harvest. Watershed soils were characterized by low base saturation, high exchangeable Al concentrations, and low exchangeable base cation concentrations prior to the harvest. Mean streamwater NO3- concentration was about 20 ??mol l-1 for the 3 years before the harvest, increased sharply after the harvest, and peaked at 1,309 ??mol l -1 about 5 months after the harvest. Nitrate and inorganic monomeric aluminum (Alim) export increased by 4-fold during the first year after the harvest. Alim mobilization is of concern because it is toxic to some fish species and can inhibit the uptake of Ca2+ by tree roots. Organic complexation appeared to control Al solubility in the O horizon while ion exchange and possibly equilibrium with imogolite appeared to control Al solubility in the B horizon. Alim and NO3- concentrations were strongly correlated in B-horizon soil water after the clearcut (r2 = 0.96), especially at NO3- concentrations greater than 100 ??mol l-1. Groundwater entering the stream from perennial springs contained high concentrations of base cations and low concentrations of NO3- which mixed with acidic, high Alim soil water and decreased the concentration of Alim in streamwater after the harvest. Five years after the harvest soil water NO 3- concentrations had dropped below preharvest levels as the demand for nitrogen by regenerating vegetation increased, but groundwater NO3- concentrations remained elevated because groundwater has a longer residence time. As a result streamwater NO3- concentrations had not fallen below preharvest levels, even during the growing season, 5 years after the harvest

  2. Reliable and Affordable Control Systems Active Combustor Pattern Factor Control

    NASA Technical Reports Server (NTRS)

    McCarty, Bob; Tomondi, Chris; McGinley, Ray

    2004-01-01

    Active, closed-loop control of combustor pattern factor is a cooperative effort between Honeywell (formerly AlliedSignal) Engines and Systems and the NASA Glenn Research Center to reduce emissions and turbine-stator vane temperature variations, thereby enhancing engine performance and life, and reducing direct operating costs. Total fuel flow supplied to the engine is established by the speed/power control, but the distribution to individual atomizers will be controlled by the Active Combustor Pattern Factor Control (ACPFC). This system consist of three major components: multiple, thin-film sensors located on the turbine-stator vanes; fuel-flow modulators for individual atomizers; and control logic and algorithms within the electronic control.

  3. Factors affecting water strider (Hemiptera: Gerridae) mercury concentrations in lotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, T.D.; Kidd, K.A.; Cunjak, R.A.

    2009-07-15

    Water striders (Hemiptera: Gerridae) have been considered as a potential sentinel for mercury (Hg) contamination of freshwater ecosystems, yet little is known about factors that control Hg concentrations in this invertebrate. Striders were collected from 80 streams and rivers in New Brunswick, Canada, in August and September of 2004 through 2007 to assess the influence of factors such as diet, water chemistry, and proximity to point sources on Hg concentrations in this organism. Higher than average Hg concentrations were observed in the southwest and Grand Lake regions of the province, the latter being the location of a coal-fired power plantmore » that is a source of Hg (similar to 100 kg annually), with elevated Hg concentrations in the lichen Old Man's Beard (Usnea spp.) in its immediate vicinity. Across all streams, pH and total organic carbon of water were relatively weak predictors of strider Hg concentrations. Female striders that were larger in body size than males had significantly lower Hg concentrations within sites, suggestive of growth dilution. There was no relationship between percent aquatic carbon in the diet and Hg concentrations in striders. For those striders feeding solely on terrestrial carbon, Hg concentrations were higher in animals occupying a higher trophic level. Mercury concentrations were highly variable in striders collected monthly over two growing seasons, suggesting short-term changes in Hg availability. These measurements highlight the importance of considering both deposition and postdepositional processes in assessing Hg bioaccumulation in this species.« less

  4. Heart Disease Risk Factors You Can't Control

    MedlinePlus

    ... Submit Heart disease risk factors you can't control Some factors you can't control, like pregnancy ... 2018. Heart disease risk factors you can't control Age and menopause As you get older, your ...

  5. [Temporal variation of water quality and driving factors in Yanghe watershed of Zhangjiakou].

    PubMed

    Pang, Bo; Wang, Tie-Yu; Lü, Yong-Long; Du, Li-Yu; Luo, Wei

    2013-01-01

    Yanghe is an important water source for Guanting Reservoir, which once supplied the Beijing city with drinking water, industrial process water and water-use in landscape. Based on the data of water quality monitored by Yanghe watershed monitoring stations from 1992 to 2009, 11 pollutants were selected for analysis. The trends of changes in water quality were figured out, and the major pollutants and driving factors were measured by the integrated standard index and grey correlation analytical methods. The results showed that there were two stages of water quality change in Yanghe watershed of Zhangjiakou. Firstly, the water was polluted seriously but recovered rapidly from 1992 to 1996. Secondly, although light pollution occurred in the watershed from 1997 to 2009, the pollution factors were still above the limits. The main pollution factors are ammonia nitrogen, petroleum, permanganate index, BOD5, Cr6+ and Cd. The main driving factor of water quality is the change of land use type, and the agricultural land showed less impact on water quality than the industrial land.

  6. Bioburden control for Space Station Freedom's Ultrapure Water System

    NASA Technical Reports Server (NTRS)

    Snodgrass, Donald W.; Rodgers, Elizabeth B.; Obenhuber, Don; Huff, Tim

    1991-01-01

    Bioburden control is one of the challenges for the Ultrapure Water System on Space Station Freedom. Bioburden control must enable the system to deliver water with a low bacterial count as well as maintain biological contamination at a manageable level, to permit continued production of quality water. Ozone has been chosen as the primary means of Bioburden control. Planned tests to determine the effectiveness of ozone on free-floating microbes and biofilms are described.

  7. 14 CFR § 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean Air-Water Pollution Control Acts. Â...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  8. Dynamic factor analysis for estimating ground water arsenic trends.

    PubMed

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  9. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    PubMed

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  10. [Research on controlling iron release of desalted water transmitted in existing water distribution system].

    PubMed

    Tian, Yi-Mei; Liu, Yang; Zhao, Peng; Shan, Jin-Lin; Yang, Suo-Yin; Liu, Wei

    2012-04-01

    Desalted water, with strong corrosion characteristics, would possibly lead to serious "red water" when transmitted and distributed in existing municipal water distribution network. The main reason for red water phenomenon is iron release in water pipes. In order to study the methods of controlling iron release in existing drinking water distribution pipe, tubercle analysis of steel pipe and cast iron pipe, which have served the distribution system for 30-40 years, was carried out, the main construction materials were Fe3O4 and FeOOH; and immersion experiments were carried in more corrosive pipes. Through changing mixing volume of tap water and desalted water, pH, alkalinity, chloride and sulfate, the influence of different water quality indexes on iron release were mainly analyzed. Meanwhile, based on controlling iron content, water quality conditions were established to meet with the safety distribution of desalted water: volume ratio of potable water and desalted water should be higher than or equal to 2, pH was higher than 7.6, alkalinity was higher than 200 mg x L(-1).

  11. Design of Water Temperature Control System Based on Single Chip Microcomputer

    NASA Astrophysics Data System (ADS)

    Tan, Hanhong; Yan, Qiyan

    2017-12-01

    In this paper, we mainly introduce a multi-function water temperature controller designed with 51 single-chip microcomputer. This controller has automatic and manual water, set the water temperature, real-time display of water and temperature and alarm function, and has a simple structure, high reliability, low cost. The current water temperature controller on the market basically use bimetal temperature control, temperature control accuracy is low, poor reliability, a single function. With the development of microelectronics technology, monolithic microprocessor function is increasing, the price is low, in all aspects of widely used. In the water temperature controller in the application of single-chip, with a simple design, high reliability, easy to expand the advantages of the function. Is based on the appeal background, so this paper focuses on the temperature controller in the intelligent control of the discussion.

  12. New control concepts for uncertain water resources systems: 1. Theory

    NASA Astrophysics Data System (ADS)

    Georgakakos, Aris P.; Yao, Huaming

    1993-06-01

    A major complicating factor in water resources systems management is handling unknown inputs. Stochastic optimization provides a sound mathematical framework but requires that enough data exist to develop statistical input representations. In cases where data records are insufficient (e.g., extreme events) or atypical of future input realizations, stochastic methods are inadequate. This article presents a control approach where input variables are only expected to belong in certain sets. The objective is to determine sets of admissible control actions guaranteeing that the system will remain within desirable bounds. The solution is based on dynamic programming and derived for the case where all sets are convex polyhedra. A companion paper (Yao and Georgakakos, this issue) addresses specific applications and problems in relation to reservoir system management.

  13. Characterization factors for water footprint considering the scarcity of green and blue water sources

    NASA Astrophysics Data System (ADS)

    Oki, T.; Kondo, T.; Pokhrel, Y. N.; Hanasaki, N.

    2011-12-01

    The original concept of virtual water trade was invented to illustrate how much water demand can be reduced by importing food products (Allan 1996), and expanded for meat products and industrial products (Oki and Kanae, 2004). However, there was a confusion between "virtual trade of water" (original) and "trade of virtual water" (misinterpretation but widely accepted), and "virtual water" has been recognized as how much water was used to produce the commodity. Then, the concept has some analogy to carbon footprint (CFP) which is an indicator of total emission of greenhouse gases, and nowadays called water footprint (WFP, Hoekstra, 2004). However, WFP itself is just an inventory of water usages under the framework of life cycle assessment (LCA), and the volume of WFP does not necessary reflect the environmental impacts of water usages because consumptive water use of 100 liter from ground water in arid regions just before rainy season would have more environmental impacts than consumptive water use of 100 liter from rain water in humid regions during snow melt season. In the case of CFP, the emissions of five greenhouse gases except for CO2 were converted into CO2 equivalent volumes by considering the sensitivity for the global warming potential, and summed up into CFP. Here, we propose a new idea objectively determining the weights (characterization factors) for blue water usages, such as from river and ground water, to be converted into green water equivalent in each region and time. The weights are inversely proportional to the area required to obtain the same amount of green water, and water balance model can provide the basic information. The new concept was applied to the WFP of Japan through the imports of major crops. As an inventory, WFP was 15.5 km3/y of rain water, 2.2 km3/y of river water, and 2.0 km3/y of non-renewable and non-local water (NRNL water) for year 2000, however, considering the proposed characterization factors in each region (0.5 x 0

  14. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or supplement...

  15. Perception of drinking water safety and factors influencing acceptance and sustainability of a water quality intervention in rural southern India.

    PubMed

    Francis, Mark Rohit; Nagarajan, Guru; Sarkar, Rajiv; Mohan, Venkata Raghava; Kang, Gagandeep; Balraj, Vinohar

    2015-07-30

    Acceptance and long-term sustainability of water quality interventions are pivotal to realizing continued health benefits. However, there is limited research attempting to understand the factors that influence compliance to or adoption of such interventions. Eight focus group discussions with parents of young children--including compliant and not compliant households participating in an intervention study, and three key-informant interviews with village headmen were conducted between April and May 2014 to understand perceptions on the effects of unsafe water on health, household drinking water treatment practices, and the factors influencing acceptance and sustainability of an ongoing water quality intervention in a rural population of southern India. The ability to recognize health benefits from the intervention, ease of access to water distribution centers and the willingness to pay for intervention maintenance were factors facilitating acceptance and sustainability of the water quality intervention. On the other hand, faulty perceptions on water treatment, lack of knowledge about health hazards associated with drinking unsafe water, false sense of protection from locally available water, resistance to change in taste or odor of water and a lack of support from male members of the household were important factors impeding acceptance and long term use of the intervention. This study highlights the need to effectively involve communities at important stages of implementation for long term success of water quality interventions. Timely research on the factors influencing uptake of water quality interventions prior to implementation will ensure greater acceptance and sustainability of such interventions in low income settings.

  16. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  17. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  18. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  19. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a... or control of acid or other mine water pollution; and (2) That the State shall provide legal and...

  20. Performance of Control System Using Microcontroller for Sea Water Circulation

    NASA Astrophysics Data System (ADS)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  1. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  2. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs.

    PubMed

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-04-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  3. Reconfigurable water-substrate based antennas with temperature control

    NASA Astrophysics Data System (ADS)

    Mobashsher, Ahmed Toaha; Abbosh, Amin

    2017-06-01

    We report an unexplored reconfigurable antenna development technique utilizing the concept of temperature variable electromagnetic properties of water. By applying this physical phenomena, we present highly efficient water-substrate based antennas whose operating frequencies can be continuously tuned. While taking the advantage of cost-effectiveness of liquid water, this dynamic tuning technique also alleviates the roadblocks to widespread use of reconfigurable liquid-based antennas for VHF and UHF bands. The dynamic reconfigurability is controlled merely via external thermal stimulus and does not require any physical change of the resonating structure. We demonstrate dynamic control of omnidirectional and directional antennas covering more than 14 and 12% fractional bandwidths accordingly, with more than 85% radiation efficiency. Our temperature control approach paves the intriguing way of exploring dynamic reconfigurability of water-based compact electromagnetic devices for non-static, in-motion and low-cost real-world applications.

  4. Bench-scale evaluation of ferrous iron oxidation kinetics in drinking water: effect of corrosion control and dissolved organic matter.

    PubMed

    Rahman, Safiur; Gagnon, Graham A

    2014-01-01

    Corrosion control strategies are important for many utilities in maintaining water quality from the water treatment plant to the customers' tap. In drinking water with low alkalinity, water quality can become significantly degraded in iron-based pipes if water utilities are not diligent in maintaining proper corrosion control. This article reports on experiments conducted in bicarbonate buffered (5 mg-C/L) synthetic water to determine the effects of corrosion control (pH and phosphate) and dissolved organic matter (DOM) on the rate constants of the Fe(II) oxidation process. A factorial design approach elucidated that pH (P = 0.007, contribution: 42.5%) and phosphate (P = 0.025, contribution: 22.7%) were the statistically significant factors in the Fe(II) oxidation process at a 95% confidence level. The comprehensive study revealed a significant dependency relationship between the Fe(II) oxidation rate constants (k) and phosphate-to- Fe(II) mole ratio. At pH 6.5, the optimum mole ratio was found to be 0.3 to reduce the k values. Conversely, the k values were observed to increase for the phosphate-to- Fe(II) mole ratio > 1. The factorial design approach revealed that chlorine and DOM for the designated dosages did not cause a statistically significant (α = 0.05, P > 0.05)change in rate constants. However, an increment of the chlorine to ferrous iron mole ratio by a factor of ∼ 2.5 resulted in an increase k values by a factor of ∼ 10. This study conclusively demonstrated that the lowest Fe(II) oxidation rate constant was obtained under low pH conditions (pH ≤ 6.5), with chlorine doses less than 2.2 mg/L and with a phosphate-to-Fe(II) mole ratio ≈ 0.3 in the iron water systems.

  5. Application of factor analysis to the water quality in reservoirs

    NASA Astrophysics Data System (ADS)

    Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela

    2017-06-01

    In this work we present a Factor Analysis of chemical and environmental variables of the water column and hydro-morphological features of several Portuguese reservoirs. The objective is to reduce the initial number of variables, keeping their common characteristics. Using the Factor Analysis, the environmental variables measured in the epilimnion and in the hypolimnion, together with the hydromorphological characteristics of the dams were reduced from 63 variables to only 13 factors, which explained a total of 83.348% of the variance in the original data. After performing rotation using the Varimax method, the relations between the factors and the original variables got clearer and more explainable, which provided a Factor Analysis model for these environmental variables using 13 varifactors: Water quality and distance to the source, Hypolimnion chemical composition, Sulfite-reducing bacteria and nutrients, Coliforms and faecal streptococci, Reservoir depth, Temperature, Location, among other factors.

  6. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Mississippi River Water Control Management Board. 223.1 Section 223.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control Management Board. (a) Purpose. This...

  7. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Mississippi River Water Control Management Board. 223.1 Section 223.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control Management Board. (a) Purpose. This...

  8. Effective use of surface-water management to control saltwater intrusion

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; White, J.

    2012-12-01

    The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control

  9. What is the effect of local controls on the temporal stability of soil water contents?

    NASA Astrophysics Data System (ADS)

    Martinez, G.; Pachepsky, Y. A.; Vereecken, H.; Vanderlinden, K.; Hardelauf, H.; Herbst, M.

    2012-04-01

    Temporal stability of soil water content (TS SWC) reflects the spatio-temporal organization of SWC. Factors and their interactions that control this organization, are not completely understood and have not been quantified yet. It is understood that these factors should be classified into groups of local and non-local controls. This work is a first attempt to evaluate the effects of soil properties at a certain location as local controls Time series of SWC were generated by running water flow simulations with the HYDRUS6 code. Bare and grassed sandy loam, loam and clay soils were represented by sets of 100 independent soil columns. Within each set, values of saturated hydraulic conductivity (Ks) were generated randomly assuming for the standard deviation of the scaling factor of ln Ks a value ranging from 0.1 to 1.0. Weather conditions were the same for all of the soil columns. SWC at depths of 0.05 and 0.60 m, and the average water content of the top 1 m were analyzed. The temporal stability was characterized by calculating the mean relative differences (MRD) of soil water content. MRD distributions from simulations, developed from the log-normal distribution of Ks, agreed well with the experimental studies found in the literature. Generally, Ks was the leading variable to define the MRD rank for a specific location. Higher MRD corresponded to the lowest values of Ks when a single textural class was considered. Higher MRD were found in the finer texture when mixtures of textural classes were considered and similar values of Ks were compared. The relationships between the spread of the MRD distributions and the scaling factor of ln Ks were nonlinear. Variation in MRD was higher in coarser textures than in finer ones and more variability was seen in the topsoil than in the subsoil. Established vegetation decreased variability of MRD in the root zone and increased variability below. The dependence of MRD on Ks opens the possibility of using SWC sensor networks to

  10. Large-Scale Controls of the Surface Water Balance Over Land: Insights From a Systematic Review and Meta-Analysis

    NASA Astrophysics Data System (ADS)

    Padrón, Ryan S.; Gudmundsson, Lukas; Greve, Peter; Seneviratne, Sonia I.

    2017-11-01

    The long-term surface water balance over land is described by the partitioning of precipitation (P) into runoff and evapotranspiration (ET), and is commonly characterized by the ratio ET/P. The ratio between potential evapotranspiration (PET) and P is explicitly considered to be the primary control of ET/P within the Budyko framework, whereas all other controls are often integrated into a single parameter, ω. Although the joint effect of these additional controlling factors of ET/P can be significant, a detailed understanding of them is yet to be achieved. This study therefore introduces a new global data set for the long-term mean partitioning of P into ET and runoff in 2,733 catchments, which is based on in situ observations and assembled from a systematic examination of peer-reviewed studies. A total of 26 controls of ET/P that are proposed in the literature are assessed using the new data set. Results reveal that: (i) factors controlling ET/P vary between regions with different climate types; (ii) controls other than PET/P explain at least 35% of the ET/P variance in all regions, and up to ˜90% in arid climates; (iii) among these, climate factors and catchment slope dominate over other landscape characteristics; and (iv) despite the high attention that vegetation-related indices receive as controls of ET/P, they are found to play a minor and often nonsignificant role. Overall, this study provides a comprehensive picture on factors controlling the partitioning of P, with valuable insights for model development, watershed management, and the assessment of water resources around the globe.

  11. A Cluster-Randomized Controlled Trial to Reduce Diarrheal Disease and Dengue Entomological Risk Factors in Rural Primary Schools in Colombia

    PubMed Central

    Overgaard, Hans J.; Alexander, Neal; Matiz, Maria Ines; Jaramillo, Juan Felipe; Olano, Victor Alberto; Vargas, Sandra; Sarmiento, Diana; Lenhart, Audrey; Stenström, Thor Axel

    2016-01-01

    Background As many neglected tropical diseases are co-endemic and have common risk factors, integrated control can efficiently reduce disease burden and relieve resource-strained public health budgets. Diarrheal diseases and dengue fever are major global health problems sharing common risk factors in water storage containers. Where provision of clean water is inadequate, water storage is crucial. Fecal contamination of stored water is a common source of diarrheal illness, but stored water also provides breeding sites for dengue vector mosquitoes. Integrating improved water management and educational strategies for both diseases in the school environment can potentially improve the health situation for students and the larger community. The objective of this trial was to investigate whether interventions targeting diarrhea and dengue risk factors would significantly reduce absence due to diarrheal disease and dengue entomological risk factors in schools. Methodology/Principal Findings A factorial cluster randomized controlled trial was carried out in 34 rural primary schools (1,301 pupils) in La Mesa and Anapoima municipalities, Cundinamarca, Colombia. Schools were randomized to one of four study arms: diarrhea interventions (DIA), dengue interventions (DEN), combined diarrhea and dengue interventions (DIADEN), and control (CON). Interventions had no apparent effect on pupil school absence due to diarrheal disease (p = 0.45) or on adult female Aedes aegypti density (p = 0.32) (primary outcomes). However, the dengue interventions reduced the Breteau Index on average by 78% (p = 0.029), with Breteau indices of 10.8 and 6.2 in the DEN and DIADEN arms, respectively compared to 37.5 and 46.9 in the DIA and CON arms, respectively. The diarrhea interventions improved water quality as assessed by the amount of Escherichia coli colony forming units (CFU); the ratio of Williams mean E. coli CFU being 0.22, or 78% reduction (p = 0.008). Conclusions/Significance Integrated

  12. Operational water management of Rijnland water system and pilot of ensemble forecasting system for flood control

    NASA Astrophysics Data System (ADS)

    van der Zwan, Rene

    2013-04-01

    The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water

  13. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    PubMed Central

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-01-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587

  14. Effects of iodine in microbial control of dental treatment water.

    PubMed

    Puttaiah, Raghunath; Seibert, Jeff; Spears, Robert

    2011-05-01

    To determine the effects of low levels of iodine constantly present in the dental unit water system on microbial control of dental treatment water and biofilm control. This study used a dental unit water system simulator with eight dental unit waterline systems built to scale and function, each controlled via computer. Each of the eight units was operated independently, four units supplied with self-contained water reservoirs and four units supplied with municipal water. Four units were precleaned to remove biofilm buildup. The study had a well-balanced design with equal representation (variables) of presence/absence of biofilms, selfcontained reservoirs for introduction of treatment water, source water directly connected to municipal water source and iodinated cartridges within the self-contained reservoirs and between municipal water and dental unit. Point-of-use iodinated resin cartridges (IRC) were retrofitted proximal to handpiece and air/ water syringe tip lines in four units, and iodinated resin water cartridges (IRSWC) were fitted to the other four units at the source water output. Heterotrophic plate counts were performed at baseline and twice weekly for a period of 6 weeks. One representative waterline sample was taken from each group at baseline and end-of-study to analyze changes in biofilm status using scanning electron microscopy. Waterlines not previously contaminated with biofilms did not show organization of biofilm matrix in units equipped with IRSWC. Constantly present low levels of iodine, demonstrated some disruption of biofilms in waterlines already contaminated with mature biofilms. All groups showed contamination levels < 500 cfu/ml (colony forming units per milliliter) consistent with the CDC and ADA guidelines. In this 6 weeks study, IRSWC equipped waterlines showed disruption of established biofilms, controlled formation of new biofilms in clean lines and rendered the dental treatment water < 500 cfu/ml. Point-of-use iodinated resin

  15. Control of endemic nosocomial legionnaires' disease by using sterile potable water for high risk patients.

    PubMed Central

    Marrie, T. J.; Haldane, D.; MacDonald, S.; Clarke, K.; Fanning, C.; Le Fort-Jost, S.; Bezanson, G.; Joly, J.

    1991-01-01

    In a setting where potable water is contaminated with Legionella pneumophila serogroup 1, we performed two case control studies. The first case control study consisted of 17 cases of nosocomial Legionnaires' disease (LD) and 33 control (the patients who were admitted to the ward where the case was admitted immediately before and after the case) subjects. Cases had a higher mortality rate 65% vs 12% (P less than 0.004); were more likely to have received assisted ventilation (P less than 0.00001); to have nasogastric tubes (P less than 0.0004) and to be receiving corticosteroids or other immunosuppressive therapy (P less than 0.0001). Based on the results of this study, sterile water was used to flush nasogastric tubes and to dilute nasogastric feeds. Only 3 cases of nosocomial LD occurred during the next year compared with 12 the previous year (P less than 0.0001). Nine cases subsequently occurred and formed the basis for the second case-control study. Eighteen control subjects were those patients admitted to the same unit where the case developed LD, immediately before and after the case. The mortality rate for the cases was 89% vs 6% for controls (P less than 0.00003). The only other significant difference was that cases were more likely to be receiving corticosteroids or other immunosuppressive therapy 89% vs 39% (less than 0.01). We hypothesized that microaspiration of contaminated potable water by immunocompromised patients was a risk factor for nosocomial Legionnaires' disease. From 17 March 1989 onwards such patients were given only sterile potable water. Only two cases of nosocomial LD occurred from June 1989 to September 1990 and both occurred on units where the sterile water policy was not in effect. We conclude that aspiration of contaminated potable water is a possible route for acquisition of nosocomial LD in our hospital and that provision of sterile potable water to high risk patients (those who are receiving corticosteroids or other immunosuppressive

  16. Water quality: a factor in Arkansas River development

    USGS Publications Warehouse

    Dover, T.B.

    1957-01-01

    One of the first requisites for intelligent planning of the utilization and control of water and for the administration of laws relating to its use, is data on the quantity, quality, and mode of occurence of water supplies. The collections, evaluation, interpretation, and publication of such data constitute the primary function of the Water Resources Division of the United States Geological Survey. Since 1895 the Congress has made appropriations to this agency for investigations of the water resources of the Nation. In 1929 the Congress adopted the policy of dollar-for-dollar cooperation with State and local governmental agencies for water-resources investigations. The Geological Survey's Federal-State cooperative program of quality-of-water investigations in Oklahoma was started in 1944 in cooperation with the Oklahoma Planning and Resources Board. Since July of this year the program has been carried on cooperatively with the newly created Oklahoma Water Resources Board.

  17. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, William P.; Buescher, Tom

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  18. Role of Hot Water System Design on Factors Influential to Pathogen Regrowth: Temperature, Chlorine Residual, Hydrogen Evolution, and Sediment

    PubMed Central

    Brazeau, Randi H.; Edwards, Marc A.

    2013-01-01

    Abstract Residential water heating is linked to growth of pathogens in premise plumbing, which is the primary source of waterborne disease in the United States. Temperature and disinfectant residual are critical factors controlling increased concentration of pathogens, but understanding of how each factor varies in different water heater configurations is lacking. A direct comparative study of electric water heater systems was conducted to evaluate temporal variations in temperature and water quality parameters including dissolved oxygen levels, hydrogen evolution, total and soluble metal concentrations, and disinfectant decay. Recirculation tanks had much greater volumes of water at temperature ranges with potential for increased pathogen growth when set at 49°C compared with standard tank systems without recirculation. In contrast, when set at the higher end of acceptable ranges (i.e., 60°C), this relationship was reversed and recirculation systems had less volume of water at risk for pathogen growth compared with conventional systems. Recirculation tanks also tended to have much lower levels of disinfectant residual (standard systems had 40–600% higher residual), 4–6 times as much hydrogen, and 3–20 times more sediment compared with standard tanks without recirculation. On demand tankless systems had very small volumes of water at risk and relatively high levels of disinfectant residual. Recirculation systems may have distinct advantages in controlling pathogens via thermal disinfection if set at 60°C, but these systems have lower levels of disinfectant residual and greater volumes at risk if set at lower temperatures. PMID:24170969

  19. Residuals Management and Water Pollution Control Planning.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This pamphlet addresses the problems associated with residuals and water quality especially as it relates to the National Water Pollution Control Program. The types of residuals and appropriate management systems are discussed. Additionally, one section is devoted to the role of citizen participation in developing management programs. (CS)

  20. Careers in Water Pollution Control.

    ERIC Educational Resources Information Center

    Water Pollution Control Federation, Washington, DC.

    Described are the activities, responsibilities, and educational and training requirements of the major occupations directly concerned with water pollution control. Also provided is an overview of employment trends, salaries, and projected demand for employees. Included in the appendix is a list of colleges and universities which offer…

  1. Effects of environmental factors on child survival in Bangladesh: a case control study.

    PubMed

    Hoque, B A; Chakraborty, J; Chowdhury, J T; Chowdhury, U K; Ali, M; el Arifeen, S; Sack, R B

    1999-03-01

    The need for further studies on relationships between deaths and environmental variables has been reported in the literature. This case-control study was, therefore, carried out to find out the associations between several social and environmental variables and deaths of children due to infectious diseases such as those leading to diarrhoea, acute respiratory infection, measles and other diseases. Six hundred and twenty-five deaths (cases) and an equal number of matched living children (controls) aged 1-59 months, were studied in rural Matlab. An analysis of crude and adjusted odds ratio showed differential associations. Sources of drinking water, amount of stored water, conditions of latrines, number of persons sleeping with the child and the type of cooking site were statistically significantly associated with deaths due to infectious diseases after controlling for breast feeding, immunization, and the family size. Significant associations were also observed between: (i) the sources of drinking water and deaths due to ARI, and (ii) conditions of latrines and deaths due to diarrhoeal diseases, after controlling for the confounding variables. Several other environmental factors also showed associations with these various death groups, but they were not statistically significant. The size of the samples in death groups (small) and the prevalence of more or less homogeneous environmental health conditions probably diminished the magnitude of the effects. The results of the study reconfirm the importance of environmental health intervention in child survival, irrespective of breast-feeding, immunization, and selected social variables.

  2. Controls of the U.S. Virtual Water Transfer Network

    NASA Astrophysics Data System (ADS)

    Garcia, S.; Mejia, A.

    2017-12-01

    A complex interplay of human and natural factors shape the economic geography of the U.S., operating through socioeconomic forces that drive the consumption, production, and exchange of commodities. The virtual water content of a commodity represents the water embedded in its production. This work investigates the controls of national bilateral transfers of the virtual water transfer network (VWTN), through a gravity-type spatial interaction model. We use a probabilistic model to predict the binary network and investigate whether the gravity model can explain the topological properties of the empirical weighted network. In general, the gravity model relates transfer flows to the mass of the trading regions and their geographical distance. We hypothesize that properties of the nodes such as population, employment, and availability of land, together with the Euclidean distance between two trading regions, capture the main drivers of the national VWTN. The results from the model are then compared to the empirical weighted network to verify its ability to model the structure of this self-organized system. The proposed empirical model provides insight into the processes that underlie the formation of the VWTN. It can be a promising tool to study how flows are affected by changes in the generating conditions due to shocks and/or stresses.

  3. Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees.

    PubMed

    Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M

    2014-05-01

    Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Water shifts due to climatic fluctuations between floodplain storage reservoirsAnthropogenic changes to hydrology directly impact water available to treesEcohydrologic approaches to integration of hydrology afford new possibilities.

  4. Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees

    PubMed Central

    Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M

    2014-01-01

    Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Key Points Water shifts due to climatic fluctuations between floodplain storage reservoirs Anthropogenic changes to hydrology directly impact water available to trees Ecohydrologic approaches to integration of hydrology afford new

  5. Photochemical control of the distribution of Venusian water

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Gao, Peter; Esposito, Larry; Yung, Yuk; Bougher, Stephen; Hirtzig, Mathieu

    2015-08-01

    We use the JPL/Caltech 1-D photochemical model to solve continuity diffusion equation for atmospheric constituent abundances and total number density as a function of radial distance from the planet Venus. Photochemistry of the Venus atmosphere from 58 to 112 km is modeled using an updated and expanded chemical scheme (Zhang et al., 2010, 2012), guided by the results of recent observations and we mainly follow these references in our choice of boundary conditions for 40 species. We model water between 10 and 35 ppm at our 58 km lower boundary using an SO2 mixing ratio of 25 ppm as our nominal reference value. We then vary the SO2 mixing ratio at the lower boundary between 5 and 75 ppm holding water mixing ratio of 18 ppm at the lower boundary and finding that it can control the water distribution at higher altitudes. SO2 and H2O can regulate each other via formation of H2SO4. In regions of high mixing ratios of SO2 there exists a "runaway effect" such that SO2 gets oxidized to SO3, which quickly soaks up H2O causing a major depletion of water between 70 and 100 km. Eddy diffusion sensitivity studies performed characterizing variability due to mixing that show less of an effect than varying the lower boundary mixing ratio value. However, calculations using our nominal eddy diffusion profile multiplied and divided by a factor of four can give an order of magnitude maximum difference in the SO2 mixing ratio and a factor of a few difference in the H2O mixing ratio when compared with the respective nominal mixing ratio for these two species. In addition to explaining some of the observed variability in SO2 and H2O on Venus, our work also sheds light on the observations of dark and bright contrasts at the Venus cloud tops observed in an ultraviolet spectrum. Our calculations produce results in agreement with the SOIR Venus Express results of 1 ppm at 70-90 km (Bertaux et al., 2007) by using an SO2 mixing ratio of 25 ppm SO2 and 18 ppm water as our nominal reference

  6. Quality control in public participation assessments of water quality: the OPAL Water Survey.

    PubMed

    Rose, N L; Turner, S D; Goldsmith, B; Gosling, L; Davidson, T A

    2016-07-22

    Public participation in scientific data collection is a rapidly expanding field. In water quality surveys, the involvement of the public, usually as trained volunteers, generally includes the identification of aquatic invertebrates to a broad taxonomic level. However, quality assurance is often not addressed and remains a key concern for the acceptance of publicly-generated water quality data. The Open Air Laboratories (OPAL) Water Survey, launched in May 2010, aimed to encourage interest and participation in water science by developing a 'low-barrier-to-entry' water quality survey. During 2010, over 3000 participant-selected lakes and ponds were surveyed making this the largest public participation lake and pond survey undertaken to date in the UK. But the OPAL approach of using untrained volunteers and largely anonymous data submission exacerbates quality control concerns. A number of approaches were used in order to address data quality issues including: sensitivity analysis to determine differences due to operator, sampling effort and duration; direct comparisons of identification between participants and experienced scientists; the use of a self-assessment identification quiz; the use of multiple participant surveys to assess data variability at single sites over short periods of time; comparison of survey techniques with other measurement variables and with other metrics generally considered more accurate. These quality control approaches were then used to screen the OPAL Water Survey data to generate a more robust dataset. The OPAL Water Survey results provide a regional and national assessment of water quality as well as a first national picture of water clarity (as suspended solids concentrations). Less than 10 % of lakes and ponds surveyed were 'poor' quality while 26.8 % were in the highest water quality band. It is likely that there will always be a question mark over untrained volunteer generated data simply because quality assurance is uncertain

  7. Real-time control of combined surface water quantity and quality: polder flushing.

    PubMed

    Xu, M; van Overloop, P J; van de Giesen, N C; Stelling, G S

    2010-01-01

    In open water systems, keeping both water depths and water quality at specified values is critical for maintaining a 'healthy' water system. Many systems still require manual operation, at least for water quality management. When applying real-time control, both quantity and quality standards need to be met. In this paper, an artificial polder flushing case is studied. Model Predictive Control (MPC) is developed to control the system. In addition to MPC, a 'forward estimation' procedure is used to acquire water quality predictions for the simplified model used in MPC optimization. In order to illustrate the advantages of MPC, classical control [Proportional-Integral control (PI)] has been developed for comparison in the test case. The results show that both algorithms are able to control the polder flushing process, but MPC is more efficient in functionality and control flexibility.

  8. Soft-Starting Power-Factor Motor Controller

    NASA Technical Reports Server (NTRS)

    Nola, F. J.

    1983-01-01

    Three-phase power-factor controller with soft start is based on earlier version that does not control starting transients. Additional components serve to turn off "run" command signal and substitute gradual startup command signal during preset startup interval. Improved controller reduces large current surge that usually accompanies starting. Controller applies power smoothly, without causing motor vibrations.

  9. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    USGS Publications Warehouse

    Katz, B.G.; Bullen, M.P.; Bullen, T.D.; Hansard, Paul

    1999-01-01

    Concentrations of total lead (Pb) and dissolved Pb exceeded the U.S. Environmental Protection Agency action level of 15 micrograms per liter (mg/L) in approximately 19 percent and 1.3 percent, respectively, of ground-water samples collected during 1991-96 from a statewide network of monitoring wells designed to delineate background water quality of Florida's major aquifer systems. Differences in total Pb concentrations among aquifer systems reflect the combined influence of anthropogenic sources and chemical conditions in each system. A highly significant (p<0.001) difference in median total Pb concentrations was found for water samples from wells with water-level recording devices that contain Pb-counterweights (14 mg/L) compared to non-recorder wells (2 mg/L). Differences between total Pb concentrations for recorder and non-recorder wells are even more pronounced when compared for each aquifer system. The largest differences for recorder status are found for the surficial aquifer system, where median total Pb concentrations are 44 and 2.4 mg/L for recorder wells and non-recorder wells, respectively. Leaching of Pb from metal casing materials is another potential source of Pb in ground water samples. Median total Pb concentrations in water samples from the surficial, intermediate, and Floridan aquifer systems are higher from recorder wells cased with black iron than for recorder wells with steel and PVC casing material. Stable isotopes of Pb were used in this study to distinguish between anthropogenic and natural sources of Pb in ground water, as Pb retains the isotopic signature of the source from which it is derived. Based on similarities between slopes and intercepts of trend lines for various sample types (plots of 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb versus 208Pb/204Pb) the predominant source of total Pb in water samples from the surficial aquifer system is corrosion of Pb counterweights. It is likely that only ground-water samples, not the aquifer

  10. Study on Control of NH4 +-N in Surface Water by Photocatalytic

    NASA Astrophysics Data System (ADS)

    Zuo, Xiaoran; He, Honghua; Yang, Yue; Yan, Chao; Zhou, Ying

    2018-01-01

    NH4 +-N has become the main pollution factor affecting the surface water quality in China. Based on the theory of photolysis, the feasibility of photolysis removing NH4 +-N in surface water is studied. The effects of pH, CaO2 content and photolysis time on removal rate of NH4 +-N are studied. The actual study is based on Laboratory studies results. Experimental results show: When the pH<7, photolysis can increase the NH4 +-N content. And when pH>8, the photolysis can greatly reduce the NH4 +-N content in water. CaO2 can greatly remove NH4 +-N. The removal rate of NH4 +-N increased with the increase of photocatalytic time. When irradiated with UV light for 108 hours or the sun is irradiated for about 40 days, NH4 +-N content can be reduced from 4mg/L to 0.5mg/L under the optimum experimental conditions. Adjusting the pH of surface water is the most important condition for controlling NH4 +-N content.

  11. Developing Region-Specific Water Energy Intensity Factors for the U.S. Water System

    NASA Astrophysics Data System (ADS)

    Newmark, R. L.; Kandt, A.; Macknick, J.; Daw, J.; Hunsberger, R.; Tomberlin, G.

    2014-12-01

    Energy use by water and wastewater treatment plants equates to approximately 4% of total energy use in the United States. For many municipal water and wastewater treatment plants, energy costs related to pumping, treating, and transporting water represent a large fraction of total costs. The energy intensity of any given utility is heavily variant dependent on location and regional conditions, but energy requirements are generally expected to increase in many regions due to limits on water resources and regulatory requirements for water quality. Quantifying the energy use associated with our nation's water system - the energy needed to convey, extract, treat and distribute water in a particular location - is an important step in understanding the impact and interconnections of the water system on the energy system, in identifying opportunities for savings, and in improving existing modeling and analytic methods for both energy and water systems. Local topography and other regional conditions can greatly affect how much energy a particular water facility utilizes, which in turn affects its relationship with the broader electricity sector. This research evaluates what previous and current efforts have been undertaken to quantify water energy intensity factors (w-EIFs) on a regional scale, provides first steps for cataloguing resulting datasets and findings, and initiates a methodology for developing regional and localized w-EIFs. Improved regional w-EIFs can facilitate national reductions in energy intensity metrics by highlighting areas where energy savings opportunities could provide the greatest benefit.

  12. Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Zhang, Gan-Lin; Yang, Jin-Ling; Li, De-Cheng; Zhao, Yu-Guo; Liu, Feng; Yang, Ren-Min; Yang, Fan

    2014-11-01

    Soil water retention influences many soil properties and soil hydrological processes. The alpine meadows and steppes of the Qilian Mountains on the northeast border of the Qinghai-Tibetan Plateau form the source area of the Heihe River, the second largest inland river in China. The soils of this area therefore have a large effect on water movement and storage of the entire watershed. In order to understand the controlling factors of soil water retention and how they affect regional eco-hydrological processes in an alpine grassland, thirty-five pedogenic horizons in fourteen soil profiles along two facing hillslopes in typical watersheds of this area were selected for study. Results show that the extensively-accumulated soil organic matter plays a dominant role in controlling soil water retention in this alpine environment. We distinguished two mechanisms of this control. First, at high matric potentials soil organic matter affected soil water retention mainly through altering soil structural parameters and thereby soil bulk density. Second, at low matric potentials the water adsorbing capacity of soil organic matter directly affected water retention. To investigate the hydrological functions of soils at larger scales, soil water retention was compared by three generalized pedogenic horizons. Among these soil horizons, the mattic A horizon, a diagnostic surface horizon of Chinese Soil Taxonomy defined specially for alpine meadow soils, had the greatest soil water retention over the entire range of measured matric potentials. Hillslopes with soils having these horizons are expected to have low surface runoff. This study promotes the understanding of the critical role of alpine soils, especially the vegetated surface soils in controlling the eco-hydrological processes in source regions of the Heihe River watershed.

  13. Power Factor Controller

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frank Nola invented the Power Factor Controller (PFC) at Marshall Space Flight Center more than a decade ago. Nola came up with a way to curb power wastage in AC induction motors. The PFC matches voltage with the motor's actual need by continuously sensing shifts between voltage and current. When it senses a light load it cuts the voltage to the minimum needed. Potential energy savings range from 8 to 65 percent.

  14. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions.

    PubMed

    Hurtado, Carlos; Domínguez, Carmen; Pérez-Babace, Lorea; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2016-03-15

    The widespread distribution of emerging organic contaminants (EOCs) in the water cycle can lead to their incorporation in irrigated crops, posing a potential risk for human consumption. To gain further insight into the processes controlling the uptake of organic microcontaminants, Batavia lettuce (Lactuca sativa) grown under controlled conditions was watered with EOCs (e.g., non-steroidal anti-inflammatories, sulfonamides, β-blockers, phenolic estrogens, anticonvulsants, stimulants, polycyclic musks, biocides) at different concentrations (0-40μgL(-1)). Linear correlations were obtained between the EOC concentrations in the roots and leaves and the watering concentrations for most of the contaminants investigated. However, large differences were found in the root concentration factors ( [Formula: see text] =0.27-733) and leaf translocation concentration factors ( [Formula: see text] =0-3) depending on the persistence of the target contaminants in the rhizosphere and the specific physicochemical properties of each one. With the obtained dataset, a simple predictive model based on a linear regression and the root bioconcentration and translocation factors can be used to estimate the concentration of the target EOCs in leaves based on the dose supplied in the irrigation water or the soil concentration. Finally, enantiomeric fractionation of racemic ibuprofen from the initial spiking mixture suggests that biodegradation mainly occurs in the rhizosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes.

    PubMed

    Marguerit, Elisa; Brendel, Oliver; Lebon, Eric; Van Leeuwen, Cornelis; Ollat, Nathalie

    2012-04-01

    The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv. Cabernet Sauvignon × Vitis riparia cv. Gloire de Montpellier), onto which we grafted a single scion genotype. After 10 d without stress, the water supply was progressively limited over a period of 10 d, and a stable water deficit was then applied for 15 d. Transpiration rate was estimated daily and a mathematical curve was fitted to its response to water deficit intensity. We also determined δ(13) C values in leaves, transpiration efficiency and water extraction capacity. These traits were then analysed in a multienvironment (year and water status) quantitative trait locus (QTL) analysis. Quantitative trait loci, independent of year and water status, were detected for each trait. One genomic region was specifically implicated in the acclimation of scion transpiration induced by the rootstock. The QTLs identified colocalized with genes involved in water deficit responses, such as those relating to ABA and hydraulic regulation. Scion transpiration rate and its acclimation to water deficit are thus controlled genetically by the rootstock, through different genetic architectures. © 2012 INRA. New Phytologist © 2012 New Phytologist Trust.

  16. Factors affecting the water odor caused by chloramines during drinking water disinfection.

    PubMed

    Wang, An-Qi; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Gao, Ze-Chen; Liu, Zhi; Cao, Tong-Cheng; Gao, Nai-Yun

    2018-10-15

    Chloramine disinfection is one of the most common disinfection methods in drinking water treatment. In this study, the temporal variability of water odors during monochloramine auto-decomposition was investigated to elucidate the characteristics of odor problems caused by adopting chloramine disinfection in tap water. Odor intensities and dominant odorant contributions were determined using the flavor profile analysis (FPA) and odor active value (OAV), respectively. During auto-decomposition of monochloramine, Cl 2 /N molar ratio, pH, temperature, and the presence of NOM all affected odor intensity and odor temporal variation in drinking water. In general, decreasing pH from 8.5 to 6.0 led to increasing perceived odor intensity due to the formation of dichloramine. The major odorants responsible for chlorinous odor under acidic and non-acidic conditions were dichloramine and monochloramine, respectively. Chloraminated water with a Cl 2 /N molar ratio of 0.6 or NOM concentration <2 mg-C L -1 inhibited odor intensity. Furthermore, the influence of rechlorination on chlorinous odor intensity for chloraminated water should not be neglected. The results of this study will be beneficial for the control of chlorinous odors caused by chloramine disinfection in drinking water. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. The challenge of improving boiling: lessons learned from a randomized controlled trial of water pasteurization and safe storage in Peru.

    PubMed

    Heitzinger, K; Rocha, C A; Quick, R E; Montano, S M; Tilley, D H; Mock, C N; Carrasco, A J; Cabrera, R M; Hawes, S E

    2016-07-01

    Boiling is the most common method of household water treatment in developing countries; however, it is not always effectively practised. We conducted a randomized controlled trial among 210 households to assess the effectiveness of water pasteurization and safe-storage interventions in reducing Escherichia coli contamination of household drinking water in a water-boiling population in rural Peru. Households were randomized to receive either a safe-storage container or a safe-storage container plus water pasteurization indicator or to a control group. During a 13-week follow-up period, households that received a safe-storage container and water pasteurization indicator did not have a significantly different prevalence of stored drinking-water contamination relative to the control group [prevalence ratio (PR) 1·18, 95% confidence interval (CI) 0·92-1·52]. Similarly, receipt of a safe-storage container alone had no effect on prevalence of contamination (PR 1·02, 95% CI 0·79-1·31). Although use of water pasteurization indicators and locally available storage containers did not increase the safety of household drinking water in this study, future research could illuminate factors that facilitate the effective use of these interventions to improve water quality and reduce the risk of waterborne disease in populations that boil drinking water.

