Sample records for factors engineering branch

  1. Towards organ printing: engineering an intra-organ branched vascular tree.

    PubMed

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2010-03-01

    Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.

  2. Towards organ printing: engineering an intra-organ branched vascular tree

    PubMed Central

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2013-01-01

    Importance of the field Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. Areas covered in this review We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. What the reader will gain The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. Take home message It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a ‘built in’ intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a ‘built in’ intra-organ branched vascular tree. PMID:20132061

  3. Risk Factor Assessment Branch (RFAB)

    Cancer.gov

    The Risk Factor Assessment Branch (RFAB) focuses on the development, evaluation, and dissemination of high-quality risk factor metrics, methods, tools, technologies, and resources for use across the cancer research continuum, and the assessment of cancer-related risk factors in the population.

  4. The Specific Features of design and process engineering in branch of industrial enterprise

    NASA Astrophysics Data System (ADS)

    Sosedko, V. V.; Yanishevskaya, A. G.

    2017-06-01

    Production output of industrial enterprise is organized in debugged working mechanisms at each stage of product’s life cycle from initial design documentation to product and finishing it with utilization. The topic of article is mathematical model of the system design and process engineering in branch of the industrial enterprise, statistical processing of estimated implementation results of developed mathematical model in branch, and demonstration of advantages at application at this enterprise. During the creation of model a data flow about driving of information, orders, details and modules in branch of enterprise groups of divisions were classified. Proceeding from the analysis of divisions activity, a data flow, details and documents the state graph of design and process engineering was constructed, transitions were described and coefficients are appropriated. To each condition of system of the constructed state graph the corresponding limiting state probabilities were defined, and also Kolmogorov’s equations are worked out. When integration of sets of equations of Kolmogorov the state probability of system activity the specified divisions and production as function of time in each instant is defined. On the basis of developed mathematical model of uniform system of designing and process engineering and manufacture, and a state graph by authors statistical processing the application of mathematical model results was carried out, and also advantage at application at this enterprise is shown. Researches on studying of loading services probability of branch and third-party contractors (the orders received from branch within a month) were conducted. The developed mathematical model of system design and process engineering and manufacture can be applied to definition of activity state probability of divisions and manufacture as function of time in each instant that will allow to keep account of loading of performance of work in branches of the enterprise.

  5. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    DOEpatents

    Harris, Ralph E [San Antonio, TX; Broerman, III, Eugene L.; Bourn, Gary D [Laramie, WY

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  6. Engineered short branched-chain acyl-CoA synthesis in E. coli and acylation of chloramphenicol to branched-chain derivatives.

    PubMed

    Bi, Huiping; Bai, Yanfen; Cai, Tao; Zhuang, Yibin; Liang, Xiaomei; Zhang, Xueli; Liu, Tao; Ma, Yanhe

    2013-12-01

    Short branched-chain acyl-CoAs are important building blocks for a wide variety of pharmaceutically valuable natural products. Escherichia coli has been used as a heterologous host for the production of a variety of natural compounds for many years. In the current study, we engineered synthesis of isobutyryl-CoA and isovaleryl-CoA from glucose in E. coli by integration of the branched-chain α-keto acid dehydrogenase complex from Streptomyces avermitilis. In the presence of the chloramphenicol acetyltransferase (cat) gene, chloramphenicol was converted to both chloramphenicol-3-isobutyrate and chloramphenicol-3-isovalerate by the recombinant E. coli strains, which suggested successful synthesis of isobutyryl-CoA and isovaleryl-CoA. Furthermore, we improved the α-keto acid precursor supply by overexpressing the alsS gene from Bacillus subtilis and the ilvC and ilvD genes from E. coli and thus enhanced the synthesis of short branched-chain acyl-CoAs. By feeding 25 mg/L chloramphenicol, 2.96 ± 0.06 mg/L chloramphenicol-3-isobutyrate and 3.94 ± 0.06 mg/L chloramphenicol-3-isovalerate were generated by the engineered E. coli strain, which indicated efficient biosynthesis of short branched-chain acyl-CoAs. HPLC analysis showed that the most efficient E. coli strain produced 80.77 ± 3.83 nmol/g wet weight isovaleryl-CoA. To our knowledge, this is the first report of production of short branched-chain acyl-CoAs in E. coli and opens a way to biosynthesize various valuable natural compounds based on these special building blocks from renewable carbon sources.

  7. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  8. Concise review: can the intrinsic power of branching morphogenesis be used for engineering epithelial tissues and organs?

    PubMed

    Nigam, Sanjay K

    2013-12-01

    Branching morphogenesis is critical to the development of organs such as kidney, lung, mammary gland, prostate, pancreas, and salivary gland. Essentially, an epithelial bud becomes an iterative tip-stalk generator (ITSG) able to form a tree of branching ducts and/or tubules. In different organs, branching morphogenesis is governed by similar sets of genes. Epithelial branching has been recapitulated in vitro (or ex vivo) using three-dimensional cell culture and partial organ culture systems, and several such systems relevant to kidney tissue engineering are discussed here. By adapting systems like these it may be possible to harness the power inherent in the ITSG program to propagate and engineer epithelial tissues and organs. It is also possible to conceive of a universal ITSG capable of propagation that may, by recombination with organ-specific mesenchymal cells, be used for engineering many organ-like tissues similar to the organ from which the mesenchyme cells were derived, or toward which they are differentiated (from stem cells). The three-dimensional (3D) branched epithelial structure could act as a dynamic branching cellular scaffold to establish the architecture for the rest of the tissue. Another strategy-that of recombining propagated organ-specific ITSGs in 3D culture with undifferentiated mesenchymal stem cells-is also worth exploring. If feasible, such engineered tissues may be useful for the ex vivo study of drug toxicity, developmental biology, and physiology in the laboratory. Over the long term, they have potential clinical applications in the general fields of transplantation, regenerative medicine, and bioartificial medical devices to aid in the treatment of chronic kidney disease, diabetes, and other diseases.

  9. Human-factors engineering control-room design review/audit: Waterford 3 SES Generating Station, Louisiana Power and Light Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, J.W.

    1983-03-10

    A human factors engineering design review/audit of the Waterford-3 control room was performed at the site on May 10 through May 13, 1982. The report was prepared on the basis of the HFEB's review of the applicant's Preliminary Human Engineering Discrepancy (PHED) report and the human factors engineering design review performed at the site. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. The review team was assisted by consultants from Lawrence Livermore National Laboratory (University of California), Livermore, California.

  10. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    NASA Astrophysics Data System (ADS)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  11. Re-engineering specificity in 1,3-1, 4-β-glucanase to accept branched xyloglucan substrates.

    PubMed

    Addington, Trevor; Calisto, Barbara; Alfonso-Prieto, Mercedes; Rovira, Carme; Fita, Ignasi; Planas, Antoni

    2011-02-01

    Family 16 carbohydrate active enzyme members Bacillus licheniformis 1,3-1,4-β-glucanase and Populus tremula x tremuloides xyloglucan endotransglycosylase (XET16-34) are highly structurally related but display different substrate specificities. Although the first binds linear gluco-oligosaccharides, the second binds branched xylogluco-oligosaccharides. Prior engineered nucleophile mutants of both enzymes are glycosynthases that catalyze the condensation between a glycosyl fluoride donor and a glycoside acceptor. With the aim of expanding the glycosynthase technology to produce designer oligosaccharides consisting of hybrids between branched xylogluco- and linear gluco-oligosaccharides, enzyme engineering on the negative subsites of 1,3-1,4-β-glucanase to accept branched substrates has been undertaken. Removal of the 1,3-1,4-β-glucanase major loop and replacement with that of XET16-34 to open the binding cleft resulted in a folded protein, which still maintained some β-glucan hydrolase activity, but the corresponding nucleophile mutant did not display glycosynthase activity with either linear or branched glycosyl donors. Next, point mutations of the 1,3-1,4-β-glucanase β-sheets forming the binding site cleft were mutated to resemble XET16-34 residues. The final chimeric protein acquired binding affinity for xyloglucan and did not bind β-glucan. Therefore, binding specificity has been re-engineered, but affinity was low and the nucleophile mutant of the chimeric enzyme did not show glycosynthase activity to produce the target hybrid oligosaccharides. Structural analysis by X-ray crystallography explains these results in terms of changes in the protein structure and highlights further engineering approaches toward introducing the desired activity. © 2010 Wiley-Liss, Inc.

  12. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel.

    PubMed

    Teo, Wei Suong; Ling, Hua; Yu, Ai-Qun; Chang, Matthew Wook

    2015-01-01

    Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associated with biodiesel use is poor low-temperature flow properties. Hence, microbial production as a renewable, nontoxic and scalable method to produce fatty acid esters with branched-chain alcohol moieties from biomass is critical. We engineered Saccharomyces cerevisiae to produce fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters using endogenously synthesized fatty acids and alcohols. Two wax ester synthase genes (ws2 and Maqu_0168 from Marinobacter sp.) were cloned and expressed. Both enzymes were found to catalyze the formation of fatty acid esters, with different alcohol preferences. To boost the ability of S. cerevisiae to produce the aforementioned esters, negative regulators of the INO1 gene in phospholipid metabolism, Rpd3 and Opi1, were deleted to increase flux towards fatty acyl-CoAs. In addition, five isobutanol pathway enzymes (Ilv2, Ilv5, Ilv3, Aro10, and Adh7) targeted into the mitochondria were overexpressed to enhance production of alcohol precursors. By combining these engineering strategies with high-cell-density fermentation, over 230 mg/L fatty acid short- and branched-chain alkyl esters were produced, which is the highest titer reported in yeast to date. In this work, we engineered the metabolism of S. cerevisiae to produce biodiesels in the form of fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters. To our knowledge, this is the first report of the production of fatty acid isobutyl and active amyl esters in S. cerevisiae. Our findings will be useful for

  13. Fusible core molding for the fabrication of branched, perfusable, three-dimensional microvessels for vascular tissue engineering.

