Sample records for factors engineering analyses

  1. Factors associated with risky sun exposure behaviors among operating engineers.

    PubMed

    Duffy, Sonia A; Choi, Seung Hee; Hollern, Rachael; Ronis, David L

    2012-09-01

    The objective of this study was to determine the factors associated with sun exposure behaviors among Operating Engineers (heavy equipment operators). Operating Engineers (N = 498) were asked to complete a cross-sectional survey. Linear and logistic regression analyses were used to determine health behavioral, perceptional, and demographic factors associated with sun exposure behavior (sun burns, blistering, use of sunscreen, and interest in sun protection services). Almost half reported two or more sunburns/summer and the median times blistering was 2 with a range of 0-100. About one-third never used sun block, while just over one-third rarely used sun block. Almost one-quarter were interested in sun protection guidance. Multivariate analyses showed that perceptions of skin type, alcohol problems, fruit intake, BMI, sleep quality, age, sex, and race were significantly associated with at least one of the outcome variables (P < 0.05). Operating Engineers are at high risk for skin cancer due to high rates of exposure to ultraviolet light and low rates of sun block use. Subgroups of Operating Engineers are particularly at risk for sun damage. Interventions are needed to decrease sun exposure among Operating Engineers. Copyright © 2012 Wiley Periodicals, Inc.

  2. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 1 2011-10-01 2011-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project or...

  3. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 1 2013-10-01 2013-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project or...

  4. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project or...

  5. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project or...

  6. 45 CFR 13.7 - Studies, exhibits, analyses, engineering reports, tests and projects.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Studies, exhibits, analyses, engineering reports... Studies, exhibits, analyses, engineering reports, tests and projects. The reasonable cost (or the reasonable portion of the cost) for any study, exhibit, analysis, engineering report, test, project or...

  7. Factors associated with sleep quality among operating engineers.

    PubMed

    Choi, Seung Hee; Terrell, Jeffrey E; Pohl, Joanne M; Redman, Richard W; Duffy, Sonia A

    2013-06-01

    Blue collar workers generally report high job stress and are exposed to loud noises at work and engage in many of risky health behavioral factors, all of which have been associated with poor sleep quality. However, sleep quality of blue collar workers has not been studied extensively, and no studies have focused Operating Engineers (heavy equipment operators) among whom daytime fatigue would place them at high risk for accidents. Therefore, the purpose of this study was to determine variables associated with sleep quality among Operating Engineers. This was a cross-sectional survey design with a dependent variable of sleep quality and independent variables of personal and related health behavioral factors. A convenience sample of 498 Operating Engineers was recruited from approximately 16,000 Operating Engineers from entire State of Michigan in 2008. Linear regression was used to determine personal and related health behavior factors associated with sleep quality. Multivariate analyses showed that personal factors related to poor sleep quality were younger age, female sex, higher pain, more medical comorbidities and depressive symptoms and behavioral factors related to poor sleep quality were nicotine dependence. While sleep scores were similar to population norms, approximately 34 % (n = 143) showed interest in health services for sleep problems. While many personal factors are not changeable, interventions to improve sleep hygiene as well as interventions to treat pain, depression and smoking may improve sleep quality resulting in less absenteeism, fatal work accidents, use of sick leave, work disability, medical comorbidities, as well as subsequent mortality.

  8. Factors Associated With Sleep Quality Among Operating Engineers

    PubMed Central

    Choi, Seung Hee; Terrell, Jeffrey E.; Pohl, Joanne M.; Redman, Richard W.

    2016-01-01

    Blue collar workers generally report high job stress and are exposed to loud noises at work and engage in many of the health behavioral factors, all of which have been associated with poor sleep quality. However, sleep quality of blue collar workers has not been studied extensively, and no studies have focused Operating Engineers (heavy equipment operators) among whom daytime fatigue would place them at high risk for accidents. Therefore, the purpose of this study was to determine variables associated with sleep quality among Operating Engineers. This was a cross-sectional survey design with a dependent variable of sleep quality and independent variables of personal and related health behavioral factors. A convenience sample of 498 Operating Engineers was recruited from approximately 16,000 Operating Engineers from entire State of Michigan in 2008. Linear regression was used to determine personal and related health behavior factors associated with sleep quality. Multivariate analyses showed that personal factors related to poor sleep quality were younger age, female sex, higher pain, more medical comorbidities and depressive symptoms and behavioral factors related to poor sleep quality were nicotine dependence. While sleep scores were similar to population norms, approximately 34% (n=143) showed interest in health services for sleep problems. While many personal factors are not changeable, interventions to improve sleep hygiene as well as interventions to treat pain, depression and smoking may improve sleep quality resulting in less absenteeism, fatal work accidents, use of sick leave, work disability, medical comorbidities, as well as subsequent mortality. PMID:23393021

  9. Engineering analyses for railroad tank car head puncture resistance

    DOT National Transportation Integrated Search

    2006-11-06

    This paper describes engineering analyses to estimate the : forces, deformations, and puncture resistance of railroad tank : cars. Different approaches to examine puncture of the tank car : head are described. One approach is semi-empirical equations...

  10. Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Rapp, Douglas C.

    1994-01-01

    The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.

  11. Motivational factors, gender and engineering education

    NASA Astrophysics Data System (ADS)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Egelund Holgaard, Jette

    2013-06-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering programmes, we further show that these overall gender differences are subtle and that motivational factors are unequally important across the different educational programmes. The findings from this study clearly indicate that intrinsic and social motivations are the most important motivational factors; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education.

  12. Aircraft Maintenance Engineering: Factors Impacting Airlines E-Maintenance Technologies, Authoring and Illustrations

    NASA Astrophysics Data System (ADS)

    Karayianes, Frank

    The purpose of this research was to evaluate factors influencing acceptance and use of technologies in the field of aircraft maintenance authoring, graphics, and documentation. Maintenance engineering authors convert complex engineering used in aircraft production and transform that data using technology (tools) into usable technical publications data. While the current literature includes a large volume of research in technology acceptance in various domains of industry and business, the problem is that no such studies exist with respect to the aircraft maintenance engineering authoring, allowing any number of tools to be used and acceptance to be unsure. The study was based on theoretical approaches of the Technology Acceptance Model and the associated hypothesis related to eight research questions. A survey questionnaire was developed for data collection from a selected population of aircraft maintenance engineering authors. Data collected from 148 responses were exposed to a range of statistical methods and analyses. Analysis of data were performed within the structural equation model using exploratory factor analysis, confirmatory factor analysis, and a range of regression methods. The analyses generally provided results consistent with prior literature. Two survey questions yielded unexpected results contrary to similar studies. The relationship between prior experience and job level did not show a significant relationship with perceived usefulness or perceived ease of use. Other results included the significant relationship between Perceived Usefulness and Perceived Ease of Use with Technology acceptance. Recommendations include understanding how Technology Acceptance can be improved for the industry and the need for further research not covered to refine recommendations for technology acceptance related to the aviation industry.

  13. Human Factors Engineering Program Review Model

    DTIC Science & Technology

    2004-02-01

    Institute, 1993). ANSI HFS-100: American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (American National... American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSI HFS-100-1988). Santa Monica, California

  14. Comparative survey of dynamic analyses of free-piston Stirling engines

    NASA Technical Reports Server (NTRS)

    Kankam, M. D.; Rauch, J. S.

    1991-01-01

    Reported dynamics analyses for evaluating the steady-state response and stability of free-piston Stirling engine (FPSE) systems are compared. Various analytical approaches are discussed to provide guidance on their salient features. Recommendations are made in the recommendations remarks for an approach which captures most of the inherent properties of the engine. Such an approach has the potential for yielding results which will closely match practical FPSE-load systems.

  15. Thermal-structural analyses of Space Shuttle Main Engine (SSME) hot section components

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Thompson, Robert L.

    1988-01-01

    Three dimensional nonlinear finite element heat transfer and structural analyses were performed for the first stage high pressure fuel turbopump (HPFTP) blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 and single crystal (SC) PWA-1480 material properties were used for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress strain histories were calculated by using the MARC finite element computer code. The structural response of an SSME turbine blade was assessed and a greater understanding of blade damage mechanisms, convective cooling effects, and thermal mechanical effects was gained.

  16. Motivational and adaptational factors of successful women engineers

    NASA Astrophysics Data System (ADS)

    Bornsen, Susan Edith

    It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged in the field. This paper examines how women engineers view their education, their work, and their motivation to remain in the field. A qualitative research design was used to understand the motivation and adaptability factors women use to support their decision to major in engineering and stay in the engineering profession. Women engineers were interviewed using broad questions about motivation and adaptability. Interviews were transcribed and coded, looking for common threads of factors that suggest not only why women engineers persist in the field, but also how they thrive. Findings focus on the experiences, insights, and meaning of women interviewed. A grounded theory approach was used to describe the success factors found in practicing women engineers. The study found categories of attraction to the field, learning environment, motivation and adaptability. Sub-categories of motivation are intrinsic motivational factors such as the desire to make a difference, as well as extrinsic factors such as having an income that allows the kind of lifestyle that supports the family. Women engineers are comfortable with and enjoy working with male peers and when barriers arise, women learn to adapt in the male dominated field. Adaptability was indicated in areas of gender, culture, and communication. Women found strength in the ability to 'read' their clients, and provide insight to their teams. Sufficient knowledge from the field advances theory and offers strategies to programs for administrators and faculty of schools of engineering as well as engineering firms, who have interest in recruitment, and retention of female students

  17. Transient Seepage for Levee Engineering Analyses

    NASA Astrophysics Data System (ADS)

    Tracy, F. T.

    2017-12-01

    Historically, steady-state seepage analyses have been a key tool for designing levees by practicing engineers. However, with the advances in computer modeling, transient seepage analysis has become a potentially viable tool. A complication is that the levees usually have partially saturated flow, and this is significantly more complicated in transient flow. This poster illustrates four elements of our research in partially saturated flow relating to the use of transient seepage for levee design: (1) a comparison of results from SEEP2D, SEEP/W, and SLIDE for a generic levee cross section common to the southeastern United States; (2) the results of a sensitivity study of varying saturated hydraulic conductivity, the volumetric water content function (as represented by van Genuchten), and volumetric compressibility; (3) a comparison of when soils do and do not exhibit hysteresis, and (4) a description of proper and improper use of transient seepage in levee design. The variables considered for the sensitivity and hysteresis studies are pore pressure beneath the confining layer at the toe, the flow rate through the levee system, and a levee saturation coefficient varying between 0 and 1. Getting results for SEEP2D, SEEP/W, and SLIDE to match proved more difficult than expected. After some effort, the results matched reasonably well. Differences in results were caused by various factors, including bugs, different finite element meshes, different numerical formulations of the system of nonlinear equations to be solved, and differences in convergence criteria. Varying volumetric compressibility affected the above test variables the most. The levee saturation coefficient was most affected by the use of hysteresis. The improper use of pore pressures from a transient finite element seepage solution imported into a slope stability computation was found to be the most grievous mistake in using transient seepage in the design of levees.

  18. Motivational Factors, Gender and Engineering Education

    ERIC Educational Resources Information Center

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Holgaard, Jette Egelund

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students reasons for choosing a career in engineering. We find that women are significantly more influenced by…

  19. Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering

    NASA Astrophysics Data System (ADS)

    Wentling, Rose Mary; Camacho, Cristina

    Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.

  20. Factors associated with smoking among operating engineers.

    PubMed

    Choi, Seung Hee; Pohl, Joanne M; Terrell, Jeffrey E; Redman, Richard W; Duffy, Sonia A

    2013-09-01

    Although disparities in smoking prevalence between white collar workers and blue collar workers have been documented, reasons for these disparities have not been well studied. The objective of this study was to determine variables associated with smoking among Operating Engineers, using the Health Promotion Model as a guide. With cross-sectional data from a convenience sample of 498 Operating Engineers, logistic regression was used to determine personal and health behaviors associated with smoking. Approximately 29% of Operating Engineers currently smoked cigarettes. Multivariate analyses showed that younger age, unmarried, problem drinking, physical inactivity, and a lower body mass index were associated with smoking. Operating Engineers were at high risk of smoking, and smokers were more likely to engage in other risky health behaviors, which supports bundled health behavior interventions. Copyright 2013, SLACK Incorporated.

  1. Role of Human Factors and Engineering Psychology in Undergraduate and Graduate Engineering Curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Jesse Rebol

    The engineering discipline is a profession of acquiring and applying technical knowledge, and the focus of engineering psychology is to optimize the effectiveness and efficiency with which human activities are conducted. Having human factors and engineering psychology be a permanent part of the engineering curriculum will make students aware of them, so they can learn from past experiences and avoid making the same mistakes their peers made. (Should be close to 200 words)

  2. Women: Support Factors and Persistence in Engineering. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Duncan, John R.; Zeng, Yong

    2005-01-01

    Limited information is available regarding the factors that promote persistence by women in engineering programs. Stated simply, the problem is that the number of women engineers continues to fall short in comparison to the gender ratio of women to men in the population in the U.S. (BEST, 2002) and worldwide (Hersh, 2000). More women engineers are…

  3. Impact of workstations on criticality analyses at ABB combustion engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarko, L.B.; Freeman, R.S.; O'Donnell, P.F.

    1993-01-01

    During 1991, ABB Combustion Engineering (ABB C-E) made the transition from a CDC Cyber 990 mainframe for nuclear criticality safety analyses to Hewlett Packard (HP)/Apollo workstations. The primary motivation for this change was improved economics of the workstation and maintaining state-of-the-art technology. The Cyber 990 utilized the NOS operating system with a 60-bit word size. The CPU memory size was limited to 131 100 words of directly addressable memory with an extended 250000 words available. The Apollo workstation environment at ABB consists of HP/Apollo-9000/400 series desktop units used by most application engineers, networked with HP/Apollo DN10000 platforms that use 32-bitmore » word size and function as the computer servers and network administrative CPUS, providing a virtual memory system.« less

  4. Analyses of mode filling factor of a laser end-pumped by a LD with high-order transverse modes

    NASA Astrophysics Data System (ADS)

    Han, Juhong; Wang, You; An, Guofei; Rong, Kepeng; Yu, Hang; Wang, Shunyan; Zhang, Wei; Cai, He; Xue, Liangping; Wang, Hongyuan; Zhou, Jie

    2017-05-01

    Although the concept of the mode filling factor (also named as "mode-matching efficiency") has been well discussed decades before, the concept of so-called overlap coefficient is often confused by the laser technicians because there are several different formulae for various engineering purposes. Furthermore, the LD-pumped configurations have become the mainstream of solid-state lasers since their compact size, high optical-to-optical efficiency, low heat generation, etc. As the beam quality of LDs are usually very unsatisfactory, it is necessary to investigate how the mode filling factor of a laser system is affected by a high-powered LD pump source. In this paper, theoretical analyses of an end-pumped laser are carried out based on the normalized overlap coefficient formalism. The study provides a convenient tool to describe the intrinsically complex issue of mode interaction corresponding to a laser and an end-pumped source. The mode filling factor has been studied for many cases in which the pump mode and the laser mode have been considered together in the calculation based on analyses of the rate equations. The results should be applied for analyses of any other types of lasers with the similar optical geometry.

  5. Sex segregation in undergraduate engineering majors

    NASA Astrophysics Data System (ADS)

    Litzler, Elizabeth

    Gender inequality in engineering persists in spite of women reaching parity in college enrollments and degrees granted. To date, no analyses of educational sex segregation have comprehensively examined segregation within one discipline. To move beyond traditional methods of studying the long-standing stratification by field of study in higher education, I explore gender stratification within one field: engineering. This dissertation investigates why some engineering disciplines have a greater representation of women than other engineering disciplines. I assess the individual and institutional factors and conditions associated with women's representation in certain engineering departments and compare the mechanisms affecting women's and men's choice of majors. I use national data from the Engineering Workforce Commission, survey data from 21 schools in the Project to Assess Climate in Engineering study, and Carnegie Foundation classification information to study sex segregation in engineering majors from multiple perspectives: the individual, major, institution, and country. I utilize correlations, t-tests, cross-tabulations, log-linear modeling, multilevel logistic regression and weighted least squares regression to test the relative utility of alternative explanations for women's disproportionate representation across engineering majors. As a whole, the analyses illustrate the importance of context and environment for women's representation in engineering majors. Hypotheses regarding hostile climate and discrimination find wide support across different analyses, suggesting that women's under-representation in certain engineering majors is not a question of choice or ability. However, individual level factors such as having engineering coursework prior to college show an especially strong association with student choice of major. Overall, the analyses indicate that institutions matter, albeit less for women, and women's under-representation in engineering is not

  6. Factors Associated With Smoking Behavior Among Operating Engineers

    PubMed Central

    Choi, Seung Hee; Pohl, Joanne M.; Terrell, Jeffrey E.; Redman, Richard W.

    2016-01-01

    Although disparities in smoking prevalence between white collar workers and blue collar workers have been documented, reasons for these disparities have not been well studied. The objective of this study was to determine variables associated with smoking among Operating Engineers, using the Health Promotion Model as a guide. With cross-sectional data from a convenience sample of 498 Operating Engineers, logistic regression was used to determine personal and health behaviors associated with smoking. Approximately 29% of Operating Engineers currently smoked cigarettes. Multivariate analyses showed that younger age, unmarried, problem drinking, physical inactivity, and a lower body mass index were associated with smoking. Operating Engineers were at high risk of smoking, and smokers were more likely to engage in other risky health behaviors, which supports bundled health behavior interventions. PMID:23957830

  7. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  8. Enrolling in Science and Engineering Academic Programs—Motivating and Deterring Factors

    NASA Astrophysics Data System (ADS)

    Pomazan, Valentina; Mihalaşcu, Doina; Petcu, Lucian C.; Gîrtu, Mihai A.

    2010-01-01

    We report the results of the student responses to a survey aiming to determine the factors influencing the young generation in choosing a career in science and technology. The goal of the study is twofold: to identify the motives that determine students to enroll in university programs in science and technology and to engage in applied science and engineering careers and to discover the barriers that manifest at different age levels, preventing students from making such choices. The study was conducted at the Ovidius University and the "Energetic" Technical High School, both in Constanta, Romania, with samples of 257 and 106 students respectively, based on a 38 item online questionnaire. The samples selected from the student population allow for a wide range of analyses with respect to gender, family and educational background, field of study, etc. We discuss the role of the raw models, parents, educators, and we comment on ways to increase student enrollment in science and engineering.

  9. Human factors engineering: the next challenge.

    PubMed

    Durand-Viel, Denys

    2004-10-01

    This fictional exchange between a General Manager, a Research and Development Officer and a Regulatory Affairs Manager after a near incident with a recently launched device explains how human factors engineering is the key to design success.

  10. Engineering growth factors for regenerative medicine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less

  11. Impact Analyses and Tests of Metal Cask Considering Aircraft Engine Crash - 12308

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sanghoon; Choi, Woo-Seok; Kim, Ki-Young

    2012-07-01

    The structural integrity of a dual purpose metal cask currently under development by the Korea Radioactive Waste Management Cooperation (KRMC) is evaluated through analyses and tests under a high-speed missile impact considering the targeted aircraft crash conditions. The impact conditions were carefully chosen through a survey on accident cases and recommendations from the literature. The missile impact velocity was set at 150 m/s, and two impact orientations were considered. A simplified missile simulating a commercial aircraft engine is designed from an impact load history curve provided in the literature. In the analyses, the focus is on the evaluation of themore » containment boundary integrity of the metal cask. The analyses results are compared with the results of tests using a 1/3 scale model. The results show very good agreements, and the procedure and methodology adopted in the structural analyses are validated. While the integrity of the cask is maintained in one evaluation where the missile impacts the top side of the free standing cask, the containment boundary is breached in another case in which the missile impacts the center of the cask lid in a perpendicular orientation. A safety assessment using a numerical simulation of an aircraft engine crash into spent nuclear fuel storage systems is performed. A commercially available explicit finite element code is utilized for the dynamic simulation, and the strain rate effect is included in the modeling of the materials used in the target system and missile. The simulation results show very good agreement with the test results. It is noted that this is the first test considering an aircraft crash in Korea. (authors)« less

  12. Human Factors Engineering Guidelines for Overhead Cranes

    NASA Technical Reports Server (NTRS)

    Chandler, Faith; Delgado, H. (Technical Monitor)

    2001-01-01

    This guideline provides standards for overhead crane cabs that can be applied to the design and modification of crane cabs to reduce the potential for human error due to design. This guideline serves as an aid during the development of a specification for purchases of cranes or for an engineering support request for crane design modification. It aids human factors engineers in evaluating existing cranes during accident investigations or safety reviews.

  13. A Coding Scheme for Analysing Problem-Solving Processes of First-Year Engineering Students

    ERIC Educational Resources Information Center

    Grigg, Sarah J.; Benson, Lisa C.

    2014-01-01

    This study describes the development and structure of a coding scheme for analysing solutions to well-structured problems in terms of cognitive processes and problem-solving deficiencies for first-year engineering students. A task analysis approach was used to assess students' problem solutions using the hierarchical structure from a…

  14. Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri

    2017-01-01

    In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.

  15. Human Factors Engineering Aspects of Modifications in Control Room Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques; Clefton, Gordon; Joe, Jeffrey

    This report describes the basic aspects of control room modernization projects in the U.S. nuclear industry and the need for supplementary guidance on the integration of human factors considerations into the licensing and regulatory aspects of digital upgrades. The report pays specific attention to the integration of principles described in NUREG-0711 (Human Factors Engineering Program Review Model) and how supplementary guidance can help to raise general awareness in the industry regarding the complexities of control room modernization projects created by many interdependent regulations, standards and guidelines. The report also describes how human factors engineering principles and methods provided by variousmore » resources and international standards can help in navigating through the process of licensing digital upgrades. In particular, the integration of human factors engineering guidance and requirements into the process of licensing digital upgrades can help reduce uncertainty related to development of technical bases for digital upgrades that will avoid the introduction of new failure modes.« less

  16. Review on factors affecting the performance of pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Tripathi, Saurabh; Pandey, Krishna Murari

    2018-04-01

    Now a day's rocket engines (air-breathing type) are being used for aerospace purposes but the studies have shown that these are less efficient, so alternatives are being searched for these. Pulse Detonation Engine (PDE) is one such efficient engine which can replace the rocket engines. In this review paper, different researches have been cited. As can be observed from various researches, insertion of obstacles is better. Deflagration to Detonation(DDT) transition process is found to be most important factor. So a lot of researches are being done considering this DDT chamber. Also, the ignition chamber and ejector were found to improve the effectiveness of PDE. The PDE works with a range of Mach 0-4. Flame acceleration is also found to increase the DDT process. Use of valve and valveless engine has also been compared. Various other factors have been focused in this review paper which is found to boost PDE performance.

  17. Inlet Flow Valve Engine Analyses

    NASA Technical Reports Server (NTRS)

    Champagne, G. A.

    2004-01-01

    Pratt&Whitney, under Task Order 13 of the NASA Large Engine Technology (LET) Contract, conducted a study to determine the operating characteristics, performance and weights of Inlet Flow Valve (IFV) propulsion concepts for a Mach 2.4 High Speed Civil Transport (HSCT).

  18. Human factors engineering approaches to patient identification armband design.

    PubMed

    Probst, C Adam; Wolf, Laurie; Bollini, Mara; Xiao, Yan

    2016-01-01

    The task of patient identification is performed many times each day by nurses and other members of the care team. Armbands are used for both direct verification and barcode scanning during patient identification. Armbands and information layout are critical to reducing patient identification errors and dangerous workarounds. We report the effort at two large, integrated healthcare systems that employed human factors engineering approaches to the information layout design of new patient identification armbands. The different methods used illustrate potential pathways to obtain standardized armbands across healthcare systems that incorporate human factors principles. By extension, how the designs have been adopted provides examples of how to incorporate human factors engineering into key clinical processes. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Factors associated with health-related quality of life among operating engineers.

    PubMed

    Choi, Seung Hee; Redman, Richard W; Terrell, Jeffrey E; Pohl, Joanne M; Duffy, Sonia A

    2012-11-01

    Because health-related quality of life among blue-collar workers has not been well studied, the purpose of this study was to determine factors associated with health-related quality of life among Operating Engineers. With cross-sectional data from a convenience sample of 498 Operating Engineers, personal and health behavioral factors associated with health-related quality of life were examined. Multivariate linear regression analysis revealed that personal factors (older age, being married, more medical comorbidities, and depression) and behavioral factors (smoking, low fruit and vegetable intake, low physical activity, high body mass index, and low sleep quality) were associated with poor health-related quality of life. Operating Engineers are at risk for poor health-related quality of life. Underlying medical comorbidities and depression should be well managed. Worksite wellness programs addressing poor health behaviors may be beneficial.

  20. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    PubMed Central

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  1. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  2. Electronic cigarettes: incorporating human factors engineering into risk assessments

    PubMed Central

    Yang, Ling; Rudy, Susan F; Cheng, James M; Durmowicz, Elizabeth L

    2014-01-01

    Objective A systematic review was conducted to evaluate the impact of human factors (HF) on the risks associated with electronic cigarettes (e-cigarettes) and to identify research gaps. HF is the evaluation of human interactions with products and includes the analysis of user, environment and product complexity. Consideration of HF may mitigate known and potential hazards from the use and misuse of a consumer product, including e-cigarettes. Methods Five databases were searched through January 2014 and publications relevant to HF were incorporated. Voluntary adverse event (AE) reports submitted to the US Food and Drug Administration (FDA) and the package labelling of 12 e-cigarette products were analysed. Results No studies specifically addressing the impact of HF on e-cigarette use risks were identified. Most e-cigarette users are smokers, but data on the user population are inconsistent. No articles focused specifically on e-cigarette use environments, storage conditions, product operational requirements, product complexities, user errors or misuse. Twelve published studies analysed e-cigarette labelling and concluded that labelling was inadequate or misleading. FDA labelling analysis revealed similar concerns described in the literature. AE reports related to design concerns are increasing and fatalities related to accidental exposure and misuse have occurred; however, no publications evaluating the relationship between AEs and HF were identified. Conclusions The HF impacting e-cigarette use and related hazards are inadequately characterised. Thorough analyses of user–product–environment interfaces, product complexities and AEs associated with typical and atypical use are needed to better incorporate HF engineering principles to inform and potentially reduce or mitigate the emerging hazards associated with e-cigarette products. PMID:24732164

  3. Patient safety - the role of human factors and systems engineering.

    PubMed

    Carayon, Pascale; Wood, Kenneth E

    2010-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.

  4. Patient Safety: The Role of Human Factors and Systems Engineering

    PubMed Central

    Carayon, Pascale; Wood, Kenneth E.

    2011-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237

  5. Some NASA contributions to human factors engineering: A survey

    NASA Technical Reports Server (NTRS)

    Behan, R. A.; Wendhausen, H. W.

    1973-01-01

    This survey presents the NASA contributions to the state of the art of human factors engineering, and indicates that these contributions have a variety of applications to nonaerospace activities. Emphasis is placed on contributions relative to man's sensory, motor, decisionmaking, and cognitive behavior and on applications that advance human factors technology.

  6. Analysing the Integration of Engineering in Science Lessons with the Engineering-Infused Lesson Rubric

    ERIC Educational Resources Information Center

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-01-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons…

  7. Orbit Transfer Vehicle (OTV) engine phase A study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1978-01-01

    Requirements for the orbit transfer vehicle engine were examined. Engine performance/weight sensitivities, the effect of a service life of 300 start/shutdown cycles between overalls on the maximum engine operating pressure, and the sensitivity of the engine design point (i.e., thrust chamber pressure and nozzle area ratio) to the performance requirements specified are among the factors studied. Preliminary engine systems analyses were conducted on the stage combustion, expander, and gas generator engine cycles. Hydrogen and oxygen pump discharge pressure requirements are shown for various engine cycles. Performance of the engine cycles is compared.

  8. Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

    NASA Technical Reports Server (NTRS)

    Stokes, Jack W.

    2003-01-01

    An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.

  9. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering

    PubMed Central

    Samorezov, Julia E.; Alsberg, Eben

    2015-01-01

    Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719

  10. Causes and risk factors for fatal accidents in non-commercial twin engine piston general aviation aircraft.

    PubMed

    Boyd, Douglas D

    2015-04-01

    Accidents in twin-engine aircraft carry a higher risk of fatality compared with single engine aircraft and constitute 9% of all general aviation accidents. The different flight profile (higher airspeed, service ceiling, increased fuel load, and aircraft yaw in engine failure) may make comparable studies on single-engine aircraft accident causes less relevant. The objective of this study was to identify the accident causes for non-commercial operations in twin engine aircraft. A NTSB accident database query for accidents in twin piston engine airplanes of 4-8 seat capacity with a maximum certified weight of 3000-8000lbs. operating under 14CFR Part 91 for the period spanning 2002 and 2012 returned 376 accidents. Accident causes and contributing factors were as per the NTSB final report categories. Total annual flight hour data for the twin engine piston aircraft fleet were obtained from the FAA. Statistical analyses employed Chi Square, Fisher's Exact and logistic regression analysis. Neither the combined fatal/non-fatal accident nor the fatal accident rate declined over the period spanning 2002-2012. Under visual weather conditions, the largest number, n=27, (27%) of fatal accidents was attributed to malfunction with a failure to follow single engine procedures representing the most common contributing factor. In degraded visibility, poor instrument approach procedures resulted in the greatest proportion of fatal crashes. Encountering thunderstorms was the most lethal of all accident causes with all occupants sustaining fatal injuries. At night, a failure to maintain obstacle/terrain clearance was the most common accident cause leading to 36% of fatal crashes. The results of logistic regression showed that operations at night (OR 3.7), off airport landings (OR 14.8) and post-impact fire (OR 7.2) all carried an excess risk of a fatal flight. This study indicates training areas that should receive increased emphasis for twin-engine training/recency. First, increased

  11. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  12. Motivating Factors that Affect Enrolment and Student Performance in an ODL Engineering Program

    ERIC Educational Resources Information Center

    Dadigamuwa, P. R.; Senanayake, Samans

    2012-01-01

    The present study was carried out to determine the motivating factors for enrolling in an engineering study programme in open and distance learning (ODL) and the factors that affect the students' performance. The study was conducted with two convenient samples of students following distance learning courses in engineering technology, conducted by…

  13. Human factors and systems engineering approach to patient safety for radiotherapy.

    PubMed

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  14. Human Factors Engineering #2 Crewstation Assessment for the OH-58F Helicopter

    DTIC Science & Technology

    2013-03-01

    1 ARMY RSCH LABORATORY – HRED (HC) HUMAN RSRCH AND ENGRNG DIRCTRT MCOE FIELD ELEMENT RDRL HRM DW C CARSTENS 6450 WAY ST BLDG 2839 RM... Human Factors Engineering #2 Crewstation Assessment for the OH-58F Helicopter by David B. Durbin, Jamison S. Hicks, Michael Sage Jessee...Research Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6355 March 2013 Human Factors Engineering #2 Crewstation Assessment for the

  15. Growth factor delivery for oral and periodontal tissue engineering

    PubMed Central

    Kaigler, Darnell; Cirelli, Joni A; Giannobile, William V

    2008-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. Growth factors are critical to the development, maturation, maintenance and repair of craniofacial tissues, as they establish an extracellular environment that is conducive to cell and tissue growth. Tissue-engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. These materials have been constructed into devices that can be used as vehicles for delivery of cells, growth factors and DNA. In this review, different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral- and tooth-supporting structures, namely the periodontium and alveolar bone. PMID:16948560

  16. An overlooked alliance: using human factors engineering to reduce patient harm.

    PubMed

    Perry, Shawna J

    2004-08-01

    Although human factors engineering (HFE) is considered only in relationship to the design of medical devices or information systems technology, human factors issues arise in many aspects of work in health care organizations. In one scenario, the resuscitation stretcher would not pass through the ED door closest to radiology. Many clinical work spaces were never formally designed for the work currently being performed in them; instead, they were adapted from existing space originally designed for a different use. In a second scenario, infusion pump malfunction was not apparent. The patient experienced a near miss secondary to poor design; users thought that the infusion pump had been turned off when it was not. Health care can significantly benefit from the incorporation of HFE into the workplace. Introductory classes in medical and nursing schools on HFE will assist students in detecting HFE-related issues, making them less likely to suffer with them or overlook them once in clinical practice. More extensive training for patient safety and risk managers, that is, at a minimum, a certificate-level course from an HFE program, would enhance case and root cause analyses since these issues are rarely factored in. Collaboration with HFE experts and use of HFE principles may not make health care fool-proof, but it will make it less dependent on improvisation and ingenuity to protect patients from the system's vulnerabilities.

  17. Using human factors engineering to improve the effectiveness of infection prevention and control.

    PubMed

    Anderson, Judith; Gosbee, Laura Lin; Bessesen, Mary; Williams, Linda

    2010-08-01

    Human factors engineering is a discipline that studies the capabilities and limitations of humans and the design of devices and systems for improved performance. The principles of human factors engineering can be applied to infection prevention and control to study the interaction between the healthcare worker and the system that he or she is working with, including the use of devices, the built environment, and the demands and complexities of patient care. Some key challenges in infection prevention, such as delayed feedback to healthcare workers, high cognitive workload, and poor ergonomic design, are explained, as is how human factors engineering can be used for improvement and increased compliance with practices to prevent hospital-acquired infections.

  18. Methodology for processing pressure traces used as inputs for combustion analyses in diesel engines

    NASA Astrophysics Data System (ADS)

    Rašić, Davor; Vihar, Rok; Žvar Baškovič, Urban; Katrašnik, Tomaž

    2017-05-01

    This study proposes a novel methodology for designing an optimum equiripple finite impulse response (FIR) filter for processing in-cylinder pressure traces of a diesel internal combustion engine, which serve as inputs for high-precision combustion analyses. The proposed automated workflow is based on an innovative approach of determining the transition band frequencies and optimum filter order. The methodology is based on discrete Fourier transform analysis, which is the first step to estimate the location of the pass-band and stop-band frequencies. The second step uses short-time Fourier transform analysis to refine the estimated aforementioned frequencies. These pass-band and stop-band frequencies are further used to determine the most appropriate FIR filter order. The most widely used existing methods for estimating the FIR filter order are not effective in suppressing the oscillations in the rate- of-heat-release (ROHR) trace, thus hindering the accuracy of combustion analyses. To address this problem, an innovative method for determining the order of an FIR filter is proposed in this study. This method is based on the minimization of the integral of normalized signal-to-noise differences between the stop-band frequency and the Nyquist frequency. Developed filters were validated using spectral analysis and calculation of the ROHR. The validation results showed that the filters designed using the proposed innovative method were superior compared with those using the existing methods for all analyzed cases. Highlights • Pressure traces of a diesel engine were processed by finite impulse response (FIR) filters with different orders • Transition band frequencies were determined with an innovative method based on discrete Fourier transform and short-time Fourier transform • Spectral analyses showed deficiencies of existing methods in determining the FIR filter order • A new method of determining the FIR filter order for processing pressure traces was

  19. Analysing the integration of engineering in science lessons with the Engineering-Infused Lesson Rubric

    NASA Astrophysics Data System (ADS)

    Peterman, Karen; Daugherty, Jenny L.; Custer, Rodney L.; Ross, Julia M.

    2017-09-01

    Science teachers are being called on to incorporate engineering practices into their classrooms. This study explores whether the Engineering-Infused Lesson Rubric, a new rubric designed to target best practices in engineering education, could be used to evaluate the extent to which engineering is infused into online science lessons. Eighty lessons were selected at random from three online repositories, and coded with the rubric. Overall results documented the strengths of existing lessons, as well as many components that teachers might strengthen. In addition, a subset of characteristics was found to distinguish lessons with the highest level of engineering infusion. Findings are discussed in relation to the potential of the rubric to help teachers use research evidence-informed practice generally, and in relation to the new content demands of the U.S. Next Generation Science Standards, in particular.

  20. Ambulatory Antibiotic Stewardship through a Human Factors Engineering Approach: A Systematic Review.

    PubMed

    Keller, Sara C; Tamma, Pranita D; Cosgrove, Sara E; Miller, Melissa A; Sateia, Heather; Szymczak, Julie; Gurses, Ayse P; Linder, Jeffrey A

    2018-01-01

    In the United States, most antibiotics are prescribed in ambulatory settings. Human factors engineering, which explores interactions between people and the place where they work, has successfully improved quality of care. However, human factors engineering models have not been explored to frame what is known about ambulatory antibiotic stewardship (AS) interventions and barriers and facilitators to their implementation. We conducted a systematic review and searched OVID MEDLINE, Embase, Scopus, Web of Science, and CINAHL to identify controlled interventions and qualitative studies of ambulatory AS and determine whether and how they incorporated principles from a human factors engineering model, the Systems Engineering Initiative for Patient Safety 2.0 model. This model describes how a work system (ambulatory clinic) contributes to a process (antibiotic prescribing) that leads to outcomes. The work system consists of 5 components, tools and technology, organization, person, tasks, and environment, within an external environment. Of 1,288 abstracts initially identified, 42 quantitative studies and 17 qualitative studies met inclusion criteria. Effective interventions focused on tools and technology (eg, clinical decision support and point-of-care testing), the person (eg, clinician education), organization (eg, audit and feedback and academic detailing), tasks (eg, delayed antibiotic prescribing), the environment (eg, commitment posters), and the external environment (media campaigns). Studies have not focused on clinic-wide approaches to AS. A human factors engineering approach suggests that investigating the role of the clinic's processes or physical layout or external pressures' role in antibiotic prescribing may be a promising way to improve ambulatory AS. © Copyright 2018 by the American Board of Family Medicine.

  1. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    PubMed

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Studies and analyses of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Tischer, Alan E.; Glover, R. C.

    1987-01-01

    The primary objectives were to: evaluate ways to maximize the information yield from the current Space Shuttle Main Engine (SSME) condition monitoring sensors, identify additional sensors or monitoring capabilities which would significantly improve SSME data, and provide continuing support of the Main Engine Cost/Operations (MECO) model. In the area of SSME condition monitoring, the principal tasks were a review of selected SSME failure data, a general survey of condition monitoring, and an evaluation of the current engine monitoring system. A computerized data base was developed to assist in modeling engine failure information propagations. Each of the above items is discussed in detail. Also included is a brief discussion of the activities conducted in support of the MECO model.

  3. Selected engagement factors and academic learning outcomes of undergraduate engineering students

    NASA Astrophysics Data System (ADS)

    Justice, Patricia J.

    The concept of student engagement and its relationship to successful student performance and learning outcomes has a long history in higher education (Kuh, 2007). Attention to faculty and student engagement has only recently become of interest to the engineering education community. This interest can be attributed to long-standing research by George Kuh's, National Survey of Student Engagement (NSSE) at the Indiana University Center for Postsecondary Research. In addition, research projects sponsored by the National Science Foundation, the Academic Pathway Study (APS) at the Center for the Advancement of Engineering Education (CAEE) and the Center for the Advancement of Scholarship on Engineering Education (CASEE), Measuring Student and Faculty Engagement in Engineering Education, at the National Academy of Engineering. These research studies utilized the framework and data from the Engineering Change study by the Center for the Study of Higher Education, Pennsylvania State, that evaluated the impact of the new Accreditation Board of Engineering and Technology (ABET) EC2000 "3a through k" criteria identify 11 learning outcomes expected of engineering graduates. The purpose of this study was to explore the extent selected engagement factors of 1. institution, 2. social, 3. cognitive, 4. finance, and 5. technology influence undergraduate engineering students and quality student learning outcomes. Through the descriptive statistical analysis indicates that there maybe problems in the engineering program. This researcher would have expected at least 50% of the students to fall in the Strongly Agree and Agree categories. The data indicated that the there maybe problems in the engineering program problems in the data. The problems found ranked in this order: 1). Dissatisfaction with faculty instruction methods and quality of instruction and not a clear understanding of engineering majors , 2). inadequate Engineering faculty and advisors availability especially applicable

  4. Environmental risk factors and Parkinson's disease: An umbrella review of meta-analyses.

    PubMed

    Bellou, Vanesa; Belbasis, Lazaros; Tzoulaki, Ioanna; Evangelou, Evangelos; Ioannidis, John P A

    2016-02-01

    Parkinson's disease is a neurological disorder with complex pathogenesis implicating both environmental and genetic factors. We aimed to summarise the environmental risk factors that have been studied for potential association with Parkinson's disease, assess the presence of diverse biases, and identify the risk factors with the strongest support. We searched PubMed from inception to September 18, 2015, to identify systematic reviews and meta-analyses of observational studies that examined associations between environmental factors and Parkinson's disease. For each meta-analysis we estimated the summary effect size by random-effects and fixed-effects models, the 95% confidence interval and the 95% prediction interval. We estimated the between-study heterogeneity expressed by I(2), evidence of small-study effects and evidence of excess significance bias. Overall, 75 unique meta-analyses on different risk factors for Parkinson's disease were examined, covering diverse biomarkers, dietary factors, drugs, medical history or comorbid diseases, exposure to toxic environmental agents and habits. 21 of 75 meta-analyses had results that were significant at p < 0.001 by random-effects. Evidence for an association was convincing (more than 1000 cases, p < 10(-6) by random-effects, not large heterogeneity, 95% prediction interval excluding the null value and absence of hints for small-study effects and excess significance bias) for constipation, and physical activity. Many environmental factors have substantial evidence of association with Parkinson's disease, but several, perhaps most, of them may reflect reverse causation, residual confounding, information bias, sponsor conflicts or other caveats. Copyright © 2016. Published by Elsevier Ltd.

  5. Factors Affecting Students' Satisfaction in Engineering Disciplines: Traditional vs. Blended Approaches

    ERIC Educational Resources Information Center

    Martinez-Caro, Eva; Campuzano-Bolarin, Francisco

    2011-01-01

    In this paper a two-year field study was carried out to analyse how satisfaction differs across the traditional and blended learning methods. Altogether, 21 courses for graduate and postgraduate engineering students were evaluated. Several variables and their relationship with student satisfaction in the first year, with all courses delivered in…

  6. How system designers think: a study of design thinking in human factors engineering.

    PubMed

    Papantonopoulos, Sotiris

    2004-11-01

    The paper presents a descriptive study of design thinking in human factors engineering. The objective of the study is to analyse the role of interpretation in design thinking and the role of design practice in guiding interpretation. The study involved 10 system designers undertaking the allocation of cognitive functions in three production planning and control task scenarios. Allocation decisions were recorded and verbal protocols of the design process were collected to elicit the subjects' thought processes. Verbal protocol analysis showed that subjects carried out the design of cognitive task allocation as a problem of applying a selected automation technology from their initial design deliberations. This design strategy stands in contrast to the predominant view of system design that stipulates that user requirements should be thoroughly analysed prior to making any decisions about technology. Theoretical frameworks from design research and ontological design showed that the system design process may be better understood by recognizing the role of design hypotheses in system design, as well as the diverse interactions between interpretation and practice, means and ends, and design practice and the designer's pre-understanding which shape the design process. Ways to balance the bias exerted on the design process were discussed.

  7. Analysing Learning Outcomes in an Electrical Engineering Curriculum Using Illustrative Verbs Derived from Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Meda, Lawrence; Swart, Arthur James

    2018-01-01

    Learning outcomes are essential to any curriculum in education, where they need to be clear, observable and measurable. However, some academics structure learning outcomes in a way that does not promote student learning. The purpose of this article is to present the analyses of learning outcomes of an Electrical Engineering curriculum offered at a…

  8. Study on the Accident-causing of Foundation Pit Engineering

    NASA Astrophysics Data System (ADS)

    Shuicheng, Tian; Xinyue, Zhang; Pengfei, Yang; Longgang, Chen

    2018-05-01

    With the development of high-rise buildings and underground space, a large number of foundation pit projects have occurred. Frequent accidents of it cause great losses to the society, how to reduce the frequency of pit accidents has become one of the most urgent problems to be solved. Therefore, analysing the influencing factors of foundation pit engineering accidents and studying the causes of foundation pit accidents, which of great significance for improving the safety management level of foundation pit engineering and reducing the incidence of foundation pit accidents. Firstly, based on literature review and questionnaires, this paper selected construction management, survey, design, construction, supervision and monitoring as research factors, we used the AHP method and the Dematel method to analyze the weights of various influencing factors to screen indicators to determine the ultimate system of accidents caused by foundation pit accidents; Secondly, SPSS 21.0 software was used to test the reliability and validity of the recovered questionnaire data. AMOS 7.0 software was used to fit, evaluate, and explain the set model; Finally, this paper analysed the influencing factors of foundation pit engineering accidents, corresponding management countermeasures and suggestions were put forward.