  18. Breast cancer risk and drinking water contaminated by wastewater: a case control study

    PubMed Central

    Brody, Julia Green; Aschengrau, Ann; McKelvey, Wendy; Swartz, Christopher H; Kennedy, Theresa; Rudel, Ruthann A

    2006-01-01

    Background Drinking water contaminated by wastewater is a potential source of exposure to mammary carcinogens and endocrine disrupting compounds from commercial products and excreted natural and pharmaceutical hormones. These contaminants are hypothesized to increase breast cancer risk. Cape Cod, Massachusetts, has a history of wastewater contamination in many, but not all, of its public water supplies; and the region has a history of higher breast cancer incidence that is unexplained by the population's age, in-migration, mammography use, or established breast cancer risk factors. We conducted a case-control study to investigate whether exposure to drinking water contaminated by wastewater increases the risk of breast cancer. Methods Participants were 824 Cape Cod women diagnosed with breast cancer in 1988–1995 and 745 controls who lived in homes served by public drinking water supplies and never lived in a home served by a Cape Cod private well. We assessed each woman's exposure yearly since 1972 at each of her Cape Cod addresses, using nitrate nitrogen (nitrate-N) levels measured in public wells and pumping volumes for the wells. Nitrate-N is an established wastewater indicator in the region. As an alternative drinking water quality indicator, we calculated the fraction of recharge zones in residential, commercial, and pesticide land use areas. Results After controlling for established breast cancer risk factors, mammography, and length of residence on Cape Cod, results showed no consistent association between breast cancer and average annual nitrate-N (OR = 1.8; 95% CI 0.6 – 5.0 for ≥ 1.2 vs. < .3 mg/L), the sum of annual nitrate-N concentrations (OR = 0.9; 95% CI 0.6 – 1.5 for ≥ 10 vs. 1 to < 10 mg/L), or the number of years exposed to nitrate-N over 1 mg/L (OR = 0.9; 95% CI 0.5 – 1.5 for ≥ 8 vs. 0 years). Variation in exposure levels was limited, with 99% of women receiving some of their water from supplies with nitrate-N levels in excess of

  19. Controls on surface water chemistry in the upper Merced River basin, Yosemite National Park, California

    USGS Publications Warehouse

    Clow, D.W.; Mast, M.A.; Campbell, D.H.

    1996-01-01

    Surface water draining granitic bedrock in Yosemite National Park exhibits considerable variability in chemical composition, despite the relative homogeneity of bedrock chemistry. Other geological factors, including the jointing and distribution of glacial till, appear to exert strong controls on water composition. Chemical data from three surface water surveys in the upper Merced River basin conducted in August 1981, June 1988 and August 1991 were analysed and compared with mapped geological, hydrological and topographic features to identify the solute sources and processes that control water chemistry within the basin during baseflow. Water at most of the sampling sites was dilute, with alkalinities ranging from 26 to 77 ??equiv. 1-1. Alkalinity was much higher in two subcatchments, however, ranging from 51 to 302 ??equiv. 1-1. Base cations and silica were also significantly higher in these two catchments than in the rest of the watershed. Concentrations of weathering products in surface water were correlated to the fraction of each subcatchment underlain by surficial material, which is mostly glacial till. Silicate mineral weathering is the dominant control on concentrations of alkalinity, silica and base cations, and ratios of these constituents in surface water reflect the composition of local bedrock, Chloride concentrations in surface water samples varied widely, ranging from <1 to 96 ??equiv. 1-1. The annual volume-weighted mean chloride concentration in the Merced River at the Happy Isles gauge from 1968 to 1990 was 26 ??equiv. 1-1, which was five times higher than in atmospheric deposition (4-5 ??equiv. 1-1), suggesting that a source of chloride exists within the watershed. Saline groundwater springs, whose locations are probably controlled by vertical jointing in the bedrock, are the most likely source of the chloride. Sulphate concentrations varied much less than most other solutes, ranging from 3 to 14 ??equiv. 1-1. Concentrations of sulphate in

  20. Application of simple adaptive control to water hydraulic servo cylinder system

    NASA Astrophysics Data System (ADS)

    Ito, Kazuhisa; Yamada, Tsuyoshi; Ikeo, Shigeru; Takahashi, Koji

    2012-09-01

    Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems.

  1. Graphene nanoplatelets as high-performance filtration control material in water-based drilling fluids

    NASA Astrophysics Data System (ADS)

    Ridha, Syahrir; Ibrahim, Arif; Shahari, Radzi; Fonna, Syarizal

    2018-05-01

    The main objective of this work is to evaluate the effectiveness of graphene nanoplatelets (GNP) as filtration control materials in water based drilling fluids. Three (3) general samples of water based drilling fluids were prepared including basic potassium chloride (KCl) drilling fluids, nanosilica (NS) drilling fluids and GNP drilling fluids. Several concentrations of NS and GNP were dispersed in controlled formulations of water based drilling fluids. Standard API filtration tests were carried out for comparison purposes as well as High Temperature High Pressure (HTHP) filtration tests at 150 °F (∼66 °C), 250 °F (∼121 °C) and 350 °F (∼177 °C) at a fixed 500 (∼3.45MPa) psi to study the filtration trend as a function of temperature. Mud cake samples from several tests were selectively chosen and analyzed under Field Emission Scanning Electron Microscope (FESEM) for its morphology. Results from this work show that nanoparticle concentrations play a factor in filtration ability of colloid materials in water based drilling fluids when studied at elevated temperature. Low temperature filtration, however, shows only small differences in volume in all the drilling fluid samples. 0.1 ppb concentrations of GNP reduced the fluid loss of 350 °F by 4.6 mL as compared to the similar concentration of NS drilling fluids.

  2. Factors influencing warfarin control in Australia and Singapore.

    PubMed

    Bernaitis, Nijole; Ching, Chi Keong; Teo, Siew Chong; Chen, Liping; Badrick, Tony; Davey, Andrew K; Crilly, Julia; Anoopkumar-Dukie, Shailendra

    2017-09-01

    Warfarin is widely used for patients with non-valvular atrial fibrillation (NVAF). Variations in warfarin control, as measured by time in therapeutic range (TTR), have been reported across different regions and ethnicities, particularly between Western and Asian countries. However, there is limited data on comparative factors influencing warfarin control in Caucasian and Asian patients. Therefore, the aim of this study was to determine warfarin control and potential factors influencing this in patients with NVAF in Australia and Singapore. Retrospective data was collected for patients receiving warfarin for January to June 2014 in Australia and Singapore. TTR was calculated for individuals with mean patient TTR used for analysis. Possible influential factors on TTR were analysed including age, gender, concurrent co-morbidities, and concurrent medication. The mean TTR was significantly higher in Australia (82%) than Singapore (58%). At both sites, chronic kidney disease significantly lowered this TTR. Further factors influencing control were anaemia and age<60years in Australia, and vascular disease, CHA 2 DS 2 -VASc score of 6, and concurrent platelet inhibitor therapy in Singapore. Warfarin control was significantly higher in Australia compared to Singapore, however chronic kidney disease reduced control at both sites. The different levels of control in these two countries, together with patient factors further reducing control may impact on anticoagulant choice in these countries with better outcomes from warfarin in Australia compared to Singapore. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Model Design for Water Wheel Control System of Heumgyeonggaknu

    NASA Astrophysics Data System (ADS)

    Kim, Sang Hyuk; Ham, Seon Young; Lee, Yong Sam

    2016-03-01

    Heumgyeonggaknu (????) is powered by a water-hammering-type water wheel. The technique that maintains the constant speed of the water wheel is assumed to be the one used in the Cheonhyeong (???) apparatus in Shui Yun Yi Xiang Tai (???) made by the Northern Song (??) dynasty in the 11th century. We investigated the history of the development and characteristics of the Cheonhyeong apparatus, and we analyzed ways to transmit the power of Heumgyeonggaknu. In addition, we carried out a conceptual design to systematically examine the power control system. Based on the conceptual design, we built a model for a water wheel control system that could be used in experiments by drawing a 3D model and a basic design.

  4. Evolution of abandoned channels: Insights on controlling factors in a multi-pressure river system

    NASA Astrophysics Data System (ADS)

    Dépret, Thomas; Riquier, Jérémie; Piégay, Hervé

    2017-10-01

    In the second half of the 19th century, channelization of large multi-thread rivers such as the Rhine, the Danube, and the Rhône rivers induced artificial disconnection of most of their secondary channels. Compared to naturally abandoned channels, terrestrialization (i.e., the passage from the aquatic to the terrestrial stage, controlled by sediment deposits and/or lowering of the water level) patterns and rates of such artificially prematurely abandoned channels remain largely unknown. Moreover, factors controlling their evolutionary trajectories are complex owing to a set of pressures occurring throughout the 20th century within specific space-time windows. Through a case study of the Rhône River, this paper aims to assess and distinguish the effects of a set of potential controlling factors on abandoned channel terrestrialization dynamics and lifespan. We tested the influence of: (i) submersible embankments closing the entrance of abandoned channels, (ii) main channel degradation following its channelization or the water level lowering due to channel bypassing in the middle of the 20th century involving drastic water abstraction in these reaches, (iii) transverse dykes within the abandoned channels, (iv) the flooding regime of abandoned channels (i.e., frequency and magnitude of upstream connections producing lotic functioning), and (v) longitudinal variation in the suspended sediment concentration along the main channel. To this end, we studied 24 abandoned channels (16 artificially disconnected at their upstream end by submersible embankments and eight naturally disconnected by bar plug establishment) from the mid-19th to the beginning of the 20th century. Their terrestrialization rates were characterized through the reconstruction of their planimetric trajectories using historical maps and aerial photos. The results reveal a much longer lifespan of artificial abandoned channels compared to natural ones because of the truncation of the initial bedload

  5. Electrochemical control of iodine disinfectant for space transportation system and space station potable water

    NASA Technical Reports Server (NTRS)

    Geer, Richard D.

    1989-01-01

    An electrochemical microbial check valve method (EC-MCV) for controlling the iodine disinfectant in potable water (PW) for NASA's space operations was proposed. The factors affecting the design and performance of the unit were analyzed. This showed that it would be feasible to construct a recyclable unit in a small volume that will operate in either an iodine removal or addition mode. The EC-MCV should remove active iodine species rapidly from PW, but the rapid delivery rates at end-use may make complete removal of excess I(-) difficult under some conditions. Its performace change with AgI buildup needs to be investigated, as this controls the time for recycling the unit. The EC-MCV has advantages over the passive microbial check valve (MCV) method currently in use, as it would allow precise control of the I2 level and would not introduce excess I(-) to the water. The presence of oxygen in the EC-MCV needs to be investigated as it could affect the efficiency of I2 addition and excess I(-) removal.

  6. Energy Factor Analysis for Gas Heat Pump Water Heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basismore » energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.« less

  7. Hydrogeologic controls of surface-water chemistry in the Adirondack region of New York State

    USGS Publications Warehouse

    Peters, N.E.; Driscoll, C.T.

    1987-01-01

    Relationships between surface-water discharge, water chemistry, and watershed geology were investigated to evaluate factors affecting the sensitivity of drainage waters in the Adirondack region of New York to acidification by atmospheric deposition. Instantaneous discharge per unit area was derived from relationships between flow and staff-gage readings at 10 drainage basins throughout the region. The average chemical composition of the waters was assessed from monthly samples collected from July 1982 through July 1984. The ratio of flow at the 50-percent exceedence level to the flow at the 95-percent exceedence level of flow duration was negatively correlated with mean values of alkalinity or acid-neutralizing capacity (ANC), sum of basic cations (SBC), and dissolved silica, for basins containing predominantly aluminosilicate minerals and little or no carbonate-bearing minerals. Low ratios are indicative of systems in which flow is predominately derived from surface- and ground-water storage, whereas high ratios are characteristic of watersheds with variable flow that is largely derived from surface runoff. In an evaluation of two representative surface-water sites, concentrations of ANC, SBC, and dissolved silica, derived primarily from soil mineral weathering reactions. decreased with increasing flow. Furthermore, the ANC was highest at low flow when the percentage of streamflow derived from ground water was maximum. As flow increased, the ANC decreased because the contribution of dilute surface runoff and lateral flow through the shallow acidic soil horizons to total flow increased. Basins having relatively high ground-water contributions to total flow, in general, have large deposits of thick till or stratified drift. A major factor controlling the sensitivity of these streams and lakes to acidification is the relative contribution of ground water to total discharge. ?? 1987 Martinus Nijhoff/Dr W. Junk Publishers.

  8. The quality of our Nation's waters: factors affecting public-supply-well vulnerability to contamination: understanding observed water quality and anticipating future water quality

    USGS Publications Warehouse

    Eberts, Sandra M.; Thomas, Mary Ann; Jagucki, Martha L.

    2013-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, a study was conducted from 2001 to 2011 to shed light on factors that affect the vulnerability of water from public-supply wells to contamination (referred to hereafter as “public-supply-well vulnerability”). The study was designed as a follow-up to earlier NAWQA studies that found mixtures of contaminants at low concentrations in groundwater near the water table in urban areas across the Nation and, less frequently, in deeper groundwater typically used for public supply. Beside the factors affecting public-supply-well vulnerability to contamination, this circular describes measures that can be used to determine which factor (or factors) plays a dominant role at an individual public-supply well. Case-study examples are used throughout to show how such information can be used to improve water quality. In general, the vulnerability of the water from public-supply wells to contamination is a function of contaminant input within the area that contributes water to a well, the mobility and persistence of a contaminant once released to the groundwater, and the ease of groundwater and contaminant movement from the point of recharge to the open interval of a well. The following measures described in this circular are particularly useful for indicating which contaminants in an aquifer might reach an individual public-supply well and when, how, and at what concentration they might arrive: * Sources of recharge—Information on the sources of recharge for a well provides insight into contaminants that might enter the aquifer with the recharge water and potentially reach the well. * Geochemical conditions—Information on the geochemical conditions encountered by groundwater traveling to a well provides insight into contaminants that might persist in the water all the way to the well. * Groundwater-age mixtures—Information on the ages of the different waters that mix in a well

  9. Controls on water use for thermoelectric generation: case study Texas, US.

    PubMed

    Scanlon, Bridget R; Reedy, Robert C; Duncan, Ian; Mullican, William F; Young, Michael

    2013-10-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km(3)), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km(3)) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000.

  10. Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry; Garcia, Susan

    Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.

  11. Year-round Application of Water Curtain for Environmental Control in Greenhouse

    NASA Astrophysics Data System (ADS)

    Ibuki, R.; Sugita, E.

    2011-12-01

    In large area of Japan needs forced environmental control to cultivate yields in hard temperature condition. Water Curtain is applied in Japan for night time air temperature control of small greenhouse, making strawberry and covered by plastic film. Water is splayed on extended plastic film, located above strawberry and below roof film. Underground water is utilized for cooling in summer, and warming in winter. Heat exchange between water and ground, and also water and air in the greenhouse is occurring in this system. Furthermore, heat transfer by radiation effect is also controlled by water membrane. In winter night, infrared radiation through plastic film is reduced by water membrane because of its high absorption coefficient on wave length of infrared. Besides water has a high transparency on wave length of visible light. These features are useful on the daytime radiation control of greenhouse to maintain visible light level for photosynthesis and to reduce excess infrared, damages yields in summer. Also in daytime of sunny day in winter season, temperature is too high to cultivate yields in closed greenhouse. Under this situation, water curtain is useful to storage from broad area in greenhouse excess heat from air in the circulation water. Warm water is useful to maintain temperature in greenhouse. On the contrary, in summer season, water can storage heat in daytime and release in night time. Water curtain system will contribute to be a sustainable and low energy consumption system to maintain comfortable environment for yields growth. For this reason we are considering to use water curtain in year-round. At the first step of the year-round application, day time use in summer is experimentally investigated. General water curtain splays water on plastic film extended on metal pipe. In this situation water is gathered at valley part of the film. Then water membrane is partially made and radiation control is not effective at large area. Therefore we applied new

  12. Factor analysis and cluster analysis applied to assess the water quality of middle and lower Han River in Central China

    NASA Astrophysics Data System (ADS)

    Kuo, Yi-Ming; Liu, Wen-Wen

    2015-04-01

    The Han River basin is one of the most important industrial and grain production bases in the central China. A lot of factories and towns have been established along the river where large farmlands are located nearby. In the last few decades the water quality of the Han River, specifically in middle and lower reaches, has gradually declined. The agricultural nonpoint pollution and municipal and industrial point pollution significantly degrade the water quality of the Han River. Factor analysis can be applied to reduce the dimensionality of a data set consisting of a large number of inter-related variables. Cluster analysis can classify the samples according to their similar characters. In this study, factor analysis is used to identify major pollution indicators, and cluster analysis is employed to classify the samples based on the sample locations and hydrochemical variables. Water samples were collected from 12 sample sites collected from Xiangyang City (middle Han River) to Wuhan City (lower Han River). Correlations among 25 hydrochemical variables are statistically examined. The important pollutants are determined by factor analysis. A three-factor model is determined and explains over 85% of the total river water quality variation. Factor 1, including SS, Chl-a, TN and TP, can be considered as the nonpoint source pollution. Factor 2, including Cl-, Br-, SO42-, Ca2+, Mg2+, K+, Fe2+ and PO43-, can be treated as the industrial pollutant pollution. Factor 3, including F- and NO3-, reflects the influence of the groundwater or self-purification capability of the river water. The various land uses along the Han River correlate well with the pollution types. In addition, the result showed that the water quality of Han River deteriorated gradually from middle to lower Han River. Some tributaries have been seriously polluted and significantly influence the mainstream water quality of the Han River. Finally, the result showed that the nonpoint pollution and the point

  13. Aquaponic Growbed Water Level Control Using Fog Architecture

    NASA Astrophysics Data System (ADS)

    Asmi Romli, Muhamad; Daud, Shuhaizar; Raof, Rafikha Aliana A.; Awang Ahmad, Zahari; Mahrom, Norfadilla

    2018-05-01

    Integrated Multi-Trophic Aquaculture (IMTA) is an advance method of aquaculture which combines species with different nutritional needs to live together. The combination between aquatic live and crops is called aquaponics. Aquatic waste that normally removed by biofilters in normal aquaculture practice will be absorbed by crops in this practice. Aquaponics have few common components and growbed provide the best filtration function. In growbed a siphon act as mechanical structure to control water fill and flush process. Water to the growbed comes from fish tank with multiple flow speeds based on the pump specification and height. Too low speed and too fast flow rate can result in siphon malfunctionality. Pumps with variable speed do exist but it is costly. Majority of the aquaponic practitioner use single speed pump and try to match the pump speed with siphon operational requirement. In order to remove the matching requirement some control need to be introduced. Preliminarily this research will show the concept of fill-and-flush for multiple pumping speeds. The final aim of this paper is to show how water level management can be done to remove the speed dependency. The siphon tried to be controlled remotely since wireless data transmission quite practical in vast operational area. Fog architecture will be used in order to transmit sensor data and control command. This paper able to show the water able to be retented in the growbed within suggested duration by stopping the flow in once predefined level.

  14. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a... otherwise preventing pollution by industry, which method shall have industrywide application; (b) All...

  15. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a... otherwise preventing pollution by industry, which method shall have industrywide application; (b) All...

  16. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a... otherwise preventing pollution by industry, which method shall have industrywide application; (b) All...

  17. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Federal Water Pollution Control Act. 40... FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a... otherwise preventing pollution by industry, which method shall have industrywide application; (b) All...

  18. Possible environmental, occupational, and other etiologic factors for Parkinson's disease: a case-control study in Germany.

    PubMed

    Seidler, A; Hellenbrand, W; Robra, B P; Vieregge, P; Nischan, P; Joerg, J; Oertel, W H; Ulm, G; Schneider, E

    1996-05-01

    In a case-control study, we investigated the possible etiologic relevance to Parkinson's disease (PD) of rural factors such as farming activity, pesticide exposures, well-water drinking, and animal contacts; toxicologic exposures such as wood preservatives, heavy metals, and solvents; general anesthesia; head trauma; and differences in the intrauterine environment. We recruited 380 patients in nine German clinics, 379 neighborhood control subjects, and 376 regional control subjects in the largest case-control study investigating such factors and collected data in structured personal interviews using conditional logistic regression to control for educational status and cigarette smoking. The latter was strongly inversely associated with PD. There were significantly elevated odds ratios (OR) for pesticide use, in particular, for organochlorines and alkylated phosphates, but no association was present between PD and other rural factors. A significantly elevated OR was present for exposure to wood preservatives. Subjective assessment by the probands indicated that exposure to some heavy metals, solvents, exhaust fumes, and carbon monoxide was significantly more frequent among patients than control subjects, but this was not confirmed by a parallel assessment of job histories according to a job exposure matrix. Patients had undergone general anesthesia and suffered severe head trauma more often than control subjects, but a dose-response gradient was not present. Patients reported a significantly larger number of amalgam-filled teeth before their illness than control subjects. The frequency of premature births and birth order did not differ between patients and control subjects. Patients reported significantly more relatives affected with PD than control subjects. These results support a role for environmental and genetic factors in the etiology of PD.

  19. Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering.

    PubMed

    Wenk, Esther; Meinel, Anne J; Wildy, Sarah; Merkle, Hans P; Meinel, Lorenz

    2009-05-01

    The development of prototype scaffolds for either direct implantation or tissue engineering purposes and featuring spatiotemporal control of growth factor release is highly desirable. Silk fibroin (SF) scaffolds with interconnective pores, carrying embedded microparticles that were loaded with insulin-like growth factor I (IGF-I), were prepared by a porogen leaching protocol. Treatments with methanol or water vapor induced water insolubility of SF based on an increase in beta-sheet content as analyzed by FTIR. Pore interconnectivity was demonstrated by SEM. Porosities were in the range of 70-90%, depending on the treatment applied, and were better preserved when methanol or water vapor treatments were prior to porogen leaching. IGF-I was encapsulated into two different types of poly(lactide-co-glycolide) microparticles (PLGA MP) using uncapped PLGA (50:50) with molecular weights of either 14 or 35 kDa to control IGF-I release kinetics from the SF scaffold. Embedded PLGA MP were located in the walls or intersections of the SF scaffold. Embedment of the PLGA MP into the scaffolds led to more sustained release rates as compared to the free PLGA MP, whereas the hydrolytic degradation of the two PLGA MP types was not affected. The PLGA types used had distinct effects on IGF-I release kinetics. Particularly the supernatants of the lower molecular weight PLGA formulations turned out to release bioactive IGF-I. Our studies justify future investigations of the developed constructs for tissue engineering applications.

  20. Controls on the distribution of alkylphenols and BTEX in oilfield waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, J.D.; Aplin, A.C.; Larter, S.R.

    1996-10-01

    Controls on the abundance of alkylphenols and BTEX in oilfield waters are poorly understood, but are important because these species are the main dissolved pollutants in produced waters and may also be used as indicators of both the proximity and migration range of petroleum. Using (1) measurements of alkyl phenols and BTEX in oilfield waters and associated petroleums, and (b) oil/water partition coefficients under subsurface conditions we conclude that: (1) The distribution of alkylphenols and BTEX in formation waters are controlled by partition equilibrium with petroleum. Phenol and benzene typically account for 50% of total phenols and total BTEX respectively.more » (2) The concentrations of alkylphenols and BTEX in produced waters equilibriated with oil in reservoirs or in separator systems vary predictably as a function of pressure, temperature and salinity. This suggests that oil/water partition is the primary control influencing the distribution of alkylphenols and BTEX in oilfield waters and that other processes such as hydrolysis processes at the oil-water contact are secondary.« less

  1. A vadose zone water fluxmeter with divergence control

    NASA Astrophysics Data System (ADS)

    Gee, G. W.; Ward, A. L.; Caldwell, T. G.; Ritter, J. C.

    2002-08-01

    Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self-calibrating tipping bucket, with a sensitivity of ~4 mL tip-1. For our meter this is equivalent to detection limit of ~0.1 mm. Passive-wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two-dimensional (2-D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr-1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr-1 to more than 1000 mm yr-1.

  2. Control and Coordination of Frequency Responsive Residential Water Heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.

    2016-07-31

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC).more » The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.« less

  3. Motor power factor controller with a reduced voltage starter

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1981-01-01

    A power factor type motor controller is disclosed in which the conventional power factor constant voltage command signal is replaced during a starting interval with a graduated control voltage. This continuation-impart of a pending patent application (Serial No. 199, 765: Three Phase Factor Controller) provides a means for modifying the operation of the system for a motor start-up interval of 5 to 30 second. Using a ramp generators, an initial ramp-like signal replaces a constant power factor signal supplied by a potentiometer. The ramp-like signal is applied to a 15 terminal where it is summed with an operating power factor signal from phase detectors in order to obtain a control signal for ultimately controlling SCR devices. The SCR devices are turned on at an advancing rate with time responsive to the combination signal described rather than simply a function of a ramp-like signal alone.

  4. Relative controls of natural and socio-economic drivers on water availability over India: an exploratory modelling analysis

    NASA Astrophysics Data System (ADS)

    Deshmukh, A.; Singh, R.; Kumar, R.

    2017-12-01

    India, a water stressed nation with an estimated per capita water availability of 1500m3/year/person, is projected to surpass China in population to become the most populous country by 2022. This increasing population will further exacerbate the water stress, which will also vary due to climate and land use change. Here, we quantify the relative controls on per capita water availability from climatic, non-climatic and socio-economic factors. We achieve this by using several definitions of per capita water availability and accounting for virtual water trade transfer. Our exploratory analysis employs the recently developed probabilistic Budyko framework modified to account for inter-regional virtual water trade. We find that the Indo-Gangetic plains and Southeastern parts of India emerge as vulnerable regions where a growing population will lead to a drastic reduction in per capita water availability. The proposed framework can serve as a prototype for understanding the relative importance of socio-economic interventions versus water infrastructure or demand reduction investments.

  5. Water Use Practices Limit the Effectiveness of a Temephos-Based Aedes aegypti Larval Control Program in Northern Argentina

    PubMed Central

    Garelli, Fernando M.; Espinosa, Manuel O.; Weinberg, Diego; Trinelli, María A.; Gürtler, Ricardo E.

    2011-01-01

    Background A five-year citywide control program based on regular application of temephos significantly reduced Aedes aegypti larval indices but failed to maintain them below target levels in Clorinda, northern Argentina. Incomplete surveillance coverage and reduced residuality of temephos were held as the main putative causes limiting effectiveness of control actions. Methodology The duration of temephos residual effects in household-owned water-holding tanks (the most productive container type and main target for control) was estimated prospectively in two trials. Temephos was applied using spoons or inside perforated small zip-lock bags. Water samples from the study tanks (including positive and negative controls) were collected weekly and subjected to larval mortality bioassays. Water turnover was estimated quantitatively by adding sodium chloride to the study tanks and measuring its dilution 48 hs later. Principal Findings The median duration of residual effects of temephos applied using spoons (2.4 weeks) was significantly lower than with zip-lock bags (3.4 weeks), and widely heterogeneous between tanks. Generalized estimating equations models showed that bioassay larval mortality was strongly affected by water type and type of temephos application depending on water type. Water type and water turnover were highly significantly associated. Tanks filled with piped water had high turnover rates and short-lasting residual effects, whereas tanks filled with rain water showed the opposite pattern. On average, larval infestations reappeared nine weeks post-treatment and seven weeks after estimated loss of residuality. Conclusions Temephos residuality in the field was much shorter and more variable than expected. The main factor limiting temephos residuality was fast water turnover, caused by householders' practice of refilling tanks overnight to counteract the intermittence of the local water supply. Limited field residuality of temephos accounts in part for the

  6. Suitable Water Flow and Water Temperature Difference of Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zuo, Hai-bin; Li, Qian; Zhang, Jian-liang; Shen, Meng; Tie, Jin-yan; Jiao, Ke-xin

    This paper designs three factors such as temperature, pH, conductivity and three levels of orthogonal test. Temperature is a significant factor. However PH and conductivity are not significant through poor analysis. Further research is conducted on the temperature. Temperature stability is 50°C. Suitable water velocity is 2.3m/s, which is calculated based on the largest part of the heat flux intensity and the corresponding water temperature should be controlled with 1.5°C. Meanwhile, water velocity increased has little effect on the heat transfer capabilities.

  7. Factors influencing sustainability of communally-managed water facilities in rural areas of Zimbabwe

    NASA Astrophysics Data System (ADS)

    Kativhu, T.; Mazvimavi, D.; Tevera, D.; Nhapi, I.

    2017-08-01

    Sustainability of point water facilities is a major development challenge in many rural settings of developing countries not sparing those in the Sub-Saharan Africa region. This study was done in Zimbabwe to investigate the factors influencing sustainability of rural water supply systems. A total of 399 water points were studied in Nyanga, Chivi and Gwanda districts. Data was collected using a questionnaire, observation checklist and key informant interview guide. Multi-Criteria analysis was used to assess the sustainability of water points and inferential statistical analysis such as Chi square tests and Analysis of Variance (ANOVA) were used to determine if there were significant differences on selected variables across districts and types of lifting devices used in the study area. The thematic approach was used to analyze qualitative data. Results show that most water points were not functional and only 17% across the districts were found to be sustainable. A fusion of social, technical, financial, environmental and institutional factors was found to be influencing sustainability. On technical factors the ANOVA results show that the type of lifting device fitted at a water point significantly influences sustainability (F = 37.4, p < 0.01). Availability of spare parts at community level was found to be determining the downtime period of different lifting devices in the studied wards. Absence of user committees was found to be central in influencing sustainability as water points that did not have user committees were not sustainable and most of them were not functional during the time of the survey. Active participation by communities at the planning stage of water projects was also found to be critical for sustainability although field results showed passive participation by communities at this critical project stage. Financial factors of adequacy of financial contributions and establishment of operation and maintenance funds were also found to be of great

  8. Separation control with fluidic oscillators in water

    NASA Astrophysics Data System (ADS)

    Schmidt, H.-J.; Woszidlo, R.; Nayeri, C. N.; Paschereit, C. O.

    2017-08-01

    The present study assesses the applicability of fluidic oscillators for separation control in water. The first part of this work evaluates the properties of the fluidic oscillators including frequency, cavitation effects, and exerted thrust. Derived from the governing internal dynamics, the oscillation frequency is found to scale directly with the jet's exit velocity and the size of the fluidic oscillator independent of the working fluid. Frequency data from various experiments collapse onto a single curve. The occurrence of cavitation is examined by visual inspection and hydrophone measurements. The oscillation frequency is not affected by cavitation because it does not occur inside the oscillators. The spectral information obtained with the hydrophone provide a reliable indicator for the onset of cavitation at the exit. The performance of the fluidic oscillators for separation control on a bluff body does not seem to be affected by the presence of cavitation. The thrust exerted by an array of fluidic oscillators with water as the working fluid is measured to be even larger than theoretically estimated values. The second part of the presented work compares the performance of fluidic oscillators for separation control in water with previous results in air. The array of fluidic oscillators is installed into the rear end of a bluff body model. The drag improvements based on force balance measurements agree well with previous wind tunnel experiments on the same model. The flow field is examined by pressure measurements and with particle image velocimetry. Similar performance and flow field characteristics are observed in both water and air.

  9. Environmental factors controlling methane emissions from peatlands in northern Minnesota

    NASA Technical Reports Server (NTRS)

    Dise, Nancy B.; Gorham, Eville; Verry, Elon S.

    1993-01-01

    The environmental factors affecting the emission of methane from peatlands were investigated by correlating CH4 emission data for two years, obtained from five different peatland ecosystems in northern Minnesota, with peat temperature, water table position, and degree of peat humification. The relationship obtained between the CH4 flux and these factors was compared to results from a field manipulation experiment in which the water table was artificially raised in three experimental plots within the driest peatland. It was found that peat temperature, water table position, and degree of peat humification explained 91 percent of the variance in log CH4 flux, successfully predicted annual CH4 emission from individual wetlands, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased CH4 emission by 2.5 and 2.2 times, respectively.

  10. A case-control study on the risk factors of urinary calculus in Uyghur children in the Kashi region.

    PubMed

    Wang, H C; Liu, C; He, H Y; Wang, M X

    2015-06-01

    The incidence of urinary calculus (UC) is very high in Uyghur children in the Kashi region of Xinjiang, China, which seriously affects the growth and life quality of these children. This study was aimed at investigating the risk factors of UC in Uyghur children in Kashi region. One hundred fifteen Uyghur children (age <7 years) with UC who were treated in First People's Hospital in Kashi were enrolled in the case group. A 1:1 case-control study with a questionnaire was performed. The results showed that, among the 115 UC patients, there were more boys (71.3%) than girls (28.7%), and most cases had an onset age of 1-3 years (75.7%). A lower than primary school education in the mother, drinking unboiled water, water intake <500 mL/day, and eating too much sweets were risk factors [odds ratio (OR) = 2.385, 9.160, 3.263, and 8.945, respectively], whereas vegetable intake and exposure to summer sunshine of <2 h/day were protective factors against UC onset (OR = 0.154 and 0.344, respectively). Analysis of UC-related factors in 99 cases of <3-year-old children revealed that breastfeeding was also a protective factor (OR = 0.007), whereas frequent cow's milk intake within 5 months (OR = 2.414) and frequent "panada" intake (OR = 2.529) were risk factors. The occurrence of UC in Uyghur children in the Kashi region is mainly affected by maternal educational background, quality of drinking water, water intake volume, and dietary pattern. Furthermore, geography may also have a role.

  11. The River Basin Model: Computer Output. Water Pollution Control Research Series.

    ERIC Educational Resources Information Center

    Envirometrics, Inc., Washington, DC.

    This research report is part of the Water Pollution Control Research Series which describes the results and progress in the control and abatement of pollution in our nation's waters. The River Basin Model described is a computer-assisted decision-making tool in which a number of computer programs simulate major processes related to water use that…

  12. Geomorphic and biophysical factors affecting water tracks in northern Alaska

    NASA Astrophysics Data System (ADS)

    Trochim, E. D.; Jorgenson, M. T.; Prakash, A.; Kane, D. L.

    2016-03-01

    A better understanding of water movement on hillslopes in Arctic environments is necessary for evaluating the effects of climate variability. Drainage networks include a range of features that vary in transport capacity from rills to water tracks to rivers. This research focuses on describing and classifying water tracks, which are saturated linear-curvilinear stripes that act as first-order pathways for transporting water off of hillslopes into valley bottoms and streams. Multiple factor analysis was used to develop five water tracks classes based on their geomorphic, soil, and vegetation characteristics. The water track classes were then validated using conditional inference trees, to verify that the classes were repeatable. Analysis of the classes and their characteristics indicate that water tracks cover a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrates an improved approach to quantifying water track characteristics for specific areas, which is a major step toward understanding hydrological processes and feedbacks within a region.

  13. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents.

    PubMed

    Jiang, Hongliang; Wang, Liqun; Zhu, Kangjie

    2014-11-10

    Coaxial electrospinning is a robust technique for one-step encapsulation of fragile, water-soluble bioactive agents, including growth factors, DNA and even living organisms, into core-shell nanofibers. The coaxial electrospinning process eliminates the damaging effects due to direct contact of the agents with organic solvents or harsh conditions during emulsification. The shell layer serves as a barrier to prevent the premature release of the water-soluble core contents. By varying the structure and composition of the nanofibers, it is possible to precisely modulate the release of the encapsulated agents. Promising work has been done with coaxially electrospun non-woven mats integrated with bioactive agents for use in tissue engineering, in local delivery and in wound healing, etc. This paper reviews the origins of the coaxial electrospinning method, its updated status and potential future developments for controlled release of the class of fragile, water-soluble bioactive agents. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A real-time control framework for urban water reservoirs operation

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced

  15. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.

  16. Water Pollution Control Across the Nation

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1973

    1973-01-01

    Reviewed are accomplishments, problems, and frustrations faced by individual states in meeting requirements of P.L. 92-500, Federal Water Pollution Control Act Amendments of 1972. State Environmental officials complain the new law may be a hindrance to established cleanup programs. Statistics and charts are given. (BL)

  17. How propeller suction is the dominant factor for ship accidents at shallow water conditions

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan

    2017-04-01

    The laminar flow comes to the fore with the disappearance of the several other directions in the internal displacements in the water current. Due to the dominant speed direction during the straightforward motion of the ship, the underwater hull is associated with the continuous flow of laminar currents. The open marine environment acts as a compressible liquid medium because of the presence of many variables about water volume overflow boundaries where the ship is associated. Layers of water rising over the sea surface due to ship's body and the propeller's water push provides loss of liquid lifting force for the ship. These situations change the well-known sea-floor morphology and reliable depth limits, and lead to probable accidents. If the ship block coefficient for the front side is 0.7 or higher, the "squat" will be more on the bow, because the associated factor "displacement volume" causes to the low-pressure environment due to large and rapid turbulence. Thus, the bow sinks further, which faced with liquid's weaker lift force. The vessels Gerardus Mercator, Queen Elizabeth and Costa Concordia had accidents because of unified reasons of squat, fast water mass displacement by hull push and propeller suction interaction. In the case of water mass displacement from the bow side away, that accident occurred in 2005 by the vessel Gerardus Mercator with excessive longitudinal trim angularity in the shallow water. The vessel Costa Concordia (2012), voluminous water displaced from the rear left side was an important factor because of the sharp manoeuvre of that the captain made before the accident. Observations before the accident indicate that full-speed sharp turn provided listed position for the ship from left (port side) in the direction of travel before colliding and then strike a rock on the sloping side of the seabed. The reason why the ship drifted to the left depends mainly the water discharge occurred at the left side of the hull during left-hand rudder

  18. Risk factors of diarrhoea among flood victims: a controlled epidemiological study.

    PubMed

    Mondal, N C; Biswas, R; Manna, A

    2001-01-01

    The concept and practice of 'disaster preparedness and response', instead of traditional casualty relief, is relatively new. Vulnerability analysis and health risks assessment of disaster prone communities are important prerequisites of meaningful preparedness and effective response against any calamity. In this community based study, the risk of diarrhoeal disease and its related epidemiological factors were analysed by collecting data from two selected flood prone block of Midnapur district of West Bengal. The information was compared with that of another population living in two non-flood prone blocks of the same district. The study showed that diarrhoeal disease was the commonest morbidity in flood prone population. Some behaviours, like use of pond water for utensil wash and kitchen purpose, hand washing after defecation without soap, improper hand washing before eating, open field defecation, storage of drinking water in wide mouth vessels etc. were found to be associated with high attack rate of diarrhoea, in both study and control population during flood season compared to pre-flood season. Attack rates were also significantly higher in flood prone population than that of population in non-flood prone area during the same season. Necessity of both community education for proper water use behaviour and personal hygiene along with ensuring safe water and sanitation facilities of flood affected communities were emphasized.

  19. NREL, Sandia, and Johnson Controls See Significant Water Savings for HPC

    Science.gov Websites

    Cooling | Energy Systems Integration Facility | NREL NREL, Sandia and Johnson Controls save 1M Gallons of Water a Year for HPC Cooling NREL, Sandia, and Johnson Controls See Significant Water Savings for HPC Cooling NREL partnered with Sandia National Laboratories and Johnson Controls to install the

  20. Drinking Water Distribution Systems

    EPA Pesticide Factsheets

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  1. Contextual and sociopsychological factors in predicting habitual cleaning of water storage containers in rural Benin

    NASA Astrophysics Data System (ADS)

    Stocker, Andrea; Mosler, Hans-Joachim

    2015-04-01

    Recontamination of drinking water occurring between water collection at the source and the point of consumption is a current problem in developing countries. The household drinking water storage container is one source of contamination and should therefore be cleaned regularly. First, the present study investigated contextual factors that stimulate or inhibit the development of habitual cleaning of drinking water storage containers with soap and water. Second, based on the Risk, Attitudes, Norms, Abilities, and Self-regulation (RANAS) Model of behavior, the study aimed to determine which sociopsychological factors should be influenced by an intervention to promote habitual cleaning. In a cross-sectional study, 905 households in rural Benin were interviewed by structured face-to-face interviews. A forced-entry regression analysis was used to determine potential contextual factors related to habitual cleaning. Subsequently, a hierarchical regression was conducted with the only relevant contextual factor entered in the first step (R2 = 6.7%) and the sociopsychological factors added in the second step (R2 = 62.5%). Results showed that households using a clay container for drinking water storage had a significantly weaker habit of cleaning their water storage containers with soap and water than did households using other types of containers (β = -0.10). The most important sociopsychological predictors of habitual cleaning were commitment (β = 0.35), forgetting (β = -0.22), and self-efficacy (β = 0.14). The combined investigation of contextual and sociopsychological factors proved beneficial in terms of developing intervention strategies. Possible interventions based on these findings are recommended.

  2. Options for water-level control in developed wetlands

    USGS Publications Warehouse

    Kelley, J. R.; Laubhan, M. K.; Reid, F. A.; Wortham, J. S.; Fredrickson, L. H.

    1993-01-01

    Wetland habitats in the United States currently are lost at a rate of 260,000 acres/year (105,218 ha/year). Consequently, water birds concentrate in fewer and smaller areas. Such concentrations may deplete food supplies and influence behavior, physiology, and survival. Continued losses increase the importance of sound management of the remaining wetlands because water birds depend on them. Human activities modified the natural hydrology of most remaining wetlands in the conterminous United States, and such hydrologic alterations frequently reduce wetland productivity. The restoration of original wetland functions and productivity often requires the development of water distribution and discharge systems to emulate natural hydrologic regimes. Construction of levees and correct placement of control structures and water-delivery and water-discharge systems are necessary to (1) create soil and water conditions for the germination of desirable plants, (2) control nuisance vegetation, (3) promote the production of invertebrates, and (4) make foods available for wildlife that depends of wetlands (Leaflets 13.2.1 and 13.4.6). This paper provides basic guidelines for the design of wetlands that benefit wildlife. If biological considerations are not incorporated into such designs, the capability of managing wetlands for water birds is reduced and costs often are greater. Although we address the development of palustrine wetlands in migration and wintering areas, many of the discussed principles are applicable to the development of other wetland types and in other locations.

  3. A vadose zone water fluxmeter with divergence control

    USGS Publications Warehouse

    Gee, G.W.; Ward, A.L.; Caldwell, T.G.; Ritter, J.C.

    2002-01-01

    Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self‐calibrating tipping bucket, with a sensitivity of ∼4 mL tip−1. For our meter this is equivalent to detection limit of ∼0.1 mm. Passive‐wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two‐dimensional (2‐D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr−1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr−1 to more than 1000 mm yr−1.

  4. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.

    PubMed

    Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui

    2016-03-01

    Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty

    NASA Astrophysics Data System (ADS)

    Lauvernet, Claire; Muñoz-Carpena, Rafael

    2018-01-01

    Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in

  6. Controlling residential water demand in Qatar: an assessment.

    PubMed

    Al-Mohannadi, Hassan I; Hunt, Chris O; Wood, Adrian P

    2003-08-01

    Qatar has serious water resource problems, following rapid socioeconomic development and massive population increase. Municipal water provision depends on costly and unsustainable desalination. There is little regulation. Native Qataris do not pay a water tariff and migrants pay a subsidized price--approximately one third of the cost of production--so there is little awareness of the true cost of water and use is profligate. This paper discusses trends in water use and identifies issues underlying sustainable water use in Qatar. A questionnaire of respondents chosen to represent Qatari social groups measured awareness and attitudes to water. The results show that previous efforts to control water demand in Qatar, using awareness campaigns, legal restrictions and tariffs, have been ineffectual. The questionnaire evaluated reactions to possible measures to limit uses by raising awareness, using legal restrictions and raising tariffs. From this, a number of policy changes can be suggested, to bring Qatar's water industry towards sustainability.

  7. Spatial patterns and environmental controls of particulate organic carbon in surface waters in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong; Xu, Xingya

    2016-06-01

    Carbon stocks and fluxes in inland waters have been identified as important, but poorly constrained components of the global carbon cycle. In this study, we compile and analyze particulate organic carbon (POC) concentration data from 1145 U.S. Geological Survey (USGS) hydrologic stations to investigate the spatial variability and environmental controls of POC concentration. We observe substantial spatial variability in POC concentration (1.43 ± 2.56 mg C/ L, Mean ± Standard Deviation), with the Upper Mississippi River basin and the Piedmont region in the eastern U.S. having the highest POC concentration. Further, we employ generalized linear regression models to analyze themore » impacts of sediment transport and algae growth as well as twenty-one other environmental factors on the POC variability. Suspended sediment and chlorophyll-a explain 26% and 17% of the variability in POC concentration, respectively. At the national level, the twenty-one selected environmental factors combined can explain ca. 40% of the spatial variance in POC concentration. Overall, urban area and soil clay content show significant negative correlation with POC concentration, while soil water content and soil bulk density correlate positively with POC. In addition, total phosphorus concentration and dam density covariate positively with POC concentration. Furthermore, regional scale analyses reveal substantial variation in environmental controls determining POC concentration across the 18 major water resource regions in the U.S. The POC concentration and associated environmental controls also vary non-monotonically with river order. These findings indicate complex interactions among multiple factors in regulating POC production over different spatial scales and across various sections of the river networks. This complexity together with the large unexplained uncertainty highlight the need for consideration of non-linear processes that control them and developing appropriate

  8. Pertinent spatio-temporal scale of observation to understand suspended sediment yield control factors in the Andean region: the case of the Santa River (Peru)

    NASA Astrophysics Data System (ADS)

    Morera, S. B.; Condom, T.; Vauchel, P.; Guyot, J.-L.; Galvez, C.; Crave, A.

    2013-11-01

    Hydro-sedimentology development is a great challenge in Peru due to limited data as well as sparse and confidential information. This study aimed to quantify and to understand the suspended sediment yield from the west-central Andes Mountains and to identify the main erosion-control factors and their relevance. The Tablachaca River (3132 km2) and the Santa River (6815 km2), located in two adjacent Andes catchments, showed similar statistical daily rainfall and discharge variability but large differences in specific suspended-sediment yield (SSY). In order to investigate the main erosion factors, daily water discharge and suspended sediment concentration (SSC) datasets of the Santa and Tablachaca rivers were analysed. Mining activity in specific lithologies was identified as the major factor that controls the high SSY of the Tablachaca (2204 t km2 yr-1), which is four times greater than the Santa's SSY. These results show that the analysis of control factors of regional SSY at the Andes scale should be done carefully. Indeed, spatial data at kilometric scale and also daily water discharge and SSC time series are needed to define the main erosion factors along the entire Andean range.

  9. Supercooling of Water Controlled by Nanoparticles and Ultrasound

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Jia, Lisi; Chen, Ying; Li, Yi'ang; Li, Jun; Mo, Songping

    2018-05-01

    Nanoparticles, including Al2O3 and SiO2, and ultrasound were adopted to improve the solidification properties of water. The effects of nanoparticle concentration, contact angle, and ultrasonic intensity on the supercooling degree of water were investigated, as well as the dispersion stability of nanoparticles in water during solidification. Experimental results show that the supercooling degree of water is reduced under the combined effect of ultrasound and nanoparticles. Consequently, the reduction of supercooling degree increases with the increase of ultrasonic intensity and nanoparticle concentration and decrease of contact angle of nanoparticles. Moreover, the reduction of supercooling degree caused by ultrasound and nanoparticles together do not exceed the sum of the supercooling degree reductions caused by ultrasound and nanoparticles separately; the reduction is even smaller than that caused by ultrasound individually under certain conditions of controlled nanoparticle concentration and contact angle and ultrasonic intensity. The dispersion stability of nanoparticles during solidification can be maintained only when the nanoparticles and ultrasound together show a superior effect on reducing the supercooling degree of water to the single operation of ultrasound. Otherwise, the aggregation of nanoparticles appears in water solidification, which results in failure. The relationships among the meaningful nanoparticle concentration, contact angle, and ultrasonic intensity, at which the requirements of low supercooling and high stability could be satisfied, were obtained. The control mechanisms for these phenomena were analyzed.

  10. Fracture control of ground water flow and water chemistry in a rock aquitard

    USGS Publications Warehouse

    Eaton, T.T.; Anderson, M.P.; Bradbury, K.R.

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/Ss) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies. ?? 2007 National Ground Water Association.