    PubMed

    Martin, Cristina; Sofla, Aarash; Zhang, Boyang; Nunes, Sara S; Radisic, Milica

    2013-03-01

    A novel method for fabrication of branched, tubular, perfusable microvessels for use in vascular tissue engineering is reported. A tubular, elastomeric, biodegradable scaffold is first fabricated via a new, double fusible injection molding technique that uses a ternary alloy with a low melting temperature, Field's metal, and paraffin as sacrificial components. A cylindrical core metal of 500 μm or lower dia-meter with the target branching scaffold geometry is first constructed, then the metal structure is coated with paraffin and, finally, the metal-paraffin construct is embedded in polydimethylsiloxane (PDMS). The paraffin layer is then removed by heating and replaced by a biodegradable elastomeric pre-polymer that is subsequently UV-cured inside the PDMS. Next, the metal core is melted away and the PDMS is removed to attain the branched tubular elastomeric biodegradable scaffold. Finally, it is also demonstrated that human umbilical vein endothelial cells (HUVEC) were able to spread on the surface of the scaffold and form a confluent monolayer, confirming the potential of this new technique for making engineered blood vessels.

  14. Structural Mechanics and Dynamics Branch

    NASA Technical Reports Server (NTRS)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  15. Materials Test Branch

    NASA Technical Reports Server (NTRS)

    Gordon, Gail

    2012-01-01

    The Materials Test Branch resides at Marshall Space Flight Center's Materials and Processing laboratory and has a long history of supporting NASA programs from Mercury to the recently retired Space Shuttle. The Materials Test Branch supports its customers by supplying materials testing expertise in a wide range of applications. The Materials Test Branch is divided into three Teams, The Chemistry Team, The Tribology Team and the Mechanical Test Team. Our mission and goal is to provide world-class engineering excellence in materials testing with a special emphasis on customer service.

  16. Thermal Energy Conversion Branch

    NASA Technical Reports Server (NTRS)

    Bielozer, Matthew C.; Schreiber, Jeffrey, G.; Wilson, Scott D.

    2004-01-01

    The Thermal Energy Conversion Branch (5490) leads the way in designing, conducting, and implementing research for the newest thermal systems used in space applications at the NASA Glenn Research Center. Specifically some of the most advanced technologies developed in this branch can be broken down into four main areas: Dynamic Power Systems, Primary Solar Concentrators, Secondary Solar Concentrators, and Thermal Management. Work was performed in the Dynamic Power Systems area, specifically the Stirling Engine subdivision. Today, the main focus of the 5490 branch is free-piston Stirling cycle converters, Brayton cycle nuclear reactors, and heat rejection systems for long duration mission spacecraft. All space exploring devices need electricity to operate. In most space applications, heat energy from radioisotopes is converted to electrical power. The Radioisotope Thermoelectric Generator (RTG) already supplies electricity for missions such as the Cassini Spacecraft. The focus of today's Stirling research at GRC is aimed at creating an engine that can replace the RTG. The primary appeal of the Stirling engine is its high system efficiency. Because it is so efficient, the Stirling engine will significantly reduce the plutonium fuel mission requirements compared to the RTG. Stirling is also being considered for missions such as the lunar/Mars bases and rovers. This project has focused largely on Stirling Engines of all types, particularly the fluidyne liquid piston engine. The fluidyne was developed by Colin D. West. This engine uses the same concepts found in any type of Stirling engine, with the exception of missing mechanical components. All the working components are fluid. One goal was to develop and demonstrate a working Stirling Fluidyne Engine at the 2nd Annual International Energy Conversion Engineering Conference in Providence, Rhode Island.

  17. SLAC-standard CAMAC branch terminator (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-04-04

    The drawings listed on the drawing list provide the data and specifications for constructing a Branch Terminator for the SLAC standard CAMAC units. This is a device for matching the cables and other branch lines in the system. This unit is designed for a certain group of SLAC CAMAC units which are referred to as SLAC-Standard CAMAC Units.

  18. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  19. Right bundle branch block as a risk factor for subsequent cardiac events.

    DOT National Transportation Integrated Search

    1990-08-01

    The identification of risk factors for adverse cardiac events is valuable to the certification of airmen. This study examines the importance of right bundle branch block (RBBB) as a risk factor for myocardial infarction (MI), atherosclerotic heart di...

  20. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize.

    PubMed

    Bai, Fang; Reinheimer, Renata; Durantini, Diego; Kellogg, Elizabeth A; Schmidt, Robert J

    2012-07-24

    In grass inflorescences, a structure called the "pulvinus" is found between the inflorescence main stem and lateral branches. The size of the pulvinus affects the angle of the lateral branches that emerge from the main axis and therefore has a large impact on inflorescence architecture. Through EMS mutagenesis we have identified three complementation groups of recessive mutants in maize having defects in pulvinus formation. All mutants showed extremely acute tassel branch angles accompanied by a significant reduction in the size of the pulvinus compared with normal plants. Two of the complementation groups correspond to mutations in the previously identified genes, RAMOSA2 (RA2) and LIGULELESS1 (LG1). Mutants corresponding to a third group were cloned using mapped-based approaches and found to encode a new member of the plant-specific TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR) family of DNA-binding proteins, BRANCH ANGLE DEFECTIVE 1 (BAD1). BAD1 is expressed in the developing pulvinus as well as in other developing tissues, including the tassels and juvenile leaves. Both molecular and genetics studies show that RA2 is upstream of BAD1, whereas LG1 may function in a separate pathway. Our findings demonstrate that BAD1 is a TCP class II gene that functions to promote cell proliferation in a lateral organ, the pulvinus, and influences inflorescence architecture by impacting the angle of lateral branch emergence.

  1. The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis

    PubMed Central

    Guo, Dongshu; Zhang, Jinzhe; Wang, Xinlei; Han, Xiang; Wei, Baoye; Yu, Hao; Huang, Qingpei

    2015-01-01

    Plant shoot branching is pivotal for developmental plasticity and crop yield. The formation of branch meristems is regulated by several key transcription factors including REGULATOR OF AXILLARY MERISTEMS1 (RAX1), RAX2, and RAX3. However, the regulatory network of shoot branching is still largely unknown. Here, we report the identification of EXCESSIVE BRANCHES1 (EXB1), which affects axillary meristem (AM) initiation and bud activity. Overexpression of EXB1 in the gain-of-function mutant exb1-D leads to severe bushy and dwarf phenotypes, which result from excessive AM initiation and elevated bud activities. EXB1 encodes the WRKY transcription factor WRKY71, which has demonstrated transactivation activities. Disruption of WRKY71/EXB1 by chimeric repressor silencing technology leads to fewer branches, indicating that EXB1 plays important roles in the control of shoot branching. We demonstrate that EXB1 controls AM initiation by positively regulating the transcription of RAX1, RAX2, and RAX3. Disruption of the RAX genes partially rescues the branching phenotype caused by EXB1 overexpression. We further show that EXB1 also regulates auxin homeostasis in control of shoot branching. Our data demonstrate that EXB1 plays pivotal roles in shoot branching by regulating both transcription of RAX genes and auxin pathways. PMID:26578700

  2. Mission and spacecraft support functions of the Materials Engineering Branch: A space oriented technology resource

    NASA Technical Reports Server (NTRS)

    Fisher, A.; Staugaitis, C. L.

    1974-01-01

    The capabilities of the Materials Engineering Branch (MEB) of the Goddard Space Flight Center, Greenbelt, Maryland, are surveyed. The specific functions of spacecraft materials review, materials processing and information dissemination, and laboratory support, are outlined in the Activity Report. Further detail is provided by case histories of laboratory satellite support and equipment. Project support statistics are shown, and complete listings of MEB publications, patents, and tech briefs are included. MEB staff, and their respective discipline areas and spacecraft liaison associations, are listed.

  3. Damage Tolerance Assessment Branch

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2013-01-01

    The Damage Tolerance Assessment Branch evaluates the ability of a structure to perform reliably throughout its service life in the presence of a defect, crack, or other form of damage. Such assessment is fundamental to the use of structural materials and requires an integral blend of materials engineering, fracture testing and analysis, and nondestructive evaluation. The vision of the Branch is to increase the safety of manned space flight by improving the fracture control and the associated nondestructive evaluation processes through development and application of standards, guidelines, advanced test and analytical methods. The Branch also strives to assist and solve non-aerospace related NDE and damage tolerance problems, providing consultation, prototyping and inspection services.

  4. A novel method for fabricating engineered structures with branched micro-channel using hollow hydrogel fibers

    PubMed Central

    Liu, Yuanyuan; Li, Yu; Liu, Change; Sun, Yuanshao; Hu, Qingxi

    2016-01-01

    Vascularization plays a crucial role in the regeneration of different damaged or diseased tissues and organs. Vascularized networks bring sufficient nutrients and oxygen to implants and receptors. However, the fabrication of engineered structures with branched micro-channels (ESBM) is still the main technological barrier. To address this problem, this paper introduced a novel method for fabricating ESBM; the manufacturability and feasibility of this method was investigated. A triaxial nozzle with automatic cleaning function was mounted on a homemade 3D bioprinter to coaxially extrude sodium alginate (NaAlg) and calcium chloride (CaCl2) to form the hollow hydrogel fibers. With the incompleteness of cross-linking and proper trimming, ESBM could be produced rapidly. Different concentrations of NaAlg and CaCl2 were used to produce ESBM, and mechanical property tests were conducted to confirm the optimal material concentration for making the branched structures. Cell media could be injected into the branched channel, which showed a good perfusion. Fibroblasts were able to maintain high viability after being cultured for a few days, which verified the non-cytotoxicity of the gelation and fabrication process. Thus, hollow hydrogel fibers were proved to be a potential method for fabricating micro-channels for vascularization. PMID:27965729

  5. Towards engineered branch placement: Unreal™ match between vapour-liquid-solid glancing angle deposition nanowire growth and simulation

    NASA Astrophysics Data System (ADS)

    Taschuk, M. T.; Tucker, R. T.; LaForge, J. M.; Beaudry, A. L.; Kupsta, M. R.; Brett, M. J.