  9. Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Lou, Diming; Li, Jun; Zhang, Gan; Matthias, Volker

    2016-05-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600 kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8 g kWh-1 compared to 7.14 and 6.97 g kWh-1 of DFH, and XYH, and PM EF of 2.09 g kWh-1 compared to 0.14 and 0.04 g kWh-1 of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2 g kg-1 fuel of CO EF compared to 2.17 to 19.5 g kg-1 fuel in previous studies, 115 g kg-1 fuel of NOx EF compared to 22.3 to 87 g kg-1 fuel in previous studies and 9.40 g kg-1 fuel of PM EF compared to 1.2 to 7.6 g kg-1 fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was

  10. Investigating Student Motivation and Performance in Electrical Engineering and Its Subdisciplines

    ERIC Educational Resources Information Center

    Foley, Justin M.; Daly, Shanna; Lenaway, Catherine; Phillips, Jamie

    2016-01-01

    Factors influencing choice of major in electrical engineering and later curricular and professional choices are investigated. Studies include both quantitative and qualitative analyses via student transcripts, surveys, and focus groups. Student motivation for choosing an electrical engineering major and later subdiscipline in the field is…

  11. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  12. Factors of airplane engine performance

    NASA Technical Reports Server (NTRS)

    Gage, Victor R

    1921-01-01

    This report is based upon an analysis of a large number of airplane-engine tests. It contains the results of a search for fundamental relations between many variables of engine operation. The data used came from over 100 groups of tests made upon several engines, primarily for military information. The types of engines were the Liberty 12 and three models of the Hispano-Suiza. The tests were made in the altitude chamber, where conditions simulated altitudes up to about 30,000 feet, with engine speeds ranging from 1,200 to 2,200 r.p.m. The compression ratios of the different engines ranged from under 5 to over 8 to 1. The data taken on the tests were exceptionally complete, including variations of pressure and temperature, besides the brake and friction torques, rates of fuel and air consumption, the jacket and exhaust heat losses.

  13. Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems

    NASA Astrophysics Data System (ADS)

    Náprstek, Jiří

    2015-03-01

    Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their

  14. Systems Engineering of Electric and Hybrid Vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.; Levin, R. R.

    1986-01-01

    Technical paper notes systems engineering principles applied to development of electric and hybrid vehicles such that system performance requirements support overall program goal of reduced petroleum consumption. Paper discusses iterative design approach dictated by systems analyses. In addition to obvious peformance parameters of range, acceleration rate, and energy consumption, systems engineering also considers such major factors as cost, safety, reliability, comfort, necessary supporting infrastructure, and availability of materials.

  15. Human-factors engineering control-room design review/audit: Waterford 3 SES Generating Station, Louisiana Power and Light Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, J.W.

    1983-03-10

    A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California.

  16. Roles of macrophage migration inhibitory factor in cartilage tissue engineering.

    PubMed

    Fujihara, Yuko; Hikita, Atsuhiko; Takato, Tsuyoshi; Hoshi, Kazuto

    2018-02-01

    To obtain stable outcomes in regenerative medicine, understanding and controlling immunological responses in transplanted tissues are of great importance. In our previous study, auricular chondrocytes in tissue-engineered cartilage transplanted in mice were shown to express immunological factors, including macrophage migration inhibitory factor (MIF). Since MIF exerts pleiotropic functions, in this study, we examined the roles of MIF in cartilage regenerative medicine. We made tissue-engineered cartilage consisting of auricular chondrocytes of C57BL/6J mouse, atellocollagen gel and a PLLA scaffold, and transplanted the construct subcutaneously in a syngeneic manner. Localization of MIF was prominent in cartilage areas of tissue-engineered cartilage at 2 weeks after transplantation, though it became less apparent by 8 weeks. Co-culture with RAW264 significantly increased the expression of MIF in chondrocytes, suggesting that the transplanted chondrocytes in tissue-engineered cartilage could enhance the expression of MIF by stimulation of surrounding macrophages. When MIF was added in the culture of chondrocytes, the expression of type II collagen was increased, indicating that MIF could promote the maturation of chondrocytes. Meanwhile, toluidine blue staining of constructs containing wild type (Mif+/+) chondrocytes showed increased metachromasia compared to MIF-knockout (Mif-/-) constructs at 2 weeks. However, this tendency was reversed by 8 weeks, suggesting that the initial increase in cartilage maturation in Mif+/+ constructs deteriorated by 8 weeks. Since the Mif+/+ constructs included more iNOS-positive inflammatory macrophages at 2 weeks, MIF might induce an M1 macrophage-polarized environment, which may eventually worsen the maturation of tissue-engineered cartilage in the long term. © 2017 Wiley Periodicals, Inc.

  17. Unsteady Analyses of Valve Systems in Rocket Engine Testing Environments

    NASA Technical Reports Server (NTRS)

    Shipman, Jeremy; Hosangadi, Ashvin; Ahuja, Vineet

    2004-01-01

    This paper discusses simulation technology used to support the testing of rocket propulsion systems by performing high fidelity analyses of feed system components. A generalized multi-element framework has been used to perform simulations of control valve systems. This framework provides the flexibility to resolve the structural and functional complexities typically associated with valve-based high pressure feed systems that are difficult to deal with using traditional Computational Fluid Dynamics (CFD) methods. In order to validate this framework for control valve systems, results are presented for simulations of a cryogenic control valve at various plug settings and compared to both experimental data and simulation results obtained at NASA Stennis Space Center. A detailed unsteady analysis has also been performed for a pressure regulator type control valve used to support rocket engine and component testing at Stennis Space Center. The transient simulation captures the onset of a modal instability that has been observed in the operation of the valve. A discussion of the flow physics responsible for the instability and a prediction of the dominant modes associated with the fluctuations is presented.

  18. Identifying the challenging factors in the transition from colleges of engineering to employment

    NASA Astrophysics Data System (ADS)

    Baytiyeh, Hoda; Naja, Mohamad

    2012-03-01

    The transition from university to a career in engineering is a challenging process. This study examined the perceptions of engineering graduates regarding the difficulties they encountered in their transition from the university to the workplace. Lebanese practising engineers (n=217), living around the world, were surveyed to identify their current employment situations and their attitudes toward their academic preparation. Factor analysis revealed three main challenges facing engineering graduates: communication; responsibility; self-confidence. Seventeen interviews were conducted to gather information on ways to facilitate this transition. Comments reflected the need for better collaboration between engineering schools and engineering firms. The results will provide insight for engineering colleges, faculty members and administrators into the challenges faced by graduates and their aspirations for a smoother transition into employment.

  19. Air and Space Operations Center (AOC) Facility Design Guidelines: A Human Factors Engineering Perspective

    DTIC Science & Technology

    2006-07-01

    31 July 1995 3. Human Engineering Guide to Equipment Design, Department of Defense, Washington D.C., 1972 4. American National Standard for Human Factors Engineering of Visual Display Terminal Workstations , ANSI

  20. Effects of Curriculum and Nonacademic Factors on Undergraduate Electronic Engineering Program Retention

    NASA Astrophysics Data System (ADS)

    Sulaiman, Munir

    Science, technology, engineering, and mathematics (STEM) programs in higher education institutions, particularly engineering programs, face challenges related to recruitment, retention, and graduation rates. The purpose of this study was to determine whether there are significant relationships among students' major preference, academic skills, nonacademic characteristics and perceptions, and retention to year 2 among students in electronic engineering, other STEM, and non STEM majors. The academic skills considered were study habits, intellectual interest, verbal and writing confidence, and academic assistance. The non-academic factors included academic support, family support, financial support, and student social integration into the campus environment. Tinto's theory of retention served as the theoretical framework. The research design was quantitative with a general linear method of analysis using responses to the College Student Inventory (CSI) survey as secondary data to determine the relationships among the independent variables (major and academic and non-academic factors) and dependent variable (retention). Participants were 3,575 first year undergraduate full-time students from three entering classes, 2012 to 2014. Findings suggested that student major and non-academic factors had no effect on student retention, but student study habits and seeking academic assistance were predictors of retention in each of the three groups of majors: engineering, other STEM majors, and nonSTEM majors. Strategies to help increase undergraduate students' study skills and help seeking behaviors may contribute to positive social change at HBCU institutions.

  1. Human Factors Engineering: Current and Emerging Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Chandlee, G. O.; Goldsberry, B. S.

    1994-01-01

    Human Factors Engineering is a multidisciplinary endeavor in which information pertaining to human characteristics is used in the development of systems and machines. Six representatives considered to be experts from the public and private sectors were surveyed in an effort to identify the potential dual-use of human factors technology. Each individual was asked to provide a rating as to the dual-use of 85 identified NASA technologies. Results of the survey were as follows: nearly 75 percent of the technologies were identified at least once as high dual-use by one of the six survey respondents, and nearly 25 percent of the identified NASA technologies were identified as high dual-use technologies by a majority of the respondents. The perceived level of dual-use appeared to be independent of the technology category. Successful identification of dual-use technology requires expanded input from industry. As an adjunct, cost-benefit analysis should be conducted to identify the feasibility of the dual-use technology. Concurrent with this effort should be an examination of precedents established by other technologies in other industrial settings. Advances in human factors and systems engineering are critical to reduce risk in any workplace and to enhance industrial competitiveness.

  2. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2005-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  3. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2006-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  4. External validity of a hierarchical dimensional model of child and adolescent psychopathology: Tests using confirmatory factor analyses and multivariate behavior genetic analyses.

    PubMed

    Waldman, Irwin D; Poore, Holly E; van Hulle, Carol; Rathouz, Paul J; Lahey, Benjamin B

    2016-11-01

    Several recent studies of the hierarchical phenotypic structure of psychopathology have identified a General psychopathology factor in addition to the more expected specific Externalizing and Internalizing dimensions in both youth and adult samples and some have found relevant unique external correlates of this General factor. We used data from 1,568 twin pairs (599 MZ & 969 DZ) age 9 to 17 to test hypotheses for the underlying structure of youth psychopathology and the external validity of the higher-order factors. Psychopathology symptoms were assessed via structured interviews of caretakers and youth. We conducted phenotypic analyses of competing structural models using Confirmatory Factor Analysis and used Structural Equation Modeling and multivariate behavior genetic analyses to understand the etiology of the higher-order factors and their external validity. We found that both a General factor and specific Externalizing and Internalizing dimensions are necessary for characterizing youth psychopathology at both the phenotypic and etiologic levels, and that the 3 higher-order factors differed substantially in the magnitudes of their underlying genetic and environmental influences. Phenotypically, the specific Externalizing and Internalizing dimensions were slightly negatively correlated when a General factor was included, which reflected a significant inverse correlation between the nonshared environmental (but not genetic) influences on Internalizing and Externalizing. We estimated heritability of the general factor of psychopathology for the first time. Its moderate heritability suggests that it is not merely an artifact of measurement error but a valid construct. The General, Externalizing, and Internalizing factors differed in their relations with 3 external validity criteria: mother's smoking during pregnancy, parent's harsh discipline, and the youth's association with delinquent peers. Multivariate behavior genetic analyses supported the external validity

  5. SAE 2018-01-1412 Constructing Engine Maps - Presentation at the April 2018 World Congress

    EPA Pesticide Factsheets

    This presentation describes important factors and approach, along with the process for constructing complete engine maps using engine dynamometer and in-vehicle test data for use in ALPHA or any other full vehicle simulation which performs similar analyses

  6. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  7. Understanding safety and production risks in rail engineering planning and protection.

    PubMed

    Wilson, John R; Ryan, Brendan; Schock, Alex; Ferreira, Pedro; Smith, Stuart; Pitsopoulos, Julia

    2009-07-01

    Much of the published human factors work on risk is to do with safety and within this is concerned with prediction and analysis of human error and with human reliability assessment. Less has been published on human factors contributions to understanding and managing project, business, engineering and other forms of risk and still less jointly assessing risk to do with broad issues of 'safety' and broad issues of 'production' or 'performance'. This paper contains a general commentary on human factors and assessment of risk of various kinds, in the context of the aims of ergonomics and concerns about being too risk averse. The paper then describes a specific project, in rail engineering, where the notion of a human factors case has been employed to analyse engineering functions and related human factors issues. A human factors issues register for potential system disturbances has been developed, prior to a human factors risk assessment, which jointly covers safety and production (engineering delivery) concerns. The paper concludes with a commentary on the potential relevance of a resilience engineering perspective to understanding rail engineering systems risk. Design, planning and management of complex systems will increasingly have to address the issue of making trade-offs between safety and production, and ergonomics should be central to this. The paper addresses the relevant issues and does so in an under-published domain - rail systems engineering work.

  8. Transient Seepage Analyses in Levee Engineering Practice

    DTIC Science & Technology

    2016-07-01

    and contractors in conventional engineering practice has outpaced the development of guidance documents and design recommendations. The major...ERDC TR-16-8 99 B.5 Final solution The final solution is obtained by first solving for ht from Equation B.5 as follows: t t tssˆh h h  (B

  9. Summary of the analyses for recovery factors

    USGS Publications Warehouse

    Verma, Mahendra K.

    2017-07-17

    IntroductionIn order to determine the hydrocarbon potential of oil reservoirs within the U.S. sedimentary basins for which the carbon dioxide enhanced oil recovery (CO2-EOR) process has been considered suitable, the CO2 Prophet model was chosen by the U.S. Geological Survey (USGS) to be the primary source for estimating recovery-factor values for individual reservoirs. The choice was made because of the model’s reliability and the ease with which it can be used to assess a large number of reservoirs. The other two approaches—the empirical decline curve analysis (DCA) method and a review of published literature on CO2-EOR projects—were deployed to verify the results of the CO2 Prophet model. This chapter discusses the results from CO2 Prophet (chapter B, by Emil D. Attanasi, this report) and compares them with results from decline curve analysis (chapter C, by Hossein Jahediesfanjani) and those reported in the literature for selected reservoirs with adequate data for analyses (chapter D, by Ricardo A. Olea).To estimate the technically recoverable hydrocarbon potential for oil reservoirs where CO2-EOR has been applied, two of the three approaches—CO2 Prophet modeling and DCA—do not include analysis of economic factors, while the third approach—review of published literature—implicitly includes economics. For selected reservoirs, DCA has provided estimates of the technically recoverable hydrocarbon volumes, which, in combination with calculated amounts of original oil in place (OOIP), helped establish incremental CO2-EOR recovery factors for individual reservoirs.The review of published technical papers and reports has provided substantial information on recovery factors for 70 CO2-EOR projects that are either commercially profitable or classified as pilot tests. When comparing the results, it is important to bear in mind the differences and limitations of these three approaches.

  10. Job Hazard Analyses for Musculoskeletal Disorder Risk Factors in Pressing Operations of Dry-cleaning Establishments.

    PubMed

    Park, Jung-Keun

    2016-12-01

    Job hazard analyses were conducted to assess exposure to musculoskeletal disorder (MSD) risk factors in seven workers of three dry-cleaning establishments. In accordance with the Washington State Ergonomics Rule, the analyses were performed in two separate steps: (1) observation and checklist approaches were made to identify a "caution zone job" in the seven workers' pressing operations across the three shops; and (2) detailed posture and motion analyses were undertaken to determine a "MSD hazard" in one worker's operation using a video technique. One "caution zone job" was identified and it was the pressing operation job in which five physical risk factors were found in the pressing operations. The detailed analyses confirmed that one "MSD hazard", i.e., awkward posture in shoulders, was prevalent in the pressing operations of the three dry-cleaning facilities. It would be desirable to reduce MSD risk factors including awkward shoulder posture in the dry-cleaning industry.

  11. Complementary exploratory and confirmatory factor analyses of the French WISC-V: Analyses based on the standardization sample.

    PubMed

    Lecerf, Thierry; Canivez, Gary L

    2018-06-01

    Interpretation of the French Wechsler Intelligence Scale for Children-Fifth Edition (French WISC-V; Wechsler, 2016a) is based on a 5-factor model including Verbal Comprehension (VC), Visual Spatial (VS), Fluid Reasoning (FR), Working Memory (WM), and Processing Speed (PS). Evidence for the French WISC-V factorial structure was established exclusively through confirmatory factor analyses (CFAs). However, as recommended by Carroll (1995); Reise (2012), and Brown (2015), factorial structure should derive from both exploratory factor analysis (EFA) and CFA. The first goal of this study was to examine the factorial structure of the French WISC-V using EFA. The 15 French WISC-V primary and secondary subtest scaled scores intercorrelation matrix was used and factor extraction criteria suggested from 1 to 4 factors. To disentangle the contribution of first- and second-order factors, the Schmid and Leiman (1957) orthogonalization transformation (SLT) was applied. Overall, no EFA evidence for 5 factors was found. Results indicated that the g factor accounted for about 67% of the common variance and that the contributions of the first-order factors were weak (3.6 to 11.9%). CFA was used to test numerous alternative models. Results indicated that bifactor models produced better fit to these data than higher-order models. Consistent with previous studies, findings suggested dominance of the general intelligence factor and that users should thus emphasize the Full Scale IQ (FSIQ) when interpreting the French WISC-V. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. A systematic literature review of engineering identity: definitions, factors, and interventions affecting development, and means of measurement

    NASA Astrophysics Data System (ADS)

    Morelock, John R.

    2017-11-01

    Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity development, (c) interventions affecting engineering identity development, and (d) means of measuring identity. In doing so, this review provides strategies for future research and educational interventions to advance work related to engineering identity. Publications were selected for inclusion by screening and appraising results obtained from databases and keywords refined through a scoping study. Derived from key findings, suggestions for future research include bridging disparate strands of engineering identity literature and incorporating more varied methodological approaches. Also from key findings, suggestions for future practice involve better connecting existing definitions of engineering identity and factors known to affect identity development with identity-related interventions.

  13. Human Factors Engineering. Part 2. HEDGE (Human Factors Engineering Data Guide for Evaluation)

    DTIC Science & Technology

    1983-11-30

    Use.Condit ions 0 7ý est Item ComoentsTask Categories EPurposes 2 ;c . INDEX TO THE INDEX MAN/ITEM TASK SHEET DETAILED DESIGN CONSIDERATION The purpose of...The use of these materials, in addition to standard Task and Design Checklists and Questionnaires, will enable you to tailor your FIFE subtest to a...specific Con item. The These materials have been prepared especially for you: I. They are intended to support test engineers not design engineers. 2

  14. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    PubMed

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  15. Software For Three-Dimensional Stress And Thermal Analyses

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Wilson, R. B.; Hopkins, D. A.

    1994-01-01

    BEST3D is advanced engineering software system for three-dimensional thermal and stress analyses, particularly of components of hot sections of gas-turbine engines. Utilizes boundary element method, offering, in many situations, more accuracy, efficiency, and ease of use than finite element method. Performs engineering analyses of following types: elastic, heat transfer, plastic, forced vibration, free vibration, and transient elastodynamic. Written in FORTRAN 77.

  16. Predictors of obesity in Michigan Operating Engineers.

    PubMed

    Duffy, Sonia A; Cohen, Kathleen A; Choi, Seung Hee; McCullagh, Marjorie C; Noonan, Devon

    2012-06-01

    Blue collar workers are at risk for obesity. Little is known about obesity in Operating Engineers, a group of blue collar workers, who operate heavy earth-moving equipment in road building and construction. Therefore, 498 Operating Engineers in Michigan were recruited to participate in a cross-sectional survey to determine variables related to obesity in this group. Bivariate and multivariate analyses were conducted to determine personal, psychological, and behavioral factors predicting obesity. Approximately 45% of the Operating Engineers screened positive for obesity, and another 40% were overweight. Multivariate analysis revealed that younger age, male sex, higher numbers of self-reported co-morbidities, not smoking, and low physical activity levels were significantly associated with obesity among Operating Engineers. Operating Engineers are significantly at risk for obesity, and workplace interventions are needed to address this problem.

  17. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGES

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  18. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  19. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  20. Teacher Reporting Attitudes Scale (TRAS): confirmatory and exploratory factor analyses with a Malaysian sample.

    PubMed

    Choo, Wan Yuen; Walsh, Kerryann; Chinna, Karuthan; Tey, Nai Peng

    2013-01-01

    The Teacher Reporting Attitude Scale (TRAS) is a newly developed tool to assess teachers' attitudes toward reporting child abuse and neglect. This article reports on an investigation of the factor structure and psychometric properties of the short form Malay version of the TRAS. A self-report cross-sectional survey was conducted with 667 teachers in 14 randomly selected schools in Selangor state, Malaysia. Analyses were conducted in a 3-stage process using both confirmatory (stages 1 and 3) and exploratory factor analyses (stage 2) to test, modify, and confirm the underlying factor structure of the TRAS in a non-Western teacher sample. Confirmatory factor analysis did not support a 3-factor model previously reported in the original TRAS study. Exploratory factor analysis revealed an 8-item, 4-factor structure. Further confirmatory factor analysis demonstrated appropriateness of the 4-factor structure. Reliability estimates for the four factors-commitment, value, concern, and confidence-were moderate. The modified short form TRAS (Malay version) has potential to be used as a simple tool for relatively quick assessment of teachers' attitudes toward reporting child abuse and neglect. Cross-cultural differences in attitudes toward reporting may exist and the transferability of newly developed instruments to other populations should be evaluated.

  1. A Systematic Literature Review of Engineering Identity: Definitions, Factors, and Interventions Affecting Development, and Means of Measurement

    ERIC Educational Resources Information Center

    Morelock, John R.

    2017-01-01

    Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity…

  2. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis.

    PubMed

    Sinha Roy, Rituparna; Soni, Shivani; Harfouche, Rania; Vasudevan, Pooja R; Holmes, Oliver; de Jonge, Hugo; Rowe, Arthur; Paraskar, Abhimanyu; Hentschel, Dirk M; Chirgadze, Dimitri; Blundell, Tom L; Gherardi, Ermanno; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2010-08-03

    Therapeutic angiogenesis is an emerging paradigm for the management of ischemic pathologies. Proangiogenic Therapy is limited, however, by the current inability to deliver angiogenic factors in a sustained manner at the site of pathology. In this study, we investigated a unique nonglycosylated active fragment of hepatocyte growth factor/scatter factor, 1K1, which acts as a potent angiogenic agent in vitro and in a zebrafish embryo and a murine matrigel implant model. Furthermore, we demonstrate that nanoformulating 1K1 for sustained release temporally alters downstream signaling through the mitogen activated protein kinase pathway, and amplifies the angiogenic outcome. Merging protein engineering and nanotechnology offers exciting possibilities for the treatment of ischemic disease, and furthermore allows the selective targeting of downstream signaling pathways, which translates into discrete phenotypes.

  3. Engineering Margin Factors Used in the Design of the VVER Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Lizorkin, M. P.; Shishkov, L. K.

    2017-12-01

    The article describes methods for determination of the engineering margin factors currently used to estimate the uncertainties of the VVER reactor design parameters calculated via the KASKAD software package developed at the National Research Center Kurchatov Institute. These margin factors ensure the meeting of the operating (design) limits and a number of other restrictions under normal operating conditions.

  4. Human Modeling for Ground Processing Human Factors Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  5. Recurrence plot for parameters analysing of internal combustion engine

    NASA Astrophysics Data System (ADS)

    Alexa, O.; Ilie, C. O.; Marinescu, M.; Vilau, R.; Grosu, D.

    2015-11-01

    In many technical disciplines modem data analysis techniques has been successfully applied to understand the complexity of the system. The growing volume of theoretical knowledge about systems dynamic's offered researchers the opportunity to look for non-linear dynamics in data whose evolution linear models are unable to explain in a satisfactory manner. One approach in this respect is Recurrence Analysis - RA which is a graphical method designed to locate hidden recurring patterns, nonstationarity and structural changes. RA approach arose in natural sciences like physics and biology but quickly was adopted in economics and engineering. Meanwhile. The fast development of computer resources has provided powerful tools to perform this new and complex model. One free software which was used to perform our analysis is Visual Recurrence Analysis - VRA developed by Eugene Kononov. As is presented in this paper, the recurrence plot investigation for the analyzing of the internal combustion engine shows some of the RPA capabilities in this domain. We chose two specific engine parameters measured in two different tests to perform the RPA. These parameters are injection impulse width and engine angular speed and the tests are I11n and I51n. There were computed graphs for each of them. Graphs were analyzed and compared to obtain a conclusion. This work is an incipient research, being one of the first attempts of using recurrence plot for analyzing automotive dynamics. It opens a wide field of action for future research programs.

  6. Engineering analysis of shortfall for new technologies. Analysis memorandum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-03-11

    The engineering principles that govern the mpg performance of alternative technologies on the EPA test procedure and under in-use conditions are examined. The results can be used to interpret the shortfall of alternative technologies derived from statistical analyses. The analysis examines each of the four technologies in comparison to the conventional technology counterpart. Manual transmissions are compared to automatics, fuel injected S.I. engines to carburetted S.I. engines, front-wheel drive vehicles to rear-wheel drive vehicles and diesel engines to carburetted S.I. engines. The changes in shortfall of the four technologies in comparison to conventional technologies are explained through differences in responsesmore » to the factors.« less

  7. 2014 Space Human Factors Engineering Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    The 2014 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Human Factors and Habitability (SHFH) Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 17, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated research plans for the Risk of Incompatible Vehicle/Habitat Design (HAB Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP also received a status update on the Risk of Inadequate Critical Task Design (Task Risk), the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), and the Risk of Inadequate Human-Computer Interaction (HCI Risk).

  8. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  9. Study of the various factors influencing deposit formation and operation of gasoline engine injection systems

    NASA Astrophysics Data System (ADS)

    Stepien, Z.

    2016-09-01

    Generally, ethanol fuel emits less pollutants than gasoline, it is completely renewable product and has the potential to reduce greenhouse gases emission but, at the same time can present a multitude of technical challenges to engine operation conditions including creation of very adverse engine deposits. These deposits increasing fuel consumption and cause higher exhaust emissions as well as poor performance in drivability. This paper describes results of research and determination the various factors influencing injector deposits build-up of ethanol-gasoline blends operated engine. The relationship between ethanol-gasoline fuel blends composition, their treatment, engine construction as well as its operation conditions and fuel injectors deposit formation has been investigated. Simulation studies of the deposit formation endanger proper functioning of fuel injection system were carried out at dynamometer engine testing. As a result various, important factors influencing the deposit creation process and speed formation were determined. The ability to control of injector deposits by multifunctional detergent-dispersant additives package fit for ethanol-gasoline blends requirements was also investigated.

  10. Professional Socialization of Electrical Engineers in University Education

    ERIC Educational Resources Information Center

    Keltikangas, Kirsti; Martinsuo, Miia

    2009-01-01

    University educators constantly seek ways in which courses and curricula would promote students' professional development in line with the needs of industries. The purpose of this study was to develop a framework for analysing professional socialization particularly in the context of electrical engineering education and explore factors associated…

  11. Assessment of factors impacting success for incoming college engineering students in a summer bridge program

    NASA Astrophysics Data System (ADS)

    Reisel, John R.; Jablonski, Marissa; Hosseini, Hossein; Munson, Ethan

    2012-06-01

    A summer bridge program for incoming engineering and computer science freshmen has been used at the University of Wisconsin-Milwaukee from 2007 to 2010. The primary purpose of this program has been to improve the mathematics course placement for incoming students who initially place into a course below Calculus I on the math placement examination. The students retake the university's math placement examination after completing the bridge program to determine if they then place into a higher-level mathematics course. If the students improve their math placement, the program is considered successful for that student. The math portion of the bridge program is designed around using the ALEKS software package for targeted, self-guided learning. In the 2007 and 2008 versions of the program, both an on-line version and an on-campus version with additional instruction were offered. In 2009 and 2010, the program was exclusively in an on-campus format, and also featured a required residential component and additional engineering activities for the students. From the results of these four programs, we are able to evaluate the success of the program in its different formats. In addition, data has been collected and analysed regarding the impact of other factors on the program's success. The factors include student preparation before the beginning of the program (as measured by math ACT scores) and the amount of time the student spent working on the material during the program. Better math preparation and the amount of time spent on the program were found to be good indicators of success. Furthermore, the on-campus version of the program is more effective than the on-line version.

  12. Establishing a Numerical Modeling Framework for Hydrologic Engineering Analyses of Extreme Storm Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaodong; Hossain, Faisal; Leung, L. Ruby

    In this study a numerical modeling framework for simulating extreme storm events was established using the Weather Research and Forecasting (WRF) model. Such a framework is necessary for the derivation of engineering parameters such as probable maximum precipitation that are the cornerstone of large water management infrastructure design. Here this framework was built based on a heavy storm that occurred in Nashville (USA) in 2010, and verified using two other extreme storms. To achieve the optimal setup, several combinations of model resolutions, initial/boundary conditions (IC/BC), cloud microphysics and cumulus parameterization schemes were evaluated using multiple metrics of precipitation characteristics. Themore » evaluation suggests that WRF is most sensitive to IC/BC option. Simulation generally benefits from finer resolutions up to 5 km. At the 15km level, NCEP2 IC/BC produces better results, while NAM IC/BC performs best at the 5km level. Recommended model configuration from this study is: NAM or NCEP2 IC/BC (depending on data availability), 15km or 15km-5km nested grids, Morrison microphysics and Kain-Fritsch cumulus schemes. Validation of the optimal framework suggests that these options are good starting choices for modeling extreme events similar to the test cases. This optimal framework is proposed in response to emerging engineering demands of extreme storm events forecasting and analyses for design, operations and risk assessment of large water infrastructures.« less

  13. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    NASA Astrophysics Data System (ADS)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  14. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments.

    PubMed

    Hagerty, Paul; Lee, Ann; Calve, Sarah; Lee, Cassandra A; Vidal, Martin; Baar, Keith

    2012-09-01

    Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. The Influence of Aspirations on Higher Education Choice: A Telecommunication Engineering Perspective

    ERIC Educational Resources Information Center

    Cubillo-Pinilla, Jose Maria; Sanchez-Herrera, Joaquin; Perez-Aguir, Waldo S.

    2006-01-01

    This paper analyses the influence of external factors that affect the decision-making process in the selection of telecommunications engineering studies. Particularly, we have studied the influence of factors related to the generation of expectations about the studies. A survey was conducted on a sample of 701 male and female telecommunications…

  16. A comparison of educational factors promoting or discouraging the intent to remain in engineering by gender

    NASA Astrophysics Data System (ADS)

    Amelink, Catherine T.; Meszaros, Peggy S.

    2011-03-01

    This study seeks to examine key extrinsic and intrinsic factors that encourage or discourage persistence in attaining an engineering degree and pursuing an engineering-related career among both male and female undergraduates. Quantitative and qualitative findings from nine participating undergraduate degree programmes reveal that career expectations formulated through educational experiences as undergraduates play a key role in motivating students. Among females, faculty interaction in the classroom, such as feedback received and the degree to which the faculty treat them with respect, is an important encouraging factor. For both males and females, discouraging elements of the undergraduate experience include the amount of time for coursework, competition in engineering classes and grades. The findings have several practical implications that faculty and administrators can employ in shaping the undergraduate experience to encourage short- and long-term interest in engineering among both male and female students.

  17. Probabilistic simulation of the human factor in structural reliability

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Chamis, Christos C.

    1991-01-01

    Many structural failures have occasionally been attributed to human factors in engineering design, analyses maintenance, and fabrication processes. Every facet of the engineering process is heavily governed by human factors and the degree of uncertainty associated with them. Factors such as societal, physical, professional, psychological, and many others introduce uncertainties that significantly influence the reliability of human performance. Quantifying human factors and associated uncertainties in structural reliability require: (1) identification of the fundamental factors that influence human performance, and (2) models to describe the interaction of these factors. An approach is being developed to quantify the uncertainties associated with the human performance. This approach consists of a multi factor model in conjunction with direct Monte-Carlo simulation.

  18. Analyses of factors of crash avoidance maneuvers using the general estimates system.

    PubMed

    Yan, Xuedong; Harb, Rami; Radwan, Essam

    2008-06-01

    Taking an effective corrective action to a critical traffic situation provides drivers an opportunity to avoid crash occurrence and minimize crash severity. The objective of this study is to investigate the relationship between the probability of taking corrective actions and the characteristics of drivers, vehicles, and driving environments. Using the 2004 GES crash database, this study classified drivers who encountered critical traffic events (identified as P_CRASH3 in the GES database) into two pre-crash groups: corrective avoidance actions group and no corrective avoidance actions group. Single and multiple logistic regression analyses were performed to identify potential traffic factors associated with the probability of drivers taking corrective actions. The regression results showed that the driver/vehicle factors associated with the probability of taking corrective actions include: driver age, gender, alcohol use, drug use, physical impairments, distraction, sight obstruction, and vehicle type. In particular, older drivers, female drivers, drug/alcohol use, physical impairment, distraction, or poor visibility may increase the probability of failing to attempt to avoid crashes. Moreover, drivers of larger size vehicles are 42.5% more likely to take corrective avoidance actions than passenger car drivers. On the other hand, the significant environmental factors correlated with the drivers' crash avoidance maneuver include: highway type, number of lanes, divided/undivided highway, speed limit, highway alignment, highway profile, weather condition, and surface condition. Some adverse highway environmental factors, such as horizontal curves, vertical curves, worse weather conditions, and slippery road surface conditions are correlated with a higher probability of crash avoidance maneuvers. These results may seem counterintuitive but they can be explained by the fact that motorists may be more likely to drive cautiously in those adverse driving environments. The

  19. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  20. Pertinent Factors that Affect the Representation of Women and Minorities in Scientific, Engineering, and Technical Careers

    DTIC Science & Technology

    1990-07-01

    Upon the Supply of Minority and Women Scientists, Engineers , and Technologists (SETs) for Defense Industries and Installations." The purpose of the...the causes of the underrepresentation of minorities and women in scientific, engineering , and technolog- ical (SET) careers, and to establish a...DT ?copy- ARI Research Note 90-80 AD-A231 827 Pertinent Factors that Affect the Representation of Women and Minorities in Scientific, Engineering

  1. Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate.

    PubMed

    Shimadera, Hikari; Hayami, Hiroshi; Chatani, Satoru; Morino, Yu; Mori, Yasuaki; Morikawa, Tazuko; Yamaji, Kazuyo; Ohara, Toshimasa

    2014-04-01

    Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO4(2-)), nitrate (NO3(-)) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO4(2-) concentration, but clearly overestimated PM2.5 NO3(-) concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3(-) concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3(-). The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.

  2. Adaptation of abbreviated mathematics anxiety rating scale for engineering students

    NASA Astrophysics Data System (ADS)

    Nordin, Sayed Kushairi Sayed; Samat, Khairul Fadzli; Sultan, Al Amin Mohamed; Halim, Bushra Abdul; Ismail, Siti Fatimah; Mafazi, Nurul Wirdah

    2015-05-01

    Mathematics is an essential and fundamental tool used by engineers to analyse and solve problems in their field. Due to this, most engineering education programs involve a concentration of study in mathematics courses whereby engineering students have to take mathematics courses such as numerical methods, differential equations and calculus in the first two years and continue to do so until the completion of the sequence. However, the students struggled and had difficulties in learning courses that require mathematical abilities. Hence, this study presents the factors that caused mathematics anxiety among engineering students using Abbreviated Mathematics Anxiety Rating Scale (AMARS) through 95 students of Universiti Teknikal Malaysia Melaka (UTeM). From 25 items in AMARS, principal component analysis (PCA) suggested that there are four mathematics anxiety factors, namely experiences of learning mathematics, cognitive skills, mathematics evaluation anxiety and students' perception on mathematics. Minitab 16 software was used to analyse the nonparametric statistics. Kruskal-Wallis Test indicated that there is a significant difference in the experience of learning mathematics and mathematics evaluation anxiety among races. The Chi-Square Test of Independence revealed that the experience of learning mathematics, cognitive skills and mathematics evaluation anxiety depend on the results of their SPM additional mathematics. Based on this study, it is recommended to address the anxiety problems among engineering students at the early stage of studying in the university. Thus, lecturers should play their part by ensuring a positive classroom environment which encourages students to study mathematics without fear.

  3. The influence of environmental factors on bone tissue engineering.

    PubMed

    Szpalski, Caroline; Sagebin, Fabio; Barbaro, Marissa; Warren, Stephen M

    2013-05-01

    Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  4. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  5. Procurement engineering - the productivity factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargerstock, S.B.

    1993-01-01

    The industry is several years on the road to implementation of the Nuclear Management and Resources Council (NUMARC) initiatives on commercial-grade item dedication and procurement. Utilities have taken several approaches to involve engineering in the procurement process. A common result for the approaches is the additional operations and maintenance (O M) cost imposed by the added resource requirements. Procurement engineering productivity is a key element in controlling this business area. Experience shows that 400 to 500% improvements in productivity are possible with a 2-yr period. Improving the productivity of the procurement engineering function is important in today's competitive utility environment.more » Procurement engineering typically involves four distinct technical evaluation responsibilities along with several administrative areas. Technical evaluations include the functionally based safety classification of replacement components and parts (lacking a master parts list), the determination of dedication requirements for safety-related commercial-grade items, the preparation of a procurement specification to maintain the licensed design bases, and the equivalency evaluation of alternate items not requiring the design-change process. Administrative duties include obtaining technical review of vendor-supplied documentation, identifying obsolete parts and components, resolving material nonconformances, initiating the design-change process for replacement items (as needed), and providing technical support to O M. Although most utilities may not perform or require all the noted activities, a large percentage will apply to each utility station.« less

  6. An Illumination Modeling System for Human Factors Analyses

    NASA Technical Reports Server (NTRS)

    Huynh, Thong; Maida, James C.; Bond, Robert L. (Technical Monitor)

    2002-01-01

    Seeing is critical to human performance. Lighting is critical for seeing. Therefore, lighting is critical to human performance. This is common sense, and here on earth, it is easily taken for granted. However, on orbit, because the sun will rise or set every 45 minutes on average, humans working in space must cope with extremely dynamic lighting conditions. Contrast conditions of harsh shadowing and glare is also severe. The prediction of lighting conditions for critical operations is essential. Crew training can factor lighting into the lesson plans when necessary. Mission planners can determine whether low-light video cameras are required or whether additional luminaires need to be flown. The optimization of the quantity and quality of light is needed because of the effects on crew safety, on electrical power and on equipment maintainability. To address all of these issues, an illumination modeling system has been developed by the Graphics Research and Analyses Facility (GRAF) and Lighting Environment Test Facility (LETF) in the Space Human Factors Laboratory at NASA Johnson Space Center. The system uses physically based ray tracing software (Radiance) developed at Lawrence Berkeley Laboratories, a human factors oriented geometric modeling system (PLAID) and an extensive database of humans and environments. Material reflectivity properties of major surfaces and critical surfaces are measured using a gonio-reflectometer. Luminaires (lights) are measured for beam spread distribution, color and intensity. Video camera performances are measured for color and light sensitivity. 3D geometric models of humans and the environment are combined with the material and light models to form a system capable of predicting lighting conditions and visibility conditions in space.

  7. Space Human Factors Engineering Gap Analysis Project Final Report

    NASA Technical Reports Server (NTRS)

    Hudy, Cynthia; Woolford, Barbara

    2006-01-01

    Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.

  8. Higher and Lower Order Factor Analyses of the Temperament in Middle Childhood Questionnaire.

    PubMed

    Kotelnikova, Yuliya; Olino, Thomas M; Klein, Daniel N; Mackrell, Sarah V M; Hayden, Elizabeth P

    2017-12-01

    The Temperament in Middle Childhood Questionnaire (TMCQ) is a widely used parent-report measure of temperament. However, neither its lower nor higher order structures has been tested via a bottom-up, empirically based approach. We conducted higher and lower order exploratory factor analyses (EFAs) of the TMCQ in a large ( N = 654) sample of 9-year-olds. Item-level EFAs identified 92 items as suitable (i.e., with loadings ≥.40) for constructing lower order factors, only half of which resembled a TMCQ scale posited by the measure's authors. Higher order EFAs of the lower order factors showed that a three-factor structure (Impulsivity/Negative Affectivity, Negative Affectivity, and Openness/Assertiveness) was the only admissible solution. Overall, many TMCQ items did not load well onto a lower order factor. In addition, only three factors, which did not show a clear resemblance to Rothbart's four-factor model of temperament in middle childhood, were needed to account for the higher order structure of the TMCQ.

  9. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    PubMed

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  10. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor parts that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, and with plasma, atomic absorption, and emission spectrometers to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations (2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure. Previously announced in STAR as N83-12433

  11. ENGINEERING AND ECONOMIC FACTORS AFFECTING THE INSTALLATION OF CONTROL TECHNOLOGIES FOR MULTIPOLLUTANT STRATEGIES

    EPA Science Inventory

    The report evaluates the engineering and economic factors associated with installing air pollution control technologies to meet the requirements of strategies to control sulfur dioxide (SO2), oxides of nitrogen (NOX), and mercury under the Clear Skies Act multipollutant control s...

  12. The European Engineer: A British Civil Engineering Viewpoint.

    ERIC Educational Resources Information Center

    Fleming, George

    1988-01-01

    Confronts the problems of defining the European Engineer in terms of educational and practical training. Analyzes the supply and demand requirements of engineering management and practice. Compares these analyses with conditions in the United States. Gives details of the educational process in a number of European countries. (CW)

  13. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    NASA Astrophysics Data System (ADS)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  14. Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities.

    PubMed

    Zeng, Xianglong; Guo, Hairun; Zhou, Binbin; Bache, Morten

    2012-11-19

    We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression with a low effective order is realized, and high-quality few-cycle pulses with large compression factors are feasible. Each subsequent section is designed so that the compressed pulse exiting the previous section experiences an overall effective self-defocusing cubic nonlinearity corresponding to a modest soliton order, which is kept larger than unity to ensure further compression. This is done by increasing the cascaded quadratic nonlinearity in the new section with an engineered reduced residual phase mismatch. The low soliton orders in each section ensure excellent pulse quality and high efficiency. Numerical results show that compressed pulses with less than three-cycle duration can be achieved even when the compression factor is very large, and in contrast to standard soliton compression, these compressed pulses have minimal pedestal and high quality factor.

  15. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  16. Educating the engineers of 2020: An outcomes-based typology of engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Knight, David B.

    Members of government and industry have called for greater emphasis within U.S. colleges and universities on producing engineers who can enter and advance a more competitive, globally connected workforce. Looking toward this future, engineers will need to exhibit strong analytical skills as in the past, but they also will need to be proficient in a cadre of new abilities to compete. This study examines, in combination, an array of knowledge and skills aligned with the National Academy of Engineering's "engineer of 2020." The study has two major goals. The first is to develop a typology of engineering students based on the learning outcomes associated with the engineer of E2020. The second is to understand the educational experiences that distinguish these groups of students who resemble, more or less, the engineer of 2020. This approach acknowledges that engineering graduates need a complex skill set to succeed in the new global economy; it is the combination of skills associated with the engineer of 2020, not the individual skills in isolation, which will ensure graduates can respond to workforce needs of the future. To date, research on student outcomes has studied learning outcomes independent of one another rather than investigating student learning holistically. The study uses student data from the Prototype to production: Processes and conditions for preparing the Engineer of 2020 study, sponsored by the National Science Foundation (NSF EEC-0550608). Engineering students from a nationally representative sample of engineering programs in the United States answered a survey that collected information on their pre-college academic preparation and sociodemographic characteristics, their curricular and co-curricular experiences in their engineering programs, and their self-ratings of their engineering-related competencies. Only data on engineering students in their senior year (n=2,422) were utilized in analyses. Analyses were conducted in multiple phases for each

  17. Two-vehicle injury severity models based on integration of pavement management and traffic engineering factors.

    PubMed

    Jiang, Ximiao; Huang, Baoshan; Yan, Xuedong; Zaretzki, Russell L; Richards, Stephen

    2013-01-01

    The severity of traffic-related injuries has been studied by many researchers in recent decades. However, the evaluation of many factors is still in dispute and, until this point, few studies have taken into account pavement management factors as points of interest. The objective of this article is to evaluate the combined influences of pavement management factors and traditional traffic engineering factors on the injury severity of 2-vehicle crashes. This study examines 2-vehicle rear-end, sideswipe, and angle collisions that occurred on Tennessee state routes from 2004 to 2008. Both the traditional ordered probit (OP) model and Bayesian ordered probit (BOP) model with weak informative prior were fitted for each collision type. The performances of these models were evaluated based on the parameter estimates and deviances. The results indicated that pavement management factors played identical roles in all 3 collision types. Pavement serviceability produces significant positive effects on the severity of injuries. The pavement distress index (PDI), rutting depth (RD), and rutting depth difference between right and left wheels (RD_df) were not significant in any of these 3 collision types. The effects of traffic engineering factors varied across collision types, except that a few were consistently significant in all 3 collision types, such as annual average daily traffic (AADT), rural-urban location, speed limit, peaking hour, and light condition. The findings of this study indicated that improved pavement quality does not necessarily lessen the severity of injuries when a 2-vehicle crash occurs. The effects of traffic engineering factors are not universal but vary by the type of crash. The study also found that the BOP model with a weak informative prior can be used as an alternative but was not superior to the traditional OP model in terms of overall performance.

  18. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Singh, B.

    1986-01-01

    Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

  19. TEMPLE: analysing population genetic variation at transcription factor binding sites.

    PubMed

    Litovchenko, Maria; Laurent, Stefan

    2016-11-01

    Genetic variation occurring at the level of regulatory sequences can affect phenotypes and fitness in natural populations. This variation can be analysed in a population genetic framework to study how genetic drift and selection affect the evolution of these functional elements. However, doing this requires a good understanding of the location and nature of regulatory regions and has long been a major hurdle. The current proliferation of genomewide profiling experiments of transcription factor occupancies greatly improves our ability to identify genomic regions involved in specific DNA-protein interactions. Although software exists for predicting transcription factor binding sites (TFBS), and the effects of genetic variants on TFBS specificity, there are no tools currently available for inferring this information jointly with the genetic variation at TFBS in natural populations. We developed the software Transcription Elements Mapping at the Population LEvel (TEMPLE), which predicts TFBS, evaluates the effects of genetic variants on TFBS specificity and summarizes the genetic variation occurring at TFBS in intraspecific sequence alignments. We demonstrate that TEMPLE's TFBS prediction algorithms gives identical results to PATSER, a software distribution commonly used in the field. We also illustrate the unique features of TEMPLE by analysing TFBS diversity for the TF Senseless (SENS) in one ancestral and one cosmopolitan population of the fruit fly Drosophila melanogaster. TEMPLE can be used to localize TFBS that are characterized by strong genetic differentiation across natural populations. This will be particularly useful for studies aiming to identify adaptive mutations. TEMPLE is a java-based cross-platform software that easily maps the genetic diversity at predicted TFBSs using a graphical interface, or from the Unix command line. © 2016 John Wiley & Sons Ltd.