  11. Spatio-temporal patterns and factors controlling the hydrogeochemistry of the river Jhelum basin, Kashmir Himalaya.

    PubMed

    Mir, Riyaz Ahmad; Jeelani, Gh; Dar, Farooq Ahmad

    2016-07-01

    River Jhelum is a major source of water for growing population and irrigation in the Kashmir Himalaya. The region is trending towards water scarcity as well as quality deterioration stage due to its highly unregulated development. The existence of few literature on various aspects of the basin prompts us to study the spatio-temporal variability of its physicochemical parameters and thereby to understand the regulating hydrogeochemical mechanisms based on 50 samples collected during high flow (June 2008) and low flow (January 2009) periods. The water chemistry exhibited significant spatial variability reflecting the mixing processes in the basin. The seasonal effect does change the concentration of ions significantly with modest variability in the order of ionic abundance. The Ca(2+) ion among cations and HCO3 (-) ion among anions dominate the ionic budget and correlates significantly with the diverse lithology of the basin. Three major water types, i.e., Ca-Mg-HCO3 (72 %), Ca-HCO3 (12 %), and Mg-Ca-HCO3 (16 %), suggest that the chemical composition of water is dominantly controlled by carbonate lithology, besides a significant contribution from silicates. However, at certain sites, the biological processes and anthropogenic activities play a major role. Relatively, the lower ionic concentration during high flow period (summer season) suggested the significant influence of higher discharge via dilution effect. The higher discharge due to higher rainfall and snow melting in response to rising temperature in this period leads to strong flushing of human and agricultural wastes into the river. The factor analysis also reflected the dominant control of varied lithology and anthropogenic sources on the water quality based on the four significant factors explaining collectively about 70-81 % of the total data variance. A two-member chloride mixing model used to estimate the discharge contribution of tributaries to the main river channel showed reliable results. It may

  12. Water levels shape fishing participation in flood-control reservoirs

    USGS Publications Warehouse

    Miranda, Leandro E.; Meals, K. O.

    2013-01-01

    We examined the relationship between fishing effort (hours fished) and average March–May water level in 3 flood control reservoirs in Mississippi. Fishing effort increased as water level rose, peaked at intermediate water levels, and decreased at high water levels. We suggest that the observed arched-shaped relationship is driven by the shifting influence of fishability (adequacy of the fishing circumstances from an angler's perspective) and catch rate along a water level continuum. Fishability reduces fishing effort during low water, despite the potential for higher catch rates. Conversely, reduced catch rates and fishability at high water also curtail effort. Thus, both high and low water levels seem to discourage fishing effort, whereas anglers seem to favor intermediate water levels. Our results have implications for water level management in reservoirs with large water level fluctuations.

  13. 40 CFR 40.140-3 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Federal Water Pollution Control Act. 40.140-3 Section 40.140-3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.140-3 Federal Water Pollution Control Act. (a) All applications for grants under section 105...

  14. 40 CFR 40.145-2 - Federal Water Pollution Control Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Federal Water Pollution Control Act. 40.145-2 Section 40.145-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE RESEARCH AND DEMONSTRATION GRANTS § 40.145-2 Federal Water Pollution Control Act. (a) No person in the United States shall on the...

  15. Quality and Control of Water Vapor Winds

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  16. Electric Water Heater Modeling and Control Strategies for Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diao, Ruisheng; Lu, Shuai; Elizondo, Marcelo A.

    2012-07-22

    Abstract— Demand response (DR) has a great potential to provide balancing services at normal operating conditions and emergency support when a power system is subject to disturbances. Effective control strategies can significantly relieve the balancing burden of conventional generators and reduce investment on generation and transmission expansion. This paper is aimed at modeling electric water heaters (EWH) in households and tests their response to control strategies to implement DR. The open-loop response of EWH to a centralized signal is studied by adjusting temperature settings to provide regulation services; and two types of decentralized controllers are tested to provide frequency supportmore » following generator trips. EWH models are included in a simulation platform in DIgSILENT to perform electromechanical simulation, which contains 147 households in a distribution feeder. Simulation results show the dependence of EWH response on water heater usage . These results provide insight suggestions on the need of control strategies to achieve better performance for demand response implementation. Index Terms— Centralized control, decentralized control, demand response, electrical water heater, smart grid« less

  17. WaterSense Labeled Weather-Based Irrigation Controller Fact Sheet

    EPA Pesticide Factsheets

    WaterSense labeled irrigation controllers, which act like a thermostat for your sprinkler system by telling it when to turn on and off, use local weather and landscape conditions to tailor watering schedules to actual conditions on the site.

  18. Skin lipid structure controls water permeability in snake molts.

    PubMed

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Public Information for Water Pollution Control.

    ERIC Educational Resources Information Center

    Water Pollution Control Federation, Washington, DC.

    This publication is a handbook for water pollution control personnel to guide them towards a successful public relations program. This handbook was written to incorporate the latest methods of teaching basic public information techniques to the non-professional in this area. Contents include: (1) a rationale for a public information program; (2)…

  20. Occurrence and Control of Tularemia in Drinking Water ...

    EPA Pesticide Factsheets

    Journal Article This review article will focus on tularemia acquired from contaminated drinking water and the adequacy of control measures for preventing waterborne transmission. Contaminated drinking water can serve as a vehicle for the spread of tularemia. Disease occurrence has been most commonly associated with untreated community and domestic water supplies. F. tularensis is of interest both from the standpoint of natural occurring waterborne outbreaks and in regards to its potential use as a bio-threat organism. The organism can persist in the aquatic environment and methods exist for detection in water. While capable of being inactivated by commonly used drinking water disinfectants, F. tularensis does exhibit an increased resistance to chlorination in comparison to other waterborne vegetative bacterial pathogens.

  1. Seroprevalence and risk factors associated with exposure of water buffalo (Bubalus bubalis) to Neospora caninum in northeast Thailand.

    PubMed

    Kengradomkij, Chanya; Inpankaew, Tawin; Kamyingkird, Ketsarin; Wongpanit, Kannika; Wongnakphet, Sirichai; Mitchell, Thomas J; Xuan, Xuenan; Igarashi, Ikuo; Jittapalapong, Sathaporn; Stich, Roger W

    2015-01-15

    Water buffalo are important draft animals for agriculture in resource-restricted areas worldwide. Water buffalo were shown to be experimentally susceptible to infection with Neospora caninum, potentially affected by neosporosis, and naturally exposed to the parasite in Asia. Although enzootic to Thailand, the distribution of N. caninum among Thai water buffalo is unclear. The objectives of this study were to determine the seroprevalence of N. caninum among water buffalo of northeast Thailand and to identify risk factors associated with their exposure to N. caninum. Sera from 628 water buffalo from 288 farms were tested with an indirect fluorescent antibody test (IFAT). A total of 57 samples from 48 herds contained antibodies to N. caninum, indicating overall seroprevalence of 9.1% and 16.7% among individual animals and herds, respectively. The overall seroprevalence was highest in provinces located in the Khorat Basin in the southern part of the region tested. Host age was also associated with seroprevalence, with the greatest seroprevalence (16.1%) among buffalo over 10 years of age, followed by 5-10 years of age (13.4%), 3-5 years (9.2%), and less than 3 years (1.2%). These results collectively suggested that horizontal transmission from canine definitive hosts was an important route of water buffalo exposure to N. caninum. These results also verified the importance of risk factor analysis for effective bovine neosporosis control strategies at the local level. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Noise control of waste water pipes

    NASA Astrophysics Data System (ADS)

    Lilly, Jerry

    2005-09-01

    Noise radiated by waste water pipes is a major concern in multifamily housing projects. While the most common solution to this problem is to use cast-iron pipes in lieu of plastic pipes, this may not be sufficient in high-end applications. It should also be noted that many (if not most) multifamily housing projects in the U.S.A. are constructed with plastic waste piping. This paper discusses some of the measures that developers are currently using to control noise from both plastic and cast-iron waste pipes. In addition, results of limited noise measurements of transient water flow in plastic and cast-iron waste pipes will be presented.

  3. SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS

    EPA Science Inventory

    Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...

  4. Controls on Water Use for Thermoelectric Generation: Case Study Texas, U.S.

    PubMed Central

    2013-01-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km3), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km3) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. PMID:23937226

  5. Fluoride in drinking water and risk of hip fracture in the UK: a case-control study.

    PubMed

    Hillier, S; Cooper, C; Kellingray, S; Russell, G; Hughes, H; Coggon, D

    2000-01-22

    Although the benefits of water fluoridation for dental health are widely accepted, concerns remain about possible adverse effects, particularly effects on bone. Several investigators have suggested increased rates of hip fracture in places with high concentrations of fluoride in drinking water, but this finding has not been consistent, possibly because of unrecognised confounding effects. We did a case-control study of men and women aged 50 years and older from the English county of Cleveland, and compared patients with hip fracture with community controls. Current addresses were ascertained for all participants; for those who agreed to an interview and who passed a mental test, more detailed information was obtained about lifetime residential history and exposure to other known and suspected risk factors for hip fracture. Exposures to fluoride in water were estimated from the residential histories and from information provided by water suppliers. Analysis was by logistic regression. 914 cases and 1196 controls were identified, of whom 514 and 527, respectively, were interviewed. Among those interviewed, hip fracture was strongly associated with low body-mass index (p for trend <0.001) and physical inactivity (p for trend <0.001). Estimated average lifetime exposure to fluoride in drinking water ranged from 0.15 to 1.79 ppm. Current residence in Hartlepool was a good indicator for high lifetime exposure to fluoride. After adjustment for potential confounders, the odds ratio associated with an average lifetime exposure to fluoride > or =0.9 ppm was 1.0 [95% CI 0.7-1.5]. There is a low risk of hip fracture for people ingesting fluoride in drinking water at concentrations of about 1 ppm. This low risk should not be a reason for withholding fluoridation of water supplies.

  6. Salinity control in a clay soil beneath an orchard irrigated with treated waste water in the presence of a high water table: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David; Laufer, Asher; Bardhan, Gopali; Levy, Guy J.

    2015-12-01

    A citrus orchard planted on a structured, clay soil associated with a high water table, irrigated by drip irrigation system using treated waste water (TWW) and local well water (LWW) was considered here. The scope of the present study was to analyze transport of mixed-ion, interacting salts in a combined vadose zone-groundwater flow system focusing on the following issues: (i) long-term effects of irrigation with TWW on the response of the flow system, identifying the main factors (e.g., soil salinity, soil sodicity) that control these effects, and (ii) salinity control aiming at improving both crop productivity and groundwater quality. To pursue this two-fold goal, 3-D numerical simulations of field-scale flow and transport were performed for an extended period of time, considering realistic features of the soil, water table, crop, weather and irrigation, and the coupling between the flow and the transport through the dependence of the soil hydraulic functions, K(ψ) and θ(ψ), on soil solution concentration C, and sodium adsorption ratio, SAR. Results of the analyses suggest that in the case studied, the long-term effect of irrigation with TWW on the response of the flow system is attributed to the enhanced salinity of the TWW, and not to the increase in soil sodicity. The latter findings are attributed to: (i) the negative effect of soil salinity on water uptake, and the tradeoff between water uptake and drainage flux, and, concurrently, solute discharge below the root zone; and, (ii) the tradeoff between the effects of C and SAR on K(ψ) and θ(ψ). Furthermore, it was demonstrated that a data-driven protocol for soil salinity control, based on alternating irrigation water quality between TWW and desalinized water, guided by the soil solution salinity at the centroid of the soil volume active in water uptake, may lead to a substantial increase in crop yield, and to a substantial decrease in the salinity load in the groundwater.

  7. DOWNSTREAM-WATER-LEVEL CONTROL TEST RESULTS ON THE WM LATERAL CANAL

    USDA-ARS?s Scientific Manuscript database

    On steep canals, distant downstream water-level control can be challenging. SacMan (Software for Automated Canal Management) was developed, in part, to test various distant downstream water level controllers. It was implemented on the WM canal of the Maricopa Stanfield Irrigation and Drainage Distri...

  8. Suspended sediment fluxes in a tidal wetland: Measurement, controlling factors, and error analysis

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Bergamaschi, B.A.

    2005-01-01

    Suspended sediment fluxes to and from tidal wetlands are of increasing concern because of habitat restoration efforts, wetland sustainability as sea level rises, and potential contaminant accumulation. We measured water and sediment fluxes through two channels on Browns Island, at the landward end of San Francisco Bay, United States, to determine the factors that control sediment fluxes on and off the island. In situ instrumentation was deployed between October 10 and November 13, 2003. Acoustic Doppler current profilers and the index velocity method were employed to calculate water fluxes. Suspended sediment concentrations (SSC) were determined with optical sensors and cross-sectional water sampling. All procedures were analyzed for their contribution to total error in the flux measurement. The inability to close the water balance and determination of constituent concentration were identified as the main sources of error; total error was 27% for net sediment flux. The water budget for the island was computed with an unaccounted input of 0.20 m 3 s-1 (22% of mean inflow), after considering channel flow, change in water storage, evapotranspiration, and precipitation. The net imbalance may be a combination of groundwater seepage, overland flow, and flow through minor channels. Change of island water storage, caused by local variations in water surface elevation, dominated the tidalty averaged water flux. These variations were mainly caused by wind and barometric pressure change, which alter regional water levels throughout the Sacramento-San Joaquin River Delta. Peak instantaneous ebb flow was 35% greater than peak flood flow, indicating an ebb-dominant system, though dominance varied with the spring-neap cycle. SSC were controlled by wind-wave resuspension adjacent to the island and local tidal currents that mobilized sediment from the channel bed. During neap tides sediment was imported onto the island but during spring tides sediment was exported because the main

  9. Physical inactivity, water intake and constipation as risk factors for colorectal cancer among adults in Jordan.

    PubMed

    Tayyem, Reema Fayez; Shehadeh, Ihab Numan; Abumweis, Suhad Sameer; Bawadi, Hiba Ahmad; Hammad, Shatha Sabri; Bani-Hani, Kamal Eddin; Al-Jaberi, Tareq Mohammad; Alnusair, Majed Mohammed

    2013-01-01

    Physical activity has been found to play a role in cancer prevention. The purpose of this matched case-control study was to investigate the association between physical activity levels, water intake, constipation and colorectal cancer (CRC). Two hundred and thirty-two patients diagnosed with CRC (125 male, 107 female) were enrolled in this case-control study. Cases were matched to 271 population controls (137 male, 134 female). Drinking more than 4 cups of water daily decreased the risk of CRC by 33-42%; however, this effect was non-significant. Having constipation was found to be a significant risk factor for developing CRC with an OR=6.284 (95%CI=2.741-14.40). With reference to sedentary behavior, minimum activity (600-3000 Metabolic Equivalents Task (MET)) had 43% protection against CRC and the level of Health Enhancing Physical Activity OR was 0.58 (at 95%CI; 0.37-0.92). A significant negative association was found between CRC and physical activity levels expressed as both METs and MET-hours/week (p for trend=0.017 and 0.03, respectively). Among females, a significant trend of reduction in CRC by 62% was observed with increasing the level of physical activity expressed in MET (p for trend=0.04). The risk of CRC may be reduced by adopting a healthy lifestyle and practicing physically activity regularly, especially among females. Consuming adequate amounts of water and healthy bowel motility could also reduce the risk of CRC.

  10. Factors associated with dengue prevention and control in two villages in a central Thai province: a retrospective review.

    PubMed

    Thakolwiboon, Smathorn; Benjatikul, Nattorn; Sathianvichitr, Kanchalika; Prapathrangsee, Kawintra; Tienmontri, Taniya; Ratanaamonsakul, Wirote; Assantachai, Prasert; Homsanit, Mayuree

    2013-08-01

    To study the factors associated with dengue prevention and control in Moo 6 (the 6th village) and Moo 7 of Tambon Kaeng-phak-kut, Thaluang District, Lopburi Province. The authors reviewed the raw data collected by public health officers and village health volunteers (VHVs) as their routine tasks. The authors analyzed the data, 30 dwellings per each village, to compare the demographics, knowledge, attitude, and practice of subjects from Moo 6, a dengue-outbreak community, with that from Moo 7, a control group, as well as larval indices between these 2 studied groups. The present retrospective study is approved by Siriraj Institutional Review Board, Certificate of Approval No. Si393/2012. Both groups of subjects had no statistically significant difference in basic dengue knowledge (p = 0.862), attitude towards dengue prevention and control, practical knowledge (p = 0.457), and actual practice to eliminate Aedes larvae and prevent it laying eggs, except for the practice of managing water container in bathroom or toilet (p = 0.015). On the other hand, dengue incidence and larval indices of both villages were apparently different. Although incorrect basic dengue and practical knowledge of subjects from both villages were similar dengue outbreak in Moo 6 of Tambon Kaeng-phak-kut was superior. It may be due to difference in actual practice on larval elimination in water container in bathroom or toilet as well as other factors other than personal factors such as public services, public places, and community surroundings.

  11. Oceanographic controls over sediment water content: northern Bermuda rise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, M.; Laine, E.P.

    1985-01-01

    Cores taken from the plateaus of Northern Bermuda Rise show that the region is underlain at depths of 1-5 m by a 1-3 m thick layer of hemipelagic lutites with anomalously high water contents. The lack of visually apparent textural and lithological changes in this extremely fine grained sediment rule out these common causes for variation in water content. The water content averages 175% within this layer and 100% immediately above and below it. This is an increase of 9.5% in porosity. The high water content sediment is confined to a period between 12 and 16 ka. Current work onmore » the mineralogy of the sediments which comprise this layer suggest two oceanographic factors that may have influenced its formation. A meltwater spike associated with deglaciation may have altered the ecological conditions above the thermocline sufficiently to promote the increased production of radiolaria, resulting in the deposition of silica enriched sediment on the sea floor. A combination of textural and perhaps chemical factors caused by the silica enrichment may have influenced the increase in water content. Intensified bottom currents at this time also may have eroded smectite rich sediments from exposures of Neogene age and deposited them on the plateaus. An increase in smectite would increase the water content due to the extremely fine grain size and the chemistry of the clay. Thus, the lateral continuity and isochroniety of this layer, combined with its mineralogical characteristics suggests that oceanographic changes can influence water content and perhaps other geotechnical properties on a regional scale.« less

  12. Factors governing water condensation in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Colburn, David S.; Pollack, J. B.; Haberle, Robert M.

    1988-01-01

    Modeling results are presented suggesting a diurnal condensation cycle at high altitudes at some seasons and latitudes. In a previous paper, the use of atmospheric optical depth measurements at the Viking lander site to show diurnal variability of water condensation at different seasons of the Mars year was described. Factors influencing the amount of condensation include latitude, season, atmospheric dust content and water vapor content at the observation site. A one-dimensional radiative-convective model is used herein based on the diabatic heating routines under development for the Mars General Circulation Model. The model predicts atmospheric temperature profiles at any latitude, season, time of day and dust load. From these profiles and an estimate of the water vapor, one can estimate the maximum occurring at an early morning hour (AM) and the minimum in the late afternoon (PM). Measured variations in the atmospheric optical density between AM and PM measurements were interpreted as differences in AM and PM condensation.

  13. Forecast model for a water table control system in cranberry production

    NASA Astrophysics Data System (ADS)

    Racine, Cintia; José Gumiere, Silvio; Paniconi, Claudio; Dupuis, Christian; Lafond, Jonathan; Scudeler, Carlotta; Camporese, Matteo

    2017-04-01

    Water table control is gaining popularity in cranberry production. Cranberry plants require specific soil moisture conditions to enhance crop yields. In fact, water table control systems installed in the fields allow the plants to respond efficiently to the daily demand for evapotranspiration by capillarity rise and also regulate the soil water excess in drainage conditions. The scope of this study is to develop a forecast hydrological model at the field scale, able to simulate water level for water table control operations. In this work, the finite element CATHY (CATchment Hydrology) model associated with sequential data assimilation with an ensemble Kalman filter (EnKF) method will be used to simulated the soil water dynamics and perform model calibration in real-time. The study is conducted in cranberry fields located in Québec, Canada. During the last five years, these fields were extensive characterized regarding hydrological, pedological, and geological processes. Data collected from LIDAR and Ground Penetrating Radar (GPR) surveys and in-situ soil sampling have been used to define the domain geometry and initial soil properties. First results are promising and in agreement the in-situ water table measurements.

  14. Physical factors controlling carbon cycling dynamics in blackwater river-dominated and particle dominated estuaries

    NASA Astrophysics Data System (ADS)

    Arellano, A. R.; Bianchi, T. S.; Osburn, C. L.; D'Sa, E. J.; Oviedo-Vargas, D.; Ward, N. D.; Joshi, I.

    2017-12-01

    While most blue carbon habitat (wetlands, seagrass beds and mangroves) research has focused on carbon burial/stocks and habitat fragmentation of these communities, few studies have examined physical factors that control exports and losses of blue carbon sources of organic matter (OM) to adjacent coastal waters. Here, we report on spatiotemporal changes in the composition and concentration of dissolved organic carbon (DOC), particulate organic carbon (POC), particulate nitrogen, pCO2, δ13C-DOC, δ13C-POC, δ13C-CO2, dissolved lignin-phenols (dΣ8), particulate lignin-phenols (pΣ8) and carbon normalized dissolved and particulate lignin phenol yields (dΛ8 and pΛ8) in surface waters of the Apalachicola and Barataria bays in the Gulf of Mexico. Discriminant analysis described spatial variability along canonical axis I (24.4%) while temporal variability was explained by canonical axis II (23.2%). Apalachicola Bay was low in POC concentration and characterized by high values for pCO2, DOC, C:N, dΣ8 and (Ad:Al)V. The latter three parameters indicated a clear terrestrial source of OM at Apalachicola Bay reflecting the importance of riverine DOM inputs in this system. In contrast, Barataria Bay was characterized by high values for POC, C:V, S:V, and δ13C-POC, indicating blue-carbon sources due to a lack of direct river inputs and high prevalence of wetlands, some recently submerged. Extreme weather, such as intense precipitation events in Apalachicola Bay and enhanced northerly winds in Barataria Bay were characterized by δ13C-CO2, dΛ8, C:V (Barataria), and C:N (Apalachicola). Results indicate that such physical factors can exert strong control on OM sources and sinks across the gradient of coastal wetlands and shelf waters and lead to enhanced transfer and degradation of wetland-derived blue carbon in coastal waters.

  15. Offset-Free Model Predictive Control of Open Water Channel Based on Moving Horizon Estimation

    NASA Astrophysics Data System (ADS)

    Ekin Aydin, Boran; Rutten, Martine

    2016-04-01

    Model predictive control (MPC) is a powerful control option which is increasingly used by operational water managers for managing water systems. The explicit consideration of constraints and multi-objective management are important features of MPC. However, due to the water loss in open water systems by seepage, leakage and evaporation a mismatch between the model and the real system will be created. These mismatch affects the performance of MPC and creates an offset from the reference set point of the water level. We present model predictive control based on moving horizon estimation (MHE-MPC) to achieve offset free control of water level for open water canals. MHE-MPC uses the past predictions of the model and the past measurements of the system to estimate unknown disturbances and the offset in the controlled water level is systematically removed. We numerically tested MHE-MPC on an accurate hydro-dynamic model of the laboratory canal UPC-PAC located in Barcelona. In addition, we also used well known disturbance modeling offset free control scheme for the same test case. Simulation experiments on a single canal reach show that MHE-MPC outperforms disturbance modeling offset free control scheme.

  16. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier.

    PubMed

    Brown, Joe; Sobsey, Mark D; Loomis, Dana

    2008-09-01

    A randomized, controlled intervention trial of two household-scale drinking water filters was conducted in a rural village in Cambodia. After collecting four weeks of baseline data on household water quality, diarrheal disease, and other data related to water use and handling practices, households were randomly assigned to one of three groups of 60 households: those receiving a ceramic water purifier (CWP), those receiving a second filter employing an iron-rich ceramic (CWP-Fe), and a control group receiving no intervention. Households were followed for 18 weeks post-baseline with biweekly follow-up. Households using either filter reported significantly less diarrheal disease during the study compared with a control group of households without filters as indicated by longitudinal prevalence ratios CWP: 0.51 (95% confidence interval [CI]: 0.41-0.63); CWP-Fe: 0.58 (95% CI: 0.47-0.71), an effect that was observed in all age groups and both sexes after controlling for clustering within households and within individuals over time.

  17. Ecohydrological controls over water budgets in floodplain meadows

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Verhoef, Anne; Macdonald, David M. J.; Gardner, Cate M.; Punalekar, Suvarna M.; Tatarenko, Irina; Gowing, David

    2013-04-01

    Floodplain meadows are important ecosystems, characterised by high plant species richness including rare species. Fine-scale partitioning along soil hydrological gradients allows many species to co-exist. Concerns exist that even modest changes to soil hydrological regime as a result of changes in management or climate may endanger floodplain meadows communities. As such, understanding the interaction between biological and physical controls over floodplain meadow water budgets is important to understanding their likely vulnerability or resilience. Floodplain meadow plant communities are highly heterogeneous, leading to patchy landscapes with distinct vegetation. However, it is unclear whether this patchiness in plant distribution is likely to translate into heterogeneous soil-vegetation-atmosphere transfer (SVAT) rates of water and heat, or whether floodplain meadows can reasonably be treated as internally homogeneous in physical terms despite this patchy vegetation. We used a SVAT model, the Soil-Water-Atmosphere-Plants (SWAP) model by J.C. van Dam and co-workers, to explore the controls over the partitioning of water budgets in floodplain meadows. We conducted our research at Yarnton Mead on the River Thames in Oxfordshire, one of the UK's best remaining examples of a floodplain meadow, and which is still managed and farmed in a low-intensity mixed-use manner. We used soil and plant data from our site to parameterise SWAP; we drove the model using in-situ half-hourly meteorological data. We analysed the model's sensitivity to a range of soil and plant parameters - informed by our measurements - in order to assess the effects of different plant communities on SVAT fluxes. We used a novel method to simulate water-table dynamics at the site; the simulated water tables provide a lower boundary condition for SWAP's hydrological submodel. We adjusted the water-table model's parameters so as to represent areas of the mead with contrasting topography, and so different

  18. Analysis of the Control Factors of Groundwater Petroleum Hydrocarbons Contamination in a City’s West Part

    NASA Astrophysics Data System (ADS)

    Sun, L. H.; Ma, Z. M.; Liu, Z. W.

    2018-05-01

    Based on study of the hydrogeological condition and the characteristics of petroleum hydrocarbons pollution in karst groundwater, an oil refinery located in western part of a certain city is chosen as the study site to have an analysis on the control factors of groundwater petroleum hydrocarbons contamination. The study result shows that the control factors of groundwater petroleum hydrocarbons contamination are hydrogeological condition and biodegradation. The soil layer of Quaternary is very thin, the limestone is exposed in the surface, which makes the petroleum hydrocarbons easy to permeate into the water bearing layer. Karst-fractured zone in aquifer determines the migration way of petroleum hydrocarbons to be convection, but the magmatic rock in northern part has certain blocking effect on the migration of petroleum hydrocarbons. Biodegradation makes both the contamination plume area of petroleum hydrocarbons and the content of petroleum hydrocarbons decreased.

  19. Fracture control of ground water flow and water chemistry in a rock aquitard.

    PubMed

    Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.

  20. Fast controller for a unity-power-factor PWM rectifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eissa, M.O.; Leeb, S.B.; Verghese, G.C.

    1996-01-01

    This paper presents an analog implementation of a fast controller for a unity-power-factor (UPF) PWM rectifier. The best settling times of many popular controllers for this type of converter are on the order of a few line cycles, corresponding to bandwidths under 20 Hz. The fast controller demonstrated in this paper can exercise control action at a rate comparable to the switching frequency rather than the line frequency. In order to accomplish this while maintaining unity power factor during steady-state operation, the fast controller employs a ripple-feedback cancellation scheme.

  1. Arsenic in Drinking Water in Bangladesh: Factors Affecting Child Health

    PubMed Central

    Aziz, Sonia N.; Aziz, Khwaja M. S.; Boyle, Kevin J.

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people’s individuals’ time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children’s health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  2. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin

    NASA Astrophysics Data System (ADS)

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination ( R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  3. 3. Earthen berm and water control structure used to regulate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Earthen berm and water control structure used to regulate water flow into adjacent cultivated area - Natomas Ditch System, Blue Ravine Segment, Juncture of Blue Ravine & Green Valley Roads, Folsom, Sacramento County, CA

  4. Key Factors Controlling the Growth of Biological Soil Crusts: Towards a Protocol to Produce Biocrusts in Greenhouse Facilities

    NASA Astrophysics Data System (ADS)

    Velasco Ayuso, Sergio; María Giraldo Silva, Ana; Nelson, Corey; Barger, Nichole; Antoninka, Anita; Bowker, Matthew; Garcia-Pichel, Ferran

    2016-04-01

    Biological soil crusts (= biocrusts) are topsoil communities comprise of, but not limited to, cyanobacteria, algae, lichens, and mosses that grow intimately associated with soil particles in drylands. Biocrusts have central ecological roles in these areas as sources of carbon and nutrients, and efficiently retain water and prevent soil erosion, which improves soil structure and promotes soil fertility. However, human activities, such as cattle grazing, hiking or military training, are rapidly striking biocrusts. Although it is well known that the inoculation with cyanobacteria or lichens can enhance the recovery of biocrusts in degraded soils, little is known about the factors that control their growth rates. Using soil and inocula from four different sites located in one cold desert (Utah) and in one hot desert (New Mexico), we performed a fractional factorial experiment involving seven factors (water, light, P, N, calcium carbonate, trace metals and type of inoculum) to screen their effects on the growth of biocrusts. After four months, we measured the concentration of chlorophyll a, and we discovered that water, light and P, N or P+N were the most important factors controlling the growth of biocrusts. In the experimental treatments involving these three factors we measured a similar concentration of chlorophyll a (or even higher) to this found in the field locations. Amplification of the 16S rRNA gene segment using universal bacteria primers revealed a microbial community composition in the biocrusts grown that closely corresponds to initial measurements made on inocula. In summary, based on our success in obtaining biocrust biomass from natural communities in greenhouse facilities, without significantly changing its community composition at the phylum and cyanobacterial level, we are paving the road to propose a protocol to produce a high quality-nursed inoculum aiming to assist restoration of arid and semi-arid ecosystems affected by large-scale disturbances.

  5. THE CORROSION CONTROL-WATER QUALITY SPIDER WEB

    EPA Science Inventory

    This presentation provides an overview of new research results and emerging research needs with respect to both corrosion control issues, (lead, copper, iron) and to issues of inorganic contaminants that can form or accumulate in distribution system, water, pipe scales and distri...

  6. Assessment of water, sanitation, and hygiene practices and associated factors in a Buruli ulcer endemic district in Benin (West Africa).

    PubMed

    Johnson, Roch Christian; Boni, Gratien; Barogui, Yves; Sopoh, Ghislain Emmanuel; Houndonougbo, Macaire; Anagonou, Esai; Agossadou, Didier; Diez, Gabriel; Boko, Michel

    2015-08-19

    Control of neglected tropical diseases (NTDs) requires multiple strategic approaches including water, sanitation and hygiene services (WASH). Buruli ulcer (BU), one of the 17 NTDs, remains a public health issue in Benin particularly in the district of Lalo. The availability of water as well as good hygiene are important for the management of Buruli ulcer particularly in the area of wound care one of the main component of the treatment of BU lesions. Given the growing importance of WASH in controlling NTDs and in order to assess the baseline for future cross-cutting interventions, we report here on the first study evaluating the level of WASH and associated factors in Lalo, one of the most BU-endemic districts in Benin. A cross-sectional study was carried to assess WASH practices and associated factors in the district of Lalo. Data were collected from 600 heads of household using structured pretested questionnaire and observations triangulated with qualitative information obtained from in-depth interviews of patients, care-givers and community members. Univariate and multivariate analysis were carried to determine the relationships between the potential associated factors and the sanitation as well as hygiene status. BU is an important conditions in the district of Lalo with 917 new cases detected from 2006 to 2012. More than 49 % of the household surveyed used unimproved water sources for their daily needs. Only 8.7 % of the investigated household had improved sanitation facilities at home and 9.7 % had improved hygiene behavior. The type of housing as an indicator of the socioeconomic status, the permanent availability of soap and improved hygiene practices were identified as the main factors positively associated with improved sanitation status. In the district of Lalo in Benin, one of the most endemic for BU, the WASH indicators are very low. This study provides baseline informations for future cross-cutting interventions in this district.

  7. Controls on the distribution and isotopic composition of helium in deep ground-water flows

    USGS Publications Warehouse

    Zhao, X.; Fritzel, T.L.B.; Quinodoz, H.A.M.; Bethke, C.M.; Torgersen, T.

    1998-01-01

    The distribution and isotopic composition of helium in sedimentary basins can be used to interpret the ages of very old ground waters. The piston-flow model commonly used in such interpretation, how ever, does not account for several important factors and as such works well only in very simple flow regimes. In this study of helium transport in a hypothetical sedimentary basin, we develop a numerical model that accounts for the magnitude and distribution of the basal helium flux, hydrodynamic dispersion, and complexities in flow regimes such as subregional flow cells. The modeling shows that these factors exert strong controls on the helium distribution and isotopic composition. The simulations may provide a basis for more accurate interpretations of observed helium concentrations and isotopic ratios in sedimentary basins.

  8. Aircraft Loss of Control Causal Factors and Mitigation Challenges

    NASA Technical Reports Server (NTRS)

    Jacobson, Steven R.

    2010-01-01

    Loss of control is the leading cause of jet fatalities worldwide. Aside from their frequency of occurrence, accidents resulting from loss of aircraft control seize the public s attention by yielding a large number of fatalities in a single event. In response to the rising threat to aviation safety, the NASA Aviation Safety Program has conducted a study of the loss of control problem. This study gathered four types of information pertaining to loss of control accidents: (1) statistical data; (2) individual accident reports that cite loss of control as a contributing factor; (3) previous meta-analyses of loss of control accidents; and (4) inputs solicited from aircraft manufacturers, air carriers, researchers, and other industry stakeholders. Using these information resources, the study team identified the causal factors that were cited in the greatest number of loss of control accidents, and which were emphasized most by industry stakeholders. This report describes the study approach, the key causal factors for aircraft loss of control, and recommended mitigation strategies to make near-term impacts, mid-term impacts, and Next Generation Air Transportation System impacts on the loss of control accident statistics

  9. Analysis of factors driving stream water composition and synthesis of management tools--a case study on small/medium Greek catchments.

    PubMed

    Skoulikidis, N Th; Amaxidis, Y; Bertahas, I; Laschou, S; Gritzalis, K

    2006-06-01

    Twenty-nine small- and mid-sized permanent rivers (thirty-six sites) scattered throughout Greece and equally distributed within three geo-chemical-climatic zones, have been investigated in a seasonal base. Hydrochemical types have been determined and spatio-temporal variations have been interpreted in relation to environmental characteristics and anthropogenic pressures. Multivariate statistical techniques have been used to identify the factors and processes affecting hydrochemical variability and the driving forces that control aquatic composition. It has been shown that spatial variation of aquatic quality is mainly governed by geological and hydrogeological factors. Due to geological and climatic variability, the three zones have different hydrochemical characteristics. Temporal hydrological variations in combination with hydrogeological factors control seasonal hydrochemical trends. Respiration processes due to municipal wastewaters, dominate in summer, and enhance nutrient, chloride and sodium concentrations, while nitrate originates primarily from agriculture. Photosynthetic processes dominate in spring. Carbonate chemistry is controlled by hydrogeological factors and biological activity. A possible enrichment of surface waters with nutrients in "pristine" forested catchments is attributed to soil leaching and mineralisation processes. Two management tools have been developed: a nutrient classification system and a rapid prediction of aquatic composition tool.

  10. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  11. Sector-wise midpoint characterization factors for impact assessment of regional consumptive and degradative water use.

    PubMed

    Lin, Chia-Chun; Lin, Jia-Yu; Lee, Mengshan; Chiueh, Pei-Te

    2017-12-31

    Water availability, resulting from either a lack of water or poor water quality is a key factor contributing to regional water stress. This study proposes a set of sector-wise characterization factors (CFs), namely consumptive and degradative water stresses, to assess the impact of water withdrawals with a life cycle assessment approach. These CFs consider water availability, water quality, and competition for water between domestic, agricultural and industrial sectors and ecosystem at the watershed level. CFs were applied to a case study of regional water management of industrial water withdrawals in Taiwan to show that both regional or seasonal decrease in water availability contributes to a high consumptive water stress, whereas water scarcity due to degraded water quality not meeting sector standards has little influence on increased degradative water stress. Degradative water stress was observed more in the agricultural sector than in the industrial sector, which implies that the agriculture sector may have water quality concerns. Reducing water intensity and alleviating regional scale water stresses of watersheds are suggested as approaches to decrease the impact of both consumptive and degradative water use. The results from this study may enable a more detailed sector-wise analysis of water stress and influence water resource management policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ecological controls on water-cycle response to climate variability in deserts.

    PubMed

    Scanlon, B R; Levitt, D G; Reedy, R C; Keese, K E; Sully, M J

    2005-04-26

    The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Nino southern oscillation in the Mojave Desert. Extreme El Nino winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Nino southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes.

  13. Ecological controls on water-cycle response to climate variability in deserts

    PubMed Central

    Scanlon, B. R.; Levitt, D. G.; Reedy, R. C.; Keese, K. E.; Sully, M. J.

    2005-01-01

    The impact of climate variability on the water cycle in desert ecosystems is controlled by biospheric feedback at interannual to millennial timescales. This paper describes a unique field dataset from weighing lysimeters beneath nonvegetated and vegetated systems that unequivocally demonstrates the role of vegetation dynamics in controlling water cycle response to interannual climate variability related to El Niño southern oscillation in the Mojave Desert. Extreme El Niño winter precipitation (2.3-2.5 times normal) typical of the U.S. Southwest would be expected to increase groundwater recharge, which is critical for water resources in semiarid and arid regions. However, lysimeter data indicate that rapid increases in vegetation productivity in response to elevated winter precipitation reduced soil water storage to half of that in a nonvegetated lysimeter, thereby precluding deep drainage below the root zone that would otherwise result in groundwater recharge. Vegetation dynamics have been controlling the water cycle in interdrainage desert areas throughout the U.S. Southwest, maintaining dry soil conditions and upward soil water flow since the last glacial period (10,000-15,000 yr ago), as shown by soil water chloride accumulations. Although measurements are specific to the U.S. Southwest, correlations between satellite-based vegetation productivity and elevated precipitation related to El Niño southern oscillation indicate this model may be applicable to desert basins globally. Understanding the two-way coupling between vegetation dynamics and the water cycle is critical for predicting how climate variability influences hydrology and water resources in water-limited landscapes. PMID:15837922

  14. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  15. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency.

    PubMed

    Meng, Lai-Sheng

    2018-04-11

    Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.

  16. Power-Factor Controllers: How Safe?

    NASA Technical Reports Server (NTRS)

    Long, K.; Christian, W.; Kovacik, J.; Grazyk, T.

    1985-01-01

    Potential safety problems with power-factor controllers (PFC's) evaluated. Based on study of PFCs in use with appliances, report recommends measures to prevent consumers from misapplying these energy saving devices. Device used on such appliances as refrigerators, sewing machines, pumps, hair dryers, and food processors. When misused, they fail to save energy and may cause damage.

  17. Biological control experiment of excess propagation of Cyclops for drinking water security.

    PubMed

    Lin, Tao; Cui, Fu-Yi; Liu, Dong-Mei

    2007-01-01

    Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this study, an ecological project was put forward for the excess propagation control of Cyclops by stocking the filter-feeding fishes such as silver carp and bighead carp under the condition of no extraneous nutrient feeding. The results of experiments with different stocking biomass showed that the propagation of Cyclops could be controlled effectively, and the water quality was improved simultaneously by impacting on nutriment level and plankton community structure at proper stocking density of 30 g/m3 of water. The growth of Cyclops may not be effectually controlled with lower biomass of fish (10 g), and the natural food chain relation may be destroyed for Cyclops dying out in water while the intense stocking of 120 g per cubic meter of water. In addition, the high predator pressure may accelerate supplemental rate of nutrients from bottom sediments to water body to add the content of total nitrogen and phosphorus in water.

  18. Dynamic and inertial controls on forest carbon-water relations

    NASA Astrophysics Data System (ADS)

    Maxwell, T.; Silva, L.; Horwath, W. R.

    2017-12-01

    This study fuses theory, empirical measurements, and statistical models to evaluate multiple processes controlling coupled carbon-water cycles in forest ecosystems. A series of latitudinal and altitudinal transects across the California Sierra Nevada was used to study the effects of climatic and edaphic gradients on intrinsic water-use efficiency (iWUE) - CO2 fixed per unit of water lost via transpiration - of nine dominant trees species. Transfer functions were determined between leaf, litter, and soil organic matter stable isotope ratios of carbon, oxygen, and nitrogen, revealing causal links between the physiological performance of tree species and stand-level estimations of productivity and water balance. Our results show that species iWUE is governed both by leaf traits (24% of the variation) and edaphic properties, such as parent material and soil development (3% and 12% of the variation, respectively). We show that soil properties combined with isotopic indicators can be used to explain constraints over iWUE by regulating water and nutrient availability across elevation gradients. Based on observed compositional shifts likely driven by changing climates in the region, encroachment of broad leaf trees could lead to an 80% increase in water loss via transpiration for each unit of CO2 fixed in Sierra mixed conifer zones. A combination of field-based, laboratory, and remote sensed data provide a useful framework for differentiating the effect of multiple controls of carbon and water cycles in temperate forest ecosystems.

  19. Spatial-temporal patterns of water use efficiency and climate controls in China's Loess Plateau during 2000-2010.

    PubMed

    Zhang, Tian; Peng, Jian; Liang, Wei; Yang, Yuting; Liu, Yanxu

    2016-09-15

    Accurate assessments of spatial-temporal variations in water use efficiency (WUE) are important for evaluation of carbon and water balances. In this study, the spatial and temporal patterns of WUE and associated climate controls in China's Loess Plateau are investigated over 2000-2010 by utilizing remote sensing data and multiple statistical methods; which provides a greater understanding about how WUE changed after the Grain to Green Program (GTGP) launched. Carbon sequestration (i.e., net primary productivity, NPP) is estimated with the CASA model and water consumption (i.e., evapotranspiration, ET) is obtained from the MODIS product (i.e., MOD16). Our results identify an increasing trend in the regional mean NPP that amounted to 7.593gC/m(2)·yr with an average value of 310.035gC/m(2)·yr. Changes in ET are segmented into three stages, the growth (2000-2003), decline (2004-2006) and stable (2007-2010) stages. Regional WUE is measured at 0.915gC/mm·m(2) and shows an upward trend at a rate of 0.027gC/mm·m(2)·yr. Spatially, significant regional heterogeneity is found in both NPP and WUE with gradients decreasing from the southeast to the northwest, but sharp rises detected in northern Shaanxi. At the biome level, the annual average WUE of the four groups decrease in the order of grasslands>woodlands>shrublands>croplands. Moreover, all biomes in the grassland ecosystems exhibit a growth in WUE as does the arid desert zone in the northwestern region, suggesting that vegetation in moderately water-deficient areas may have a higher tolerance to drought. Among different meteorological factors, precipitation and drought severity index (DSI) in the Loess Plateau show a latitudinal zonality and influences the WUE, which indicated that the moisture rather than temperature would be the major control factor of the regional WUE. Finally, significant variation in vegetation WUE sensitivity in response to meteorological factors is noted. Temperature is found to be the

  20. An arduino based control system for a brackish water desalination plant

    NASA Astrophysics Data System (ADS)

    Caraballo, Ginna

    Water scarcity for agriculture is one of the most important challenges to improve food security worldwide. In this thesis we study the potential to develop a low-cost controller for a small scale brackish desalination plant that consists of proven water treatment technologies, reverse osmosis, cation exchange, and nanofiltration to treat groundwater into two final products: drinking water and irrigation water. The plant is powered by a combination of wind and solar power systems. The low-cost controller uses Arduino Mega, and Arduino DUE, which consist of ATmega2560 and Atmel SAM3X8E ARM Cortex-M3 CPU microcontrollers. These are widely used systems characterized for good performance and low cost. However, Arduino also requires drivers and interfaces to allow the control and monitoring of sensors and actuators. The thesis explains the process, as well as the hardware and software implemented.

  1. Riparian control of stream-water chemistry: Implications for hydrochemical basin models

    USGS Publications Warehouse

    Hooper, R.P.; Aulenbach, Brent T.; Burns, Douglas A.; McDonnell, J.; Freer, J.; Kendall, C.; Beven, K.

    1998-01-01

    End-member mixing analysis has been used to determine the hydrological structure for basin hydrochemical models at several catchments. Implicit in this use is the assumption that controlling end members have been identified, and that these end members represent distinct landscape locations. At the Panola Mountain Research Watershed, the choice of controlling end members was supported when a large change in the calcium and sulphate concentration of one of the end members was reflected in the stream water. More extensive sampling of groundwater and soil water indicated, however, that the geographic extent of the contributing end members was limited to the riparian zone. Hillslope solutions were chemically distinct from the riparian solutions and did not appear to make a large contribution to streamflow. The dominant control of the riparian zone on stream-water chemistry suggests that hydrological flow paths cannot be inferred from stream-water chemical dynamics.

  2. Experimental evaluation of theoretical sea surface reflectance factors relevant to above-water radiometry.

    PubMed

    Zibordi, Giuseppe

    2016-03-21

    Determination of the water-leaving radiance LW through above-water radiometry requires knowledge of accurate reflectance factors ρ of the sea surface. Publicly available ρ relevant to above-water radiometry include theoretical data sets generated: i. by assuming a sky radiance distribution accounting for aerosols and multiple scattering, but neglecting polarization, and quantifying sea surface effects through Cox-Munk wave slope statistics; or differently ii. accounting for polarization, but assuming an ideal Rayleigh sky radiance distribution, and quantifying sea surface effects through modeled wave elevation and slope variance spectra. The impact on above-water data products of differences between those factors ρ was quantified through comparison of LW from the Ocean Color component of the Aerosol Robotic Network (AERONET-OC) with collocated LW from in-water radiometry. Results from the analysis of radiance measurements from the sea performed with 40 degrees viewing angle and 90 degrees azimuth offset with respect to the sun plane, indicated a slightly better agreement between above- and in-water LW determined for wind speeds tentatively lower than 4 m s-1 with ρ computed accounting for aerosols, multiple scattering and Cox-Munk surfaces. Nevertheless, analyses performed by partitioning the investigated data set also indicated that actual ρ values would exhibit dependence on sun zenith comprised between those characterizing the two sets of reflectance factors.

  3. An early warning and control system for urban, drinking water quality protection: China's experience.

    PubMed

    Hou, Dibo; Song, Xiaoxuan; Zhang, Guangxin; Zhang, Hongjian; Loaiciga, Hugo

    2013-07-01

    An event-driven, urban, drinking water quality early warning and control system (DEWS) is proposed to cope with China's urgent need for protecting its urban drinking water. The DEWS has a web service structure and provides users with water quality monitoring functions, water quality early warning functions, and water quality accident decision-making functions. The DEWS functionality is guided by the principles of control theory and risk assessment as applied to the feedback control of urban water supply systems. The DEWS has been deployed in several large Chinese cities and found to perform well insofar as water quality early warning and emergency decision-making is concerned. This paper describes a DEWS for urban water quality protection that has been developed in China.

  4. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems.