    2013-12-01

    The vapour-liquid-solid glancing angle deposition (VLS-GLAD) process is capable of producing complex nanotree structures with control over azimuthal branch orientation and height. We have developed a thin film growth simulation including ballistic deposition, simplified surface diffusion, and droplet-mediated cubic crystal growth for the VLS-GLAD process using the UnrealTM Development Kit. The use of a commercial game engine has provided an interactive environment while allowing a custom physics implementation. Our simulation's output is verified against experimental data, including a volumetric film reconstruction produced using focused ion beam and scanning-electron microscopy (SEM), crystallographic texture, and morphological characteristics such as branch orientation. We achieve excellent morphological and texture agreement with experimental data, as well as qualitative agreement with SEM imagery. The simplified physics in our model reproduces the experimental films, indicating that the dominant role flux geometry plays in the VLS-GLAD competitive growth process responsible for azimuthally oriented branches and biaxial crystal texture evolution. The simulation's successful reproduction of experimental data indicates that it should have predictive power in designing novel VLS-GLAD structures.

  6. The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis.

    PubMed

    Guo, Dongshu; Zhang, Jinzhe; Wang, Xinlei; Han, Xiang; Wei, Baoye; Wang, Jianqiao; Li, Boxun; Yu, Hao; Huang, Qingpei; Gu, Hongya; Qu, Li-Jia; Qin, Genji

    2015-11-01

    Plant shoot branching is pivotal for developmental plasticity and crop yield. The formation of branch meristems is regulated by several key transcription factors including REGULATOR OF AXILLARY MERISTEMS1 (RAX1), RAX2, and RAX3. However, the regulatory network of shoot branching is still largely unknown. Here, we report the identification of EXCESSIVE BRANCHES1 (EXB1), which affects axillary meristem (AM) initiation and bud activity. Overexpression of EXB1 in the gain-of-function mutant exb1-D leads to severe bushy and dwarf phenotypes, which result from excessive AM initiation and elevated bud activities. EXB1 encodes the WRKY transcription factor WRKY71, which has demonstrated transactivation activities. Disruption of WRKY71/EXB1 by chimeric repressor silencing technology leads to fewer branches, indicating that EXB1 plays important roles in the control of shoot branching. We demonstrate that EXB1 controls AM initiation by positively regulating the transcription of RAX1, RAX2, and RAX3. Disruption of the RAX genes partially rescues the branching phenotype caused by EXB1 overexpression. We further show that EXB1 also regulates auxin homeostasis in control of shoot branching. Our data demonstrate that EXB1 plays pivotal roles in shoot branching by regulating both transcription of RAX genes and auxin pathways. © 2015 American Society of Plant Biologists. All rights reserved.

  7. Engineering Technical Review Planning Briefing

    NASA Technical Reports Server (NTRS)

    Gardner, Terrie

    2012-01-01

    The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.

  8. E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors.

    PubMed

    Zhang, Yan; Yokoyama, Shigetoshi; Herriges, John C; Zhang, Zhen; Young, Randee E; Verheyden, Jamie M; Sun, Xin

    2016-07-05

    The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis.

  9. Directed branch growth in aligned nanowire arrays.

    PubMed

    Beaudry, Allan L; LaForge, Joshua M; Tucker, Ryan T; Sorge, Jason B; Adamski, Nicholas L; Li, Peng; Taschuk, Michael T; Brett, Michael J

    2014-01-01

    Branch growth is directed along two, three, or four in-plane directions in vertically aligned nanowire arrays using vapor-liquid-solid glancing angle deposition (VLS-GLAD) flux engineering. In this work, a dynamically controlled collimated vapor flux guides branch placement during the self-catalyzed epitaxial growth of branched indium tin oxide nanowire arrays. The flux is positioned to grow branches on select nanowire facets, enabling fabrication of aligned nanotree arrays with L-, T-, or X-branching. In addition, a flux motion algorithm is designed to selectively elongate branches along one in-plane axis. Nanotrees are found to be aligned across large areas by X-ray diffraction pole figure analysis and through branch length and orientation measurements collected over 140 μm(2) from scanning electron microscopy images for each array. The pathway to guided assembly of nanowire architectures with controlled interconnectivity in three-dimensions using VLS-GLAD is discussed.

  10. 46 CFR 111.75-5 - Lighting branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lighting branch circuits. 111.75-5 Section 111.75-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Lighting Circuits and Protection § 111.75-5 Lighting branch circuits. (a) Loads. A...

  11. Motivational factors, gender and engineering education

    NASA Astrophysics Data System (ADS)

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Egelund Holgaard, Jette

    2013-06-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students1 reasons for choosing a career in engineering. We find that women are significantly more influenced by mentors than men, while men tend to be more motivated by intrinsic and financial factors, and by the social importance of the engineering profession. Parental influence is low across all programmes and by differentiating between specific clusters of engineering programmes, we further show that these overall gender differences are subtle and that motivational factors are unequally important across the different educational programmes. The findings from this study clearly indicate that intrinsic and social motivations are the most important motivational factors; however, gender and programme differentiation needs to be taken into account, and points towards diverse future strategies for attracting students to engineering education.

  12. Automated and comprehensive link engineering supporting branched, ring, and mesh network topologies

    NASA Astrophysics Data System (ADS)

    Farina, J.; Khomchenko, D.; Yevseyenko, D.; Meester, J.; Richter, A.

    2016-02-01

    Link design, while relatively easy in the past, can become quite cumbersome with complex channel plans and equipment configurations. The task of designing optical transport systems and selecting equipment is often performed by an applications or sales engineer using simple tools, such as custom Excel spreadsheets. Eventually, every individual has their own version of the spreadsheet as well as their own methodology for building the network. This approach becomes unmanageable very quickly and leads to mistakes, bending of the engineering rules and installations that do not perform as expected. We demonstrate a comprehensive planning environment, which offers an efficient approach to unify, control and expedite the design process by controlling libraries of equipment and engineering methodologies, automating the process and providing the analysis tools necessary to predict system performance throughout the system and for all channels. In addition to the placement of EDFAs and DCEs, performance analysis metrics are provided at every step of the way. Metrics that can be tracked include power, CD and OSNR, SPM, XPM, FWM and SBS. Automated routine steps assist in design aspects such as equalization, padding and gain setting for EDFAs, the placement of ROADMs and transceivers, and creating regeneration points. DWDM networks consisting of a large number of nodes and repeater huts, interconnected in linear, branched, mesh and ring network topologies, can be designed much faster when compared with conventional design methods. Using flexible templates for all major optical components, our technology-agnostic planning approach supports the constant advances in optical communications.

  13. Human Factors Engineering Program Review Model

    DTIC Science & Technology

    2004-02-01

    Institute, 1993). ANSI HFS-100: American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (American National... American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSI HFS-100-1988). Santa Monica, California

  14. Influence of gender in choosing a career amongst engineering fields: a survey study from Turkey

    NASA Astrophysics Data System (ADS)

    Bucak, Seyda; Kadirgan, Neset

    2011-10-01

    The aim of this study is to understand the motivating factors behind students' choices in their decision-making process and also get an insight on their perception of different engineering branches. A survey was prepared and the results were evaluated amongst 1163 answers. Two major influences on student's decision in their professional choices are shown to be career services and family members. Generally, students have claimed to choose a profession based on 'finding a job' and 'being happy'. Some engineering branches such as Genetic and Bioengineering, Chemical Engineering, Environmental Engineering and Industrial Engineering, are shown to be distinctly preferred by female students, whereas mechanical, civil and electronic engineering are favourites for male students. The survey results were also compared with the distribution of male and female students in various engineering departments. This study clearly shows that certain engineering branches are perceived as more appropriate for women and are thus favoured by female students, while those perceived as more appropriate for men are favoured by male students.

  15. Factors that Influence First-Career Choice of Undergraduate Engineers in Software Services Companies: A South Indian Experience

    ERIC Educational Resources Information Center

    Gokuladas, V. K.

    2010-01-01

    Purpose: The purpose of this paper is to identify how undergraduate engineering students differ in their perception about software services companies in India based on variables like gender, locations of the college and branches of engineering. Design/methodology/approach: Data obtained from 560 undergraduate engineering students who had the…

  16. Space plasma branch at NRL

    NASA Astrophysics Data System (ADS)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  17. Role of TCP Gene BRANCHED1 in the Control of Shoot Branching in Arabidopsis.

    PubMed

    Poza-Carrión, César; Aguilar-Martínez, José Antonio; Cubas, Pilar

    2007-11-01

    Branching patterns are major determinants of plant architecture. They depend both on leaf phillotaxy (branch primordia are formed in the axils of leaves) and on the decision of buds to grow out to give a branch or to remain dormant. In Arabidopsis, several genes involved in the long-distance signalling of the control of branch outgrowth have been identified. However, the genes acting inside the buds to cause growth arrest remained unknown until now. In the February issue of Plant Cell we have described the function of BRANCHED1 (BRC1), an Arabidopsis gene coding for a plant-specific transcription factor of the TCP family that is expressed in the buds and prevents their development. Loss of BRC1 function leads to accelerated AM initiation, precocious progression of bud development and excess of shoot branching. BRC1 transcription is affected by endogenous and environmental signals controlling branching and we have shown that BRC1 function mediates the response to these stimuli. Therefore we have proposed that BRC1 function represents the point at which signals controlling branching are integrated within axillary buds.