  20. Design engineer perceptions and attitudes regarding human factors application to nuclear power plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, R.; Jones, J. M.

    2006-07-01

    With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE inmore » NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)« less

  1. Factors that facilitate or inhibit interest of domestic students in the engineering PhD: A mixed methods study

    NASA Astrophysics Data System (ADS)

    Howell Smith, Michelle C.

    Given the increasing complexity of technology in our society, the United States has a growing demand for a more highly educated technical workforce. Unfortunately, the proportion of United States citizens earning a PhD in engineering has been declining and there is concern about meeting the economic, national security and quality of life needs of our country. This mixed methods sequential exploratory instrument design study identified factors that facilitate or inhibit interest in engineering PhD programs among domestic engineering undergraduate students in the United States. This study developed a testable theory for how domestic students become interested in engineering PhD programs and a measure of that process, the Exploring Engineering Interest Inventory (EEII). The study was conducted in four phases. The first phase of the study was a qualitative grounded theory exploration of interest in the engineering PhD. Qualitative data were collected from domestic engineering students, engineering faculty and industry professional who had earned a PhD in engineering. The second phase, instrument development, developed the Exploring Engineering Interest Inventory (EEII), a measurement instrument designed with good psychometric properties to test a series of preliminary hypotheses related to the theory generated in the qualitative phase. In the third phase of the study, the EEII was used to collect data from a larger sample of junior and senior engineering majors. The fourth phase integrated the findings from the qualitative and quantitative phases. Four factors were identified as being significant influences of interest in the engineering PhD: Personal characteristics, educational environment, misperceptions of the economic and personal costs, and misperceptions of engineering work. Recommendations include increasing faculty encouragement of students to pursue an engineering PhD and programming to correct the misperceptions of the costs of the engineering PhD and the

  2. Higher- and Lower-Order Factor Analyses of the Temperament in Middle Childhood Questionnaire

    PubMed Central

    Kotelnikova, Yuliya; Olino, Thomas M.; Klein, Daniel N.; Mackrell, Sarah V.M.; Hayden, Elizabeth P.

    2017-01-01

    The Temperament in Middle Childhood Questionnaire (TMCQ; Simonds & Rothbart, 2004) is a widely used parent-report measure of temperament. However, neither its lower- nor higher-order structures have been tested via a bottom-up, empirically based approach. We conducted higher- and lower-order exploratory factor analyses (EFAs) of the TMCQ in a large (N = 654) sample of 9-year-olds. Item-level EFAs identified 92 items as suitable (i.e., with loadings ≥.40) for constructing lower-order factors, only half of which resembled a TMCQ scale posited by the measure’s authors. Higher-order EFAs of the lower-order factors showed that a three-factor structure (Impulsivity/Negative Affectivity, Negative Affectivity, and Openness/Assertiveness) was the only admissible solution. Overall, many TMCQ items did not load well onto a lower-order factor. In addition, only three factors, which did not show a clear resemblance to Rothbart’s four-factor model of temperament in middle childhood, were needed to account for the higher-order structure of the TMCQ. PMID:27002124

  3. Factor analyses of an Adult Epilepsy Self-Management Measurement Instrument (AESMMI).

    PubMed

    Escoffery, Cam; Bamps, Yvan; LaFrance, W Curt; Stoll, Shelley; Shegog, Ross; Buelow, Janice; Shafer, Patricia; Thompson, Nancy J; McGee, Robin E; Hatfield, Katherine

    2015-09-01

    The purpose of this study was to test the psychometric properties of an enhanced Adult Epilepsy Self-Management Measurement Instrument (AESMMI). An instrument of 113 items, covering 10 a priori self-management domains, was generated through a multiphase process, based on a review of the literature, validated epilepsy and other chronic condition self-management scales and expert input. Reliability and exploratory factor analyses were conducted on data collected from 422 adults with epilepsy. The instrument was reduced to 65 items, converging on 11 factors: Health-care Communication, Coping, Treatment Management, Seizure Tracking, Social Support, Seizure Response, Wellness, Medication Adherence, Safety, Stress Management, and Proactivity. Exploratory factors supported the construct validity for 6 a priori domains, albeit with significant changes in the retained items or in their scope and 3 new factors. One a priori domain was split in 2 subscales pertaining to treatment. The configuration of the 11 factors provides additional insight into epilepsy self-management behaviors. Internal consistency reliability of the 65-item instrument was high (α=.935). Correlations with independent measures of health status, quality of life, depression, seizure severity, and life impact of epilepsy further validated the instrument. This instrument shows potential for use in research and clinical settings and for assessing intervention outcomes and self-management behaviors in adults with epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Factors Related to Successful Engineering Team Design

    NASA Technical Reports Server (NTRS)

    Nowaczyk, Ronald H.; Zang, Thomas A.

    1998-01-01

    The perceptions of a sample of 49 engineers and scientists from NASA Langley Research Center toward engineering design teams were evaluated. The respondents rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. Successful engineering teams may find their greatest challenges occurring during the early stages of their existence. In contrast to the prototypical business team, members on an engineering design share expertise and knowledge which allows them to deal with task issues sooner. However, discipline differences among team members can lead to conflicts regarding the best method or approach to solving the engineering problem.

  5. * Central Growth Factor Loaded Depots in Bone Tissue Engineering Scaffolds for Enhanced Cell Attraction.

    PubMed

    Quade, Mandy; Knaack, Sven; Akkineni, Ashwini Rahul; Gabrielyan, Anastasia; Lode, Anja; Rösen-Wolff, Angela; Gelinsky, Michael

    2017-08-01

    Tissue engineering, the application of stem and progenitor cells in combination with an engineered extracellular matrix, is a promising strategy for bone regeneration. However, its success is limited by the lack of vascularization after implantation. The concept of in situ tissue engineering envisages the recruitment of cells necessary for tissue regeneration from the host environment foregoing ex vivo cell seeding of the scaffold. In this study, we developed a novel scaffold system for enhanced cell attraction, which is based on biomimetic mineralized collagen scaffolds equipped with a central biopolymer depot loaded with chemotactic agents. In humid milieu, as after implantation, the signaling factors are expected to slowly diffuse out of the central depot forming a gradient that stimulates directed cell migration toward the scaffold center. Heparin, hyaluronic acid, and alginate have been shown to be capable of depot formation. By using vascular endothelial growth factor (VEGF) as model factor, it was demonstrated that the release kinetics can be adjusted by varying the depot composition. While alginate and hyaluronic acid are able to reduce the initial burst and prolong the release of VEGF, the addition of heparin led to a much stronger retention that resulted in an almost linear release over 28 days. The biological activity of released VEGF was proven for all variants using an endothelial cell proliferation assay. Furthermore, migration experiments with endothelial cells revealed a relationship between the degree of VEGF retention and migration distance: cells invaded deepest in scaffolds containing a heparin-based depot indicating that the formation of a steep gradient is crucial for cell attraction. In conclusion, this novel in situ tissue engineering approach, specifically designed to recruit and accommodate endogenous cells upon implantation, appeared highly promising to stimulate cell invasion, which in turn would promote vascularization and finally new

  6. Engineering tolerance to industrially relevant stress factors in yeast cell factories.

    PubMed

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M

    2017-06-01

    The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.

  7. Engineering tolerance to industrially relevant stress factors in yeast cell factories

    PubMed Central

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.

    2017-01-01

    Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408

  8. Investigation of the factor structure of the Wechsler Adult Intelligence Scale--Fourth Edition (WAIS-IV): exploratory and higher order factor analyses.

    PubMed

    Canivez, Gary L; Watkins, Marley W

    2010-12-01

    The present study examined the factor structure of the Wechsler Adult Intelligence Scale--Fourth Edition (WAIS-IV; D. Wechsler, 2008a) standardization sample using exploratory factor analysis, multiple factor extraction criteria, and higher order exploratory factor analysis (J. Schmid & J. M. Leiman, 1957) not included in the WAIS-IV Technical and Interpretation Manual (D. Wechsler, 2008b). Results indicated that the WAIS-IV subtests were properly associated with the theoretically proposed first-order factors, but all but one factor-extraction criterion recommended extraction of one or two factors. Hierarchical exploratory analyses with the Schmid and Leiman procedure found that the second-order g factor accounted for large portions of total and common variance, whereas the four first-order factors accounted for small portions of total and common variance. It was concluded that the WAIS-IV provides strong measurement of general intelligence, and clinical interpretation should be primarily at that level.

  9. Exploratory and Higher-Order Factor Analyses of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) Adolescent Subsample

    ERIC Educational Resources Information Center

    Canivez, Gary L.; Watkins, Marley W.

    2010-01-01

    The factor structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV; Wechsler, 2008a) with the adolescent participants (ages 16-19 years; N = 400) in the standardization sample was assessed using exploratory factor analysis, multiple factor extraction criteria, and higher-order exploratory factor analyses. Results from…

  10. Factors that Affect Operational Reliability of Turbojet Engines

    NASA Technical Reports Server (NTRS)

    1956-01-01

    The problem of improving operational reliability of turbojet engines is studied in a series of papers. Failure statistics for this engine are presented, the theory and experimental evidence on how engine failures occur are described, and the methods available for avoiding failure in operation are discussed. The individual papers of the series are Objectives, Failure Statistics, Foreign-Object Damage, Compressor Blades, Combustor Assembly, Nozzle Diaphrams, Turbine Buckets, Turbine Disks, Rolling Contact Bearings, Engine Fuel Controls, and Summary Discussion.

  11. Solar power satellites - Heat engine or solar cells

    NASA Technical Reports Server (NTRS)

    Oman, H.; Gregory, D. L.

    1978-01-01

    A solar power satellite is the energy-converting element of a system that can deliver some 10 GW of power to utilities on the earth's surface. We evaluated heat engines and solar cells for converting sunshine to electric power at the satellite. A potassium Rankine cycle was the best of the heat engines, and 50 microns thick single-crystal silicon cells were the best of the photovoltaic converters. Neither solar cells nor heat engines had a clear advantage when all factors were considered. The potassium-turbine power plant, however, was more difficult to assemble and required a more expensive orbital assembly base. We therefore based our cost analyses on solar-cell energy conversion, concluding that satellite-generated power could be delivered to utilities for around 4 to 5 cents a kWh.

  12. LEADER - An integrated engine behavior and design analyses based real-time fault diagnostic expert system for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    Gupta, U. K.; Ali, M.

    1989-01-01

    The LEADER expert system has been developed for automatic learning tasks encompassing real-time detection, identification, verification, and correction of anomalous propulsion system operations, using a set of sensors to monitor engine component performance to ascertain anomalies in engine dynamics and behavior. Two diagnostic approaches are embodied in LEADER's architecture: (1) learning and identifying engine behavior patterns to generate novel hypotheses about possible abnormalities, and (2) the direction of engine sensor data processing to perform resoning based on engine design and functional knowledge, as well as the principles of the relevant mechanics and physics.

  13. Motivational Factors of Professional Engineers and Non-Professional Engineers in Applying for License as Professional Engineer: A Comparative Study

    ERIC Educational Resources Information Center

    Khamis, Nor Kamaliana; Harun, Zambri; Tahir, Mohd Faizal Mat; Wahid, Zaliha; Sabri, Mohd Anas Mohd

    2013-01-01

    All engineering faculties in Malaysia are required to have at least three academics who have engineering competency for each program. Having an engineering competency means academics has obtained the compulsory endorsements from the Boards of Engineers, Malaysia, BEM. Upon approval, academics seeking such competency could carry the suffix Ir. to…

  14. An Assessment of Character and Leadership Development Latent Factor Structures through Confirmatory Factor, Item Response Theory, and Latent Class Analyses

    ERIC Educational Resources Information Center

    Higginbotham, David L.

    2013-01-01

    This study leveraged the complementary nature of confirmatory factor (CFA), item response theory (IRT), and latent class (LCA) analyses to strengthen the rigor and sophistication of evaluation of two new measures of the Air Force Academy's "leader of character" definition--the Character Mosaic Virtues (CMV) and the Leadership Mosaic…

  15. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.

    PubMed

    Font Tellado, Sonia; Balmayor, Elizabeth R; Van Griensven, Martijn

    2015-11-01

    Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Risk factors for implant failure: a retrospective study in an educational institution using GEE analyses.

    PubMed

    Borba, Marcelo; Deluiz, Daniel; Lourenço, Eduardo José Veras; Oliveira, Luciano; Tannure, Patrícia Nivoloni

    2017-08-21

    This study aimed to evaluate dental implant outcomes and to identify risk factors associated with implant failure over 12 years via dental records of patients attending an educational institution. Dental records of 202 patients receiving 774 dental implants from 2002 to 2014 were analyzed by adopting a more reliable statistical method to evaluate risk factors with patients as the unit [generalized estimating equation (GEE)]. Information regarding patient age at implantation, sex, use of tobacco, and history of systemic diseases was collected. Information about implant location in the arch region and implant length, diameter, and placement in a grafted area was evaluated after 2 years under load. Systemic and local risk factors for early and late implant failure were studied. A total of 18 patients experienced 25 implant failures, resulting in an overall survival rate of 96.8% (2.84% and 0.38% early and late implant failures, respectively). The patient-based survival rate was 91.8%. GEE univariate and multivariate analyses revealed that a significant risk factor for implant failure was the maxillary implant (p = 0.006 and p = 0.014, respectively). Bone grafting appeared to be a risk factor for implant failure (p = 0.054). According to GEE analyses, maxillary implants had significantly worse outcomes in this population and were considered to be a risk factor for implant failure. Our results suggested that implants placed in a bone augmentation area had a tendency to fail.

  17. Engineering Education Research in "European Journal of Engineering Education" and "Journal of Engineering Education": Citation and Reference Discipline Analysis

    ERIC Educational Resources Information Center

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of "European Journal of Engineering Education" ("EJEE") and "Journal of Engineering Education" ("JEE") in 1973 ("JEE," 1975 "EJEE"), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become…

  18. Three-dimensional nanometer scale analyses of precipitate structures and local compositions in titanium aluminide engineering alloys

    NASA Astrophysics Data System (ADS)

    Gerstl, Stephan S. A.

    Titanium aluminide (TiAl) alloys are among the fastest developing class of materials for use in high temperature structural applications. Their low density and high strength make them excellent candidates for both engine and airframe applications. Creep properties of TiAl alloys, however, have been a limiting factor in applying the material to a larger commercial market. In this research, nanometer scale compositional and structural analyses of several TiAl alloys, ranging from model Ti-Al-C ternary alloys to putative commercial alloys with 10 components are investigated utilizing three dimensional atom probe (3DAP) and transmission electron microscopies. Nanometer sized borides, silicides, and carbide precipitates are involved in strengthening TiAl alloys, however, chemical partitioning measurements reveal oxygen concentrations up to 14 at. % within the precipitate phases, resulting in the realization of oxycarbide formation contributing to the precipitation strengthening of TiAl alloys. The local compositions of lamellar microstructures and a variety of precipitates in the TiAl system, including boride, silicide, binary carbides, and intermetallic carbides are investigated. Chemical partitioning of the microalloying elements between the alpha2/gamma lamellar phases, and the precipitate/gamma-matrix phases are determined. Both W and Hf have been shown to exhibit a near interfacial excess of 0.26 and 0.35 atoms nm-2 respectively within ca. 7 nm of lamellar interfaces in a complex TiAl alloy. In the case of needle-shaped perovskite Ti3AlC carbide precipitates, periodic domain boundaries are observed 5.3+/-0.8 nm apart along their growth axis parallel to the TiAl[001] crystallographic direction with concomitant composition variations after 24 hrs. at 800°C.

  19. Analysing learning outcomes in an Electrical Engineering curriculum using illustrative verbs derived from Bloom's Taxonomy

    NASA Astrophysics Data System (ADS)

    Meda, Lawrence; Swart, Arthur James

    2018-05-01

    Learning outcomes are essential to any curriculum in education, where they need to be clear, observable and measurable. However, some academics structure learning outcomes in a way that does not promote student learning. The purpose of this article is to present the analyses of learning outcomes of an Electrical Engineering curriculum offered at a University of Technology in South Africa, in order to determine if academics are structuring them in a way that enables student learning. A qualitative case study is used where the learning outcomes from 33 study guides are reviewed using illustrative verbs derived from Bloom's Taxonomy. Results indicate that 9% of all the learning outcomes are unclear, 10% are unobservable and 23% are unmeasurable. A key recommendation is to provide regular workshops to assist academics in reviewing their learning outcomes using the illustrative verbs derived from Bloom's Taxonomy, thereby ensuring that their learning outcomes promote student learning.

  20. Persistence Factors Associated with First-Year Engineering Technology Learners

    ERIC Educational Resources Information Center

    Christe, Barbara

    2015-01-01

    Engineering technology learners are understudied group that comprise the "T" of the science, technology, engineering, and mathematics disciplines. Attrition from engineering technology majors is a profound and complex challenge, as substantially less than half of students who begin an engineering technology major persist through the…

  1. Classification of L2 Vocabulary Learning Strategies: Evidence from Exploratory and Confirmatory Factor Analyses

    ERIC Educational Resources Information Center

    Zhang, Bo; Li, Changyu

    2011-01-01

    This research presents a classification theory for the L2 vocabulary learning strategies. Based on the exploratory and confirmatory factor analyses of strategies that adult Chinese English learners used, this theory identifies six categories, four of which are related to the cognitive process in lexical acquisition and the other two are…

  2. Engineering Technical Review Planning Briefing

    NASA Technical Reports Server (NTRS)

    Gardner, Terrie

    2012-01-01

    The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.

  3. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  4. Comparisons of Rig and Engine Dynamic Events in the Compressor of an Axi-Centrifugal Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Owen, A. Karl; Mattern, Duane L.; Le, Dzu K.

    1996-01-01

    Steady state and dynamic data were acquired in a T55-L-712 compressor rig. In addition, a T55-L-12 engine was instrumented and similar data were acquired. Rig and engine stall/surge data were analyzed using modal techniques. This paper compares rig and engine preliminary results for the ground idle (approximately 60% of design speed) point. The results of these analyses indicate both rig and engine dynamic event are preceded by indications of traveling wave energy in front of the compressor face. For both rig and engine, the traveling wave energy contains broad band energy with some prominent narrow peaks and, while the events are similar in many ways, some noticeable differences exist between the results of the analyses of rig data and engine data.

  5. The Chinese Family Assessment Instrument (C-FAI): Hierarchical Confirmatory Factor Analyses and Factorial Invariance

    ERIC Educational Resources Information Center

    Shek, Daniel T. L.; Ma, Cecilia M. S.

    2010-01-01

    Objective: This paper examines the dimensionality and factorial invariance of the Chinese Family Assessment Instrument (C-FAI) using multigroup confirmatory factor analyses (MCFAs). Method: A total of 3,649 students responded to the C-FAI in a community survey. Results: Results showed that there are five dimensions of the C-FAI (communication,…

  6. Reliability and Factor Analyses of a Teacher Efficacy Scale for Nigerian Secondary School Teachers

    ERIC Educational Resources Information Center

    Faleye, Bamidele Abiodun

    2008-01-01

    Introduction: The suitability of 52 items for measuring Teacher Efficacy was investigated with the aim of developing and validating a Teacher Efficacy Scale (TES) for Nigerian secondary school teachers. Method: The TES was administered on 2400 teachers (mean age = 36.75 years). Data were subjected to factor and reliability analyses. Results:…

  7. An examination of the factors by gender and race/ethnicity influencing science, mathematics, and engineering undergraduate degree recipients to enroll in graduate study

    NASA Astrophysics Data System (ADS)

    Lasiewski, Doreen Kovacsofsky

    Lack of growth in the science talent pool raises concerns about the ability of colleges and universities to meet the demands of the nation's labor market for scientists and engineers. Previous research has focused on ways to improve the K--16 learning environment and increase retention rates of undergraduate students in the sciences. This study extends previous work by considering the next stage in the educational pipeline---the transition to graduate study. The purpose of this study is to develop a model of factors related to science, mathematics, and engineering (SME) undergraduate degree recipients' subsequent enrollment in graduate study. This research utilizes 1994 data from the first follow-up of the 1993 Baccalaureate and Beyond Longitudinal Study by the National Center for Educational Statistics (NCES). Four groups of factors were examined---pre-college characteristics, personal characteristics, institutional characteristics, and the college experience. Analyses were conducted on the overall sample and by gender and race/ethnicity. Male and female subjects were equally likely to enroll in graduate school. White and non-White subjects were equally likely to enroll in graduate school. The best factor to predict enrollment in graduate study for all samples was cumulative grade point average. The models suggested, however, two different journeys taken by SME bachelor's degree recipients. Along one path taken by male and White students, factors associated with graduate school enrollment included having well-educated parents, at least a middle class family background, a good mathematics grade point average, being satisfied with the undergraduate curriculum, being less than twenty-three years old, and having participated in community service. Women and minority students, however, traveled a different path, where marriage negatively influenced enrollment in graduate study. In addition, having children and being over the age of twenty-three were negative factors for

  8. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 2; Unsteady Analyses and Risk Assessment

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Allgood, Daniel

    2008-01-01

    Simulation technology can play an important role in rocket engine test facility design and development by assessing risks, providing analysis of dynamic pressure and thermal loads, identifying failure modes and predicting anomalous behavior of critical systems. This is especially true for facilities such as the proposed A-3 facility at NASA SSC because of a challenging operating envelope linked to variable throttle conditions at relatively low chamber pressures. Design Support of the feasibility of operating conditions and procedures is critical in such cases due to the possibility of startup/shutdown transients, moving shock structures, unsteady shock-boundary layer interactions and engine and diffuser unstart modes that can result in catastrophic failure. Analyses of such systems is difficult due to resolution requirements needed to accurately capture moving shock structures, shock-boundary layer interactions, two-phase flow regimes and engine unstart modes. In a companion paper, we will demonstrate with the use of CFD, steady analyses advanced capability to evaluate supersonic diffuser and steam ejector performance in the sub-scale A-3 facility. In this paper we will address transient issues with the operation of the facility especially at startup and shutdown, and assess risks related to afterburning due to the interaction of a fuel rich plume with oxygen that is a by-product of the steam ejectors. The primary areas that will be addressed in this paper are: (1) analyses of unstart modes due to flow transients especially during startup/ignition, (2) engine safety during the shutdown process (3) interaction of steam ejectors with the primary plume i.e. flow transients as well as probability of afterburning. In this abstract we discuss unsteady analyses of the engine shutdown process. However, the final paper will include analyses of a staged startup, drawdown of the engine test cell pressure, and risk assessment of potential afterburning in the facility. Unsteady

  9. Numerical and Engine Cycle Analyses of a Pulse Laser Ramjet Vehicle

    NASA Astrophysics Data System (ADS)

    Katsurayama, Hiroshi; Komurasaki, Kimiya; Momozawa, Ai; Arakawa, Yoshihiro

    A preliminary feasibility study of a laser ramjet SSTO has been conducted using engine cycle analysis. Although a large amount of laser energy is lost due to chemically frozen flow at high altitudes, the laser ramjet SSTO was found to be feasible with 100 MW laser power for 100 kg vehicle mass and 1 m2 vehicle cross-section area. Obtained momentum coupling coefficient, Cm, was validated by means of CFD. As a result, the engine cycle analysis was under-estimating Cm. This would be because of the strong unsteady energy input in the actual heating process and the spatially localized pressure on the afterbody.

  10. Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress.

    PubMed

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-12-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. © 2014 American Society of Plant Biologists. All rights reserved.

  11. The Nursing Performance Instrument: Exploratory and Confirmatory Factor Analyses in Registered Nurses.

    PubMed

    Sagherian, Knar; Steege, Linsey M; Geiger-Brown, Jeanne; Harrington, Donna

    2018-04-01

    The optimal performance of nurses in healthcare settings plays a critical role in care quality and patient safety. Despite this importance, few measures are provided in the literature that evaluate nursing performance as an independent construct from competencies. The nine-item Nursing Performance Instrument (NPI) was developed to fill this gap. The aim of this study was to examine and confirm the underlying factor structure of the NPI in registered nurses. The design was cross-sectional, using secondary data collected between February 2008 and April 2009 for the "Fatigue in Nursing Survey" (N = 797). The sample was predominantly dayshift female nurses working in acute care settings. Using Mplus software, exploratory and confirmatory factor analyses were applied to the NPI data, which were divided into two equal subsamples. Multiple fit indices were used to evaluate the fit of the alternative models. The three-factor model was determined to fit the data adequately. The factors that were labeled as "physical/mental decrements," "consistent practice," and "behavioral change" were moderately to strongly intercorrelated, indicating good convergent validity. The reliability coefficients for the subscales were acceptable. The NPI consists of three latent constructs. This instrument has the potentialto be used as a self-monitoring instrument that addressesnurses' perceptions of performance while providing patient care.

  12. Design for human factors (DfHF): a grounded theory for integrating human factors into production design processes.

    PubMed

    Village, Judy; Searcy, Cory; Salustri, Filipo; Patrick Neumann, W

    2015-01-01

    The 'design for human factors' grounded theory explains 'how' human factors (HF) went from a reactive, after-injury programme in safety, to being proactively integrated into each step of the production design process. In this longitudinal case study collaboration with engineers and HF Specialists in a large electronics manufacturer, qualitative data (e.g. meetings, interviews, observations and reflections) were analysed using a grounded theory methodology. The central tenet in the theory is that when HF Specialists acclimated to the engineering process, language and tools, and strategically aligned HF to the design and business goals of the organisation, HF became a means to improve business performance. This led to engineers 'pulling' HF Specialists onto their team. HF targets were adopted into engineering tools to communicate HF concerns quantitatively, drive continuous improvement, visibly demonstrate change and lead to benchmarking. Senior management held engineers accountable for HF as a key performance indicator, thus integrating HF into the production design process. Practitioner Summary: Research and practice lack explanations about how HF can be integrated early in design of production systems. This three-year case study and the theory derived demonstrate how ergonomists changed their focus to align with design and business goals to integrate HF into the design process.

  13. An Investigation of Factors Related to Self-Efficacy for Java Programming among Engineering Students

    ERIC Educational Resources Information Center

    Askar, Petek; Davenport, David

    2009-01-01

    The purpose of this study was to examine the factors related to self-efficacy for Java programming among first year engineering students. An instrument assessing Java programming self-efficacy was developed from the computer programming self-efficacy scale of Ramalingam & Wiedenbeck. The instrument was administered at the beginning of the…

  14. The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas

    NASA Astrophysics Data System (ADS)

    Sadler, Troy D.; Zeidler, Dana L.

    2004-01-01

    The ability to negotiate and resolve socioscientific issues has been posited as integral components of scientific literacy. Although philosophers and science educators have argued that socioscientific issues inherently involve moral and ethical considerations, the ultimate arbiters of morality are individual decision-makers. This study explored the extent to which college students construe genetic engineering issues as moral problems. Twenty college students participated in interviews designed to elicit their ideas, reactions, and feelings regarding a series of gene therapy and cloning scenarios. Qualitative analyses revealed that moral considerations were significant influences on decision-making, indicating a tendency for students to construe genetic engineering issues as moral problems. Students engaged in moral reasoning based on utilitarian analyses of consequences as well as the application of principles. Issue construal was also influenced by affective features such as emotion and intuition. In addition to moral considerations, a series of other factors emerged as important dimensions of socioscientific decision-making. These factors included personal experiences, family biases, background knowledge, and the impact of popular culture. The implications for classroom science instruction and future research are discussed.

  15. Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control.

    PubMed

    Dai, Dongjuan; Prussin, Aaron J; Marr, Linsey C; Vikesland, Peter J; Edwards, Marc A; Pruden, Amy

    2017-07-18

    The "exposome" is a term describing the summation of one's lifetime exposure to microbes and chemicals. Such exposures are now recognized as major drivers of human health and disease. Because humans spend ∼90% of their time indoors, the built environment exposome merits particular attention. Herein we utilize an engineering perspective to advance understanding of the factors that shape the built environment exposome and its influence on human wellness and disease, while simultaneously informing development of a framework for intentionally controlling the exposome to protect public health. Historically, engineers have been focused on controlling chemical and physical contaminants and on eradicating microbes; however, there is a growing awareness of the role of "beneficial" microbes. Here we consider the potential to selectively control the materials and chemistry of the built environment to positively influence the microbial and chemical components of the indoor exposome. Finally, we discuss research gaps that must be addressed to enable intentional engineering design, including the need to define a "healthy" built environment exposome and how to control it.

  16. Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    NASA Technical Reports Server (NTRS)

    Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)

    2003-01-01

    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.

  17. Automotive Stirling engine development program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Vatsky, A.; Antonelli, M. (Editor)

    1983-01-01

    Activities performed on Mod I engine testing and test results, testing of the Mod I engine in the United States, Mod I engine characterization and analyses, Mod I Transient Test Bed fuel economy, upgraded Mod I performance and testing, Stirling engine reference engine manufacturing and reduced size studied, components and subsystems, and the study and test of low cost casting alloys are summarized. The overall program philosophy is outlined, and data and results are presented.

  18. The Use of Reverse Engineering to Analyse Student Computer Programs.

    ERIC Educational Resources Information Center

    Vanneste, Philip; And Others

    1996-01-01

    Discusses how the reverse engineering approach can generate feedback on computer programs without the user having any prior knowledge of what the program was designed to do. This approach uses the cognitive model of programming knowledge to interpret both context independent and dependent errors in the same words and concepts as human programmers.…

  19. Psychosocial factors at work and self reported health: comparative results of cross sectional and prospective analyses of the French GAZEL cohort

    PubMed Central

    Niedhammer, I; Chea, M

    2003-01-01

    Background: Psychosocial factors at work have been found to be significant contributors to health, especially cardiovascular health. Aims: To explore the relation between psychosocial factors at work and self reported health, using cross sectional and prospective analyses for a large occupational cohort of men and women. Methods: Psychosocial factors at work were evaluated using the Karasek questionnaire, designed to measure psychological demands, decision latitude, social support, and physical demands. Self reported health was used as health outcome. Covariates included chronic diseases, and sociodemographic, occupational, and behavioural factors. The cross sectional and prospective analyses concerned respectively 11 447 and 7664 workers. Men and women were analysed separately. Results: Cross sectional analysis revealed significant associations between psychological demands, decision latitude, social support, and physical demands, and self reported health for both men and women. Prospective analysis showed that high psychological demands for both genders, low decision authority for men, and low social support and high physical demands for women were predictive of poor self reported health. These results were independent of potential confounding variables. Conclusions: Results highlight the predictive effects of psychosocial factors at work on self reported health in a one year follow up study. They also underline the need for longitudinal study design and separate analyses for men and women in the field of psychosocial factors at work. PMID:12819285

  20. Discriminative non-negative matrix factorization (DNMF) and its application to the fault diagnosis of diesel engine

    NASA Astrophysics Data System (ADS)

    Yang, Yong-sheng; Ming, An-bo; Zhang, You-yun; Zhu, Yong-sheng

    2017-10-01

    Diesel engines, widely used in engineering, are very important for the running of equipments and their fault diagnosis have attracted much attention. In the past several decades, the image based fault diagnosis methods have provided efficient ways for the diesel engine fault diagnosis. By introducing the class information into the traditional non-negative matrix factorization (NMF), an improved NMF algorithm named as discriminative NMF (DNMF) was developed and a novel imaged based fault diagnosis method was proposed by the combination of the DNMF and the KNN classifier. Experiments performed on the fault diagnosis of diesel engine were used to validate the efficacy of the proposed method. It is shown that the fault conditions of diesel engine can be efficiently classified by the proposed method using the coefficient matrix obtained by DNMF. Compared with the original NMF (ONMF) and principle component analysis (PCA), the DNMF can represent the class information more efficiently because the class characters of basis matrices obtained by the DNMF are more visible than those in the basis matrices obtained by the ONMF and PCA.

  1. Predicting performance in a first engineering calculus course: implications for interventions

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey L.; Lyle, Keith B.; Ralston, Patricia A. S.; Chariker, Julia

    2015-01-01

    At the University of Louisville, a large, urban institution in the south-east United States, undergraduate engineering students take their mathematics courses from the school of engineering. In the fall of their freshman year, engineering students take Engineering Analysis I, a calculus-based engineering analysis course. After the first two weeks of the semester, many students end up leaving Engineering Analysis I and moving to a mathematics intervention course. In an effort to retain more students in Engineering Analysis I, the department collaborated with university academic support services to create a summer intervention programme. Students were targeted for the summer programme based on their score on an algebra readiness exam (ARE). In a previous study, the ARE scores were found to be a significant predictor of retention and performance in Engineering Analysis I. This study continues that work, analysing data from students who entered the engineering school in the fall of 2012. The predictive validity of the ARE was verified, and a hierarchical linear regression model was created using math American College Testing (ACT) scores, ARE scores, summer intervention participation, and several metacognitive and motivational factors as measured by subscales of the Motivated Strategies for Learning Questionnaire. In the regression model, ARE score explained an additional 5.1% of the variation in exam performance in Engineering Analysis I beyond math ACT score. Students took the ARE before and after the summer interventions and scores were significantly higher following the intervention. However, intervention participants nonetheless had lower exam scores in Engineering Analysis I. The following factors related to motivation and learning strategies were found to significantly predict exam scores in Engineering Analysis I: time and study environment management, internal goal orientation, and test anxiety. The adjusted R2 for the full model was 0.42, meaning that the

  2. Numerical thermal analyses of heat exchangers for the stirling engine application

    NASA Technical Reports Server (NTRS)

    Kannapareddy, Mohan Raj

    1995-01-01

    The Regenerator, Cooler and Heater for the NASA Space Power Research Engine (SPRE) have been analyzed in detail for laminar, incompressible and oscillatory flow conditions. Each component has been analyzed independently and in detail with the regenerator being modeled as two-parallel-plates channel with a solid wall. The ends of the channel are exposed to two reservoir maintained at different temperature thus providing an axial temperature gradient along the channel. The cooler and heater components have been modeled as circular pipes with isothermal walls. Two different types of thermal boundary conditions have been investigated for the cooler and heater, namely, symmetric and asymmetric temperature inflow. In symmetric temperature inflow the flow enters the channel with the same temperature in throughout the velocity cycle whereas, in asymmetric temperature inflow the flow enters with a different temperature in each half cycle. The study was conducted over a wide range of Maximum Reynolds number (RE(max) varying from 75 to 60000, Valensi number (Va) from 2.5 to 800, and relative amplitude of fluid displacement (A(sub r) from 0.357 to 1.34. A two dimensional Finite volume method based on the SIMPLE algorithm was used to solve the governing partial differential equations. Post processing programs were developed to effectively describe the heat transfer mechanism under oscillatory flows. The computer code was validated by comparing with existing analytical solutions for oscillating flows. The thermal field have been studied with the help of temperature contour and three dimensional plots. The instantaneous friction factor, wall heat flux and heat transfer coefficient have been examined. It has been concluded that in general, the frictional factor and heat transfer coefficient are higher under oscillatory flow conditions when the Valensi number is high. Also, the thermal efficiency decreases for lower A(r) values. Further, the usual steady state definition for the

  3. Frequency and associated risk factors for neck pain among software engineers in Karachi, Pakistan.

    PubMed

    Rasim Ul Hasanat, Mohammad; Ali, Syed Shahzad; Rasheed, Abdur; Khan, Muhammad

    2017-07-01

    To determine the frequency of neck pain and its association with risk factors among software engineers. This descriptive, cross-sectional study was conducted at the Dow University of Health Sciences, Karachi, from February to March 2016, and comprised software engineers from 19 different locations. Non-probability purposive sampling technique was used to select individuals spending at least 6 hours in front of computer screens every day and having a work experience of at least 6 months. Data were collected using a self-administrable questionnaire. SPSS 21 was used for data analysis. Of the 185 participants, 49(26.5%) had neck pain at the time of data-gathering, while 136(73.5%) reported no pain. However, 119(64.32%) participants had a previous history of neck pain. Other factors like smoking, physical inactivity, history of any muscular pain and neck pain, uncomfortable workstation, and work-related mental stress and insufficient sleep at night, were found to be significantly associated with current neck pain (p<0.05 each). Intensive computer users are likely to experience at least one episode of computer-associated neck pain.

  4. Ares I-X Upper Stage Simulator Structural Analyses Supporting the NESC Critical Initial Flaw Size Assessment

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the ARES I-X Upper Stage Simulator (USS) common shell segment. The structural analysis effort for the NESC assessment had three thrusts: shell buckling analyses, detailed stress analyses of the single-bolt joint test; and stress analyses of two-segment 10 degree-wedge models for the peak axial tensile running load. Elasto-plastic, large-deformation simulations were performed. Stress analysis results indicated that the stress levels were well below the material yield stress for the bounding axial tensile design load. This report also summarizes the analyses and results from parametric studies on modeling the shell-to-gusset weld, flange-surface mismatch, bolt preload, and washer-bearing-surface modeling. These analyses models were used to generate the stress levels specified for the fatigue crack growth assessment using the design load with a factor of safety.

  5. Load and resistance factor design calibration to determine a resistance factor for the modification of the Kansas Department of Transportation-Engineering News Record formula.

    DOT National Transportation Integrated Search

    2014-02-01

    This report contains the results of a study describing the development of resistance factors for use : with the Kansas Department of Transportation (KDOT) Engineering News Record (ENR) formula for driven : piles. KDOT has verified driven pile resista...

  6. From Structure-Function Analyses to Protein Engineering for Practical Applications of DNA Ligase

    PubMed Central

    Tanabe, Maiko; Nishida, Hirokazu

    2015-01-01

    DNA ligases are indispensable in all living cells and ubiquitous in all organs. DNA ligases are broadly utilized in molecular biology research fields, such as genetic engineering and DNA sequencing technologies. Here we review the utilization of DNA ligases in a variety of in vitro gene manipulations, developed over the past several decades. During this period, fewer protein engineering attempts for DNA ligases have been made, as compared to those for DNA polymerases. We summarize the recent progress in the elucidation of the DNA ligation mechanisms obtained from the tertiary structures solved thus far, in each step of the ligation reaction scheme. We also present some examples of engineered DNA ligases, developed from the viewpoint of their three-dimensional structures. PMID:26508902

  7. Engineering Play: Exploring Associations with Executive Function, Mathematical Ability, and Spatial Ability in Preschool

    NASA Astrophysics Data System (ADS)

    Gold, Zachary Samuel

    Engineering play is a new perspective on preschool education that views constructive play as an engineering design process that parallels the way engineers think and work when they develop engineered solutions to human problems (Bairaktarova, Evangelou, Bagiati, & Brophy, 2011). Early research from this perspective supports its use in framing play as a key learning context. However, no research to date has examined associations between engineering play and other factors linked with early school success, such as executive function, mathematical ability, and spatial ability. Additionally, more research is needed to further validate a new engineering play observational measure. This study had two main goals: (1) to gather early validity data on the engineering play measure as a potentially useful instrument for documenting the occurrence of children's engineering play behaviors in educational contexts, such as block play. This was done by testing the factor structure of the engineering play behaviors in this sample and their association with preschoolers' planning, a key aspect of the engineering design process; (2) to explore associations between preschoolers' engineering play and executive function, mathematical ability, and spatial ability. Participants included 110 preschoolers (62 girls; 48 boys; M = 58.47 months) from 10 classrooms in the Midwest United States coded for their frequency of engagement in each of the nine engineering play behaviors. A confirmatory factor analysis resulted in one engineering play factor including six of the engineering play behaviors. A series of marginal regression models revealed that the engineering play factor was significantly and positively associated with the spatial horizontal rotation transformation. However, engineering play was not significantly related to planning ability, executive function, informal mathematical abilities, or other spatial transformation skills. Follow-up analyses revealed significant positive

  8. Rational selection and engineering of exogenous principal sigma factor (σHrdB) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus

    PubMed Central

    2014-01-01

    Background Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. Results It was illuminated that the σHrdB molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σHrdB molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Conclusions Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy. PMID:24428890

  9. Rational selection and engineering of exogenous principal sigma factor (σ(HrdB)) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus.

    PubMed

    Wang, Haiyong; Yang, Liu; Wu, Kuo; Li, Guanghui

    2014-01-16

    Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. It was illuminated that the σ(HrdB) molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σ(HrdB) molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy.

  10. Insulin-like growth factor-I and growth differentiation factor-5 promote the formation of tissue-engineered human nasal septal cartilage.

    PubMed

    Alexander, Thomas H; Sage, August B; Chen, Albert C; Schumacher, Barbara L; Shelton, Elliot; Masuda, Koichi; Sah, Robert L; Watson, Deborah

    2010-10-01

    Tissue engineering of human nasal septal chondrocytes offers the potential to create large quantities of autologous material for use in reconstructive surgery of the head and neck. Culture with recombinant human growth factors may improve the biochemical and biomechanical properties of engineered tissue. The objectives of this study were to (1) perform a high-throughput screen to assess multiple combinations of growth factors and (2) perform more detailed testing of candidates identified in part I. In part I, human nasal septal chondrocytes from three donors were expanded in monolayer with pooled human serum (HS). Cells were then embedded in alginate beads for 2 weeks of culture in medium supplemented with 2% or 10% HS and 1 of 90 different growth factor combinations. Combinations of insulin-like growth factor-I (IGF-1), bone morphogenetic protein (BMP)-2, BMP-7, BMP-13, growth differentiation factor-5 (GDF-5), transforming growth factor β (TGFβ)-2, insulin, and dexamethasone were evaluated. Glycosaminoglycan (GAG) accumulation was measured. A combination of IGF-1 and GDF-5 was selected for further testing based on the results of part I. Chondrocytes from four donors underwent expansion followed by three-dimensional alginate culture for 2 weeks in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5. Chondrocytes and their associated matrix were then recovered and cultured for 4 weeks in 12 mm transwells in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5 (the same medium used for alginate culture). Biochemical and biomechanical properties of the neocartilage were measured. In part I, GAG accumulation was highest for growth factor combinations including both IGF-1 and GDF-5. In part II, the addition of IGF-1 and GDF-5 to 2% HS resulted in a 12-fold increase in construct thickness compared with 2% HS alone (p < 0.0001). GAG and type II collagen accumulation was significantly higher with IGF-1 and GDF-5. Confined compression

  11. Combining Search Engines for Comparative Proteomics

    PubMed Central

    Tabb, David

    2012-01-01

    Many proteomics laboratories have found spectral counting to be an ideal way to recognize biomarkers that differentiate cohorts of samples. This approach assumes that proteins that differ in quantity between samples will generate different numbers of identifiable tandem mass spectra. Increasingly, researchers are employing multiple search engines to maximize the identifications generated from data collections. This talk evaluates four strategies to combine information from multiple search engines in comparative proteomics. The “Count Sum” model pools the spectra across search engines. The “Vote Counting” model combines the judgments from each search engine by protein. Two other models employ parametric and non-parametric analyses of protein-specific p-values from different search engines. We evaluated the four strategies in two different data sets. The ABRF iPRG 2009 study generated five LC-MS/MS analyses of “red” E. coli and five analyses of “yellow” E. coli. NCI CPTAC Study 6 generated five concentrations of Sigma UPS1 spiked into a yeast background. All data were identified with X!Tandem, Sequest, MyriMatch, and TagRecon. For both sample types, “Vote Counting” appeared to manage the diverse identification sets most effectively, yielding heightened discrimination as more search engines were added.

  12. Engineering success: Undergraduate Latina women's persistence in an undergradute engineering program

    NASA Astrophysics Data System (ADS)

    Rosbottom, Steven R.

    The purpose and focus of this narrative inquiry case study were to explore the personal stories of four undergraduate Latina students who persist in their engineering programs. This study was guided by two overarching research questions: a) What are the lived experiences of undergraduate Latina engineering students? b) What are the contributing factors that influence undergraduate Latina students to persist in an undergraduate engineering program? Yosso's (2005) community cultural wealth was used to the analyze data. Findings suggest through Yosso's (2005) aspirational capital, familial capital, social capital, navigational capital, and resistant capital the Latina student persisted in their engineering programs. These contributing factors brought to light five themes that emerged, the discovery of academic passions, guidance and support of family and teachers, preparation for and commitment to persistence, the power of community and collective engagement, and commitment to helping others. The themes supported their persistence in their engineering programs. Thus, this study informs policies, practices, and programs that support undergraduate Latina engineering student's persistence in engineering programs.

  13. Quantitative Analyses of the Modes of Deformation in Engineering Thermoplastics

    NASA Astrophysics Data System (ADS)

    Landes, B. G.; Bubeck, R. A.; Scott, R. L.; Heaney, M. D.

    1998-03-01

    Synchrotron-based real-time small-angle X-ray scattering (RTSAXS) studies have been performed on rubber-toughened engineering thermoplastics with amorphous and semi-crystalline matrices. Scattering patterns are measured at successive time intervals of 3 ms were analyzed to determine the plastic strain due to crazing. Simultaneous measurements of the absorption of the primary beam by the sample permits the total plastic strain to be concurrently computed. The plastic strain due to other deformation mechanisms (e.g., particle cavitation and macroscopic shear yield can be determined from the difference between the total and craze-derived plastic strains. The contribution from macroscopic shear deformation can be determined from video-based optical data measured simultaneously with the X-ray data. These types of time-resolved experiments result in the generation of prodigious quantities of data, the analysis of which can considerably delay the determination of key results. A newly developed software package that runs in WINDOWSa 95 permits the rapid analysis of the relative contributions of the deformation modes from these time-resolved experiments. Examples of using these techniques on ABS-type and QUESTRAa syndiotactic polystyrene type engineering resins will be given.