    PubMed

    Liu, Sanly; Gunawan, Cindy; Barraud, Nicolas; Rice, Scott A; Harry, Elizabeth J; Amal, Rose

    2016-09-06

    In drinking water distribution systems (DWDS), biofilms are the predominant mode of microbial growth, with the presence of extracellular polymeric substance (EPS) protecting the biomass from environmental and shear stresses. Biofilm formation poses a significant problem to the drinking water industry as a potential source of bacterial contamination, including pathogens, and, in many cases, also affecting the taste and odor of drinking water and promoting the corrosion of pipes. This article critically reviews important research findings on biofilm growth in DWDS, examining the factors affecting their formation and characteristics as well as the various technologies to characterize and monitor and, ultimately, to control their growth. Research indicates that temperature fluctuations potentially affect not only the initial bacteria-to-surface attachment but also the growth rates of biofilms. For the latter, the effect is unique for each type of biofilm-forming bacteria; ammonia-oxidizing bacteria, for example, grow more-developed biofilms at a typical summer temperature of 22 °C compared to 12 °C in fall, and the opposite occurs for the pathogenic Vibrio cholerae. Recent investigations have found the formation of thinner yet denser biofilms under high and turbulent flow regimes of drinking water, in comparison to the more porous and loosely attached biofilms at low flow rates. Furthermore, in addition to the rather well-known tendency of significant biofilm growth on corrosion-prone metal pipes, research efforts also found leaching of growth-promoting organic compounds from the increasingly popular use of polymer-based pipes. Knowledge of the unique microbial members of drinking water biofilms and, importantly, the influence of water characteristics and operational conditions on their growth can be applied to optimize various operational parameters to minimize biofilm accumulation. More-detailed characterizations of the biofilm population size and structure are now

  5. Dengue Vector Dynamics (Aedes aegypti) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control

    PubMed Central

    Stewart Ibarra, Anna M.; Ryan, Sadie J.; Beltrán, Efrain; Mejía, Raúl; Silva, Mercy; Muñoz, Ángel

    2013-01-01

    Background Dengue fever, a mosquito-borne viral disease, is now the fastest spreading tropical disease globally. Previous studies indicate that climate and human behavior interact to influence dengue virus and vector (Aedes aegypti) population dynamics; however, the relative effects of these variables depends on local ecology and social context. We investigated the roles of climate and socio-ecological factors on Ae. aegypti population dynamics in Machala, a city in southern coastal Ecuador where dengue is hyper-endemic. Methods/Principal findings We studied two proximate urban localities where we monitored weekly Ae. aegypti oviposition activity (Nov. 2010-June 2011), conducted seasonal pupal surveys, and surveyed household to identify dengue risk factors. The results of this study provide evidence that Ae. aegypti population dynamics are influenced by social risk factors that vary by season and lagged climate variables that vary by locality. Best-fit models to predict the presence of Ae. aegypti pupae included parameters for household water storage practices, access to piped water, the number of households per property, condition of the house and patio, and knowledge and perceptions of dengue. Rainfall and minimum temperature were significant predictors of oviposition activity, although the effect of rainfall varied by locality due to differences in types of water storage containers. Conclusions These results indicate the potential to reduce the burden of dengue in this region by conducting focused vector control interventions that target high-risk households and containers in each season and by developing predictive models using climate and non-climate information. These findings provide the region's public health sector with key information for conducting time and location-specific vector control campaigns, and highlight the importance of local socio-ecological studies to understand dengue dynamics. See Text S1 for an executive summary in Spanish. PMID:24324542

  6. Perceptional and socio-demographic factors associated with household drinking water management strategies in rural Puerto Rico.

    PubMed

    Jain, Meha; Lim, Yili; Arce-Nazario, Javier A; Uriarte, María

    2014-01-01

    Identifying which factors influence household water management can help policy makers target interventions to improve drinking water quality for communities that may not receive adequate water quality at the tap. We assessed which perceptional and socio-demographic factors are associated with household drinking water management strategies in rural Puerto Rico. Specifically, we examined which factors were associated with household decisions to boil or filter tap water before drinking, or to obtain drinking water from multiple sources. We find that households differ in their management strategies depending on the institution that distributes water (i.e. government PRASA vs community-managed non-PRASA), perceptions of institutional efficacy, and perceptions of water quality. Specifically, households in PRASA communities are more likely to boil and filter their tap water due to perceptions of low water quality. Households in non-PRASA communities are more likely to procure water from multiple sources due to perceptions of institutional inefficacy. Based on informal discussions with community members, we suggest that water quality may be improved if PRASA systems improve the taste and odor of tap water, possibly by allowing for dechlorination prior to distribution, and if non-PRASA systems reduce the turbidity of water at the tap, possibly by increasing the degree of chlorination and filtering prior to distribution. Future studies should examine objective water quality standards to identify whether current management strategies are effective at improving water quality prior to consumption.

  7. Perceptional and Socio-Demographic Factors Associated with Household Drinking Water Management Strategies in Rural Puerto Rico

    PubMed Central

    Jain, Meha; Lim, Yili; Arce-Nazario, Javier A.; Uriarte, María

    2014-01-01

    Identifying which factors influence household water management can help policy makers target interventions to improve drinking water quality for communities that may not receive adequate water quality at the tap. We assessed which perceptional and socio-demographic factors are associated with household drinking water management strategies in rural Puerto Rico. Specifically, we examined which factors were associated with household decisions to boil or filter tap water before drinking, or to obtain drinking water from multiple sources. We find that households differ in their management strategies depending on the institution that distributes water (i.e. government PRASA vs community-managed non-PRASA), perceptions of institutional efficacy, and perceptions of water quality. Specifically, households in PRASA communities are more likely to boil and filter their tap water due to perceptions of low water quality. Households in non-PRASA communities are more likely to procure water from multiple sources due to perceptions of institutional inefficacy. Based on informal discussions with community members, we suggest that water quality may be improved if PRASA systems improve the taste and odor of tap water, possibly by allowing for dechlorination prior to distribution, and if non-PRASA systems reduce the turbidity of water at the tap, possibly by increasing the degree of chlorination and filtering prior to distribution. Future studies should examine objective water quality standards to identify whether current management strategies are effective at improving water quality prior to consumption. PMID:24586302

  8. Validating a topographically driven model of peatland water table: Implications for understanding land cover controls on water table.

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael

    2014-05-01

    Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the

  9. Climate Change Predominantly Caused U.S. Soil Water Storage Decline from 2003 to 2014

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Ma, C.; Song, X.; Gao, L.; Liu, M.; Xu, X.

    2016-12-01

    The water storage in soils is a fundamental resource for natural ecosystems and human society, while it is highly variable due to its complicated controlling factors in a changing climate; therefore, understanding water storage variation and its controlling factors is essential for sustaining human society, which relies on water resources. Although we are confident for water availability at global scale, the regional-scale water storage and its controlling factors are not fully understood. A number of researchers have reported that water resources are expected to diminish as climate continues warming in the 21stcentury, which will further influence human and ecological systems. However, few studies to date have fully quantitatively examined the water balances and its individual controlling mechanisms in the conterminous US. In this study, we integrated the time-series data of water storage and evapotranspiration derived from satellite imageries, regional meteorological data, and social-economic water consumption, to quantify water storage dynamics and its controlling factors across the conterminous US from 2003 to 2014. The water storage decline was found in majority of conterminous US, with the largest decline in southwestern US. Net atmospheric water input, which is difference between precipitation and evapotranspiration, could explain more than 50% of the inter-annual variation of water storage variation in majority of US with minor contributions from human water consumption. Climate change, expressed as precipitation decreases and warming, made dominant contribution to the water storage decline in the conterminous U.S. from 2003 to 2014.

  10. Risk factors for malnutrition in children at Port Moresby General Hospital, Papua New Guinea: a case-control study.

    PubMed

    Olita'a, Diana; Vince, John; Ripa, Paulus; Tefuarani, Nakapi

    2014-12-01

    Fifty children admitted for malnutrition were age matched with 50 admitted for other reasons. These children were more likely to be female (p = 0.003), born low birth weight (p = 0.02), after a short birth interval (p = 0.014) and to be incompletely vaccinated (p < 0.001) than control children, and to be living in rural villages or settlement housing (p < 0.001) with inadequate water supply (p < 0.001) and sanitation (p = 0.037), with overcrowding (p = 0.016) and low household income (p = 0.04). Their parents were more likely to have had no or only rudimentary education than parents of control children [Odds ratio (OR) 3.58 for mothers, 4.12 for fathers]. Parental consumption of alcohol as well as smoking in the mother was more common in the malnourished children. Running water in the house was an independent protective factor (OR 0.23) and the fathers' poor employment status (OR 4.12) an independent risk factor. The solution to malnutrition involves improving community understanding of nutrition and in reducing social inequalities. © The Author [2014]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Determining major factors controlling phosphorus removal by promising adsorbents used for lake restoration: A linear mixed model approach.

    PubMed

    Funes, A; Martínez, F J; Álvarez-Manzaneda, I; Conde-Porcuna, J M; de Vicente, J; Guerrero, F; de Vicente, I

    2018-05-17

    Phosphorus (P) removal from lake/drainage waters by novel adsorbents may be affected by competitive substances naturally present in the aqueous media. Up to date, the effect of interfering substances has been studied basically on simple matrices (single-factor effects) or by applying basic statistical approaches when using natural lake water. In this study, we determined major factors controlling P removal efficiency in 20 aquatic ecosystems in the southeast Spain by using linear mixed models (LMMs). Two non-magnetic -CFH-12 ® and Phoslock ® - and two magnetic materials -hydrous lanthanum oxide loaded silica-coated magnetite (Fe-Si-La) and commercial zero-valent iron particles (FeHQ)- were tested to remove P at two adsorbent dosages. Results showed that the type of adsorbent, the adsorbent dosage and color of water (indicative of humic substances) are major factors controlling P removal efficiency. Differences in physico-chemical properties (i.e. surface charge or specific surface), composition and structure explain differences in maximum P adsorption capacity and performance of the adsorbents when competitive ions are present. The highest P removal efficiency, independently on whether the adsorbent dosage was low or high, were 85-100% for Phoslock and CFH-12 ® , 70-100% for Fe-Si-La and 0-15% for FeHQ. The low dosage of FeHQ, compared to previous studies, explained its low P removal efficiency. Although non-magnetic materials were the most efficient, magnetic adsorbents (especially Fe-Si-La) could be proposed for P removal as they can be recovered along with P and be reused, potentially making them more profitable in a long-term period. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China

    PubMed Central

    Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu

    2014-01-01

    Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the

  13. Risk factors for gallbladder cancer: a case-control study.

    PubMed

    Jain, Kajal; Sreenivas, V; Velpandian, T; Kapil, Umesh; Garg, Pramod Kumar

    2013-04-01

    Risk factors for gallbladder cancer (GBC) except gallstones are not well known. The objective was to study the risk factors for GBC. In a case-control study, 200 patients with GBC, 200 healthy controls and 200 gallstones patients as diseased controls were included prospectively. The risk factors studied were related to socioeconomic profile, life style, reproduction, diet and bile acids. On comparing GBC patients (mean age 51.7 years; 130 females) with healthy controls, risk factors were chemical exposure [odd ratios (OR): 7.0 (2.7-18.2); p < 0.001)], family history of gallstones [OR: 5.3 (1.5-18.9); p < 0.01)], tobacco [OR: 4.1 (1.8-9.7); p < 0.001)], fried foods [OR: 3.1 (1.7-5.6); p < 0.001], joint family [OR: 3.2 (1.7-6.2); p < 0.001], long interval between meals [OR: 1.4 (1.2-1.6); p < 0.001] and residence in Gangetic belt [OR: 3.3 (1.8-6.2); p < 0.001]. On comparing GBC cases with gallstone controls, risk factors were female gender [OR: 2.4 (1.3-4.3); p = 0.004], residence in Gangetic belt [OR: 2.3 (1.2-4.4); p = 0.012], fried foods [OR: 2.5 (1.4-4.4); p < 0.001], diabetes [OR: 2.7 (1.2-6.4); p = 0.02)], tobacco [OR 3.8 (1.7-8.1); p < 0.001)] and joint family [OR: 2.1 (1.2-3.4); p = 0.004]. The ratio of secondary to primary bile acids was significantly higher in GBC cases than gallstone controls (20.8 vs. 0.44). Fried foods, tobacco, chemical exposure, family history of gallstones, residence in Gangetic belt and secondary bile acids were significant risk factors for GBC. Copyright © 2012 UICC.

  14. AN INTERDISCIPLINARY APPROACH TO VALUING WATER FROM BRUSH CONTROL: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1652 Lemberg**, B., Mjelde, J.W., Connor, R., Griffin, R.C., Rosenthal, W.D., and Stuth, J.W. An Interdisciplinary Approach to Valuing Water from Brush Control. Journal of American Water Resources Association (Warwick, J.J. (Ed.), USA: American Water Resources Assoc....

  15. Optimizing fish and stream-water mercury metrics for calculation of fish bioaccumulation factors

    Treesearch

    Paul Bradley; Karen Riva Murray; Barbara C. Scudder Elkenberry; Christopher D. Knightes; Celeste A. Journey; Mark A. Brigham

    2016-01-01

    Mercury (Hg) bioaccumulation factors (BAFs; ratios of Hg in fish [Hgfish] and water[Hgwater]) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Protection of wildlife and human health depends directly on the accuracy of site-specific estimates of Hgfish and Hgwater and the predictability of the relation between these...

  16. Applying Water-Level Difference Control to Central Arizona Project

    USDA-ARS?s Scientific Manuscript database

    The Central Arizona Project (CAP) has been supplying Colorado River water to Central Arizona for roughly 25 years. The CAP canal is operated remotely with a Supervisory Control and Data Acquisition (SCADA) System. Gate position changes are made either manually or through the use of automatic control...

  17. Water diffusion in silicate glasses: the effect of glass structure

    NASA Astrophysics Data System (ADS)

    Kuroda, M.; Tachibana, S.

    2016-12-01

    Water diffusion in silicate melts (glasses) is one of the main controlling factors of magmatism in a volcanic system. Water diffusivity in silicate glasses depends on its own concentration. However, the mechanism causing those dependences has not been fully understood yet. In order to construct a general model for water diffusion in various silicate glasses, we performed water diffusion experiments in silica glass and proposed a new water diffusion model [Kuroda et al., 2015]. In the model, water diffusivity is controlled by the concentration of both main diffusion species (i.e. molecular water) and diffusion pathways, which are determined by the concentrations of hydroxyl groups and network modifier cations. The model well explains the water diffusivity in various silicate glasses from silica glass to basalt glass. However, pre-exponential factors of water diffusivity in various glasses show five orders of magnitude variations although the pre-exponential factor should ideally represent the jump frequency and the jump distance of molecular water and show a much smaller variation. Here, we attribute the large variation of pre-exponential factors to a glass structure dependence of activation energy for molecular water diffusion. It has been known that the activation energy depends on the water concentration [Nowak and Behrens, 1997]. The concentration of hydroxyls, which cut Si-O-Si network in the glass structure, increases with water concentration, resulting in lowering the activation energy for water diffusion probably due to more fragmented structure. Network modifier cations are likely to play the same role as water. With taking the effect of glass structure into account, we found that the variation of pre-exponential factors of water diffusivity in silicate glasses can be much smaller than the five orders of magnitude, implying that the diffusion of molecular water in silicate glasses is controlled by the same atomic process.

  18. Controls on Variations of Surface Energy, Water, and Carbon Budgets within Large-Scale Amazon Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Cooper, Harry J.; Grose, Andrew; Gu, Jiu-Jing; Norman, John; daRocha, Humberto R.; Dias, Pedro Silva

    2002-01-01

    A key research focus of the LBA Research Program is understanding the space-time variations in interlinked surface energy, water, and carbon budgets, the controls on these variations, and the implications of these controls on the carbon sequestering capacity of the large scale forest-pasture system that dominates the Amaz6nia landscape. Quantification of these variations and controls are investigated by a combination of in situ measurements, remotely sensed measurements from space, and a realistically forced hydrometeorological model coupled to a carbon assimilation model, capable of simulating details within the surface energy and water budgets along with the principle processes of photosynthesis and respiration. Herein we describe the results of an investigation concerning the space-time controls of carbon sources and sinks distributed over the large scale Amazon basin. The results are derived from a carbon-water-energy budget retrieval system for the large scale Amazon basin, which uses a coupled carbon assimilation-hydrometeorological model as an integrating system, forced by both in situ meteorological measurements and remotely sensed radiation and precipitation fluxes obtained from a combination of GOES, SSM/I, TOMS, and TRh4M satellite measurements. Results include validation of (a) retrieved surface radiation and precipitation fluxes based on 30-min averaged surface measurements taken at Ji-Parani in Rondania and Manaus in Amazonas, and (b) modeled sensible, latent, and C02 fluxes based on tower measurements taken at Reserva Jaru, Manaus and Fazenda Nossa Senhora. The space-time controls on carbon sequestration are partitioned into sets of factors classified by: (1) above canopy meteorology, (2) incoming surface radiation, (3) precipitation interception, and (4) indigenous stomatal processes varied over the different land covers of pristine rainforest, partially, and fully logged rainforests, and pasture lands. These are the principle meteorological

  19. Biogeochemical control points in a water-limited critical zone

    NASA Astrophysics Data System (ADS)

    Chorover, J.; Brooks, P. D.; Gallery, R. E.; McIntosh, J. C.; Olshansky, Y.; Rasmussen, C.

    2017-12-01

    The routing of water and carbon through complex terrain is postulated to control structure evolution in the sub-humid critical zone of the southwestern US. By combining measurements of land-atmosphere exchange, ecohydrologic partitioning, and subsurface biogeochemistry, we seek to quantify how a heterogeneous (in time and space) distribution of "reactants" impacts both short-term (sub-)catchment response (e.g., pore and surface water chemical dynamics) and long-term landscape evolution (e.g., soil geochemistry/morphology and regolith weathering depth) in watersheds underlain by rhyolite and schist. Instrumented pedons in convergent, planar, and divergent landscape positions show distinct depth-dependent responses to precipitation events. Wetting front propagation, dissolved carbon flux and associated biogeochemical responses (e.g., pulses of CO2 production, O2 depletion, solute release) vary with topography, revealing the influence of lateral subsidies of water and carbon. The impacts of these episodes on the evolution of porous media heterogeneity is being investigated by statistical analysis of pore water chemistry, chemical/spectroscopic studies of solid phase organo-mineral products, sensor-derived water characteristic curves, and quantification of co-located microbial community activity/composition. Our results highlight the interacting effects of critical zone structure and convergent hydrologic flows in the evolution of biogeochemical control points.

  20. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  1. Controlled iodine release from polyurethane sponges for water decontamination.

    PubMed

    Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Harik, Oshrat; Kunduru, Konda Reddy; Domb, Abraham J

    2013-12-28

    Iodinated polyurethane (IPU) sponges were prepared by immersing sponges in aqueous/organic solutions of iodine or exposing sponges to iodine vapors. Iodine was readily adsorbed into the polymers up to 100% (w/w). The adsorption of iodine on the surface was characterized by XPS and SEM analyses. The iodine loaded IPU sponges were coated with ethylene vinyl acetate (EVA), in order to release iodine in a controlled rate for water decontamination combined with active carbon cartridge, which adsorbs the iodine residues after the microbial inactivation. The EVA coated IPU were incorporated in a water purifier and tested for iodine release to water and for microbial inactivation efficiency according to WQA certification program against P231/EPA for 250l, using 25l a day with flow rate of 6-8min/1l. The antimicrobial activity was also studied against Escherichia coli and MS2 phage. Bacterial results exceeded the minimal requirement for bacterial removal of 6log reduction throughout the entire lifespan. At any testing point, no bacteria was detected in the outlet achieving more than 7.1 to more than 8log reduction as calculated upon the inlet concentration. Virus surrogate, MS2, reduction results varied from 4.11log reduction under tap water, and 5.11log reduction under basic water (pH9) to 1.32 for acidic water (pH5). Controlled and stable iodine release was observed with the EVA coated IPU sponges and was effective in deactivating the bacteria and virus present in the contaminated water and thus, these iodinated PU systems could be used in water purification to provide safe drinking water. These sponges may find applications as disinfectants in medicine. © 2013.

  2. Controlling factors of harmful microalgae distribution in water column, biofilm and sediment in shellfish production area (South of Sfax, Gulf of Gabes) from southern Tunisia

    NASA Astrophysics Data System (ADS)

    Loukil-Baklouti, Amira; Feki-Sahnoun, Wafa; Hamza, Asma; Abdennadher, Moufida; Mahfoudhi, Mabrouka; Bouain, Abderrahmen; Jarboui, Othman

    2018-01-01

    The aim of this study was to investigate the spatio-temporal distribution of harmful microalgae coupled with environmental factors in the most important area for natural stocks of the grooved carpet shell Ruditapes decussatus in southern Tunisia. Sampling was performed monthly from May 2010 to April 2011 in five stations through the Tunisian National Monitoring Stations Network of Phytoplankton and Phycotoxins along the southern coasts of Sfax (Gulf of Gabes). The presence of harmful microalgae species was explored in three compartments: water column, biofilm and sediment. Our results revealed fourteen species were identified belonging to dinoflagellates and diatoms with higher densities during the summer period. The co-inertia plot analysis exhibited that the seasonal fluctuations of these species were controlled by the temperature as well as the nutrients (particularly nitrogenous). Ternary diagrams showed that biofilm was the most colonized compartment by toxic benthic dinoflagellates species, namely Amphidinium carterae, Prorocentrum rathymum, Prorocentrum concavum, Prorocentrum lima, Ostreopsis cf. ovata and Coolia monotis. In addition, these species were recorded simultaneously in the water column and the sediment, a fact that could be explained by the resuspension of these benthic dinoflagellates from the biofilm by hydrodynamics. The data suggest that harmful microalgae could be the source of toxins in the studied stations, which provide support to the implication of these results on the future sampling strategy of harmful microalgae in shellfish collecting areas in Tunisia.

  3. SEMINAR PUBLICATION: CONTROL OF LEAD AND COPPER IN DRINKING WATER

    EPA Science Inventory

    This publication presents subjects relating to the control of lead and copper in drinking water systems. t is of interest to system owners, operators, managers, and local decision makers, such as town officials, regarding drinking water treatment requirements and the treatment te...

  4. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Management Board. 223.1 Section 223.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE... Management Board. (a) Purpose. This regulation establishes and prescribes the objectives, composition, responsibilities and authority of the Mississippi River Water Control Management Board. (b) Applicability. This...

  5. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae).

    PubMed

    Eller, Cleiton B; Burgess, Stephen S O; Oliveira, Rafael S

    2015-04-01

    Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival

  6. Cardiovascular Risk Factors in Patients with Poorly Controlled Diabetes Mellitus.

    PubMed

    Dizdarevic-Bostandzic, Amela; Begovic, Ermin; Burekovic, Azra; Velija-Asimi, Zelija; Godinjak, Amina; Karlovic, Vanja

    2018-02-01

    Diabetes mellitus(DM) is considered an independent cardiovascular risk factor. Having in mind concomitant occurence of diabetes and other cardiovascular risk factors, it is expected that patients with poor glucoregulation will have more cardiovascular risk factors and higher cardiovascular risk than patients with good glucoregulation. To compare cardiovascular risk and cardiovascular risk factors between patients with poorly controlled and patients with well-controlled Diabetes mellitus. Hundered ten patients aged 40-70 years suffering from Diabetes mellitus type 2 were included. Research is designed as a retrospective, descriptive study. Patients with glycosylated hemoglobin (HbA1c) > 7% were considered to have poorly controlled diabetes. The following data and parameters were monitored: age,sex, family history, data on smoking and alcohol consumption, BMI (body mass index), blood pressure, blood glucose, total cholesterol, triglycerides, LDL, HDL, fibrinogen, uric acid. For the assessment of cardiovascular risk, the WHO / ISH (World Health Organization/International Society of hypertension) tables of the 10-year risk were used, and due to the assessment of the risk factors prevalence, the optimal values of individual numerical variables were defined. Differences in the mean values of systolic, diastolic blood pressure, fasting glucose, total cholesterol, LDL cholesterol are statistically significant higher in patients with poorly controlled diabetes. Hypertension more frequently occurre in patients with poorly controlled DM. The majority of patients with well-controlled DM belong to the group of low and medium cardiovascular risk, while the majority of patients with poorly controlled DM belong to the group of high and very high cardiovascular risk. In our research, there was a significant difference in cardiovascular risk in relation to the degree of DM regulation, and HbA1c proved to be an important indicator for the emergence of the CVD. There are significant

  7. Automated Water Chemistry Control at University of Virginia Pools.

    ERIC Educational Resources Information Center

    Krone, Dan

    1997-01-01

    Describes the technologically advanced aquatic and fitness center at the University of Virginia. Discusses the imprecise water chemistry control at the former facility and its intensive monitoring requirements. Details the new chemistry control standards initiated in the new center, which ensure constant chlorine and pH levels. (RJM)

  8. Water outlet control mechanism for fuel cell system operation in variable gravity environments

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)

    2007-01-01

    A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.

  9. Arid Green Infrastructure for Water Control and Conservation ...

    EPA Pesticide Factsheets

    Green infrastructure is an approach to managing wet weather flows using systems and practices that mimic natural processes. It is designed to manage stormwater as close to its source as possible and protect the quality of receiving waters. Although most green infrastructure practices were first developed in temperate climates, green infrastructure also can be a cost-effective approach to stormwater management and water conservation in arid and semi-arid regions, such as those found in the western and southwestern United States. Green infrastructure practices can be applied at the site, neighborhood and watershed scales. In addition to water management and conservation, implementing green infrastructure confers many social and economic benefits and can address issues of environmental justice. The U.S. Environmental Protection Agency (EPA) commissioned a literature review to identify the state-of-the science practices dealing with water control and conservation in arid and semi-arid regions, with emphasis on these regions in the United States. The search focused on stormwater control measures or practices that slow, capture, treat, infiltrate and/or store runoff at its source (i.e., green infrastructure). The material in Chapters 1 through 3 provides background to EPA’s current activities related to the application of green infrastructure practices in arid and semi-arid regions. An introduction to the topic of green infrastructure in arid and semi-arid regions i

  10. Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply.

    PubMed

    Li, Kebai; Ma, Tianyi; Wei, Guo

    2018-03-31

    As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems.

  11. Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply

    PubMed Central

    Li, Kebai; Ma, Tianyi; Wei, Guo

    2018-01-01

    As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems. PMID:29614749

  12. Factors Controlling Sediment Load in The Central Anatolia Region of Turkey: Ankara River Basin.

    PubMed

    Duru, Umit; Wohl, Ellen; Ahmadi, Mehdi

    2017-05-01

    Better understanding of the factors controlling sediment load at a catchment scale can facilitate estimation of soil erosion and sediment transport rates. The research summarized here enhances understanding of correlations between potential control variables on suspended sediment loads. The Soil and Water Assessment Tool was used to simulate flow and sediment at the Ankara River basin. Multivariable regression analysis and principal component analysis were then performed between sediment load and controlling variables. The physical variables were either directly derived from a Digital Elevation Model or from field maps or computed using established equations. Mean observed sediment rate is 6697 ton/year and mean sediment yield is 21 ton/y/km² from the gage. Soil and Water Assessment Tool satisfactorily simulated observed sediment load with Nash-Sutcliffe efficiency, relative error, and coefficient of determination (R²) values of 0.81, -1.55, and 0.93, respectively in the catchment. Therefore, parameter values from the physically based model were applied to the multivariable regression analysis as well as principal component analysis. The results indicate that stream flow, drainage area, and channel width explain most of the variability in sediment load among the catchments. The implications of the results, efficient siltation management practices in the catchment should be performed to stream flow, drainage area, and channel width.

  13. High Resolution Sensing and Control of Urban Water Networks

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  14. Agrochemical control of plant water use using engineered abscisic acid receptors.

    PubMed

    Park, Sang-Youl; Peterson, Francis C; Mosquna, Assaf; Yao, Jin; Volkman, Brian F; Cutler, Sean R

    2015-04-23

    Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement.

  15. An analysis of factors contributing to household water security problems and threats in different settlement categories of Ngamiland, Botswana

    NASA Astrophysics Data System (ADS)

    Kujinga, Krasposy; Vanderpost, Cornelis; Mmopelwa, Gagoitseope; Wolski, Piotr

    Globally, water security is negatively affected by factors that include climatic and hydrological conditions, population growth, rural-urban migration, increased per-capita water use, pollution and over-abstraction of groundwater. While Botswana has made strides in providing safe and clean water to its population since independence in 1966, over the years, a combination of factors have contributed to water security problems in different settlement categories of the country (i.e., primary, secondary, tertiary and ungazetted settlements) in general and in the district of Ngamiland in particular. To study water security problems differentiated by settlement category, this study employed quantitative data collection methods (i.e. household structured questionnaires) and qualitative data collection methods (i.e. key informant interviews, observation, focus group discussions and informal interviews), complemented by a review of relevant literature. Water security in all settlements is affected by status of the settlement, i.e. gazetted or ungazetted, climatic and hydrological factors and water governance challenges. In large villages such as Maun, factors threatening water security include population growth, urbanization, management challenges, old water supply and distribution infrastructure, increased demand for individual connections and changing lifestyles. Small gazetted and ungazetted settlements encounter problems related to limited sources of water supply as well as salinity of groundwater resources. In order to enhance water security in different settlement categories, Botswana has to develop a comprehensive water resources management strategy underpinned by integrated water resources management principles aimed at addressing factors contributing to water security problems. The strategy has to be settlement category specific. Large villages have to address factors related to demographic changes, urbanization, management challenges, water supply infrastructure

  16. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study.

    PubMed

    Dewettinck, T; Van Houtte, E; Geenens, D; Van Hege, K; Verstraete, W

    2001-01-01

    To obtain a sustainable water catchment in the dune area of the Flemish west coast, the integration of treated domestic wastewater in the existing potable water production process is planned. The hygienic hazards associated with the introduction of treated domestic wastewater into the water cycle are well recognised. Therefore, the concept of HACCP (Hazard Analysis and Critical Control Points) was used to guarantee hygienically safe drinking water production. Taking into account the literature data on the removal efficiencies of the proposed advanced treatment steps with regard to enteric viruses and protozoa and after setting high quality limits based on the recent progress in quantitative risk assessment, the critical control points (CCPs) and points of attention (POAs) were identified. Based on the HACCP analysis a specific monitoring strategy was developed which focused on the control of these CCPs and POAs.

  17. Control and the Aged: Environmental or Personality Factors.

    ERIC Educational Resources Information Center

    Tiffany, Phyllis G.; Dey, Kay

    Control over self, lifestyle, and environment is a major factor in how one ages. To investigate how age acts as an environmental force in affecting perceptions of control, 45 adults, aged 60-80, from western Kansas were administered the Wechsler Adult Intelligence Scale (WAIS), the Tiffany Experienced Control Scales (ECS), the Minnesota…

  18. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Management Board. 223.1 Section 223.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control Management Board. (a) Purpose. This regulation establishes and prescribes the objectives, composition...

  19. 33 CFR 223.1 - Mississippi River Water Control Management Board.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Management Board. 223.1 Section 223.1 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE BOARDS, COMMISSIONS, AND COMMITTEES § 223.1 Mississippi River Water Control Management Board. (a) Purpose. This regulation establishes and prescribes the objectives, composition...

  20. Drinking water from dug wells in rural ghana--salmonella contamination, environmental factors, and genotypes.

    PubMed

    Dekker, Denise Myriam; Krumkamp, Ralf; Sarpong, Nimako; Frickmann, Hagen; Boahen, Kennedy Gyau; Frimpong, Michael; Asare, Renate; Larbi, Richard; Hagen, Ralf Matthias; Poppert, Sven; Rabsch, Wolfgang; Marks, Florian; Adu-Sarkodie, Yaw; May, Jürgen

    2015-03-27

    Salmonellosis is an important but neglected disease in sub-Saharan Africa. Food or fecal-oral associated transmissions are the primary cause of infections, while the role of waterborne transmission is unclear. Samples were collected from different dug wells in a rural area of Ghana and analyzed for contamination with bacteria, and with Salmonella in particular. In addition, temporal dynamics and riks factors for contamination were investigated in 16 wells. For all Salmonella isolates antibiotic susceptibility testing was performed, serovars were determined and strains from the same well with the same serovar were genotyped. The frequency of well water contamination with Gram-negative rod-shaped bacteria was 99.2% (n = 395). Out of 398 samples, 26 (6.5%) tested positive for Salmonella spp. The serovar distribution was diverse including strains not commonly isolated from clinical samples. Resistance to locally applied antibiotics or resistance to fluoroquinolones was not seen in the Salmonella isolates. The risk of Salmonella contamination was lower in wells surrounded by a frame and higher during the rainy season. The study confirms the overall poor microbiological quality of well water in a resource-poor area of Ghana. Well contamination with Salmonella poses a potential threat of infection, thus highlighting the important role of drinking water safety in infectious disease control.

  1. Controlling factors of stratigraphic occurrences of fine-grained turbidites: Examples from the Japanese waters

    NASA Astrophysics Data System (ADS)

    Ikehara, K.

    2017-12-01

    Fine-grained turbidite has been used for subaqueous paleoseismology, and has been recognized from shallow- to deep-water environments around the Japanese islands. Stratigraphic occurrence of fine-grained turbidites in the deepest Beppu Bay, south Japan, with its water depth of 75 m suggest clear influence of sea-level changes. Turbidite frequency was high during the post glacial sea-level rising and last 2.7 ka, and was low during the Holocene maximum sea-level highstand (5.3-2.7 ka). Retreat and progress of coastal delta front of the nearby river might affect the sediment supply to the deepest basin. On the other hand, fine-grained turbidites found in the forearc basins ( 3500 and 4500 m in water depths) and trench floor ( 6000 m in water depth) along the southern Ryukyu arc have no clear relation with sea-level changes. Sediment and bathymetric characteristics suggest that origin of these fine-grained turbidites is Taiwan. Remarkable tectonic uplift of Taiwanese coast with small mountainous rivers and narrow shelf may produce the continuous supply of fine-grained turbidites in this area. The Japan Trench floor composes of a series of small basins reflecting subducting horst-graben structure of the Pacific Plate. Each small basin acts as a natural sediment trap receiving the earthquake-induced turbidity currents. Thick fine-grained turbidites are also occurred in the small basins in the Japan Trench floor ( 7500 m in water depth). These are most likely induced by huge earthquakes along the Japan Trench. Thus, their stratigraphic occurrences might have close relation with recurrence of huge earthquakes in the past.

  2. How to Identify and Control Water Weeds and Algae.

    ERIC Educational Resources Information Center

    Applied Biochemists, Inc., Mequon, WI.

    Included in this guide to water management are general descriptions of algae, toxic algae, weed problems in lakes, ponds, and canals, and general discussions of mechanical, biological and chemical control methods. In addition, pictures, descriptions, and recommended control methods are given for algae, 6 types of floating weeds, 18 types of…

  3. Environmental factors controlling benthic foraminiferal distribution in Hurghada area, Red Sea coast, Egypt

    NASA Astrophysics Data System (ADS)

    Mounir El-Kahawy, Ramadan; El-Wahab, Mohamed Abd

    2017-04-01

    Benthic foraminiferal assemblages were investigated at Hurghada on the Red Sea coast of Egypt, to determine the distribution and their common environmental factors that control on this distribution. 43 sediment samples were collected and environmental factors (T°C, pH, and salinity ‰), water depth, grain size, organic matter and carbonate content were measured. Faunal abundance (14-1755 tests/g) with an average 709 tests/g, and faunal diversity (6-39 specimens) with an average 31 specimen. Cluster analysis was divided the Hurghada site into four distinct biotopes based on the faunal data: Biotope (1) is dominated by a Quinqueloculina seminula& Quinqueloculina laevigata, and Triloculina terquemiana assemblage. Biotope (2) is dominated by a Sorites marginalis & Triloculina trigonula assemblage. Biotope (3) is dominated by an Amphistegina lessonii, Ammonia beccarii and Elphidium spp assemblage. Biotope (4) is dominated by a Peneroplis planatus& Coscinospira hemprichii& Sorites orbiculus and Neorotalia calcar assemblage. Some of the recorded foraminiferal tests showed abnormalities in their apertures, coiling and shape of chambers. The distribution of benthic foraminiferal species is governed by environmental factors such as salinity, temperature, substrates-type, water depth and pH. P. planatus and C. hemprichii positively correlate with extreme salinity and temperature, indicating that these species reflect a warm, arid climate conditions. Aside, the heavy metals (Cu, Cd, Zn, Pb, Ni and Mn) concentrations in the sediment samples were analyzed using ICP-OES. The comparative study between the faunal content and the heavy metals enrichments in each sample displayed positive character indicating the worsening of the environmental conditions. Keywords: benthic foraminifera, Hurghada, Red Sea, Egypt

  4. A HUMAN FACTORS ENGINEERING PROCESS TO SUPPORT HUMAN-SYSTEM INTERFACE DESIGN IN CONTROL ROOM MODERNIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovesdi, C.; Joe, J.; Boring, R.

    The primary objective of the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program is to sustain operation of the existing commercial nuclear power plants (NPPs) through a multi-pathway approach in conducting research and development (R&D). The Advanced Instrumentation, Information, and Control (II&C) System Technologies pathway conducts targeted R&D to address aging and reliability concerns with legacy instrumentation and control (I&C) and other information systems in existing U.S. NPPs. Control room modernization is an important part following this pathway, and human factors experts at Idaho National Laboratory (INL) have been involved in conducting R&D to supportmore » migration of new digital main control room (MCR) technologies from legacy analog and legacy digital I&C. This paper describes a human factors engineering (HFE) process that supports human-system interface (HSI) design in MCR modernization activities, particularly with migration of old digital to new digital I&C. The process described in this work is an expansion from the LWRS Report INL/EXT-16-38576, and is a requirements-driven approach that aligns with NUREG-0711 requirements. The work described builds upon the existing literature by adding more detail around key tasks and decisions to make when transitioning from HSI Design into Verification and Validation (V&V). The overall objective of this process is to inform HSI design and elicit specific, measurable, and achievable human factors criteria for new digital technologies. Upon following this process, utilities should have greater confidence with transitioning from HSI design into V&V.« less

  5. What factors control dimerization of coniferyl alcohol?

    Treesearch

    Carl J. Houtman

    1999-01-01

    Data suggest that the dimerization of coniferyl alcohol is not under thermodynamic control. In this study, molecular dynamics calculations were used to estimate the effect of the solvent environment. In water, the coniferyl alcohol radicals were forced to associate by the formation of a solvent cage. In glycerol, the solvent cage effect appeared to be absent. These...

  6. Internal Corrosion Control of Water Supply Systems Code of Practice

    EPA Science Inventory

    This Code of Practice is part of a series of publications by the IWA Specialist Group on Metals and Related Substances in Drinking Water. It complements the following IWA Specialist Group publications: 1. Best Practice Guide on the Control of Lead in Drinking Water 2. Best Prac...

  7. Capacity factor analysis for evaluating water and sanitation infrastructure choices for developing communities.

    PubMed

    Bouabid, Ali; Louis, Garrick E

    2015-09-15

    40% of the world's population lacks access to adequate supplies of water and sanitation services to sustain human health. In fact, more than 780 million people lack access to safe water supplies and about 2.5 billion people lack access to basic sanitation. Appropriate technology for water supply and sanitation (Watsan) systems is critical for sustained access to these services. Current approaches for the selection of Watsan technologies in developing communities have a high failure rate. It is estimated that 30%-60% of Watsan installed infrastructures in developing countries are not operating. Inappropriate technology is a common explanation for the high rate of failure of Watsan infrastructure, particularly in lower-income communities (Palaniappan et al., 2008). This paper presents the capacity factor analysis (CFA) model, for the assessment of a community's capacity to manage and sustain access to water supply and sanitation services. The CFA model is used for the assessment of a community's capacity to operate, and maintain a municipal sanitation service (MSS) such as, drinking water supply, wastewater and sewage treatment, and management of solid waste. The assessment of the community's capacity is based on seven capacity factors that have been identified as playing a key role in the sustainability of municipal sanitation services in developing communities (Louis, 2002). These capacity factors and their constituents are defined for each municipal sanitation service. Benchmarks and international standards for the constituents of the CFs are used to assess the capacity factors. The assessment of the community's capacity factors leads to determine the overall community capacity level (CCL) to manage a MSS. The CCL can then be used to assist the community in the selection of appropriate Watsan technologies for their MSS needs. The selection is done from Watsan technologies that require a capacity level to operate them that matches the assessed CCL of the

  8. Virtual water trade patterns in relation to environmental and socioeconomic factors: a case study for Tunisia

    NASA Astrophysics Data System (ADS)

    Chouchane, Hatem; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Water scarcity is among the main problems faced by many societies. Growing water demands put increasing pressure on local water resources, especially in water-short countries. Virtual water trade can play a key role in filling the gap between local demands and supply. This study aims to analyze the changes in virtual water trade of Tunisia in relation to environmental and socio-economic factors such as GDP, irrigated land, precipitation, population and water scarcity. The water footprint is estimated using Aquacrop for six crops over the period 1981-2010 at daily basis and a spatial resolution of 5 by 5 arc minutes. Virtual water trade is quantified at yearly basis. Regression models are used to investigate changes in virtual water trade in relation to various environmental and socio-economic factors. The explaining variables are selected in order to help understanding the trend and the inter-annual variability of the net virtual water import; GDP, population and irrigated land are hypothesized to explain the trend, and precipitation and water scarcity to explain variability. The selected crops are divided into three baskets. The first basket includes the two most imported crops, which are mainly rain-fed (wheat and barley). The second basket contains the two most exported crops, which are both irrigated and rain-fed (olives and dates). In the last basket we find the two highest economic blue water productive crops, which are mainly irrigated (tomatoes and potatoes). The results show the impact of each factor on net virtual water import of the selected crops during the period 1981-2010. Keywords: Virtual water, trade patterns, Aquacrop, Tunisia, water scarcity, water footprint.

  9. Effect of Poor Access to Water and Sanitation As Risk Factors for Soil-Transmitted Helminth Infection: Selectiveness by the Infective Route.

    PubMed

    Echazú, Adriana; Bonanno, Daniela; Juarez, Marisa; Cajal, Silvana P; Heredia, Viviana; Caropresi, Silvia; Cimino, Ruben O; Caro, Nicolas; Vargas, Paola A; Paredes, Gladys; Krolewiecki, Alejandro J

    2015-09-01

    Soil-transmitted helminth (STH) infections are a public health problem in resource-limited settings worldwide. Chronic STH infection impairs optimum learning and productivity, contributing to the perpetuation of the poverty-disease cycle. Regular massive drug administration (MDA) is the cardinal recommendation for its control; along with water, sanitation and hygiene (WASH) interventions. The impact of joint WASH interventions on STH infections has been reported; studies on the independent effect of WASH components are needed to contribute with the improvement of current recommendations for the control of STH. The aim of this study is to assess the association of lacking access to water and sanitation with STH infections, taking into account the differences in route of infection among species and the availability of adequate water and sanitation at home. Cross-sectional study, conducted in Salta province, Argentina. During a deworming program that enrolled 6957 individuals; 771 were randomly selected for stool/serum sampling for parasitological and serological diagnosis of STH. Bivariate stratified analysis was performed to explore significant correlations between risk factors and STH infections grouped by mechanism of entry as skin-penetrators (hookworms and Strongyloides stercoralis) vs. orally-ingested (Ascaris lumbricoides and Trichuris trichiura). After controlling for potential confounders, unimproved sanitation was significantly associated with increased odds of infection of skin-penetrators (adjusted odds ratio [aOR] = 3.9; 95% CI: 2.6-5.9). Unimproved drinking water was significantly associated with increased odds of infection of orally-ingested (aOR = 2.2; 95% CI: 1.3-3.7). Lack of safe water and proper sanitation pose a risk of STH infections that is distinct according to the route of entry to the human host used by each of the STH species. Interventions aimed to improve water and sanitation access should be highlighted in the recommendations for the

  10. Effect of Poor Access to Water and Sanitation As Risk Factors for Soil-Transmitted Helminth Infection: Selectiveness by the Infective Route

    PubMed Central

    Echazú, Adriana; Bonanno, Daniela; Juarez, Marisa; Cajal, Silvana P.; Heredia, Viviana; Caropresi, Silvia; Cimino, Ruben O.; Caro, Nicolas; Vargas, Paola A.; Paredes, Gladys; Krolewiecki, Alejandro J.

    2015-01-01

    Background Soil-transmitted helminth (STH) infections are a public health problem in resource-limited settings worldwide. Chronic STH infection impairs optimum learning and productivity, contributing to the perpetuation of the poverty-disease cycle. Regular massive drug administration (MDA) is the cardinal recommendation for its control; along with water, sanitation and hygiene (WASH) interventions. The impact of joint WASH interventions on STH infections has been reported; studies on the independent effect of WASH components are needed to contribute with the improvement of current recommendations for the control of STH. The aim of this study is to assess the association of lacking access to water and sanitation with STH infections, taking into account the differences in route of infection among species and the availability of adequate water and sanitation at home. Methods and Findings Cross-sectional study, conducted in Salta province, Argentina. During a deworming program that enrolled 6957 individuals; 771 were randomly selected for stool/serum sampling for parasitological and serological diagnosis of STH. Bivariate stratified analysis was performed to explore significant correlations between risk factors and STH infections grouped by mechanism of entry as skin-penetrators (hookworms and Strongyloides stercoralis) vs. orally-ingested (Ascaris lumbricoides and Trichuris trichiura). After controlling for potential confounders, unimproved sanitation was significantly associated with increased odds of infection of skin-penetrators (adjusted odds ratio [aOR] = 3.9; 95% CI: 2.6–5.9). Unimproved drinking water was significantly associated with increased odds of infection of orally-ingested (aOR = 2.2; 95% CI: 1.3–3.7). Conclusions Lack of safe water and proper sanitation pose a risk of STH infections that is distinct according to the route of entry to the human host used by each of the STH species. Interventions aimed to improve water and sanitation access should

  11. Water quality in turkey farms in Khemisset (Morocco) and potential risk factors.

    PubMed

    El Allaoui, A; Rhazi Filali, F; Derouich, A

    2016-12-01

    The objectives of this study were to assess the microbiological and physical/chemical quality of water in broiler turkey farms in the province of Khemisset (north-western Morocco) and, based on a questionnaire, to ascertain potential risk factors for contamination of drinking water with faecal coliforms. A total of 80 samples were collected and analysed in 20 farms (four from each farm). At the main inlet to the water line at the entrance to each turkey house, 100% of the samples were of unacceptable quality in terms of faecal coliforms, Escherichia coli, faecal streptococci, sulphitereducing anaerobes and enterococci. A significant reduction in microbiological contamination of the water line (p < 0.05) was observed on Day 60. While more than 90% of the samples were of satisfactory quality in terms of pH, nitrites, conductivity, nitrates and iron, only 35% were satisfactory in terms of total hardness and only 20% met quality standards for ammonium content. The factors affecting levels of contamination with faecal coliforms were water chlorination (p = 0.065; odds ratio = 14; 90% confidence interval [CI] = 1.14-71), cleaning and disinfection (p = 0.028; odds ratio = 14; 95% CI = 1.25-156.6) and antibiotic treatment (p = 0.001; odds ratio = 6; 95% CI = 2.1-35.2). To improve water quality in poultry farms, farmers are advised to protect wells from contamination and to install water purification units (pre-oxidation, coagulation, flocculation, disinfection). In addition, turkey houses and rearing equipment should be rigorously cleaned and disinfected between each batch of birds. © OIE (World Organisation for Animal Health), 2016.

  12. [Challenges and countermeasures for water conservancy combined with schistosomiasis prevention and control in China in new era].