  18. The control of branching morphogenesis

    PubMed Central

    Iber, Dagmar; Menshykau, Denis

    2013-01-01

    Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663

  19. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  20. Motivational Factors Affecting Athletes in Selecting the Sport Branches of Athletics, Ski and Tennis

    ERIC Educational Resources Information Center

    Akyüz, Murat; Agar, Muharrem; Akyüz, Öznur; Dogru, Yeliz

    2016-01-01

    The aim of this study is to research the motivational factors affecting athletes to select the branches of athletics, ski and tennis. Within the scope of the research, the survey developed by H. Sunay in 1996 was implemented and solution for the problem of the research was searched through the findings that were obtained from the survey. SPSS…

  1. Motivational and adaptational factors of successful women engineers

    NASA Astrophysics Data System (ADS)

    Bornsen, Susan Edith

    It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged in the field. This paper examines how women engineers view their education, their work, and their motivation to remain in the field. A qualitative research design was used to understand the motivation and adaptability factors women use to support their decision to major in engineering and stay in the engineering profession. Women engineers were interviewed using broad questions about motivation and adaptability. Interviews were transcribed and coded, looking for common threads of factors that suggest not only why women engineers persist in the field, but also how they thrive. Findings focus on the experiences, insights, and meaning of women interviewed. A grounded theory approach was used to describe the success factors found in practicing women engineers. The study found categories of attraction to the field, learning environment, motivation and adaptability. Sub-categories of motivation are intrinsic motivational factors such as the desire to make a difference, as well as extrinsic factors such as having an income that allows the kind of lifestyle that supports the family. Women engineers are comfortable with and enjoy working with male peers and when barriers arise, women learn to adapt in the male dominated field. Adaptability was indicated in areas of gender, culture, and communication. Women found strength in the ability to 'read' their clients, and provide insight to their teams. Sufficient knowledge from the field advances theory and offers strategies to programs for administrators and faculty of schools of engineering as well as engineering firms, who have interest in recruitment, and retention of female students

  2. Branched-chain higher alcohols.

    PubMed

    Wang, Bao-Wei; Shi, Ai-Qin; Tu, Ran; Zhang, Xue-Li; Wang, Qin-Hong; Bai, Feng-Wu

    2012-01-01

    China's energy requirements and environmental concerns have stimulated efforts toward developing alternative liquid fuels. Compared with fuel ethanol, branched-chain higher alcohols (BCHAs), including isopropanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, exhibit significant advantages, such as higher energy density, lower hygroscopicity, lower vapor pressure, and compatibility with existing transportation infrastructures. However, BCHAs have not been synthesized economically using native organisms, and thus their microbial production based on metabolic engineering and synthetic biology offers an alternative approach, which presents great potential for improving production efficiency. We review the current status of production and consumption of BCHAs and research progress regarding their microbial production in China, especially with the combination of metabolic engineering and synthetic biology.

  3. The Ignition of Two Phase Detonation by a Branching Detonation Tube

    NASA Astrophysics Data System (ADS)

    Xiong, Cha; Qiu, Hua; Lu, Qinwei

    2017-11-01

    A branching tube is available to deliver sufficient energy to directly initiate a detonation wave. But sustaining the detonation wave through a branching tube is a challenge. In this study, a preliminary exploration about a branching pulsed detonation engine with a gas-liquid mixture was carried out to evaluate filling conditions on detonation initiation. Two detonation tubes were connected by three different schemes, such as Tail-Tail, Tail-Mid, and Tail-Head. Experimental results showed only end-head connected tubes can be ignited by the branching tube, which is quite different from the results using gas fuels or pre-evaporated liquid fuel. Liquid fuel distribution is crucial for successful detonation traveling through the branching tube.

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  5. The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in Catharanthus roseus

    PubMed Central

    Van Moerkercke, Alex; Steensma, Priscille; Schweizer, Fabian; Pollier, Jacob; Gariboldi, Ivo; Payne, Richard; Vanden Bossche, Robin; Miettinen, Karel; Espoz, Javiera; Purnama, Purin Candra; Kellner, Franziska; Seppänen-Laakso, Tuulikki; O’Connor, Sarah E.; Rischer, Heiko; Memelink, Johan; Goossens, Alain

    2015-01-01

    Plants make specialized bioactive metabolites to defend themselves against attackers. The conserved control mechanisms are based on transcriptional activation of the respective plant species-specific biosynthetic pathways by the phytohormone jasmonate. Knowledge of the transcription factors involved, particularly in terpenoid biosynthesis, remains fragmentary. By transcriptome analysis and functional screens in the medicinal plant Catharanthus roseus (Madagascar periwinkle), the unique source of the monoterpenoid indole alkaloid (MIA)-type anticancer drugs vincristine and vinblastine, we identified a jasmonate-regulated basic helix–loop–helix (bHLH) transcription factor from clade IVa inducing the monoterpenoid branch of the MIA pathway. The bHLH iridoid synthesis 1 (BIS1) transcription factor transactivated the expression of all of the genes encoding the enzymes that catalyze the sequential conversion of the ubiquitous terpenoid precursor geranyl diphosphate to the iridoid loganic acid. BIS1 acted in a complementary manner to the previously characterized ethylene response factor Octadecanoid derivative-Responsive Catharanthus APETALA2-domain 3 (ORCA3) that transactivates the expression of several genes encoding the enzymes catalyzing the conversion of loganic acid to the downstream MIAs. In contrast to ORCA3, overexpression of BIS1 was sufficient to boost production of high-value iridoids and MIAs in C. roseus suspension cell cultures. Hence, BIS1 might be a metabolic engineering tool to produce sustainably high-value MIAs in C. roseus plants or cultures. PMID:26080427

  6. Motivational Factors, Gender and Engineering Education

    ERIC Educational Resources Information Center

    Kolmos, Anette; Mejlgaard, Niels; Haase, Sanne; Holgaard, Jette Egelund

    2013-01-01

    Based on survey data covering the full population of students enrolled in Danish engineering education in autumn 2010, we explore the motivational factors behind educational choice, with a particular aim of comparing male and female students reasons for choosing a career in engineering. We find that women are significantly more influenced by…

  7. Decibel: The Relational Dataset Branching System

    PubMed Central

    Maddox, Michael; Goehring, David; Elmore, Aaron J.; Madden, Samuel; Parameswaran, Aditya; Deshpande, Amol

    2017-01-01

    As scientific endeavors and data analysis become increasingly collaborative, there is a need for data management systems that natively support the versioning or branching of datasets to enable concurrent analysis, cleaning, integration, manipulation, or curation of data across teams of individuals. Common practice for sharing and collaborating on datasets involves creating or storing multiple copies of the dataset, one for each stage of analysis, with no provenance information tracking the relationships between these datasets. This results not only in wasted storage, but also makes it challenging to track and integrate modifications made by different users to the same dataset. In this paper, we introduce the Relational Dataset Branching System, Decibel, a new relational storage system with built-in version control designed to address these shortcomings. We present our initial design for Decibel and provide a thorough evaluation of three versioned storage engine designs that focus on efficient query processing with minimal storage overhead. We also develop an exhaustive benchmark to enable the rigorous testing of these and future versioned storage engine designs. PMID:28149668

  8. Clinical and Translational Epidemiology Branch (CTEB)

    Cancer.gov

    The Clinical and Translational Epidemiology Branch focuses on factors that influence cancer progression, recurrence, survival, and other treatment outcomes, and factors associated with cancer development.

  9. Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering

    NASA Astrophysics Data System (ADS)

    Wentling, Rose Mary; Camacho, Cristina

    Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.

  10. Some effects of time usage patterns on the productivity of engineers

    NASA Technical Reports Server (NTRS)

    Jackson, Conrad N.

    1992-01-01

    The performance of the 1500+ engineers at MSFC is critical to the Center's mission. Worker's performance, however, is a variable affected by ability, motivation, role understanding, and other factors. Managing subordinates' performance is a great challenges to managers. Special challenges confront the managers of engineers because engineers often work with general goals, long deadlines, and considerable autonomy. The productivity of a team or branch is a function of the productivity of each of its members. While many managers have personal theories about how to run their work group, surprisingly little systematic scientific knowledge exerts about the effects of various factors on engineers' productivity. This study is intended to help lay the foundation for such a program of research.

  11. Science and Engineering

    ERIC Educational Resources Information Center

    Cowin, Roy; Reyes-Guerra, David

    1977-01-01

    Engineers may be involved in various functions such as research, development, planning, design (analysis and synthesis), construction, operation and management of engineering projects. This article discusses some branches of accredited engineering curricula, employment opportunities, the preparation for management, minimum education needed, women…

  12. Factors affecting outcome of triceps motor branch transfer for isolated axillary nerve injury.

    PubMed

    Lee, Joo-Yup; Kircher, Michelle F; Spinner, Robert J; Bishop, Allen T; Shin, Alexander Y

    2012-11-01

    Triceps motor branch transfer has been used in upper brachial plexus injury and is potentially effective for isolated axillary nerve injury in lieu of sural nerve grafting. We evaluated the functional outcome of this procedure and determined factors that influenced the outcome. A retrospective chart review was performed of 21 patients (mean age, 38 y; range, 16-79 y) who underwent triceps motor branch transfer for the treatment of isolated axillary nerve injury. Deltoid muscle strength was evaluated using the modified British Medical Research Council grading at the last follow-up (mean, 21 mo; range, 12-41 mo). The following variables were analyzed to determine whether they affected the outcome of the nerve transfer: the age and sex of the patient, delay from injury to surgery, body mass index (BMI), severity of trauma, and presence of rotator cuff lesions. The Spearman correlation coefficient and multiple linear regression were performed for statistical analysis. The average Medical Research Council grade of deltoid muscle strength was 3.5 ± 1.1. Deltoid muscle strength correlated with the age of the patient, delay from injury to surgery, and BMI of the patient. Five patients failed to achieve more than M3 grade. Among them, 4 patients were older than 50 years and 1 was treated 14 months after injury. In the multiple linear regression model, the delay from injury to surgery, age of the patient, and BMI of the patient were the important factors, in that order, that affected the outcome of this procedure. Isolated axillary nerve injury can be treated successfully with triceps motor branch transfer. However, outstanding outcomes are not universal, with one fourth failing to achieve M3 strength. The outcome of this procedure is affected by the delay from injury to surgery and the age and BMI of the patient. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  13. Black hole thermodynamics and heat engines in conformal gravity

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Sun, Yuan; Zhao, Liu

    The extended phase-space thermodynamics and heat engines for static spherically symmetric black hole solutions of four-dimensional conformal gravity are studied in detail. It is argued that the equation of states (EOS) for such black holes is always branched, any continuous thermodynamical process cannot drive the system from one branch of the EOS into another branch. Meanwhile, the thermodynamical volume is bounded from above, making the black holes always super-entropic in one branch and may also be super-entropic in another branch in certain range of the temperature. The Carnot and Stirling heat engines associated to such black holes are shown to be distinct from each other. For rectangular heat engines, the efficiency always approaches zero when the rectangle becomes extremely narrow, and given the highest and lowest working temperatures fixed, there is always a maximum for the efficiency of such engines.