  14. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  15. SSC Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Ryan, Harry; Junell, Justin; Albasini, Colby; O'Rourke, William; Le, Thang; Strain, Ted; Stiglets, Tim

    2011-01-01

    A package for the automation of the Engineering Analysis (EA) process at the Stennis Space Center has been customized. It provides the ability to assign and track analysis tasks electronically, and electronically route a task for approval. It now provides a mechanism to keep these analyses under configuration management. It also allows the analysis to be stored and linked to the engineering data that is needed to perform the analysis (drawings, etc.). PTC s (Parametric Technology Corp o ration) Windchill product was customized to allow the EA to be created, routed, and maintained under configuration management. Using Infoengine Tasks, JSP (JavaServer Pages), Javascript, a user interface was created within the Windchill product that allows users to create EAs. Not only does this interface allow users to create and track EAs, but it plugs directly into the out-ofthe- box ability to associate these analyses with other relevant engineering data such as drawings. Also, using the Windchill workflow tool, the Design and Data Management System (DDMS) team created an electronic routing process based on the manual/informal approval process. The team also added the ability for users to notify and track notifications to individuals about the EA. Prior to the Engineering Analysis creation, there was no electronic way of creating and tracking these analyses. There was also a feature that was added that would allow users to track/log e-mail notifications of the EA.

  16. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  17. Formation and representation: Critical analyses of identity, supply, and demand in science, technology, engineering, and mathematics

    NASA Astrophysics Data System (ADS)

    Mandayam Doddamane, Prabha

    2011-12-01

    Considerable research, policy, and programmatic efforts have been dedicated to addressing the participation of particular populations in STEM for decades. Each of these efforts claims equity-related goals; yet, they heavily frame the problem, through pervasive STEM pipeline model discourse, in terms of national needs, workforce supply, and competitiveness. This particular framing of the problem may, indeed, be counter to equity goals, especially when paired with policy that largely relies on statistical significance and broad aggregation of data over exploring the identities and experiences of the populations targeted for equitable outcomes in that policy. In this study, I used the mixed-methods approach of critical discourse and critical quantitative analyses to understand how the pipeline model ideology has become embedded within academic discourse, research, and data surrounding STEM education and work and to provide alternatives for quantitative analysis. Using critical theory as a lens, I first conducted a critical discourse analysis of contemporary STEM workforce studies with a particular eye to pipeline ideology. Next, I used that analysis to inform logistic regression analyses of the 2006 SESTAT data. This quantitative analysis compared and contrasted different ways of thinking about identity and retention. Overall, the findings of this study show that many subjective choices are made in the construction of the large-scale datasets used to inform much national science and engineering policy and that these choices greatly influence likelihood of retention outcomes.

  18. Ferrographic and spectrographic analysis of oil sampled before and after failure of a jet engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1980-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph as well as plasma, atomic absorption, and emission spectrometers. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism, nor a high level of wear debris was detected in the oil sample from the engine just prior to the test in which the failure occurred. However, low concentrations of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure.

  19. Motivational and Adaptational Factors of Successful Women Engineers

    ERIC Educational Resources Information Center

    Bornsen, Susan Edith

    2012-01-01

    It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged…

  20. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment.

    PubMed

    Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul

    2017-05-01

    Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate

  1. Understanding the leaky engineering pipeline: Motivation and job adaptability of female engineers

    NASA Astrophysics Data System (ADS)

    Saraswathiamma, Manjusha Thekkedathu

    This dissertation is a mixed-method study conducted using qualitative grounded theory and quantitative survey and correlation approaches. This study aims to explore the motivation and adaptability of females in the engineering profession and to develop a theoretical framework for both motivation and adaptability issues. As a result, this study endeavors to design solutions for the low enrollment and attenuation of female engineers in the engineering profession, often referred to as the "leaky female engineering pipeline." Profiles of 123 female engineers were studied for the qualitative approach, and 98 completed survey responses were analyzed for the quantitative approach. The qualitative, grounded-theory approach applied the constant comparison method; open, axial, and selective coding was used to classify the information in categories, sub-categories, and themes for both motivation and adaptability. The emergent themes for decisions motivating female enrollment include cognitive, emotional, and environmental factors. The themes identified for adaptability include the seven job adaptability factors: job satisfaction, risk- taking attitude, career/skill development, family, gender stereotyping, interpersonal skills, and personal benefit, as well as the self-perceived job adaptability factor. Illeris' Three-dimensional Learning Theory was modified as a model for decisions motivating female enrollment. This study suggests a firsthand conceptual parallelism of McClusky's Theory of Margin for the adaptability of female engineers in the profession. Also, this study attempted to design a survey instrument to measure job adaptability of female engineers. The study identifies two factors that are significantly related to job adaptability: interpersonal skills (< p = 0.01) and family (< p = 0.05); gender stereotyping and personal benefit are other factors that are also significantly (< p = 0.1) related.

  2. Orbit transfer rocket engine technology program: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Erickson, C. M.

    1992-01-01

    In Task D.6 of the Advanced Engine Study, three primary subtasks were accomplished: (1) design of parametric data; (2) engine requirement variation studies; and (3) vehicle study/engine study coordination. Parametric data were generated for vacuum thrusts ranging from 7500 lbf to 50,000 lbf, nozzle expansion ratios from 600 to 1200, and engine mixture ratios from 5:1 to 7:1. Failure Modes and Effects Analysis (FMEA) was used as a departure point for these parametric analyses. These data are intended to assist in definition and trade studies. In the Engine Requirements Variation Studies, the individual effects of increasing the throttling ratio from 10:1 to 20:1 and requiring the engine to operate at a maximum mixture ratio of 12:1 were determined. Off design engine balances were generated at these extreme conditions and individual component operating requirements analyzed in detail. Potential problems were identified and possible solutions generated. In the Vehicle Study/Engine Study coordination subtask, vehicle contractor support was provided as needed, addressing a variety of issues uncovered during vehicle trade studies. This support was primarily provided during Technical Interchange Meetings (TIM) in which Space Exploration Initiative (SEI) studies were addressed.

  3. Social responsibility in French engineering education: a historical and sociological analysis.

    PubMed

    Didier, Christelle; Derouet, Antoine

    2013-12-01

    In France, some institutions seem to call for the engineer's sense of social responsibility. However, this call is scarcely heard. Still, engineering students have been given the opportunity to gain a general education through courses in literature, law, economics, since the nineteenth century. But, such courses have long been offered only in the top ranked engineering schools. In this paper, we intend to show that the wish to increase engineering students' social responsibility is an old concern. We also aim at highlighting some macro social factors which shaped the answer to the call for social responsibility in the French engineering "Grandes Ecoles". In the first part, we provide an overview of the scarce attention given to the engineering curriculum in the scholarly literature in France. In the second part, we analyse one century of discourses about the definition of the "complete engineer" and the consequent role of non technical education. In the third part, we focus on the characteristics of the corpus which has been institutionalized. Our main finding is that despite the many changes which occurred in engineering education during one century, the "other formation" remains grounded on a non academic "way of knowing", and aims at increasing the reputation of the schools, more than enhancing engineering students' social awareness.

  4. Improving Safety through Human Factors Engineering.

    PubMed

    Siewert, Bettina; Hochman, Mary G

    2015-10-01

    Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.

  5. Improving engineering effectiveness

    NASA Technical Reports Server (NTRS)

    Fiero, J. D.

    1985-01-01

    Methodologies to improve engineering productivity were investigated. The rocky road to improving engineering effectiveness is reviewed utilizing a specific semiconductor engineering organization as a case study. The organization had a performance problem regarding new product introductions. With the help of this consultant as a change agent the engineering team used a systems approach to through variables that were effecting their output significantly. Critical factors for improving this engineering organization's effectiveness and the roles/responsibilities of management, the individual engineers and the internal consultant are discussed.

  6. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    PubMed

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  7. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors

    PubMed Central

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 –which resides mainly in resting CD4+ T cells–is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection. PMID:26933881

  8. Articular cartilage tissue engineering with plasma-rich in growth factors and stem cells with nano scaffolds

    NASA Astrophysics Data System (ADS)

    Montaser, Laila M.; Abbassy, Hadeer A.; Fawzy, Sherin M.

    2016-09-01

    The ability to heal soft tissue injuries and regenerate cartilage is the Holy Grail of musculoskeletal medicine. Articular cartilage repair and regeneration is considered to be largely intractable due to the poor regenerative properties of this tissue. Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or continue hypertrophic cartilage. The lack of efficient modalities of treatment has prompted research into tissue engineering combining stem cells, scaffold materials and environmental factors. The field of articular cartilage tissue engineering, which aims to repair, regenerate, and/or improve injured or diseased cartilage functionality, has evoked intense interest and holds great potential for improving cartilage therapy. Plasma-rich in growth factors (PRGF) and/or stem cells may be effective for tissue repair as well as cartilage regenerative processes. There is a great promise to advance current cartilage therapies toward achieving a consistently successful approach for addressing cartilage afflictions. Tissue engineering may be the best way to reach this objective via the use of stem cells, novel biologically inspired scaffolds and, emerging nanotechnology. In this paper, current and emergent approach in the field of cartilage tissue engineering is presented for specific application. In the next years, the development of new strategies using stem cells, in scaffolds, with supplementation of culture medium could improve the quality of new formed cartilage.

  9. Computer Vision Syndrome and Associated Factors Among Medical and Engineering Students in Chennai

    PubMed Central

    Logaraj, M; Madhupriya, V; Hegde, SK

    2014-01-01

    Background: Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. Aim: The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. Subjects and Methods: A cross-sectional study was conducted among medical and engineering college students of a University situated in the suburban area of Chennai. Students who used computer in the month preceding the date of study were included in the study. The participants were surveyed using pre-tested structured questionnaire. Results: Among engineering students, the prevalence of CVS was found to be 81.9% (176/215) while among medical students; it was found to be 78.6% (158/201). A significantly higher proportion of engineering students 40.9% (88/215) used computers for 4-6 h/day as compared to medical students 10% (20/201) (P < 0.001). The reported symptoms of CVS were higher among engineering students compared with medical students. Students who used computer for 4-6 h were at significantly higher risk of developing redness (OR = 1.2, 95% CI = 1.0-3.1,P = 0.04), burning sensation (OR = 2.1,95% CI = 1.3-3.1, P < 0.01) and dry eyes (OR = 1.8, 95% CI = 1.1-2.9, P = 0.02) compared to those who used computer for less than 4 h. Significant correlation was found between increased hours of computer use and the symptoms redness, burning sensation, blurred vision and dry eyes. Conclusion: The present study revealed that more than three-fourth of the students complained of any one of the symptoms of CVS while working on the computer. PMID:24761234

  10. Computer vision syndrome and associated factors among medical and engineering students in chennai.

    PubMed

    Logaraj, M; Madhupriya, V; Hegde, Sk

    2014-03-01

    Almost all institutions, colleges, universities and homes today were using computer regularly. Very little research has been carried out on Indian users especially among college students the effects of computer use on the eye and vision related problems. The aim of this study was to assess the prevalence of computer vision syndrome (CVS) among medical and engineering students and the factors associated with the same. A cross-sectional study was conducted among medical and engineering college students of a University situated in the suburban area of Chennai. Students who used computer in the month preceding the date of study were included in the study. The participants were surveyed using pre-tested structured questionnaire. Among engineering students, the prevalence of CVS was found to be 81.9% (176/215) while among medical students; it was found to be 78.6% (158/201). A significantly higher proportion of engineering students 40.9% (88/215) used computers for 4-6 h/day as compared to medical students 10% (20/201) (P < 0.001). The reported symptoms of CVS were higher among engineering students compared with medical students. Students who used computer for 4-6 h were at significantly higher risk of developing redness (OR = 1.2, 95% CI = 1.0-3.1,P = 0.04), burning sensation (OR = 2.1,95% CI = 1.3-3.1, P < 0.01) and dry eyes (OR = 1.8, 95% CI = 1.1-2.9, P = 0.02) compared to those who used computer for less than 4 h. Significant correlation was found between increased hours of computer use and the symptoms redness, burning sensation, blurred vision and dry eyes. The present study revealed that more than three-fourth of the students complained of any one of the symptoms of CVS while working on the computer.

  11. Exploring the Engineering Student Experience: Findings from the Academic Pathways of People Learning Engineering Survey (APPLES). TR-10-01

    ERIC Educational Resources Information Center

    Sheppard, Sheri; Gilmartin, Shannon; Chen, Helen L.; Donaldson, Krista; Lichtenstein, Gary; Eris, Ozgur; Lande, Micah; Toye, George

    2010-01-01

    This report is based on data from the Academic Pathways of People Learning Engineering Survey (APPLES), administered to engineering students at 21 U.S. engineering colleges and schools in the spring of 2008. The first comprehensive set of analyses completed on the APPLES dataset presented here looks at how engineering students experience their…

  12. 2015 Space Human Factors Engineering Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 2 - 3, 2015. The SRP reviewed the updated research plans for the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), the Risk of Inadequate Human-Computer Interaction (HCI Risk), and the Risk of Inadequate Mission, Process and Task Design (MPTask Risk). The SRP also received a status update on the Risk of Incompatible Vehicle/Habitat Design (Hab Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP is pleased with the progress and responsiveness of the SHFE team. The presentations were much improved this year. The SRP is also pleased with the human-centered design approach. Below are some of the more extensive comments from the SRP. We have also made comments in each section concerning gaps/tasks in each. The comments below reflect more significant changes that impact more than just one particular section.

  13. Developing Leadership Skills of Undergraduate Engineering Students: Perspectives from Engineering Faculty

    ERIC Educational Resources Information Center

    Cox, Monica F.; Cekic, Osman; Adams, Stephanie G.

    2010-01-01

    The engineering education community (motivated by internal and external factors) has begun to focus on leadership abilities of college students in engineering fields via reports from ABET, the National Academy of Engineering, and the National Research Council. These reports have directed criticism toward higher education institutions for their…

  14. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review

    PubMed Central

    Bose, Susmita; Tarafder, Solaiman

    2012-01-01

    Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle, adding a new dimension to their application. CaPs are more biocompatible than many other ceramic and inorganic nanoparticles. Their biocompatibility and variable stoichiometry, thus surface charge density, functionality, and dissolution properties, make them suitable for both drug and growth factor delivery. CaP matrices and scaffolds have been reported to act as delivery vehicles for growth factors and drugs in bone tissue engineering. Local drug delivery in musculoskeletal disorder treatments can address some of the critical issues more effectively and efficiently than the systemic delivery. CaPs are used as coatings on metallic implants, CaP cements, and custom designed scaffolds to treat musculoskeletal disorders. This review highlights some of the current drug and growth factor delivery approaches and critical issues using CaP particles, coatings, cements, and scaffolds towards orthopedic and dental applications. PMID:22127225

  15. Confirmatory Factor and Rasch Analyses Support a Revised 14-Item Version of the Organizational, Policies, and Practices (OPP) Scale.

    PubMed

    Shi, Qiyun; MacDermid, Joy C; Tang, Kenneth; Sinden, Kathryn E; Walton, Dave; Grewal, Ruby

    2017-06-01

    Background The long version of the organizational, policies and practices (OPP) had a high burden and short versions were developed to solve this drawback. The 11-item version showed promise, but the ergonomic subscale was deficient. The OPP-14 was developed by adding three additional items to the ergonomics subscale. The aim of this study is to evaluate the factor structure using confirmatory factor and Rasch analyses in healthy firefighters. Methods A sample of 261 firefighters (Mean age 42 years, 95 % male) were sampled. A confirmatory factor and Rasch analyses were used to assess the internal consistency, factor structure and other psychometric characteristics of revised OPP-14. Results The OPP-14 demonstrates sound factor structure and internal consistency in firefighters. Confirmatory factor analysis confirmed the consistency of the original 4-domain structure (CFI = 0.97, TLI = 0.96, and RMSEA = 0.053). The 5 items showing misfit initially with disordered thresholds were rescored. The four subscales satisfied Rasch expectations with well target and acceptable reliability. Conclusions The OPP-14 scale shows a promising factor structure in this sample and remediated deficits found in OPP-11. This version may be preferable for musculoskeletal concerns or work applications where ergonomic indicators are relevant.

  16. Modified RS2101 rocket engine study program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The purpose of the program is to perform design studies and analyses to determine the effects of incorporating a 60:1 expansion area ratio nozzle extension, extended firing time, and modified operating conditions and environments on the MM'71 rocket engine assembly. An injector-to-thrust chamber seal study was conducted to define potential solutions for leakage past this joint. The results and recommendations evolving from the engine thermal analyses, the injector-to-thrust chamber seal studies, and the nozzle extension joint stress analyses are presented.

  17. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    NASA Astrophysics Data System (ADS)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  18. Performance deterioration based on in-service engine data: JT9D jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1979-01-01

    Results of analyses of engine performance deterioration trends and levels with respect to service usage are presented. Thirty-two JT9D-7A engines were selected for this purpose. The selection of this engine fleet provided the opportunity of obtaining engine performance data starting before the first flight through initial service such that the trend and levels of engine deterioration related to both short and long term deterioration could be more carefully defined. The performance data collected and analyzed included in-flight, on wing (ground), and test stand prerepair and postrepair performance calibrations with expanded instrumentation where feasible. The results of the analyses of these data were used to: (1) close gaps in previously obtained historical data as well as augment the historical data with more carefully obtained data; (2) refine preliminary models of performance deterioration with respect to usage; (3) establish an understanding of the relationships between ground and altitude performance deterioration trends; (4) refine preliminary recommendations concerning means to reduce and control deterioration; and (5) identify areas where additional effort is required to develop an understanding of complex deterioration issues.

  19. Combustion Devices CFD Team Analyses Review

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin

    2008-01-01

    A variety of CFD simulations performed by the Combustion Devices CFD Team at Marshall Space Flight Center will be presented. These analyses were performed to support Space Shuttle operations and Ares-1 Crew Launch Vehicle design. Results from the analyses will be shown along with pertinent information on the CFD codes and computational resources used to obtain the results. Six analyses will be presented - two related to the Space Shuttle and four related to the Ares I-1 launch vehicle now under development at NASA. First, a CFD analysis of the flow fields around the Space Shuttle during the first six seconds of flight and potential debris trajectories within those flow fields will be discussed. Second, the combusting flows within the Space Shuttle Main Engine's main combustion chamber will be shown. For the Ares I-1, an analysis of the performance of the roll control thrusters during flight will be described. Several studies are discussed related to the J2-X engine to be used on the upper stage of the Ares I-1 vehicle. A parametric study of the propellant flow sequences and mixture ratios within the GOX/GH2 spark igniters on the J2-X is discussed. Transient simulations will be described that predict the asymmetric pressure loads that occur on the rocket nozzle during the engine start as the nozzle fills with combusting gases. Simulations of issues that affect temperature uniformity within the gas generator used to drive the J-2X turbines will described as well, both upstream of the chamber in the injector manifolds and within the combustion chamber itself.

  20. Quiet Clean Short-Haul Experimental Engine (QSCEE). Preliminary analyses and design report, volume 1

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The experimental propulsion systems to be built and tested in the 'quiet, clean, short-haul experimental engine' program are presented. The flight propulsion systems are also presented. The following areas are discussed: acoustic design; emissions control; engine cycle and performance; fan aerodynamic design; variable-pitch actuation systems; fan rotor mechanical design; fan frame mechanical design; and reduction gear design.

  1. Persistence of community college engineering science students: The impact of selected cognitive and noncognitive characteristics

    NASA Astrophysics Data System (ADS)

    Chatman, Lawrence M., Jr.

    If the United States is to remain technologically competitive, persistence in engineering programs must improve. This study on student persistence employed a mixed-method design to identify the cognitive and noncognitive factors which contribute to students remaining in an engineering science curriculum or switching from an engineering curriculum at a community college in the northeast United States. Records from 372 students were evaluated to determine the characteristics of two groups: those students that persisted with the engineering curriculum and those that switched from engineering; also, the dropout phenomenon was evaluated. The quantitative portion of the study used a logistic regression analyses on 22 independent variables, while the qualitative portion of the study used group interviews to investigate the noncognitive factors that influenced persisting or switching. The qualitative portion of the study added depth and credibility to the results from the quantitative portion. The study revealed that (1) high grades in first year calculus, physics and chemistry courses, (2) fewer number of semesters enrolled, (3) attendance with full time status, and (4) not participating in an English as a Second Language (ESL) program were significant variables used to predict student persistence. The group interviews confirmed several of these contributing factors. Students that dropped out of college began with (1) the lowest levels of remediation, (2) the lowest grade point averages, and (3) the fewest credits earned.

  2. Nonlinear heat transfer and structural analyses of SSME turbine blades

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; Kaufman, A.

    1987-01-01

    Three-dimensional nonlinear finite-element heat transfer and structural analyses were performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 material properties were considered for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress-strain histories were calculated using MARC finite-element computer code. The study was undertaken to assess the structural response of an SSME turbine blade and to gain greater understanding of blade damage mechanisms, convective cooling effects, and the thermal-mechanical effects.

  3. NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OHara J. M.; Higgins, J.C.

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations (ConOps). The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering (HFE) and themore » operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to support NRC HFE reviewers of SMR applications by identifying some of the questions that can be asked of applicants whose designs have characteristics identified in the issues. The questions for each issue were identified and organized based on the review elements and guidance contained in Chapter 18 of the Standard Review Plan (NUREG-0800), and the Human Factors Engineering Program Review Model (NUREG-0711).« less

  4. Engine System Loads Development for the Fastrac 60K Flight Engine

    NASA Technical Reports Server (NTRS)

    Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph

    2000-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.

  5. Atmospheric tether mission analyses

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA is considering the use of tethered satellites to explore regions of the atmosphere inaccessible to spacecraft or high altitude research balloons. This report summarizes the Lockheed Martin Astronautics (LMA) effort for the engineering study team assessment of an Orbiter-based atmospheric tether mission. Lockheed Martin responsibilities included design recommendations for the deployer and tether, as well as tether dynamic analyses for the mission. Three tether configurations were studied including single line, multistrand (Hoytether) and tape designs.

  6. Science and Engineering Indicators 2010

    ERIC Educational Resources Information Center

    National Science Foundation, 2010

    2010-01-01

    The Science Indicators series was designed to provide a broad base of quantitative information about U.S. science, engineering, and technology for use by policymakers, researchers, and the general public. "Science and Engineering Indicators 2010" contains analyses of key aspects of the scope, quality, and vitality of the Nation's science…

  7. Multicollinearity in prognostic factor analyses using the EORTC QLQ-C30: identification and impact on model selection.

    PubMed

    Van Steen, Kristel; Curran, Desmond; Kramer, Jocelyn; Molenberghs, Geert; Van Vreckem, Ann; Bottomley, Andrew; Sylvester, Richard

    2002-12-30

    Clinical and quality of life (QL) variables from an EORTC clinical trial of first line chemotherapy in advanced breast cancer were used in a prognostic factor analysis of survival and response to chemotherapy. For response, different final multivariate models were obtained from forward and backward selection methods, suggesting a disconcerting instability. Quality of life was measured using the EORTC QLQ-C30 questionnaire completed by patients. Subscales on the questionnaire are known to be highly correlated, and therefore it was hypothesized that multicollinearity contributed to model instability. A correlation matrix indicated that global QL was highly correlated with 7 out of 11 variables. In a first attempt to explore multicollinearity, we used global QL as dependent variable in a regression model with other QL subscales as predictors. Afterwards, standard diagnostic tests for multicollinearity were performed. An exploratory principal components analysis and factor analysis of the QL subscales identified at most three important components and indicated that inclusion of global QL made minimal difference to the loadings on each component, suggesting that it is redundant in the model. In a second approach, we advocate a bootstrap technique to assess the stability of the models. Based on these analyses and since global QL exacerbates problems of multicollinearity, we therefore recommend that global QL be excluded from prognostic factor analyses using the QLQ-C30. The prognostic factor analysis was rerun without global QL in the model, and selected the same significant prognostic factors as before. Copyright 2002 John Wiley & Sons, Ltd.

  8. Preventing healthcare-associated infections through human factors engineering.

    PubMed

    Jacob, Jesse T; Herwaldt, Loreen A; Durso, Francis T

    2018-05-24

    Human factors engineering (HFE) approaches are increasingly being used in healthcare, but have been applied in relatively limited ways to infection prevention and control (IPC). Previous studies have focused on using selected HFE tools, but newer literature supports a system-based HFE approach to IPC. Cross-contamination and the existence of workarounds suggest that healthcare workers need better support to reduce and simplify steps in delivering care. Simplifying workflow can lead to better understanding of why a process fails and allow for improvements to reduce errors and increase efficiency. Hand hygiene can be improved using visual cues and nudges based on room layout. Using personal protective equipment appropriately appears simple, but exists in a complex interaction with workload, behavior, emotion, and environmental variables including product placement. HFE can help prevent the pathogen transmission through improving environmental cleaning and appropriate use of medical devices. Emerging evidence suggests that HFE can be applied in IPC to reduce healthcare-associated infections. HFE and IPC collaboration can help improve many of the basic best practices including use of hand hygiene and personal protective equipment by healthcare workers during patient care.

  9. Creativity among Geomatical Engineering Students

    ERIC Educational Resources Information Center

    Keh, Lim Keng; Ismail, Zaleha; Yusof, Yudariah Mohammad

    2017-01-01

    This research aims to find out the creativity among the geomatical engineering students. 96 geomatical engineering students participated in the research. They were divided into 24 groups of 4 students. Each group were asked to solve a real world problem collaboratively with their creative thinking. Their works were collected and then analysed as…

  10. Structural validity of the Wechsler Intelligence Scale for Children-Fifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests.

    PubMed

    Canivez, Gary L; Watkins, Marley W; Dombrowski, Stefan C

    2017-04-01

    The factor structure of the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V; Wechsler, 2014a) standardization sample (N = 2,200) was examined using confirmatory factor analyses (CFA) with maximum likelihood estimation for all reported models from the WISC-V Technical and Interpretation Manual (Wechsler, 2014b). Additionally, alternative bifactor models were examined and variance estimates and model-based reliability estimates (ω coefficients) were provided. Results from analyses of the 16 primary and secondary WISC-V subtests found that all higher-order CFA models with 5 group factors (VC, VS, FR, WM, and PS) produced model specification errors where the Fluid Reasoning factor produced negative variance and were thus judged inadequate. Of the 16 models tested, the bifactor model containing 4 group factors (VC, PR, WM, and PS) produced the best fit. Results from analyses of the 10 primary WISC-V subtests also found the bifactor model with 4 group factors (VC, PR, WM, and PS) produced the best fit. Variance estimates from both 16 and 10 subtest based bifactor models found dominance of general intelligence (g) in accounting for subtest variance (except for PS subtests) and large ω-hierarchical coefficients supporting general intelligence interpretation. The small portions of variance uniquely captured by the 4 group factors and low ω-hierarchical subscale coefficients likely render the group factors of questionable interpretive value independent of g (except perhaps for PS). Present CFA results confirm the EFA results reported by Canivez, Watkins, and Dombrowski (2015); Dombrowski, Canivez, Watkins, and Beaujean (2015); and Canivez, Dombrowski, and Watkins (2015). (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. NEXT Ion Thruster Performance Dispersion Analyses

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The NEXT ion thruster is a low specific mass, high performance thruster with a nominal throttling range of 0.5 to 7 kW. Numerous engineering model and one prototype model thrusters have been manufactured and tested. Of significant importance to propulsion system performance is thruster-to-thruster performance dispersions. This type of information can provide a bandwidth of expected performance variations both on a thruster and a component level. Knowledge of these dispersions can be used to more conservatively predict thruster service life capability and thruster performance for mission planning, facilitate future thruster performance comparisons, and verify power processor capabilities are compatible with the thruster design. This study compiles the test results of five engineering model thrusters and one flight-like thruster to determine unit-to-unit dispersions in thruster performance. Component level performance dispersion analyses will include discharge chamber voltages, currents, and losses; accelerator currents, electron backstreaming limits, and perveance limits; and neutralizer keeper and coupling voltages and the spot-to-plume mode transition flow rates. Thruster level performance dispersion analyses will include thrust efficiency.

  12. Orbit Transfer Vehicle Engine Study. Phase A, extension 1: Advanced expander cycle engine optimization

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1979-01-01

    The performance optimization of expander cycle engines at vacuum thrust levels of 10K, 15K, and 20K lb is discussed. The optimization is conducted for a maximum engine length with an extendible nozzle in the retracted position of 60 inches and an engine mixture ratio of 6.0:1. The thrust chamber geometry and cycle analyses are documented. In addition, the sensitivity of a recommended baseline expander cycle to component performance variations is determined and chilldown/start propellant consumptions are estimated.

  13. Monitoring hand, foot and mouth disease by combining search engine query data and meteorological factors.

    PubMed

    Huang, Da-Cang; Wang, Jin-Feng

    2018-01-15

    Hand, foot and mouth disease (HFMD) has been recognized as a significant public health threat and poses a tremendous challenge to disease control departments. To date, the relationship between meteorological factors and HFMD has been documented, and public interest of disease has been proven to be trackable from the Internet. However, no study has explored the combination of these two factors in the monitoring of HFMD. Therefore, the main aim of this study was to develop an effective monitoring model of HFMD in Guangzhou, China by utilizing historical HFMD cases, Internet-based search engine query data and meteorological factors. To this end, a case study was conducted in Guangzhou, using a network-based generalized additive model (GAM) including all factors related to HFMD. Three other models were also constructed using some of the variables for comparison. The results suggested that the model showed the best estimating ability when considering all of the related factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Exploration of Factors Affecting Success of Undergraduate Engineering Majors at a Historically Black University

    NASA Astrophysics Data System (ADS)

    Igbinoba, Egheosa P.

    Blacks are underrepresented amongst persons who earn college degrees in the United States and Black males attend and complete college at a lower rate than Black females (Toldson, Fry Brown, & Sutton, 2009). According to Toldson et al. (2009), this quandary may be attributed to Black males' apathy toward education in general, waning support and ideological challenges toward Pell Grants and affirmative action, cultural incompetency on the part of the 90% White, ethnic makeup of the U.S. teaching force, and the relatively high numbers of Black males who are held back in school. In spite of the dismal statistics regarding Black male academic achievement and matriculation, there are those Black males who do participate in postsecondary education. While many studies have highlighted reasons that Black males do not achieve success in attending and persisting through college, few have adopted the anti-deficit research framework suggested by Harper (2010), identifying reasons Black males do persist in higher education. Although science, technology, engineering, and mathematics careers are identified as those most imperative to the economic competitiveness of the United States, few studies have concentrated solely on engineering majors and fewer, if any, solely on Black male engineering majors at an historically Black college and university. The aim of this study was to address an apparent gap in the literature and invoke theories for recruitment, retention, and success of Black males in engineering degree programs by employing an anti-deficit achievement framework for research of students of color in science, technology, engineering, and mathematics. Data garnered from the study included insight into participants' definitions of success, precollege experiences, factors contributing to the persistence during undergraduate study, and perceptions of attending a historically Black college and university versus a primarily White institution.

  15. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    PubMed

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  16. The Anxiety Sensitivity Index--Revised: Confirmatory Factor Analyses, Structural Invariance in Caucasian and African American Samples, and Score Reliability and Validity

    ERIC Educational Resources Information Center

    Arnau, Randolph C.; Broman-Fulks, Joshua J.; Green, Bradley A.; Berman, Mitchell E.

    2009-01-01

    The most commonly used measure of anxiety sensitivity is the 36-item Anxiety Sensitivity Index--Revised (ASI-R). Exploratory factor analyses have produced several different factors structures for the ASI-R, but an acceptable fit using confirmatory factor analytic approaches has only been found for a 21-item version of the instrument. We evaluated…

  17. Measurement of factors that negatively influence the outcome of quitting smoking among patients with COPD: psychometric analyses of the Try To Quit Smoking instrument.

    PubMed

    Lundh, Lena; Alinaghizadeh, Hassan; Törnkvist, Lena; Gilljam, Hans; Galanti, Maria Rosaria

    2014-12-01

    To test internal consistency and factor structure of a brief instrument called Trying to Quit smoking. The most effective treatment for patients with chronic obstructive pulmonary disease is to quit smoking. Constant thoughts about quitting and repeated quit attempts can generate destructive feelings and make it more difficult to quit. Development and psychometric testing of the Trying to Quit smoking scale. The Trying to Quit smoking, an instrument designed to assess pressure-filled states of mind and corresponding pressure-relief strategies, was tested among 63 Swedish patients with chronic obstructive pulmonary disease. Among these, the psychometric properties of the instrument were analysed by Exploratory Factor Analyses. Fourteen items were included in the factor analyses, loading on three factors labelled: (1) development of pressure-filled mental states; (2) use of destructive pressure-relief strategies; and (3) ambivalent thoughts when trying to quit smoking. These three factors accounted for more than 80% of the variance, performed well on the Kaiser-Meyer-Olkin (KMO) test and had high internal consistency.

  18. Women and the Engineering Profession: the Stereotypical Engineer

    NASA Astrophysics Data System (ADS)

    Cory, Suzanne N.; Rezaie, Bahman

    The paucity of female engineers has been a problem for years, and most universities suffer from a lack of women majoring in engineering. It is possible that the stereotypical image or perceived gender of engineers may deter young women from considering a career in the field. In order to determine whether 1st-year college students held perceptions regarding personality traits and probable gender of an engineer, a survey was developed based on the Personality Factor (PF) questionnaire originally developed by Cattell (1943). Results indicate that personality traits most often associated with engineers were primarily masculine. Also, engineers were most often expected to be male, especially by the females in this study. Perceived personality traits and the probable gender of engineers were compared to those of 5 other professions: accountants, lawyers, physicians, insurance broker/agents, and computer and information systems specialists. Several differences in perceived personality traits were found. In addition, engineers were perceived as more likely to be male than members of all of the other occupations studied except computer and information systems specialists. Possible approaches to begin altering young women's perceptions of personality traits and the probably gender of a stereotypical engineer are discussed.

  19. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  20. Ethics, engineers and drama.

    PubMed

    Monk, John

    2009-03-01

    This paper describes four plays which illustrate ethical themes relevant to engineers and which could be used as a resource for engineers who wish to explore ethical topics and their relationship with professional practice. The plays themselves have been chosen because a character in the play is involved in engineering activities. Each play is analysed to highlight some of the ethical issues the play raises. Often ethical topics are presented in abstract terms but the plays relate ethical issues to individuals and individual actions in specific situations that connect either directly or figuratively to practical situations engineers find themselves in. The paper describes how the resources have or could be used in an educational programme.

  1. Reading Comprehension as a Factor in Communication with Engineers.

    ERIC Educational Resources Information Center

    Sacks, George A.; Sacks, Florence

    A study of the reading rate and comprehension of 10 aerospace engineers and analysis of the readability of sample company communications were undertaken. The Nelson-Denny Reading Test comprehension scores for the engineers, when compared with scores of a norm group provided by the Nelson-Denny Test Manual, were nearly the same in mean and standard…

  2. Engineering Self-Efficacy Contributing to the Academic Performance of AMAIUB Engineering Students: A Qualitative Investigation

    ERIC Educational Resources Information Center

    Aleta, Beda T.

    2016-01-01

    This research study aims to determine the factors of engineering skills self- efficacy sources contributing on the academic performance of AMAIUB engineering students. Thus, a better measure of engineering self-efficacy is needed to adequately assess engineering students' beliefs in their capabilities to perform tasks in their engineering…

  3. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  4. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    NASA Astrophysics Data System (ADS)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  5. Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease

    PubMed Central

    Shield, Kevin D.; Roerecke, Michael; Samokhvalov, Andriy V.; Lönnroth, Knut; Rehm, Jürgen

    2017-01-01

    Meta-analyses of alcohol use, alcohol dosage and alcohol-related problems as risk factors for tuberculosis incidence were undertaken. The global alcohol-attributable tuberculosis burden of disease was also re-estimated. Systematic searches were conducted, reference lists were reviewed and expert consultations were held to identify studies. Cohort and case-control studies were included if there were no temporal violations of exposure and outcome. Risk relations (RRs) were pooled by using categorical and dose-response meta-analyses. The alcohol-attributable tuberculosis burden of disease was estimated by using alcohol-attributable fractions. 36 of 1108 studies were included. RRs for alcohol use and alcohol-related problems were 1.35 (95% CI 1.09–1.68; I2: 83%) and 3.33 (95% CI 2.14–5.19; 87%), respectively. Concerning alcohol dosage, tuberculosis risk rose as ethanol intake increased, with evidence of a threshold effect. Alcohol consumption caused 22.02 incident cases (95% CI 19.70–40.77) and 2.35 deaths (95% CI 2.05–4.79) per 100 000 people from tuberculosis in 2014. Alcohol-attributable tuberculosis incidence increased between 2000 and 2014 in most high tuberculosis burden countries, whereas mortality decreased. Alcohol consumption was associated with an increased risk of tuberculosis in all meta-analyses. It was consequently a major contributor to the tuberculosis burden of disease. PMID:28705945

  6. Human Factors Engineering Requirements for the International Space Station - Successes and Challenges

    NASA Technical Reports Server (NTRS)

    Whitmore, M.; Blume, J.

    2003-01-01

    Advanced technology coupled with the desire to explore space has resulted in increasingly longer human space missions. Indeed, any exploration mission outside of Earth's neighborhood, in other words, beyond the moon, will necessarily be several months or even years. The International Space Station (ISS) serves as an important advancement toward executing a successful human space mission that is longer than a standard trip around the world or to the moon. The ISS, which is a permanently occupied microgravity research facility orbiting the earth, will support missions four to six months in duration. In planning for the ISS, the NASA developed an agency-wide set of human factors standards for the first time in a space exploration program. The Man-Systems Integration Standard (MSIS), NASA-STD-3000, a multi-volume set of guidelines for human-centered design in microgravity, was developed with the cooperation of human factors experts from various NASA centers, industry, academia, and other government agencies. The ISS program formed a human factors team analogous to any major engineering subsystem. This team develops and maintains the human factors requirements regarding end-to-end architecture design and performance, hardware and software design requirements, and test and verification requirements. It is also responsible for providing program integration across all of the larger scale elements, smaller scale hardware, and international partners.

  7. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering.

    PubMed

    Zuliani, Tea; Mladenovič, Ana; Ščančar, Janez; Milačič, Radmila

    2016-04-01

    During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present.

  8. Growth Factor Stimulation Improves the Structure and Properties of Scaffold-Free Engineered Auricular Cartilage Constructs

    PubMed Central

    Rosa, Renata G.; Joazeiro, Paulo P.; Bianco, Juares; Kunz, Manuela; Weber, Joanna F.; Waldman, Stephen D.

    2014-01-01

    The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation. PMID:25126941

  9. Women of science, technology, engineering, and mathematics: A qualitative exploration into factors of success

    NASA Astrophysics Data System (ADS)

    Olund, Jeanine K.

    Although the number of women entering science, technology, engineering, and mathematics (STEM) disciplines has increased in recent years, overall there are still more men than women completing four-year degrees in these fields, especially in physics, engineering, and computer science. At higher levels of education and within the workplace, the number of women declines even further and the attrition rate is high. Studies to explain this phenomenon abound and remedial action has been taken in many institutions. Nonetheless, the problem remains. There are women who have entered this environment, however, who are not only surviving but thriving. Through the lens of positive scholarship, this qualitative study explores characteristics of twelve high-achieving women of STEM to discover if there are common factors that have contributed to their success. The data show that successful women of STEM are enterprising, relational, self-aware, and have a positive perspective. These results suggest that the four factors, particularly through their juxtaposition, are foundational to the success of STEM women within the current culture of science. Furthermore, the behaviors, responses, and values of these women have likely contributed to systemic changes within their immediate environments and perhaps even beyond. Research has shown that positive behaviors and values can be adopted by others and integrated deeply into their psyches. Therefore, the women of this study, and others like them, could serve as role models for colleagues and peers to support the development of these factors of success in others. Women, and men, of STEM may thereby learn new ways to approach difficulties, to create new avenues for success, and to bring forth positive change within themselves and their environments.

  10. Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression.

    PubMed

    Kabadi, Ami M; Gersbach, Charles A

    2014-09-01

    Engineered DNA-binding proteins that can be targeted to specific sites in the genome to manipulate gene expression have enabled many advances in biomedical research. This includes generating tools to study fundamental aspects of gene regulation and the development of a new class of gene therapies that alter the expression of endogenous genes. Designed transcription factors have entered clinical trials for the treatment of human diseases and others are in preclinical development. High-throughput and user-friendly platforms for designing synthetic DNA-binding proteins present innovative methods for deciphering cell biology and designing custom synthetic gene circuits. We review two platforms for designing synthetic transcription factors for manipulating gene expression: Transcription activator-like effectors (TALEs) and the RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. We present an overview of each technology and a guide for designing and assembling custom TALE- and CRISPR/Cas9-based transcription factors. We also discuss characteristics of each platform that are best suited for different applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Speed limiter integrated fatigue analyzer (SLIFA) for speed and fatigue control on diesel engine truck and bus

    NASA Astrophysics Data System (ADS)

    Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.

    2017-09-01

    Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.

  12. The Impact of Design-Based STEM Integration Curricula on Student Achievement in Engineering, Science, and Mathematics

    NASA Astrophysics Data System (ADS)

    Selcen Guzey, S.; Harwell, Michael; Moreno, Mario; Peralta, Yadira; Moore, Tamara J.

    2017-04-01

    The new science education reform documents call for integration of engineering into K-12 science classes. Engineering design and practices are new to most science teachers, meaning that implementing effective engineering instruction is likely to be challenging. This quasi-experimental study explored the influence of teacher-developed, engineering design-based science curriculum units on learning and achievement among grade 4-8 students of different races, gender, special education status, and limited English proficiency (LEP) status. Treatment and control students ( n = 4450) completed pretest and posttest assessments in science, engineering, and mathematics as well as a state-mandated mathematics test. Single-level regression results for science outcomes favored the treatment for one science assessment (physical science, heat transfer), but multilevel analyses showed no significant treatment effect. We also found that engineering integration had different effects across race and gender and that teacher gender can reduce or exacerbate the gap in engineering achievement for student subgroups depending on the outcome. Other teacher factors such as the quality of engineering-focused science units and engineering instruction were predictive of student achievement in engineering. Implications for practice are discussed.

  13. Engineering an allosteric transcription factor to respond to new ligands.

    PubMed

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-02-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.

  14. Dimensionality of posttraumatic stress disorder symptoms in children exposed to disaster: results from confirmatory factor analyses.

    PubMed

    Anthony, J L; Lonigan, C J; Hecht, S A

    1999-05-01

    Factor analytic studies of trauma victims' posttraumatic stress disorder (PTSD) have offered conflicting hypotheses about how to conceptualize PTSD into symptom categories. The present study used confirmatory factor analyses of self-reported PTSD symptomatology from 5,664 child and adolescent victims of Hurricane Hugo to compare 10 models of PTSD dimensionality. PTSD was best represented by a 2nd-order PTSD factor that manifests in 3 symptom clusters (Intrusion/Active Avoidance, Numbing/Passive Avoidance, and Arousal). This model was cross-validated on 3 age groups (late childhood, early adolescence, and late adolescence), and results indicated factorial invariance across groups. PTSD symptoms varied in relative centrality to the underlying dimensions of PTSD, which differed in their relations with anxiety and degree of traumatic exposure. Implications for classification criteria and an empirically supported theory of PTSD are discussed.

  15. Inequality of obesity and socioeconomic factors in Iran: a systematic review and meta- analyses

    PubMed Central

    Djalalinia, Shirin; Peykari, Niloofar; Qorbani, Mostafa; Larijani, Bagher; Farzadfar, Farshad

    2015-01-01

    Background: Socioeconomic status and demographic factors, such as education, occupation, place of residence, gender, age, and marital status have been reported to be associated with obesity. We conducted a systematic review to summarize evidences on associations between socioeconomic factors and obesity/overweight in Iranian population. Methods: We systematically searched international databases; ISI, PubMed/Medline, Scopus, and national databases Iran-medex, Irandoc, and Scientific Information Database (SID). We refined data for associations between socioeconomic factors and obesity/overweight by sex, age, province, and year. There were no limitations for time and languages. Results: Based on our search strategy we found 151 records; of them 139 were from international databases and the remaining 12 were obtained from national databases. After removing duplicates, via the refining steps, only 119 articles were found related to our study domains. Extracted results were attributed to 146596 person/data from included studies. Increased ages, low educational levels, being married, residence in urban area, as well as female sex were clearly associated with obesity. Conclusion: Results could be useful for better health policy and more planned studies in this field. These also could be used for future complementary analyses. PMID:26793632

  16. Inequality of obesity and socioeconomic factors in Iran: a systematic review and meta- analyses.

    PubMed

    Djalalinia, Shirin; Peykari, Niloofar; Qorbani, Mostafa; Larijani, Bagher; Farzadfar, Farshad

    2015-01-01

    Socioeconomic status and demographic factors, such as education, occupation, place of residence, gender, age, and marital status have been reported to be associated with obesity. We conducted a systematic review to summarize evidences on associations between socioeconomic factors and obesity/overweight in Iranian population. We systematically searched international databases; ISI, PubMed/Medline, Scopus, and national databases Iran-medex, Irandoc, and Scientific Information Database (SID). We refined data for associations between socioeconomic factors and obesity/overweight by sex, age, province, and year. There were no limitations for time and languages. Based on our search strategy we found 151 records; of them 139 were from international databases and the remaining 12 were obtained from national databases. After removing duplicates, via the refining steps, only 119 articles were found related to our study domains. Extracted results were attributed to 146596 person/data from included studies. Increased ages, low educational levels, being married, residence in urban area, as well as female sex were clearly associated with obesity. RESULTS could be useful for better health policy and more planned studies in this field. These also could be used for future complementary analyses.