    PubMed

    Jia-Sheng, Wang; Jin-You, Lu; Feng-Yang, Min; Kong-Xian, Zhu

    2017-04-27

    The spread of schistosomiasis seriously threaten the health of people and hinder the economic and social development in China. The water conservancy combined with schistosomiasis prevention and control effectively controlled the spread of schistosomiasis by controlling the spread of Oncomelania hupensis , the only intermediate host of Schistosoma japonicum . This paper reviews the evolution of the strategy of schistosomiasis prevention and control in China and points out the historical role of water conservancy combined with schistosomiasis prevention and control. Furthermore, this article analyzes the problems and challenges of water conservancy combined with schistosomiasis prevention and control in the new period. In response to the challenges, the new strategy of water conservancy combined with schistosomiasis prevention and control is put forward, including: developing the research of the new strategy of water conservancy combined with schistosomiasis prevention and control, enhancing the research of water conservancy technology combined with schistosomiasis prevention and control, improving the efficiency and applicability of water conservancy projects combined with schistosomiasis prevention and control, strengthening the guidance of water conservancy technology combined with schistosomiasis prevention and control, and perfecting the evaluation system.

  13. Potential microbial risk factors related to soil amendments and irrigation water of potato crops.

    PubMed

    Selma, M V; Allende, A; López-Gálvez, F; Elizaquível, P; Aznar, R; Gil, M I

    2007-12-01

    This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons. The natural microbiota and potentially pathogenic micro-organisms were evaluated in the soil amendment, irrigation water, soil and produce. Uncomposted amendments and residual and creek water samples showed the highest microbial counts. The microbial load of potatoes harvested in spring was similar among the tested farms despite the diverse microbial levels of Listeria spp. and faecal coliforms in the potential risk sources. However, differences in total coliform load of potato were found between farms cultivated in the autumn. Immunochromatographic rapid tests and the BAM's reference method (Bacteriological Analytical Manual; AOAC International) were used to detect Escherichia coli O157:H7 from the potential risk sources and produce. Confirmation of the positive results by polymerase chain reaction procedures showed that the immunochromatographic assay was not reliable as it led to false-positive results. The potentially pathogenic micro-organisms of soil amendment, irrigation water and soil samples changed with the harvest seasons and the use of different agricultural practices. However, the microbial load of the produce was not always influenced by these risk sources. Improvements in environmental sample preparation are needed to avoid interferences in the use of immunochromatographic rapid tests. The potential microbial risk sources of fresh produce should be regularly controlled using reliable detection methods to guarantee their microbial safety.

  14. Environmental Setting and the Effects of Natural and Human-Related Factors on Water Quality and Aquatic Biota, Oahu, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Brasher, Anne M.D.

    2003-01-01

    -use patterns on Oahu reflected increases in population and decreases in large-scale agricultural operations over time. The last two remaining sugarcane plantations on Oahu closed in the mid-1990's, and much of the land that once was used for sugarcane now is urbanized or used for diversified agriculture. Although two large pineapple plantations continue to operate in central Oahu, some of the land previously used for pineapple cultivation has been urbanized. Natural and human-related factors control surface- and ground-water quality and the distribution and abundance of aquatic biota on Oahu. Natural factors that may affect water quality include geology, soils, vegetation, rainfall, ocean-water quality, and air quality. Human-related factors associated with urban and agricultural land uses also may affect water quality. Ground-water withdrawals may cause saltwater intrusion. Pesticides and fertilizers that were used in agricultural or urban areas have been detected in surface and ground water on Oahu. In addition, other organic compounds associated with urban uses of chemicals have been detected in surface and ground water on Oahu. The effects of urbanization and agricultural practices on instream and riparian areas in conjunction with a proliferation of nonnative fish and crustaceans have resulted in a paucity of native freshwater macrofauna on Oahu. A variety of pesticides, nutrients, and metals are associated with urban and agricultural land uses, and these constituents can affect the fish and invertebrates that live in the streams.

  15. Interim results of quality-control sampling of surface water for the Upper Colorado River National Water-Quality Assessment Study Unit, water years 1995-96

    USGS Publications Warehouse

    Spahr, N.E.; Boulger, R.W.

    1997-01-01

    Quality-control samples provide part of the information needed to estimate the bias and variability that result from sample collection, processing, and analysis. Quality-control samples of surface water collected for the Upper Colorado River National Water-Quality Assessment study unit for water years 1995?96 are presented and analyzed in this report. The types of quality-control samples collected include pre-processing split replicates, concurrent replicates, sequential replicates, post-processing split replicates, and field blanks. Analysis of the pre-processing split replicates, concurrent replicates, sequential replicates, and post-processing split replicates is based on differences between analytical results of the environmental samples and analytical results of the quality-control samples. Results of these comparisons indicate that variability introduced by sample collection, processing, and handling is low and will not affect interpretation of the environmental data. The differences for most water-quality constituents is on the order of plus or minus 1 or 2 lowest rounding units. A lowest rounding unit is equivalent to the magnitude of the least significant figure reported for analytical results. The use of lowest rounding units avoids some of the difficulty in comparing differences between pairs of samples when concentrations span orders of magnitude and provides a measure of the practical significance of the effect of variability. Analysis of field-blank quality-control samples indicates that with the exception of chloride and silica, no systematic contamination of samples is apparent. Chloride contamination probably was the result of incomplete rinsing of the dilute cleaning solution from the outlet ports of the decaport sample splitter. Silica contamination seems to have been introduced by the blank water. Sampling and processing procedures for water year 1997 have been modified as a result of these analyses.

  16. Manipulative experiments demonstrate how long-term soil moisture changes alter controls of plant water use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc

    Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less

  17. Manipulative experiments demonstrate how long-term soil moisture changes alter controls of plant water use

    DOE PAGES

    Grossiord, Charlotte; Sevanto, Sanna Annika; Limousin, Jean -Marc; ...

    2017-12-14

    Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit ( VPD) and soil moisture variations, and the generality of these effects across forest types and environments usingmore » four manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water ( REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Altogether, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less

  18. Manipulative experiments demonstrate how long-term soil moisture changes alter controls of plant water use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossiord, Charlotte; Sevanto, Sanna; Limousin, Jean-Marc

    Tree transpiration depends on biotic and abiotic factors that might change in the future, including precipitation and soil moisture status. Although short-term sap flux responses to soil moisture and evaporative demand have been the subject of attention before, the relative sensitivity of sap flux to these two factors under long-term changes in soil moisture conditions has rarely been determined experimentally. We tested how long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit (VPD) and soil moisture variations, and the generality of these effects across forest types and environments using fourmore » manipulative sites in mature forests. Exposure to relatively long-term (two to six years) soil moisture reduction decreases tree sap flux sensitivity to daily VPD and relative extractable water (REW) variations, leading to lower sap flux even under high soil moisture and optimal VPD. Inversely, trees subjected to long-term irrigation showed a significant increase in their sensitivity to daily VPD and REW, but only at the most water-limited site. The ratio between the relative change in soil moisture manipulation and the relative change in sap flux sensitivity to VPD and REW variations was similar across sites suggesting common adjustment mechanisms to long-term soil moisture status across environments for evergreen tree species. Overall, our results show that long-term changes in soil water availability, and subsequent adjustments to these novel conditions, could play a critical and increasingly important role in controlling forest water use in the future.« less

  19. Risk factors for buruli ulcer in Ghana-a case control study in the Suhum-Kraboa-Coaltar and Akuapem South Districts of the eastern region.

    PubMed

    Kenu, Ernest; Nyarko, Kofi Mensah; Seefeld, Linda; Ganu, Vincent; Käser, Michael; Lartey, Margaret; Calys-Tagoe, Benedict Nii Laryea; Koram, Kwodwo; Adanu, Richard; Razum, Oliver; Afari, Edwin; Binka, Fred N

    2014-01-01

    Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans. Its exact mode of transmission is not known. Previous studies have identified demographic, socio-economic, health and hygiene as well as environment related risk factors. We investigated whether the same factors pertain in Suhum-Kraboa-Coaltar (SKC) and Akuapem South (AS) Districts in Ghana which previously were not endemic for BU. We conducted a case control study. A case of BU was defined as any person aged 2 years or more who resided in study area (SKC or AS District) diagnosed according to the WHO clinical case definition for BU and matched with age- (+/-5 years), gender-, and community controls. A structured questionnaire on host, demographic, environmental, and behavioural factors was administered to participants. A total of 113 cases and 113 community controls were interviewed. Multivariate conditional logistic regression analysis identified presence of wetland in the neighborhood (OR=3.9, 95% CI=1.9-8.2), insect bites in water/mud (OR=5.7, 95% CI=2.5-13.1), use of adhesive when injured (OR=2.7, 95% CI=1.1-6.8), and washing in the Densu river (OR=2.3, 95% CI=1.1-4.96) as risk factors associated with BU. Rubbing an injured area with alcohol (OR=0.21, 95% CI=0.008-0.57) and wearing long sleeves for farming (OR=0.29, 95% CI=0.14-0.62) showed protection against BU. This study identified the presence of wetland, insect bites in water, use of adhesive when injured, and washing in the river as risk factors for BU; and covering limbs during farming as well as use of alcohol after insect bites as protective factors against BU in Ghana. Until paths of transmission are unraveled, control strategies in BU endemic areas should focus on these known risk factors.

  20. Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability

    PubMed Central

    Treviño-Quintanilla, Luis Gerardo; Freyre-González, Julio Augusto; Martínez-Flores, Irma

    2013-01-01

    In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli. PMID:24396271

  1. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    USGS Publications Warehouse

    Shanley, J.B.; Kendall, C.; Smith, T.E.; Wolock, D.M.; McDonnell, Jeffery J.

    2002-01-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1 topographically controlled increase in surface-saturated area with increasing catchment size; 2 direct runoff over frozen ground; 3 low infiltration in agriculturally compacted soils; 4 differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright ?? 2002 John Wiley and Sons, Ltd.

  2. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA

    NASA Astrophysics Data System (ADS)

    Shanley, James B.; Kendall, Carol; Smith, Thor E.; Wolock, David M.; McDonnell, Jeffrey J.

    2002-02-01

    Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two-component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0-73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new-water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high-intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new-old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including: 1.topographically controlled increase in surface-saturated area with increasing catchment size;2.direct runoff over frozen ground;3.low infiltration in agriculturally compacted soils;4.differences in soil transmissivity, which may be more relevant under dry antecedent conditions. These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales.

  3. Q Conversion Factor Models for Estimating Precipitable Water Vapor for Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ilke; Mekik, Cetin; Gurbuz, Gokhan

    2015-04-01

    precipitable water vapor is the conversion factor Q which is shown in Emardson and Derks' studies and also Jade and Vijayan's. Developing a regional model using either Tm-Ts equation or the conversion factor Q will provide a basis for GNSS Meteorology in Turkey which depends on the analysis of the radiosonde profile data. For this purpose, the radiosonde profiles from Istanbul, Ankara, Diyarbaki r, Samsun, Erzurum, Izmir, Isparta and Adana stations are analyzed with the radiosonde analysis algorithm in the context of the 'The Estimation of Atmospheric Water Vapour with GPS' Project which is funded by the Scientific and Technological Research Council of Turkey (TUBITAK). The Project is also in the COST Action ES1206: Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC). In this study, regional models using the conversion factor Q are used for the determination of precipitable water vapor, and applied to the GNSS derived wet tropospheric zenith delays. Henceforth, the estimated precipitable water vapor and the precipitable water vapor obtained from the radiosonde station are compared. The average of the differences between RS and models for Istanbul and Ankara stations are obtained as 2.0±1.6 mm, 1.6±1.6 mm, respectively.

  4. Determination of immersion factors for radiance sensors in marine and inland waters: a semi-analytical approach using refractive index approximation

    NASA Astrophysics Data System (ADS)

    Dev, Pravin J.; Shanmugam, P.

    2016-05-01

    Underwater radiometers are generally calibrated in air using a standard source. The immersion factors are required for these radiometers to account for the change in the in-water measurements with respect to in-air due to the different refractive index of the medium. The immersion factors previously determined for RAMSES series of commercial radiometers manufactured by TriOS are applicable to clear oceanic waters. In typical inland and turbid productive coastal waters, these experimentally determined immersion factors yield significantly large errors in water-leaving radiances (Lw) and hence remote sensing reflectances (Rrs). To overcome this limitation, a semi-analytical method with based on the refractive index approximation is proposed in this study, with the aim of obtaining reliable Lw and Rrs from RAMSES radiometers for turbid and productive waters within coastal and inland water environments. We also briefly show the variation of pure water immersion factors (Ifw) and newly derived If on Lw and Rrs for clear and turbid waters. The remnant problems other than the immersion factor coefficients such as transmission, air-water and water-air Fresnel's reflectances are also discussed.

  5. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  6. Ecotechnology: basis of a new immission concept in water pollution control.

    PubMed

    Benndorf, J

    2005-01-01

    Beyond the traditional load reduction also an ecosystem-internal mechanism can be used to minimise the effects of water pollution. The control of the internal mechanisms is achieved through the optimisation of the ecosystem structure. This ecotechnology principle is based on the idea to reduce as much as possible the gap between the current (suboptimal) structural status and the optimum structure by intentional manipulations. The spectrum of such manipulations is very broad. A few examples are demonstrated. They comprise physical (e.g. stream morphology), chemical (e.g. enhancing the redox potential at the sediment-water interface) and biological (e.g. enhancing stocks of predatory fishes) control measures. It can be supposed that a new immission concept including the ecotechnology principle could be much more adequate to the demand of modern water pollution control than the traditional emission and imission concepts.

  7. Water in Fire Control--Basic Training Course.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    Prepared by a team of fire control officers, the training guide is designed to help fire crewmen learn the fundamentals of water use. The entire package can be used for a complete course or individual lessons and can be adapted to specific training needs. Throughout the guide, emphasis is placed on one primary training objective, performance in…

  8. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.

    PubMed

    Yin, Yongguang; Yang, Xiaoya; Zhou, Xiaoxia; Wang, Weidong; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2015-08-01

    The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments. Copyright © 2015. Published by Elsevier B.V.

  9. Hydrodynamic Controls on Carbon Dioxide Efflux from Inland Waters

    NASA Astrophysics Data System (ADS)

    Long, H. E.; Waldron, S.; Hoey, T.; Newton, J.; Quemin, S.

    2013-12-01

    Intensive research has been undertaken on carbon dioxide efflux from lakes, estuaries and oceans, but much less attention has been given to rivers and streams, especially lower order streams. River systems are often over-saturated with carbon dioxide and so tend to act as sources of carbon dioxide to the atmosphere. It has been thought that rivers act as pipes carrying this terrestrial carbon to the oceans. However, recent studies have shown that a significant amount of the carbon is reprocessed within the system in a series of transformations and losses. Fluvial evasion of carbon dioxide is now recognised to be a significant component of carbon cycles, however the factors controlling carbon dioxide efflux and its magnitude remain poorly understood and quantified. This research aims to quantify, and better understand the controls on, freshwater carbon dioxide evasion. Data are presented here from field measurements that commenced in Sept 2013 in two contrasting Scottish rivers: the River Kelvin which has a large (335 km.sq) part-urban catchment with predominantly non-peat soils and Drumtee Water, a small (9.6 km.sq) rural catchment of peat soils and agricultural land. Using a floating chamber with the headspace connected to an infrared gas analyser to measure changes in carbon dioxide concentration, efflux rates from 0.22 - 47.4 μmol CO2/m.sq/sec were measured, these close to the middle of the range of previously reported values. At one site on the River Kelvin in May 2013 an influx of -0.61 - -3.53 μmol CO2/m.sq/sec was recorded. Whereas previous research finds carbon dioxide efflux to increase with decreasing river size and a more organic-rich soil catchment, here the controls on carbon dioxide evasion are similar across the contrasting catchments. Carbon dioxide evasion shows seasonality, with maximum fluxes in the summer months being up to twice as high as the winter maxima. Linear regression demonstrates that evasion increases with increased flow velocity

  10. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing

    PubMed Central

    Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4°C (alpha-helix dominated silk I structure), to highest content of ~60% crystallinity at 100°C (beta-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature controlled regulation of water vapor, to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods which use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties. PMID:21425769

  11. Factor structure and validation of the Attentional Control Scale.

    PubMed

    Judah, Matt R; Grant, DeMond M; Mills, Adam C; Lechner, William V

    2014-04-01

    The Attentional Control Scale (ACS; Derryberry & Reed, 2002) has been used to assess executive control over attention in numerous studies, but no published data have examined the factor structure of the English version. The current studies addressed this need and tested the predictive and convergent validity of the ACS subscales. In Study 1, exploratory factor analysis yielded a two-factor model with Focusing and Shifting subscales. In Study 2, confirmatory factor analysis supported this model and suggested superior fit compared to the factor structure of the Icelandic version (Ólafsson et al., 2011). Study 3 examined correlations between the ACS subscales and measures of working memory, anxiety, and cognitive control. Study 4 examined correlations between the subscales and reaction times on a mixed-antisaccade task, revealing positive correlations for antisaccade performance and prosaccade latency with Focusing scores and between switch trial performance and Shifting scores. Additionally, the findings partially supported unique relationships between Focusing and trait anxiety and between Shifting and depression that have been noted in recent research. Although the results generally support the validity of the ACS, additional research using performance-based tasks is needed.

  12. [Case-control study on influence factors of birth defects].

    PubMed

    Xiu, Xin-hong; Yuan, Li; Wang, Xiao-ming; Chen, Yu-hua; Wan, Ai-hua; Fu, Ping

    2011-07-01

    To investigate the influence factors of birth defects. The congenital malformational fetuses born from 13 week of gestation to 7 days after birth were selected as the study group between April 1st, 2009 and March 31st, 2010. The health born fetuses were set as control in the same period. Case-control and the three-level of monitor network of birth defects were used in the study in the participating 75 hospitals (Qingdao Women and Children's Medical Center, Affiliated Hospital of Medical College Qingdao University, Qingdao Municipal Hospital, etc.). The study and control group's parents were interviewed by an uniformed questionnaire which was designed specially with influence factors of birth defects. (1) There are 466 congenital malformational fetuses in the total of 77 231 fetuses collected in 75 hospitals. The congenital malformational rate accounts for about 6.034‰. The top six defect diseases were congenital heart disease (112 cases), total harelip (cleft lip; cleft lip with palate: 85 cases), polydactyly (53 cases), neural tube defects (38 cases), congenital hydrocephalus (37 cases) and limb reduction defect (27 cases) in turn, which amounts to 353 cases (54.48%, 353/648). (2) Their mother education level in the birth-defect group (25.6%) were significantly lower than that in control group (30.0%, P<0.05). (3) The rate of passive smoking, drinking, raising pets of the parents in birth-defect group were significantly higher than that in control group (P<0.05). (4) The rate of exposure to harmful chemical and physical factors of mothers in birth defects group (13.9% and 20.5%, respectively) was higher than that in control group (1.1% and 11.7%, respectively), the difference between which were significant (P<0.01). The rate of disease (34.3%), fever (13.1%), taking drugs (33.8%) in pregnancy period in birth defect group were higher than that in control group (13.5%, 1.5% and 9.9%, respectively), the difference between which were significant (P<0.01). The rate

  13. Confirmatory Factor Analysis of the Cancer Locus of Control Scale.

    ERIC Educational Resources Information Center

    Henderson, Jessica W.; Donatelle, Rebecca J.; Acock, Alan C.

    2002-01-01

    Conducted a confirmatory factor analysis of the Cancer Locus of Control scale (M. Watson and others, 1990), administered to 543 women with a history of breast cancer. Results support a three-factor model of the scale and support use of the scale to assess control dimensions. (SLD)

  14. Optimizing Stream Water Mercury Sampling for Calculation of Fish Bioaccumulation Factors

    EPA Science Inventory

    Mercury (Hg) bioaccumulation factors (BAFs) for game fishes are widely employed for monitoring, assessment, and regulatory purposes. Mercury BAFs are calculated as the fish Hg concentration (Hgfish) divided by the water Hg concentration (Hgwater) and, consequently, are sensitive ...

  15. [Case-control study of risk factors associated with constipation. The FREI Study].

    PubMed

    Comas Vives, A; Polanco Allué, I

    2005-04-01

    Children represent one of the patient groups most affected by constipation. Our objective was to identify and describe the risk factors associated with childhood constipation. The study had a case-control, retrospective, open and multicenter design. Clinical data on possible risk factors were collected through an ad-hoc questionnaire. Two groups were studied: children with and without constipation. Nine hundred twenty-one children were recruited; of these, 898 (97.6%) were included in the statistical analysis. There were 408 (45.4%) children in the constipated group and 490 (54.5%) in the non-constipated group. Most of the children with constipation (53.6%) had a maternal history of constipation compared with 21.4% of children without constipation (p < 0.05). More than half (53.2%) of the constipated children reported a lack of regularity in their toilet habits while 64.9 % of the children without constipation went to the toilet regularly. Toilet training started slightly earlier (at 3 years) in children without constipation (93.2%) than in those with the disorder (83.8%) (p < 0.05). At school, 57.4% of the children with constipation never used the toilet compared with 26.8% of those without constipation (p < 0.05). A total of 73.4% of children with constipation drank less than four glasses of water per day compared with 47.1% of those without constipation (p < 0.05). Consumption of vegetables and legumes in the diet was significantly lower in children with constipation than in those without (p < 0.05). The risk factors linked to childhood constipation found in this study were a familial history of constipation, irregular toilet habits, low dietary fiber contents and no fruit intake. The main preventive factors against constipation were water and vegetable consumption and training on the use of the toilet at school. Daily toilet training and dietary changes are needed to prevent constipation among children and to achieve regular defecation. This preventive

  16. DBP CONTROL IN DRINKING WATER: COST AND PERFORMANCE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) is currently attempting to balance the complex trade-offs in chemical and microbial risks associated with controlling disinfection and disinfection byproducts (D/DBP) in drinking water. In attempting to achieve this balance, the...

  17. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes.

    PubMed

    Steinberg, S L; Henninger, D L

    1997-12-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  18. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Henninger, D. L.

    1997-01-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  19. Synthesis of public water supply use in the United States: Spatio-temporal patterns and socio-economic controls

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, A.; Sabo, J. L.; Larson, K. L.; Seo, S. B.; Sinha, T.; Bhowmik, R.; Vidal, A. Ruhi; Kunkel, K.; Mahinthakumar, G.; Berglund, E. Z.; Kominoski, J.

    2017-07-01

    Recent U.S. Geological Survey water-use report suggests that increasing water-use efficiency could mitigate the supply-and-demand imbalance arising from changing climate and growing population. However, this rich data have neither analyzed to understand the underlying patterns, nor have been investigated to identify the factors contributing to this increased efficiency. A national-scale synthesis of public supply withdrawals ("withdrawals") reveals a strong North-south gradient in public supply water use with the increasing population in the South contributing to increased withdrawal. Contrastingly, a reverse South-north gradient exists in per capita withdrawals ("efficiency"), with northern states consistently improving the efficiency, while the southern states' efficiency declined. Our analyses of spatial patterns of per capita withdrawals further demonstrate that urban counties exhibit improved efficiency over rural counties. Improved efficiency is also demonstrated over high-income and well-educated counties. Given the potential implications of the findings in developing long-term water conservation measures (i.e., increasing block rates), we argue the need for frequent updates, perhaps monthly to annual, of water-use data for identifying effective strategies that control the water-use efficiency in various geographic settings under a changing climate.

  20. Geographical Distribution Patterns of Iodine in Drinking-Water and Its Associations with Geological Factors in Shandong Province, China

    PubMed Central

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-01-01

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran’s I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors. PMID:24852390

  1. Geographical distribution patterns of iodine in drinking-water and its associations with geological factors in Shandong Province, China.

    PubMed

    Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu

    2014-05-19

    County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.

  2. Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options

    PubMed Central

    2014-01-01

    Objective Echinococcosis is a major parasitic zoonosis of public health importance in western China. In 2004, the Chinese Ministry of Health estimated that 380,000 people had the disease in the region. The Qinghai-Tibet Plateau is highly co-endemic with both alveolar echinococcosis (AE) and cystic echinococcosis (CE). In the past years, the Chinese government has been increasing the financial support to control the diseases in this region. Therefore, it is very important to identify the significant risk factors of the diseases by reviewing studies done in the region in the past decade to help policymakers design appropriate control strategies. Review Selection criteria for which literature to review were firstly defined. Medline, CNKI (China National Knowledge Infrastructure), and Google Scholar were systematically searched for literature published between January 2000 and July 2011. Significant risk factors found by single factor and/or multiple factors analysis were listed, counted, and summarized. Literature was examined to check the comparability of the data; age and sex specific prevalence with same data structures were merged and used for further analysis. A variety of assumed social, economical, behavioral, and ecological risk factors were studied on the Plateau. Those most at risk were Tibetan herdsmen, the old and female in particular. By analyzing merged comparable data, it was found that females had a significant higher prevalence, and a positive linearity relationship existed between echinococcosis prevalence and increasing age. In terms of behavioral risk factors, playing with dogs was mostly correlated with CE and/or AE prevalence. In terms of hygiene, employing ground water as the drinking water source was significantly correlated with CE and AE prevalence. For definitive hosts, dog related factors were most frequently identified with prevalence of CE or/and AE; fox was a potential risk factor for AE prevalence only. Overgrazing and deforestation

  3. Review of risk factors for human echinococcosis prevalence on the Qinghai-Tibet Plateau, China: a prospective for control options.

    PubMed

    Wang, Qian; Huang, Yan; Huang, Liang; Yu, Wenjie; He, Wei; Zhong, Bo; Li, Wei; Zeng, Xiangman; Vuitton, Dominique A; Giraudoux, Patrick; Craig, Philip S; Wu, Weiping

    2014-01-29

    Echinococcosis is a major parasitic zoonosis of public health importance in western China. In 2004, the Chinese Ministry of Health estimated that 380,000 people had the disease in the region. The Qinghai-Tibet Plateau is highly co-endemic with both alveolar echinococcosis (AE) and cystic echinococcosis (CE). In the past years, the Chinese government has been increasing the financial support to control the diseases in this region. Therefore, it is very important to identify the significant risk factors of the diseases by reviewing studies done in the region in the past decade to help policymakers design appropriate control strategies. Selection criteria for which literature to review were firstly defined. Medline, CNKI (China National Knowledge Infrastructure), and Google Scholar were systematically searched for literature published between January 2000 and July 2011. Significant risk factors found by single factor and/or multiple factors analysis were listed, counted, and summarized. Literature was examined to check the comparability of the data; age and sex specific prevalence with same data structures were merged and used for further analysis.A variety of assumed social, economical, behavioral, and ecological risk factors were studied on the Plateau. Those most at risk were Tibetan herdsmen, the old and female in particular. By analyzing merged comparable data, it was found that females had a significant higher prevalence, and a positive linearity relationship existed between echinococcosis prevalence and increasing age. In terms of behavioral risk factors, playing with dogs was mostly correlated with CE and/or AE prevalence. In terms of hygiene, employing ground water as the drinking water source was significantly correlated with CE and AE prevalence. For definitive hosts, dog related factors were most frequently identified with prevalence of CE or/and AE; fox was a potential risk factor for AE prevalence only. Overgrazing and deforestation were significant for

  4. Quality control of bottled and vended water in California: A review and comparison to tap water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darby, J.L.; Allen, L.

    1994-04-01

    Current regulations and compliance for quality control of bottled and vended water in California are compared with that of the tap water industry in this research. Over 35% of the bottled water sold in the US is consumed in California where a third of the residents use such water as a primary source of drinking water. California is one of several states that regulates bottled water more rigorously than the federal government. In California, water quality standards for the two industries are comparable except that many of the organic standards for bottled water are applicable only to the source water,more » a concern due to potential organic contamination during processing. Reporting requirements, significantly less stringent for bottled water, allow considerable latitude in assessing risks and make assessment of compliance difficult. Based on available statistics, compliance for the two industries is comparable; the majority of violations posed no health risks. For both industries, small systems comprised the majority of violations whereas large systems had excellent compliance rates.« less

  5. ALTERNATIVE POLICIES FOR CONTROLLING NONPOINT AGRICULTURAL SOURCES OF WATER POLLUTION

    EPA Science Inventory

    This study of policies for controlling water pollution from nonpoint agricultural sources includes a survey of existing state and Federal programs, agencies, and laws directed to the control of soil erosion. Six policies representing a variety of approaches to this pollution prob...

  6. Factors Affecting Source-Water Quality after Disturbance of Forests by Wildfire

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Martin, D. A.; McCleskey, R. B.; Writer, J. H.

    2015-12-01

    Forests yield high-quality water supplies to communities throughout the world, in part because forest cover reduces flooding and the consequent transport of suspended and dissolved constituents to surface water. Disturbance by wildfire reduces or eliminates forest cover, leaving watersheds susceptible to increased surface runoff during storms and reduced ability to retain contaminants. We assessed water-quality response to hydrologic events for three years after a wildfire in the Fourmile Creek Watershed, near Boulder, Colorado, and found that hydrologic and geochemical responses downstream of a burned area were primarily driven by small, brief convective storms that had relatively high, but not unusual, rainfall intensity. Total suspended sediment, dissolved organic carbon, nitrate, and manganese concentrations were 10-156 times higher downstream of a burned area compared to upstream, and water quality was sufficiently impaired to pose water-treatment concerns. The response in both concentration and yield of water-quality constituents differed depending on source availability and dominant watershed processes controlling the constituent. For example, while all constituent concentrations were highest during storm events, annual sediment yields downstream of the burned area were controlled by storm events and subsequent mobilization, whereas dissolved organic carbon yields were more dependent on spring runoff from upstream areas. The watershed response was affected by a legacy of historical disturbance: the watershed had been recovering from extensive disturbance by mining, railroad and road development, logging, and fires in the late 19th and early 20th centuries, and we observed extensive erosion of mine waste in response to these summer storms. Therefore, both storm characteristics and historical disturbance in a burned watershed must be considered when evaluating the role of wildfire on water quality.

  7. Controlling Factors of Soil CO2 Efflux in Pinus yunnanensis across Different Stand Ages

    PubMed Central

    Wang, Shaojun; Zhao, Jixia; Chen, Qibo

    2015-01-01

    The characteristics of soil respiration (Rs) across different stand ages have not been well investigated. In this study, we identified temporal variation of Rs and its driving factors under three nature forest stands (e.g. 15-yr-old, 30-yr-old, and 45-yr-old) of Pinus yunnanensis in the Plateau of Mid-Yunnan, China. No consistent tendency was found on the change of Rs with the stand ages. Rs was ranked in the order of 30-yr-old > 45-yr-old >15-yr-old. Rs in 15-yr-old stand was the most sensitive to soil temperature (Ts) among the three sites. However, Ts only explained 30-40% of the seasonal dynamics of Rs at the site. Soil water content (Sw) was the major controlling factor of temporal variation at the three sites. Sw explained 88-93% of seasonal variations of Rs in the 30-yr-old stand, and 63.7-72.7% in the 15-yr-old and 79.1-79.6% in the 45-yr-old stands. In addition, we found that pH, available nitrogen (AN), C/N and total phosphorus (TP) contributed significantly to the seasonal variation of Rs. Sw was significantly related with pH, total nitrogen (TN), AN and TP, suggesting that Sw can affect Rs through improving soil acid-base property and soil texture, and increasing availability of soil nutrient. The results indicated that besides soil water, soil properties (e. g. pH, AN, C/N and TP) were also the important in controlling the temporal variations of Rs across different stand ages in the nature forestry. PMID:25996943

  8. Storm water management in an urban catchment: effects of source control and real-time management of sewer systems on receiving water quality.

    PubMed

    Frehmann, T; Nafo, I; Niemann, A; Geiger, W F

    2002-01-01

    For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general.

  9. Spatial Variability of Metals in Surface Water and Sediment in the Langat River and Geochemical Factors That Influence Their Water-Sediment Interactions

    PubMed Central

    Lim, Wan Ying; Aris, Ahmad Zaharin; Zakaria, Mohamad Pauzi

    2012-01-01

    This paper determines the controlling factors that influence the metals' behavior water-sediment interaction facies and distribution of elemental content (75As, 111Cd, 59Co, 52Cr, 60Ni, and 208Pb) in water and sediment samples in order to assess the metal pollution status in the Langat River. A total of 90 water and sediment samples were collected simultaneously in triplicate at 30 sampling stations. Selected metals were analyzed using ICP-MS, and the metals' concentration varied among stations. Metal concentrations of water ranged between 0.08–24.71 μg/L for As, <0.01–0.53 μg/L for Cd, 0.06–6.22 μg/L for Co, 0.32–4.67 μg/L for Cr, 0.80–24.72 μg/L for Ni, and <0.005–6.99 μg/L for Pb. Meanwhile, for sediment, it ranged between 4.47–30.04 mg/kg for As, 0.02–0.18 mg/kg for Cd, 0.87–4.66 mg/kg for Co, 4.31–29.04 mg/kg for Cr, 2.33–8.25 mg/kg for Ni and 5.57–55.71 mg/kg for Pb. The average concentration of studied metals in the water was lower than the Malaysian National Standard for Drinking Water Quality proposed by the Ministry of Health. The average concentration for As in sediment was exceeding ISQG standards as proposed by the Canadian Sediment Quality Guidelines. Statistical analyses revealed that certain metals (As, Co, Ni, and Pb) were generally influenced by pH and conductivity. These results are important when making crucial decisions in determining potential hazardous levels of these metals toward humans. PMID:22919346

  10. Modeling water clarity in oceans and coasts

    EPA Science Inventory

    In oceans and coastal waters, phytoplankton is the primary producer of organic compounds which form the base for the food chain. The concentration of phytoplankton is a major factor controlling water clarity and the depth to which light penetrates in the water column. The light i...

  11. Process Control for Precipitation Prevention in Space Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  12. Identification, assessment, and control of hazards in water supply: experiences from Water Safety Plan implementations in Germany.

    PubMed

    Mälzer, H-J; Staben, N; Hein, A; Merkel, W

    2010-01-01

    According to the recommendations of the World Health Organization (WHO) for Water Safety Plans (WSP), a Technical Risk Management was developed, which considers standard demands in drinking water treatment in Germany. It was already implemented at several drinking water treatment plants of different size and treatment processes in Germany. Hazards affecting water quality, continuity, and the reliability of supply from catchment to treatment and distribution could be identified by a systematic approach, and suitable control measures were defined. Experiences are presented by detailed examples covering methods, practical consequences, and further outcomes. The method and the benefits for the water suppliers are discussed and an outlook on the future role of WSPs in German water supply is given.

  13. Evaluation of factors important in modeling plasma concentrations of tetracycline hydrochloride administered in water in swine.

    PubMed

    Mason, Sharon E; Almond, Glen W; Riviere, Jim E; Baynes, Ronald E

    2012-10-01

    To model the plasma tetracycline concentrations in swine (Sus scrofa domestica) treated with medication administered in water and determine the factors that contribute to the most accurate predictions of measured plasma drug concentrations. Plasma tetracycline concentrations measured in blood samples from 3 populations of swine. Data from previous studies provided plasma tetracycline concentrations that were measured in blood samples collected from 1 swine population at 0, 4, 8, 12, 24, 32, 48, 56, 72, 80, 96, and 104 hours and from 2 swine populations at 0, 12, 24, 48, and 72 hours hours during administration of tetracycline hydrochloride dissolved in water. A 1-compartment pharmacostatistical model was used to analyze 5 potential covariate schemes and determine factors most important in predicting the plasma concentrations of tetracycline in swine. 2 models most accurately predicted the tetracycline plasma concentrations in the 3 populations of swine. Factors of importance were body weight or age of pig, ambient temperature, concentration of tetracycline in water, and water use per unit of time. The factors found to be of importance, combined with knowledge of the individual pharmacokinetic and chemical properties of medications currently approved for administration in water, may be useful in more prudent administration of approved medications administered to swine. Factors found to be important in pharmacostatistical models may allow prediction of plasma concentrations of tetracycline or other commonly used medications administered in water. The ability to predict in vivo concentrations of medication in a population of food animals can be combined with bacterial minimum inhibitory concentrations to decrease the risk of developing antimicrobial resistance.

  14. Factors controlling dimethylsulfide emission from salt marshes

    NASA Technical Reports Server (NTRS)

    Dacey, John W. H.; Wakeham, S. G.; Howes, B. L.

    1985-01-01

    The factors that control the emission of methylated gases from salt marshes are being studied. Research focusses on dimethylsulfide (DMS) formation and the mechanism of DMS and CH4 emission to the atmosphere. The approach is to consider the plants as valves regulating the emission of methylated gases to the atmosphere with the goal of developing appropriate methods for emission measurement. In the case of CH4, the sediment is the source and transport to the atmosphere occurs primarily through the internal gas spaces in the plants. The source of DMS appears to be dimethyl sulfoniopropionate (DMSP) which may play a role in osmoregulation in plant tissues. Concentrations of DMSP in leaves are typically several-fold higher than in roots and rhizomes. Even so, the large below ground biomass of this plant means that 2/3 of the DMSP in the ecosystem is below ground on the aerial basis. Upon introduction to sediment water, DMSP rapidly decomposes to DMS and acrylic acid. The solubility of a gas (its equilibrium vapor pressure) is a fundamental aspect of gas exchange kinetics. The first comprehensive study was conducted of DMS solubility in freshwater and seawater. Data suggest that the Setchenow relation holds for H at intermediate salinities collected. These data support the concept that the concentration of DMS in the atmosphere is far from equilibrium with seawater.

  15. Risk Factors Early in the 2010 Cholera Epidemic, Haiti

    PubMed Central

    Cartwright, Emily; Loharikar, Anagha; Routh, Janell; Gaines, Joanna; Fouché, Marie-Délivrance Bernadette; Jean-Louis, Reginald; Ayers, Tracy; Johnson, Dawn; Tappero, Jordan W.; Roels, Thierry H.; Archer, W. Roodly; Dahourou, Georges A.; Mintz, Eric; Quick, Robert; Mahon, Barbara E.

    2011-01-01

    During the early weeks of the cholera outbreak that began in Haiti in October 2010, we conducted a case–control study to identify risk factors. Drinking treated water was strongly protective against illness. Our results highlight the effectiveness of safe water in cholera control. PMID:22099118

  16. Water hammer prediction and control: the Green's function method

    NASA Astrophysics Data System (ADS)

    Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi

    2012-04-01

    By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.

  17. Effects of water-control structures on hydrologic and water-quality characteristics in selected agricultural drainage canals in eastern North Carolina

    USGS Publications Warehouse

    Treece, M.W.; Jaynes, M.L.

    1994-01-01

    November of water into and out of tidally affected canals in eastern North Carolina was documented before and after the installation of water-control structures. Water levels in five of the canals downstream from the water-control structures were controlled primarily by water-level fluctuations in estuarine receiving waters. Water-control structures also altered upstream water levels in all canals. Water levels were lowered upstream from tide gates, but increased upstream from flashboard risers. Both types of water-control structures attenuated the release of runoff following rainfall events, but in slightly different ways. Tide gates appeared to reduce peak discharge rates associated with rainfall, and flashboard risers lengthened the duration of runoff release. Tide gates had no apparent effect on pH, dissolved oxygen, suspended-sediment, or total phosphorus concentrations downstream from the structures. Specific conductance measured from composite samples collected with automatic samples increased downstream of tide gates after installation. Median concentrations of nitrite plus nitrate nitrogen were near the minimum detection level throughout the study; however, the number of observations of concentrations exceeding 0.1 milligram per liter dropped significantly after tide gates were installed. Following tide-gate installation, instantaneous loadings of nitrite plus nitrate nitrogen were significantly reduced at one test site, but this reduction was not observed at the other test site. Loadings of other nutrient species and suspended sediment did not change at the tide-gate test sites after tide-gate installation. Specific conductance was lower in the Beaufort County canals than in the Hyde County canals. Although there was a slight increase in median values at the flashboard-riser sites, the mean and maximum values declined substantially downstream from the risers following installation. This decline of specific conductance in the canals occurred despite a

  18. Endotoxins: The Critical Risk Factor in Reclaimed Water via Inhalation Exposure.

    PubMed

    Xue, Jinling; Zhang, Jinshan; Xu, Bi; Xie, Jiani; Wu, Wenzhao; Lu, Yun

    2016-11-01

    The use of reclaimed water for nonpotable uses requires consideration of potential adverse health effects. Considering that inhalation can be a significant route of transmission of microorganisms and inflammatory agents, this study used a mouse model to test the possible adverse effects of reclaimed water use during car washing where aerosols are generated. Intensive innate immune responses were found in the lungs after acute exposure, and the lavage polymorphonuclear cell proportion was the most sensitive end point. Four types of evidence are presented to demonstrate that the main risk factor that initiates innate inflammation is the free endotoxin. (1) Small molecules (<10 kDa) cannot induce inflammation. (2) The endotoxin levels of 11 water samples from five different plants showed positive correlations with inflammatory responses. (3) Actual water samples showed similar activities with free endotoxins other than bacterially bound endotoxins. (4) Specific removal of endotoxins with polymyxin B affinity chromatography further confirmed the role of free endotoxins. It is noteworthy that 62.9% of the investigated tertiary-treated water had endotoxin levels higher than the allowable acute threshold (120 endotoxin units/mL) under the hypothesized car wash condition, which strongly suggests the need to carefully consider the water treatment steps required to produce safe water for various reclaimed water end uses.

  19. Pesticides in ground water: distribution, trends, and governing factors

    USGS Publications Warehouse

    Barbash, Jack; Resek, Elizabeth A.

    1997-01-01

    A comprehensive review of published information on the distribution and behavior of pesticides and their transformation products in ground water indicates that pesticides from every chemical class have been detected in ground waters of the United States. Many of these compounds are commonly present at low concentrations in ground water beneath agricultural land. Little information is available on their occurrence beneath non-agricultural land, although the intensity of their use in such areas (on lawns, golf courses, rights of way, timberlands, etc.) is often comparable to, or greater than agricultural use. Information on pesticides in ground water is not sufficient to provide either a statistically representative view of pesticide occurrence in ground water across the United States, or an indication of long-term trends or changes in the severity or extent of this contamination over the past three decades. This is largely due to wide variations in analytical detection limits, well selection procedures, and other design features among studies conducted in different areas or at different times. Past approaches have not been well suited for distinguishing "point source" from "nonpoint source" pesticide contamination. Among the variety of natural and anthropogenic factors examined, those that appear to be most strongly associated with the intensity of pesticide contamination of ground water are the depth, construction and age of the sampled wells, the amount of recharge (by precipitation or irrigation), and the depth of tillage. Approaches commonly employed for predicting pesticide distributions in the subsurface--including computer simulations, indicator solutes (e.g., nitrate or tritium), and ground-water vulnerability assessments--generally provide unreliable predictions of pesticide occurrence in ground water. Such difficulties may arise largely from a general failure to account for the preferential transport of pesticides in the subsurface. Significant

  20. Deriving Scaling Factors Using a Global Hydrological Model to Restore GRACE Total Water Storage Changes for China's Yangtze River Basin

    NASA Technical Reports Server (NTRS)

    Long, Di; Yang, Yuting; Yoshihide, Wada; Hong, Yang; Liang, Wei; Chen, Yaning; Yong, Bin; Hou, Aizhong; Wei, Jiangfeng; Chen, Lu

    2015-01-01

    This study used a global hydrological model (GHM), PCR-GLOBWB, which simulates surface water storage changes, natural and human induced groundwater storage changes, and the interactions between surface water and subsurface water, to generate scaling factors by mimicking low-pass filtering of GRACE signals. Signal losses in GRACE data were subsequently restored by the scaling factors from PCR-GLOBWB. Results indicate greater spatial heterogeneity in scaling factor from PCR-GLOBWB and CLM4.0 than that from GLDAS-1 Noah due to comprehensive simulation of surface and subsurface water storage changes for PCR-GLOBWB and CLM4.0. Filtered GRACE total water storage (TWS) changes applied with PCR-GLOBWB scaling factors show closer agreement with water budget estimates of TWS changes than those with scaling factors from other land surface models (LSMs) in China's Yangtze River basin. Results of this study develop a further understanding of the behavior of scaling factors from different LSMs or GHMs over hydrologically complex basins, and could be valuable in providing more accurate TWS changes for hydrological applications (e.g., monitoring drought and groundwater storage depletion) over regions where human-induced interactions between surface water and subsurface water are intensive.

  1. Source of drinking water and other risk factors for dental fluorosis in Sri Lanka.

    PubMed

    van der Hoek, Wim; Ekanayake, Lilani; Rajasooriyar, Lorraine; Karunaratne, Ravi

    2003-09-01

    This study was done to describe the association between source of drinking water and other potential risk factors with dental fluorosis. Prevalence of dental fluorosis among 518 14-year-old students in the south of Sri Lanka was 43.2%. The drinking water sources of the students were described and fluoride samples were taken. There was a strong association between water fluoride level and prevalence of fluorosis. Tea drinking before 7 years of age was also an independent risk factor in a multivariate analysis. Having been fed with formula bottle milk as an infant seemed to increase the risk although the effect was not statistically significant. No clear effects could be found for using fluoridated toothpaste, occupation of the father, and socio-economic status. Drinking water obtained from surface water sources had lower fluoride levels (median 0.22 mg l(-1)) than water from deep tube wells (median 0.80 mg l(-1)). Most families used shallow dug wells and these had a median fluoride value of 0.48 mg l(-1) but with a wide range from 0.09 to 5.90 mg l(-1). Shallow wells located close to irrigation canals or other surface water had lower fluoride values than wells located further away. Fluoride levels have to be taken into account when planning drinking water projects. From the point of view of prevention of dental fluorosis, drinking water from surface sources or from shallow wells located close to surface water would be preferable.

  2. Does water content or flow rate control colloid transport in unsaturated porous media?

    PubMed

    Knappenberger, Thorsten; Flury, Markus; Mattson, Earl D; Harsh, James B

    2014-04-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (θ - θr)/(θs - θr)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  3. Factors Affecting Domestic Water Consumption in Rural Households upon Access to Improved Water Supply: Insights from the Wei River Basin, China

    PubMed Central

    Fan, Liangxin; Liu, Guobin; Wang, Fei; Geissen, Violette; Ritsema, Coen J.

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use) and cultural backgrounds (age, education). PMID:23977190

  4. Factors affecting domestic water consumption in rural households upon access to improved water supply: insights from the Wei River Basin, China.

    PubMed

    Fan, Liangxin; Liu, Guobin; Wang, Fei; Geissen, Violette; Ritsema, Coen J

    2013-01-01

    Comprehensively understanding water consumption behavior is necessary to design efficient and effective water use strategies. Despite global efforts to identify the factors that affect domestic water consumption, those related to domestic water use in rural regions have not been sufficiently studied, particularly in villages that have gained access to improved water supply. To address this gap, we investigated 247 households in eight villages in the Wei River Basin where three types of improved water supply systems are implemented. Results show that domestic water consumption in liters per capita per day was significantly correlated with water supply pattern and vegetable garden area, and significantly negatively correlated with family size and age of household head. Traditional hygiene habits, use of water appliances, and preference for vegetable gardening remain dominant behaviors in the villages with access to improved water supply. Future studies on rural domestic water consumption should pay more attention to user lifestyles (water appliance usage habits, outdoor water use) and cultural backgrounds (age, education).