  14. Role of Human Factors and Engineering Psychology in Undergraduate and Graduate Engineering Curriculum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Jesse Rebol

    The engineering discipline is a profession of acquiring and applying technical knowledge, and the focus of engineering psychology is to optimize the effectiveness and efficiency with which human activities are conducted. Having human factors and engineering psychology be a permanent part of the engineering curriculum will make students aware of them, so they can learn from past experiences and avoid making the same mistakes their peers made. (Should be close to 200 words)

  15. Women: Support Factors and Persistence in Engineering. Research in Engineering and Technology Education

    ERIC Educational Resources Information Center

    Duncan, John R.; Zeng, Yong

    2005-01-01

    Limited information is available regarding the factors that promote persistence by women in engineering programs. Stated simply, the problem is that the number of women engineers continues to fall short in comparison to the gender ratio of women to men in the population in the U.S. (BEST, 2002) and worldwide (Hersh, 2000). More women engineers are…

  16. Career Profile- Subscale UAS engineer/pilot Robert "Red" Jensen- Operations Engineering Branch

    NASA Image and Video Library

    2015-08-03

    Robert “Red” Jensen is an Operations Engineer and Pilot for subscale aircraft here at NASA’s Armstrong Flight Research Center. As part fabricator, engineer and integrator, Red is responsible for testing subscale models of aircraft and ensuring they are safe, capable of flight and ready to support the center’s needs. Operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. This video highlights Red’s responsibilities and daily activities as well as some of the projects and missions he is currently working on.

  17. Production of branched-chain alcohols by recombinant Ralstonia eutropha in fed-batch cultivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, Q; Brigham, CJ; Lu, JN

    Branched-chain alcohols are considered promising green energy sources due to their compatibility with existing infrastructure and their high energy density. We utilized a strain of Ralstonia eutropha capable of producing branched-chain alcohols and examined its production in flask cultures. In order to increase isobutanol and 3-methyl-1-butanol (isoamyl alcohol) productivity in the engineered strain, batch, fed-batch, and two-stage fed-batch cultures were carried out in this work. The effects of nitrogen source concentration on branched-chain alcohol production were investigated under four different initial concentrations in fermenters. A maximum 380 g m(-3) of branched-chain alcohol production was observed with 2 kg m(-3) initialmore » NH4Cl concentration in batch cultures. A pH-stat control strategy was utilized to investigate the optimum carbon source amount fed during fed-batch cultures for higher cell density. In cultures of R. eutropha strains that did not produce polyhydroxyalkanoate or branched-chain alcohols, a maximum cell dry weight of 36 kg m(-3) was observed using a fed-batch strategy, when 10 kg m(-3) carbon source was fed into culture medium. Finally, a total branched-chain alcohol titer of 790 g m(-3), the highest branched-chain alcohol yield of 0.03 g g(-1), and the maximum branched-chain alcohol productivity of 8.23 g m(-3) h(-1) were obtained from the engineered strain Re2410/pJL26 in a two-stage fed-batch culture system with pH-stat control. Isobutanol made up over 95% (mass fraction) of the total branched-chain alcohols titer produced in this study. (C) 2013 Published by Elsevier Ltd.« less

  18. Building 5 Manufacturing Branch. Explore@NASAGoddard celebrates

    NASA Image and Video Library

    2015-09-26

    Building 5 Manufacturing Branch. Explore@NASAGoddard celebrates the 25th anniversary of the launch of the Hubble Space Telescope. All areas of Goddard’s research – Earth science, heliophysics, planetary science, astrophysics, and engineering and technology – will be presented, as each discipline plays a critical part in NASA's ongoing journey to reach new heights.

  19. Environmental control of branching in petunia.

    PubMed

    Drummond, Revel S M; Janssen, Bart J; Luo, Zhiwei; Oplaat, Carla; Ledger, Susan E; Wohlers, Mark W; Snowden, Kimberley C

    2015-06-01

    Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal. © 2015 American Society of Plant Biologists. All Rights Reserved.

  20. Branch classification: A new mechanism for improving branch predictor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, P.Y.; Hao, E.; Patt, Y.

    There is wide agreement that one of the most significant impediments to the performance of current and future pipelined superscalar processors is the presence of conditional branches in the instruction stream. Speculative execution is one solution to the branch problem, but speculative work is discarded if a branch is mispredicted. For it to be effective, speculative work is discarded if a branch is mispredicted. For it to be effective, speculative execution requires a very accurate branch predictor; 95% accuracy is not good enough. This paper proposes branch classification, a methodology for building more accurate branch predictors. Branch classification allows anmore » individual branch instruction to be associated with the branch predictor best suited to predict its direction. Using this approach, a hybrid branch predictor can be constructed such that each component branch predictor predicts those branches for which it is best suited. To demonstrate the usefulness of branch classification, an example classification scheme is given and a new hybrid predictor is built based on this scheme which achieves a higher prediction accuracy than any branch predictor previously reported in the literature.« less

  1. Flood-inundation and flood-mitigation modeling of the West Branch Wapsinonoc Creek Watershed in West Branch, Iowa

    USGS Publications Warehouse

    Cigrand, Charles V.

    2018-03-26

    The U.S. Geological Survey (USGS) in cooperation with the city of West Branch and the Herbert Hoover National Historic Site of the National Park Service assessed flood-mitigation scenarios within the West Branch Wapsinonoc Creek watershed. The scenarios are intended to demonstrate several means of decreasing peak streamflows and improving the conveyance of overbank flows from the West Branch Wapsinonoc Creek and its tributary Hoover Creek where they flow through the city and the Herbert Hoover National Historic Site located within the city.Hydrologic and hydraulic models of the watershed were constructed to assess the flood-mitigation scenarios. To accomplish this, the models used the U.S. Army Corps of Engineers Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS) version 4.2 to simulate the amount of runoff and streamflow produced from single rain events. The Hydrologic Engineering Center-River Analysis System (HEC–RAS) version 5.0 was then used to construct an unsteady-state model that may be used for routing streamflows, mapping areas that may be inundated during floods, and simulating the effects of different measures taken to decrease the effects of floods on people and infrastructure.Both models were calibrated to three historic rainfall events that produced peak streamflows ranging between the 2-year and 10-year flood-frequency recurrence intervals at the USGS streamgage (05464942) on Hoover Creek. The historic rainfall events were calibrated by using data from two USGS streamgages along with surveyed high-water marks from one of the events. The calibrated HEC–HMS model was then used to simulate streamflows from design rainfall events of 24-hour duration ranging from a 20-percent to a 1-percent annual exceedance probability. These simulated streamflows were incorporated into the HEC–RAS model.The unsteady-state HEC–RAS model was calibrated to represent existing conditions within the watershed. HEC–RAS model simulations with the

  2. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix.

    PubMed

    Piotrowski-Daspit, Alexandra S; Nelson, Celeste M

    2016-07-10

    The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

  3. Synthesis and macrophage activation of lentinan-mimic branched amino polysaccharides: curdlans having N-Acetyl-d-glucosamine branches.

    PubMed

    Kurita, Keisuke; Matsumura, Yuriko; Takahara, Hiroki; Hatta, Kiyoshige; Shimojoh, Manabu

    2011-06-13

    N-Acetyl-d-glucosamine branches were incorporated at the C-6 position of curdlan, a linear β-1,3-d-glucan, and the resulting nonnatural branched polysaccharides were evaluated in terms of the immunomodulation activities in comparison with lentinan, a β-1,3-d-glucan having d-glucose branches at C-6. To incorporate the amino sugar branches, we conducted a series of regioselective protection-deprotections of curdlan involving triphenylmethylation at C-6, phenylcarbamoylation at C-2 and C-4, and detriphenylmethylation. Subsequent glycosylation with a d-glucosamine-derived oxazoline, followed by deprotection gave rise to the branched curdlans with various substitution degrees. The products exhibited remarkable solubility in both organic solvents and water. Their immunomodulation activities were determined using mouse macrophagelike cells, and the secretions of both the tumor necrosis factor and nitric oxide proved to be significantly higher than those with lentinan. These results conclude that the amino sugar/curdlan hybrid materials are promising as a new type of polysaccharide immunoadjuvants useful for cancer chemotherapy.

  4. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination.

    PubMed

    Surtees, Jennifer A; Alani, Eric

    2006-07-14

    Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.