  17. Parameter Accuracy in Meta-Analyses of Factor Structures

    ERIC Educational Resources Information Center

    Gnambs, Timo; Staufenbiel, Thomas

    2016-01-01

    Two new methods for the meta-analysis of factor loadings are introduced and evaluated by Monte Carlo simulations. The direct method pools each factor loading individually, whereas the indirect method synthesizes correlation matrices reproduced from factor loadings. The results of the two simulations demonstrated that the accuracy of…

  18. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelinesmore » for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.« less

  19. Analyses of Digman's child-personality data: derivation of Big-Five factor scores from each of six samples.

    PubMed

    Goldberg, L R

    2001-10-01

    One of the world's richest collections of teacher descriptions of elementary-school children was obtained by John M. Digman from 1959 to 1967 in schools on two Hawaiian islands. In six phases of data collection, 88 teachers described 2,572 of their students, using one of five different sets of personality variables. The present report provides findings from new analyses of these important data, which have never before been analyzed in a comprehensive manner. When factors developed from carefully selected markers of the Big-Five factor structure were compared to those based on the total set of variables in each sample, the congruence between both types of factors was quite high. Attempts to extend the structure to 6 and 7 factors revealed no other broad factors beyond the Big Five in any of the 6 samples. These robust findings provide significant new evidence for the structure of teacher-based assessments of child personality attributes.

  20. Mapping the landscape of climate engineering

    PubMed Central

    Oldham, P.; Szerszynski, B.; Stilgoe, J.; Brown, C.; Eacott, B.; Yuille, A.

    2014-01-01

    In the absence of a governance framework for climate engineering technologies such as solar radiation management (SRM), the practices of scientific research and intellectual property acquisition can de facto shape the development of the field. It is therefore important to make visible emerging patterns of research and patenting, which we suggest can effectively be done using bibliometric methods. We explore the challenges in defining the boundary of climate engineering, and set out the research strategy taken in this study. A dataset of 825 scientific publications on climate engineering between 1971 and 2013 was identified, including 193 on SRM; these are analysed in terms of trends, institutions, authors and funders. For our patent dataset, we identified 143 first filings directly or indirectly related to climate engineering technologies—of which 28 were related to SRM technologies—linked to 910 family members. We analyse the main patterns discerned in patent trends, applicants and inventors. We compare our own findings with those of an earlier bibliometric study of climate engineering, and show how our method is consistent with the need for transparency and repeatability, and the need to adjust the method as the field develops. We conclude that bibliometric monitoring techniques can play an important role in the anticipatory governance of climate engineering. PMID:25404683

  1. Encouraging the learning of hydraulic engineering subjects in agricultural engineering schools

    NASA Astrophysics Data System (ADS)

    Rodríguez Sinobas, Leonor; Sánchez Calvo, Raúl

    2014-09-01

    Several methodological approaches to improve the understanding and motivation of students in Hydraulic Engineering courses have been adopted in the Agricultural Engineering School at Technical University of Madrid. During three years student's progress and satisfaction have been assessed by continuous monitoring and the use of 'online' and web tools in two undergraduate courses. Results from their application to encourage learning and communication skills in Hydraulic Engineering subjects are analysed and compared to the initial situation. Student's academic performance has improved since their application, but surveys made among students showed that not all the methodological proposals were perceived as beneficial. Their participation in the 'online', classroom and reading activities was low although they were well assessed.

  2. Human Factors Engineering as a System in the Vision for Exploration

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Smith, Danielle; Holden, Kritina

    2006-01-01

    In order to accomplish NASA's Vision for Exploration, while assuring crew safety and productivity, human performance issues must be well integrated into system design from mission conception. To that end, a two-year Technology Development Project (TDP) was funded by NASA Headquarters to develop a systematic method for including the human as a system in NASA's Vision for Exploration. The specific goals of this project are to review current Human Systems Integration (HSI) standards (i.e., industry, military, NASA) and tailor them to selected NASA Exploration activities. Once the methods are proven in the selected domains, a plan will be developed to expand the effort to a wider scope of Exploration activities. The methods will be documented for inclusion in NASA-specific documents (such as the Human Systems Integration Standards, NASA-STD-3000) to be used in future space systems. The current project builds on a previous TDP dealing with Human Factors Engineering processes. That project identified the key phases of the current NASA design lifecycle, and outlined the recommended HFE activities that should be incorporated at each phase. The project also resulted in a prototype of a webbased HFE process tool that could be used to support an ideal HFE development process at NASA. This will help to augment the limited human factors resources available by providing a web-based tool that explains the importance of human factors, teaches a recommended process, and then provides the instructions, templates and examples to carry out the process steps. The HFE activities identified by the previous TDP are being tested in situ for the current effort through support to a specific NASA Exploration activity. Currently, HFE personnel are working with systems engineering personnel to identify HSI impacts for lunar exploration by facilitating the generation of systemlevel Concepts of Operations (ConOps). For example, medical operations scenarios have been generated for lunar habitation

  3. Introduction to tissue engineering and application for cartilage engineering.

    PubMed

    de Isla, N; Huseltein, C; Jessel, N; Pinzano, A; Decot, V; Magdalou, J; Bensoussan, D; Stoltz, J-F

    2010-01-01

    Tissue engineering is a multidisciplinary field that applies the principles of engineering, life sciences, cell and molecular biology toward the development of biological substitutes that restore, maintain, and improve tissue function. In Western Countries, tissues or cells management for clinical uses is a medical activity governed by different laws. Three general components are involved in tissue engineering: (1) reparative cells that can form a functional matrix; (2) an appropriate scaffold for transplantation and support; and (3) bioreactive molecules, such as cytokines and growth factors that will support and choreograph formation of the desired tissue. These three components may be used individually or in combination to regenerate organs or tissues. Thus the growing development of tissue engineering needs to solve four main problems: cells, engineering development, grafting and safety studies.

  4. Drug-device combination products in the twenty-first century: epinephrine auto-injector development using human factors engineering.

    PubMed

    Edwards, Eric S; Edwards, Evan T; Simons, F Estelle R; North, Robert

    2015-05-01

    The systematic application of human factors engineering (HFE) principles to the development of drug-device combination products, including epinephrine auto-injectors (EAIs), has the potential to improve the effectiveness and safety of drug administration. A PubMed search was performed to assess the role of HFE in the development of drug-device combination products. The following keywords were used in different combinations: 'human factors engineering,' 'human factors,' 'medical products,' 'epinephrine/adrenaline auto-injector,' 'healthcare' and 'patient safety.' This review provides a summary of HFE principles and their application to the development of drug-device combination products as advised by the US FDA. It also describes the HFE process that was applied to the development of Auvi-Q, a novel EAI, highlighting specific steps that occurred during the product-development program. For drug-device combination products, device labeling and usability are critical and have the potential to impact clinical outcomes. Application of HFE principles to the development of drug-delivery devices has the potential to improve product quality and reliability, reduce risk and improve patient safety when applied early in the development process. Additional clinical and real-world studies will confirm whether the application of HFE has helped to develop an EAI that better meets the needs of patients at risk of anaphylaxis.

  5. An Investigation of Factors That Influence the Hypothesis Generation Ability of Students in School- Based Agricultural Education Programs When Troubleshooting Small Gasoline Engines

    ERIC Educational Resources Information Center

    Blackburn, J. Joey; Robinson, J. Shane

    2017-01-01

    The purpose of this study was to determine if selected factors influenced the ability of students in school-based agricultural education programs to generate a correct hypothesis when troubleshooting small gasoline engines. Variables of interest included students' cognitive style, age, GPA, and content knowledge in small gasoline engines. Kirton's…

  6. X-ray diffraction and infrared spectroscopy analyses on the crystallinity of engineered biological hydroxyapatite for medical application

    NASA Astrophysics Data System (ADS)

    Poralan, G. M., Jr.; Gambe, J. E.; Alcantara, E. M.; Vequizo, R. M.

    2015-06-01

    Biological hydroxyapatite (BHAp) derived from thermally-treated fish bones was successfully produced. However, the obtained biological HAp was amorphous and thus making it unfavorable for medical application. Consequently, this research exploits and engineers the crystallinity of BHAp powders by addition of CaCO3 and investigates its degree of crystallinity using XRD and IR spectroscopy. On XRD, the HAp powders with [Ca]/[P] ratios 1.42, 1.46, 1.61 and 1.93 have degree of crystallinity equal to 58.08, 72.13, 85.79, 75.85% and crystal size equal to 0.67, 0.74, 0.75, 0.72 nm, respectively. The degree of crystallinity and crystal size of the obtained calcium deficient biological HAp powders increase as their [Ca]/[P] ratio approaches the stoichiometric ratio by addition of CaCO3 as source of Ca2+ ions. These results show the possibility of engineering the crystallinity and crystal size of biological HAp by addition of CaCO3. Moreover, the splitting factor of PO4 vibration matches the result with % crystallinity on XRD. Also, the area of phosphate-substitution site of PO4 vibration shows linear relationship (R2 = 0.994) with crystal size calculated from XRD. It is worth noting that the crystallinity of the biological HAp with [Ca]/[P] ratios 1.42 and 1.48 fall near the range 60-70% for highly resorbable HAp used in the medical application.

  7. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  8. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine torque. 23.361 Section 23.361...

  9. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine torque. 23.361 Section 23.361...

  10. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engine torque. 23.361 Section 23.361...

  11. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine torque. 23.361 Section 23.361...

  12. 14 CFR 23.361 - Engine torque.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Engine torque. (a) Each engine mount and its supporting structure must be designed for the effects of— (1... rational analysis, a factor of 1.6 must be used. (b) For turbine engine installations, the engine mounts... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine torque. 23.361 Section 23.361...

  13. Study on the engine oil's wear based on the flash point

    NASA Astrophysics Data System (ADS)

    Niculescu, R.; Iorga-Simăn, V.; Trică, A.; Clenci, A.

    2016-08-01

    Increasing energy performance of internal combustion engines is largely influenced by frictional forces that arise between moving parts. Thus, in this respect, the nature and quality of the engine oil used is an important factor. Equally important is the effect of various engine injection strategies upon the oil quality. In other words, it's of utmost importance to maintain the quality of engine oil during engine's operation. Oil dilution is one of the most common causes that lead to its wear, creating lubrication problems. Moreover, at low temperatures operating conditions, the oil dilution with diesel fuel produces wax. When starting the engine, this may lead to lubrication deficiencies and even oil starvation with negative consequences on the engine mechanism parts wear (piston, rings and cylinders) but also crankcase bearings wear.Engine oil dilution with diesel fuel have several causes: wear of rings and/or injectors, late post-injection strategy for the sake of particulate filter regeneration, etc.This paper presents a study on the degree of deterioration of engine oils as a result of dilution with diesel fuel. The analysed oils used for this study were taken from various models of engines equipped with diesel particulate filter. The assessment is based on the determination of oil flash point and dilution degree using the apparatus Eraflash produced by Eralytics, Austria. Eraflash measurement is directly under the latest and safest standards ASTM D6450 & D7094), which are in excellent correlation with ASTM D93 Pensky - Martens ASTM D56 TAG methods; it uses the Continuous Closed Cup method for finding the Flash Point (CCCFP).

  14. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue

  15. Engineering an allosteric transcription factor to respond to new ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Noah D.; Garruss, Alexander S.; Moretti, Rocco

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. In this paper, we engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along withmore » multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). Finally, the ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.« less

  16. Engineering an allosteric transcription factor to respond to new ligands

    PubMed Central

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-01-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol or sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits. PMID:26689263

  17. Engineering an allosteric transcription factor to respond to new ligands

    DOE PAGES

    Taylor, Noah D.; Garruss, Alexander S.; Moretti, Rocco; ...

    2015-12-21

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. In this paper, we engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along withmore » multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). Finally, the ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.« less

  18. Optimization in the systems engineering process

    NASA Technical Reports Server (NTRS)

    Lemmerman, Loren A.

    1993-01-01

    The essential elements of the design process consist of the mission definition phase that provides the system requirements, the conceptual design, the preliminary design and finally the detailed design. Mission definition is performed largely by operations analysts in conjunction with the customer. The result of their study is handed off to the systems engineers for documentation as the systems requirements. The document that provides these requirements is the basis for the further design work of the design engineers at the Lockheed-Georgia Company. The design phase actually begins with conceptual design, which is generally conducted by a small group of engineers using multidisciplinary design programs. Because of the complexity of the design problem, the analyses are relatively simple and generally dependent on parametric analyses of the configuration. The result of this phase is a baseline configuration from which preliminary design may be initiated.

  19. Climate engineering and space

    NASA Astrophysics Data System (ADS)

    Schrogl, K.-U.; Summerer, L.

    2016-12-01

    This article provides a comprehensive look at climate engineering and space. Its starting point is that the States are failing to slow down global warming. The consequences for the environment and the economic and societal burden are uncontested. The priority to maintain the use of fossil resources might soon lead to the implementation of deliberate engineering measures to alter the climate instead of reducing the greenhouse gases. The article describes these currently discussed measures for such climate engineering. It will particularly analyse the expected contributions from space to these concepts. Based on this it evaluates the economic and political implications and finally tests the conformity of these concepts with space law.

  20. Science & Engineering Indicators. National Science Board. NSB 14-01

    ERIC Educational Resources Information Center

    National Science Foundation, 2014

    2014-01-01

    The "Science and Engineering Indicators" series was designed to provide a broad base of quantitative information about U.S. science, engineering, and technology for use by policymakers, researchers, and the general public. "Science and Engineering Indicators 2014" contains analyses of key aspects of the scope, quality, and…

  1. Fundamental heat transfer research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Metzger, D. E. (Editor)

    1980-01-01

    Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.

  2. Engineering Education Problems. The Laboratory Equipment Factor.

    ERIC Educational Resources Information Center

    National Society of Professional Engineers, Washington, DC.

    Presented is a pilot study focusing attention on problems of deteriorating physical plants and inadequate/obsolete equipment contributing to the current crisis in engineering education. Data are reported from a survey instrument (included in an appendix) from 26 colleges/universities, representing 168 programs out of a national total of 1212…

  3. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration.

    PubMed

    Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti

    2013-01-01

    Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.

  4. Ethical Risk Management Education in Engineering: A Systematic Review.

    PubMed

    Guntzburger, Yoann; Pauchant, Thierry C; Tanguy, Philippe A

    2017-04-01

    Risk management is certainly one of the most important professional responsibilities of an engineer. As such, this activity needs to be combined with complex ethical reflections, and this requirement should therefore be explicitly integrated in engineering education. In this article, we analyse how this nexus between ethics and risk management is expressed in the engineering education research literature. It was done by reviewing 135 articles published between 1980 and March 1, 2016. These articles have been selected from 21 major journals that specialize in engineering education, engineering ethics and ethics education. Our review suggests that risk management is mostly used as an anecdote or an example when addressing ethics issues in engineering education. Further, it is perceived as an ethical duty or requirement, achieved through rational and technical methods. However, a small number of publications do offer some critical analyses of ethics education in engineering and their implications for ethical risk and safety management. Therefore, we argue in this article that the link between risk management and ethics should be further developed in engineering education in order to promote the progressive change toward more socially and environmentally responsible engineering practices. Several research trends and issues are also identified and discussed in order to support the engineering education community in this project.

  5. Performance deterioration based on existing (historical) data; JT9D jet engine diagnostics program

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.

    1978-01-01

    The results of the collection and analysis of historical data pertaining to the deterioration of JT9D engine performance are presented. The results of analyses of prerepair and postrepair engine test stand performance data from a number of airlines to establish the individual as well as average losses in engine performance with respect to service use are included. Analysis of the changes in mechanical condition of parts, obtained by inspection of used gas-path parts of varying age, allowed preliminary assessments of component performance deterioration levels and identification of the causitive factors. These component performance estimates, refined by data from special engine back-to-back testing related to module performance restoration, permitted the development of preliminary models of engine component/module performance deterioration with respect to usage. The preliminary assessment of the causes of module performance deterioration and the trends with usage are explained, along with the role each module plays in overall engine performance deterioration. Preliminary recommendations with respect to operating and maintenance practices which could be adopted to control the level of performance deterioration are presented. The needs for additional component sensitivity testing as well as outstanding issues are discussed.

  6. Development of Engines for Unmanned Air Vehicles: Some Factors to be Considered

    DTIC Science & Technology

    2003-01-01

    discussions, Honeywell Engines & Systems , Phoenix, AZ, December 14, 2001 [8] Jane’s Aero- Engines , Issue 11, Bill Gunston, Ed., pp. 93–97 (PW300, PW500...Weight/Thrust Reduction Compared to Engine Development Cost—UCAVs................................................................. 24 11. System ... engines are not candidate propulsion systems . The majority of Department of Defense (DoD) efforts (Global Hawk, Air Force UCAV, and Navy UCAV) are

  7. Finite element analyses of railroad tank car head impacts

    DOT National Transportation Integrated Search

    2008-09-24

    This paper describes engineering analyses of a railroad : tank car impacted at its head by a rigid punch. This type of : collision, referred to as a head impact, is examined using : dynamic, nonlinear finite element analysis (FEA). : Commercial softw...

  8. Tissue engineering in endodontics.

    PubMed

    Saber, Shehab El-Din M

    2009-12-01

    Tissue engineering is the science of design and manufacture of new tissues to replace impaired or damaged ones. The key ingredients for tissue engineering are stem cells, the morphogens or growth factors that regulate their differentiation, and a scaffold of extracellular matrix that constitutes the microenvironment for their growth. Recently, there has been increasing interest in applying the concept of tissue engineering to endodontics. The aim of this study was to review the body of knowledge related to dental pulp stem cells, the most common growth factors, and the scaffolds used to control their differentiation, and a clinical technique for the management of immature non-vital teeth based on this novel concept.

  9. A clinical observational study analysing the factors associated with hyperventilation during actual cardiopulmonary resuscitation in the emergency department.

    PubMed

    Park, Sang O; Shin, Dong Hyuk; Baek, Kwang Je; Hong, Dae Young; Kim, Eun Jung; Kim, Sang Chul; Lee, Kyeong Ryong

    2013-03-01

    This is the first study to identify the factors associated with hyperventilation during actual cardiopulmonary resuscitation (CPR) in the emergency department (ED). All CPR events in the ED were recorded by video from April 2011 to December 2011. The following variables were analysed using review of the recorded CPR data: ventilation rate (VR) during each minute and its associated factors including provider factors (experience, advanced cardiovascular life support (ACLS) certification), clinical factors (auscultation to confirm successful intubation, suctioning, and comments by the team leader) and time factors (time or day of CPR). Fifty-five adult CPR cases including a total of 673 min sectors were analysed. The higher rates of hyperventilation (VR>10/min) were delivered by inexperienced (53.3% versus 14.2%) or uncertified ACLS provider (52.2% versus 10.8%), during night time (61.0 versus 34.5%) or weekend CPR (53.1% versus 35.6%) and when auscultation to confirm successful intubation was performed (93.5% versus 52.8%) than not (all p<0.0001). However, experienced (25.3% versus 29.7%; p=0.448) or certified ACLS provider (20.6% versus 31.3%; p<0.0001) could not deliver high rate of proper ventilation (VR 8-10/min). Comment by the team leader was most strongly associated with the proper ventilation (odds ratio 7.035, 95% confidence interval 4.512-10.967). Hyperventilation during CPR was associated with inexperienced or uncertified ACLS provider, auscultation to confirm intubation, and night time or weekend CPR. And to deliver proper ventilation, comments by the team leader should be given regardless of providers' expert level. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Factors that Influence Dissemination in Engineering Education

    ERIC Educational Resources Information Center

    Hazen, B. T.; Wu, Yun; Sankar, C. S.

    2012-01-01

    Although the need for new educational materials and methods in engineering education is increasing, the process of disseminating (making target groups become aware of, accept, and use) these innovations remains a challenge. A literature review shows that few studies have thoroughly investigated this area. The purpose of this article is to identify…

  11. Tissue Engineering Considerations in Dental Pulp Regeneration

    PubMed Central

    Nosrat, Ali; Kim, Jong Ryul; Verma, Prashant; S. Chand, Priya

    2014-01-01

    Regenerative endodontic procedure is introduced as a biologically based treatment for immature teeth with pulp necrosis. Successful clinical and radiographic outcomes following regenerative procedures have been reported in landmark case reports. Retrospective studies have shown that this conservative treatment allows for continued root development and increases success and survival rate of the treated teeth compared to other treatment options. Although the goal of treatment is regeneration of a functional pulp tissue, histological analyses show a different outcome. Developing predictable protocols would require the use of key elements for tissue engineering: stem cells, bioactive scaffolds, and growth factors. In this study we will review the evidence based steps and outcomes of regenerative endodontics. PMID:24396373

  12. Human error and human factors engineering in health care.

    PubMed

    Welch, D L

    1997-01-01

    Human error is inevitable. It happens in health care systems as it does in all other complex systems, and no measure of attention, training, dedication, or punishment is going to stop it. The discipline of human factors engineering (HFE) has been dealing with the causes and effects of human error since the 1940's. Originally applied to the design of increasingly complex military aircraft cockpits, HFE has since been effectively applied to the problem of human error in such diverse systems as nuclear power plants, NASA spacecraft, the process control industry, and computer software. Today the health care industry is becoming aware of the costs of human error and is turning to HFE for answers. Just as early experimental psychologists went beyond the label of "pilot error" to explain how the design of cockpits led to air crashes, today's HFE specialists are assisting the health care industry in identifying the causes of significant human errors in medicine and developing ways to eliminate or ameliorate them. This series of articles will explore the nature of human error and how HFE can be applied to reduce the likelihood of errors and mitigate their effects.

  13. The Impact of Engineering Identification and Stereotypes on Undergraduate Women's Achievement and Persistence in Engineering

    ERIC Educational Resources Information Center

    Jones, Brett D.; Ruff, Chloe; Paretti, Marie C.

    2013-01-01

    Women almost always comprise a minority in engineering programs and a smaller percentage of women pursue engineering than other science and technology majors. The culture of engineering departments and negative stereotypes of women's engineering and mathematical ability have been identified as factors that inhibit women's entry into…

  14. Factors Affecting the Functionality of Postgraduate Programs in Natural Sciences and Engineering in a Northwest State in Mexico

    ERIC Educational Resources Information Center

    Valdés Cuervo, Angel Alberto; Estévez Nenninger, Etty Haydeé; Wendlandt Amezaga, Teodoro Rafael; Vera Noriega, José Ángel

    2015-01-01

    From the researchers' perspective, the study aimed to identify factors affecting the functionality of postgraduate programs in natural sciences and engineering in a north-western Mexican state. Through the typical cases method, 25 researchers who worked in six doctorate programs in the region were selected. From the perception of these…

  15. Power considerations for λ inflation factor in meta-analyses of genome-wide association studies.

    PubMed

    Georgiopoulos, Georgios; Evangelou, Evangelos

    2016-05-19

    The genomic control (GC) approach is extensively used to effectively control false positive signals due to population stratification in genome-wide association studies (GWAS). However, GC affects the statistical power of GWAS. The loss of power depends on the magnitude of the inflation factor (λ) that is used for GC. We simulated meta-analyses of different GWAS. Minor allele frequency (MAF) ranged from 0·001 to 0·5 and λ was sampled from two scenarios: (i) random scenario (empirically-derived distribution of real λ values) and (ii) selected scenario from simulation parameter modification. Adjustment for λ was considered under single correction (within study corrected standard errors) and double correction (additional λ corrected summary estimate). MAF was a pivotal determinant of observed power. In random λ scenario, double correction induced a symmetric power reduction in comparison to single correction. For MAF 1·2 and MAF >5%. Our results provide a quick but detailed index for power considerations of future meta-analyses of GWAS that enables a more flexible design from early steps based on the number of studies accumulated in different groups and the λ values observed in the single studies.

  16. Selection of interest and inflation rates for infrastructure investment analyses.

    DOT National Transportation Integrated Search

    2014-12-01

    The South Dakota Department of Transportation (SDDOT) uses engineering economic analyses (EEA) to : support planning, design, and construction decision-making such as project programming and planning, : pavement type selection, and the occasional val...

  17. Meta-Analysis of Human Factors Engineering Studies Comparing Individual Differences, Practice Effects and Equipment Design Variations.

    DTIC Science & Technology

    1985-02-21

    Approvoid foT public 90Ieleol, 2* . tJni7nited " - . - o . - ’--. * . -... . 1 UNCLASSIFIED S, E CURITY CLASSIFICATION OF THIS PAGE-" REPORT DOCUMENTATION...ACCESSION NO. 11. TITLE (Include Security Classification) . Veta -Analysis of Human Factors Engineering Studies Comparing Individual Differences, Practice...Background C Opportunity D Significance E History III. PHASE I FINAL REPORT A Literature Review B Formal Analysis C Results D Implications for Phase II IV

  18. Study of small turbofan engines applicable to single-engine light airplanes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, G.L.

    1976-09-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  19. Examining the Relationship between Technology & Engineering Instruction and Technology & Engineering Literacy in K-8 Education

    ERIC Educational Resources Information Center

    Mitchell, Tamarra L.

    2017-01-01

    The purpose of this study was to examine the relationship between technology and engineering instruction and technology and engineering literacy in grades K-8. The factors identified and used for the purpose of this study were gender, socioeconomic status, race/ethnicity, and important modes of technology and engineering instruction. These factors…

  20. Engineering analyses of large precision cathode strip chambers for GEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  1. Engineering approaches to immunotherapy.

    PubMed

    Swartz, Melody A; Hirosue, Sachiko; Hubbell, Jeffrey A

    2012-08-22

    As the science of immunology grows increasingly mechanistic, motivation for developing quantitative, design-based engineering approaches has also evolved, both for therapeutic interventions and for elucidating immunological pathways in human disease. This has seeded the nascent field of "immunoengineering," which seeks to apply engineering analyses and design approaches to problems in translational immunology. For example, cell engineers are creating ways to tailor and use immune cells as living therapeutics; protein engineers are devising new methods of rapid antibody discovery; biomaterials scientists are guiding vaccine delivery and immune-cell activation with novel constructs; and systems immunologists are deciphering the evolution and maintenance of T and B cell receptor repertoires, which could help guide vaccine design. The field is multidisciplinary and collaborative, with engineers and immunologists working together to better understand and treat disease. We discuss the scientific progress in this young, yet rapidly evolving research area, which has yielded numerous start-up companies that are betting on impact in clinical and commercial translation in the near future.

  2. A Systematic Review and Meta-Analyses Show that Carbapenem Use and Medical Devices Are the Leading Risk Factors for Carbapenem-Resistant Pseudomonas aeruginosa

    PubMed Central

    Voor in ‘t holt, Anne F.; Severin, Juliëtte A.; Lesaffre, Emmanuel M. E. H.

    2014-01-01

    A systematic review and meta-analyses were performed to identify the risk factors associated with carbapenem-resistant Pseudomonas aeruginosa and to identify sources and reservoirs for the pathogen. A systematic search of PubMed and Embase databases from 1 January 1987 until 27 January 2012 identified 1,662 articles, 53 of which were included in a systematic review and 38 in a random-effects meta-analysis study. The use of carbapenem, use of fluoroquinolones, use of vancomycin, use of other antibiotics, having medical devices, intensive care unit (ICU) admission, having underlying diseases, patient characteristics, and length of hospital stay were significant risk factors in multivariate analyses. The meta-analyses showed that carbapenem use (odds ratio [OR] = 7.09; 95% confidence interval [CI] = 5.43 to 9.25) and medical devices (OR = 5.11; 95% CI = 3.55 to 7.37) generated the highest pooled estimates. Cumulative meta-analyses showed that the pooled estimate of carbapenem use was stable and that the pooled estimate of the risk factor “having medical devices” increased with time. We conclude that our results highlight the importance of antibiotic stewardship and the thoughtful use of medical devices in helping prevent outbreaks of carbapenem-resistant P. aeruginosa. PMID:24550343

  3. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance.

    PubMed

    Agarwal, Pradeep K; Gupta, Kapil; Lopato, Sergiy; Agarwal, Parinita

    2017-04-01

    Dehydration responsive element binding (DREB) factors or CRT element binding factors (CBFs) are members of the AP2/ERF family, which comprises a large number of stress-responsive regulatory genes. This review traverses almost two decades of research, from the discovery of DREB/CBF factors to their optimization for application in plant biotechnology. In this review, we describe (i) the discovery, classification, structure, and evolution of DREB genes and proteins; (ii) induction of DREB genes by abiotic stresses and involvement of their products in stress responses; (iii) protein structure and DNA binding selectivity of different groups of DREB proteins; (iv) post-transcriptional and post-translational mechanisms of DREB transcription factor (TF) regulation; and (v) physical and/or functional interaction of DREB TFs with other proteins during plant stress responses. We also discuss existing issues in applications of DREB TFs for engineering of enhanced stress tolerance and improved performance under stress of transgenic crop plants. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Evaluation of a modified 16-item Readiness for Interprofessional Learning Scale (RIPLS): Exploratory and confirmatory factor analyses.

    PubMed

    Yu, Tzu-Chieh; Jowsey, Tanisha; Henning, Marcus

    2018-04-18

    The Readiness for Interprofessional Learning Scale (RIPLS) was developed to assess undergraduate readiness for engaging in interprofessional education (IPE). It has become an accepted and commonly used instrument. To determine utility of a modified 16-item RIPLS instrument, exploratory and confirmatory factor analyses were performed. Data used were collected from a pre- and post-intervention study involving 360 New Zealand undergraduate students from one university. Just over half of the participants were enrolled in medicine (51%) while the remainder were in pharmacy (27%) and nursing (22%). The intervention was a two-day simulation-based IPE course focused on managing unplanned acute medical problems in hospital wards ("ward calls"). Immediately prior to the course, 288 RIPLS were collected and immediately afterwards, 322 (response rates 80% and 89%, respectively). Exploratory factor analysis involving principal axis factoring with an oblique rotation method was conducted using pre-course data. The scree plot suggested a three-factor solution over two- and four-factor solutions. Subsequent confirmatory factor analysis performed using post-course data demonstrated partial goodness-of-fit for this suggested three-factor model. Based on these findings, further robust psychometric testing of the RIPLS or modified versions of it is recommended before embarking on its use in evaluative research in various healthcare education settings.

  5. Freshman Engineering Retention: A Holistic Look

    ERIC Educational Resources Information Center

    Honken, Nora; Ralston, Patricia A. S.

    2013-01-01

    The ability to increase the number of engineering graduates depends on many factors including our country's P-16+ educational system, the job market and the engineering professions. Students need to be prepared for the rigorous math and science components of engineering programs, but they also must have interest in engineering as a profession,…

  6. Business process re-engineering in the logistics industry: a study of implementation, success factors, and performance

    NASA Astrophysics Data System (ADS)

    Shen, Chien-wen; Chou, Ching-Chih

    2010-02-01

    As business process re-engineering (BPR) is an important foundation to ensure the success of enterprise systems, this study would like to investigate the relationships among BPR implementation, BPR success factors, and business performance for logistics companies. Our empirical findings show that BPR companies outperformed non-BPR companies, not only on information processing, technology applications, organisational structure, and co-ordination, but also on all of the major logistics operations. Comparing the different perceptions of the success factors for BPR, non-BPR companies place greater emphasis on the importance of employee involvement while BPR companies are more concerned about the influence of risk management. Our findings also suggest that management attitude towards BPR success factors could affect performance with regard to technology applications and logistics operations. Logistics companies which have not yet implemented the BPR approach could refer to our findings to evaluate the advantages of such an undertaking and to take care of those BPR success factors affecting performance before conducting BPR projects.

  7. Ceramic automotive Stirling engine study

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.

    1985-01-01

    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

  8. Polymeric Nanofibers in Tissue Engineering

    PubMed Central

    Dahlin, Rebecca L.; Kasper, F. Kurtis

    2011-01-01

    Polymeric nanofibers can be produced using methods such as electrospinning, phase separation, and self-assembly, and the fiber composition, diameter, alignment, degradation, and mechanical properties can be tailored to the intended application. Nanofibers possess unique advantages for tissue engineering. The small diameter closely matches that of extracellular matrix fibers, and the relatively large surface area is beneficial for cell attachment and bioactive factor loading. This review will update the reader on the aspects of nanofiber fabrication and characterization important to tissue engineering, including control of porous structure, cell infiltration, and fiber degradation. Bioactive factor loading will be discussed with specific relevance to tissue engineering. Finally, applications of polymeric nanofibers in the fields of bone, cartilage, ligament and tendon, cardiovascular, and neural tissue engineering will be reviewed. PMID:21699434

  9. Factors Affecting Cheating-Behavior at Undergraduate-Engineering

    ERIC Educational Resources Information Center

    Starovoytova, Diana; Namango, Saul

    2016-01-01

    This study is a fraction of a larger research on cheating in exams at the School of Engineering (SOE). The study design used a descriptive survey approach and a document analysis. A designed confidential self report questioner was applied as the main instrument for this study, with the sample size of 100 subjects, and a response rate of 95%. The…

  10. Human factors engineering verification and validation for APR1400 computerized control room

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Y. C.; Moon, H. K.; Kim, J. H.

    2006-07-01

    This paper introduces the Advanced Power Reactor 1400 (APR1400) HFE V and V activities the Korea Hydro Nuclear Plant Co. LTD. (KHNP) has performed for the last 10 years and some of the lessons learned through these activities. The features of APR1400 main control room include large display panel, redundant compact workstations, computer-based procedure, and safety console. Several iterations of human factors evaluations have been performed from small scale proof of concept tests to large scale integrated system tests for identifying human engineering deficiencies in the human system interface design. Evaluations in the proof of concept test were focused onmore » checking the presence of any show stopper problems in the design concept. Later evaluations were mostly for finding design problems and for assuring the resolution of human factors issues of advanced control room. The results of design evaluations were useful not only for refining the control room design, but also for licensing the standard design. Several versions of APR1400 mock-ups with dynamic simulation models of currently operating Korea Standard Nuclear Plant (KSNP) have been used for the evaluations with the participation of operators from KSNP plants. (authors)« less

  11. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors.

    PubMed

    Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H; Wu, Benjamin M; Khademhosseini, Ali; Shi, Songtao; Moshaverinia, Alireza

    2016-06-01

    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising

  12. Engineering Ethics Education: A Comparative Study of Japan and Malaysia.

    PubMed

    Balakrishnan, Balamuralithara; Tochinai, Fumihiko; Kanemitsu, Hidekazu

    2018-03-22

    This paper reports the findings of a comparative study in which students' perceived attainment of the objectives of an engineering ethics education and their attitude towards engineering ethics were investigated and compared. The investigation was carried out in Japan and Malaysia, involving 163 and 108 engineering undergraduates respectively. The research method used was based on a survey in which respondents were sent a questionnaire to elicit relevant data. Both descriptive and inferential statistical analyses were performed on the data. The results of the analyses showed that the attainment of the objectives of engineering ethics education and students' attitude towards socio-ethical issues in engineering were significantly higher and positive among Japanese engineering students compared to Malaysian engineering students. Such findings suggest that a well-structured, integrated, and innovative pedagogy for teaching ethics will have an impact on the students' attainment of ethics education objectives and their attitude towards engineering ethics. As such, the research findings serve as a cornerstone to which the current practice of teaching and learning of engineering ethics education can be examined more critically, such that further improvements can be made to the existing curriculum that can help produce engineers that have strong moral and ethical characters.

  13. Engineering Education: Environmental and Chemical Engineering or Technology Curricula--A European Perspective

    ERIC Educational Resources Information Center

    Glavic, Peter; Lukman, Rebeka; Lozano, Rodrigo

    2009-01-01

    Over recent years, universities have been incorporating sustainable development (SD) into their systems, including their curricula. This article analyses the incorporation of SD into the curricula of chemical and environmental engineering or technology bachelor degrees at universities in the European Union (EU) and European Free Trade Association…

  14. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  15. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  16. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  17. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  18. 40 CFR 1042.245 - Deterioration factors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to meet the Tier 1 and Tier 2 emission standards would qualify as established technology. We must... deterioration factors for Category 1 and Category 2 engines, either with an engineering analysis, with pre... deterioration factors for an engine family with established technology based on engineering analysis instead of...

  19. Ultralean combustion in general aviation piston engines

    NASA Technical Reports Server (NTRS)

    Chirivella, J. E.

    1979-01-01

    The role of ultralean combustion in achieving fuel economy in general aviation piston engines was investigated. The aircraft internal combustion engine was reviewed with regard to general aviation requirements, engine thermodynamics and systems. Factors affecting fuel economy such as those connected with an ideal leanout to near the gasoline lean flammability limit (ultralean operation) were analyzed. A Lycoming T10-541E engine was tested in that program (both in the test cell and in flight). Test results indicate that hydrogen addition is not necessary to operate the engine ultralean. A 17 percent improvement in fuel economy was demonstrated in flight with the Beechcraft Duke B60 by simply leaning the engine at constant cruiser power and adjusting the ignition for best timing. No detonation was encountered, and a 25,000 ft ceiling was available. Engine roughness was shown to be the limiting factor in the leanout.

  20. Compound cycle engine for helicopter application

    NASA Technical Reports Server (NTRS)

    Castor, Jere; Martin, John; Bradley, Curtiss

    1987-01-01

    The compound cycle engine (CCE) is a highly turbocharged, power-compounded, ultra-high-power-density, lightweight diesel engine. The turbomachinery is similar to a moderate-pressure-ratio, free-power-turbine gas turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military helicopter applications. Cycle thermodynamic specific fuel consumption (SFC) and engine weight analyses performed to establish general engine operating parameters and configurations are presented. An extensive performance and weight analysis based on a typical 2-hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a contemporary gas turbine engine. The CCE had a 31 percent lower-fuel consumption and resulted in a 16 percent reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb/hp-hr and installed wet weight is 0.43 lb/hp. The major technology development areas required for the CCE are identified and briefly discussed.

  1. Compound cycle engine for helicopter application

    NASA Technical Reports Server (NTRS)

    Castor, Jere G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded, ultra-high power density, light-weight diesel engine. The turbomachinery is similar to a moderate pressure ratio, free power turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military light helicopter applications. This executive summary presents cycle thermodynamic (SFC) and engine weight analyses performed to establish general engine operating parameters and configuration. An extensive performance and weight analysis based on a typical two hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a T-800 class gas turbine engine. The CCE had a 31% lower-fuel consumption and resulted in a 16% reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb-HP-HR and installed wet weight is 0.43 lbs/HP. The major technology development areas required for the CCE are identified and briefly discussed.

  2. Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering.

    PubMed

    Wenk, Esther; Meinel, Anne J; Wildy, Sarah; Merkle, Hans P; Meinel, Lorenz

    2009-05-01

    The development of prototype scaffolds for either direct implantation or tissue engineering purposes and featuring spatiotemporal control of growth factor release is highly desirable. Silk fibroin (SF) scaffolds with interconnective pores, carrying embedded microparticles that were loaded with insulin-like growth factor I (IGF-I), were prepared by a porogen leaching protocol. Treatments with methanol or water vapor induced water insolubility of SF based on an increase in beta-sheet content as analyzed by FTIR. Pore interconnectivity was demonstrated by SEM. Porosities were in the range of 70-90%, depending on the treatment applied, and were better preserved when methanol or water vapor treatments were prior to porogen leaching. IGF-I was encapsulated into two different types of poly(lactide-co-glycolide) microparticles (PLGA MP) using uncapped PLGA (50:50) with molecular weights of either 14 or 35 kDa to control IGF-I release kinetics from the SF scaffold. Embedded PLGA MP were located in the walls or intersections of the SF scaffold. Embedment of the PLGA MP into the scaffolds led to more sustained release rates as compared to the free PLGA MP, whereas the hydrolytic degradation of the two PLGA MP types was not affected. The PLGA types used had distinct effects on IGF-I release kinetics. Particularly the supernatants of the lower molecular weight PLGA formulations turned out to release bioactive IGF-I. Our studies justify future investigations of the developed constructs for tissue engineering applications.

  3. Factors affecting the matriculation of African American undergraduate students in science, mathematics, engineering, and technology

    NASA Astrophysics Data System (ADS)

    Hall, Alfred L., II

    Previous research studies indicated that African Americans remain severely underrepresented in the field of science, mathematics, engineering, and technology (SMET), making up only 3% of that workforce, while representing 11.1% of all professional and related workers and 12.6% of the general population. As this country moves towards a more culturally diverse population, then representation of African Americans in SMET-related fields must be addressed in order to ensure our nation's competitiveness in a global market. This research study analyzed characteristics of African American undergraduate SMET majors participating in the Alliance for Minority Participation (AMP) program in six different states located in the Southeast region of the United States. These states consisted of Alabama, Florida, Georgia, Mississippi, North Carolina, and South Carolina. AMP program participants completed a survey questionnaire, which collected information about potential factors that could affect their matriculation in SMET programs of studies at their respective institutions. Follow-up interviews and focus group sessions were also conducted with AMP participants to provide supplemental information to the survey data. The results of student responses were analyzed according to the type of institution the students attended (Historically Black College or University and Majority White Institution) as well as by the statewide Alliance program in which the students were involved. The students responded to survey questions that asked for their reasons for majoring in their field of study, their level of satisfaction with their institution, their impressions of student support programs and persons, their impressions of faculty and advisors, their reasons for thinking of switching majors, and their level of high school preparation. Statistical analyses of the student responses found that African American AMP students attending Historically Black Colleges and Universities differed from those

  4. Comparative Analyses of Discourse in Specialized STEM School Classes

    ERIC Educational Resources Information Center

    Tofel-Grehl, Colby; Callahan, Carolyn M.; Nadelson, Louis S.

    2017-01-01

    The authors detail the discourse patterns observed within mathematics and science classes at specialized STEM (science, technology, engineering, and mathematics) high schools. Analyses reveal that teachers in mathematics classes tended to engage their students in authoritative discourse while teachers in science classes tended to engage students…

  5. Enhancing healthcare process design with human factors engineering and reliability science, part 1: setting the context.

    PubMed

    Boston-Fleischhauer, Carol

    2008-01-01

    The design and implementation of efficient, effective, and safe processes are never-ending challenges in healthcare. Less than optimal performance levels and rising concerns about patient safety suggest that traditional process design methods are insufficient to meet design requirements. In this 2-part series, the author presents human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare. An examination of these theories, application approaches, and examples are presented.

  6. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Gustafson, N. B.; Harmon, T. J.

    1993-01-01

    An advanced near term (1990's) space-based Orbit Transfer Vehicle Engine (OTVE) system was designed, and the technologies applicable to its construction, maintenance, and operations were developed under Tasks A through F of the Orbit Transfer Rocket Engine Technology Program. Task A was a reporting task. In Task B, promising OTV turbomachinery technologies were explored: two stage partial admission turbines, high velocity ratio diffusing crossovers, soft wear ring seals, advanced bearing concepts, and a rotordynamic analysis. In Task C, a ribbed combustor design was developed. Possible rib and channel geometries were chosen analytically. Rib candidates were hot air tested and laser velocimeter boundary layer analyses were conducted. A channel geometry was also chosen on the basis of laser velocimeter data. To verify the predicted heat enhancement effects, a ribbed calorimeter spool was hot fire tested. Under Task D, the optimum expander cycle engine thrust, performance and envelope were established for a set of OTV missions. Optimal nozzle contours and quick disconnects for modularity were developed. Failure Modes and Effects Analyses, maintenance and reliability studies and component study results were incorporated into the engine system. Parametric trades on engine thrust, mixture ratio, and area ratio were also generated. A control system and the health monitoring and maintenance operations necessary for a space-based engine were outlined in Task E. In addition, combustor wall thickness measuring devices and a fiberoptic shaft monitor were developed. These monitoring devices were incorporated into preflight engine readiness checkout procedures. In Task F, the Integrated Component Evaluator (I.C.E.) was used to demonstrate performance and operational characteristics of an advanced expander cycle engine system and its component technologies. Sub-system checkouts and a system blowdown were performed. Short transitions were then made into main combustor ignition and

  7. Engineering of a membrane-triggered activity switch in coagulation factor VIIa

    PubMed Central

    Nielsen, Anders L.; Sorensen, Anders B.; Holmberg, Heidi L.; Gandhi, Prafull S.; Karlsson, Johan; Buchardt, Jens; Lamberth, Kasper; Kjelgaard-Hansen, Mads; Ley, Carsten Dan; Sørensen, Brit B.; Ruf, Wolfram; Olsen, Ole H.; Østergaard, Henrik

    2017-01-01

    Recombinant factor VIIa (FVIIa) variants with increased activity offer the promise to improve the treatment of bleeding episodes in patients with inhibitor-complicated hemophilia. Here, an approach was adopted to enhance the activity of FVIIa by selectively optimizing substrate turnover at the membrane surface. Under physiological conditions, endogenous FVIIa engages its cell-localized cofactor tissue factor (TF), which stimulates activity through membrane-dependent substrate recognition and allosteric effects. To exploit these properties of TF, a covalent complex between FVIIa and the soluble ectodomain of TF (sTF) was engineered by introduction of a nonperturbing cystine bridge (FVIIa Q64C-sTF G109C) in the interface. Upon coexpression, FVIIa Q64C and sTF G109C spontaneously assembled into a covalent complex with functional properties similar to the noncovalent wild-type complex. Additional introduction of a FVIIa-M306D mutation to uncouple the sTF-mediated allosteric stimulation of FVIIa provided a final complex with FVIIa-like activity in solution, while exhibiting a two to three orders-of-magnitude increase in activity relative to FVIIa upon exposure to a procoagulant membrane. In a mouse model of hemophilia A, the complex normalized hemostasis upon vascular injury at a dose of 0.3 nmol/kg compared with 300 nmol/kg for FVIIa. PMID:29109275

  8. Student Opinions and Perceptions of Undergraduate Thermodynamics Courses in Engineering

    ERIC Educational Resources Information Center

    Ugursal, V. Ismet; Cruickshank, Cynthia A.