  5. Carbon nanotubes as antimicrobial agents for water disinfection and pathogen control.

    PubMed

    Liu, Dan; Mao, Yiqin; Ding, Lijun

    2018-04-01

    Waterborne diseases significantly affect human health and are responsible for high mortality rates worldwide. Antibiotics have been known for decades for treatment of bacterial strains and their overuse and irrational applications are causing increasing bacteria resistance. Therefore, there is a strong need to find alternative ways for efficient water disinfection and microbial control. Carbon nanotubes (CNTs) have demonstrated strong antimicrobial properties due to their remarkable structure. This paper reviews the antimicrobial properties of CNTs, discusses diverse mechanisms of action against microorganisms as well as their applicability for water disinfection and microbial control. Safety concerns, challenges of CNTs as antimicrobial agents and future opportunities for their application in the water remediation process are also highlighted.

  6. Study on Coagulant Dosing Control System of Micro Vortex Water Treatment

    NASA Astrophysics Data System (ADS)

    Fengping, Hu; Qi, Fan; Wenjie, Hu; Xizhen, He; Hongling, Dai

    2018-03-01

    In view of the characteristics of nonlinearity, large time delay and multi disturbance in the process of coagulant dosing in water treatment, it is difficult to control the dosage of coagulant. According to the four indexes of raw water quality parameters (raw water flow, turbidity, pH value) and turbidity of sedimentation tank, the micro vortex coagulation dosing control model is constructed based on BP neural network and GA. The forecast results of BP neural network model are ideal, and after the optimization of GA, the prediction accuracy of the model is partly improved. The prediction error of the optimized network is ±0.5 mg/L, and has a better performance than non-optimized network.

  7. [GIS and scenario analysis aid to water pollution control planning of river basin].

    PubMed

    Wang, Shao-ping; Cheng, Sheng-tong; Jia, Hai-feng; Ou, Zhi-dan; Tan, Bin

    2004-07-01

    The forward and backward algorithms for watershed water pollution control planning were summarized in this paper as well as their advantages and shortages. The spatial databases of water environmental function region, pollution sources, monitoring sections and sewer outlets were built with ARCGIS8.1 as the platform in the case study of Ganjiang valley, Jiangxi province. Based on the principles of the forward algorithm, four scenarios were designed for the watershed pollution control. Under these scenarios, ten sets of planning schemes were generated to implement cascade pollution source control. The investment costs of sewage treatment for these schemes were estimated by means of a series of cost-effective functions; with pollution source prediction, the water quality was modeled with CSTR model for each planning scheme. The modeled results of different planning schemes were visualized through GIS to aid decision-making. With the results of investment cost and water quality attainment as decision-making accords and based on the analysis of the economic endurable capacity for water pollution control in Ganjiang river basin, two optimized schemes were proposed. The research shows that GIS technology and scenario analysis can provide a good guidance to the synthesis, integrity and sustainability aspects for river basin water quality planning.

  8. Power factor improvement in three-phase networks with unbalanced inductive loads using the Roederstein ESTAmat RPR power factor controller

    NASA Astrophysics Data System (ADS)

    Diniş, C. M.; Cunţan, C. D.; Rob, R. O. S.; Popa, G. N.

    2018-01-01

    The paper presents the analysis of a power factor with capacitors banks, without series coils, used for improving power factor for a three-phase and single-phase inductive loads. In the experimental measurements, to improve the power factor, the Roederstein ESTAmat RPR power factor controller can command up to twelve capacitors banks, while experimenting using only six capacitors banks. Six delta capacitors banks with approximately equal reactive powers were used for experimentation. The experimental measurements were carried out with a three-phase power quality analyser which worked in three cases: a case without a controller with all capacitors banks permanently parallel connected with network, and two other cases with power factor controller (one with setting power factor at 0.92 and the other one at 1). When performing experiments with the power factor controller, a current transformer was used to measure the current on one phase (at a more charged or less loaded phase).

  9. Three-phase power factor controller with induced EMF sensing

    NASA Technical Reports Server (NTRS)

    Nola, F. J. (Inventor)

    1984-01-01

    A power factor controller for an ac induction motor is provided which is of the type comprising thyristor switches connected in series with the motor, phase detectors for sensing the motor current and voltage and providing an output proportional to the phase difference between the motor voltage and current, and a control circuit, responsive to the output of the phase detector and to a power factor command signal, for controlling switching of the thyristor. The invention involves sensing the induced emf produced by the motor during the time interval when the thyristor is off and for producing a corresponding feedback signal for controlling switching of the thyristor. The sensed emf is also used to enhance soft starting of the motor.

  10. Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act

    NASA Astrophysics Data System (ADS)

    Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia

    1992-03-01

    This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.

  11. Experience with multiple control groups in a large population-based case-control study on genetic and environmental risk factors.

    PubMed

    Pomp, E R; Van Stralen, K J; Le Cessie, S; Vandenbroucke, J P; Rosendaal, F R; Doggen, C J M

    2010-07-01

    We discuss the analytic and practical considerations in a large case-control study that had two control groups; the first control group consisting of partners of patients and the second obtained by random digit dialling (RDD). As an example of the evaluation of a general lifestyle factor, we present body mass index (BMI). Both control groups had lower BMIs than the patients. The distribution in the partner controls was closer to that of the patients, likely due to similar lifestyles. A statistical approach was used to pool the results of both analyses, wherein partners were analyzed with a matched analysis, while RDDs were analyzed without matching. Even with a matched analysis, the odds ratio with partner controls remained closer to unity than with RDD controls, which is probably due to unmeasured confounders in the comparison with the random controls as well as intermediary factors. However, when studying injuries as a risk factor, the odds ratio remained higher with partner control subjects than with RRD control subjects, even after taking the matching into account. Finally we used factor V Leiden as an example of a genetic risk factor. The frequencies of factor V Leiden were identical in both control groups, indicating that for the analyses of this genetic risk factor the two control groups could be combined in a single unmatched analysis. In conclusion, the effect measures with the two control groups were in the same direction, and of the same order of magnitude. Moreover, it was not always the same control group that produced the higher or lower estimates, and a matched analysis did not remedy the differences. Our experience with the intricacies of dealing with two control groups may be useful to others when thinking about an optimal research design or the best statistical approach.

  12. Sustainable Control of Water-Related Infectious Diseases: A Review and Proposal for Interdisciplinary Health-Based Systems Research

    PubMed Central

    Batterman, Stuart; Eisenberg, Joseph; Hardin, Rebecca; Kruk, Margaret E.; Lemos, Maria Carmen; Michalak, Anna M.; Mukherjee, Bhramar; Renne, Elisha; Stein, Howard; Watkins, Cristy; Wilson, Mark L.

    2009-01-01

    Objective Even when initially successful, many interventions aimed at reducing the toll of water-related infectious disease have not been sustainable over longer periods of time. Here we review historical practices in water-related infectious disease research and propose an interdisciplinary public health oriented systems approach to research and intervention design. Data sources On the basis of the literature and the authors’ experiences, we summarize contributions from key disciplines and identify common problems and trends. Practices in developing countries, where the disease burden is the most severe, are emphasized. Data extraction We define waterborne and water-associated vectorborne diseases and identify disciplinary themes and conceptual needs by drawing from ecologic, anthropologic, engineering, political/economic, and public health fields. A case study examines one of the classes of water-related infectious disease. Data synthesis The limited success in designing sustainable interventions is attributable to factors that include the complexity and interactions among the social, ecologic, engineering, political/economic, and public health domains; incomplete data; a lack of relevant indicators; and most important, an inadequate understanding of the proximal and distal factors that cause water-related infectious disease. Fundamental change is needed for research on water-related infectious diseases, and we advocate a systems approach framework using an ongoing evidence-based health outcomes focus with an extended time horizon. The examples and case study in the review show many opportunities for interdisciplinary collaborations, data fusion techniques, and other advances. Conclusions The proposed framework will facilitate research by addressing the complexity and divergent scales of problems and by engaging scientists in the disciplines needed to tackle these difficult problems. Such research can enhance the prevention and control of water

  13. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    PubMed

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Water, socioeconomic factors, and human herpesvirus 8 infection in Ugandan children and their mothers.

    PubMed

    Mbulaiteye, Sam M; Biggar, Robert J; Pfeiffer, Ruth M; Bakaki, Paul M; Gamache, Christine; Owor, Anchilla M; Katongole-Mbidde, Edward; Ndugwa, Christopher M; Goedert, James J; Whitby, Denise; Engels, Eric A

    2005-04-01

    Human herpesvirus 8 (HHV-8) infection is common in sub-Saharan Africa, but its distribution is uneven. Transmission occurs during childhood within families by unclear routes. We evaluated 600 Ugandan children with sickle cell disease and their mothers for factors associated with HHV-8 seropositivity in a cross-sectional study. HHV-8 serostatus was determined using an HHV-8 K8.1 glycoprotein enzyme immunoassay. Odds ratios for seropositivity were estimated using logistic regression, and factor analysis was used to identify clustering among socioeconomic variables. One hundred seventeen (21%) of 561 children and 166 (34%) of 485 mothers with definite HHV-8 serostatus were seropositive. For children, seropositivity was associated with age, mother's HHV-8 serostatus (especially for children aged 6 years or younger), lower maternal education level, mother's income, and low-status father's occupation (P < 0.05 for all). Using communal standpipe or using surface water sources were both associated with seropositivity (OR 2.70, 95% CI 0.80-9.06 and 4.02, 95% CI 1.18-13.7, respectively) as compared to using private tap water. These associations remained, albeit attenuated, after adjusting for maternal education and child's age (P = 0.08). In factor analysis, low scores on environmental and family factors, which captured household and parental characteristics, respectively, were positively associated with seropositivity (P(trend) < 0.05 for both). For mothers, HHV-8 seropositivity was significantly associated with water source and maternal income. HHV-8 infection in Ugandan children was associated with lower socioeconomic status and using surface water. Households with limited access to water may have less hygienic practices that increase risk for HHV-8 infection.

  15. Community Water Improvement, Household Water Insecurity, and Women's Psychological Distress: An Intervention and Control Study in Ethiopia.

    PubMed

    Stevenson, E G J; Ambelu, A; Caruso, B A; Tesfaye, Y; Freeman, M C

    2016-01-01

    Over 650 million people worldwide lack access to safe water supplies, and even among those who have gained access to 'improved' sources, water may be seasonally unreliable, far from homes, expensive, and provide insufficient quantity. Measurement of water access at the level of communities and households remains crude, and better measures of household water insecurity are urgently needed to inform needs assessments and monitoring and evaluation. We set out to assess the validity of a quantitative scale of household water insecurity, and to investigate (1) whether improvements to community water supply reduce water insecurity, (2) whether water interventions affect women's psychological distress, and (3) the impacts of water insecurity on psychological distress, independent of socio-economic status, food security, and harvest quality. Measures were taken before and one to six months after a community water supply improvement in three villages in rural northern Ethiopia. Villages similar in size and access to water sources and other amenities did not receive interventions, and served as controls. Household water insecurity was assessed using a 21-item scale based on prior qualitative work in Ethiopia. Women's psychological distress was assessed using the WHO Self-Reporting Questionnaire (SRQ-20). Respondents were either female heads of household or wives of the heads of household (n = 247 at baseline, n = 223 at endline); 123 households provided data at both rounds. The intervention was associated with a decline of approximately 2 points on the water insecurity scale between baseline and endline compared to the control (beta -1.99; 95% CI's -3.15, -0.84). We did not find evidence of impact of the intervention on women's psychological distress. Water insecurity was, however, predictive of psychological distress (p <0.01), independent of household food security and the quality of the previous year's harvest. These results contribute to the construct validity of our

  16. Water Injected Turbomachinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.

  17. Real-time Control of sewer pumps by using ControlNEXT to smooth inflow at Waste Water Treatment Plant Garmerwolde

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; van Nooijen, Ronald; Kooij, Kees; Postma, Bokke

    2016-04-01

    The Garmerwolde waste water treatment plant (WWTP) in the Groningen area of the Netherlands, receives waste water from a large area. That waste water is collected from many sewer systems and transported to the WWTP through pressurized pipes. The supply of waste water to the WWTP is relatively low and very irregular during dry-weather conditions, resulting in a random pattern of flows. This irregularity is the effect of the local control of the pumps, where the pumps are individually operated as an on/off control based on the water levels in the connected sewer system. The influent may change from zero to high values in a few minutes. The treatment processes at the WWTP are negatively influenced by this irregularity, which ends in high costs for energy and use of chemicals. The ControlNEXT central control system is used to control the 5 largest pump stations, such that the total inflow at the WWTP becomes much smoother. This results in a reduction of operational costs of about 10%. The control algorithm determines whether the actual condition is dry or wet, based on real-time radar precipitation images and the rainfall forecast product HiRLAM. All actual data is also collected and validated, like water levels, pump operations and pump availability. This data management is done using Delft-FEWS. If the situation is identified as "wet", the sewer systems are emptied as far as possible to create maximum storage. If the situation is "dry" (and of course there is a dead band between dry and wet), the pumps are operated such that the total inflow into the WWTP is smoothed. This is done with a Greedy algorithm, developed by Delft University of Technology. The algorithm makes a plan for the next 24 hours (as the daily inflow has a typical daily pattern) and generally stores some water volume in the sewer systems during the day to be able to continue operations during the night. The pumps are controlled with a time step of 5 minutes, where ControlNEXT manages the

  18. The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control

    PubMed Central

    Murakami, Shinnosuke; Goto, Yasuaki; Ito, Kyo; Hayasaka, Shinya; Kurihara, Shigeo; Soga, Tomoyoshi; Tomita, Masaru; Fukuda, Shinji

    2015-01-01

    Hot spring water and natural mineral water have been therapeutically used to prevent or improve various diseases. Specifically, consumption of bicarbonate-rich mineral water (BMW) has been reported to prevent or improve type 2 diabetes (T2D) in humans. However, the molecular mechanisms of the beneficial effects behind mineral water consumption remain unclear. To elucidate the molecular level effects of BMW consumption on glycemic control, blood metabolome analysis and fecal microbiome analysis were applied to the BMW consumption test. During the study, 19 healthy volunteers drank 500 mL of commercially available tap water (TW) or BMW daily. TW consumption periods and BMW consumption periods lasted for a week each and this cycle was repeated twice. Biochemical tests indicated that serum glycoalbumin levels, one of the indexes of glycemic controls, decreased significantly after BMW consumption. Metabolome analysis of blood samples revealed that 19 metabolites including glycolysis-related metabolites and 3 amino acids were significantly different between TW and BMW consumption periods. Additionally, microbiome analysis demonstrated that composition of lean-inducible bacteria was increased after BMW consumption. Our results suggested that consumption of BMW has the possible potential to prevent and/or improve T2D through the alterations of host metabolism and gut microbiota composition. PMID:26798400

  19. Impact of water control projects on fisheries resources in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mirza, Monirul Qader; Ericksen, Neil J.

    1996-07-01

    Bangladesh is a very flat delta built up by the Ganges—Brahmaputra—Meghna/Barak river systems. Because of its geographical location, floods cause huge destruction of lives and properties almost every year. Water control programs have been undertaken to enhance development through mitigating the threat of disasters. This structural approach to flood hazard has severely affected floodplain fisheries that supply the major share of protein to rural Bangladesh, as exemplified by the Chandpur Irrigation Project. Although the regulated environment of the Chandpur project has become favorable for closed-water cultured fish farming, the natural open-water fishery loss has been substantial. Results from research show that fish yields were better under preproject conditions. Under project conditions per capita fish consumption has dropped significantly, and the price of fish has risen beyond the means of the poor people, so that fish protein in the diet of poor people is gradually declining. Bangladesh is planning to expand water control facilities to the remaining flood-prone areas in the next 15 20 years. This will cause further loss of floodplain fisheries. If prices for closed-water fish remain beyond the buying power of the poor, alternative sources of cheap protein will be required.

  20. Drinking Water from Dug Wells in Rural Ghana — Salmonella Contamination, Environmental Factors, and Genotypes

    PubMed Central

    Dekker, Denise Myriam; Krumkamp, Ralf; Sarpong, Nimako; Frickmann, Hagen; Boahen, Kennedy Gyau; Frimpong, Michael; Asare, Renate; Larbi, Richard; Hagen, Ralf Matthias; Poppert, Sven; Rabsch, Wolfgang; Marks, Florian; Adu-Sarkodie, Yaw; May, Jürgen

    2015-01-01

    Salmonellosis is an important but neglected disease in sub-Saharan Africa. Food or fecal-oral associated transmissions are the primary cause of infections, while the role of waterborne transmission is unclear. Samples were collected from different dug wells in a rural area of Ghana and analyzed for contamination with bacteria, and with Salmonella in particular. In addition, temporal dynamics and riks factors for contamination were investigated in 16 wells. For all Salmonella isolates antibiotic susceptibility testing was performed, serovars were determined and strains from the same well with the same serovar were genotyped. The frequency of well water contamination with Gram-negative rod-shaped bacteria was 99.2% (n = 395). Out of 398 samples, 26 (6.5%) tested positive for Salmonella spp. The serovar distribution was diverse including strains not commonly isolated from clinical samples. Resistance to locally applied antibiotics or resistance to fluoroquinolones was not seen in the Salmonella isolates. The risk of Salmonella contamination was lower in wells surrounded by a frame and higher during the rainy season. The study confirms the overall poor microbiological quality of well water in a resource-poor area of Ghana. Well contamination with Salmonella poses a potential threat of infection, thus highlighting the important role of drinking water safety in infectious disease control. PMID:25826395

  1. Light water detritiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.

    2015-03-15

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWHmore » process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m{sup 3}/day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m{sup 3}), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the hot

  2. pH Control of Untreated Water for Irrigation

    NASA Astrophysics Data System (ADS)

    Poyen, Faruk Bin; Kundu, Palash K.; Ghosh, Apurba K.

    2018-05-01

    Irrigation in India still plays a pivotal role in the country's economic and employment structure. But due to unawareness and lack of technological upgradations and ill and careless agricultural practices, the yield from the fields is poor and not to its best capacity. There exists a lot of reasons and factors that brings down the crop productivity. One among them is the quality of irrigation water that is supplied to the fields. It is a common practice in India and other sub-continental countries not to access the water qualitatively before getting fed to the fields. Albeit, it does not have catastrophic effects on the productivity, but it affects the nourishment of the crops to some good extent. Water pH has a strong effect on the soil and crop, when it comes to absorption of nutrients by the plant bodies. With properly regulating the pH level of the irrigation water, it is possible to create an ambiance where the symbiotic effects between the soil and the plant can be optimized. In this paper, it is tried to regulate the pH levels of the water based on the type of soil and the optimal requirement by the crop. The work in this paper involves neutralization of acidic or alkaline water before it is being supplied to the farmlands. The process model is simulation based which gave considerably good and acceptable results.

  3. Model Predictive Control-based Power take-off Control of an Oscillating Water Column Wave Energy Conversion System

    NASA Astrophysics Data System (ADS)

    Rajapakse, G.; Jayasinghe, S. G.; Fleming, A.; Shahnia, F.

    2017-07-01

    Australia’s extended coastline asserts abundance of wave and tidal power. The predictability of these energy sources and their proximity to cities and towns make them more desirable. Several tidal current turbine and ocean wave energy conversion projects have already been planned in the coastline of southern Australia. Some of these projects use air turbine technology with air driven turbines to harvest the energy from an oscillating water column. This study focuses on the power take-off control of a single stage unidirectional oscillating water column air turbine generator system, and proposes a model predictive control-based speed controller for the generator-turbine assembly. The proposed method is verified with simulation results that show the efficacy of the controller in extracting power from the turbine while maintaining the speed at the desired level.

  4. Microbiological water methods: quality control measures for Federal Clean Water Act and Safe Drinking Water Act regulatory compliance.

    PubMed

    Root, Patsy; Hunt, Margo; Fjeld, Karla; Kundrat, Laurie

    2014-01-01

    Quality assurance (QA) and quality control (QC) data are required in order to have confidence in the results from analytical tests and the equipment used to produce those results. Some AOAC water methods include specific QA/QC procedures, frequencies, and acceptance criteria, but these are considered to be the minimum controls needed to perform a microbiological method successfully. Some regulatory programs, such as those at Code of Federal Regulations (CFR), Title 40, Part 136.7 for chemistry methods, require additional QA/QC measures beyond those listed in the method, which can also apply to microbiological methods. Essential QA/QC measures include sterility checks, reagent specificity and sensitivity checks, assessment of each analyst's capabilities, analysis of blind check samples, and evaluation of the presence of laboratory contamination and instrument calibration and checks. The details of these procedures, their performance frequency, and expected results are set out in this report as they apply to microbiological methods. The specific regulatory requirements of CFR Title 40 Part 136.7 for the Clean Water Act, the laboratory certification requirements of CFR Title 40 Part 141 for the Safe Drinking Water Act, and the International Organization for Standardization 17025 accreditation requirements under The NELAC Institute are also discussed.

  5. Farmer perceptions on factors influencing water scarcity for goats in resource-limited communal farming environments.

    PubMed

    Mdletshe, Zwelethu Mfanafuthi; Ndlela, Sithembile Zenith; Nsahlai, Ignatius Verla; Chimonyo, Michael

    2018-05-09

    The objective of the study was to compare factors influencing water scarcity for goats in areas where there are seasonal and perennial rivers under resource-limited communal farming environments. Data were collected using a structured questionnaire (n = 285) administered randomly to smallholder goat farmers from areas with seasonal and perennial rivers. Ceremonies was ranked as the major reason for keeping goats. Water scarcity was ranked the major constraint to goat production in areas with seasonal rivers when compared to areas with perennial rivers (P < 0.05). Dams and rivers were ranked as the major water source for goat drinking in areas with seasonal and perennial river systems during cool dry and rainy seasons. Rivers were ranked as an important water source for goat drinking where there are seasonal and perennial river systems during the cool dry season. Households located close (≤ 3 km) to the nearest water source reported drinking water for goats a scarce resource. These results show that river systems, season and distance to the nearest water source from a household were factors perceived by farmers to influence water scarcity for goats in resource-limited communal farming environments. Farmers should explore water-saving strategies such as recycling wastewater from kitchens and bathrooms as an alternative water source. The government may assist farmers through sinking boreholes to supply water for both humans and livestock.

  6. Multiobjective hedging rules for flood water conservation

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Zhang, Chi; Cai, Ximing; Li, Yu; Zhou, Huicheng

    2017-03-01

    Flood water conservation can be beneficial for water uses especially in areas with water stress but also can pose additional flood risk. The potential of flood water conservation is affected by many factors, especially decision makers' preference for water conservation and reservoir inflow forecast uncertainty. This paper discusses the individual and joint effects of these two factors on the trade-off between flood control and water conservation, using a multiobjective, two-stage reservoir optimal operation model. It is shown that hedging between current water conservation and future flood control exists only when forecast uncertainty or decision makers' preference is within a certain range, beyond which, hedging is trivial and the multiobjective optimization problem is reduced to a single objective problem with either flood control or water conservation. Different types of hedging rules are identified with different levels of flood water conservation preference, forecast uncertainties, acceptable flood risk, and reservoir storage capacity. Critical values of decision preference (represented by a weight) and inflow forecast uncertainty (represented by standard deviation) are identified. These inform reservoir managers with a feasible range of their preference to water conservation and thresholds of forecast uncertainty, specifying possible water conservation within the thresholds. The analysis also provides inputs for setting up an optimization model by providing the range of objective weights and the choice of hedging rule types. A case study is conducted to illustrate the concepts and analyses.

  7. Recruitment and Employment of the Water Pollution Control Specialist.

    ERIC Educational Resources Information Center

    Sherrard, J. H.; Sherrard, F. A.

    1979-01-01

    Presented are the basic principles of personnel recruitment and employment for the water pollution control field. Attention is given to determination of staffing requirements, effective planning, labor sources, affirmative action, and staffing policies. (CS)

  8. A Philosophy of Water Pollution Control--Past and Present.

    ERIC Educational Resources Information Center

    Schroeffer, George J.

    1978-01-01

    An overview of water pollution control in the U.S. is given, leading to an analysis of present policy trends. A "rational environmental program" is called for to provide economic growth and environmental quality. (MDR)

  9. Intestinal Master Transcription Factor CDX2 Controls Chromatin Access for Partner Transcription Factor Binding

    PubMed Central

    Verzi, Michael P.; Shin, Hyunjin; San Roman, Adrianna K.

    2013-01-01

    Tissue-specific gene expression requires modulation of nucleosomes, allowing transcription factors to occupy cis elements that are accessible only in selected tissues. Master transcription factors control cell-specific genes and define cellular identities, but it is unclear if they possess special abilities to regulate cell-specific chromatin and if such abilities might underlie lineage determination and maintenance. One prevailing view is that several transcription factors enable chromatin access in combination. The homeodomain protein CDX2 specifies the embryonic intestinal epithelium, through unknown mechanisms, and partners with transcription factors such as HNF4A in the adult intestine. We examined enhancer chromatin and gene expression following Cdx2 or Hnf4a excision in mouse intestines. HNF4A loss did not affect CDX2 binding or chromatin, whereas CDX2 depletion modified chromatin significantly at CDX2-bound enhancers, disrupted HNF4A occupancy, and abrogated expression of neighboring genes. Thus, CDX2 maintains transcription-permissive chromatin, illustrating a powerful and dominant effect on enhancer configuration in an adult tissue. Similar, hierarchical control of cell-specific chromatin states is probably a general property of master transcription factors. PMID:23129810

  10. Piped water supply interruptions and acute diarrhea among under-five children in Addis Ababa slums, Ethiopia: A matched case-control study.

    PubMed

    Adane, Metadel; Mengistie, Bezatu; Medhin, Girmay; Kloos, Helmut; Mulat, Worku

    2017-01-01

    The problem of intermittent piped water supplies that exists in low- and middle-income countries is particularly severe in the slums of sub-Saharan Africa. However, little is known about whether there is deterioration of the microbiological quality of the intermittent piped water supply at a household level and whether it is a factor in reducing or increasing the occurrence of acute diarrhea among under-five children in slums of Addis Ababa. This study aimed to determine the association of intermittent piped water supplies and point-of-use (POU) contamination of household stored water by Escherichia coli (E. coli) with acute diarrhea among under-five children in slums of Addis Ababa. A community-based matched case-control study was conducted from November to December, 2014. Cases were defined as under-five children with acute diarrhea during the two weeks before the survey. Controls were matched by age and neighborhood with cases by individual matching. Data were collected using a pre-tested structured questionnaire and E. coli analysis of water from piped water supplies and household stored water. A five-tube method of Most Probable Number (MPN)/100 ml standard procedure was used for E. coli analysis. Multivariable conditional logistic regression with 95% confidence interval (CI) was used for data analysis by controlling potential confounding effects of selected socio-demographic characteristics. During the two weeks before the survey, 87.9% of case households and 51.0% of control households had an intermittent piped water supply for an average of 4.3 days and 3.9 days, respectively. POU contamination of household stored water by E. coli was found in 83.3% of the case households, and 52.1% of the control households. In a fully adjusted model, a periodically intermittent piped water supply (adjusted matched odds ratio (adjusted mOR) = 4.8; 95% CI: 1.3-17.8), POU water contamination in household stored water by E. coli (adjusted mOR = 3.3; 95% CI: 1.1-10.1), water

  11. Piped water supply interruptions and acute diarrhea among under-five children in Addis Ababa slums, Ethiopia: A matched case-control study

    PubMed Central

    Adane, Metadel; Mengistie, Bezatu; Medhin, Girmay; Kloos, Helmut; Mulat, Worku

    2017-01-01

    Background The problem of intermittent piped water supplies that exists in low- and middle-income countries is particularly severe in the slums of sub-Saharan Africa. However, little is known about whether there is deterioration of the microbiological quality of the intermittent piped water supply at a household level and whether it is a factor in reducing or increasing the occurrence of acute diarrhea among under-five children in slums of Addis Ababa. This study aimed to determine the association of intermittent piped water supplies and point-of-use (POU) contamination of household stored water by Escherichia coli (E. coli) with acute diarrhea among under-five children in slums of Addis Ababa. Methods A community-based matched case-control study was conducted from November to December, 2014. Cases were defined as under-five children with acute diarrhea during the two weeks before the survey. Controls were matched by age and neighborhood with cases by individual matching. Data were collected using a pre-tested structured questionnaire and E. coli analysis of water from piped water supplies and household stored water. A five-tube method of Most Probable Number (MPN)/100 ml standard procedure was used for E. coli analysis. Multivariable conditional logistic regression with 95% confidence interval (CI) was used for data analysis by controlling potential confounding effects of selected socio-demographic characteristics. Main findings During the two weeks before the survey, 87.9% of case households and 51.0% of control households had an intermittent piped water supply for an average of 4.3 days and 3.9 days, respectively. POU contamination of household stored water by E. coli was found in 83.3% of the case households, and 52.1% of the control households. In a fully adjusted model, a periodically intermittent piped water supply (adjusted matched odds ratio (adjusted mOR) = 4.8; 95% CI: 1.3–17.8), POU water contamination in household stored water by E. coli (adjusted m

  12. Controlling the Accumulation of Water at Oil-Solid Interfaces with Gradient Coating.

    PubMed

    Li, Yan; Yang, Qiaomu; Mei, Ran Andy; Cai, Meirong; Heng, Jerry Y Y; Yang, Zhongqiang

    2017-07-13

    In this work, we demonstrate a strategy to control the accumulation of water in the oil-solid interface using a gradient coating. Gradient chemistry on glass surface is created by vapor diffusion of organosilanes, leading to a range of contact angles from 110 to 20°. Hexadecane is placed on the gradient substrate as an oil layer, forming a "water/hexadecane/gradient solid substrate" sandwich structure. During incubation, water molecules spontaneously migrate through the micrometer-thick oil layer and result in the formation of micrometer-sized water droplets at the oil-solid interface. It turns out that water droplets at more hydrophobic regions tend to be closer to a regular spherical shape, which is attributed to their higher contact angle with the hydrophobic substrate. However, along the gradient from hydrophobic to hydrophilic, the water droplets gradually form more irregular shapes, as hydrophilic surfaces pin the edges of droplets to form a distorted morphology. It indicates that more hydrophilic surfaces containing more Si-OH groups lead to a higher electrostatic interaction with water and a higher growth rate of interfacial water droplets. This work provides further insights into the mechanism of spontaneous water accumulation at oil-solid interfaces and assists in the rational design for controlling such interfacial phenomenon.

  13. Lifestyle risk factors for intrahepatic stone: findings from a case-control study in an endemic area, Taiwan.

    PubMed

    Momiyama, Masato; Wakai, Kenji; Oda, Koji; Kamiya, Junichi; Ohno, Yoshiyuki; Hamaguchi, Michinari; Nakanuma, Yasuni; Hsieh, Ling-Ling; Yeh, Ta-Sen; Chen, Tse-Ching; Jan, Yi-Yi; Chen, Miin-Fu; Nimura, Yuji

    2008-07-01

    To examine associations between lifestyle risk factors and intrahepatic stone (IHS), we conducted a case-control study in Taiwan, which has the highest incidence of IHS in the world. Study subjects were 151 patients newly diagnosed with IHS at Chang Gung Memorial Hospital between January 1999 and December 2001. Two control subjects per case were selected randomly from patients who underwent minor surgery at the same hospital and from family members or neighbors of the hospital staff. Controls were matched to each case by age and gender. Information on lifestyle factors was collected using a self-administered questionnaire. Strength of associations was assessed using odds ratios derived from conditional logistic models. Female patients were significantly shorter than female controls. Compared to subjects with two or fewer children, odds ratios for those with six or more children were 20.4 in men (95% confidence interval, 1.89-221) and 2.82 (0.97-8.22) in women. Increasing level of education lowered the risk of intrahepatic stone (trend P = 0.004 for men and < 0.0001 for women). Women who had consumed ground-surface water for a long period had a somewhat increased risk (trend P = 0.05). Lower socioeconomic status and poor hygiene may be involved in the development of intrahepatic stones.

  14. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.

    2016-01-01

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P

  15. NDMA formation during drinking water treatment: A multivariate analysis of factors influencing formation.

    PubMed

    Leavey-Roback, Shannon L; Sugar, Catherine A; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-05-15

    The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Potential for using the Upper Coachella Valley ground-water basin, California, for storage of artificially recharged water

    USGS Publications Warehouse

    Mallory, Michael J.; Swain, Lindsay A.; Tyley, Stephen J.

    1980-01-01

    This report presents a preliminary evaluation of the geohydrologic factors affecting storage of water by artificial recharge in the upper Coachella Valley, Calif. The ground-water basin of the upper Coachella Valley seems to be geologically suitable for large-scale artificial recharge. A minimum of 900 ,000 acre-feet of water could probably be stored in the basin without raising basinwide water levels above those that existed in 1945. Preliminary tests indicate that a long-term artificial recharge rate of 5 feet per day may be feasible for spreading grounds in the basin if such factors as sediment and bacterial clogging can be controlled. The California Department of Water Resources, through the Future Water Supply Program, is investigating the use of ground-water basins for storage of State Water Project water in order to help meet maximum annual entitlements to water project contractors. (USGS)

  17. Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface

    PubMed Central

    Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon

    2015-01-01

    Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%. PMID:26202206

  18. Change of water consumption and its potential influential factors in Shanghai: A cross-sectional study

    PubMed Central

    2012-01-01

    Background Different water choices affect access to drinking water with different quality. Previous studies suggested social-economic status may affect the choice of domestic drinking water. The aim of this study is to investigate whether recent social economic changes in China affect residents’ drinking water choices. Methods We conducted a cross-sectional survey to investigate residents’ water consumption behaviour in 2011. Gender, age, education, personal income, housing condition, risk perception and personal preference of a certain type of water were selected as potential influential factors. Univariate and backward stepwise logistic regression analyses were performed to analyse the relation between these factors and different drinking water choices. Basic information was compared with that of a historical survey in the same place in 2001. Self-reported drinking-water-related diarrhoea was found correlated with different water choices and water hygiene treatment using chi-square test. Results The percentage of tap water consumption remained relatively stable and a preferred choice, with 58.99% in 2001 and 58.25% in 2011. The percentage of bottled/barrelled water consumption was 36.86% in 2001 and decreased to 25.75% in 2011. That of household filtrated water was 4.15% in 2001 and increased to 16.00% in 2011. Logistic regression model showed strong correlation between one’s health belief and drinking water choices (P < 0.001). Age, personal income, education, housing condition, risk perception also played important roles (P < 0.05) in the models. Drinking-water-related diarrhoea was found in all types of water and improper water hygiene behaviours still existed among residents. Conclusions Personal health belief, housing condition, age, personal income, education, taste and if worm ever founded in tap water affected domestic drinking water choices in Shanghai. PMID:22708830

  19. Change of water consumption and its potential influential factors in Shanghai: a cross-sectional study.

    PubMed

    Chen, Hanyi; Zhang, Yaying; Ma, Linlin; Liu, Fangmin; Zheng, Weiwei; Shen, Qinfeng; Zhang, Hongmei; Wei, Xiao; Tian, Dajun; He, Gengsheng; Qu, Weidong

    2012-06-18

    Different water choices affect access to drinking water with different quality. Previous studies suggested social-economic status may affect the choice of domestic drinking water. The aim of this study is to investigate whether recent social economic changes in China affect residents' drinking water choices. We conducted a cross-sectional survey to investigate residents' water consumption behaviour in 2011. Gender, age, education, personal income, housing condition, risk perception and personal preference of a certain type of water were selected as potential influential factors. Univariate and backward stepwise logistic regression analyses were performed to analyse the relation between these factors and different drinking water choices. Basic information was compared with that of a historical survey in the same place in 2001. Self-reported drinking-water-related diarrhoea was found correlated with different water choices and water hygiene treatment using chi-square test. The percentage of tap water consumption remained relatively stable and a preferred choice, with 58.99% in 2001 and 58.25% in 2011. The percentage of bottled/barrelled water consumption was 36.86% in 2001 and decreased to 25.75% in 2011. That of household filtrated water was 4.15% in 2001 and increased to 16.00% in 2011. Logistic regression model showed strong correlation between one's health belief and drinking water choices (P < 0.001). Age, personal income, education, housing condition, risk perception also played important roles (P < 0.05) in the models. Drinking-water-related diarrhoea was found in all types of water and improper water hygiene behaviours still existed among residents. Personal health belief, housing condition, age, personal income, education, taste and if worm ever founded in tap water affected domestic drinking water choices in Shanghai.

  20. How multiple factors control evapotranspiration in North America evergreen needleleaf forests.

    PubMed

    Chen, Yueming; Xue, Yueju; Hu, Yueming

    2018-05-01

    Identifying the factors dominating ecosystem water flux is a critical step for predicting evapotranspiration (ET). Here, the fuzzy rough set with binary shuffled frog leaping (BSFL-FRSA) was used to identify both individual factors and multi-factor combinations that dominate the half-hourly ET variation at evergreen needleleaf forests (ENFs) sites across three different climatic zones in the North America. Among 21factors, air temperature (TA), atmospheric CO 2 concentration (CCO 2 ), soil temperature (TS), soil water content (SWC) and net radiation (NETRAD) were evaluated as dominant single factors, contributed to the ET variation averaged for all ENF sites by 48%, 36%, 32%, 18% and 13%, respectively. While the importance order would vary with climatic zones, and TA was assessed as the most influential factor at a single climatic zone level, counting a contribution rate of 54.7%, 49.9%, and 38.6% in the subarctic, warm summer continental, and Mediterranean climatic zones, respectively. In view of impacts of each multi-factors combination on ET, both TA and CCO 2 made a contribution of 71% across three climate zones; the combination of TA, CCO 2 and NETRAD was evaluated the most dominant at Mediterranean and subarctic ENF sites, and the combination of TA, CCO 2 and TS at warm summer continental sites. Our results suggest that temperature was most critical for ET variation at the warm summer continental ENF. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Corrosion Control 101: A Journey in Rediscovery | Science ...

    EPA Pesticide Factsheets

    The presentation covers the general water chemistry of lead and copper, how contamination originates from home plumbing systems, what treatments are appropriate for controlling lead and copper to meet the Lead and Copper Rule, and what water quality and treatment factors directly impact the success and failure of corrosion control treatment. This talk re-introduces the overriding principles of corrosion control treatment to a water industry audience

  2. Prevalence and distribution of Legionella spp in potable water systems in Germany, risk factors associated with contamination, and effectiveness of thermal disinfection.

    PubMed

    Kruse, Eva-Brigitta; Wehner, Arno; Wisplinghoff, Hilmar

    2016-04-01

    Worldwide, Legionella spp are a common cause of community-acquired pneumonia. Potable water systems are a main reservoir; however, exposure in the community is unknown. Water samples from 718 buildings in Germany were collected. Possible risk factors were prospectively recorded. All samples were tested for Legionella spp using cultural microbiologic methods. Samples were assigned to 1 of 5 levels of contamination. Statistical analysis was performed to determine the influence of risk factors for contamination and, in a subgroup of buildings, for unsuccessful thermal disinfection. In total, 4,482 water samples from 718 different water supply systems were analyzed. In 233 buildings (32.7%), Legionella spp were identified, 148 (63.5%) of which had a medium or higher level of contamination. The most common species was Legionella pneumophila (94%). Contamination was strongly associated with temperature in the circulation, but not with the size of the building, time of the year, or transport time to the laboratory. Thermal disinfection was successful in fewer than half of the buildings. There is relevant exposure to Legionella spp in the community. Water systems are not always up to current technical standards. Although microbiological risk assessment remains a challenge, there is a case for monitoring for Legionella spp outside of hospitals. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. The effect of water contamination and host-related factors on ectoparasite load in an insectivorous bat.

    PubMed

    Korine, Carmi; Pilosof, Shai; Gross, Amit; Morales-Malacara, Juan B; Krasnov, Boris R

    2017-09-01

    We examined the effects of sex, age, and reproductive state of the insectivorous bat Pipistrellus kuhlii on the abundance and prevalence of arthropod ectoparasites (Macronyssidae and Cimicidae) in habitats with either sewage-polluted or natural bodies of water, in the Negev Desert, Israel. We chose water pollution as an environmental factor because of the importance of water availability in desert environments, particularly for P. kuhlii, which needs to drink on a daily basis. We predicted that parasite infestation rates would be affected by both environment and demographic cohort of the host. We found that female bats in the polluted site harbored significantly more mites than female bats in the natural site and that juveniles in the polluted site harbored significantly more cimicid individuals than juveniles in the natural site. We further found that age and sex (host-related factors) affected ectoparasite prevalence and intensity (i.e., the abundance of parasites) in the polluted site. Our results may suggest that the interaction between host-related and environment-related factors affected parasite infestations, with females and young bats being more susceptible to ectoparasites when foraging over polluted water. This effect may be particularly important for bats that must drink or forage above water for other wildlife that depend on drinking water for survival.

  4. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta.

    PubMed

    Huang, Guanxing; Liu, Chunyan; Sun, Jichao; Zhang, Ming; Jing, Jihong; Li, Liangping

    2018-06-01

    A growing population accompanied by urbanization has increased groundwater resource demands in the Pearl River Delta (PRD) area, southern China, and a comprehensive understanding of the groundwater chemistry in the PRD is necessary. The aims of this study were to investigate the groundwater chemistry in various aquifers in the PRD on a regional scale and to discuss the factors that control the groundwater chemistries of different types of aquifers. In addition, the effect of the expansion of construction land on the groundwater chemistry was also taken into consideration in this study. Nearly 400 groundwater samples were collected and fourteen chemical parameters were investigated. The results show that natural factors, such as seawater intrusions, are mainly responsible for the higher concentrations of total dissolved solids, Na + , Mg 2+ , K + , and Cl - , in granular aquifers than those in fissured and karst aquifers. Similarly, higher concentrations of NH 4 + , Fe and Mn in granular aquifers than those in the other two types of aquifers are mainly ascribed to natural reduction. In contrast, human activities, such as the continuous irrigation of river water, upon granular aquifer are mainly responsible for the higher concentrations of Ca 2+ and HCO 3 - in granular aquifers than those in other two types of aquifers. Urbanization and industrialization are the main driving forces for the frequently occurrences of NO 3 and SO 4 water types, respectively. Moreover, the number of water types in the PRD increased to 89 after the decades of urbanization. Factors that control groundwater chemistries in various aquifers were extracted. A four-factor model controlled the groundwater chemistry of granular aquifers, while two three-factor models controlled the groundwater chemistries of fissured and karst aquifers, respectively. The results of this study show that the expansion of construction land is a powerful driving force for the change of groundwater chemistry in the

  5. 14 CFR 25.239 - Spray characteristics, control, and stability on water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Spray characteristics, control, and stability on water. 25.239 Section 25.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Ground and Water Handling Characteristics § 25.239 Spray...

  6. Controlling Nonpoint-Source Water Pollution: A Citizen's Handbook.

    ERIC Educational Resources Information Center

    Hansen, Nancy Richardson; And Others

    Citizens can play an important role in helping their states develop pollution control programs and spurring effective efforts to deal with nonpoint-source pollution. This guide takes the reader step-by-step through the process that states must follow to comply with water quality legislation relevant to nonpoint-source pollution. Part I provides…

  7. Human factors aspects of air traffic control

    NASA Technical Reports Server (NTRS)

    Older, H. J.; Cameron, B. J.

    1972-01-01

    An overview of human factors problems associated with the operation of present and future air traffic control systems is presented. A description is included of those activities and tasks performed by air traffic controllers at each operational position within the present system. Judgemental data obtained from controllers concerning psychological dimensions related to these tasks and activities are also presented. The analysis includes consideration of psychophysiological dimensions of human performance. The role of the human controller in present air traffic control systems and his predicted role in future systems is described, particularly as that role changes as the result of the system's evolution towards a more automated configuration. Special attention is directed towards problems of staffing, training, and system operation. A series of ten specific research and development projects are recommended and suggested work plans for their implementation are included.

  8. Study on the water resources optimal operation based on riverbed wind erosion control in West Liaohe River plain

    NASA Astrophysics Data System (ADS)

    Wanguang, Sun; Chengzhen, Li; Baoshan, Fan

    2018-06-01

    Rivers are drying up most frequently in West Liaohe River plain and the bare river beds present fine sand belts on land. These sand belts, which yield a dust heavily in windy days, stress the local environment deeply as the riverbeds are eroded by wind. The optimal operation of water resources, thus, is one of the most important methods for preventing the wind erosion of riverbeds. In this paper, optimal operation model for water resources based on riverbed wind erosion control has been established, which contains objective function, constraints, and solution method. The objective function considers factors which include water volume diverted into reservoirs, river length and lower threshold of flow rate, etc. On the basis of ensuring the water requirement of each reservoir, the destruction of the vegetation in the riverbed by the frequent river flow is avoided. The multi core parallel solving method for optimal water resources operation in the West Liaohe River Plain is proposed, which the optimal solution is found by DPSA method under the POA framework and the parallel computing program is designed in Fork/Join mode. Based on the optimal operation results, the basic rules of water resources operation in the West Liaohe River Plain are summarized. Calculation results show that, on the basis of meeting the requirement of water volume of every reservoir, the frequency of reach river flow which from Taihekou to Talagan Water Diversion Project in the Xinkai River is reduced effectively. The speedup and parallel efficiency of parallel algorithm are 1.51 and 0.76 respectively, and the computing time is significantly decreased. The research results show in this paper can provide technical support for the prevention and control of riverbed wind erosion in the West Liaohe River plain.

  9. Risk Factors for Buruli Ulcer in Ghana—A Case Control Study in the Suhum-Kraboa-Coaltar and Akuapem South Districts of the Eastern Region

    PubMed Central

    Kenu, Ernest; Nyarko, Kofi Mensah; Seefeld, Linda; Ganu, Vincent; Käser, Michael; Lartey, Margaret; Calys-Tagoe, Benedict Nii Laryea; Koram, Kwodwo; Adanu, Richard; Razum, Oliver; Afari, Edwin; Binka, Fred N.

    2014-01-01

    Background Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans. Its exact mode of transmission is not known. Previous studies have identified demographic, socio-economic, health and hygiene as well as environment related risk factors. We investigated whether the same factors pertain in Suhum-Kraboa-Coaltar (SKC) and Akuapem South (AS) Districts in Ghana which previously were not endemic for BU. Methods We conducted a case control study. A case of BU was defined as any person aged 2 years or more who resided in study area (SKC or AS District) diagnosed according to the WHO clinical case definition for BU and matched with age- (+/−5 years), gender-, and community controls. A structured questionnaire on host, demographic, environmental, and behavioural factors was administered to participants. Results A total of 113 cases and 113 community controls were interviewed. Multivariate conditional logistic regression analysis identified presence of wetland in the neighborhood (OR = 3.9, 95% CI = 1.9–8.2), insect bites in water/mud (OR = 5.7, 95% CI = 2.5–13.1), use of adhesive when injured (OR = 2.7, 95% CI = 1.1–6.8), and washing in the Densu river (OR = 2.3, 95% CI = 1.1–4.96) as risk factors associated with BU. Rubbing an injured area with alcohol (OR = 0.21, 95% CI = 0.008–0.57) and wearing long sleeves for farming (OR = 0.29, 95% CI = 0.14–0.62) showed protection against BU. Conclusion This study identified the presence of wetland, insect bites in water, use of adhesive when injured, and washing in the river as risk factors for BU; and covering limbs during farming as well as use of alcohol after insect bites as protective factors against BU in Ghana. Until paths of transmission are unraveled, control strategies in BU endemic areas should focus on these known risk factors. PMID:25411974

  10. Controlling of water collection ability by an elasticity-regulated bioinspired fiber.

    PubMed

    Wang, Sijie; Feng, Shile; Hou, Yongping; Zheng, Yongmei

    2015-03-01

    A special artificial spider silk is presented which is fabricated by using both an elastic polymer and a fiber, and the water collection behavior is investigated. Through exerting tension in varying degree, the length of the three-phase contact line (TCL) and the area of spindle knot can be regulated readily, which makes a great contribution to the improvement of collecting efficiency and water-hanging ability. The water-hanging ability can be predicted at a given stretching ratio according to the given expression of the TCL. As a result, liquid capture or release of distinct measure can be achieved via exerting tension. This research is helpful to design smart materials for developing applications in fogwater collection, dehumidification, high-efficiency humidity control, and controllable adhesion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Control circuit maintains unity power factor of reactive load

    NASA Technical Reports Server (NTRS)

    Kramer, M.; Martinage, L. H.