  5. Cravity modulation of the moss Tortula modica branching

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, Yaroslava; Kit, Nadja

    Among various abiotic factors the sensor system of plants constantly perceives light and gravitation impulses and reacts on their action by photo- and gravitropisms. Tropisms play fundamental part in ontogenesis and determination of plant forms. Essentially important question is how light initiating phototropic bending modulates gravitropism. In contrast to flower plants, red light is phototropically active for mosses, and phytochromic system controls initiation of apical growth, branching and photomorphogenesis of mosses. The aim of this investigation was to analyse cell branching of protonemata Tortula modica Zander depending on the direction of light and gravitation vector. The influence of light and gravitation on the form of protonemal turf T. modica, branching and the angle of lateral branches relative to axis of mother cell growth has been investigated. As moss protonemata is not branched in the darkness, light is necessary for branching activation. Minimally low intensity of the red light (0.2 mmol (.) m (-2) ({) .}sec (-1) ) induced branching without visual display of phototropic growth. It has been established that unidirectional action of light and gravitation intensifies branching, and, on the contrary, perpendicularly oriented vectors of factors weaken branches formation. Besides, parallel oriented vectors initiated branching from both cell sides, but oppositely directed vectors initiated branching only from one side. Clinostate rotation the change of the vector gravity and causes uniform cell branching, hence, light and gravitation mutually influence the branching system form of the protonemata cell. It has been shown that the angle of lateral branches in darkness does not depend on the direction of light and gravitation action. After lighting the local growth of the cell wall took place mainly under the angle 90 (o) to the axes of mother cell growth. Then the angle gradually decreased and in 3-4 cell divisions the lateral branch grew under the angle

  6. Factors associated with sleep quality among operating engineers.

    PubMed

    Choi, Seung Hee; Terrell, Jeffrey E; Pohl, Joanne M; Redman, Richard W; Duffy, Sonia A

    2013-06-01

    Blue collar workers generally report high job stress and are exposed to loud noises at work and engage in many of risky health behavioral factors, all of which have been associated with poor sleep quality. However, sleep quality of blue collar workers has not been studied extensively, and no studies have focused Operating Engineers (heavy equipment operators) among whom daytime fatigue would place them at high risk for accidents. Therefore, the purpose of this study was to determine variables associated with sleep quality among Operating Engineers. This was a cross-sectional survey design with a dependent variable of sleep quality and independent variables of personal and related health behavioral factors. A convenience sample of 498 Operating Engineers was recruited from approximately 16,000 Operating Engineers from entire State of Michigan in 2008. Linear regression was used to determine personal and related health behavior factors associated with sleep quality. Multivariate analyses showed that personal factors related to poor sleep quality were younger age, female sex, higher pain, more medical comorbidities and depressive symptoms and behavioral factors related to poor sleep quality were nicotine dependence. While sleep scores were similar to population norms, approximately 34 % (n = 143) showed interest in health services for sleep problems. While many personal factors are not changeable, interventions to improve sleep hygiene as well as interventions to treat pain, depression and smoking may improve sleep quality resulting in less absenteeism, fatal work accidents, use of sick leave, work disability, medical comorbidities, as well as subsequent mortality.

  7. Factors Associated With Sleep Quality Among Operating Engineers

    PubMed Central

    Choi, Seung Hee; Terrell, Jeffrey E.; Pohl, Joanne M.; Redman, Richard W.

    2016-01-01

    Blue collar workers generally report high job stress and are exposed to loud noises at work and engage in many of the health behavioral factors, all of which have been associated with poor sleep quality. However, sleep quality of blue collar workers has not been studied extensively, and no studies have focused Operating Engineers (heavy equipment operators) among whom daytime fatigue would place them at high risk for accidents. Therefore, the purpose of this study was to determine variables associated with sleep quality among Operating Engineers. This was a cross-sectional survey design with a dependent variable of sleep quality and independent variables of personal and related health behavioral factors. A convenience sample of 498 Operating Engineers was recruited from approximately 16,000 Operating Engineers from entire State of Michigan in 2008. Linear regression was used to determine personal and related health behavior factors associated with sleep quality. Multivariate analyses showed that personal factors related to poor sleep quality were younger age, female sex, higher pain, more medical comorbidities and depressive symptoms and behavioral factors related to poor sleep quality were nicotine dependence. While sleep scores were similar to population norms, approximately 34% (n=143) showed interest in health services for sleep problems. While many personal factors are not changeable, interventions to improve sleep hygiene as well as interventions to treat pain, depression and smoking may improve sleep quality resulting in less absenteeism, fatal work accidents, use of sick leave, work disability, medical comorbidities, as well as subsequent mortality. PMID:23393021

  8. Agricultural Engineering Education in Nigeria

    ERIC Educational Resources Information Center

    Aboaba, F. O.

    1974-01-01

    Agricultural engineering, an important new branch of engineering in Nigeria, is discussed in relation to available training programs, diploma and certificate courses, and evaluation of training programs. (Author/PG)

  9. Human factors engineering: the next challenge.

    PubMed

    Durand-Viel, Denys

    2004-10-01

    This fictional exchange between a General Manager, a Research and Development Officer and a Regulatory Affairs Manager after a near incident with a recently launched device explains how human factors engineering is the key to design success.

  10. Engineering growth factors for regenerative medicine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less

  11. Overview of Glenn Mechanical Components Branch Research

    NASA Astrophysics Data System (ADS)

    Zakrajsek, James

    2002-09-01

    Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.

  12. Career Profiles- Aero-Mechanical Design- Operations Engineering Branch

    NASA Image and Video Library

    2015-10-26

    NASA Armstrong’s Aeromechanical Design Group provides mechanical design solutions ranging from research and development to ground support equipment. With an aerospace or mechanical engineering background, team members use the latest computer-aided design software to create one-of-kind parts, assemblies, and drawings, and aid in the design’s fabrication and integration. Reverse engineering and inspection of Armstrong’s fleet of aircraft is made possible by using state-of-the-art coordinate measuring machines and laser scanning equipment.

  13. Foliage motion under wind, from leaf flutter to branch buffeting.

    PubMed

    Tadrist, Loïc; Saudreau, Marc; Hémon, Pascal; Amandolese, Xavier; Marquier, André; Leclercq, Tristan; de Langre, Emmanuel

    2018-05-01

    The wind-induced motion of the foliage in a tree is an important phenomenon both for biological issues (photosynthesis, pathogens development or herbivory) and for more subtle effects such as on wi-fi transmission or animal communication. Such foliage motion results from a combination of the motion of the branches that support the leaves, and of the motion of the leaves relative to the branches. Individual leaf dynamics relative to the branch, and branch dynamics have usually been studied separately. Here, in an experimental study on a whole tree in a large-scale wind tunnel, we present the first empirical evidence that foliage motion is actually dominated by individual leaf flutter at low wind velocities, and by branch turbulence buffeting responses at higher velocities. The transition between the two regimes is related to a weak dependence of leaf flutter on wind velocity, while branch turbulent buffeting is strongly dependent on it. Quantitative comparisons with existing engineering-based models of leaf and branch motion confirm the prevalence of these two mechanisms. Simultaneous measurements of the wind-induced drag on the tree and of the light interception by the foliage show the role of an additional mechanism, reconfiguration, whereby leaves bend and overlap, limiting individual leaf flutter. We then discuss the consequences of these findings on the role of wind-mediated phenomena. © 2018 The Author(s).

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  15. Human Factors Engineering Guidelines for Overhead Cranes

    NASA Technical Reports Server (NTRS)

    Chandler, Faith; Delgado, H. (Technical Monitor)

    2001-01-01

    This guideline provides standards for overhead crane cabs that can be applied to the design and modification of crane cabs to reduce the potential for human error due to design. This guideline serves as an aid during the development of a specification for purchases of cranes or for an engineering support request for crane design modification. It aids human factors engineers in evaluating existing cranes during accident investigations or safety reviews.

  16. Space Electronic Test Engineering

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  17. Direct Initiation Through Detonation Branching in a Pulsed Detonation Engine

    DTIC Science & Technology

    2008-03-01

    important features noted ................................. 33  Figure 20. GM Quad 4 engine head used as the PDE research engine with the detonation tube...Deflagration to Detonation Transition EF – Engine Frequency FF – Fill Fraction NPT – National Pipe Thread MPT – Male National Pipe Thread PDE – Pulsed... Detonation Engines ( PDE ) has increased greatly in recent years due in part to the potential for increased thermal efficiency derived from constant

  18. Endothelial Snail Regulates Capillary Branching Morphogenesis via Vascular Endothelial Growth Factor Receptor 3 Expression

    PubMed Central

    Park, Jeong Ae; Kim, Dong Young; Kim, Young-Myeong; Kwon, Young-Guen

    2015-01-01

    Vascular branching morphogenesis is activated and maintained by several signaling pathways. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) signaling is largely presented in arteries, and VEGFR3 signaling is in veins and capillaries. Recent reports have documented that Snail, a well-known epithelial-to-mesenchymal transition protein, is expressed in endothelial cells, where it regulates sprouting angiogenesis and embryonic vascular development. Here, we identified Snail as a regulator of VEGFR3 expression during capillary branching morphogenesis. Snail was dramatically upregulated in sprouting vessels in the developing retinal vasculature, including the leading-edged vessels and vertical sprouting vessels for capillary extension toward the deep retina. Results from in vitro functional studies demonstrate that Snail expression colocalized with VEGFR3 and upregulated VEGFR3 mRNA by directly binding to the VEGFR3 promoter via cooperating with early growth response protein-1. Snail knockdown in postnatal mice attenuated the formation of the deep capillary plexus, not only by impairing vertical sprouting vessels but also by downregulating VEGFR3 expression. Collectively, these data suggest that the Snail-VEGFR3 axis controls capillary extension, especially in vessels expressing VEGFR2 at low levels. PMID:26147525

  19. Identification of the Key Weather Factors Affecting Overwintering Success of Apolygus lucorum Eggs in Dead Host Tree Branches

    PubMed Central

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Desneux, Nicolas

    2014-01-01

    Understanding the effects of weather on insect population dynamics is crucial to simulate and forecast pest outbreaks, which is becoming increasingly important with the effects of climate change. The mirid bug Apolygus lucorum is an important pest on cotton, fruit trees and other crops in China, and primarily lays its eggs on dead parts of tree branches in the fall for subsequent overwintering. As such, the eggs that hatch the following spring are most strongly affected by ambient weather factors, rather than by host plant biology. In this study, we investigated the effects of three major weather factors: temperature, relative humidity and rainfall, on the hatching rate of A. lucorum eggs overwintering on dead branches of Chinese date tree (Ziziphus jujuba). Under laboratory conditions, rainfall (simulated via soaking) was necessary for the hatching of overwintering A. lucorum eggs. In the absence of rainfall (unsoaked branches), very few nymphs successfully emerged under any of the tested combinations of temperature and relative humidity. In contrast, following simulated rainfall, the hatching rate of the overwintering eggs increased dramatically. Hatching rate and developmental rate were positively correlated with relative humidity and temperature, respectively. Under field conditions, the abundance of nymphs derived from overwintering eggs was positively correlated with rainfall amount during the spring seasons of 2009–2013, while the same was not true for temperature and relative humidity. Overall, our findings indicate that rainfall is the most important factor affecting the hatching rate of overwintering A. lucorum eggs on dead plant parts and nymph population levels during the spring season. It provides the basic information for precisely forecasting the emergence of A. lucorum and subsequently timely managing its population in spring, which will make it possible to regional control of this insect pest widely occurring in multiple crops in summer. PMID

  20. Identification of the key weather factors affecting overwintering success of Apolygus lucorum eggs in dead host tree branches.