    2015-01-01

    Thermodynamics is a fundamental foundation of all engineering disciplines. A vast majority of engineering undergraduate programmes contain one or more courses on thermodynamics, and many engineers use thermodynamics every day to analyse or design energy systems. However, there is extensive anecdotal evidence as well as a wide range of published…

  9. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses.

    PubMed

    Modabbernia, Amirhossein; Velthorst, Eva; Reichenberg, Abraham

    2017-01-01

    According to recent evidence, up to 40-50% of variance in autism spectrum disorder (ASD) liability might be determined by environmental factors. In the present paper, we conducted a review of systematic reviews and meta-analyses of environmental risk factors for ASD. We assessed each review for quality of evidence and provided a brief overview of putative mechanisms of environmental risk factors for ASD. Current evidence suggests that several environmental factors including vaccination, maternal smoking, thimerosal exposure, and most likely assisted reproductive technologies are unrelated to risk of ASD. On the contrary, advanced parental age is associated with higher risk of ASD. Birth complications that are associated with trauma or ischemia and hypoxia have also shown strong links to ASD, whereas other pregnancy-related factors such as maternal obesity, maternal diabetes, and caesarian section have shown a less strong (but significant) association with risk of ASD. The reviews on nutritional elements have been inconclusive about the detrimental effects of deficiency in folic acid and omega 3, but vitamin D seems to be deficient in patients with ASD. The studies on toxic elements have been largely limited by their design, but there is enough evidence for the association between some heavy metals (most important inorganic mercury and lead) and ASD that warrants further investigation. Mechanisms of the association between environmental factors and ASD are debated but might include non-causative association (including confounding), gene-related effect, oxidative stress, inflammation, hypoxia/ischemia, endocrine disruption, neurotransmitter alterations, and interference with signaling pathways. Compared to genetic studies of ASD, studies of environmental risk factors are in their infancy and have significant methodological limitations. Future studies of ASD risk factors would benefit from a developmental psychopathology approach, prospective design, precise exposure

  10. Sustainability Metrics of a Small Scale Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Ekici, Selcuk; Sohret, Yasin; Coban, Kahraman; Altuntas, Onder; Karakoc, T. Hikmet

    2018-05-01

    Over the last decade, sustainable energy consumption has attracted the attention of scientists and researchers. The current paper presents sustainability indicators of a small scale turbojet engine, operated on micro-aerial vehicles, for discussion of the sustainable development of the aviation industry from a different perspective. Experimental data was obtained from an engine at full power load and utilized to conduct an exergy-based sustainability analysis. Exergy efficiency, waste exergy ratio, recoverable exergy ratio, environmental effect factor, exergy destruction factor and exergetic sustainability index are evaluated as exergetic sustainability indicators of the turbojet engine under investigation in the current study. The exergy efficiency of the small scale turbojet engine is calculated as 27.25 % whereas the waste exergy ratio, the exergy destruction factor and the sustainability index of the engine are found to be 0.9756, 0.5466 and 0.2793, respectively.

  11. Space Station engineering and technology development

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Historical background, costs, organizational assignments, technology development, user requirements, mission evolution, systems analyses and design, systems engineering and integration, contracting, and policies of the space station are discussed.

  12. Characterization of human myoblast cultures for tissue engineering.

    PubMed

    Stern-Straeter, Jens; Bran, Gregor; Riedel, Frank; Sauter, Alexander; Hörmann, Karl; Goessler, Ulrich Reinhart

    2008-01-01

    Skeletal muscle tissue engineering, a promising specialty, aims at the reconstruction of skeletal muscle loss. In vitro tissue engineering attempts to achieve this goal by creating differentiated, functional muscle tissue through a process in which stem cells are extracted from the patient, e.g. by muscle biopsies, expanded and differentiated in a controlled environment, and subsequently re-implanted. A prerequisite for this undertaking is the ability to cultivate and differentiate human skeletal muscle cell cultures. Evidently, optimal culture conditions must be investigated for later clinical utilization. We therefore analysed the proliferation of human cells in different environments and evaluated the differentiation potential of different culture media. It was shown that human myoblasts have a higher rate of proliferation in the alamarBlue assay when cultured on gelatin-coated culture flasks rather than polystyrene-coated flasks. We also demonstrated that myoblasts treated with a culture medium with a high concentration of growth factors [growth medium (GM)] showed a higher proliferation compared to cultures treated with a culture medium with lower amounts of growth factors [differentiation medium (DM)]. Differentiation of human myoblast cell cultures treated with GM and DM was analysed until day 16 and myogenesis was verified by expression of MyoD, myogenin, alpha-sarcomeric actin and myosin heavy chain by semi-quantitative RT-PCR. Immunohistochemical staining for desmin, Myf-5 and alpha-sarcomeric actin was performed to verify the myogenic phenotype of extracted satellite cells and to prove the maturation of cells. Cultures treated with DM showed positive staining for alpha-sarcomeric actin. Notably, markers of differentiation were also detected in cultures treated with GM, but there was no formation of myotubes. In the enzymatic assay of creatine phosphokinase, cultures treated with DM showed a higher activity, evidencing a higher degree of differentiation

  13. Analyses of Factors Affecting Endothelial Cell Density in an Eye Bank Corneal Donor Database.

    PubMed

    Kwon, Ji Won; Cho, Kyong Jin; Kim, Hong Kyu; Lee, Jimmy K; Gore, Patrick K; McCartney, Mitchell D; Chuck, Roy S

    2016-09-01

    To analyze the factors affecting central corneal endothelial cell density (ECD) in an eye bank corneal donor database. The Lion's Eye Institute corneal donor database consisting of 18,665 donors (34,234 corneas) aged 20 years or older was analyzed. In particular, differences in the ECD based on age, sex, race, prior ocular surgery, a history of systemic diseases, and smoking were investigated. Furthermore, risk factors for donor cell count inadequacy (defined here as ECD less than 2000/mm) were identified. ECD decreased with age. Regarding race, the average ECD of African American donors was higher than those of white or Hispanic donors. A history of diabetes mellitus (DM) and ocular surgery were associated with a lower ECD. Donor medical history of hypertension, glaucoma, depression, dementia, Parkinson disease, hyper- or hypothyroidism, or smoking did not seem to affect the ECD. The risk factors for donor cell count inadequacy, based on binary logistic regression analyses were advanced age [65-74 years yielded an odds ratio of 17.8; confidence interval (CI), 10.6-29.8; P < 0.001; and 75-99 years yielded an odds ratio of 24.6 (CI, 14.5-41.61; P < 0.001) when compared with 20-34 years], cataract surgery (odds ratio, 4.3; CI, 4.0-4.8; P < 0.001), and DM (odds ratio, 1.2; CI, 1.1-1.3; P = 0.001). Age, race, ocular surgery (cataract and refractive), and DM seem to significantly affect donor corneal ECD. Of these variables, age, a history of cataract surgery, and DM were found to be the greatest risk factors for inadequate donor cell density (less than 2000/mm).

  14. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, withmore » full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.« less

  15. * Hierarchically Structured Electrospun Scaffolds with Chemically Conjugated Growth Factor for Ligament Tissue Engineering.

    PubMed

    Pauly, Hannah M; Sathy, Binulal N; Olvera, Dinorath; McCarthy, Helen O; Kelly, Daniel J; Popat, Ketul C; Dunne, Nicholas J; Haut Donahue, Tammy Lynn

    2017-08-01

    The anterior cruciate ligament (ACL) of the knee is vital for proper joint function and is commonly ruptured during sports injuries or car accidents. Due to a lack of intrinsic healing capacity and drawbacks with allografts and autografts, there is a need for a tissue-engineered ACL replacement. Our group has previously used aligned sheets of electrospun polycaprolactone nanofibers to develop solid cylindrical bundles of longitudinally aligned nanofibers. We have shown that these nanofiber bundles support cell proliferation and elongation and the hierarchical structure and material properties are similar to the native human ACL. It is possible to combine multiple nanofiber bundles to create a scaffold that attempts to mimic the macroscale structure of the ACL. The goal of this work was to develop a hierarchical bioactive scaffold for ligament tissue engineering using connective tissue growth factor (CTGF)-conjugated nanofiber bundles and evaluate the behavior of mesenchymal stem cells (MSCs) on these scaffolds in vitro and in vivo. CTGF was immobilized onto the surface of individual nanofiber bundles or scaffolds consisting of multiple nanofiber bundles. The conjugation efficiency and the release of conjugated CTGF were assessed using X-ray photoelectron spectroscopy, assays, and immunofluorescence staining. Scaffolds were seeded with MSCs and maintained in vitro for 7 days (individual nanofiber bundles), in vitro for 21 days (scaled-up scaffolds of 20 nanofiber bundles), or in vivo for 6 weeks (small scaffolds of 4 nanofiber bundles), and ligament-specific tissue formation was assessed in comparison to non-CTGF-conjugated control scaffolds. Results showed that CTGF conjugation encouraged cell proliferation and ligament-specific tissue formation in vitro and in vivo. The results suggest that hierarchical electrospun nanofiber bundles conjugated with CTGF are a scalable and bioactive scaffold for ACL tissue engineering.

  16. Development of hypersonic engine seals: Flow effects of preload and engine pressures

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Mutharasan, Rajakkannu; Ko, Frank K.; Steinetz, Bruce M.

    1993-01-01

    A new type of engine seal is being developed to meet the needs of advanced hypersonic engines. A seal braided of emerging high temperature ceramic fibers comprised of a sheath-core construction was selected for study based on its low leakage rates. Flexible, low-leakage, high temperature seals are required to seal the movable engine panels of advanced ramjet-scramjet engines either preventing potentially dangerous leakage into backside engine cavities or limiting the purge coolant flow rates through the seals. To predict the leakage through these flexible, porous seal structures as a function of preload and engine pressures, new analytical flow models are required. An empirical leakage resistance/preload model is proposed to characterize the observed decrease in leakage with increasing preload. Empirically determined compression modulus and preload factor are used to correlate experimental leakage data for a wide range of seal architectures. Good agreement between measured and predicted values are observed over a range of engine pressures and seal preloads.

  17. Turbojet-engine Starting and Acceleration

    NASA Technical Reports Server (NTRS)

    Mc Cafferty, R. J.; Straight, D. M.

    1956-01-01

    From considerations of safety and reliability in performance of gas-turbine aircraft, it is clear that engine starting and acceleration are of utmost importance. For this reason extensive efforts have been devoted to the investigation of the factors involved in the starting and acceleration of engines. In chapter III it is shown that certain basic combustion requirements must be met before ignition can occur; consequently, the design and operation of an engine must be tailored to provide these basic requirements in the combustion zone of the engine, particularly in the vicinity of the ignition source. It is pointed out in chapter III that ignition by electrical discharges is aided by high pressure, high temperature, low gas velocity and turbulence, gaseous fuel-air mixture, proper mixture strength, and-an optimum spark. duration. The simultaneous achievement of all these requirements in an actual turbojet-engine combustor is obviously impossible, yet any attempt to satisfy as many requirements as possible will result in lower ignition energies, lower-weight ignition systems, and greater reliability. These factors together with size and cost considerations determine the acceptability of the final ignition system. It is further shown in chapter III that the problem of wall quenching affects engine starting. For example, the dimensions of the volume to be burned must be larger than the quenching distance at the lowest pressure and the most adverse fuel-air ratio encountered. This fact affects the design of cross-fire tubes between adjacent combustion chambers in a tubular-combustor turbojet engine. Only two chambers in these engines contain spark plugs; therefore, the flame must propagate through small connecting tubes between the chambers. The quenching studies indicate that if the cross-fire tubes are too narrow the flame will not propagate from one chamber to another. In order to better understand the role of the basic factors in actual engine operation, many

  18. Finite element analyses for seismic shear wall international standard problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.J.; Hofmayer, C.H.

    Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation`s (NUPEC) Tadotsu Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP (SSWISP) was to evaluate various seismic analysis methods for concrete structuresmore » used for design and seismic margin assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the University of California at Berkeley (UCB). The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes are described in detail in this report. 16 refs., 60 figs., 16 tabs.« less

  19. Adiabatic diesel engine component development: Reference engine for on-highway applications

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.

    1986-01-01

    The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.

  20. Cartilage Engineering from Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.

    Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.

  1. Exploratory Factor Analyses of the CAHPS® Hospital Pilot Survey Responses across and within Medical, Surgical, and Obstetric Services

    PubMed Central

    O'Malley, A James; Zaslavsky, Alan M; Hays, Ron D; Hepner, Kimberly A; Keller, San; Cleary, Paul D

    2005-01-01

    Objectives To estimate the associations among hospital-level scores from the Consumer Assessments of Healthcare Providers and Systems (CAHPS®) Hospital pilot survey within and across different services (surgery, obstetrics, medical), and to evaluate differences between hospital- and patient-level analyses. Data Source CAHPS Hospital pilot survey data provided by the Centers for Medicare and Medicaid Services. Study Design Responses to 33 questionnaire items were analyzed using patient- and hospital-level exploratory factor analytic (EFA) methods to identify both a patient-level and hospital-level composite structures for the CAHPS Hospital survey. The latter EFA was corrected for patient-level sampling variability using a hierarchical model. We compared results of these analyses with each other and to separate EFAs conducted at the service level. To quantify the similarity of assessments across services, we compared correlations of different composites within the same service with those of the same composite across different services. Data Collection Cross-sectional data were collected during the summer of 2003 via mail and telephone from 19,720 patients discharged from November 2002 through January 2003 from 132 hospitals in three states. Principal Findings Six factors provided the best description of inter-item covariation at the patient level. Analyses that assessed variability across both services and hospitals suggested that three dimensions provide a parsimonious summary of inter-item covariation at the hospital level. Hospital-level factor structures also differed across services; as much variation in quality reports was explained by service as by composite. Conclusions Variability of CAHPS scores across hospitals can be reported parsimoniously using a limited number of composites. There is at least as much distinct information in composite scores from different services as in different composite scores within each service. Because items cluster slightly

  2. Engine Performance and Knock Rating of Fuels for High-output Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Rothbrock, A M; Biermann, Arnold E

    1938-01-01

    Data are presented to show the effects of inlet-air pressure, inlet-air temperature, and compression ratio on the maximum permissible performance obtained on a single-cylinder test engine with aircraft-engine fuels varying from a fuel of 87 octane number to one 100 octane number plus 1 ml of tetraethyl lead per gallon. The data were obtained on a 5-inch by 5.75-inch liquid-cooled engine operating at 2,500 r.p.m. The compression ratio was varied from 6.50 to 8.75. The inlet-air temperature was varied from 120 to 280 F. and the inlet-air pressure from 30 inches of mercury absolute to the highest permissible. The limiting factors for the increase in compression ratio and in inlet-air pressure was the occurrence of either audible or incipient knock. The data are correlated to show that, for any one fuel,there is a definite relationship between the limiting conditions of inlet-air temperature and density at any compression ratio. This relationship is dependent on the combustion-gas temperature and density relationship that causes knock. The report presents a suggested method of rating aircraft-engine fuels based on this relationship. It is concluded that aircraft-engine fuels cannot be satisfactorily rated by any single factor, such as octane number, highest useful compression ratio, or allowable boost pressure. The fuels should be rated by a curve that expresses the limitations of the fuel over a variety of engine conditions.

  3. Analysis of the JSF Engine Competition

    DTIC Science & Technology

    2012-09-01

    even 25 Competition for Support Services  Support costs are typically more than half of life-cycle costs and normally incurred in a sole-source...Strike Fighter), Aircraft Engines, Competition, Military Procurement, Defense Industry, Cost Analysis Analysis of the JSF Engine Competition James...different designs to meet the same functional requirements. Such a case was examined by the Institute for Defense Analyses in a forward-looking cost and

  4. Applications and Engineering Analysis of Lotus Roots under External Water Pressure

    PubMed Central

    Wang, Chang Jiang; Mynors, Diane

    2016-01-01

    Engineers can learn from nature for inspirations to create new designs. The internal structure of lotus roots with several oval holes was studied in this paper for engineering inspirations. The structural performance of lotus roots under outside water pressure was simulated and compared with various cross-sectional areas. The distribution of stresses in the cross-sectional area of lotus roots was analysed and presented. It was found that the maximum compressive stresses in the cross-sectional area of lotus roots were occurring at the long axis ends of the holes. This was very different from that of circular holes. Further analysis on the triaxiality factors revealed that the cross-sectional area of the lotus root resulted in large areas of high triaxiality factors. The resulting hydrostatic stress in the cross-sectional area of lotus root ranges from zero to 2.7 times the applied outside pressure. In contrast, the hydrostatic stress in a cylindrical cross-sectional area is a fixed value. The study showed that the lotus root and the orientation of the oval holes could be mimicked in the design of new structures, for example, underwater pipes and vessels. PMID:28127228

  5. Nitrogen oxide emission calculation for post-Panamax container ships by using engine operation power probability as weighting factor: A slow-steaming case.

    PubMed

    Cheng, Chih-Wen; Hua, Jian; Hwang, Daw-Shang

    2018-06-01

    In this study, the nitrogen oxide (NO x ) emission factors and total NO x emissions of two groups of post-Panamax container ships operating on a long-term slow-steaming basis along Euro-Asian routes were calculated using both the probability density function of engine power levels and the NO x emission function. The main engines of the five sister ships in Group I satisfied the Tier I emission limit stipulated in MARPOL (International Convention for the Prevention of Pollution from Ships) Annex VI, and those in Group II satisfied the Tier II limit. The calculated NO x emission factors of the Group I and Group II ships were 14.73 and 17.85 g/kWhr, respectively. The total NO x emissions of the Group II ships were determined to be 4.4% greater than those of the Group I ships. When the Tier II certification value was used to calculate the average total NO x emissions of Group II engines, the result was lower than the actual value by 21.9%. Although fuel consumption and carbon dioxide (CO 2 ) emissions were increased by 1.76% because of slow steaming, the NO x emissions were markedly reduced by 17.2%. The proposed method is more effective and accurate than the NO x Technical Code 2008. Furthermore, it can be more appropriately applied to determine the NO x emissions of international shipping inventory. The usage of operating power probability density function of diesel engines as the weighting factor and the NO x emission function obtained from test bed for calculating NO x emissions is more accurate and practical. The proposed method is suitable for all types and purposes of diesel engines, irrespective of their operating power level. The method can be used to effectively determine the NO x emissions of international shipping and inventory applications and should be considered in determining the carbon tax to be imposed in the future.

  6. Predictive Engineering Tools for Injection-Molded Long-Carbon-Thermoplastic Composites: Weight and Cost Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Fifield, Leonard S.; Gandhi, Umesh N.

    This project proposed to integrate, optimize and validate the fiber orientation and length distribution models previously developed and implemented in the Autodesk Simulation Moldflow Insight (ASMI) package for injection-molded long-carbon-fiber thermoplastic composites into a cohesive prediction capability. The current effort focused on rendering the developed models more robust and efficient for automotive industry part design to enable weight savings and cost reduction. The project goal has been achieved by optimizing the developed models, improving and integrating their implementations in ASMI, and validating them for a complex 3D LCF thermoplastic automotive part (Figure 1). Both PP and PA66 were used asmore » resin matrices. After validating ASMI predictions for fiber orientation and fiber length for this complex part against the corresponding measured data, in collaborations with Toyota and Magna PNNL developed a method using the predictive engineering tool to assess LCF/PA66 complex part design in terms of stiffness performance. Structural three-point bending analyses of the complex part and similar parts in steel were then performed for this purpose, and the team has then demonstrated the use of stiffness-based complex part design assessment to evaluate weight savings relative to the body system target (≥ 35%) set in Table 2 of DE-FOA-0000648 (AOI #1). In addition, starting from the part-to-part analysis, the PE tools enabled an estimated weight reduction for the vehicle body system using 50 wt% LCF/PA66 parts relative to the current steel system. Also, from this analysis an estimate of the manufacturing cost including the material cost for making the equivalent part in steel has been determined and compared to the costs for making the LCF/PA66 part to determine the cost per “saved” pound.« less

  7. The influence of engineers' training models on ethics and civic education component in engineering courses in Portugal

    NASA Astrophysics Data System (ADS)

    Monteiro, Fátima; Leite, Carlinda; Rocha, Cristina

    2017-03-01

    The recognition of the need and importance of including ethical and civic education in engineering courses, as well as the training profile on ethical issues, relies heavily on the engineer's concept and the perception of the engineering action. These views are strongly related to the different engineer education model conceptions and its historical roots. In Portugal, engineer education is done based on two different higher education subsystems, the university and the polytechnic. This study analyses how engineers' educational models, present in the two Portuguese higher education subsystems, influence and are reflected in the importance attached to students' ethic and civic education and in the role that this training plays. Although the data suggest the prevalence of the distinction between the two training models and the corresponding distinction of ethic and civic education that is incorporated in the curricula, it is also noted the existence of mixed feature courses in university education.

  8. Quiet Clean Short-Haul Experimental Engine (QCSEE). Preliminary analyses and design report, volume 2

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The experimental and flight propulsion systems are presented. The following areas are discussed: engine core and low pressure turbine design; bearings and seals design; controls and accessories design; nacelle aerodynamic design; nacelle mechanical design; weight; and aircraft systems design.

  9. Characterizing Design Cognition of High School Students: Initial Analyses Comparing Those with and without Pre-Engineering Experiences

    ERIC Educational Resources Information Center

    Wells, John; Lammi, Matthew; Gero, John; Grubbs, Michael E.; Paretti, Marie; Williams, Christopher

    2016-01-01

    Reported in this article are initial results from of a longitudinal study to characterize the design cognition and cognitive design styles of high school students with and without pre-engineering course experience over a 2-year period, and to compare them with undergraduate engineering students. The research followed a verbal protocol analysis…

  10. System safety in Stirling engine development

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1981-01-01

    The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.

  11. Gender and Achievement-Related Beliefs among Engineering Students

    NASA Astrophysics Data System (ADS)

    Heyman, Gail D.; Martyna, Bryn; Bhatia, Sangeeta

    Achievement-related beliefs were examined among a group of 238 college students in engineering (38 female, 104 male) and nonengineering majors (57 female, 39 male) to understand why women enter engineering majors at a low rate and are more likely than men to leave such majors. The results indicated that (a) among the engineering majors, women were more likely than men to identify engineering aptitude as a fixed ability, a belief that was associated with a tendency to drop classes when faced with difficulty; (b) female engineering majors were more likely to perceive male and female engineering students as receiving different treatment than their male counterparts; and (c) female engineering majors tended to place more emphasis on extrinsic factors and less emphasis on intrinsic factors than female nonengineering majors, a pattern not seen among men. Implications for intervention programs are discussed.

  12. Job Prospects for Nuclear Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1987-01-01

    Discusses trends in job opportunities for nuclear engineers. Lists some of the factors influencing increases and decreases in the demand for nuclear engineers. Describes the effects on career opportunities from recent nuclear accidents, military research and development, and projected increases of demand for electricity. (TW)

  13. Web Search Studies: Multidisciplinary Perspectives on Web Search Engines

    NASA Astrophysics Data System (ADS)

    Zimmer, Michael

    Perhaps the most significant tool of our internet age is the web search engine, providing a powerful interface for accessing the vast amount of information available on the world wide web and beyond. While still in its infancy compared to the knowledge tools that precede it - such as the dictionary or encyclopedia - the impact of web search engines on society and culture has already received considerable attention from a variety of academic disciplines and perspectives. This article aims to organize a meta-discipline of “web search studies,” centered around a nucleus of major research on web search engines from five key perspectives: technical foundations and evaluations; transaction log analyses; user studies; political, ethical, and cultural critiques; and legal and policy analyses.

  14. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-07-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency.

  15. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DOE PAGES

    Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather; ...

    2017-10-30

    Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less

  16. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dossani, Zain Y.; Reider Apel, Amanda; Szmidt-Middleton, Heather

    Despite the need for inducible promoters in strain development efforts, the majority of engineering in Saccharomyces cerevisiae continues to rely on a few constitutively active or inducible promoters. Building on advances that use the modular nature of both transcription factors and promoter regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein. Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domainmore » of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes, and the hybrid promoters can be induced using estradiol, a compound with no detectable impact on S. cerevisiae physiology. Using combinations of one, two or three operator sequence repeats and a set of native S. cerevisiae promoters, we obtained a series of hybrid promoters that can be induced to different levels, using the same synthetic TF and a given estradiol. Finally, this set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain.« less

  17. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.

    PubMed

    Santo, Vítor E; Gomes, Manuela E; Mano, João F; Reis, Rui L

    2012-07-01

    The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.

  18. Turbine engine rotor health monitoring evaluation by means of finite element analyses and spin tests data

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George Y.

    2014-04-01

    Generally, rotating engine components undergo high centrifugal loading environment which subject them to various types of failure initiation mechanisms. Health monitoring of these components is a necessity and is often challenging to implement. This is primarily due to numerous factors including the presence of scattered loading conditions, flaw sizes, component geometry and materials properties, all which hinder the simplicity of applying health monitoring applications. This paper represents a summary work of combined experimental and analytical modeling that included data collection from a spin test experiment of a rotor disk addressing the aforementioned durability issues. It further covers presentation of results obtained from a finite element modeling study to characterize the structural durability of a cracked rotor as it relates to the experimental findings. The experimental data include blade tip clearance, blade tip timing and shaft displacement measurements. The tests were conducted at the NASA Glenn Research Center's Rotordynamics Laboratory, a high precision spin rig. The results are evaluated and examined to determine their significance on the development of a health monitoring system to pre-predict cracks and other anomalies and to assist in initiating a supplemental physics based fault prediction analytical model.

  19. Recycling of waste engine oil for diesel production.

    PubMed

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Engaging Community College Students Using an Engineering Learning Community

    NASA Astrophysics Data System (ADS)

    Maccariella, James, Jr.

    The study investigated whether community college engineering student success was tied to a learning community. Three separate data collection sources were utilized: surveys, interviews, and existing student records. Mann-Whitney tests were used to assess survey data, independent t-tests were used to examine pre-test data, and independent t-tests, analyses of covariance (ANCOVA), chi-square tests, and logistic regression were used to examine post-test data. The study found students that participated in the Engineering TLC program experienced a significant improvement in grade point values for one of the three post-test courses studied. In addition, the analysis revealed the odds of fall-to-spring retention were 5.02 times higher for students that participated in the Engineering TLC program, and the odds of graduating or transferring were 4.9 times higher for students that participated in the Engineering TLC program. However, when confounding variables were considered in the study (engineering major, age, Pell Grant participation, gender, ethnicity, and full-time/part-time status), the analyses revealed no significant relationship between participation in the Engineering TLC program and course success, fall-to-spring retention, and graduation/transfer. Thus, the confounding variables provided alternative explanations for results. The Engineering TLC program was also found to be effective in providing mentoring opportunities, engagement and motivation opportunities, improved self confidence, and a sense of community. It is believed the Engineering TLC program can serve as a model for other community college engineering programs, by striving to build a supportive environment, and provide guidance and encouragement throughout an engineering student's program of study.

  1. Recent meta-analyses neglect previous systematic reviews and meta-analyses about the same topic: a systematic examination.

    PubMed

    Helfer, Bartosz; Prosser, Aaron; Samara, Myrto T; Geddes, John R; Cipriani, Andrea; Davis, John M; Mavridis, Dimitris; Salanti, Georgia; Leucht, Stefan

    2015-04-14

    As the number of systematic reviews is growing rapidly, we systematically investigate whether meta-analyses published in leading medical journals present an outline of available evidence by referring to previous meta-analyses and systematic reviews. We searched PubMed for recent meta-analyses of pharmacological treatments published in high impact factor journals. Previous systematic reviews and meta-analyses were identified with electronic searches of keywords and by searching reference sections. We analyzed the number of meta-analyses and systematic reviews that were cited, described and discussed in each recent meta-analysis. Moreover, we investigated publication characteristics that potentially influence the referencing practices. We identified 52 recent meta-analyses and 242 previous meta-analyses on the same topics. Of these, 66% of identified previous meta-analyses were cited, 36% described, and only 20% discussed by recent meta-analyses. The probability of citing a previous meta-analysis was positively associated with its publication in a journal with a higher impact factor (odds ratio, 1.49; 95% confidence interval, 1.06 to 2.10) and more recent publication year (odds ratio, 1.19; 95% confidence interval 1.03 to 1.37). Additionally, the probability of a previous study being described by the recent meta-analysis was inversely associated with the concordance of results (odds ratio, 0.38; 95% confidence interval, 0.17 to 0.88), and the probability of being discussed was increased for previous studies that employed meta-analytic methods (odds ratio, 32.36; 95% confidence interval, 2.00 to 522.85). Meta-analyses on pharmacological treatments do not consistently refer to and discuss findings of previous meta-analyses on the same topic. Such neglect can lead to research waste and be confusing for readers. Journals should make the discussion of related meta-analyses mandatory.

  2. Borescope Inspection Management for Engine

    NASA Astrophysics Data System (ADS)

    Zhongda, Yuan

    2018-03-01

    In this paper, we try to explain the problems need to be improved from the two perspectives of maintenance program management and maintenance human risk control. On the basis of optimization analysis of borescope inspection maintenance scheme, the defect characteristics and expansion rules of engine heat terminal components are summarized, and some optimization measures are introduced. This paper analyses human risk problem of engine hole from the aspects of qualification management, training requirements and perfection of system, and puts forward some suggestions on management.

  3. Women and Men of the Engineering Path: A Model for Analyses of Undergraduate Careers.

    ERIC Educational Resources Information Center

    Adelman, Clifford

    This monograph provides college academic administrators, institutional researchers, professional and learned societies, and academic advisors with information to improve understanding of the paths students take through engineering programs in higher education. The evidence used in this study comes principally from the 11-year college transcript…

  4. Group by Subject or by Ability? Tertiary Mathematics for Engineering Students

    ERIC Educational Resources Information Center

    Plank, Michael; James, Alex; Hannah, John

    2011-01-01

    The mathematics topics taught to engineering students at university are ostensibly no different to those taught to mathematics majors, so should these students be taught together or separately? Should engineering students be segregated by ability in their mathematics classes? This study analyses the grades of over 1000 engineering students, and…

  5. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  6. Aircraft engine pollution reduction

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines.

  7. Inelastic and Dynamic Fracture and Stress Analyses

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1984-01-01

    Large deformation inelastic stress analysis and inelastic and dynamic crack propagation research work is summarized. The salient topics of interest in engine structure analysis that are discussed herein include: (1) a path-independent integral (T) in inelastic fracture mechanics, (2) analysis of dynamic crack propagation, (3) generalization of constitutive relations of inelasticity for finite deformations , (4) complementary energy approaches in inelastic analyses, and (5) objectivity of time integration schemes in inelastic stress analysis.

  8. Brownian Carnot engine

    PubMed Central

    Dinis, L.; Petrov, D.; Parrondo, J. M. R.; Rica, R. A.

    2016-01-01

    The Carnot cycle imposes a fundamental upper limit to the efficiency of a macroscopic motor operating between two thermal baths1. However, this bound needs to be reinterpreted at microscopic scales, where molecular bio-motors2 and some artificial micro-engines3–5 operate. As described by stochastic thermodynamics6,7, energy transfers in microscopic systems are random and thermal fluctuations induce transient decreases of entropy, allowing for possible violations of the Carnot limit8. Here we report an experimental realization of a Carnot engine with a single optically trapped Brownian particle as the working substance. We present an exhaustive study of the energetics of the engine and analyse the fluctuations of the finite-time efficiency, showing that the Carnot bound can be surpassed for a small number of non-equilibrium cycles. As its macroscopic counterpart, the energetics of our Carnot device exhibits basic properties that one would expect to observe in any microscopic energy transducer operating with baths at different temperatures9–11. Our results characterize the sources of irreversibility in the engine and the statistical properties of the efficiency—an insight that could inspire new strategies in the design of efficient nano-motors. PMID:27330541

  9. Thermal finite-element analysis of space shuttle main engine turbine blade

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert

    1987-01-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  10. Identifying the Challenging Factors in the Transition from Colleges of Engineering to Employment

    ERIC Educational Resources Information Center

    Baytiyeh, Hoda; Naja, Mohamad

    2012-01-01

    The transition from university to a career in engineering is a challenging process. This study examined the perceptions of engineering graduates regarding the difficulties they encountered in their transition from the university to the workplace. Lebanese practising engineers (n=217), living around the world, were surveyed to identify their…

  11. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  12. Specialty and Systems Engineering Supplement to IEEE 15288.1

    DTIC Science & Technology

    2017-08-28

    requirements with a space-specific recommended practice. (8) Added Section 3.2.21, Systems Engineering Data Item Descriptions (DIDs...Systems Engineering Data Item Descriptions ........................................................ 17 4. Applicable Documents...and life cycle cost analyses. d. Alternative designs and capabilities of manufacturing are evaluated . e. Long-lead-time items, material source

  13. Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns.

    PubMed

    Shang, Haihong; Li, Wei; Zou, Changsong; Yuan, Youlu

    2013-07-01

    NAC domain proteins are plant-specific transcription factors known to play diverse roles in various plant developmental processes. In the present study, we performed the first comprehensive study of the NAC gene family in Gossypium raimondii Ulbr., incorporating phylogenetic, chromosomal location, gene structure, conserved motif, and expression profiling analyses. We identified 145 NAC transcription factor (NAC-TF) genes that were phylogenetically clustered into 18 distinct subfamilies. Of these, 127 NAC-TF genes were distributed across the 13 chromosomes, 80 (55%) were preferentially retained duplicates located in both duplicated regions and six were located in triplicated chromosomal regions. The majority of NAC-TF genes showed temporal-, spatial-, and tissue-specific expression patterns based on transcriptomic and qRT-PCR analyses. However, the expression patterns of several duplicate genes were partially redundant, suggesting the occurrence of sub-functionalization during their evolution. Based on their genomic organization, we concluded that genomic duplications contributed significantly to the expansion of the NAC-TF gene family in G. raimondii. Comprehensive analysis of their expression profiles could provide novel insights into the functional divergence among members of the NAC gene family in G. raimondii. © 2013 Institute of Botany, Chinese Academy of Sciences.

  14. Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study.

    PubMed

    Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan

    2016-11-01

    The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R(2) = 0.40). All LEVEL 2 factors are important theoretically as well as for clinical assessment.

  15. Health behaviors of Operating Engineers.

    PubMed

    Duffy, Sonia A; Missel, Amanda L; Waltje, Andrea H; Ronis, David L; Fowler, Karen E; Hong, OiSaeng

    2011-07-01

    Operating Engineers (heavy equipment operators in construction) may be at particular risk for heart disease and cancer related to their exposure to environmental dust and smoking, the sedentary nature of their job, and long hours of exposure to the sun. The aim of this study was to characterize the health behaviors of Operating Engineers. This cross-sectional survey from a convenience sample of Operating Engineers (N = 498) used validated instruments to measure smoking, drinking, diet, exercise, sleep, and sun exposure. Univariate and bivariate analyses to detect differences by age were conducted. The sample scored significantly worse on all five health behaviors compared to population norms. Those who were older were less likely to smoke and chew tobacco and more likely to eat fruits and vegetables. Many were interested in services to improve their health behaviors. Health behavior interventions are needed and wanted by Operating Engineers. Copyright 2011, SLACK Incorporated.

  16. Health Behaviors of Operating Engineers

    PubMed Central

    Duffy, Sonia A.; Missel, Amanda L.; Waltje, Andrea H.; Ronis, David L.; Fowler, Karen E.; Hong, OiSaeng

    2013-01-01

    RESEARCH ABSTRACT Operating Engineers (heavy equipment operators in construction) may be at particular risk for heart disease and cancer related to their exposure to environmental dust and smoking, the sedentary nature of their job, and long hours of exposure to the sun. The aim of this study was to characterize the health behaviors of Operating Engineers. This cross-sectional survey from a convenience sample of Operating Engineers (N = 498) used validated instruments to measure smoking, drinking, diet, exercise, sleep, and sun exposure. Univariate and bivariate analyses to detect differences by age were conducted. The sample scored significantly worse on all five health behaviors compared to population norms. Those who were older were less likely to smoke and chew tobacco and more likely to eat fruits and vegetables. Many were interested in services to improve their health behaviors. Health behavior interventions are needed and wanted by Operating Engineers. PMID:21688764

  17. High pressure oxygen turbopump bearing cage stability analyses. [space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Merriman, T. L.; Kannel, J. W.

    1984-01-01

    The low service life of the high pressure oxygen turbopump (HPOTP) bearings used in the space shuttle main engine was examined by use of the Battelle "BASDAP' bearing computer stability model. The dynamic instability of the bearing cage resulted in excessive wear and eventual failure of the unit. By maintaining a cage/race clearance of no more than 0.25 millimeters (0.010 inches), ball/pocket clearance of no less than 0.54 millimeters (0.025 inches), dynamic balancing of the cages, and maintaining adequate lubricant films between the balls and races, cage instability and subsequent bearing degradation can be reduced.

  18. How can systems engineering inform the methods of programme evaluation in health professions education?

    PubMed

    Rojas, David; Grierson, Lawrence; Mylopoulos, Maria; Trbovich, Patricia; Bagli, Darius; Brydges, Ryan

    2018-04-01

    We evaluate programmes in health professions education (HPE) to determine their effectiveness and value. Programme evaluation has evolved from use of reductionist frameworks to those addressing the complex interactions between programme factors. Researchers in HPE have recently suggested a 'holistic programme evaluation' aiming to better describe and understand the implications of 'emergent processes and outcomes'. We propose a programme evaluation framework informed by principles and tools from systems engineering. Systems engineers conceptualise complexity and emergent elements in unique ways that may complement and extend contemporary programme evaluations in HPE. We demonstrate how the abstract decomposition space (ADS), an engineering knowledge elicitation tool, provides the foundation for a systems engineering informed programme evaluation designed to capture both planned and emergent programme elements. We translate the ADS tool to use education-oriented language, and describe how evaluators can use it to create a programme-specific ADS through iterative refinement. We provide a conceptualisation of emergent elements and an equation that evaluators can use to identify the emergent elements in their programme. Using our framework, evaluators can analyse programmes not as isolated units with planned processes and planned outcomes, but as unfolding, complex interactive systems that will exhibit emergent processes and emergent outcomes. Subsequent analysis of these emergent elements will inform the evaluator as they seek to optimise and improve the programme. Our proposed systems engineering informed programme evaluation framework provides principles and tools for analysing the implications of planned and emergent elements, as well as their potential interactions. We acknowledge that our framework is preliminary and will require application and constant refinement. We suggest that our framework will also advance our understanding of the construct of 'emergence

  19. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  20. Effect of bibliographical classification on the impact factor of science- and engineering-based journals.

    PubMed

    Foo, Jong Yong Abdiel

    2009-01-01

    The simplest and widely used assessment of academic research and researchers is the journal impact factor (JIF). However, the JIF may exhibit patterns that are skewed towards journals that publish high number of non-research items and short turnover research. Moreover, there are concerns as the JIF is often used as a comparison for journals from different disciplines. In this study, the JIF computation of eight top ranked journals from four different subject categories was analyzed. The analysis reveals that most of the published items (>65%) in the science disciplines were nonresearch items while fewer such items (<22%) were observed in engineering-based journals. The single regression analysis confirmed that there is correlation (R(2) > or = .99) in the number of published items or citations received over the two-year period used in the JIF calculation amongst the eight selected journals. A weighted factor computation is introduced to compensate for the smaller journals and journals that publish longer turnover research. It is hoped that the approach can provide a comprehensive assessment of the quality of a journal regardless of the disciplinary field.

  1. Performance deterioration of commercial high-bypass ratio turbofan engines

    NASA Technical Reports Server (NTRS)

    Mehalic, C. M.; Ziemianski, J. A.

    1980-01-01

    The results of engine performance deterioration investigations based on historical data, special engine tests, and specific tests to define the influence of flight loads and component clearances on performance are presented. The results of analyses of several damage mechanisms that contribute to performance deterioration such as blade tip rubs, airfoil surface roughness and erosion, and thermal distortion are also included. The significance of these damage mechanisms on component and overall engine performance is discussed.

  2. Undergraduate engineering student experiences: Comparing sex, gender and switcher status

    NASA Astrophysics Data System (ADS)

    Fergen, Brenda Sue

    This dissertation explores undergraduate engineering experiences, comparing men with women and switchers with non-switchers. Factors related to a chilly academic climate and gender-role socialization are hypothesized to contribute to variations in men's and women's academic experiences and persistence rates. Both quantitative and qualitative data are utilized in an effort to triangulate the findings. Secondary survey data, acquired as result of a 1992 Academic Environment Survey, were utilized to test the hypothesis that sex is the most important predictor (i.e., demographic variable) of perceptions of academic climate. Regression analyses show that sex by itself is not always a significant determinant. However, when sex and college (engineering vs. other) are combined into dummy variables, they are statistically significant in models where sex was not significant alone. This finding indicates that looking at sex differences alone may be too simplistic. Thirty personal interviews were conducted with a random stratified sample of undergraduate students from the 1993 engineering cohort. The interview data indicate that differences in childhood socialization are important. With regard to persistence, differences in socialization are greater for switchers vs. non-switchers than men vs. women. Thus, gender-role socialization does not appear to play as prominent a role in women's persistence as past literature would indicate. This may be due to the self-selection process that occurs among women who choose to pursue engineering. Other aspects of childhood socialization such as parents' level of educational and occupation, students' high school academic preparation and knowledge of what to expect of college classes appear to be more important. In addition, there is evidence that, for women, male siblings play an important role in socialization. There is also evidence that women engineering students at Midwestern University face a chilly academic climate. The factors which

  3. Nonlinearities in reservoir engineering: Enhancing quantum correlations

    NASA Astrophysics Data System (ADS)

    Hu, Xiangming; Hu, Qingping; Li, Lingchao; Huang, Chen; Rao, Shi

    2017-12-01

    There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are more advantageous for applications in quantum networks associated with reservoir engineering.

  4. System engineering and science projects: lessons from MeerKAT

    NASA Astrophysics Data System (ADS)

    Kapp, Francois

    2016-08-01

    The Square Kilometre Array (SKA) is a large science project planning to commence construction of the world's largest Radio Telescope after 2018. MeerKAT is one of the precursor projects to the SKA, based on the same site that will host the SKA Mid array in the central Karoo area of South Africa. From the perspective of signal processing hardware development, we analyse the challenges that MeerKAT encountered and extrapolate them to SKA in order to prepare the System Engineering and Project Management methods that could contribute to a successful completion of SKA. Using the MeerKAT Digitiser, Correlator/Beamformer and Time and Frequency Reference Systems as an example, we will trace the risk profile and subtle differences in engineering approaches of these systems over time and show the effects of varying levels of System Engineering rigour on the evolution of their risk profiles. It will be shown that the most rigorous application of System Engineering discipline resulted in the most substantial reduction in risk over time. Since the challenges faced by SKA are not limited to that of MeerKAT, we also look into how that translates to a system development where there is substantial complexity in both the created system as well as the creating system. Since the SKA will be designed and constructed by consortia made up from the ten member countries, there are many additional complexities to the organisation creating the system - a challenge the MeerKAT project did not encounter. Factors outside of engineering, for instance procurement models and political interests, also play a more significant role, and add to the project risks of SKA when compared to MeerKAT.

  5. Fostering Passion among First Year Engineering Students

    ERIC Educational Resources Information Center

    Mazumder, Quamrul H.

    2010-01-01

    Engineering is a complex field of study. Declining enrollment in engineering programs in the United States is of concern and understanding the various factors that contribute to this decline is in order. Fostering a higher level of student engagement with the content may foster passion towards engineering which could increase academic competency…

  6. Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set.