    1966-01-01

    Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.

  12. Factors Associated with the Presence of Coliforms in the Feed and Water of Feedlot Cattle

    PubMed Central

    Sanderson, Michael W.; Sargeant, Jan M.; Renter, David G.; Griffin, D. Dee; Smith, Robert A.

    2005-01-01

    The objective of this study was to investigate coliform counts in feedlot cattle water and feed rations and their associations with management, climate, fecal material, and water Escherichia coli O157 using a cross-sectional study design. Coliform counts were performed on feed samples from 671 pens on 70 feedlots and on water samples from 702 pens on 72 feedlots in four U.S. states collected between May and August 2001. Management and climate factors were obtained by survey and observation. Month of sampling (higher in May and June), presence of corn silage in the ration (negative association), temperature of the feed 1 in. (ca. 2.5 cm) below the surface at the time of sampling (negative association), and wind velocity at the time of sampling (positive association) were significantly associated with log10 coliform levels in feed. Month of sampling (lower in May versus June July and August), water pH (negative association), and water total solids (positive association) were significantly associated with log10 water coliform levels. Coliform counts in feed and water were not associated with prevalence of E. coli O157 in cattle feces or water. Management risk factors must be interpreted with caution but the results reported here do not support the use of coliform counts as a marker for E. coli O157 contamination of feed or water. PMID:16204517

  13. Environmental Control and Life Support System, Water Recovery System

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. This is a close-up view of ECLSS Water Recovery System (WRS) racks. The MSFC's ECLSS Group overseas much of the development of the hardware that will allow a constant supply of clean water for four to six crewmembers aboard the ISS. The WRS provides clean water through the reclamation of wastewaters, including water obtained from the Space Shuttle's fuel cells, crewmember urine, used shower, handwash and oral hygiene water cabin humidity condensate, and Extravehicular Activity (EVA) wastes. The WRS is comprised of a Urine Processor Assembly (UPA), and a Water Processor Assembly (WPA). The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the WPA, which removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank. The water must meet stringent purity standards before consumption by the crew. The UPA provided by the MSFC and the WRA is provided by the prime contractor, Hamilton Sundstrand Space Systems, International (HSSSI) from Cornecticut.

  14. [A case-control study on the relationship of crocidolite pollution in drinking water with the risk of gastrointestinal cancer in Dayao County].

    PubMed

    Mi, Jing; Peng, Wenjia; Jia, Xianjie; Wei, Binggan; Yang, Linsheng; Hu, Liming; Lu, Rong'an

    2015-01-01

    To explore the relationship of crocidolite pollution in drinking water with the risk of gastrointestinal cancer's death in Dayao County. A 1:2 matched case-control study involving 54 death cases of gastrointestinal cancer from a population-based cohort of twenty-seven years and 108 controls matched by age, gender, death time, etc was conducted to analyze the effect of local water condition on the risk of gastrointestinal cancer in Dayao County. Results from logistic regression analysis suggested the longer of asbestos furnace use over time, the higher the mortality risk of gastrointestinal cancer (6 - 10 years: OR = 2.920, 95% CI 1.501 - 5.604. 11 - 15 years: OR = 3.966, 95% CI 2.156 -7.950. Over 15 years: OR = 4.122, 95% CI 1.211 - 7. 584). Drinking unboiled water leaded to an increased risk of gastrointestinal cancer (OR = 1.43, 95% CI 1.07 - 1.88). Type of drinking water was associated with gastrointestinal cancer. When compared with drinking tap water, OR for drinking well water was 1.770 (95% CI 1.001 - 2.444), 2.442 for drinking river water (95% CI 0.956 - 3.950), 2.554 for drinking house and field ditch water (95% CI 1.961 - 6.584), and 3.121 for drinking pond water (95% CI 1.872 - 6.566). Related factors of drinking water in crocidolite-contaminated area in Dayao County were significantly associated with the mortality of gastrointestinal cancer.

  15. Factors associated with suicide: Case-control study in South Tyrol.

    PubMed

    Giupponi, Giancarlo; Innamorati, Marco; Baldessarini, Ross J; De Leo, Diego; de Giovannelli, Francesca; Pycha, Roger; Conca, Andreas; Girardi, Paolo; Pompili, Maurizio

    2018-01-01

    As suicide is related to many factors in addition to psychiatric illness, broad and comprehensive risk-assessment for risk of suicide is required. This study aimed to differentiate nondiagnostic risk factors among suicides versus comparable psychiatric patients without suicidal behavior. We carried out a pilot, case-control comparison of 131 cases of suicide in South Tyrol matched for age and sex with 131 psychiatric controls, using psychological autopsy methods to evaluate differences in clinically assessed demographic, social, and clinical factors, using bivariate conditional Odds Risk comparisons followed by conditional regression modeling controlled for ethnicity. Based on multivariable conditional regression modeling, suicides were significantly more likely to have experienced risk factors, ranking as: [a] family history of suicide or attempt≥[b] recent interpersonal stressors≥[c] childhood traumatic events≥[d] lack of recent clinician contacts≥[e] previous suicide attempt≥[f] non-Italian ethnicity, but did not differ in education, marital status, living situation, or employment, nor by psychiatric or substance-abuse diagnoses. Both recent and early factors were associated with suicide, including lack of recent clinical care, non-Italian cultural subgroup-membership, familial suicidal behavior, and recent interpersonal distress. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Control of microbially generated hydrogen sulfide in produced waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, E.D.; Vance, I.; Gammack, G.F.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technologymore » for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.« less

  17. Unravel biophysical factors on river water quality response in Chilean Central-Southern watersheds.

    PubMed

    Yevenes, Mariela A; Arumí, José L; Farías, Laura

    2016-05-01

    Identifying the key anthropogenic (land uses) and natural (topography and climate) biophysical drivers affecting river water quality is essential for efficient management of water resources. We tested the hypothesis that water quality can be predicted by different biophysical factors. Multivariate statistics based on a geographical information system (GIS) were used to explore the influence of factors (i.e., precipitation, topography, and land uses) on water quality (i.e., nitrate (NO 3 (-)), phosphate (PO 4 (3-)), silicate (Si(OH)4), dissolved oxygen (DO), suspended solids (TSS), biological oxygen demand (DO), temperature (T), conductivity (EC), and pH) for two consecutive years in the Itata and Biobío river watersheds, Central Chile (36° 00' and 38° 30'). The results showed that (NO 3 (-)), (PO 4 (3-)), Si(OH)4, TSS, EC, and DO were higher during rainy season (austral fall, winter, and spring), whereas BOD and temperature were higher during dry season. The spatial variation of these parameters in both watersheds was related to land use, topography (e.g., soil moisture, soil hydrological group, and erodability), and precipitation. Soil hydrological group and soil moisture were the strongest explanatory predictors for PO 4 (3-) , Si(OH)4 and EC in the river, followed by land use such as agriculture for NO 3 (-) and DO and silviculture for TSS and Si(OH)4. High-resolution water leaching and runoff maps allowed us to identify agriculture areas with major probability of water leaching and higher probability of runoff in silviculture areas. Moreover, redundancy analysis (RDA) revealed that land uses (agriculture and silviculture) explained in 60 % the river water quality variation. Our finding highlights the vulnerability of Chilean river waters to different biophysical drivers, rather than climate conditions alone, which is amplified by human-induced degradation.

  18. Community Water Improvement, Household Water Insecurity, and Women’s Psychological Distress: An Intervention and Control Study in Ethiopia

    PubMed Central

    Stevenson, E. G. J.; Ambelu, A.; Caruso, B. A.; Tesfaye, Y.; Freeman, M. C.

    2016-01-01

    Background Over 650 million people worldwide lack access to safe water supplies, and even among those who have gained access to ‘improved’ sources, water may be seasonally unreliable, far from homes, expensive, and provide insufficient quantity. Measurement of water access at the level of communities and households remains crude, and better measures of household water insecurity are urgently needed to inform needs assessments and monitoring and evaluation. We set out to assess the validity of a quantitative scale of household water insecurity, and to investigate (1) whether improvements to community water supply reduce water insecurity, (2) whether water interventions affect women’s psychological distress, and (3) the impacts of water insecurity on psychological distress, independent of socio-economic status, food security, and harvest quality. Methods and Findings Measures were taken before and one to six months after a community water supply improvement in three villages in rural northern Ethiopia. Villages similar in size and access to water sources and other amenities did not receive interventions, and served as controls. Household water insecurity was assessed using a 21-item scale based on prior qualitative work in Ethiopia. Women’s psychological distress was assessed using the WHO Self-Reporting Questionnaire (SRQ-20). Respondents were either female heads of household or wives of the heads of household (n = 247 at baseline, n = 223 at endline); 123 households provided data at both rounds. The intervention was associated with a decline of approximately 2 points on the water insecurity scale between baseline and endline compared to the control (beta -1.99; 95% CI’s -3.15, -0.84). We did not find evidence of impact of the intervention on women’s psychological distress. Water insecurity was, however, predictive of psychological distress (p <0.01), independent of household food security and the quality of the previous year’s harvest. Conclusion

  19. Identifying dominant controls on the water balance of partly sealed surfaces

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Schübl, Marleen; Siebert, Caroline; Weiler, Markus

    2017-04-01

    It is the challenge of modern urban development to obtain a near natural state for the urban water balance. For this purpose permeable alternatives to conventional surface sealing have been established during the last decades. A wealth of studies - under laboratory as well as field conditions - has emerged around the globe to examine the hydrological characteristics of different types of pavements. The main results of these studies - measured infiltration and evaporation rates, vary to a great extent between single studies and pavement types due to methodological approaches and local conditions. Within this study we analyze the controls of water balance components of partly sealed urban surfaces derived from an extensive literature review and a series of infiltration experiments conducted on historical and modern pavements within the city of Freiburg, Germany. Measured values published in 48 studies as well as the results of 30 double-ring infiltration experiments were compiled and sorted according to the measured parameter, the pavement type, pavement condition, age of the pavement, porosity of the pavement material and joint filling material as well as joint proportion of joint pavements. The main influencing factors on infiltration / hydraulic conductivity, evaporation rates and groundwater recharge of permeable pavements were identified and quantified using multiple linear regression methods. The analysis showed for both the literature study and our own infiltration experiments that condition and age of the pavement have the major influence on the pavement's infiltration capacity and that maintenance plays an important role for the long-term effectiveness of permeable pavements. For pavements with joints, the porosity of the pavement material seemed to have a stronger influence on infiltration capacity than the proportion of joint surface for which a clear influence could not be observed. Evaporation rates were compared for different surface categories as not

  20. Risk factors for measles among adults in Tianjin, China: Who should be controls in a case-control study?

    PubMed

    Wagner, Abram L; Boulton, Matthew L; Gillespie, Brenda W; Zhang, Ying; Ding, Yaxing; Carlson, Bradley F; Luo, Xiaoyan; Montgomery, JoLynn P; Wang, Xiexiu

    2017-01-01

    Control groups in previous case-control studies of vaccine-preventable diseases have included people immune to disease. This study examines risk factors for measles acquisition among adults 20 to 49 years of age in Tianjin, China, and compares findings using measles IgG antibody-negative controls to all controls, both IgG-negative and IgG-positive. Measles cases were sampled from a disease registry, and controls were enrolled from community registries in Tianjin, China, 2011-2015. Through a best subsets selection procedure, we compared which variables were selected at different model sizes when using IgG-negative controls or all controls. We entered risk factors for measles in two separate logistic regression models: one with measles IgG-negative controls and the other with all controls. The study included 384 measles cases and 1,596 community controls (194 IgG-negative). Visiting a hospital was an important risk factor. For specialty hospitals, the odds ratio (OR) was 4.53 (95% confidence interval (CI): 1.28, 16.03) using IgG-negative controls, and OR = 5.27 (95% CI: 2.73, 10.18) using all controls. Variables, such as age or length of time in Tianjin, were differentially selected depending on the control group. Individuals living in Tianjin ≤3 years had 2.87 (95% CI: 1.46, 5.66) times greater odds of measles case status compared to all controls, but this relationship was not apparent for IgG-negative controls. We recommend that case-control studies examining risk factors for infectious diseases, particularly in the context of transmission dynamics, consider antibody-negative controls as the gold standard.

  1. Soil moisture control of sap-flow response to biophysical factors in a desert-shrub species, Artemisia ordosica

    NASA Astrophysics Data System (ADS)

    Zha, Tianshan; Qian, Duo; Jia, Xin; Bai, Yujie; Tian, Yun; Bourque, Charles P.-A.; Ma, Jingyong; Feng, Wei; Wu, Bin; Peltola, Heli

    2017-10-01

    The current understanding of acclimation processes in desert-shrub species to drought stress in dryland ecosystems is still incomplete. In this study, we measured sap flow in Artemisia ordosica and associated environmental variables throughout the growing seasons of 2013 and 2014 (May-September period of each year) to better understand the environmental controls on the temporal dynamics of sap flow. We found that the occurrence of drought in the dry year of 2013 during the leaf-expansion and leaf-expanded periods caused sap flow per leaf area (Js) to decline significantly, resulting in transpiration being 34 % lower in 2013 than in 2014. Sap flow per leaf area correlated positively with radiation (Rs), air temperature (T), and water vapor pressure deficit (VPD) when volumetric soil water content (VWC) was greater than 0.10 m3 m-3. Diurnal Js was generally ahead of Rs by as much as 6 hours. This time lag, however, decreased with increasing VWC. The relative response of Js to the environmental variables (i.e., Rs, T, and VPD) varied with VWC, Js being more strongly controlled by plant-physiological processes during periods of dryness indicated by a low decoupling coefficient and low sensitivity to the environmental variables. According to this study, soil moisture is shown to control sap-flow (and, therefore, plant-transpiration) response in Artemisia ordosica to diurnal variations in biophysical factors. This species escaped (acclimated to) water limitations by invoking a water-conservation strategy with the regulation of stomatal conductance and advancement of Js peaking time, manifesting in a hysteresis effect. The findings of this study add to the knowledge of acclimation processes in desert-shrub species under drought-associated stress. This knowledge is essential in modeling desert-shrub-ecosystem functioning under changing climatic conditions.

  2. A simulation study of factors controlling white sturgeon recruitment in the Snake River

    USGS Publications Warehouse

    Jager, H.I.; Van Winkle, W.; Chandler, James Angus; Lepla, K.B.; Bates, P.; Counihan, T.D.

    2002-01-01

    Five of the nine populations of white sturgeon Acipenser transmontanus, located between dams on the Middle Snake River, have declined from historical levels and are now at risk of extinction. One step towards more effectively protecting and managing these nine populations is ranking factors that influence recruitment in each of these river segments. We developed a model to suggest which of seven mechanistic factors contribute most to lost recruitment in each river segment: (1) temperature-related mortality during incubation, (2) flow-related mortality during incubation, (3) downstream export of larvae, (4) limitation of juvenile and adult habitat, (5) mortality of all ages during summer episodes of poor water quality in reservoirs, (6) entrainment mortality of juveniles and adults, and (7) angling mortality. We simulated recruitment with, and without, each of the seven factors, over a typical series of hydrologic years. We found a hierarchical pattern of limitation. In the first tier, river segments with severe water quality problems grouped together. Poor water quality during summer had a strong negative effect on recruitment in the river segments between Swan Falls Dam and Hell's Canyon Dam. In the second tier, river segments with better water quality divided into short river segments and longer river segments. Populations in short river segments were limited by larval export. Populations in longer river segments tended to be less strongly limited by any one factor. We also found that downstream effects could be important, suggesting that linked populations cannot be viewed in isolation. In two cases, the effects of a factor on an upstream population had a significant influence on its downstream neighbors. ?? 2002 by the American Fisheries Society.

  3. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three

  4. Risk factors and monitoring for water quality to determine best management practices for splash parks.

    PubMed

    de Man, H; Leenen, E J T M; van Knapen, F; de Roda Husman, A M

    2014-09-01

    Splash parks have been associated with infectious disease outbreaks as a result of exposure to poor water quality. To be able to protect public health, risk factors were identified that determine poor water quality. Samples were taken at seven splash parks where operators were willing to participate in the study. Higher concentrations of Escherichia coli were measured in water of splash parks filled with rainwater or surface water as compared with sites filled with tap water, independent of routine inspection intervals and employed disinfection. Management practices to prevent fecal contamination and guarantee maintaining good water quality at splash parks should include selection of source water of acceptable quality.

  5. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants.

    PubMed

    Dong, Xian; Ling, Ning; Wang, Min; Shen, Qirong; Guo, Shiwei

    2012-11-01

    Fusarium wilt of banana is caused by Fusarium oxysporum f. sp. cubense infection. The initial chlorosis symptoms occur progressively from lower to upper leaves, with wilt symptoms subsequently occurring in the whole plant. To determine the effect of the pathogen infection on the gas exchange characteristics and water content in banana leaves, hydroponic experiments with pathogen inoculation were conducted in a greenhouse. Compared with control plants, infected banana seedlings showed a higher leaf temperature as determined by thermal imaging. Reduced stomatal conductance (g(s)) and transpiration rate (E) in infected plants resulted in lower levels of water loss than in control plants. Water potential in heavily diseased plants (II) was significantly reduced and the E/g(s) ratio was higher than in noninfected plants, indicating the occurrence of uncontrolled water loss not regulated by stomata in diseased plants. As no pathogen colonies were detected from the infected plant leaves, the crude toxin was extracted from the pathogen culture and evaluated about the effect on banana plant to further investigate the probable reason of these physiological changes in Fusarium-infected banana leaf. The phytotoxin fusaric acid (FA) was found in the crude toxin, and both crude toxin and pure FA had similar effects as the pathogen infection on the physiological changes in banana leaf. Additionally, FA was present at all positions in diseased plants and its concentration was positively correlated with the incidence of disease symptoms. Taken together, these observations indicated that FA secreted by the pathogen is an important factor involved in the disturbance of leaf temperature, resulting in uncontrolled leaf water loss and electrolyte leakage due to damaging the cell membrane. In conclusion, FA plays a critical role in accelerating the development of Fusarium wilt in banana plants by acting as a phytotoxin. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Root Water Uptake and Soil Moisture Pattern Dynamics - Capturing Connections, Controls and Causalities

    NASA Astrophysics Data System (ADS)

    Blume, T.; Heidbuechel, I.; Hassler, S. K.; Simard, S.; Guntner, A.; Stewart, R. D.; Weiler, M.

    2015-12-01

    We hypothesize that there is a shift in controls on landscape scale soil moisture patterns when plants become active during the growing season. Especially during the summer soil moisture patterns are not only controlled by soils, topography and related abiotic site characteristics but also by root water uptake. Root water uptake influences soil moisture patterns both in the lateral and vertical direction. Plant water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographic positions and types of vegetation. Vegetation types include pasture, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture and soil temperature profiles, matrix potential, piezometers and sapflow sensors as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. The analysis of soil moisture patterns over time indicates a shift in regime depending on season. Depth profiles of root water uptake show strong differences between different forest stands, with maximum depths ranging between 50 and 200 cm. Temporal dynamics of signal strength within the profile furthermore suggest a locally shifting spatial distribution of root water uptake depending on water availability. We will investigate temporal thresholds (under which conditions spatial patterns of root water uptake become most distinct) as well as landscape controls on soil moisture and root water uptake dynamics.

  7. Risk factors for syphilis in women: case-control study

    PubMed Central

    de Macêdo, Vilma Costa; de Lira, Pedro Israel Cabral; de Frias, Paulo Germano; Romaguera, Luciana Maria Delgado; Caires, Silvana de Fátima Ferreira; Ximenes, Ricardo Arraes de Alencar

    2017-01-01

    ABSTRACT OBJECTIVE To determine the sociodemographic, behavioral, and health care factors related to the occurrence of syphilis in women treated at public maternity hospitals. METHODS This is a case-control study (239 cases and 322 controls) with women admitted to seven maternity hospitals in the municipality of Recife, Brazil, from July 2013 to July 2014. Eligible women were recruited after the result of the VDRL (Venereal Disease Research Laboratory) under any titration. The selection of cases and controls was based on the result of the serology for syphilis using ELISA (enzyme-linked immunosorbent assay). The independent variables were grouped into: sociodemographic, behavioral, clinical and obstetric history, and health care in prenatal care and maternity hospital. Information was obtained by interview, during hospitalization, with the application of a questionnaire. Odds ratios and 95% confidence intervals were estimated using logistic regression to identify the predicting factors of the variable to be explained. RESULTS The logistic regression analysis identified as determinant factors for gestational syphilis: education level of incomplete basic education or illiterate (OR = 2.02), lack of access to telephone (OR = 2.4), catholic religion (OR = 1.70 ), four or more pregnancies (OR = 2.2), three or more sexual partners in the last year (OR = 3.1), use of illicit drugs before the age of 18 (OR = 3.0), and use of illicit drugs by the current partner (OR = 1.7). Only one to three prenatal appointments (OR = 3.5) and a previous history of sexually transmitted infection (OR = 9.7) were also identified as determinant factors. CONCLUSIONS Sociodemographic, behavioral, and health care factors are associated with the occurrence of syphilis in women and should be taken into account in the elaboration of universal strategies aimed at the prevention and control of syphilis, but with a focus on situations of greater vulnerability. PMID:28832758

  8. WaterSense Specification for Weather-Based Irrigation Controllers Supporting Statement

    EPA Pesticide Factsheets

    The release of this final specification is the result of more than four years of collaboration between EPA and controller manufacturers, water utilities, irrigation industry representatives, and other stakeholders.

  9. Cholera epidemic associated with consumption of unsafe drinking water and street-vended water--Eastern Freetown, Sierra Leone, 2012.

    PubMed

    Nguyen, Von D; Sreenivasan, Nandini; Lam, Eugene; Ayers, Tracy; Kargbo, David; Dafae, Foday; Jambai, Amara; Alemu, Wondimagegnehu; Kamara, Abdul; Islam, M Sirajul; Stroika, Steven; Bopp, Cheryl; Quick, Robert; Mintz, Eric D; Brunkard, Joan M

    2014-03-01

    During 2012, Sierra Leone experienced a cholera epidemic with 22,815 reported cases and 296 deaths. We conducted a matched case-control study to assess risk factors, enrolling 49 cases and 98 controls. Stool specimens were analyzed by culture, polymerase chain reaction (PCR), and pulsed-field gel electrophoresis (PFGE). Conditional logistic regression found that consuming unsafe water (matched odds ratio [mOR]: 3.4; 95% confidence interval [CI]: 1.1, 11.0), street-vended water (mOR: 9.4; 95% CI: 2.0, 43.7), and crab (mOR: 3.3; 95% CI: 1.03, 10.6) were significant risk factors for cholera infection. Of 30 stool specimens, 13 (43%) showed PCR evidence of toxigenic Vibrio cholerae O1. Six specimens yielded isolates of V. cholerae O1, El Tor; PFGE identified a pattern previously observed in seven countries. We recommended ensuring the quality of improved water sources, promoting household chlorination, and educating street vendors on water handling practices.

  10. Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors

    USGS Publications Warehouse

    Chiou, C.T.

    1985-01-01

    Triolein-water partition coefficients (KtW) have been determined for 38 slightly water-soluble organic compounds, and their magnitudes have been compared with the corresponding octanol-water partition coefficients (KOW). In the absence of major solvent-solute interaction effects in the organic solvent phase, the conventional treatment (based on Raoult's law) predicts sharply lower partition coefficients for most of the solutes in triolein because of its considerably higher molecular weight, whereas the Flory-Huggins treatment predicts higher partition coefficients with triolein. The data are in much better agreement with the Flory-Huggins model. As expected from the similarity in the partition coefficients, the water solubility (which was previously found to be the major determinant of the KOW) is also the major determinant for the Ktw. When the published BCF values (bioconcentration factors) of organic compounds in fish are based on the lipid content rather than on total mass, they are approximately equal to the Ktw, which suggests at least near equilibrium for solute partitioning between water and fish lipid. The close correlation between Ktw and Kow suggests that Kow is also a good predictor for lipid-water partition coefficients and bioconcentration factors.

  11. AN INTERDISCIPLINARY APPROACH TO VALUING WATER FROM BRUSH CONTROL

    EPA Science Inventory

    An analytical methodology utilizing models from three disciplines is developed to assess the viability of brush control for wate yield in the Frio River Basin, TX. Ecological, hydrologic, and economic models are used to portray changes in forage production and water supply result...

  12. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaponenko, I., E-mail: iaroslav.gaponenko@unige.ch; Gamperle, L.; Herberg, K.

    2016-06-15

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variationmore » of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.« less

  13. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozemeijer, J. C.; Visser, A.; Borren, W.

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution

  14. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE PAGES

    Rozemeijer, J. C.; Visser, A.; Borren, W.; ...

    2016-01-19

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution

  15. Fabrication of Superhydrophobic Surfaces with Controllable Electrical Conductivity and Water Adhesion.

    PubMed

    Ye, Lijun; Guan, Jipeng; Li, Zhixiang; Zhao, Jingxin; Ye, Cuicui; You, Jichun; Li, Yongjin

    2017-02-14

    A facile and versatile strategy for fabricating superhydrophobic surfaces with controllable electrical conductivity and water adhesion is reported. "Vine-on-fence"-structured and cerebral cortex-like superhydrophobic surfaces are constructed by filtering a suspension of multiwalled carbon nanotubes (MWCNTs), using polyoxymethylene nonwovens as the filter paper. The nonwovens with micro- and nanoporous two-tier structures act as the skeleton, introducing a microscale structure. The MWCNTs act as nanoscale structures, creating hierarchical surface roughness. The surface topography and the electrical conductivity of the superhydrophobic surfaces are controlled by varying the MWCNT loading. The vine-on-fence-structured surfaces exhibit "sticky" superhydrophobicity with high water adhesion. The cerebral cortex-like surfaces exhibit self-cleaning properties with low water adhesion. The as-prepared superhydrophobic surfaces are chemically resistant to acidic and alkaline environments of pH 2-12. They therefore have potential in applications such as droplet-based microreactors and thin-film microextraction. These findings aid our understanding of the role that surface topography plays in the design and fabrication of superhydrophobic surfaces with different water-adhesion properties.

  16. Estimating the risk of cyanobacterial occurrence using an index integrating meteorological factors: application to drinking water production.

    PubMed

    Ndong, Mouhamed; Bird, David; Nguyen-Quang, Tri; de Boutray, Marie-Laure; Zamyadi, Arash; Vinçon-Leite, Brigitte; Lemaire, Bruno J; Prévost, Michèle; Dorner, Sarah

    2014-06-01

    The sudden appearance of toxic cyanobacteria (CB) blooms is still largely unpredictable in waters worldwide. Many post-hoc explanations for CB bloom occurrence relating to physical and biochemical conditions in lakes have been developed. As potentially toxic CB can accumulate in drinking water treatment plants and disrupt water treatment, there is a need for water treatment operators to determine whether conditions are favourable for the proliferation and accumulation of CB in source waters in order to adjust drinking water treatment accordingly. Thus, a new methodology with locally adaptable variables is proposed in order to have a single index, f(p), related to various environmental factors such as temperature, wind speed and direction. The index is used in conjunction with real time monitoring data to determine the probability of CB occurrence in relation to meteorological factors, and was tested at a drinking water intake in Missisquoi Bay, a shallow transboundary bay in Lake Champlain, Québec, Canada. These environmental factors alone were able to explain a maximum probability of 68% that a CB bloom would occur at the drinking water treatment plant. Nutrient limitation also influences CB blooms and intense blooms only occurred when the dissolved inorganic nitrogen (DIN) to total phosphorus (TP) mass ratio was below 3. Additional monitoring of DIN and TP could be considered for these source waters prone to cyanobacterial blooms to determine periods of favourable growth. Real time monitoring and the use of the index could permit an adequate and timely response to CB blooms in drinking water sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Beneficial effect of sulphate-bicarbonate-calcium water on gallstone risk and weight control

    PubMed Central

    Corradini, Stefano Ginanni; Ferri, Flaminia; Mordenti, Michela; Iuliano, Luigi; Siciliano, Maria; Burza, Maria Antonella; Sordi, Bruno; Caciotti, Barbara; Pacini, Maria; Poli, Edoardo; Santis, Adriano De; Roda, Aldo; Colliva, Carolina; Simoni, Patrizia; Attili, Adolfo Francesco

    2012-01-01

    AIM: To investigate the effect of drinking sulphate-bicarbonate-calcium thermal water (TW) on risk factors for atherosclerosis and cholesterol gallstone disease. METHODS: Postmenopausal women with functional dyspepsia and/or constipation underwent a 12 d cycle of thermal (n = 20) or tap (n = 20) water controlled drinking. Gallbladder fasting volume at ultrasound, blood vitamin E, oxysterols (7-β-hydroxycholesterol and 7-ketocholesterol), bile acid (BA), triglycerides, total/low density lipoprotein and high density lipoprotein cholesterol were measured at baseline and at the end of the study. Food consumption, stool frequency and body weight were recorded daily. RESULTS: Blood lipids, oxysterols and vitamin E were not affected by either thermal or tap water consumption. Fasting gallbladder volume was significantly (P < 0.005) smaller at the end of the study than at baseline in the TW (15.7 ± 1.1 mL vs 20.1 ± 1.7 mL) but not in the tap water group (19.0 ± 1.4 mL vs 19.4 ± 1.5 mL). Total serum BA concentration was significantly (P < 0.05) higher at the end of the study than at baseline in the TW (5.83 ± 1.24 μmol vs 4.25 ± 1.00 μmol) but not in the tap water group (3.41 ± 0.46 μmol vs 2.91 ± 0.56 μmol). The increased BA concentration after TW consumption was mainly accounted for by glycochenodeoxycholic acid. The number of pasta (P < 0.001), meat (P < 0.001) and vegetable (P < 0.005) portions consumed during the study and of bowel movements per day (P < 0.05) were significantly higher in the TW than in the tap water group. Body weight did not change at the end of the study as compared to baseline in both groups. CONCLUSION: Sulphate-bicarbonate-calcium water consumption has a positive effect on lithogenic risk and intestinal transit and allows maintenance of a stable body weight despite a high food intake. PMID:22408352

  18. Beneficial effect of sulphate-bicarbonate-calcium water on gallstone risk and weight control.

    PubMed

    Corradini, Stefano Ginanni; Ferri, Flaminia; Mordenti, Michela; Iuliano, Luigi; Siciliano, Maria; Burza, Maria Antonella; Sordi, Bruno; Caciotti, Barbara; Pacini, Maria; Poli, Edoardo; Santis, Adriano De; Roda, Aldo; Colliva, Carolina; Simoni, Patrizia; Attili, Adolfo Francesco

    2012-03-07

    To investigate the effect of drinking sulphate-bicarbonate-calcium thermal water (TW) on risk factors for atherosclerosis and cholesterol gallstone disease. Postmenopausal women with functional dyspepsia and/or constipation underwent a 12 d cycle of thermal (n = 20) or tap (n = 20) water controlled drinking. Gallbladder fasting volume at ultrasound, blood vitamin E, oxysterols (7-β-hydroxycholesterol and 7-ketocholesterol), bile acid (BA), triglycerides, total/low density lipoprotein and high density lipoprotein cholesterol were measured at baseline and at the end of the study. Food consumption, stool frequency and body weight were recorded daily. Blood lipids, oxysterols and vitamin E were not affected by either thermal or tap water consumption. Fasting gallbladder volume was significantly (P < 0.005) smaller at the end of the study than at baseline in the TW (15.7 ± 1.1 mL vs 20.1 ± 1.7 mL) but not in the tap water group (19.0 ± 1.4 mL vs 19.4 ± 1.5 mL). Total serum BA concentration was significantly (P < 0.05) higher at the end of the study than at baseline in the TW (5.83 ± 1.24 μmol vs 4.25 ± 1.00 μmol) but not in the tap water group (3.41 ± 0.46 μmol vs 2.91 ± 0.56 μmol). The increased BA concentration after TW consumption was mainly accounted for by glycochenodeoxycholic acid. The number of pasta (P < 0.001), meat (P < 0.001) and vegetable (P < 0.005) portions consumed during the study and of bowel movements per day (P < 0.05) were significantly higher in the TW than in the tap water group. Body weight did not change at the end of the study as compared to baseline in both groups. Sulphate-bicarbonate-calcium water consumption has a positive effect on lithogenic risk and intestinal transit and allows maintenance of a stable body weight despite a high food intake.

  19. Water Pollution Control Training: The Educational Role of the United States Environmental Protection Agency.

    ERIC Educational Resources Information Center

    Williams, Frederick D.

    Presented are the results of a study to determine the perceived needs of environmental control education programs as seen by students, instructors, deans or program directors, and field-related employers in the field of water pollution control. Data were collected utilizing three approaches: survey instruments, information from Water Quality…

  20. Quantifying the Anthropogenic and Geological Controls on the DIC and Water Quality of the Waterways in a Closed Semi-Arid Basin

    NASA Astrophysics Data System (ADS)

    Jameel, M. Y.; Bowen, G. J.

    2016-12-01

    Recent studies have shown that inland aquatic carbon cycling is an important component of the global carbon cycle which is being altered significantly by changes in land use/land cover (LCLU). The study of dissolved carbon species (DIC) in rivers provides important information about the processing of carbon within a watershed. In 2014, we conducted pilot surveys quantifying the spatiotemporal pattern in the DIC concentration and its isotopic ratios (δ13C) across the Bear and the Weber Rivers within the closed Great Salt Lake (GSL) Basin, which is undergoing rapid urbanization and changes in LCLU. Our data reflected significant variations among and between both rivers, where the Weber River was characterized by smaller seasonal and spatial variability. However, both the rivers showed an increase in DIC from headwaters to terminus. We observed increase in the riverine DIC along the agricultural and urbanized stretches of the river, and decrease downstream of tributaries input draining pristine watersheds. We also observed significant differences in the DIC upstream and downstream of reservoirs. We hypothesize that these variations suggest strong anthropogenic control on the DIC such as due to agriculture, urbanization, construction of reservoirs and anthropogenic modifications of the river flow. To test our hypothesis we conducted an additional geochemical survey during the high flow spring season (in 2016). An additional survey during fall 2016 will capture the base flow chemistry. We measured a suite of geochemical tracers including major ions (Ca, Mg, NO3, Cl, PO4, SO4), trace elements (Sr, Rb, Fe, Al, and Zn), nitrate (δ15N and δ18O), carbon, strontium, water isotopes and physical properties of water (temperature, pH, DO and conductivity) to quantify the factors controlling the river DIC and water quality. Our ongoing work will help evaluate the overall water quality and carbon budget of the major rivers in the GSL and partition the anthropogenic and natural

  1. Building new WDM regulations for the Namibian tourism sector on factors influencing current water-management practices at the enterprise level

    NASA Astrophysics Data System (ADS)

    Schachtschneider, Klaudia

    Namibia's aridity is forcing its water sector to resort to new water resource management approaches, including water demand management (WDM). Such a change in management approach is facilitated through the country's opportunity at independence to rewrite and adapt its old policies, including those for water and tourism. Legal support for WDM through the Water Act and other sector-specific Acts is crucial to plan the practical implementation of WDM throughout the different water use sectors of Namibia. In order to be able to put the policy into practice, it is imperative to understand which factors motivate people to adopt WDM initiatives. Within the Namibian tourism industry three main factors have been identified which influence the water-management approaches at tourist facilities. This paper discusses how the water and tourism decision makers can consider these factors when developing new regulations to introduce WDM in the tourism sector.

  2. Structure and controls of the global virtual water trade network

    NASA Astrophysics Data System (ADS)

    Suweis, S.; Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2011-05-01

    Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e., the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under future political, economic and climatic scenarios, suggesting that the crucial importance of the countries that trade large volumes of water will be strengthened.

  3. Factors controlling the long-term temporal and spatial patterns of nitrate-nitrogen export in a dairy farming watershed.

    PubMed

    Jiang, Rui; Wang, Chun-ying; Hatano, Ryusuke; Kuramochi, Kanta; Hayakawa, Atsushi; Woli, Krishna P

    2015-04-01

    It is difficult to investigate the factors that control the riverine nitrate-nitrogen (NO3--N) export in a watershed which gains or losses groundwater. To control the NO3--N contamination in these watersheds, it is necessary to investigate the factors that are related to the export of NO3--N that is only produced by the watershed itself. This study was conducted in the Shibetsu watershed located in eastern Hokkaido, Japan, which gains external groundwater contribution (EXT) and 34% of the annual NO3--N loading occurs through EXT. The riverine NO3--N exports from 1980 to 2009 were simulated by the SWAT model, and the factors controlling the temporal and spatial patterns of NO3--N exports were investigated without considering the EXT. The results show that hydrological events control NO3--N export at the seasonal scale, while the hydrological and biogeochemical processes are likely to control NO3--N export at the annual scale. There was an integrated effect among the land use, topography, and soil type related to denitrification process, that regulated the spatial patterns of NO3--N export. The spatial distribution of NO3--N export from hydrologic response units (HRUs) identified the agricultural areas with surplus N that are vulnerable to nitrate contamination. A new standard for the N fertilizer application rate including manure application should be given to control riverine NO3--N export. This study demonstrates that applying the SWAT model is an appropriate method to determine the temporal and spatial patterns of NO3--N export from the watershed which includes EXT and to identify the crucial pollution areas within a watershed in which the management practices can be improved to more effectively control NO3--N export to water bodies.

  4. Effectiveness and feasibility of long-lasting insecticide-treated curtains and water container covers for dengue vector control in Colombia: a cluster randomised trial

    PubMed Central

    Quintero, Juliana; García-Betancourt, Tatiana; Cortés, Sebastian; García, Diana; Alcalá, Lucas; González-Uribe, Catalina; Brochero, Helena; Carrasquilla, Gabriel

    2015-01-01

    Background Long-lasting insecticide-treated net (LLIN) window and door curtains alone or in combination with LLIN water container covers were analysed regarding effectiveness in reducing dengue vector density, and feasibility of the intervention. Methods A cluster randomised trial was conducted in an urban area of Colombia comparing 10 randomly selected control and 10 intervention clusters. In control clusters, routine vector control activities were performed. The intervention delivered first, LLIN curtains (from July to August 2013) and secondly, water container covers (from October to March 2014). Cross-sectional entomological surveys were carried out at baseline (February 2013 to June 2013), 9 weeks after the first intervention (August to October 2013), and 4–6 weeks after the second intervention (March to April 2014). Results Curtains were installed in 922 households and water container covers in 303 households. The Breteau index (BI) fell from 14 to 6 in the intervention group and from 8 to 5 in the control group. The additional intervention with LLIN covers for water containers showed a significant reduction in pupae per person index (PPI) (p=0.01). In the intervention group, the PPI index showed a clear decline of 71% compared with 25% in the control group. Costs were high but options for cost savings were identified. Conclusions Short term impact evaluation indicates that the intervention package can reduce dengue vector density but sustained effect will depend on multiple factors. PMID:25604762

  5. Toward city-scale water quality control: building a theory for smart stormwater systems

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Mullapudi, A. M.; Wong, B. P.

    2016-12-01

    Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.

  6. Adaptive Critic-based Neurofuzzy Controller for the Steam Generator Water Level

    NASA Astrophysics Data System (ADS)

    Fakhrazari, Amin; Boroushaki, Mehrdad

    2008-06-01

    In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts of the fuzzy inference rules. The critic agent here has a proportional-derivative structure and the fuzzy rule base has nine rules. The proposed controller shows satisfactory transient responses, disturbance rejection and robustness to model uncertainty. Its simple design procedure and structure, nominates it as one of the suitable controller designs for the steam generator water level control in nuclear power plant industry.

  7. Legionella species colonization in cooling towers: risk factors and assessment of control measures.

    PubMed

    Mouchtouri, Varvara A; Goutziana, Georgia; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2010-02-01

    Cooling towers can be colonized by Legionella spp, and inhalation of aerosols generated by their operation may cause Legionnaires' disease in susceptible hosts. Environmental investigations of Legionnaires' disease outbreaks linked with cooling towers have revealed poorly maintained systems, lack of control measures, and failure of system equipment. The purpose of this study was to identify Legionella-contaminated cooling towers, identify risk factors for contamination, and assess the effectiveness of control measures. A total of 96 cooling towers of public buildings were registered and inspected, and 130 samples were collected and microbiologically tested. Microbiological test results were associated with characteristics of cooling towers, water samples, inspection results, and maintenance practices. Of the total 96 cooling towers examined, 47 (48.9%) were colonized by Legionella spp, and 22 (22.9%) required remedial action. A total of 65 samples (50.0%) were positive (> or = 500 cfu L(-1)), and 30 (23%) were heavily contaminated (> or = 10(4) cfu L(-1)). Of the 69 isolates identified, 55 strains (79.7.%) were L pneumophila. Legionella colonization was positively associated with the absence of training on Legionella control (relative risk [RR] = 1.66; P = .02), absence of regular Legionella testing (RR = 2.07: P = .002), absence of sunlight protection (RR = 1.63: P = .02), with samples in which the free residual chlorine level in the water sample was < 0.5 mg/L (RR = 2.23; P = .01), and with total plate count (P =.001). Colonization was negatively associated with chemical disinfection (RR = 0.2; P = .0003) and with the presence of a risk assessment and management plan (RR = 0.12; P = .0005). A statistically significant higher age (P =.01) was found in legionellae-positive cooling towers (median, 17 years; interquartile range [IQR] =5.0 to 26.0 years) compared with noncolonized cooling towers (median age, 6 years; IQR =1.0 to 13.5 years). After the 22 legionellae

  8. The Role of Monitoring in Controlling Water Pollution

    NASA Technical Reports Server (NTRS)

    Hirsch, Allan

    1971-01-01

    The purpose of this paper is to provide an overview of trends in the national water pollution control effort and to describe the role of monitoring in that effort, particularly in relation to the responsibilities of the Environmental Protection Agency (EPA). I hope the paper will serve as a useful framework for the more specific discussions of monitoring technology to follow.

  9. Spatial and Temporal Variations of Water Quality and Trophic Status in Xili Reservoir: a Subtropics Drinking Water Reservoir of Southeast China

    NASA Astrophysics Data System (ADS)

    Yunlong, Song; Zhang, Jinsong; Zhu, Jia; Li, Wang; Chang, Aimin; Yi, Tao

    2017-12-01

    Controlling of water quality pollution and eutrophication of reservoirs has become a very important research topic in urban drinking water field. Xili reservoir is an important water source of drinking water in Shenzhen. And its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Xili reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. Xili reservoir was seriously polluted by nitrogen. Judged by TN most of the samples were no better than grade VI. Other water quality factor including WT, SD, pH, DO, COD, TOC, TP, Fe, silicate, turbidity, chlorophyll-a were pretty good. One-way ANOVA showed that significant difference was found in water quality factors on month (p<0.005). The spatial heterogeneity of water quality was obvious (p<0.05). The successions of water quality factors y were similar and the mainly pattern was Pre-rainy period > Latter rainy period > High temperature and rain free period > Temperature jump period > Winter drought period. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession.TLI (Σ) were about 35~52, suggesting Xili reservoir was in mycotrophic trophic states. As a result of runoff pollution, water quality at sampling sites 1 and 10 was poor. In the rainy season, near sampling sites 1 and 10, water appeared to be Light-eutrophic. The phytoplankton biomass of Xili reservoir was low. Water temperature was the main driving factor of phytoplankton succession.The 14 water quality factors were divided into five groups by factor analysis. The total interpretation rate was about 70.82%. F1 represents the climatic change represented by water temperature and organic pollution. F2 represents the concentration of nitrogen. F3 represents the phytoplankton biomass. F4 represents the sensory

  10. Factors Associated with Long-Term Control of Type 2 Diabetes Mellitus.

    PubMed

    Badedi, Mohammed; Solan, Yahiya; Darraj, Hussain; Sabai, Abdullah; Mahfouz, Mohamed; Alamodi, Saleh; Alsabaani, Abdullah

    2016-01-01

    Aims. This study assessed factors associated with glycemic control among Saudi patients with Type 2 diabetes mellitus (T2DM). Methods. We conducted an analytical cross-sectional study, which included a random sample of 288 patients with T2DM proportional to the diabetes population of each primary health care center in Jazan city, Kingdom of Saudi Arabia. Results. More than two-thirds (74%) of patients had poor glycemic control. Lack of education, polypharmacy, and duration of diabetes ≥ 7 years were significantly associated with higher glycated hemoglobin (HbA1c). Moreover, patients who were smoker or divorced were significantly more likely to have higher HbA1c. The patients who did not comply with diet or take their medications as prescribed had poor glycemic control. The study found lower HbA1c levels among patients who received family support or had close relationship with their physicians. Similarly, knowledgeable patients towards diabetes or those with greater confidence in ability to manage self-care behaviors had a lower HbA1c. In contrast, risk factors such as depression or stress were significantly correlated with poorer glycemic control. Conclusion. The majority of T2DM patients had poor glycemic control. The study identified several factors associated with glycemic control. Effective and tailored interventions are needed to mitigate exposure to these risk factors. This would improve glycemic control and reduce the risks inherent to diabetes complications.

  11. Preparation of novel cotton fabric composites with pH controlled switchable wettability for efficient water-in-oil and oil-in-water emulsions separation

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wu, Jianning; Meng, Guihua; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong

    2018-06-01

    The wetting materials with the ability of controllable oil/water separation have drawn more and more public attention. In this article, the novel cotton fabric (CF) with pH controlled wettability transition was designed by a simple, environmentally friendly coating copolymer/SiO2 nanoparticles, poly(heptadecafluorodecyl methacrylate- co-3-trimethoxysilylpropyl methacrylate- co-2-vinilpiridine) (PHDFDMA- co-PTMSPMA- co-P2VP). Furthermore, the structures and morphologies of coated CF were confirmed by Fourier transform infrared spectroscopy (FTIR), NMR, GPC, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The coated CF exhibits switchable wettability between superhydrophobicity and superhydrophilicity via adjusting pH value. When the coated CF is placed in the neutral aqueous (pH = 7.0), it is superhydrophobic in the air and superoleophilic. It allows oil to go through but blocking water. However, in acidic aqueous environment (pH = 3.0), it turns superhydrophilic and underwater superoleophobic, which allows water to penetrate but blocking oil. Therefore, the coated CF could be applied to separate oil/water mixtures, ternary oil/water/water mixtures continuously and different surfactant stabilized emulsions (oil-in-water, water-in-oil) and displays the superior separation capacity for oil-water mixtures with a high efficiency of 99.8%. Moreover, the cycling tests demonstrate that the coated CF possesses excellent recyclability and durability. Such an eminent, controllable water/oil permeation feature makes coated CF could be selected as an ideal candidate for oil/water separation.

  12. On factors influencing air-water gas exchange in emergent wetlands

    USGS Publications Warehouse

    Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.

    2018-01-01

    Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.