    PubMed

    Pan, Hongsheng; Liu, Bing; Lu, Yanhui; Desneux, Nicolas

    2014-01-01

    Understanding the effects of weather on insect population dynamics is crucial to simulate and forecast pest outbreaks, which is becoming increasingly important with the effects of climate change. The mirid bug Apolygus lucorum is an important pest on cotton, fruit trees and other crops in China, and primarily lays its eggs on dead parts of tree branches in the fall for subsequent overwintering. As such, the eggs that hatch the following spring are most strongly affected by ambient weather factors, rather than by host plant biology. In this study, we investigated the effects of three major weather factors: temperature, relative humidity and rainfall, on the hatching rate of A. lucorum eggs overwintering on dead branches of Chinese date tree (Ziziphus jujuba). Under laboratory conditions, rainfall (simulated via soaking) was necessary for the hatching of overwintering A. lucorum eggs. In the absence of rainfall (unsoaked branches), very few nymphs successfully emerged under any of the tested combinations of temperature and relative humidity. In contrast, following simulated rainfall, the hatching rate of the overwintering eggs increased dramatically. Hatching rate and developmental rate were positively correlated with relative humidity and temperature, respectively. Under field conditions, the abundance of nymphs derived from overwintering eggs was positively correlated with rainfall amount during the spring seasons of 2009-2013, while the same was not true for temperature and relative humidity. Overall, our findings indicate that rainfall is the most important factor affecting the hatching rate of overwintering A. lucorum eggs on dead plant parts and nymph population levels during the spring season. It provides the basic information for precisely forecasting the emergence of A. lucorum and subsequently timely managing its population in spring, which will make it possible to regional control of this insect pest widely occurring in multiple crops in summer.

  1. Crack stability and branching at interfaces

    NASA Astrophysics Data System (ADS)

    Thomson, Robb

    1995-11-01

    The various events that occur at a crack on an interface are explored, and described in terms of a simple graphical construction called the crack stability diagram. For simple Griffith cleavage in a homogeneous material, the stability diagram is a sector of a circle in the space of stress intensity factors, KI/KII. The Griffith circle is limited in both positive and negative KII directions by nonblunting dislocation emission on the cleavage plane. For a branching plane inclined at an angle to the original cleavage plane, both cleavage and emission (which blunts the crack) can be described as a balance between an elastic driving force and a lattice resistance for the event. We use an analytic expression obtained by Cotterell and Rice for cleavage, and show that it is an excellent approximation, but show that the lattice resistance includes a cornering resistance, in addition to the standard surface energy in the final cleavage criterion. Our discussion of the lattaice resistance is derived from simulations in two-dimensional hexagonal lattices with UBER force laws with a variety of shapes. Both branching cleavage and blunting emission can be described in terms of a stability diagram in the space of the remote stress intensity factors, and the competition between events on the initial cleavage plane and those on the branching plane can be described by overlays of the two appropriate stability diagrams. The popular criterion that kII=0 on the branching plane is explored for lattices and found to fail significantly, because the lattice stabilizes cleavage by the anisotropy of the surface energy. Also, in the lattice, dislocation emission must must always be considered as an alternative competing event to branching.

  2. Existing branches correlatively inhibit further branching in Trifolium repens: possible mechanisms

    PubMed Central

    Thomas, R. G.; Hay, M. J. M.

    2011-01-01

    In Trifolium repens removal of any number of existing branches distal to a nodal root stimulates development of axillary buds further along the stem such that the complement of branches distal to a nodal root remains constant. This study aimed to assess possible mechanisms by which existing branches correlatively inhibit the outgrowth of axillary buds distal to them. Treatments were applied to basal branches to evaluate the roles of three postulated inhibitory mechanisms: (I) the transport of a phloem-mobile inhibitory feedback signal from branches into the main stem; (II) the polar flow of auxin from branches into the main stem acting to limit further branch development; or (III) the basal branches functioning as sinks for a net root-derived stimulatory signal (NRS). Results showed that transport of auxin, or of a non-auxin phloem-mobile signal, from basal branches did not influence regulation of correlative inhibition and were consistent with the possibility that the intra-plant distribution of NRS could be involved in the correlative inhibition of distal buds by basal branches. This study supports existing evidence that regulation of branching in T. repens is dominated by a root-derived stimulatory signal, initially distributed via the xylem, the characterization of which will progress the generic understanding of branching regulation. PMID:21071681

  3. Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

    NASA Astrophysics Data System (ADS)

    Krehl, Peter O. K.

    2011-07-01

    In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

  4. A demonstration of expert systems applications in transportation engineering : volume I, transportation engineers and expert systems.

    DOT National Transportation Integrated Search

    1987-01-01

    Expert systems, a branch of artificial-intelligence studies, is introduced with a view to its relevance in transportation engineering. Knowledge engineering, the process of building expert systems or transferring knowledge from human experts to compu...

  5. Environmental Control of Branching in Petunia1[OPEN

    PubMed Central

    Oplaat, Carla; Wohlers, Mark W.

    2015-01-01

    Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal. PMID:25911529

  6. Developmental Programming of Branching Morphogenesis in the Kidney

    PubMed Central

    Schneider, Laura; Al-Awqati, Qais

    2015-01-01

    The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. PMID:25644110

  7. Branching Search

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-12-01

    Search processes play key roles in various scientific fields. A widespread and effective search-process scheme, which we term Restart Search, is based on the following restart algorithm: i) set a timer and initiate a search task; ii) if the task was completed before the timer expired, then stop; iii) if the timer expired before the task was completed, then go back to the first step and restart the search process anew. In this paper a branching feature is added to the restart algorithm: at every transition from the algorithm's third step to its first step branching takes place, thus multiplying the search effort. This branching feature yields a search-process scheme which we term Branching Search. The running time of Branching Search is analyzed, closed-form results are established, and these results are compared to the coresponding running-time results of Restart Search.

  8. Pharmaceutical and industrial protein engineering: where we are?

    PubMed

    Amara, Amro Abd-Al-Fattah

    2013-01-01

    The huge amount of information, the big number of scientists and their efforts, labs, man/hrs, fund, companies all and others factors build the success of the amazing new branch of genetic engineering the 'protein engineering' (PE). It concerns with the modification of protein structure/function(s) or building protein from scratch. The engineered proteins usually have new criteria(s). Engineering proteins can be mediated on the level of genes or proteins. PE fined its way in different important sectors including industrial, pharmaceutical and medicinal ones. Aspects about PE and its applications will be discussed with this review. The concept, tools, and the industrial applications of the protein, engineered proteins and PE will be under focus. In order to get up to date knowledge about the applications of PE in basic protein and molecular biology, several examples are discussed. PE can play a significant role in different industrial and pharmaceutical sectors if used wisely and selectively.

  9. Human Factors Engineering Aspects of Modifications in Control Room Modernization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugo, Jacques; Clefton, Gordon; Joe, Jeffrey

    This report describes the basic aspects of control room modernization projects in the U.S. nuclear industry and the need for supplementary guidance on the integration of human factors considerations into the licensing and regulatory aspects of digital upgrades. The report pays specific attention to the integration of principles described in NUREG-0711 (Human Factors Engineering Program Review Model) and how supplementary guidance can help to raise general awareness in the industry regarding the complexities of control room modernization projects created by many interdependent regulations, standards and guidelines. The report also describes how human factors engineering principles and methods provided by variousmore » resources and international standards can help in navigating through the process of licensing digital upgrades. In particular, the integration of human factors engineering guidance and requirements into the process of licensing digital upgrades can help reduce uncertainty related to development of technical bases for digital upgrades that will avoid the introduction of new failure modes.« less

  10. Review on factors affecting the performance of pulse detonation engine

    NASA Astrophysics Data System (ADS)

    Tripathi, Saurabh; Pandey, Krishna Murari

    2018-04-01

    Now a day's rocket engines (air-breathing type) are being used for aerospace purposes but the studies have shown that these are less efficient, so alternatives are being searched for these. Pulse Detonation Engine (PDE) is one such efficient engine which can replace the rocket engines. In this review paper, different researches have been cited. As can be observed from various researches, insertion of obstacles is better. Deflagration to Detonation(DDT) transition process is found to be most important factor. So a lot of researches are being done considering this DDT chamber. Also, the ignition chamber and ejector were found to improve the effectiveness of PDE. The PDE works with a range of Mach 0-4. Flame acceleration is also found to increase the DDT process. Use of valve and valveless engine has also been compared. Various other factors have been focused in this review paper which is found to boost PDE performance.