    PubMed

    Kurome, Mayuko; Geistlinger, Ludwig; Kessler, Barbara; Zakhartchenko, Valeri; Klymiuk, Nikolai; Wuensch, Annegret; Richter, Anne; Baehr, Andrea; Kraehe, Katrin; Burkhardt, Katinka; Flisikowski, Krzysztof; Flisikowska, Tatiana; Merkl, Claudia; Landmann, Martina; Durkovic, Marina; Tschukes, Alexander; Kraner, Simone; Schindelhauer, Dirk; Petri, Tobias; Kind, Alexander; Nagashima, Hiroshi; Schnieke, Angelika; Zimmer, Ralf; Wolf, Eckhard

    2013-05-20

    Somatic cell nuclear transfer (SCNT) using genetically engineered donor cells is currently the most widely used strategy to generate tailored pig models for biomedical research. Although this approach facilitates a similar spectrum of genetic modifications as in rodent models, the outcome in terms of live cloned piglets is quite variable. In this study, we aimed at a comprehensive analysis of environmental and experimental factors that are substantially influencing the efficiency of generating genetically engineered pigs. Based on a considerably large data set from 274 SCNT experiments (in total 18,649 reconstructed embryos transferred into 193 recipients), performed over a period of three years, we assessed the relative contribution of season, type of genetic modification, donor cell source, number of cloning rounds, and pre-selection of cloned embryos for early development to the cloning efficiency. 109 (56%) recipients became pregnant and 85 (78%) of them gave birth to offspring. Out of 318 cloned piglets, 243 (76%) were alive, but only 97 (40%) were clinically healthy and showed normal development. The proportion of stillborn piglets was 24% (75/318), and another 31% (100/318) of the cloned piglets died soon after birth. The overall cloning efficiency, defined as the number of offspring born per SCNT embryos transferred, including only recipients that delivered, was 3.95%. SCNT experiments performed during winter using fetal fibroblasts or kidney cells after additive gene transfer resulted in the highest number of live and healthy offspring, while two or more rounds of cloning and nuclear transfer experiments performed during summer decreased the number of healthy offspring. Although the effects of individual factors may be different between various laboratories, our results and analysis strategy will help to identify and optimize the factors, which are most critical to cloning success in programs aiming at the generation of genetically engineered pig models.

  7. Sequence and Expression Analyses of Ethylene Response Factors Highly Expressed in Latex Cells from Hevea brasiliensis

    PubMed Central

    Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal

    2014-01-01

    The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors. PMID:24971876

  8. Sequence and expression analyses of ethylene response factors highly expressed in latex cells from Hevea brasiliensis.

    PubMed

    Piyatrakul, Piyanuch; Yang, Meng; Putranto, Riza-Arief; Pirrello, Julien; Dessailly, Florence; Hu, Songnian; Summo, Marilyne; Theeravatanasuk, Kannikar; Leclercq, Julie; Kuswanhadi; Montoro, Pascal

    2014-01-01

    The AP2/ERF superfamily encodes transcription factors that play a key role in plant development and responses to abiotic and biotic stress. In Hevea brasiliensis, ERF genes have been identified by RNA sequencing. This study set out to validate the number of HbERF genes, and identify ERF genes involved in the regulation of latex cell metabolism. A comprehensive Hevea transcriptome was improved using additional RNA reads from reproductive tissues. Newly assembled contigs were annotated in the Gene Ontology database and were assigned to 3 main categories. The AP2/ERF superfamily is the third most represented compared with other transcription factor families. A comparison with genomic scaffolds led to an estimation of 114 AP2/ERF genes and 1 soloist in Hevea brasiliensis. Based on a phylogenetic analysis, functions were predicted for 26 HbERF genes. A relative transcript abundance analysis was performed by real-time RT-PCR in various tissues. Transcripts of ERFs from group I and VIII were very abundant in all tissues while those of group VII were highly accumulated in latex cells. Seven of the thirty-five ERF expression marker genes were highly expressed in latex. Subcellular localization and transactivation analyses suggested that HbERF-VII candidate genes encoded functional transcription factors.

  9. Relationships of Functional Tests Following ACL Reconstruction: Exploratory Factor Analyses of the Lower Extremity Assessment Protocol.

    PubMed

    DiFabio, Melissa; Slater, Lindsay V; Norte, Grant; Goetschius, John; Hart, Joseph M; Hertel, Jay

    2018-03-01

    After ACL reconstruction (ACLR), deficits are often assessed using a variety of functional tests, which can be time consuming. It is unknown whether these tests provide redundant or unique information. To explore relationships between components of a battery of functional tests, the Lower Extremity Assessment Protocol (LEAP) was created to aid in developing the most informative, concise battery of tests for evaluating ACLR patients. Descriptive, cross-sectional. Laboratory. 76 ACLR patients (6.86±3.07 months postoperative) and 54 healthy participants. Isokinetic knee flexion and extension at 90 and 180 degrees/second, maximal voluntary isometric contraction for knee extension and flexion, single leg balance, 4 hopping tasks (single, triple, crossover, and 6-meter timed hop), and a bilateral drop vertical jump that was scored with the Landing Error Scoring System (LESS). Peak torque, average torque, average power, total work, fatigue indices, center of pressure area and velocity, hop distance and time, and LESS score. A series of factor analyses were conducted to assess grouping of functional tests on the LEAP for each limb in the ACLR and healthy groups and limb symmetry indices (LSI) for both groups. Correlations were run between measures that loaded on retained factors. Isokinetic and isometric strength tests for knee flexion and extension, hopping, balance, and fatigue index were identified as unique factors for all limbs. The LESS score loaded with various factors across the different limbs. The healthy group LSI analysis produced more factors than the ACLR LSI analysis. Individual measures within each factor had moderate to strong correlations. Isokinetic and isometric strength, hopping, balance, and fatigue index provided unique information. Within each category of measures, not all tests may need to be included for a comprehensive functional assessment of ACLR patients due to the high amount of shared variance between them.

  10. Applying of factor analyses for determination of trace elements distribution in water from Vardar and its tributaries, Macedonia/Greece.

    PubMed

    Popov, Stanko Ilić; Stafilov, Trajče; Sajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina

    2014-01-01

    A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country.

  11. Researching primary engineering education: UK perspectives, an exploratory study

    NASA Astrophysics Data System (ADS)

    Clark, Robin; Andrews, Jane

    2010-10-01

    This paper draws attention to the findings of an exploratory study that critically identified and analysed relevant perceptions of elementary level engineering education within the UK. Utilising an approach based upon grounded theory methodology, 30 participants including teachers, representatives of government bodies and non-profit providers of primary level engineering initiatives were interviewed. Three main concepts were identified during the analysis of findings, each relevant to primary engineering education. These were pedagogic issues, exposure to engineering within the curriculum and children's interest. The paper concludes that the opportunity to make a real difference to children's education by stimulating their engineering imagination suggests this subject area is of particular value.

  12. A transient model of the RL10A-3-3A rocket engine

    NASA Technical Reports Server (NTRS)

    Binder, Michael P.

    1995-01-01

    RL10A-3-3A rocket engines have served as the main propulsion system for Centaur upper stage vehicles since the early 1980's. This hydrogen/oxygen expander cycle engine continues to play a major role in the American launch industry. The Space Propulsion Technology Division at the NASA Lewis Research Center has created a computer model of the RL10 engine, based on detailed component analyses and available test data. This RL10 engine model can predict the performance of the engine over a wide range of operating conditions. The model may also be used to predict the effects of any proposed design changes and anticipated failure scenarios. In this paper, the results of the component analyses are discussed. Simulation results from the new system model are compared with engine test and flight data, including the start and shut-down transient characteristics.

  13. Commercial turbofan engine exhaust nozzle flow analyses using PAB3D

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Uenishi, K.; Carlson, John R.; Keith, B. D.

    1992-01-01

    Recent developments of a three-dimensional (PAB3D) code have paved the way for a computational investigation of complex aircraft aerodynamic components. The PAB3D code was developed for solving the simplified Reynolds Averaged Navier-Stokes equations in a three-dimensional multiblock/multizone structured mesh domain. The present analysis was applied to commercial turbofan exhaust flow systems. Solution sensitivity to grid density is presented. Laminar flow solutions were developed for all grids and two-equation k-epsilon solutions were developed for selected grids. Static pressure distributions, mass flow and thrust quantities were calculated for on-design engine operating conditions. Good agreement between predicted surface static pressures and experimental data was observed at different locations. Mass flow was predicted within 0.2 percent of experimental data. Thrust forces were typically within 0.4 percent of experimental data.

  14. Modeling student success in engineering education

    NASA Astrophysics Data System (ADS)

    Jin, Qu

    In order for the United States to maintain its global competitiveness, the long-term success of our engineering students in specific courses, programs, and colleges is now, more than ever, an extremely high priority. Numerous studies have focused on factors that impact student success, namely academic performance, retention, and/or graduation. However, there are only a limited number of works that have systematically developed models to investigate important factors and to predict student success in engineering. Therefore, this research presents three separate but highly connected investigations to address this gap. The first investigation involves explaining and predicting engineering students' success in Calculus I courses using statistical models. The participants were more than 4000 first-year engineering students (cohort years 2004 - 2008) who enrolled in Calculus I courses during the first semester in a large Midwestern university. Predictions from statistical models were proposed to be used to place engineering students into calculus courses. The success rates were improved by 12% in Calculus IA using predictions from models developed over traditional placement method. The results showed that these statistical models provided a more accurate calculus placement method than traditional placement methods and help improve success rates in those courses. In the second investigation, multi-outcome and single-outcome neural network models were designed to understand and to predict first-year retention and first-year GPA of engineering students. The participants were more than 3000 first year engineering students (cohort years 2004 - 2005) enrolled in a large Midwestern university. The independent variables include both high school academic performance factors and affective factors measured prior to entry. The prediction performances of the multi-outcome and single-outcome models were comparable. The ability to predict cumulative GPA at the end of an engineering

  15. Factors in the Design of Centrifugal Type Injection Valves for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, E G

    1928-01-01

    This research was undertaken in connection with a general study of the application of the fuel injection engine to aircraft. The purpose of the investigation was to determine the effect of four important factors in the design of a centrifugal type automatic injection valve on the penetration, general shape, and distribution of oil sprays. The general method employed was to record the development of single sprays by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. Investigations were made concerning the effects on spray characteristics, of the helix angle of helical grooves, the ratio of the cross-sectional area of the orifice to that of the grooves, the ratio of orifice length to diameter, and the position of the seat. Maximum spray penetration was obtained with a ratio of orifice length to diameter of about 1.5. Slightly greater penetration was obtained with the seat directly before the orifice.

  16. Contextual Factors Related to Stereotype Threat and Student Success in Science Technology Engineering Mathematics Education: A Mixed Methods Study

    NASA Astrophysics Data System (ADS)

    Leker, Lindsey Beth

    Stereotype threat is a widely researched phenomenon shown to impact performance in testing and evaluation situations (Katz, Roberts, & Robinson, 1965; Steele & Aronson, 1995). When related to gender, stereotype threat can lead women to score lower than men on standardized math exams (Spencer, Steele, & Quinn, 1999). Stereotype threat may be one reason women have lower enrollment in most science, technology, engineering, and mathematics (STEM) majors, hold a smaller number of STEM careers than men, and have a higher attrition rate in STEM professions (Hill, Corbet, & Rose, 2010; Picho & Brown 2011; Sorby & Baartmans, 2000). Most research has investigated stereotype threat using experiments yielding mixed results (Stoet & Geary, 2012). Thus, there is a need to explore stereotype threat using quantitative surveys and qualitative methods to examine other contextual factors that contribute to gender difference in STEM fields. This dissertation outlined a mixed methods study designed to, first, qualitatively explore stereotype threat and contextual factors related to high achieving women in STEM fields, as well as women who have failed and/or avoided STEM fields. Then, the quantitative portion of the study used the themes from the qualitative phase to create a survey that measured stereotype threat and other contextual variables related to STEM success and failure/avoidance. Fifteen participants were interviewed for the qualitative phase of the study and six themes emerged. The quantitative survey was completed 242 undergraduate participants. T-tests, correlations, regressions, and mediation analyses were used to analyze the data. There were significant relationships between stereotype threat and STEM confidence, STEM anxiety, giving up in STEM, and STEM achievement. Overall, this mixed methods study advanced qualitative research on stereotype threat, developed a much-needed scale for the measurement of stereotype threat, and tested the developed scale.

  17. Investigation of the Impact of Fuel Properties on Particulate Number Emission of a Modern Gasoline Direct Injection Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L; Fioroni, Gina; Fatouraie, Mohammad

    Gasoline Direct Injection (GDI) has become the preferred technology for spark-ignition engines resulting in greater specific power output and lower fuel consumption, and consequently reduction in CO2 emission. However, GDI engines face a substantial challenge in meeting new and future emission limits, especially the stringent particle number (PN) emissions recently introduced in Europe and China. Studies have shown that the fuel used by a vehicle has a significant impact on engine out emissions. In this study, nine fuels with varying chemical composition and physical properties were tested on a modern turbo-charged side-mounted GDI engine with design changes to reduce particulatemore » emissions. The fuels tested included four fuels meeting US certification requirements; two fuels meeting European certification requirements; and one fuel meeting China 6 certification requirements being proposed at the time of this work. Two risk safeguard fuels (RSG), representing the properties of worst case market fuels in Europe and China, were also included. The particle number concentration of the solid particulates was measured in the engine-out exhaust flow at steady state engine operations with load and speed sweeps, and semi-transient load steps. The test results showed a factor of 6 PN emission difference among all certification fuels tested. Combined with detailed fuel analyses, this study evaluated important factors (such as oxygenates, carbon chain length and thermo-physical properties) that cause PN emissions which were not included in PMI index. A linear regression was performed to develop a PN predictive model which showed improved fitting quality than using PMI.« less

  18. Human Factors in the Design of the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Byrne, Vicky; Holden, Kritina

    2007-01-01

    NASA s Space Exploration vision for humans to venture to the moon and beyond provides interesting human factors opportunities and challenges. The Human Engineering group at NASA has been involved in the initial phases of development of the Crew Exploration Vehicle (CEV), Orion. Getting involved at the ground level, Human Factors engineers are beginning to influence design; this involvement is expected to continue throughout the development lifecycle. The information presented here describes what has been done to date, what is currently going on, and what is expected in the future. During Phase 1, prior to the contract award to Lockheed Martin, the Human Engineering group was involved in generating requirements, conducting preliminary task analyses based on interviews with subject matter experts in all vehicle systems areas, and developing preliminary concepts of operations based on the task analysis results. In addition, some early evaluations to look at CEV net habitable volume were also conducted. The program is currently in Phase 2, which is broken down into design cycles, including System Readiness Review, Preliminary Design Review, and Critical Design Review. Currently, there are ongoing Human Engineering Technical Interchange Meetings being held with both NASA and Lockheed Martin in order to establish processes, desired products, and schedules. Multiple design trades and quick-look evaluations (e.g. display device layout and external window size) are also in progress. Future Human Engineering activities include requirement verification assessments and crew/stakeholder evaluations of increasing fidelity. During actual flights of the CEV, the Human Engineering group is expected to be involved in in-situ testing and lessons learned reporting, in order to benefit human space flight beyond the initial CEV program.

  19. Identifying gender specific risk/need areas for male and female juvenile offenders: Factor analyses with the Structured Assessment of Violence Risk in Youth (SAVRY).

    PubMed

    Hilterman, Ed L B; Bongers, Ilja; Nicholls, Tonia L; van Nieuwenhuizen, Chijs

    2016-02-01

    By constructing risk assessment tools in which the individual items are organized in the same way for male and female juvenile offenders it is assumed that these items and subscales have similar relevance across males and females. The identification of criminogenic needs that vary in relevance for 1 of the genders, could contribute to more meaningful risk assessments, especially for female juvenile offenders. In this study, exploratory factor analyses (EFA) on a construction sample of male (n = 3,130) and female (n = 466) juvenile offenders were used to aggregate the 30 items of the Structured Assessment of Violence Risk in Youth (SAVRY) into empirically based risk/need factors and explore differences between genders. The factor models were cross-validated through confirmatory factor analyses (CFA) on a validation sample of male (n = 2,076) and female (n = 357) juvenile offenders. In both the construction sample and the validation sample, 5 factors were identified: (a) Antisocial behavior; (b) Family functioning; (c) Personality traits; (d) Social support; and (e) Treatability. The male and female models were significantly different and the internal consistency of the factors was good, both in the construction sample and the validation sample. Clustering risk/need items for male and female juvenile offenders into meaningful factors may guide clinicians in the identification of gender-specific treatment interventions. PsycINFO Database Record (c) 2016 APA, all rights reserved.

  20. Engine throat/nozzle optics for plume spectroscopy

    NASA Technical Reports Server (NTRS)

    Bickford, R. L.; Duncan, D. B.

    1991-01-01

    The Task 2.0 Engine Throat/Nozzle Optics for Plume Spectroscopy, effort was performed under the NASA LeRC Development of Life Prediction Capabilities for Liquid Propellant Rocket Engines program. This Task produced the engineering design of an optical probe to enable spectroscopic measurements within the SSME main chamber. The probe mounts on the SSME nozzle aft manifold and collects light emitted from the throat plane and chamber. Light collected by the probe is transferred to a spectrometer through a fiber optic cable. The design analyses indicate that the probe will function throughout the engine operating cycle and is suitable for both test stand and flight operations. By detecting metallic emissions that are indicative of component degradation or incipient failure, engine shutdown can be initiated before catastrophic failure. This capability will protect valuable test stand hardware and provide enhanced mission safety.

  1. The engine fuel system fault analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei

    2017-05-01

    For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.

  2. Hearing impairment, cognition and speech understanding: exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study

    PubMed Central

    Rönnberg, Jerker; Lunner, Thomas; Ng, Elaine Hoi Ning; Lidestam, Björn; Zekveld, Adriana Agatha; Sörqvist, Patrik; Lyxell, Björn; Träff, Ulf; Yumba, Wycliffe; Classon, Elisabet; Hällgren, Mathias; Larsby, Birgitta; Signoret, Carine; Pichora-Fuller, M. Kathleen; Rudner, Mary; Danielsson, Henrik; Stenfelt, Stefan

    2016-01-01

    Abstract Objective: The aims of the current n200 study were to assess the structural relations between three classes of test variables (i.e. HEARING, COGNITION and aided speech-in-noise OUTCOMES) and to describe the theoretical implications of these relations for the Ease of Language Understanding (ELU) model. Study sample: Participants were 200 hard-of-hearing hearing-aid users, with a mean age of 60.8 years. Forty-three percent were females and the mean hearing threshold in the better ear was 37.4 dB HL. Design: LEVEL1 factor analyses extracted one factor per test and/or cognitive function based on a priori conceptualizations. The more abstract LEVEL 2 factor analyses were performed separately for the three classes of test variables. Results: The HEARING test variables resulted in two LEVEL 2 factors, which we labelled SENSITIVITY and TEMPORAL FINE STRUCTURE; the COGNITIVE variables in one COGNITION factor only, and OUTCOMES in two factors, NO CONTEXT and CONTEXT. COGNITION predicted the NO CONTEXT factor to a stronger extent than the CONTEXT outcome factor. TEMPORAL FINE STRUCTURE and SENSITIVITY were associated with COGNITION and all three contributed significantly and independently to especially the NO CONTEXT outcome scores (R2 = 0.40). Conclusions: All LEVEL 2 factors are important theoretically as well as for clinical assessment. PMID:27589015

  3. The Synergistic Engineering Environment

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan

    2006-01-01

    The Synergistic Engineering Environment (SEE) is a system of software dedicated to aiding the understanding of space mission operations. The SEE can integrate disparate sets of data with analytical capabilities, geometric models of spacecraft, and a visualization environment, all contributing to the creation of an interactive simulation of spacecraft. Initially designed to satisfy needs pertaining to the International Space Station, the SEE has been broadened in scope to include spacecraft ranging from those in low orbit around the Earth to those on deep-space missions. The SEE includes analytical capabilities in rigid-body dynamics, kinematics, orbital mechanics, and payload operations. These capabilities enable a user to perform real-time interactive engineering analyses focusing on diverse aspects of operations, including flight attitudes and maneuvers, docking of visiting spacecraft, robotic operations, impingement of spacecraft-engine exhaust plumes, obscuration of instrumentation fields of view, communications, and alternative assembly configurations. .

  4. Examination of engineering design teacher self-efficacy and knowledge base in secondary technology education and engineering-related courses

    NASA Astrophysics Data System (ADS)

    Vessel, Kanika Nicole

    2011-12-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.

  5. The influence of engine technology advancements on aircraft economics

    NASA Technical Reports Server (NTRS)

    Witherspoon, J. W.; Gaffin, W. O.

    1973-01-01

    A technology advancement in a new powerplant has both favorable and unfavorable effects. Increased bypass ratio and compression ratio, coupled with high turbine temperatures, improve performance but also increase engine price and maintenance cost. The factors that should be evaluated in choosing an engine for airline use are discussed. These factors are compared for two engines that might be considered for future 150 to 200 passenger airplanes: an all-new turbofan and a quiet derivative of an existing first generation turbofan. The results of the performance and cost evaluations of the example engines are reduced to common units so they can be combined.

  6. Orbital transfer rocket engine technology: Advanced engine study

    NASA Technical Reports Server (NTRS)

    Hayden, Warren R.

    1992-01-01

    An advanced LOX/LH2 engine study for the use of NASA and vehicle prime contractors in developing concepts for manned missions to the Moon, Mars, and Phobos is documented. Parametric design data was obtained at five engine thrusts from 7.5K lbf to 50K lbf. Also, a separate task evaluated engine throttling over a 20:1 range and operation at a mixture ratio of 12 plus or minus 1 versus the 6 plus or minus 1 nominal. Cost data was also generated for DDT&E, first unit production, and factors in other life cycle costs. The major limitation of the study was lack of contact with vehicle prime contractors to resolve the issues in vehicle/engine interfaces. The baseline Aerojet dual propellant expander cycle was shown capable of meeting all performance requirements with an expected long operational life due to the high thermal margins. The basic engine design readily accommodated the 20:1 throttling requirement and operation up to a mixture ratio of 10 without change. By using platinum for baffled injector construction the increased thermal margin allowed operation up to mixture ratio 13. An initial engine modeling with an Aerojet transient simulation code (named MLETS) indicates stable engine operation with the baseline control system. A throttle ratio of 4 to 5 seconds from 10 percent to 100 percent thrust is also predicted. Performance predictions are 483.1 sec at 7.5K lbf, 487.3 sec at 20K lbf, and 485.2 sec at 50K lbf with a mixture ratio of 6 and an area ratio of 1200. Engine envelopes varied from 120 in. length/53 in. exit diameter at 7.5K lbf to 305 in. length/136 in. exit diameter at 50 K lbf. Packaging will be an important consideration. Continued work is recommended to include more vehicle prime contractor/engine contractor joint assessment of the interface issues.

  7. Pulsejet engine dynamics in vertical motion using momentum conservation

    NASA Astrophysics Data System (ADS)

    Cheche, Tiberius O.

    2017-03-01

    The momentum conservation law is applied to analyse the dynamics of a pulsejet engine in vertical motion in a uniform gravitational field in the absence of friction. The model predicts the existence of a terminal speed given the frequency of the short pulses. The conditions where the engine does not return to the starting position are identified. The number of short periodic pulses after which the engine returns to the starting position is found to be independent of the exhaust velocity and gravitational field intensity for a certain frequency of pulses. The pulsejet engine and turbojet engine aircraft models of dynamics are compared. Also the octopus dynamics is modelled. The paper is addressed to intermediate undergraduate students of classical mechanics and aerospace engineering.

  8. Risk factors for headache in the UK military: cross-sectional and longitudinal analyses.

    PubMed

    Rona, Roberto J; Jones, Margaret; Goodwin, Laura; Hull, Lisa; Wessely, Simon

    2013-05-01

    To assess the importance of service demographic, mental disorders, and deployment factors on headache severity and prevalence, and to assess the impact of headache on functional impairment. There is no information on prevalence and risk factors of headache in the UK military. Recent US reports suggest that deployment, especially a combat role, is associated with headache. Such an association may have serious consequences on personnel during deployment. A survey was carried out between 2004 and 2006 (phase 1) and again between 2007 and 2009 (phase 2) of randomly selected UK military personnel to study the health consequences of the Iraq and Afghanistan wars. This study is based on those who participated in phase 2 and includes cross-sectional and longitudinal analyses. Headache severity in the last month and functional impairment at phase 2 were the main outcomes. Forty-six percent complained of headache in phase 2, half of whom endorsed moderate or severe headache. Severe headache was strongly associated with probable post-traumatic stress disorder (multinomial odds ratio [MOR] 9.6, 95% confidence interval [CI] 6.4-14.2), psychological distress (MOR 6.15, 95% CI 4.8-7.9), multiple physical symptoms (MOR 18.2, 95% CI 13.4-24.6) and self-reported mild traumatic brain injury (MOR 3.5, 95% CI 1.4-8.6) after adjustment for service demographic factors. Mild headache was also associated with these variables but at a lower level. Moderate and severe headache were associated with functional impairment, but the association was partially explained by mental disorders. Mental ill health was also associated with reporting moderate and severe headache at both phase 1 and phase 2. Deployment and a combat role were not associated with headache. Moderate and severe headache are common in the military and have an impact on functional impairment. They are more strongly associated with mental disorders than with mild traumatic brain injury. © 2013 American Headache Society.

  9. Accident-precipitating factors for crashes in turbine-powered general aviation aircraft.

    PubMed

    Boyd, Douglas D; Stolzer, Alan

    2016-01-01

    General aviation (14CFR Part 91) accounts for 83% of civil aviation fatalities. While much research has focused on accident causes/pilot demographics in this aviation sector, studies to identify factors leading up to the crash (accident-precipitating factors) are few. Such information could inform on pre-emptive remedial action. With this in mind and considering the paucity of research on turbine-powered aircraft accidents the study objectives were to identify accident-precipitating factors and determine if the accident rate has changed over time for such aircraft operating under 14CFR Part 91. The NTSB Access database was queried for accidents in airplanes (<12,501lb) powered by 1-2 turbine engines and occurring between 1989 and 2013. We developed and utilized an accident-precipitating factor taxonomy. Statistical analyses employed logistic regression, contingency tables and a generalized linear model with Poisson distribution. The "Checklist/Flight Manual Not Followed" was the most frequent accident-precipitating factor category and carried an excess risk (OR 2.34) for an accident with a fatal and/or serious occupant injury. This elevated risk reflected an over-representation of accidents with fatal and/or serious injury outcomes (p<0.001) in the "non-adherence to V Speeds" sub-category. For accidents grouped in the "Inadequate Pre-Flight Planning/Inspection/Procedure" the "inadequate weather planning" sub-category accounted (p=0.036) for the elevated risk (OR 2.22) of an accident involving fatal and/or serious injuries. The "Violation FARs/AIM Deviation" category was also associated with a greater risk for fatal and/or serious injury (OR 2.59) with "Descent below the MDA/failure to execute the missed approach" representing the largest sub-category. Accidents in multi-engine aircraft are more frequent than their single engine counterparts and the decline (50%) in the turbine aircraft accident rate over the study period was likely due, in part, to a 6-fold

  10. Periosteum tissue engineering-a review.

    PubMed

    Li, Nanying; Song, Juqing; Zhu, Guanglin; Li, Xiaoyu; Liu, Lei; Shi, Xuetao; Wang, Yingjun

    2016-10-18

    As always, the clinical therapy of critical size bone defects caused by trauma, tumor removal surgery or congenital malformation is facing great challenges. Currently, various approaches including autograft, allograft and cell-biomaterial composite based tissue-engineering strategies have been implemented to reconstruct injured bone. However, due to damage during the transplantation processes or design negligence of the bionic scaffolds, these methods expose vulnerabilities without the assistance of periosteum, a bilayer membrane on the outer surface of the bone. Periosteum plays a significant role in bone formation and regeneration as a store for progenitor cells, a source of local growth factors and a scaffold to recruit cells and growth factors, and more and more researchers have recognized its great value in tissue engineering application. Besides direct transplantation, periosteum-derived cells can be cultured on various scaffolds for osteogenesis or chondrogenesis application due to their availability. Research studies also provide a biomimetic methodology to synthesize artificial periosteum which mimic native periosteum in structure or function. According to the studies, these tissue-engineered periostea did obviously enhance the therapeutic effects of bone graft and scaffold engineering while they could be directly used as substitutes of native periosteum. Periosteum tissue engineering, whose related research studies have provided new opportunities for the development of bone tissue engineering and therapy, has gradually become a hot spot and there are still lots to consummate. In this review, tissue-engineered periostea were classified into four kinds and discussed, which might help subsequent researchers get a more systematic view of pseudo-periosteum.

  11. Improving the Estimates of International Space Station (ISS) Induced K-Factor Failure Rates for On-Orbit Replacement Unit (ORU) Supportability Analyses

    NASA Technical Reports Server (NTRS)

    Anderson, Leif F.; Harrington, Sean P.; Omeke, Ojei, II; Schwaab, Douglas G.

    2009-01-01

    This is a case study on revised estimates of induced failure for International Space Station (ISS) on-orbit replacement units (ORUs). We devise a heuristic to leverage operational experience data by aggregating ORU, associated function (vehicle sub -system), and vehicle effective' k-factors using actual failure experience. With this input, we determine a significant failure threshold and minimize the difference between the actual and predicted failure rates. We conclude with a discussion on both qualitative and quantitative improvements the heuristic methods and potential benefits to ISS supportability engineering analysis.

  12. Datasets2Tools, repository and search engine for bioinformatics datasets, tools and canned analyses

    PubMed Central

    Torre, Denis; Krawczuk, Patrycja; Jagodnik, Kathleen M.; Lachmann, Alexander; Wang, Zichen; Wang, Lily; Kuleshov, Maxim V.; Ma’ayan, Avi

    2018-01-01

    Biomedical data repositories such as the Gene Expression Omnibus (GEO) enable the search and discovery of relevant biomedical digital data objects. Similarly, resources such as OMICtools, index bioinformatics tools that can extract knowledge from these digital data objects. However, systematic access to pre-generated ‘canned’ analyses applied by bioinformatics tools to biomedical digital data objects is currently not available. Datasets2Tools is a repository indexing 31,473 canned bioinformatics analyses applied to 6,431 datasets. The Datasets2Tools repository also contains the indexing of 4,901 published bioinformatics software tools, and all the analyzed datasets. Datasets2Tools enables users to rapidly find datasets, tools, and canned analyses through an intuitive web interface, a Google Chrome extension, and an API. Furthermore, Datasets2Tools provides a platform for contributing canned analyses, datasets, and tools, as well as evaluating these digital objects according to their compliance with the findable, accessible, interoperable, and reusable (FAIR) principles. By incorporating community engagement, Datasets2Tools promotes sharing of digital resources to stimulate the extraction of knowledge from biomedical research data. Datasets2Tools is freely available from: http://amp.pharm.mssm.edu/datasets2tools. PMID:29485625

  13. Datasets2Tools, repository and search engine for bioinformatics datasets, tools and canned analyses.

    PubMed

    Torre, Denis; Krawczuk, Patrycja; Jagodnik, Kathleen M; Lachmann, Alexander; Wang, Zichen; Wang, Lily; Kuleshov, Maxim V; Ma'ayan, Avi

    2018-02-27

    Biomedical data repositories such as the Gene Expression Omnibus (GEO) enable the search and discovery of relevant biomedical digital data objects. Similarly, resources such as OMICtools, index bioinformatics tools that can extract knowledge from these digital data objects. However, systematic access to pre-generated 'canned' analyses applied by bioinformatics tools to biomedical digital data objects is currently not available. Datasets2Tools is a repository indexing 31,473 canned bioinformatics analyses applied to 6,431 datasets. The Datasets2Tools repository also contains the indexing of 4,901 published bioinformatics software tools, and all the analyzed datasets. Datasets2Tools enables users to rapidly find datasets, tools, and canned analyses through an intuitive web interface, a Google Chrome extension, and an API. Furthermore, Datasets2Tools provides a platform for contributing canned analyses, datasets, and tools, as well as evaluating these digital objects according to their compliance with the findable, accessible, interoperable, and reusable (FAIR) principles. By incorporating community engagement, Datasets2Tools promotes sharing of digital resources to stimulate the extraction of knowledge from biomedical research data. Datasets2Tools is freely available from: http://amp.pharm.mssm.edu/datasets2tools.

  14. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors.

    PubMed

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus.

  15. Study of small turbofan engines applicable to general-aviation aircraft

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.; Burnett, G. A.; Alsworth, C. C.

    1973-01-01

    The applicability of small turbofan engines to general aviation aircraft is discussed. The engine and engine/airplane performance, weight, size, and cost interrelationships are examined. The effects of specific engine noise constraints are evaluated. The factors inhibiting the use of turbofan engines in general aviation aircraft are identified.

  16. [Regeneration of autologous tissue-engineered cartilage by using basic-fibroblast growth factor in vitro culture].

    PubMed

    Ding, Xiao-bang; Cheng, Ning-xin; Chen, Bing; Xia, Wan-yao; Cui, Lei; Liu, Wei; Cao, Yi-lin

    2004-05-01

    To investigate the effect of the basic fibroblast growth factor (b-FGF) to regenerate an autologous tissue-engineered cartilage in vitro. The Cells were harvested from the elastic auricular cartilage of swine,and were plated at the concentration of 1 x 10(4) cells/cm2 , studied in vitro at two different media enviroments: Group I contained Ham's F-12 with supplements and b-FGF, Group II contained Ham's F-12 only with supplements. The passage 2 cells (after 12.75 +/- 1.26 days) were harvested and mixed with 30% pluronic F-127/Ham's F-12 at the concentration of 50 x 10(6) cells/ml. It was injected subcutaneously at 0.5 ml per implant. The implants were harvested 8 weeks after the vivo culture and examined with the histological stains. The chondrocytes displayed morphologically similar to the fibroblasts in the media containing basic-FGF. The number of cell doublings (after 12.75 +/- 1.26 days) in vitro culture was as the following: Group I, 70; Group II, 5.4. Eight 8 weeks after the vivo autologous implantation, the average weight (g) and volume (cm3) in each group was as the following: Group I, 0.371 g/0.370 cm3 Group II, 0.179 g/0.173 cm3 (P < 0.01). With the b-FGF in vitro culture, the cells were expanded by 70 times after 2 weeks. Histologically, all of the engineered cartilage in the two groups were similar to the native elastic cartilage. These results indicate that the basic-FGF could be used positively to enhance the quality and quantity of the seeding cells for the generation of the well-engineered cartilage.

  17. Influence of insulin-like growth factor-I (IGF-I) on nerve autografts and tissue-engineered nerve grafts.

    PubMed

    Fansa, Hisham; Schneider, Wolfgang; Wolf, Gerald; Keilhoff, Gerburg

    2002-07-01

    To overcome the problems of limited donor nerves for nerve reconstruction, we established nerve grafts made from cultured Schwann cells and basal lamina from acellular muscle and used them to bridge a 2-cm defect of the rat sciatic nerve. Due to their basal lamina and to viable Schwann cells, these grafts allow regeneration that is comparable to autologous nerve grafts. In order to enhance regeneration, insulin-like growth factor (IGF-I) was locally applied via osmotic pumps. Autologous nerve grafts with and without IGF-I served as controls. Muscle weight ratio was significantly increased in the autograft group treated with IGF-I compared to the group with no treatment; no effect was evident in the tissue-engineered grafts. Autografts with IGF-I application revealed a significantly increased axon count and an improved g-ratio as indicator for "maturity" of axons compared to autografts without IGF-I. IGF-I application to the engineered grafts resulted in a decreased axon count compared to grafts without IGF-I. The g-ratio, however, revealed no significant difference between the groups. Local administration of IGF-I improves axonal regeneration in regular nerve grafts, but not in tissue-engineered grafts. Seemingly, in these grafts the interactive feedback mechanisms of neuron, glial cell, and extracellular matrix are not established, and IGF-I cannot exert its action as a pleiotrophic signal. Copyright 2002 Wiley Periodicals, Inc.

  18. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  19. Preparing university students to lead K-12 engineering outreach programmes: a design experiment

    NASA Astrophysics Data System (ADS)

    Anthony, Anika B.; Greene, Howard; Post, Paul E.; Parkhurst, Andrew; Zhan, Xi

    2016-11-01

    This paper describes an engineering outreach programme designed to increase the interest of under-represented youth in engineering and to disseminate pre-engineering design challenge materials to K-12 educators and volunteers. Given university students' critical role as facilitators of the outreach programme, researchers conducted a two-year design experiment to examine the programme's effectiveness at preparing university students to lead pre-engineering activities. Pre- and post-surveys incorporated items from the Student Engagement sub-scale of the Teacher Sense of Efficacy Scale. Surveys were analysed using paired-samples t-test. Interview and open-ended survey data were analysed using discourse analysis and the constant comparative method. As a result of participation in the programme, university students reported a gain in efficacy to lead pre-engineering activities. The paper discusses programme features that supported efficacy gains and concludes with a set of design principles for developing learning environments that effectively prepare university students to facilitate pre-engineering outreach programmes.

  20. A study of the factors affecting advancement and graduation for engineering students

    NASA Astrophysics Data System (ADS)

    Fletcher, John Thomas

    The purpose of this study was, first, to determine whether a set of predictor variables could be identified from pre-enrollment and post-enrollment data that would differentiate students who advance to a major in engineering from non-advancers and, further, to determine if the predictor variables would differentiate students who graduate from the College of Engineering from non-graduates and graduates of other colleges at Auburn University. A second purpose was to determine if the predictor variables would correctly identify male and female students with the same degree of accuracy. The third purpose was to determine if there were significant relationships between the predictor variables studied and grades earned in a set of 15 courses that have enrollments over 100 students and are part of the pre-engineering curriculum. The population for this study was the 868 students who entered the pre-engineering program at Auburn University as freshmen during the Summer and Fall Quarters of 1991. The variables selected to differentiate the different groups were ACT scores, high school grade indices, and first quarter college grade point average. Two sets of classification matrices were developed using analysis and holdout samples that were divided based on sex. With respect to the question about advancement to the professional engineering program, structure coefficients derived from discriminant analysis procedures performed on all the cases combined indicated that first quarter college grade point average, high school math index, ACT math score, and high school science grade index were important predictor variables in classifying students who advanced to the professional engineering program and those who did not. Further, important structure coefficients with respect to graduation with a degree from the College of Engineering were first quarter college grade point average, high school math index, ACT math score, and high school science grade index. The results of this

  1. Detailed thermodynamic analyses of high-speed compressible turbulence

    NASA Astrophysics Data System (ADS)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2016-11-01

    Interactions between high-speed turbulence and flames (or chemical reactions) are important in the dynamics and description of many different combustion phenomena, including autoignition and deflagration-to-detonation transition. The probability of these phenomena to occur depends on the magnitude and spectral content of turbulence fluctuations, which can impact a wide range of science and engineering problems, from the hypersonic scramjet engine to the onset of Type Ia supernovae. In this talk, we present results from new direct numerical simulations (DNS) of homogeneous isotropic turbulence with turbulence Mach numbers ranging from 0 . 05 to 1 . 0 and Taylor-scale Reynolds numbers as high as 700. A set of detailed analyses are described in both Eulerian and Lagrangian reference frames in order to assess coherent (structural) and incoherent (stochastic) thermodynamic flow features. These analyses provide direct insights into the thermodynamics of strongly compressible turbulence. Furthermore, presented results provide a non-reacting baseline for future studies of turbulence-chemistry interactions in DNS with complex chemistry mechanisms. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  2. Impact of cardiovascular risk factors on medical expenditure: evidence from epidemiological studies analysing data on health checkups and medical insurance.

    PubMed

    Nakamura, Koshi

    2014-01-01

    Concerns have increasingly been raised about the medical economic burden in Japan, of which approximately 20% is attributable to cardiovascular disease, including coronary heart disease and stroke. Because the management of risk factors is essential for the prevention of cardiovascular disease, it is important to understand the relationship between cardiovascular risk factors and medical expenditure in the Japanese population. However, only a few Japanese epidemiological studies analysing data on health checkups and medical insurance have provided evidence on this topic. Patients with cardiovascular risk factors, including obesity, hypertension, and diabetes, may incur medical expenditures through treatment of the risk factors themselves and through procedures for associated diseases that usually require hospitalization and sometimes result in death. Untreated risk factors may cause medical expenditure surges, mainly due to long-term hospitalization, more often than risk factors preventively treated by medication. On an individual patient level, medical expenditures increase with the number of concomitant cardiovascular risk factors. For single risk factors, personal medical expenditure may increase with the severity of that factor. However, on a population level, the medical economic burden attributable to cardiovascular risk factors results largely from a single, particularly prevalent risk factor, especially from mildly-to-moderately abnormal levels of the factor. Therefore, cardiovascular risk factors require management on the basis of both a cost-effective strategy of treating high-risk patients and a population strategy for reducing both the ill health and medical economic burdens that result from cardiovascular disease.

  3. Study of small civil turbofan engines applicable to military trainer airplanes

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Merrill, G. L.; Burnett, G. A.

    1975-01-01

    Small turbofan engine design concepts were applied to military trainer airplanes to establish the potential for commonality between civil and military engines. Several trainer configurations were defined and studied. A ""best'' engine was defined for the trainer mission, and sensitivity analyses were performed to determine the effects on airplane size and efficiency of wing loading, power loading, configuration, aerodynamic quality, and engine quality. It is concluded that a small civil aircraft is applicable to military trainer airplanes. Aircraft designed with these engines are smaller, less costly, and more efficient than existing trainer aircraft.

  4. Positive Matrix Factorization Model for environmental data analyses

    EPA Pesticide Factsheets

    Positive Matrix Factorization is a receptor model developed by EPA to provide scientific support for current ambient air quality standards and implement those standards by identifying and quantifying the relative contributions of air pollution sources.

  5. Development Education and Engineering: A Framework for Incorporating Reality of Developing Countries into Engineering Studies

    ERIC Educational Resources Information Center

    Perez-Foguet, A.; Oliete-Josa, S.; Saz-Carranza, A.

    2005-01-01

    Purpose: To show the key points of a development education program for engineering studies fitted within the framework of the human development paradigm. Design/methodology/approach: The bases of the concept of technology for human development are presented, and the relationship with development education analysed. Special attention is dedicated…

  6. Bioglass Activated Skin Tissue Engineering Constructs for Wound Healing.

    PubMed

    Yu, Hongfei; Peng, Jinliang; Xu, Yuhong; Chang, Jiang; Li, Haiyan

    2016-01-13

    Wound healing is a complicated process, and fibroblast is a major cell type that participates in the process. Recent studies have shown that bioglass (BG) can stimulate fibroblasts to secrete a multitude of growth factors that are critical for wound healing. Therefore, we hypothesize that BG can stimulate fibroblasts to have a higher bioactivity by secreting more bioactive growth factors and proteins as compared to untreated fibroblasts, and we aim to construct a bioactive skin tissue engineering graft for wound healing by using BG activated fibroblast sheet. Thus, the effects of BG on fibroblast behaviors were studied, and the bioactive skin tissue engineering grafts containing BG activated fibroblasts were applied to repair the full skin lesions on nude mouse. Results showed that BG stimulated fibroblasts to express some critical growth factors and important proteins including vascular endothelial growth factor, basic fibroblast growth factor, epidermal growth factor, collagen I, and fibronectin. In vivo results revealed that fibroblasts in the bioactive skin tissue engineering grafts migrated into wound bed, and the migration ability of fibroblasts was stimulated by BG. In addition, the bioactive BG activated fibroblast skin tissue engineering grafts could largely increase the blood vessel formation, enhance the production of collagen I, and stimulate the differentiation of fibroblasts into myofibroblasts in the wound site, which would finally accelerate wound healing. This study demonstrates that the BG activated skin tissue engineering grafts contain more critical growth factors and extracellular matrix proteins that are beneficial for wound healing as compared to untreated fibroblast cell sheets.

  7. The Otto-engine-equivalent vehicle concept

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Couch, M. D.

    1978-01-01

    A vehicle comparison methodology based on the Otto-Engine Equivalent (OEE) vehicle concept is described. As an illustration of this methodology, the concept is used to make projections of the fuel economy potential of passenger cars using various alternative power systems. Sensitivities of OEE vehicle results to assumptions made in the calculational procedure are discussed. Factors considered include engine torque boundary, rear axle ratio, performance criteria, engine transient response, and transmission shift logic.

  8. Success Factors for Using Case Method in Teaching and Learning Software Engineering

    ERIC Educational Resources Information Center

    Razali, Rozilawati; Zainal, Dzulaiha Aryanee Putri

    2013-01-01

    The Case Method (CM) has long been used effectively in Social Science education. Its potential use in Applied Science such as Software Engineering (SE) however has yet to be further explored. SE is an engineering discipline that concerns the principles, methods and tools used throughout the software development lifecycle. In CM, subjects are…

  9. Improving Free-Piston Stirling Engine Power Density

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  10. The Neo Personality Inventory-Revised: Factor Structure and Gender Invariance from Exploratory Structural Equation Modeling Analyses in a High-Stakes Setting

    ERIC Educational Resources Information Center

    Furnham, Adrian; Guenole, Nigel; Levine, Stephen Z.; Chamorro-Premuzic, Tomas

    2013-01-01

    This study presents new analyses of NEO Personality Inventory-Revised (NEO-PI-R) responses collected from a large British sample in a high-stakes setting. The authors show the appropriateness of the five-factor model underpinning these responses in a variety of new ways. Using the recently developed exploratory structural equation modeling (ESEM)…

  11. A new statistical method for design and analyses of component tolerance

    NASA Astrophysics Data System (ADS)

    Movahedi, Mohammad Mehdi; Khounsiavash, Mohsen; Otadi, Mahmood; Mosleh, Maryam

    2017-03-01

    Tolerancing conducted by design engineers to meet customers' needs is a prerequisite for producing high-quality products. Engineers use handbooks to conduct tolerancing. While use of statistical methods for tolerancing is not something new, engineers often use known distributions, including the normal distribution. Yet, if the statistical distribution of the given variable is unknown, a new statistical method will be employed to design tolerance. In this paper, we use generalized lambda distribution for design and analyses component tolerance. We use percentile method (PM) to estimate the distribution parameters. The findings indicated that, when the distribution of the component data is unknown, the proposed method can be used to expedite the design of component tolerance. Moreover, in the case of assembled sets, more extensive tolerance for each component with the same target performance can be utilized.