  13. Virtual water trade patterns in relation to environmental and socioeconomic factors: A case study for Tunisia.

    PubMed

    Chouchane, Hatem; Krol, Maarten S; Hoekstra, Arjen Y

    2018-02-01

    Growing water demands put increasing pressure on local water resources, especially in water-short countries. Virtual water trade can play a key role in filling the gap between local demand and supply of water-intensive commodities. This study aims to analyse the dynamics in virtual water trade of Tunisia in relation to environmental and socio-economic factors such as GDP, irrigated land, precipitation, population and water scarcity. The water footprint of crop production is estimated using AquaCrop for six crops over the period 1981-2010. Net virtual water import (NVWI) is quantified at yearly basis. Regression models are used to investigate dynamics in NVWI in relation to the selected factors. The results show that NVWI during the study period for the selected crops is not influenced by blue water scarcity. NVWI correlates in two alternative models to either population and precipitation (model I) or to GDP and irrigated area (model II). The models are better in explaining NVWI of staple crops (wheat, barley, potatoes) than NVWI of cash crops (dates, olives, tomatoes). Using model I, we are able to explain both trends and inter-annual variability for rain-fed crops. Model II performs better for irrigated crops and is able to explain trends significantly; no significant relation is found, however, with variables hypothesized to represent inter-annual variability. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Child dysentery in the Limpopo Valley: a cohort study of water, sanitation and hygiene risk factors.

    PubMed

    Gundry, Stephen W; Wright, James A; Conroy, Ronán M; Preez, Martella Du; Genthe, Bettina; Moyo, Sibonginkosi; Mutisi, Charles; Potgieter, Natasha

    2009-06-01

    The objective of this cohort study was to assess risk factors for child dysentery and watery diarrhoea. The study participants consisted of 254 children aged 12-24 months in rural South Africa and Zimbabwe in households where drinking water was collected from communal sources. The main outcome measure was the most severe diarrhoea episode: dysentery, watery diarrhoea or none. For dysentery, drinking water from sources other than standpipes had a relative risk ratio of 3.8 (95% CI 1.5-9.8). Poor source water quality, as indicated by Escherichia coli counts of 10 or more cfu 100 ml(-1), increased risk by 2.9 (1.5-5.7). There were no other significant risk factors for dysentery and none for watery diarrhoea. In this study, endemic dysentery is associated only with faecal contamination of source water. Sources other than standpipes, including improved groundwater, are of greater risk. Remediation of water quality by treatment at source or in the household will be required to achieve access to safe drinking water in accordance with the 7th Millennium Development Goal.

  15. Real-time performance assessment and adaptive control for a water chiller unit in an HVAC system

    NASA Astrophysics Data System (ADS)

    Bai, Jianbo; Li, Yang; Chen, Jianhao

    2018-02-01

    The paper proposes an adaptive control method for a water chiller unit in a HVAC system. Based on the minimum variance evaluation, the adaptive control method was used to realize better control of the water chiller unit. To verify the performance of the adaptive control method, the proposed method was compared with an a conventional PID controller, the simulation results showed that adaptive control method had superior control performance to that of the conventional PID controller.

  16. Factors associated with post-treatment E. coli contamination in households practising water treatment: a study of rural Cambodia.

    PubMed

    Benwic, Aaron; Kim, Erin; Khema, Cinn; Phanna, Chet; Sophary, Phan; Cantwell, Raymond E

    2018-04-01

    The purpose of this study was to assess factors associated with Escherichia coli (E. coli) contamination in rural households in Cambodia that have adopted household water treatment. The following factors were significantly associated (α < 0.05) with apparent E. coli contamination: cleaning the drinking vessel with untreated water, not drying the cup (with a cloth), accessing treated water by the use of a scoop (ref: using a tap), having more than one untreated water storage container, having an untreated water storage container that appeared dirty on the outside, and cows living within 10 m of the household. This study provides further evidence confirming previous studies reporting an association between inadequate cleanliness of water storage containers and household drinking water contamination, and identifies practical recommendations statistically associated with reduced post-treatment E. coli contamination in the household setting in rural Cambodia.

  17. Mitochondrial respiratory control is lost during growth factor deprivation.

    PubMed

    Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B

    2002-10-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.

  18. Mitochondrial respiratory control is lost during growth factor deprivation

    PubMed Central

    Gottlieb, Eyal; Armour, Sean M.; Thompson, Craig B.

    2002-01-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-xL, restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control. PMID:12228733

  19. Human Factors Analysis of Pipeline Monitoring and Control Operations: Final Technical Report

    DOT National Transportation Integrated Search

    2008-11-26

    The purpose of the Human Factors Analysis of Pipeline Monitoring and Control Operations project was to develop procedures that could be used by liquid pipeline operators to assess and manage the human factors risks in their control rooms that may adv...

  20. Breadboard Solid Amine Water Desorbed CO2 Control System

    NASA Technical Reports Server (NTRS)

    Colling, A. K.; Hultman, M. M.

    1980-01-01

    A regenerable CO2 removal system was developed for potential use on the shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. It uses a solid amine material to adsorb CO2 from the atmosphere. The material is regenerated by heating it with steam from a zero gravity water evaporator. A full sized, thermally representative breadboard canister and a preprototype water evaporator were built and tested to shuttle requirements for CO2 control. The test program was utilized to evaluate and verify the operation and performance of these two primary components of the SAWD system.

  1. Atrazine and metolachlor occurrence in shallow ground water of the United States, 1993 to 1995: Relations to explanatory factors

    USGS Publications Warehouse

    Kolpin, D.W.; Barbash, J.E.; Gilliom, R.J.

    2002-01-01

    Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground-water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground-water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land-use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and

  2. Control of water erosion and sediment in open cut coal mines in tropical areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, T.; Nugraha, C.; Matsui, K.

    2005-07-01

    The purpose is to reduce the environmental impacts from open cut mining in tropical areas, such as Indonesia and Vietnam. Research conducted on methods for the control of water erosion and sediment from open cut coal mines is described. Data were collected on climate and weathering in tropical areas, mechanism of water erosion and sedimentation, characteristics of rocks in coal measures under wet conditions, water management at pits and haul roads and ramps, and construction of waste dumps and water management. The results will be applied to the optimum control and management of erosion and sediments in open cut mining.more » 6 refs., 8 figs.« less

  3. Internal Corrosion and Deposition Control

    EPA Science Inventory

    This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...

  4. Factor Specific Differences in Locus of Control for Emotionally Disturbed and Normal Children

    ERIC Educational Resources Information Center

    Kendall, Philip C.; And Others

    1976-01-01

    Institutionalized emotionally disturbed boys and noninstitutionalized normal boys were administered the Nowicki-Strickland Locus of Control Scale for Children. Locus of control and separate factor scores were calculated. Helplessness factor scores, but not overall locus of control scores, differentiated the two groups. (BJG)

  5. Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin

    USGS Publications Warehouse

    Phan, Thai T.; Capo, Rosemary C; Stewart, Brian W.; Macpherson, Gwen; Rowan, Elisabeth L.; Hammack, Richard W.

    2015-01-01

    In Greene Co., southwest Pennsylvania, the Upper Devonian sandstone formation waters have δ7Li values of + 14.6 ± 1.2 (2SD, n = 25), and are distinct from Marcellus Shale formation waters which have δ7Li of + 10.0 ± 0.8 (2SD, n = 12). These two formation waters also maintain distinctive 87Sr/86Sr ratios suggesting hydrologic separation between these units. Applying temperature-dependent illitilization model to Marcellus Shale, we found that Li concentration in clay minerals increased with Li concentration in pore fluid during diagenetic illite-smectite transition. Samples from north central PA show a much smaller range in both δ7Li and 87Sr/86Sr than in southwest Pennsylvania. Spatial variations in Li and δ7Li values show that Marcellus formation waters are not homogeneous across the Appalachian Basin. Marcellus formation waters in the northeastern Pennsylvania portion of the basin show a much smaller range in both δ7Li and 87Sr/86Sr, suggesting long term, cross-formational fluid migration in this region. Assessing the impact of potential mixing of fresh water with deep formation water requires establishment of a geochemical and isotopic baseline in the shallow, fresh water aquifers, and site specific characterization of formation water, followed by long-term monitoring, particularly in regions of future shale gas development.

  6. [Effect of water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in rivers connecting with Yangtze River in Pukou District, Nanjing City].

    PubMed

    Qiang, Zhou; Li-Xin, Wan; De-Rong, Hang; Qi-Hui, You; Jun, You; Yu-Lin, Zhang; Zhao-Feng, Zhu; Yi-Xin, Huang

    2017-12-07

    To evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control Oncomelania hupensis snails in the rivers connecting with the Yangtze River. The water conservancy schistosomiasis control projects of Zhujiashan River, Qili River and Gaowang River were chosen as the study objects in Pukou District, Nanjing City. The data review method and field investigation were used to evaluate the effect of the water conservancy schistosomiasis control projects combined with molluscicide to control O. hupensis snails. After the projects of the water level control and concrete slope protection and mollusciciding were implemented, the snails in the project river sections were completely eliminated. The snail diffusion did not happen in the inland irrigation area too. In the outside of the river beach, though the snails still existed, the snail densities plunged below 1.0 snail per 1.0 m 2 . The comprehensive measures of the combination of water level control, concrete slope protection and mollusciciding can effectively control and eliminate the snails, and prevent the snails from spreading.

  7. Control of abusive water addition to Octopus vulgaris with non-destructive methods.

    PubMed

    Mendes, Rogério; Schimmer, Ove; Vieira, Helena; Pereira, João; Teixeira, Bárbara

    2018-01-01

    Abusive water addition to octopus has evidenced the need for quick non-destructive methods for product qualification in the industry and control of fresh commercial products in markets. Electric conductivity (EC)/pH and dielectric property measurements were selected to detect water uptake in octopus. A significant EC decrease was determined after soaking octopus in freshwater for 4 h. EC reflected the water uptake of octopus and the correspondent concentration decrease of available ions in the interstitial fluid. Significant correlations were determined between octopus water uptake, EC (R = -0.940) and moisture/protein (M/P) ratio (R = 0.923) changes. Seasonal and spatial variation in proximate composition did not introduce any uncertainty in EC discrimination of freshwater tampering. Immersion in 5 g L -1 sodium tripolyphosphate (STPP) increased EC to a value similar to control octopus. EC false negatives resulting from the use of additives (STPP and citric acid) were eliminated with the additional determination of pH. Octopus soaked in freshwater, STPP and citric acid can also be clearly discriminated from untreated samples (control) and also from frozen (thawed) ones using the dielectric properties. No significant differences in the dielectric property scores were found between octopus sizes or geographical locations. Simultaneous EC/pH or dielectric property measurements can be used in a handheld device for non-destructive water addition detection in octopus. M/P ratio can be used as a reference destructive method. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. [Multilevel model analysis on the relevant factors influencing the total amount of drinking water consumed daily by Beijing residents].

    PubMed

    Zhao, Jinhui; Wei, Jianrong; Chen, Huajie; Liu, Yumin; Li, Tiantian; Sun, Qinghua; Liu, Qiaolan

    2012-09-01

    To investigate the influencing factors for daily water intake of Beijing residents. A multi-stage sampling method was constructed to interview 270 Beijing residents in the winter of 2009 and in the summer of 2010 by using a questionnaire to collect data on daily drinking water consumption. Multilevel models were used to analyze the variation and influencing factors for the amount of water intake. Multilevel model results showed that the average daily water intake of residents living in different villages or neighborhood committees was statistically significant (sigma2 mu0 = = 0.030 (0.009), P < 0.05). The individual variation in the same village or neighborhood committee was also significant (sigma2 e0 = 0.157 (0.010), P < 0.05). Season, gender, and body weight affected the daily water intake (P < 0.05). There were interaction between season and source of water supply. The average daily water intake of residents was affected by several factors. In the health risk assessment of drinking water, it needs considering not only the individual characteristics but also the differences of villages/neighborhood committees and the seasonal variation.

  9. Control Strategies to Reduce the Energy Consumption of Central Domestic Hot Water Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Ansanelli, Eric; Henderson, Hugh

    Domestic hot water (DHW) heating is the second largest energy end use in U.S. buildings, exceeded only by space conditioning. Recirculation systems consisting of a pump and piping loop(s) are commonly used in multifamily buildings to reduce wait time for hot water at faucets; however, constant pumping increases energy consumption by exposing supply and return line piping to continuous heat loss, even during periods when there is no demand for hot water. In this study, ARIES installed and tested two types of recirculation controls in a pair of buildings in order to evaluate their energy savings potential. Demand control, temperaturemore » modulation controls, and the simultaneous operation of both were compared to the baseline case of constant recirculation. Additionally, interactive effects between DHW control fuel reductions and space conditioning (heating and cooling) were estimated in order to make more realistic predictions of the payback and financial viability of retrofitting DHW systems with these controls. Results showed that DHW fuel consumption reduced by 7% after implementing the demand control technique, 2% after implementing temperature modulation, and 15% after implementing demand control and temperature modulation techniques simultaneously; recirculation pump runtime was reduced to 14 minutes or less per day. With space heating and cooling interactions included, the estimated annual cost savings were 8%, 1%, and 14% for the respective control techniques. Possible complications in the installation, commissioning and operation of the controls were identified and solutions offered.« less

  10. Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts.

    PubMed

    Bu, Chongfeng; Wu, Shufang; Yang, Yongsheng; Zheng, Mingguo

    2014-01-01

    Biological soil crusts (BSCs) cover >35% of the Earth's land area and contribute to important ecological functions in arid and semiarid ecosystems, including erosion reduction, hydrological cycling, and nutrient cycling. Artificial rapid cultivation of BSCs can provide a novel alternative to traditional biological methods for controlling soil and water loss such as the planting of trees, shrubs, and grasses. At present, little is known regarding the cultivation of BSCs in the field due to lack of knowledge regarding the influencing factors that control BSCs growth. Thus, we determined the effects of various environmental factors (shade; watering; N, P, K, and Ca concentrations) on the growth of cyanobacteria-dominated BSCs from the Sonoran Desert in the southwestern United States. The soil surface changes and chlorophyll a concentrations were used as proxies of BSC growth and development. After 4 months, five factors were found to impact BSC growth with the following order of importance: NH4NO3 ≈ watering frequency>shading>CaCO3 ≈ KH2PO4. The soil water content was the primary positive factor affecting BSC growth, and BSCs that were watered every 5 days harbored greater biomass than those watered every 10 days. Groups that received NH4NO3 consistently exhibited poor growth, suggesting that fixed N amendment may suppress BSC growth. The effect of shading on the BSC biomass was inconsistent and depended on many factors including the soil water content and availability of nutrients. KH2PO4 and CaCO3 had nonsignificant effects on BSC growth. Collectively, our results indicate that the rapid restoration of BSCs can be controlled and realized by artificial "broadcasting" cultivation through the optimization of environmental factors.

  11. Dentine sensitivity risk factors: A case-control study.

    PubMed

    Mafla, Ana Cristina; Lopez-Moncayo, Luis Fernando

    2016-01-01

    To identify the clinical and psychological risk factors associated with dentine hypersensitivity (DH) in order to provide an early diagnosis and preventive therapy. A nested case-control study was design between 2011 and 2012. A total of 61 DH cases and 122 controls participated in this investigation. Cases and controls were matched for sex, group of age and socioeconomic status in a ratio of 1:2. DH to different stimuli such as cold, heat, acid, and sweet was asked in patient interviews, and dental examinations were used to detect DH. Clinical and psychological risk factors such as dental hygiene, periodontal disease, acid diet, alcohol consumption, psychological stress, and psychopathological symptoms were inquired. Psychological stress was measured through the PSS-10 and psychopathological symptoms were evaluated by SCL-90-R in Spanish. Descriptive and univariate binary logistic regression analysis were performed to estimate the association between clinical and psychological risk factors and the presence of DH. Toothpaste abrasivity (odds ratio [OR] 1.881, 95% confidence interval [CI] 1.010-3.502, P = 0.045), gingival recession (OR 2.196, 95% CI 1.020-4.728, P = 0.041), and periodontal therapy (OR 5.357, 95% CI 2.051-13.993, P < 0.001) were associated with DH. Subjects with perceived stress (OR 1.211, 95%, CI 0.518-2.833, P = 0.658), obsessive-compulsive (OR 1.266, 95%, CI 0.494-3.240, P = 0.623) and hostility (OR 1.235, 95%, CI 0.507-3.007, P = 0.642) symptoms had a clinical greater odd of DH. Oral hygiene products and periodontal conditions are important risk factors for DH. Individuals with perceived stress, obsessive-compulsive, and hostility symptoms may increase a clinical risk for this entity. Targeting to dental counseling focused on oral hygiene products, periodontal therapy and a psychological evaluation may be promising in DH prevention.

  12. 75 FR 69912 - Pipeline Safety: Control Room Management/Human Factors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... 192 and 195 [Docket ID PHMSA-2007-27954] RIN 2137-AE64 Pipeline Safety: Control Room Management/Human... rulemaking; Extension of comment period. SUMMARY: On September 17, 2010, PHMSA published a Control Room... Control Room Management/Human Factors rule at 49 CFR 192.631 and 195.446. The NPRM proposes to expedite...

  13. Water loss control using pressure management: life-cycle energy and air emission effects.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard

    2013-10-01

    Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.

  14. Factors associated with drinking and being satisfied with tap water in Indigenous communities in Saskatchewan, Canada

    PubMed Central

    Bharadwaj, Lalita; Waldner, Cheryl L.

    2018-01-01

    ABSTRACT Previous studies have described concerns regarding tap water in Indigenous communities, yet there is little information on participants who report drinking their tap water and being satisfied with its quality. This study undertaken with members of 8 Indigenous communities in Saskatchewan, Canada, and identified factors associated with both the decision to drink tap water at home and being satisfied with its quality. We examined the importance of factors such as individual attributes, experiences, attitudes, household and community-based variables. Less than one-quarter of participants (23.4%) drank tap water and were satisfied with its quality. Individuals who did not boil tap water (odds ratio [OR] = 5.76, 95% confidence interval [CI] = 1.68–19.8), those who did not experience tap water odour (OR = 2.38, 95% CI = 1.26–4.50) and participants living in communities away from urban centres (OR = 2.74, 95% CI = 1.63–4.51) were more likely to drink and be satisfied with their tap water. Concerns about the environment had the most impact on community members aged 55+ years. Those not reporting concerns about environmental problems affecting water (OR = 11.4, 95% CI = 3.10–42.2) were much more likely to drink and be satisfied with their tap water. Programmes to improve water quality, reduce the need for boil water advisories and increase community confidence in the environment could improve tap water satisfaction and consumption. PMID:29697009

  15. Ecohydrological Controls on Intra-Basin Alpine Subarctic Water Balances

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Ziegler, C. M.

    2007-12-01

    In the mountainous Canadian subarctic, elevation gradients control the disposition of vegetation, permafrost, and characteristics of the soil profile. How intra-basin ecosystems combine to control catchment-scale water and biogeochimcal cycling is uncertain. To this end, a multi-year ecohydrological investigation was undertaken in Granger Basin (GB), a 7.6 km2 sub-basin of the Wolf Creek Research Basin, Yukon Territory, Canada. GB was divided into four sub-basins based on the dominant vegetation and permafrost status, and the timing and magnitude of hydrological processes were compared using hydrometric and hydrochemical methods. Vegetation plays an important role in end-of-winter snow accumulation as snow redistribution by wind is controlled by roughness length. In sub-basins of GB with tall shrubs, snow accumulation is enhanced compared with areas of short shrubs and tundra vegetation. The timing of melt was staggered with elevation, although melt-rates were similar among the sub-basins. Runoff was enhanced at the expense of infiltration in tall shrub areas due to high snow water equivalent and antecedent soil moisture. In the high-elevation tundra sub-basin, thin soils with cold ground temperatures resulted in increased surface runoff. For the freshet period, the lower and upper sub-basins accounted for 81 % of runoff while accounting for 58 % of the total basin area. Two-component isotopic hydrograph separation revealed that during melt, pre-event water dominated in all sub-basins, yet those with greater permafrost disposition and taller shrubs had increased event-water. Dissolved organic carbon (DOC) spiked prior to peak freshet in each sub-basin except for the highest with thin soils, and was associated with flushing of surficial organic soils. For the post-melt period, all sub-basins have similar runoff contributions. Solute and stable isotope data indicate that in sub-basins dominated by permafrost, supra-permafrost runoff pathways predominate as flow

  16. Human factors in air traffic control: problems at the interfaces.

    PubMed

    Shouksmith, George

    2003-10-01

    The triangular ISIS model for describing the operation of human factors in complex sociotechnical organisations or systems is applied in this research to a large international air traffic control system. A large sample of senior Air Traffic Controllers were randomly assigned to small focus discussion groups, whose task was to identify problems occurring at the interfaces of the three major human factor components: individual, system impacts, and social. From these discussions, a number of significant interface problems, which could adversely affect the functioning of the Air Traffic Control System, emerged. The majority of these occurred at the Individual-System Impact and Individual-Social interfaces and involved a perceived need for further interface centered training.

  17. Structure and Controls of the Global Virtual Water Trade Network

    NASA Astrophysics Data System (ADS)

    Suweis, S. S.

    2011-12-01

    Recurrent or ephemeral water shortages are a crucial global challenge, in particular because of their impacts on food production. The global character of this challenge is reflected in the trade among nations of virtual water, i.e. the amount of water used to produce a given commodity. We build, analyze and model the network describing the transfer of virtual water between world nations for staple food products. We find that all the key features of the network are well described by a model, the fitness model, that reproduces both the topological and weighted properties of the global virtual water trade network, by assuming as sole controls each country's gross domestic product and yearly rainfall on agricultural areas. We capture and quantitatively describe the high degree of globalization of water trade and show that a small group of nations play a key role in the connectivity of the network and in the global redistribution of virtual water. Finally, we illustrate examples of prediction of the structure of the network under future political, economic and climatic scenarios, suggesting that the crucial importance of the countries that trade large volumes of water will be strengthened. Our results show the importance of incorporating a network framework in the study of virtual water trades and provide a model to study the structure and resilience of the GVWTN under future scenarios for social, economic and climate change.

  18. Performance ratings and personality factors in radar controllers.

    DOT National Transportation Integrated Search

    1970-09-01

    The purpose of the study was to determine whether primary or second-order personality questionnaire factors were related to job performance ratings on the Employee Appraisal Record in a sample of 264 radar controllers. A Pearson correlation matrix wa...

  19. The spatial-temporal variations of water quality in controlling points of the main rivers flowing into the Miyun Reservoir from 1991 to 2011.

    PubMed

    Li, Dongqing; Liang, Ji; Di, Yanming; Gong, Huili; Guo, Xiaoyu

    2016-01-01

    Cluster analysis (CA), discriminant analysis (DA), and principal component analysis/factor analysis (PCA/FA) were used to analyze the interannual, seasonal, and spatial variations of water quality from 1991 to 2011 in controlling points (Xinzhuang Bridge, Daguan Bridge) of the main rivers (Chaohe River, Baihe River) flowing into the Miyun Reservoir. The results demonstrated that total nitrogen (TN) and total phosphorus (TP) exceeded China National Standard II for surface water separately 5.08 times and 1 time. CA showed that the water quality could be divided into three interannual (IA) groups: IAI (1991-1995, 1998), IAII (1996-1997, 1999-2000, 2002-2006), and IAIII (2001, 2007-2011) and two seasonal clusters: dry season 1 (December), dry season 2 (January-February), and non-dry season (March-November). At interannual scale, the higher concentration of SO4 (2-) from industrial activities, atmospheric sedimentation, and fertilizer use in IAIII accelerated dissolution of carbonate, which increased Ca(2+), Mg(2+), total hardness (T-Hard), and total alkalinity (T-Alk). The decreasing trend of CODMn contributed to the establishment of sewage treatment plants and water and soil conservation in the Miyun upstream. The changing trend of NO3 (-)-N indicated increasing non-point pollution load of IAII and effective non-point pollution controlling of IAIII. Only one parameter T in the seasonal scale verified improved non-point pollution controlling. The major pollution in two controlling points was NO3 (-)-N, T-Hard, TN, and other ion pollution (SO4 (2-), F(-), Ca(2+), Mg(2+), T-Hard, T-Alk). Higher concentration of NO3 (-)-N in Xinzhuang and CODMn in Daguan indicated different controlling measures, especially controlling agriculture intensification in Chaohe River to decrease N pollution and decreasing water and soil loss and cage culture in Baihe River to weaken organic pollution. Controlling SO4 (2-) from industrial activity, atmospheric sedimentation and fertilizer use in

  20. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  1. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty.

    PubMed

    Gao, Yong; Wu, Meiqin; Zhang, Menjiao; Jiang, Wei; Liang, Enxing; Zhang, Dongping; Zhang, Changquan; Xiao, Ning; Chen, Jianmin

    2018-06-05

    ZmPIF3 plays an important role in ABA-mediated regulation of stomatal closure in the control of water loss, and can improve both drought tolerance and did not affect the grain yield in the transgenic rice. Phytochrome-interacting factors (PIFs) are a subfamily of basic helix-loop-helix (bHLH) transcription factors and play important roles in regulating plant growth and development. In our previous study, overexpression of a maize PIFs family gene, ZmPIF3, improved drought tolerance in transgenic rice. In this study, measurement of water loss rate, transpiration rate, stomatal conductance, guard cell aperture, density and length of ZmPIF3 transgenic plants showed that ZmPIF3 can enhance water-saving and drought-resistance by decreasing stomatal aperture and reducing transpiration in both transgenic rice and transgenic Arabidopsis. Scrutiny of sensitivity to ABA showed that ZmPIF3 transgenic rice was hypersensitive to ABA, while the endogenous ABA level was not significantly changed. These results indicate that ZmPIF3 plays a major role in the ABA signaling pathway. In addition, DGE results further suggest that ZmPIF3 participates in the ABA signaling pathway and regulates stomatal aperture in rice. Comparison analysis of the phenotype, physiology, and transcriptome of ZmPIF3 transgenic rice compared to control plants further suggests that ZmPIF3 is a positive regulator of ABA signaling and enhances water-saving and drought-resistance traits by reducing stomatal openings to control water loss. Moreover, investigation of the agronomic traits of ZmPIF3 transgenic rice from four cultivating seasons showed that ZmPIF3 expression increased the tiller and panicle number and did not affect the grain yield in the transgenic rice. These results demonstrate that ZmPIF3 is a promising candidate gene in the transgenic breeding of water-saving and drought-resistant rice plants and crop improvement.

  2. Risk factors associated with sporadic salmonellosis in adults: a case-control study.

    PubMed

    Ziehm, D; Dreesman, J; Campe, A; Kreienbrock, L; Pulz, M

    2013-02-01

    In order to identify and assess recent risk factors for sporadic human infections with Salmonella enterica, we conducted a case-control study in Lower Saxony, Germany. The data collection was based on standardized telephone interviews with 1017 cases and 346 controls aged >14 years. Odds ratios were calculated in single-factor and multi-factor analyses for Salmonella cases and two different control groups, i.e. population controls and controls with rotavirus infection. Multi-factor analysis revealed associations between sporadic Salmonella infections for two exposures by both sets of controls: consumption of raw ground pork [adjusted odds ratio (aOR) 2·38, 95% confidence interval (CI) 1·27-4·44] and foreign travel (aOR 2·12, 95% CI 1·00-4·52). Other exposures included consumption of food items containing eggs (aOR 1·43, 95% CI 0·80-2·54), consumption of chicken meat (aOR 1·77, 95% CI 1·26-2·50), outdoor meals/barbecues (aOR 3·96, 95% CI 1·41-11·12) and taking gastric acidity inhibitors (aOR 2·42, 95% CI 1·19-4·92), all were significantly associated with respect to one of the two control groups. The impact of consuming food items containing eggs or chicken meat was lower than expected from the literature. This might be a consequence of Salmonella control programmes as well as increased public awareness of eggs and chicken products being a risk factor for salmonellosis. Efforts to reduce Salmonella infections due to raw pork products should be intensified.

  3. Modeling water quality in an urban river using hydrological factors--data driven approaches.

    PubMed

    Chang, Fi-John; Tsai, Yu-Hsuan; Chen, Pin-An; Coynel, Alexandra; Vachaud, Georges

    2015-03-15

    Contrasting seasonal variations occur in river flow and water quality as a result of short duration, severe intensity storms and typhoons in Taiwan. Sudden changes in river flow caused by impending extreme events may impose serious degradation on river water quality and fateful impacts on ecosystems. Water quality is measured in a monthly/quarterly scale, and therefore an estimation of water quality in a daily scale would be of good help for timely river pollution management. This study proposes a systematic analysis scheme (SAS) to assess the spatio-temporal interrelation of water quality in an urban river and construct water quality estimation models using two static and one dynamic artificial neural networks (ANNs) coupled with the Gamma test (GT) based on water quality, hydrological and economic data. The Dahan River basin in Taiwan is the study area. Ammonia nitrogen (NH3-N) is considered as the representative parameter, a correlative indicator in judging the contamination level over the study. Key factors the most closely related to the representative parameter (NH3-N) are extracted by the Gamma test for modeling NH3-N concentration, and as a result, four hydrological factors (discharge, days w/o discharge, water temperature and rainfall) are identified as model inputs. The modeling results demonstrate that the nonlinear autoregressive with exogenous input (NARX) network furnished with recurrent connections can accurately estimate NH3-N concentration with a very high coefficient of efficiency value (0.926) and a low RMSE value (0.386 mg/l). Besides, the NARX network can suitably catch peak values that mainly occur in dry periods (September-April in the study area), which is particularly important to water pollution treatment. The proposed SAS suggests a promising approach to reliably modeling the spatio-temporal NH3-N concentration based solely on hydrological data, without using water quality sampling data. It is worth noticing that such estimation can be

  4. Thermal control of virulence factors in bacteria: A hot topic

    PubMed Central

    Lam, Oliver; Wheeler, Jun; Tang, Christoph M

    2014-01-01

    Pathogenic bacteria sense environmental cues, including the local temperature, to control the production of key virulence factors. Thermal regulation can be achieved at the level of DNA, RNA or protein and although many virulence factors are subject to thermal regulation, the exact mechanisms of control are yet to be elucidated in many instances. Understanding how virulence factors are regulated by temperature presents a significant challenge, as gene expression and protein production are often influenced by complex regulatory networks involving multiple transcription factors in bacteria. Here we highlight some recent insights into thermal regulation of virulence in pathogenic bacteria. We focus on bacteria which cause disease in mammalian hosts, which are at a significantly higher temperature than the outside environment. We outline the mechanisms of thermal regulation and how understanding this fundamental aspect of the biology of bacteria has implications for pathogenesis and human health. PMID:25494856

  5. Effectiveness and feasibility of long-lasting insecticide-treated curtains and water container covers for dengue vector control in Colombia: a cluster randomised trial.

    PubMed

    Quintero, Juliana; García-Betancourt, Tatiana; Cortés, Sebastian; García, Diana; Alcalá, Lucas; González-Uribe, Catalina; Brochero, Helena; Carrasquilla, Gabriel

    2015-02-01

    Long-lasting insecticide-treated net (LLIN) window and door curtains alone or in combination with LLIN water container covers were analysed regarding effectiveness in reducing dengue vector density, and feasibility of the intervention. A cluster randomised trial was conducted in an urban area of Colombia comparing 10 randomly selected control and 10 intervention clusters. In control clusters, routine vector control activities were performed. The intervention delivered first, LLIN curtains (from July to August 2013) and secondly, water container covers (from October to March 2014). Cross-sectional entomological surveys were carried out at baseline (February 2013 to June 2013), 9 weeks after the first intervention (August to October 2013), and 4-6 weeks after the second intervention (March to April 2014). Curtains were installed in 922 households and water container covers in 303 households. The Breteau index (BI) fell from 14 to 6 in the intervention group and from 8 to 5 in the control group. The additional intervention with LLIN covers for water containers showed a significant reduction in pupae per person index (PPI) (p=0.01). In the intervention group, the PPI index showed a clear decline of 71% compared with 25% in the control group. Costs were high but options for cost savings were identified. Short term impact evaluation indicates that the intervention package can reduce dengue vector density but sustained effect will depend on multiple factors. © The author 2015. The World Health Organization has granted Oxford University Press permission for the reproduction of this article.

  6. CONTROLS ON WATER CHEMISTRY OF AN OREGON COAST RANGE STREAM

    EPA Science Inventory

    Numerous factors may control losses of dissolved nutrients from forested basins in the Oregon Coast Range. Potentially important factors include forest composition, stand age, forest management, grazing, agriculture, sewage inputs and bedrock types, as well as others perhaps not...

  7. Risk factors for water sports-related cervical spine injuries.

    PubMed

    Chang, Spencer K Y; Tominaga, Gail T; Wong, Jan H; Weldon, Edward J; Kaan, Kenneth T

    2006-05-01

    To examine risk factors associated with water sports-related cervical spine injuries (WSCSI). A retrospective analysis of all patients admitted for WSCSI from 1993 to 1997 was performed. The severity of cervical spine injury was assessed by review of medical records and imaging studies. Mechanisms of injury and activities at the time of injury were noted to determine risk factors for cervical spine injuries caused by wave forced impacts (WFI) from activities such as bodysurfing and body boarding. These risks were compared with injuries incurred by shallow water dives (SWD). One hundred patients were analyzed (mean age, 36 years old); 89% were male, 62% were nonresidents of Hawaii, and 75% had a large build. Patients without radiographic evidence of fractures, subluxations, and/or dislocations (n = 26) were significantly older (48 versus 32 years old, p < 0.0001) with a higher rate of pre-existing cervical spine abnormalities (65% versus 15%, p < 0.0001) compared with the remainder of patients (n = 74). Seventy-seven percent of WFI involved nonresidents. The mean age of WFI patients was significantly older than patients involved in SWD (42 versus 25 years). Ninety-six percent of wave-related accidents occurred at moderately to severely rated shorebreak beaches. Wave forced impacts of the head with the ocean bottom typically occurred at moderate to severe shorebreaks, and involved inexperienced, large-build males in their 40s. Spinal stenosis and degenerative spondylosis may increase the risk of cervical spine injury associated with WFI due to the increased risk of neck hyperextension and hyperflexion impacts inherent to this activity.

  8. Heterotrophic bacteria in drinking water distribution system: a review.

    PubMed

    Chowdhury, Shakhawat

    2012-10-01

    The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS.

  9. Factors affecting continued use of ceramic water purifiers distributed to tsunami-affected communities in Sri Lanka.

    PubMed

    Casanova, Lisa M; Walters, Adam; Naghawatte, Ajith; Sobsey, Mark D

    2012-11-01

    There is little information about continued use of point-of-use technologies after disaster relief efforts. After the 2004 tsunami, the Red Cross distributed ceramic water filters in Sri Lanka. This study determined factors associated with filter disuse and evaluate the quality of household drinking water. A cross-sectional survey of water sources and treatment, filter use and household characteristics was administered by in-person oral interview, and household water quality was tested. Multivariable logistic regression was used to model probability of filter non-use. At the time of survey, 24% of households (107/452) did not use filters; the most common reason given was breakage (42%). The most common household water sources were taps and wells. Wells were used by 45% of filter users and 28% of non-users. Of households with taps, 75% had source water Escherichia coli in the lowest World Health Organisation risk category (<1/100 ml), vs. only 30% of households reporting wells did. Tap households were approximately four times more likely to discontinue filter use than well households. After 2 years, 24% of households were non-users. The main factors were breakage and household water source; households with taps were more likely to stop use than households with wells. Tap water users also had higher-quality source water, suggesting that disuse is not necessarily negative and monitoring of water quality can aid decision-making about continued use. To promote continued use, disaster recovery filter distribution efforts must be joined with capacity building for long-term water monitoring, supply chains and local production. © 2012 Blackwell Publishing Ltd.

  10. The U.S. Geological Survey Modular Ground-Water Model - PCGN: A Preconditioned Conjugate Gradient Solver with Improved Nonlinear Control

    USGS Publications Warehouse

    Naff, Richard L.; Banta, Edward R.

    2008-01-01

    The preconditioned conjugate gradient with improved nonlinear control (PCGN) package provides addi-tional means by which the solution of nonlinear ground-water flow problems can be controlled as compared to existing solver packages for MODFLOW. Picard iteration is used to solve nonlinear ground-water flow equations by iteratively solving a linear approximation of the nonlinear equations. The linear solution is provided by means of the preconditioned conjugate gradient algorithm where preconditioning is provided by the modi-fied incomplete Cholesky algorithm. The incomplete Cholesky scheme incorporates two levels of fill, 0 and 1, in which the pivots can be modified so that the row sums of the preconditioning matrix and the original matrix are approximately equal. A relaxation factor is used to implement the modified pivots, which determines the degree of modification allowed. The effects of fill level and degree of pivot modification are briefly explored by means of a synthetic, heterogeneous finite-difference matrix; results are reported in the final section of this report. The preconditioned conjugate gradient method is coupled with Picard iteration so as to efficiently solve the nonlinear equations associated with many ground-water flow problems. The description of this coupling of the linear solver with Picard iteration is a primary concern of this document.

  11. Development of water allocation Model Based on ET-Control and Its Application in Haihe River Basin

    NASA Astrophysics Data System (ADS)

    You, Jinjun; Gan, Hong; Gan, Zhiguo; Wang, Lin

    2010-05-01

    Traditionally, water allocation is to distribute water to different regions and sectors, without enough consideration on amount of water consumed after water distribution. Water allocation based on ET (evaporation and Transpiration) control changes this idea and emphasizes the absolute amount of evaporation and transpiration in specific area. With this ideology, the amount of ET involved the water allocation includes not only water consumed from the sectors, but the natural ET. Therefore, the water allocation consist of two steps, the first step is to estimate reasonable ET quantum in regions, then allocate water to more detailed regions and various sectors with the ET quantum according with the operational rules. To make qualified ET distribution and water allocation in various regions, a framework is put forward in this paper, in which two models are applied to analyze the different scenarios with predefined economic growth and ecological objective. The first model figures out rational ET objective with multi-objective analysis for compromised solution in economic growth and ecological maintenance. Food security and environmental protection are also taken as constraints in the optimization in the first model. The second one provides hydraulic simulation and water balance to allocate the ET objective to corresponding regions under operational rules. These two models are combined into an integrated ET-Control water allocation. Scenario analysis through the ET-Control Model could discover the relations between economy and ecology, farther to give suggestion on measures to control water use with condition of changing socio-economic growth and ecological objectives. To confirm the methodology, Haihe River is taken as a case to study. Rational water allocation is important branch of decision making on water planning and management in Haihe River Basin since water scarcity and deteriorating environment fights for water in this basin dramatically and reasonable water

  12. Differentiating the Spatiotemporal Distribution of Natural and Anthropogenic Processes on River Water-Quality Variation Using a Self-Organizing Map With Factor Analysis.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing

    2015-08-01

    To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.

  13. Manpower and Training Needs in Water Pollution Control. Senate Document No. 49.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    To determine trained manpower needs and training resources in the clean water field, data were gathered from interviews with state and federal agencies as well as the Water Pollution Control Federation, from prior manpower reports, and from Bureau of Census employment data. After analysis of present manpower resources and future requirements,…

  14. A water pumping control system with a programmable logic controller (PLC) and industrial wireless modules for industrial plants--an experimental setup.

    PubMed

    Bayindir, Ramazan; Cetinceviz, Yucel

    2011-04-01

    This paper describes a water pumping control system that is designed for production plants and implemented in an experimental setup in a laboratory. These plants contain harsh environments in which chemicals, vibrations or moving parts exist that could potentially damage the cabling or wires that are part of the control system. Furthermore, the data has to be transferred over paths that are accessible to the public. The control systems that it uses are a programmable logic controller (PLC) and industrial wireless local area network (IWLAN) technologies. It is implemented by a PLC, an communication processor (CP), two IWLAN modules, and a distributed input/output (I/O) module, as well as the water pump and sensors. Our system communication is based on an Industrial Ethernet and uses the standard Transport Control Protocol/Internet Protocol for parameterisation, configuration and diagnostics. The main function of the PLC is to send a digital signal to the water pump to turn it on or off, based on the tank level, using a pressure transmitter and inputs from limit switches that indicate the level of the water in the tank. This paper aims to provide a convenient solution in process plants where cabling is not possible. It also has lower installation and maintenance cost, provides reliable operation, and robust and flexible construction, suitable for industrial applications. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Study on Influence Factors and Governance Countermeasures of Movable Gel Prepared with Backfilling Waste Water

    NASA Astrophysics Data System (ADS)

    Gao, Shanshan; Zhang, Jianzhong; Zhang, Tiantian; Cui, Yanjie; Wang, Zhiqiang; Sun, Xinrui; Li, Jing; Zhang, Lianchao

    2018-05-01

    Movable gel as profile control and flooding is one of the main measures in tertiary oil recovery in Huabei Oilfield. Many blocks have tight fresh water supplies, but produced waste water can not be discharged. Therefore, preparing movable gel with backfilling waste water has become an inevitable development trend of profile control and flooding. Three different quality of sewage water named SW, YW and ZW were used to prepare gel and then compared with gel prepared clean water. The results showed that the gel viscosity prepared with clean water was 1.5-5.6 times of sewage water at the same formula concentration. For this reason, the effect of Na+, Ca2+, Fe2+ on the gel performance were analyzed. The above ions lead to a decrease in the gel viscosity and poor stability, which can not even be crosslinked. According to the sewage water characteristics, corresponding treatment measures were developed respectively. The best treatment of SW and ZW was increasing polymer concentration followed by the addition of thiourea. The best treatment of YW was also increasing polymer concentration followed by stirring and aeration. The gel viscosity reached to 1800-2500mPaṡs and maintained at 800-1200mPaṡs after 90 days at formation temperature. It showed that the treatment can effectively improve the gel viscosity and stability prepared with sewage water. The results provide valuable experiences for the preparation of movable gel with different quality waste water.

  16. Socioeconomic, Family, and Pediatric Practice Factors Affecting the Level of Asthma Control

    PubMed Central

    Bloomberg, Gordon R; Banister, Christina; Sterkel, Randall; Epstein, Jay; Bruns, Julie; Swerczek, Lisa; Wells, Suzanne; Yan, Yan; Garbutt, Jane M

    2008-01-01

    Background Multiple issues bear on effective control of childhood asthma. Objective To identify factors related to the level of asthma control in children receiving asthma care from community pediatricians. Patients and Methods Data for 362 children participating in an intervention study to reduce asthma morbidity were collected by telephone administered questionnaire. Level of asthma control (“well controlled,” partially controlled,” or “poorly controlled”) was derived from measures of recent impairment (symptoms, activity limitations, albuterol use) and the number of exacerbations in a 12 month period. Data also included demographic characteristics, asthma-related quality of life, pediatric management practices, and medication usage. Univariable and multivariable analyses were used to identify factors associated with poor asthma control and to explore the relationship between control and use of daily controller medications. Results Asthma was “well controlled” for 24% of children, “partially controlled” for 20%, and “poorly controlled” for 56%. Medicaid insurance (p=0.016), the presence of another family member with asthma (p=0.0168), and outside the home maternal employment, (p=0.025), were significant univariable factors associated with poor asthma control. Medicaid insurance had an independent association with poor control (OR 0.49, 95% CI 0.28-0.9). Seventy-six percent of children were reported by parents as receiving a daily controller medication. Comparison of guidelines recommended controller medication with level of control indicated that a higher step level of medication would have been appropriate for 74% of these children. Significantly lower overall quality of life scores were observed in both parents and children with poor control. (ANOVA, p<0.05) Conclusion Despite substantial use of daily controller medication, children with asthma continue to experience poorly controlled asthma and reduced quality of life. While Medicaid

  17. Study of polymorphic control in an ethanol-water binary solvent

    NASA Astrophysics Data System (ADS)

    Kitano, Hiroshi; Tanaka, Takayuki; Hirasawa, Izumi

    2017-07-01

    Three polymorphs of L-Citrulline crystals, anhydrate (Form α, γ and δ) and pseudo polymorph (dihydrate), were confirmed. In this study, polymorphic control of L-Citrulline was attempted by changing the ethanol concentration in ethanol-water binary solvents. First, each polymorph of L-Citrulline crystals was added to the prepared ethanol-water binary solvents and samples which were obtained chronologically were measured by XRD. Also, the crystal sizes and shapes in transformation were observed by microscope. Then, polymorphs of the crystals after transformation were determined by XRD pattern. As a result, the transformation from dihydrate to anhydrate was observed by adding dihydrate crystals to the ethanol-water binary solvent. Similarly, the transformation from anhydrate to another anhydrate was observed. Especially in the case of adding dihydrate, the existences of all polymorphs were confirmed by adjusting ethanol-water binary solvent. According to the results, it was revealed that polymorphic transformation was affected by the trace amount of water contained in ethanol-water binary solvent. Moreover, transformation from dihydrate to anhydrate was constructed with three phases, dissolution of dihydrate, nucleation and growth of anhydrate. Therefore, the solution-mediated polymorphic transformation was supposed to be a key mechanism for this transformation.

  18. Capillary and Gas Trapping Controls on Pumice Buoyancy in Water

    NASA Astrophysics Data System (ADS)

    Fauria, K. E.; Manga, M.; Wei, Z.

    2016-12-01

    Pumice can float on water for months to years. The longevity of pumice floatation is unexpected, however, because pumice pores are highly connected and water wets volcanic glass. As a result, observations of long floating times have not been reconciled with predictions of rapid sinking. We propose a mechanism to resolve this paradox - the trapping of gas bubbles by water within the pumice. Gas trapping refers to the isolation of gas by water within pore throats such that the gas becomes disconnected from the atmosphere and unable to escape. We use X-ray microtomography images of partially saturated pumice to demonstrate that gas trapping occurs in both ambient-temperature and hot (500°C) pumice. Furthermore, we show that the distribution of trapped gas clusters matches percolation theory predictions. Finally, we propose that diffusion out of trapped gaseous bubbles determines pumice floatation time. Experimental measurements of pumice floatation support a diffusion control on pumice buoyancy and we find that floatation time scales like τ L2/(Dθ2) where is the floatation time, L is the characteristic length of the pumice, D is the gas-water diffusion coefficient, and θ is pumice water saturation.

  19. Numerical simulation of water and sand blowouts when penetrating through shallow water flow formations in deep water drilling

    NASA Astrophysics Data System (ADS)

    Ren, Shaoran; Liu, Yanmin; Gong, Zhiwu; Yuan, Yujie; Yu, Lu; Wang, Yanyong; Xu, Yan; Deng, Junyu

    2018-02-01

    In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow (SWF) formations during deepwater drilling. We define `sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed (penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.

  20. The relation between amyotrophic lateral sclerosis and inorganic selenium in drinking water: a population-based case-control study

    PubMed Central

    2010-01-01

    Background A community in northern Italy was previously reported to have an excess incidence of amyotrophic lateral sclerosis among residents exposed to high levels of inorganic selenium in their drinking water. Methods To assess the extent to which such association persisted in the decade following its initial observation, we conducted a population-based case-control study encompassing forty-one newly-diagnosed cases of amyotrophic lateral sclerosis and eighty-two age- and sex-matched controls. We measured long-term intake of inorganic selenium along with other potentially neurotoxic trace elements. Results We found that consumption of drinking water containing ≥ 1 μg/l of inorganic selenium was associated with a relative risk for amyotrophic lateral sclerosis of 5.4 (95% confidence interval 1.1-26) after adjustment for confounding factors. Greater amounts of cumulative inorganic selenium intake were associated with progressively increasing effects, with a relative risk of 2.1 (95% confidence interval 0.5-9.1) for intermediate levels of cumulative intake and 6.4 (95% confidence interval 1.3-31) for high intake. Conclusion Based on these results, coupled with other epidemiologic data and with findings from animal studies that show specific toxicity of the trace element on motor neurons, we hypothesize that dietary intake of inorganic selenium through drinking water increases the risk for amyotrophic lateral sclerosis. PMID:21134276