  12. Strength reduction factors for seismic analyses of buildings exposed to near-fault ground motions

    NASA Astrophysics Data System (ADS)

    Qu, Honglue; Zhang, Jianjing; Zhao, J. X.

    2011-06-01

    To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors ( R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-µ- T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verified.

  13. Effect of Several Factors on the Cooling of a Radial Engine in Flight

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin

    1936-01-01

    Flight tests of a Grumman Scout (XSF-2) airplane fitted with a Pratt & Whitney 1535 supercharged engine were conducted to determine the effect of engine power, mass flow of the cooling air, and atmospheric temperature on cylinder temperature. The tests indicated that the difference in temperature between the cylinder wall and the cooling air varied as the 0.38 power of the brake horsepower for a constant mass flow of cooling air, cooling-air temperature, engine speed, and brake fuel consumption. The difference in temperature was also found to vary inversely as the 0.39 power of the mass flow for points on the head and the 0.35 power for points on the barrel, provided that engine power, engine speed, brake fuel consumption, and cooling-air temperature were kept constant. The results of the tests of the effect of atmospheric temperature on cylinder temperature were inconclusive owing to unfavorable weather conditions prevailing at the time of the tests. The method used for controlling the test conditions, however, was found to be feasible.

  14. Enhancing learning in geosciences and water engineering via lab activities

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  15. Future Directions for Engineering Education: System Response to a Changing World.

    ERIC Educational Resources Information Center

    Massachusetts Inst. of Tech., Cambridge. Center for Policy Alternatives.

    This report consolidates information on the engineering population - numbers, employment patterns, educational levels, personality, technical obsolescence - and probes the implications of current social and employment trends. Included are: data and analyses of the engineering education system seen in the context of the changing world; the…

  16. Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.

  17. [Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor].

    PubMed

    Zhang, Minglei; Wang, Dapeng; Yin, Ruofeng

    2015-10-06

    To explorec Histocompatibility of nano-hydroxyapatite/poly-co-glycolic acid tissue engineering bone modified by mesenchymal stem cells with vascular endothelial frowth factor transinfected. Rat bone marrow mesenchymal stem cells (BMSCs) was separated, using BMSCs as target cells, and then vascular endothelial growth factor (VEGF) gene was transfected. Composite bone marrow mesenchymal stem cells and cells transfected with nano-hydroxyapatite (HA)/polylactic-co-glycolic acid (PLGA). The composition of cell and scaffold was observed. The blank plasmid transfection was 39.1%, 40.1% in VEGF group. The cell adhesion and growth was found on the scaffold pore wall after 5 days, and the number of adherent cells in the nano-HA/PLGA composite scaffold material basically had no significant difference in both. Although the nano-HA/PLGA scaffold material is still not fully meet the requirements of the matrix material for bone tissue engineering, but good biocompatibility, structure is its rich microporous satisfaction in material mechanics, toughening, enhanced obviously. Composition scaffold with BMSCs transfected by VEGF plasmid, the ability of angiogenesis is promoted.

  18. Analyses of electromagnetic and piezoelectric systems for efficient vibration energy harvesting

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Smilek, J.; Rubes, O.

    2017-05-01

    The paper deals with analyses and evaluation of vibration energy harvesting systems which are based on electromagnetic and piezoelectric physical principles off electro-mechanical conversion. Energy harvesting systems are associated with wireless sensors and a monitoring of engineering objects. The most of engineering objects operate with unwanted mechanical vibrations. However, vibrations could provide an ambient source of energy which is converted into useful electricity. The use of electromagnetic and piezoelectric vibration energy harvesters is analyzed in this paper. Thee evaluated output power is used for a choice of the efficient system with respect to the character of vibrations and thee required power output.

  19. The convertible engine: A dual-mode propulsion system

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.

    1988-01-01

    A variable inlet guide vane (VIGV) convertible engine that could be used to power future high-speed rotorcraft was tested on an outdoor stand. The engine ran stably and smoothly in the turbofan, turboshaft, and dual (combined fan and shaft) power modes. In the turbofan mode with the VIGV open, fuel consumption was comparable to that of a conventional turbofan engine. In the turboshaft mode with the VIGV closed, fuel consumption was higher than that of present turboshaft engines because power was wasted in churning fan-tip air flow. In dynamic performance tests with a specially built digital engine control and using a waterbrake dynamometer for shaft load, the engine responded effectively to large steps in thrust command and shaft torque. Previous mission analyses of a conceptual X-wing rotorcraft capable of 400-knot cruise speed were revised to account for more fan-tip churning power loss that was originally estimated. The calculations confirm that using convertible engines rather than separate life and cruise engines would result in a smaller, lighter craft with lower fuel use and direct operating cost.

  20. Aero/structural tailoring of engine blades (AERO/STAEBL)

    NASA Technical Reports Server (NTRS)

    Brown, K. W.

    1988-01-01

    This report describes the Aero/Structural Tailoring of Engine Blades (AERO/STAEBL) program, which is a computer code used to perform engine fan and compressor blade aero/structural numerical optimizations. These optimizations seek a blade design of minimum operating cost that satisfies realistic blade design constraints. This report documents the overall program (i.e., input, optimization procedures, approximate analyses) and also provides a detailed description of the validation test cases.

  1. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  2. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  3. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  4. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  5. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  6. 14 CFR 23.363 - Side load on engine mount.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine mount. 23.363 Section....363 Side load on engine mount. (a) Each engine mount and its supporting structure must be designed for a limit load factor in a lateral direction, for the side load on the engine mount, of not less than...

  7. Applying of Factor Analyses for Determination of Trace Elements Distribution in Water from River Vardar and Its Tributaries, Macedonia/Greece

    PubMed Central

    Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina

    2014-01-01

    A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country. PMID:24587756

  8. Comparison of multipoint linkage analyses for quantitative traits in the CEPH data: parametric LOD scores, variance components LOD scores, and Bayes factors

    PubMed Central

    Sung, Yun Ju; Di, Yanming; Fu, Audrey Q; Rothstein, Joseph H; Sieh, Weiva; Tong, Liping; Thompson, Elizabeth A; Wijsman, Ellen M

    2007-01-01

    We performed multipoint linkage analyses with multiple programs and models for several gene expression traits in the Centre d'Etude du Polymorphisme Humain families. All analyses provided consistent results for both peak location and shape. Variance-components (VC) analysis gave wider peaks and Bayes factors gave fewer peaks. Among programs from the MORGAN package, lm_multiple performed better than lm_markers, resulting in less Markov-chain Monte Carlo (MCMC) variability between runs, and the program lm_twoqtl provided higher LOD scores by also including either a polygenic component or an additional quantitative trait locus. PMID:18466597

  9. Requirements Engineering for inter-organizational health information systems with functions for spatial analyses: modeling a WHO safe community applying Use Case Maps.

    PubMed

    Olvingson, C; Hallberg, N; Timpka, T; Lindqvist, K

    2002-01-01

    To evaluate Use Case Maps (UCMs) as a technique for Requirements Engineering (RE) in the development of information systems with functions for spatial analyses in inter-organizational public health settings. In this study, Participatory Action Research (PAR) is used to explore the UCM notation for requirements elicitation and to gather the opinions of the users. The Delphi technique is used to reach consensus in the construction of UCMs. The results show that UCMs can provide a visualization of the system's functionality and in combination with PAR provide a sound basis for gathering requirements in inter-organizational settings. UCMs were found to represent a suitable level for describing the organization and the dynamic flux of information including spatial resolution to all stakeholders. Moreover, by using PAR, the voices of the users and their tacit knowledge is intercepted. Further, UCMs are found useful in generating intuitive requirements by the creation of use cases. With UCMs and PAR it is possible to study the effects of design changes in the general information display and the spatial resolution in the same context. Both requirements on the information system in general and the functions for spatial analyses are possible to elicit when identifying the different responsibilities and the demands on spatial resolution associated to the actions of each administrative unit. However, the development process of UCM is not well documented and needs further investigation and formulation of guidelines.

  10. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  11. Key Future Engineering Capabilities for Human Capital Retention

    NASA Astrophysics Data System (ADS)

    Sivich, Lorrie

    Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.

  12. In vivo tissue engineering of musculoskeletal tissues.

    PubMed

    McCullen, Seth D; Chow, Andre G Y; Stevens, Molly M

    2011-10-01

    Tissue engineering of musculoskeletal tissues often involves the in vitro manipulation and culture of progenitor cells, growth factors and biomaterial scaffolds. Though in vitro tissue engineering has greatly increased our understanding of cellular behavior and cell-material interactions, this methodology is often unable to recreate tissue with the hierarchical organization and vascularization found within native tissues. Accordingly, investigators have focused on alternative in vivo tissue engineering strategies, whereby the traditional triad (cells, growth factors, scaffolds) or a combination thereof are directly implanted at the damaged tissue site or within ectopic sites capable of supporting neo-tissue formation. In vivo tissue engineering may offer a preferential route for regeneration of musculoskeletal and other tissues with distinct advantages over in vitro methods based on the specific location of endogenous cultivation, recruitment of autologous cells, and patient-specific regenerated tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. X-34 Main Propulsion System-Selected Subsystem Analyses

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; McDonald, J. P.; Knight, K. C.; Champion, R. H., Jr.

    1998-01-01

    The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion System (MPS) has been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents selected analyses of MPS subsystems and components. Topics include the integration of component and system level modeling of the LOX dump subsystem and a simple terminal bubble velocity analysis conducted to guide propellant feed line design.

  14. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2016-01-01

    High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic hydrogen. One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds. In the early days of the space program, other propellants (or so called metapropellants) were suggested, including atomic hydrogen and liquid ozone. Theoretical and experimental studies of atomic hydrogen and ozone were conducted beginning in the late 1940s. This propellant research may have provided screenwriters with the idea of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M. This paper presents analyses showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of specific impulse values reaching as high as 1,600 seconds. A series of single stage and multistage rocket vehicle analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar missions.

  15. Altitude Investigation of Performance of Turbine-propeller Engine and Its Components

    NASA Technical Reports Server (NTRS)

    Wallner, Lewis E; Saari, Martin J

    1950-01-01

    An investigation was conducted on a turbine-propeller engine in the NACA Lewis altitude wind tunnel at altitudes from 5000 to 35,000 feet. The applicability of generalized parameters to turbine-propeller engine data, analyses of the compressor, the combustion chambers, and the turbine, and a study of the over-all engine performance are reported. Engine performance data obtained at sea-level static conditions could be used to predict static performance at altitudes up to 35,000 feet by use of the standard generalized parameters.

  16. Diesel engine exhaust and lung cancer mortality: time-related factors in exposure and risk.

    PubMed

    Moolgavkar, Suresh H; Chang, Ellen T; Luebeck, Georg; Lau, Edmund C; Watson, Heather N; Crump, Kenny S; Boffetta, Paolo; McClellan, Roger

    2015-04-01

    To develop a quantitative exposure-response relationship between concentrations and durations of inhaled diesel engine exhaust (DEE) and increases in lung cancer risks, we examined the role of temporal factors in modifying the estimated effects of exposure to DEE on lung cancer mortality and characterized risk by mine type in the Diesel Exhaust in Miners Study (DEMS) cohort, which followed 12,315 workers through December 1997. We analyzed the data using parametric functions based on concepts of multistage carcinogenesis to directly estimate the hazard functions associated with estimated exposure to a surrogate marker of DEE, respirable elemental carbon (REC). The REC-associated risk of lung cancer mortality in DEMS is driven by increased risk in only one of four mine types (limestone), with statistically significant heterogeneity by mine type and no significant exposure-response relationship after removal of the limestone mine workers. Temporal factors, such as duration of exposure, play an important role in determining the risk of lung cancer mortality following exposure to REC, and the relative risk declines after exposure to REC stops. There is evidence of effect modification of risk by attained age. The modifying impact of temporal factors and effect modification by age should be addressed in any quantitative risk assessment (QRA) of DEE. Until there is a better understanding of why the risk appears to be confined to a single mine type, data from DEMS cannot reliably be used for QRA. © 2015 Society for Risk Analysis.

  17. Assessing an organizational culture instrument based on the Competing Values Framework: Exploratory and confirmatory factor analyses

    PubMed Central

    Helfrich, Christian D; Li, Yu-Fang; Mohr, David C; Meterko, Mark; Sales, Anne E

    2007-01-01

    Background The Competing Values Framework (CVF) has been widely used in health services research to assess organizational culture as a predictor of quality improvement implementation, employee and patient satisfaction, and team functioning, among other outcomes. CVF instruments generally are presented as well-validated with reliable aggregated subscales. However, only one study in the health sector has been conducted for the express purpose of validation, and that study population was limited to hospital managers from a single geographic locale. Methods We used exploratory and confirmatory factor analyses to examine the underlying structure of data from a CVF instrument. We analyzed cross-sectional data from a work environment survey conducted in the Veterans Health Administration (VHA). The study population comprised all staff in non-supervisory positions. The survey included 14 items adapted from a popular CVF instrument, which measures organizational culture according to four subscales: hierarchical, entrepreneurial, team, and rational. Results Data from 71,776 non-supervisory employees (approximate response rate 51%) from 168 VHA facilities were used in this analysis. Internal consistency of the subscales was moderate to strong (α = 0.68 to 0.85). However, the entrepreneurial, team, and rational subscales had higher correlations across subscales than within, indicating poor divergent properties. Exploratory factor analysis revealed two factors, comprising the ten items from the entrepreneurial, team, and rational subscales loading on the first factor, and two items from the hierarchical subscale loading on the second factor, along with one item from the rational subscale that cross-loaded on both factors. Results from confirmatory factor analysis suggested that the two-subscale solution provides a more parsimonious fit to the data as compared to the original four-subscale model. Conclusion This study suggests that there may be problems applying conventional

  18. Recent Progress in Engine Noise Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  19. Breast cancer risk factor associations differ for pure versus invasive carcinoma with an in situ component in case-control and case-case analyses

    PubMed Central

    Ruszczyk, Melanie; Zirpoli, Gary; Kumar, Shicha; Bandera, Elisa V.; Bovbjerg, Dana H.; Jandorf, Lina; Khoury, Thaer; Hwang, Helena; Ciupak, Gregory; Pawlish, Karen; Schedin, Pepper; Masso-Welch, Patricia; Ambrosone, Christine B.; Hong, Chi-Chen

    2015-01-01

    Purpose Invasive ductal carcinoma (IDC) is diagnosed with or without a ductal carcinoma in situ (DCIS) component. Previous analyses have found significant differences in tumor characteristics between pure IDC lacking DCIS and mixed IDC with DCIS. We will test our hypothesis that pure IDC represents a form of breast cancer with etiology and risk factors distinct from mixed IDC/DCIS. Methods We compared reproductive risk factors for breast cancer risk, as well as family and smoking history between 831 women with mixed IDC/DCIS (n=650) or pure IDC (n=181), and 1,620 controls, in the context of the Women's Circle of Health Study (WCHS), a case-control study of breast cancer in African-American and European-American women. Data on reproductive and lifestyle factors were collected during interviews, and tumor characteristics were abstracted from pathology reports. Case-control and case-case analyses were conducted using unconditional logistic regression. Results Most risk factors were similarly associated with pure IDC and mixed IDC/DCIS. However, among postmenopausal women, risk for pure IDC was lower in women with body mass index (BMI) 25 to <30 kg/m2 (Odds Ratio (OR)=0.66; 95% confidence interval (CI), 0.35-1.23) and BMI≥30 kg/m2 (OR=0.33; 95% CI, 0.18-0.67) compared to women with BMI<25 kg/m2, with no associations with mixed IDC/DCIS. In case-case analyses, women who breastfed up to 12 months (OR=0.55; 95% CI, 0.32-0.94) or longer (OR=0.47; 95% CI, 0.26-0.87) showed decreased odds of pure IDC than mixed IDC/DCIS compared to those who did not breastfeed. Conclusions Associations with some breast cancer risk factors differed between mixed IDC/DCIS and pure IDC, potentially suggesting differential developmental pathways. These findings, if confirmed in a larger study, will provide a better understanding of the development patterns of breast cancer and the influence of modifiable risk factors, which in turn could lead to better preventive measures for pure IDC, which

  20. Commercial considerations in tissue engineering

    PubMed Central

    Mansbridge, Jonathan

    2006-01-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well. PMID:17005024

  1. Commercial considerations in tissue engineering.

    PubMed

    Mansbridge, Jonathan

    2006-10-01

    Tissue engineering is a field with immense promise. Using the example of an early tissue-engineered skin implant, Dermagraft, factors involved in the successful commercial development of devices of this type are explored. Tissue engineering has to strike a balance between tissue culture, which is a resource-intensive activity, and business considerations that are concerned with minimizing cost and maximizing customer convenience. Bioreactor design takes place in a highly regulated environment, so factors to be incorporated into the concept include not only tissue culture considerations but also matters related to asepsis, scaleup, automation and ease of use by the final customer. Dermagraft is an allogeneic tissue. Stasis preservation, in this case cryopreservation, is essential in allogeneic tissue engineering, allowing sterility testing, inventory control and, in the case of Dermagraft, a cellular stress that may be important for hormesis following implantation. Although the use of allogeneic cells provides advantages in manufacturing under suitable conditions, it raises the spectre of immunological rejection. Such rejection has not been experienced with Dermagraft. Possible reasons for this and the vision of further application of allogeneic tissues are important considerations in future tissue-engineered cellular devices. This review illustrates approaches that indicate some of the criteria that may provide a basis for further developments. Marketing is a further requirement for success, which entails understanding of the mechanism of action of the procedure, and is illustrated for Dermagraft. The success of a tissue-engineered product is dependent on many interacting operations, some discussed here, each of which must be performed simultaneously and well.

  2. Combustion Stability Analyses for J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.

  3. Notes on Advanced Engineering Education

    ERIC Educational Resources Information Center

    Klimenko, A. Y.

    2017-01-01

    This article reviews history, analyses principles and presents a modern interpretation of advanced engineering education (AEE). AEE originated in France, was adapted in Germany and reached its zenith in the second half of the twentieth century as part of technological efforts induced by the space race. AEE is an enhanced form of education aimed at…

  4. Vaccination with Irradiated Autologous Melanoma Cells Engineered to Secrete Human Granulocyte--Macrophage Colony-Stimulating Factor Generates Potent Antitumor Immunity in Patients with Metastatic Melanoma

    NASA Astrophysics Data System (ADS)

    Soiffer, Robert; Lynch, Thomas; Mihm, Martin; Jung, Ken; Rhuda, Catherine; Schmollinger, Jan C.; Hodi, F. Stephen; Liebster, Laura; Lam, Prudence; Mentzer, Steven; Singer, Samuel; Tanabe, Kenneth K.; Benedict Cosimi, A.; Duda, Rosemary; Sober, Arthur; Bhan, Atul; Daley, John; Neuberg, Donna; Parry, Gordon; Rokovich, Joseph; Richards, Laurie; Drayer, Jan; Berns, Anton; Clift, Shirley; Cohen, Lawrence K.; Mulligan, Richard C.; Dranoff, Glenn

    1998-10-01

    We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte--macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte--macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

  5. Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta)

    NASA Astrophysics Data System (ADS)

    Jones, Auriane G.; Dubois, Stanislas F.; Desroy, Nicolas; Fournier, Jérôme

    2018-01-01

    Sabellaria alveolata is a gregarious polychaete that uses sand particles to build three-dimensional structures known as reefs, fixed atop rocks or built on soft sediments. These structures are known to modify the local grain-size distribution and to host a highly diversified macrofauna, altered when the reef undergoes disturbances. The goal of this study was to investigate the different sedimentary and biological changes associated with the presence of a S. alveolata reef over two contrasting seasons (late winter and late summer), and how these changes were linked. Three different sediments were considered: the engineered sediment (the actual reef), the associated sediment (the soft sediment surrounding the reef structures) and a control soft sediment (i.e. no reef structures in close proximity). Univariate and multivariate comparisons of grain-size distribution, soft sediment characteristics (organic matter content, chlorophyll a, pheopigments and carbohydrate concentrations) and macrofauna were conducted between the different sediment types at both seasons and between the two seasons for each sediment type. A distance-based redundancy analyses (dbRDA) was used to investigate the link between the different environmental parameters and the macrofauna assemblages. Finally, we focused on a disturbance continuum of the engineered sediments proxied by an increase in the mud present in these sediments. The effects of a continuous and increasing disturbance on the associated fauna were investigated using pairwise beta diversity indices (Sørensen and Bray-Curtis dissimilarities and their decomposition into turnover and nestedness). Results showed a significant effect of the reef on the local sediment distribution (coarser sediments compared to the control) and on the benthic primary production (higher in the associated sediments). At both seasons, S. alveolata biomass and sediment principal mode were the environmental parameters which best differentiated the engineered

  6. A Cost-Minimization Analysis of Tissue-Engineered Constructs for Corneal Endothelial Transplantation

    PubMed Central

    Tan, Tien-En; Peh, Gary S. L.; George, Benjamin L.; Cajucom-Uy, Howard Y.; Dong, Di; Finkelstein, Eric A.; Mehta, Jodhbir S.

    2014-01-01

    Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses. PMID:24949869

  7. A cost-minimization analysis of tissue-engineered constructs for corneal endothelial transplantation.

    PubMed

    Tan, Tien-En; Peh, Gary S L; George, Benjamin L; Cajucom-Uy, Howard Y; Dong, Di; Finkelstein, Eric A; Mehta, Jodhbir S

    2014-01-01

    Corneal endothelial transplantation or endothelial keratoplasty has become the preferred choice of transplantation for patients with corneal blindness due to endothelial dysfunction. Currently, there is a worldwide shortage of transplantable tissue, and demand is expected to increase further with aging populations. Tissue-engineered alternatives are being developed, and are likely to be available soon. However, the cost of these constructs may impair their widespread use. A cost-minimization analysis comparing tissue-engineered constructs to donor tissue procured from eye banks for endothelial keratoplasty was performed. Both initial investment costs and recurring costs were considered in the analysis to arrive at a final tissue cost per transplant. The clinical outcomes of endothelial keratoplasty with tissue-engineered constructs and with donor tissue procured from eye banks were assumed to be equivalent. One-way and probabilistic sensitivity analyses were performed to simulate various possible scenarios, and to determine the robustness of the results. A tissue engineering strategy was cheaper in both investment cost and recurring cost. Tissue-engineered constructs for endothelial keratoplasty could be produced at a cost of US$880 per transplant. In contrast, utilizing donor tissue procured from eye banks for endothelial keratoplasty required US$3,710 per transplant. Sensitivity analyses performed further support the results of this cost-minimization analysis across a wide range of possible scenarios. The use of tissue-engineered constructs for endothelial keratoplasty could potentially increase the supply of transplantable tissue and bring the costs of corneal endothelial transplantation down, making this intervention accessible to a larger group of patients. Tissue-engineering strategies for corneal epithelial constructs or other tissue types, such as pancreatic islet cells, should also be subject to similar pharmacoeconomic analyses.

  8. Human factors opportunities to improve Ohio's transportation system : executive summary report.

    DOT National Transportation Integrated Search

    2005-06-01

    Human factors engineering or ergonomics is the : area of engineering concerned with the humanmachine : interface. As Ohios road systems are : driven on by people, human factors engineering : is certainly relevant. However, human factors : have oft...

  9. A study of airplane engine tests

    NASA Technical Reports Server (NTRS)

    Gage, Victor R

    1920-01-01

    This report is a study of the results obtained from a large number of test of an Hispano-Suiza airplane engine in the altitude laboratory of the Bureau of Standards. It was originally undertaken to determine the heat distribution in such an engine, but many other factors are also considered as bearing on this matter.

  10. Cost Risk Analysis Based on Perception of the Engineering Process

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.; Wood, Darrell A.; Moore, Arlene A.; Bogart, Edward H.

    1986-01-01

    In most cost estimating applications at the NASA Langley Research Center (LaRC), it is desirable to present predicted cost as a range of possible costs rather than a single predicted cost. A cost risk analysis generates a range of cost for a project and assigns a probability level to each cost value in the range. Constructing a cost risk curve requires a good estimate of the expected cost of a project. It must also include a good estimate of expected variance of the cost. Many cost risk analyses are based upon an expert's knowledge of the cost of similar projects in the past. In a common scenario, a manager or engineer, asked to estimate the cost of a project in his area of expertise, will gather historical cost data from a similar completed project. The cost of the completed project is adjusted using the perceived technical and economic differences between the two projects. This allows errors from at least three sources. The historical cost data may be in error by some unknown amount. The managers' evaluation of the new project and its similarity to the old project may be in error. The factors used to adjust the cost of the old project may not correctly reflect the differences. Some risk analyses are based on untested hypotheses about the form of the statistical distribution that underlies the distribution of possible cost. The usual problem is not just to come up with an estimate of the cost of a project, but to predict the range of values into which the cost may fall and with what level of confidence the prediction is made. Risk analysis techniques that assume the shape of the underlying cost distribution and derive the risk curve from a single estimate plus and minus some amount usually fail to take into account the actual magnitude of the uncertainty in cost due to technical factors in the project itself. This paper addresses a cost risk method that is based on parametric estimates of the technical factors involved in the project being costed. The engineering

  11. Use of Fc-Engineered Antibodies as Clearing Agents to Increase Contrast During PET

    PubMed Central

    Swiercz, Rafal; Chiguru, Srinivas; Tahmasbi, Amir; Ramezani, Saleh M.; Hao, Guiyang; Challa, Dilip K.; Lewis, Matthew A.; Kulkarni, Padmakar V.; Sun, Xiankai; Ober, Raimund J.; Mason, Ralph P.; Ward, E. Sally

    2015-01-01

    Despite promise for the use of antibodies as molecular imaging agents in PET, their long in vivo half-lives result in poor contrast and radiation damage to normal tissue. This study describes an approach to overcome these limitations. Methods Mice bearing human epidermal growth factor receptor type 2 (HER2)–overexpressing tumors were injected with radiolabeled (124I, 125I) HER2-specific antibody (pertuzumab). Pertuzumab injection was followed 8 h later by the delivery of an engineered, antibody-based inhibitor of the receptor, FcRn. Biodistribution analyses and PET were performed at 24 and 48 h after pertuzumab injection. Results The delivery of the engineered, antibody-based FcRn inhibitor (or Abdeg, for antibody that enhances IgG degradation) results in improved tumor-to-blood ratios, reduced systemic exposure to radiolabel, and increased contrast during PET. Conclusion Abdegs have considerable potential as agents to stringently regulate antibody dynamics in vivo, resulting in increased contrast during molecular imaging with PET. PMID:24868106

  12. Developments in REDES: The rocket engine design expert system

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  13. Developments in REDES: The Rocket Engine Design Expert System

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  14. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  15. Trends in tissue engineering research.

    PubMed

    Hacker, Michael C; Mikos, Antonios G

    2006-08-01

    For more than a decade, Tissue Engineering has been devoted to the reporting and discussion of scientific advances in the interdisciplinary field of tissue engineering. In this study, 779 original articles published in the journal since its inception were analyzed and classified according to different attributes, such as focus of research and tissue of interest, to reveal trends in tissue engineering research. In addition, the use of different biomaterials, scaffold architectures, surface and bulk modification agents, cells, differentiation factors, gene delivery vectors, and animal models was examined. The results of this survey show interesting trends over time and by continental origin.

  16. Analyses of Fatigue and Fatigue-Crack Growth under Constant- and Variable-Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily crack growth from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using small-crack theory under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta K(sub eff)) under constant-amplitude loading. Modifications to the delta K(sub eff)-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small- and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  17. Validating the European Health Literacy Survey Questionnaire in people with type 2 diabetes: Latent trait analyses applying multidimensional Rasch modelling and confirmatory factor analysis.

    PubMed

    Finbråten, Hanne Søberg; Pettersen, Kjell Sverre; Wilde-Larsson, Bodil; Nordström, Gun; Trollvik, Anne; Guttersrud, Øystein

    2017-11-01

    To validate the European Health Literacy Survey Questionnaire (HLS-EU-Q47) in people with type 2 diabetes mellitus. The HLS-EU-Q47 latent variable is outlined in a framework with four cognitive domains integrated in three health domains, implying 12 theoretically defined subscales. Valid and reliable health literacy measurers are crucial to effectively adapt health communication and education to individuals and groups of patients. Cross-sectional study applying confirmatory latent trait analyses. Using a paper-and-pencil self-administered approach, 388 adults responded in March 2015. The data were analysed using the Rasch methodology and confirmatory factor analysis. Response violation (response dependency) and trait violation (multidimensionality) of local independence were identified. Fitting the "multidimensional random coefficients multinomial logit" model, 1-, 3- and 12-dimensional Rasch models were applied and compared. Poor model fit and differential item functioning were present in some items, and several subscales suffered from poor targeting and low reliability. Despite multidimensional data, we did not observe any unordered response categories. Interpreting the domains as distinct but related latent dimensions, the data fit a 12-dimensional Rasch model and a 12-factor confirmatory factor model best. Therefore, the analyses did not support the estimation of one overall "health literacy score." To support the plausibility of claims based on the HLS-EU score(s), we suggest: removing the health care aspect to reduce the magnitude of multidimensionality; rejecting redundant items to avoid response dependency; adding "harder" items and applying a six-point rating scale to improve subscale targeting and reliability; and revising items to improve model fit and avoid bias owing to person factors. © 2017 John Wiley & Sons Ltd.

  18. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    PubMed

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  19. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses

    PubMed Central

    Bellou, Vanesa; Belbasis, Lazaros; Tzoulaki, Ioanna

    2018-01-01

    Background Type 2 diabetes mellitus (T2DM) is a global epidemic associated with increased health expenditure, and low quality of life. Many non-genetic risk factors have been suggested, but their overall epidemiological credibility has not been assessed. Methods We searched PubMed to capture all meta-analyses and Mendelian randomization studies for risk factors of T2DM. For each association, we estimated the summary effect size, its 95% confidence and prediction interval, and the I2 metric. We examined the presence of small-study effects and excess significance bias. We assessed the epidemiological credibility through a set of predefined criteria. Results We captured 86 eligible papers (142 associations) covering a wide range of biomarkers, medical conditions, and dietary, lifestyle, environmental and psychosocial factors. Adiposity, low hip circumference, serum biomarkers (increased level of alanine aminotransferase, gamma-glutamyl transferase, uric acid and C-reactive protein, and decreased level of adiponectin and vitamin D), an unhealthy dietary pattern (increased consumption of processed meat and sugar-sweetened beverages, decreased intake of whole grains, coffee and heme iron, and low adherence to a healthy dietary pattern), low level of education and conscientiousness, decreased physical activity, high sedentary time and duration of television watching, low alcohol drinking, smoking, air pollution, and some medical conditions (high systolic blood pressure, late menarche age, gestational diabetes, metabolic syndrome, preterm birth) presented robust evidence for increased risk of T2DM. Conclusions A healthy lifestyle pattern could lead to decreased risk for T2DM. Future randomized clinical trials should focus on identifying efficient strategies to modify harmful daily habits and predisposing dietary patterns. PMID:29558518

  20. Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels

    NASA Astrophysics Data System (ADS)

    Zhen, Dong; Wang, Tie; Gu, Fengshou; Tesfa, Belachew; Ball, Andrew

    2013-05-01

    In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

  1. Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances

    PubMed Central

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future. PMID:25143954

  2. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances.

    PubMed

    Barthes, Julien; Özçelik, Hayriye; Hindié, Mathilde; Ndreu-Halili, Albana; Hasan, Anwarul; Vrana, Nihal Engin

    2014-01-01

    In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.

  3. Contingency power concepts for helicopter turboshaft engine

    NASA Technical Reports Server (NTRS)

    Hirschkron, R.; Davis, R. H.; Goldstein, D. N.; Haynes, J. F.; Gauntner, J. W.

    1984-01-01

    Twin helicopter engines are often sized by power requirement of safe mission completion after the failure of one of the two engines. This study was undertaken for NASA Lewis by General Electric Co. to evaluate the merits of special design features to provide a 2-1/2 minute Contingency Power rating, permitting an engine size reduction. The merits of water injection, cooling flow modulation, throttle push and an auxiliary power plant were evaluated using military life cycle cost (LCC) and commercial helicopter direct operating cost (DOC) merit factors in a rubber engine/rubber aircraft scenario.

  4. An Exploratory Survey of Student Perspectives Regarding Search Engines

    ERIC Educational Resources Information Center

    Alshare, Khaled; Miller, Don; Wenger, James

    2005-01-01

    This study explored college students' perceptions regarding their use of search engines. The main objective was to determine how frequently students used various search engines, whether advanced search features were used, and how many search engines were used. Various factors that might influence student responses were examined. Results showed…

  5. Science Teachers' Misconceptions in Science and Engineering Distinctions: Reflections on Modern Research Examples

    NASA Astrophysics Data System (ADS)

    Antink-Meyer, Allison; Meyer, Daniel Z.

    2016-10-01

    The aim of this exploratory study was to learn about the misconceptions that may arise for elementary and high school science teachers in their reflections on science and engineering practice. Using readings and videos of real science and engineering work, teachers' reflections were used to uncover the underpinnings of their understandings. This knowledge ultimately provides information about supporting professional development (PD) for science teachers' knowledge of engineering. Six science teachers (two elementary and four high school teachers) participated in the study as part of an online PD experience. Cunningham and Carlsen's (Journal of Science Teacher Education 25:197-210, 2014) relative emphases of science and engineering practices were used to frame the design of PD activities and the analyses of teachers' views. Analyses suggest misconceptions within the eight practices of science and engineering from the US Next Generation Science Standards in four areas. These are that: (1) the nature of the practices in both science and engineering research is determined by the long-term implications of the research regardless of the nature of the immediate work, (2) engineering and science are hierarchical, (3) creativity is inappropriate, and (4) research outcomes cannot be processes. We discuss the nature of these understandings among participants and the implications for engineering education PD for science teachers.

  6. SMC Systems Engineering: Specialty Engineering Disciplines Framework and Descriptions. Volume 2

    DTIC Science & Technology

    2011-10-03

    Engineering Disciplines Updale SNiEng Planning to Meet Program Objectives 1- -----:;..._- .-----------------, I Update SIW Eng T as1<s & Timing ol T asl<s...Analyses 1-Dev SNi Eng Products e.g. Assessmenls, Rills, Certs 1- ID & Manage Resources: Tools, Equip, Skills Assess Contractors’ Compian<:e to SIW Eng...Approaches to Meet SIW Ol>jeclives S1ipulale Contraclllal Risk and Actions lot Mitigations Review Contraclors’ Tech Data (Technical & Training Manuals

  7. Item Analyses of Memory Differences

    PubMed Central

    Salthouse, Timothy A.

    2017-01-01

    Objective Although performance on memory and other cognitive tests is usually assessed with a score aggregated across multiple items, potentially valuable information is also available at the level of individual items. Method The current study illustrates how analyses of variance with item as one of the factors, and memorability analyses in which item accuracy in one group is plotted as a function of item accuracy in another group, can provide a more detailed characterization of the nature of group differences in memory. Data are reported for two memory tasks, word recall and story memory, across age, ability, repetition, delay, and longitudinal contrasts. Results The item-level analyses revealed evidence for largely uniform differences across items in the age, ability, and longitudinal contrasts, but differential patterns across items in the repetition contrast, and unsystematic item relations in the delay contrast. Conclusion Analyses at the level of individual items have the potential to indicate the manner by which group differences in the aggregate test score are achieved. PMID:27618285

  8. 40 CFR 1033.245 - Deterioration factors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.245 Deterioration factors... deterioration factors that predict emission increases over the useful life of a locomotive or locomotive engine... the difference between exhaust emissions at the end of the useful life and exhaust emissions at the...

  9. 40 CFR 1033.245 - Deterioration factors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families § 1033.245 Deterioration factors... deterioration factors that predict emission increases over the useful life of a locomotive or locomotive engine... the difference between exhaust emissions at the end of the useful life and exhaust emissions at the...

  10. Sex Segregation in Undergraduate Engineering Majors

    ERIC Educational Resources Information Center

    Litzler, Elizabeth

    2010-01-01

    Gender inequality in engineering persists in spite of women reaching parity in college enrollments and degrees granted. To date, no analyses of educational sex segregation have comprehensively examined segregation within one discipline. To move beyond traditional methods of studying the long-standing stratification by field of study in higher…

  11. Which population level environmental factors are associated with asthma, rhinoconjunctivitis and eczema? Review of the ecological analyses of ISAAC Phase One

    PubMed Central

    2010-01-01

    The International Study of Asthma and Allergies in Childhood (ISAAC) Phase One showed large worldwide variations in the prevalence of symptoms of asthma, rhinoconjunctivitis and eczema, up to 10 to 20 fold between countries. Ecological analyses were undertaken with ISAAC Phase One data to explore factors that may have contributed to these variations, and are summarised and reviewed here. In ISAAC Phase One the prevalence of symptoms in the past 12 months of asthma, rhinoconjunctivitis and eczema were estimated from studies in 463,801 children aged 13 - 14 years in 155 centres in 56 countries, and in 257,800 children aged 6-7 years in 91 centres in 38 countries. Ecological analyses were undertaken between symptom prevalence and the following: Gross National Product per capita (GNP), food intake, immunisation rates, tuberculosis notifications, climatic factors, tobacco consumption, pollen, antibiotic sales, paracetamol sales, and outdoor air pollution. Symptom prevalence of all three conditions was positively associated with GNP, trans fatty acids, paracetamol, and women smoking, and inversely associated with food of plant origin, pollen, immunisations, tuberculosis notifications, air pollution, and men smoking. The magnitude of these associations was small, but consistent in direction between conditions. There were mixed associations of climate and antibiotic sales with symptom prevalence. The potential causality of these associations warrant further investigation. Factors which prevent the development of these conditions, or where there is an absence of a positive correlation at a population level may be as important from the policy viewpoint as a focus on the positive risk factors. Interventions based on small associations may have the potential for a large public health benefit. PMID:20092649

  12. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  13. Factors Influencing the Effectiveness of Systems Engineering Training and Education in the Department of Defense

    DTIC Science & Technology

    2011-04-30

    learning. Recommendations are also presented for additional research into a more effective systems engineering andragogy . 15. SUBJECT TERMS 16...into a more effective systems engineering andragogy . Purpose Competency-based training for defense acquisition workers in the systems engineering

  14. Translating theory into practice: integrating the affective and cognitive learning dimensions for effective instruction in engineering education

    NASA Astrophysics Data System (ADS)

    Alias, Maizam; Lashari, Tahira Anwar; Abidin Akasah, Zainal; Jahaya Kesot, Mohd.

    2014-03-01

    Learning in the cognitive domain is highly emphasised and has been widely investigated in engineering education. Lesser emphasis is placed on the affective dimension although the role of affects has been supported by research. The lack of understanding on learning theories and how they may be translated into classroom application of teaching and learning is one factor that contributes to this situation. This paper proposes a working framework for integrating the affective dimension of learning into engineering education that is expected to promote better learning within the cognitive domain. Four major learning theories namely behaviourism, cognitivism, socio-culturalism, and constructivism were analysed and how affects are postulated to influence cognition are identified. The affective domain constructs identified to be important are self-efficacy, attitude and locus of control. Based on the results of the analysis, a framework that integrates methodologies for achieving learning in the cognitive domain with the support of the affective dimension of learning is proposed. It is expected that integrated approach can be used as a guideline to engineering educators in designing effective and sustainable instructional material that would result in the effective engineers for future development.

  15. Engineering and fabrication cost considerations for cryogenic wind tunnel models

    NASA Technical Reports Server (NTRS)

    Boykin, R. M., Jr.; Davenport, J. B., Jr.

    1983-01-01

    Design and fabrication cost drivers for cryogenic transonic wind tunnel models are defined. The major cost factors for wind tunnel models are model complexity, tolerances, surface finishes, materials, material validation, and model inspection. The cryogenic temperatures require the use of materials with relatively high fracture toughness but at the same time high strength. Some of these materials are very difficult to machine, requiring extensive machine hours which can add significantly to the manufacturing costs. Some additional engineering costs are incurred to certify the materials through mechanical tests and nondestructive evaluation techniques, which are not normally required with conventional models. When instrumentation such as accelerometers and electronically scanned pressure modules is required, temperature control of these devices needs to be incorporated into the design, which requires added effort. Additional thermal analyses and subsystem tests may be necessary, which also adds to the design costs. The largest driver to the design costs is potentially the additional static and dynamic analyses required to insure structural integrity of the model and support system.

  16. A simplified gross thrust computing technique for an afterburning turbofan engine

    NASA Technical Reports Server (NTRS)

    Hamer, M. J.; Kurtenbach, F. J.

    1978-01-01

    A simplified gross thrust computing technique extended to the F100-PW-100 afterburning turbofan engine is described. The technique uses measured total and static pressures in the engine tailpipe and ambient static pressure to compute gross thrust. Empirically evaluated calibration factors account for three-dimensional effects, the effects of friction and mass transfer, and the effects of simplifying assumptions for solving the equations. Instrumentation requirements and the sensitivity of computed thrust to transducer errors are presented. NASA altitude facility tests on F100 engines (computed thrust versus measured thrust) are presented, and calibration factors obtained on one engine are shown to be applicable to the second engine by comparing the computed gross thrust. It is concluded that this thrust method is potentially suitable for flight test application and engine maintenance on production engines with a minimum amount of instrumentation.

  17. Engineering the future with America's high school students

    NASA Technical Reports Server (NTRS)

    Farrance, M. A.; Jenner, J. W.

    1993-01-01

    The number of students enrolled in engineering is declining while the need for engineers is increasing. One contributing factor is that most high school students have little or no knowledge about what engineering is, or what engineers do. To teach young students about engineering, engineers need good tools. This paper presents a course of study developed and used by the authors in a junior college course for high school students. Students learned about engineering through independent student projects, in-class problem solving, and use of career information resources. Selected activities from the course can be adapted to teach students about engineering in other settings. Among the most successful techniques were the student research paper assignments, working out a solution to an engineering problem as a class exercise, and the use of technical materials to illustrate engineering concepts and demonstrate 'tools of the trade'.

  18. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    PubMed Central

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more

  19. An engineered transforming growth factor β (TGF-β) monomer that functions as a dominant negative to block TGF-β signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Kyung; Barron, Lindsey; Hinck, Cynthia S.

    The transforming growth factor β isoforms, TGF-β1, -β2, and -β3, are small secreted homodimeric signaling proteins with essential roles in regulating the adaptive immune system and maintaining the extracellular matrix. However, dysregulation of the TGF-β pathway is responsible for promoting the progression of several human diseases, including cancer and fibrosis. Despite the known importance of TGF-βs in promoting disease progression, no inhibitors have been approved for use in humans. Herein, we describe an engineered TGF-β monomer, lacking the heel helix, a structural motif essential for binding the TGF-β type I receptor (TβRI) but dispensable for binding the other receptor requiredmore » for TGF-β signaling, the TGF-β type II receptor (TβRII), as an alternative therapeutic modality for blocking TGF-β signaling in humans. As shown through binding studies and crystallography, the engineered monomer retained the same overall structure of native TGF-β monomers and bound TβRII in an identical manner. Cell-based luciferase assays showed that the engineered monomer functioned as a dominant negative to inhibit TGF-β signaling with a Ki of 20–70 nM. Investigation of the mechanism showed that the high affinity of the engineered monomer for TβRII, coupled with its reduced ability to non-covalently dimerize and its inability to bind and recruit TβRI, enabled it to bind endogenous TβRII but prevented it from binding and recruiting TβRI to form a signaling complex. Such engineered monomers provide a new avenue to probe and manipulate TGF-β signaling and may inform similar modifications of other TGF-β family members.« less

  20. Factors promoting increased rate of tissue regeneration: the zebrafish fin as a tool for examining tissue engineering design concepts.

    PubMed

    Boominathan, Vijay P; Ferreira, Tracie L

    2012-12-01

    Student interest in topics of tissue engineering is increasing exponentially as the number of universities offering programs in bioengineering are on the rise. Bioengineering encompasses all of the STEM categories: Science, Technology, Engineering, and Math. Inquiry-based learning is one of the most effective techniques for promoting student learning and has been demonstrated to have a high impact on learning outcomes. We have designed program outcomes for our bioengineering program that require tiered activities to develop problem solving skills, peer evaluation techniques, and promote team work. While it is ideal to allow students to ask unique questions and design their own experiments, this can be difficult for instructors to have reagents and supplies available for a variety of activities. Zebrafish can be easily housed, and multiple variables can be tested on a large enough group to provide statistical value, lending them well to inquiry-based learning modules. We have designed a laboratory activity that takes observation of fin regeneration to the next level: analyzing conditions that may impact regeneration. Tissue engineers seek to define the optimum conditions to grow tissue for replacement parts. The field of tissue engineering is likely to benefit from understanding natural mechanisms of regeneration and the factors that influence the rate of regeneration. We have outlined the results of varying temperature on fin regeneration and propose other inquiry modules such as the role of pH in fin regeneration. Furthermore, we have provided useful tools for developing critical thinking and peer review of research ideas, assessment guidelines, and grading rubrics for the activities associated with this exercise.