  11. Influence of Gender in Choosing a Career amongst Engineering Fields: A Survey Study from Turkey

    ERIC Educational Resources Information Center

    Bucak, Seyda; Kadirgan, Neset

    2011-01-01

    The aim of this study is to understand the motivating factors behind students' choices in their decision-making process and also get an insight on their perception of different engineering branches. A survey was prepared and the results were evaluated amongst 1163 answers. Two major influences on student's decision in their professional choices…

  12. Developmental Programming of Branching Morphogenesis in the Kidney.

    PubMed

    Sampogna, Rosemary V; Schneider, Laura; Al-Awqati, Qais

    2015-10-01

    The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases. Copyright © 2015 by the American Society of Nephrology.

  13. Human factors engineering approaches to patient identification armband design.

    PubMed

    Probst, C Adam; Wolf, Laurie; Bollini, Mara; Xiao, Yan

    2016-01-01

    The task of patient identification is performed many times each day by nurses and other members of the care team. Armbands are used for both direct verification and barcode scanning during patient identification. Armbands and information layout are critical to reducing patient identification errors and dangerous workarounds. We report the effort at two large, integrated healthcare systems that employed human factors engineering approaches to the information layout design of new patient identification armbands. The different methods used illustrate potential pathways to obtain standardized armbands across healthcare systems that incorporate human factors principles. By extension, how the designs have been adopted provides examples of how to incorporate human factors engineering into key clinical processes. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Factors associated with health-related quality of life among operating engineers.

    PubMed

    Choi, Seung Hee; Redman, Richard W; Terrell, Jeffrey E; Pohl, Joanne M; Duffy, Sonia A

    2012-11-01

    Because health-related quality of life among blue-collar workers has not been well studied, the purpose of this study was to determine factors associated with health-related quality of life among Operating Engineers. With cross-sectional data from a convenience sample of 498 Operating Engineers, personal and health behavioral factors associated with health-related quality of life were examined. Multivariate linear regression analysis revealed that personal factors (older age, being married, more medical comorbidities, and depression) and behavioral factors (smoking, low fruit and vegetable intake, low physical activity, high body mass index, and low sleep quality) were associated with poor health-related quality of life. Operating Engineers are at risk for poor health-related quality of life. Underlying medical comorbidities and depression should be well managed. Worksite wellness programs addressing poor health behaviors may be beneficial.

  15. Branches of the Facial Artery.

    PubMed

    Hwang, Kun; Lee, Geun In; Park, Hye Jin

    2015-06-01

    The aim of this study is to review the name of the branches, to review the classification of the branching pattern, and to clarify a presence percentage of each branch of the facial artery, systematically. In a PubMed search, the search terms "facial," AND "artery," AND "classification OR variant OR pattern" were used. The IBM SPSS Statistics 20 system was used for statistical analysis. Among the 500 titles, 18 articles were selected and reviewed systematically. Most of the articles focused on "classification" according to the "terminal branch." Several authors classified the facial artery according to their terminal branches. Most of them, however, did not describe the definition of "terminal branch." There were confusions within the classifications. When the inferior labial artery was absent, 3 different types were used. The "alar branch" or "nasal branch" was used instead of the "lateral nasal branch." The angular branch was used to refer to several different branches. The presence as a percentage of each branch according to the branches in Gray's Anatomy (premasseteric, inferior labial, superior labial, lateral nasal, and angular) varied. No branch was used with 100% consistency. The superior labial branch was most frequently cited (95.7%, 382 arteries in 399 hemifaces). The angular branch (53.9%, 219 arteries in 406 hemifaces) and the premasseteric branch were least frequently cited (53.8%, 43 arteries in 80 hemifaces). There were significant differences among each of the 5 branches (P < 0.05) except between the angular branch and the premasseteric branch and between the superior labial branch and the inferior labial branch. The authors believe identifying the presence percentage of each branch will be helpful for surgical procedures.

  16. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    PubMed Central

    Qiu, Penghe; Mao, Chuanbin

    2010-01-01

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250

  17. Stochastic and deterministic causes of streamer branching in liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl

    2013-08-01

    Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.

  18. Spatial mapping and quantification of developmental branching morphogenesis.

    PubMed

    Short, Kieran; Hodson, Mark; Smyth, Ian

    2013-01-15

    Branching morphogenesis is a fundamental developmental mechanism that shapes the formation of many organs. The complex three-dimensional shapes derived by this process reflect equally complex genetic interactions between branching epithelia and their surrounding mesenchyme. Despite the importance of this process to normal adult organ function, analysis of branching has been stymied by the absence of a bespoke method to quantify accurately the complex spatial datasets that describe it. As a consequence, although many developmentally important genes are proposed to influence branching morphogenesis, we have no way of objectively assessing their individual contributions to this process. We report the development of a method for accurately quantifying many aspects of branching morphogenesis and we demonstrate its application to the study of organ development. As proof of principle we have employed this approach to analyse the developing mouse lung and kidney, describing the spatial characteristics of the branching ureteric bud and pulmonary epithelia. To demonstrate further its capacity to profile unrecognised genetic contributions to organ development, we examine Tgfb2 mutant kidneys, identifying elements of both developmental delay and specific spatial dysmorphology caused by haplo-insufficiency for this gene. This technical advance provides a crucial resource that will enable rigorous characterisation of the genetic and environmental factors that regulate this essential and evolutionarily conserved developmental mechanism.

  19. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2016-09-01

    AFRL-RQ-WP-TR-2016-0131 DEMONSTRATION OF NOVEL SAMPLING TECHNIQUES FOR MEASUREMENT OF TURBINE ENGINE VOLATILE AND NON-VOLATILE PARTICULATE...MATTER (PM) EMISSIONS Edwin Corporan Fuels and Energy Branch Turbine Engine Division Matthew DeWitt and Chris Klingshirn University of...Energy Branch Turbine Engine Division Turbine Engine Division Aerospace Systems Directorate //Signature// CHARLES W. STEVENS Lead Engineer

  20. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    PubMed Central

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  1. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching.

    PubMed

    Braun, Nils; de Saint Germain, Alexandre; Pillot, Jean-Paul; Boutet-Mercey, Stéphanie; Dalmais, Marion; Antoniadi, Ioanna; Li, Xin; Maia-Grondard, Alessandra; Le Signor, Christine; Bouteiller, Nathalie; Luo, Da; Bendahmane, Abdelhafid; Turnbull, Colin; Rameau, Catherine

    2012-01-01

    The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes. The PsBRC1 gene is mostly expressed in the axillary bud and is transcriptionally up-regulated by direct application of the synthetic SL GR24 and down-regulated by the cytokinin (CK) 6-benzylaminopurine. The results suggest that PsBRC1 may have a role in integrating SL and CK signals and that SLs act directly within the bud to regulate its outgrowth. However, the Psbrc1 mutant responds to 6-benzylaminopurine application and decapitation by increasing axillary bud length, implicating a PsBRC1-independent component of the CK response in sustained bud growth. In contrast to other SL-related mutants, the Psbrc1 mutation does not cause a decrease in the CK zeatin riboside in the xylem sap or a strong increase in RMS1 transcript levels, suggesting that the RMS2-dependent feedback is not activated in this mutant. Surprisingly, the double rms1 Psbrc1 mutant displays a strong increase in numbers of branches at cotyledonary nodes, whereas branching at upper nodes is not significantly higher than the branching in rms1. This phenotype indicates a localized regulation of branching at these nodes specific to pea.

  2. Resources for Teachers. "Turning Ideas Into Reality: The Executive Branch Fosters Engineering Excellence." An Institute for Pre-College Science and Social Studies Teachers (West Hartford, Connecticut, February 18-19, 24-26, 1989). Revised.

    ERIC Educational Resources Information Center

    Pierce, Preston E., Comp.

    A compilation of resources is provided for those interested in examining action taken by the executive branch of the federal government to foster scientific and engineering excellence in the United States in the nineteenth century. The resources are intended for use by pre-college secondary science and social studies teachers. Each of the…

  3. Performance Engineering as an Expert System.

    ERIC Educational Resources Information Center

    Harmon, Paul

    1984-01-01

    Considers three powerful techniques--heuristics, context trees, and search via backward chaining--that a knowledge engineer might employ to develop an expert system to automate performance engineering, i.e., the branch of instructional technology that focuses on the problems of business and industry. (MBR)

  4. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds

  5. Factors associated with risky sun exposure behaviors among operating engineers.

    PubMed

    Duffy, Sonia A; Choi, Seung Hee; Hollern, Rachael; Ronis, David L

    2012-09-01

    The objective of this study was to determine the factors associated with sun exposure behaviors among Operating Engineers (heavy equipment operators). Operating Engineers (N = 498) were asked to complete a cross-sectional survey. Linear and logistic regression analyses were used to determine health behavioral, perceptional, and demographic factors associated with sun exposure behavior (sun burns, blistering, use of sunscreen, and interest in sun protection services). Almost half reported two or more sunburns/summer and the median times blistering was 2 with a range of 0-100. About one-third never used sun block, while just over one-third rarely used sun block. Almost one-quarter were interested in sun protection guidance. Multivariate analyses showed that perceptions of skin type, alcohol problems, fruit intake, BMI, sleep quality, age, sex, and race were significantly associated with at least one of the outcome variables (P < 0.05). Operating Engineers are at high risk for skin cancer due to high rates of exposure to ultraviolet light and low rates of sun block use. Subgroups of Operating Engineers are particularly at risk for sun damage. Interventions are needed to decrease sun exposure among Operating Engineers. Copyright © 2012 Wiley Periodicals, Inc.

  6. [The Engineering and Technical Services Directorate at the Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senior at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time s o h a r e applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community. In the 7000 Directorate I work directly in the 7611 organization. This organization is known as the Aviation Environments Technical Branch. My mentor is Vincent Satterwhite who is also the Branch Chief of the Aviation Environments Technical Branch. In this branch, I serve as the Assistant program manager of the Engineering Technology Program. The Engineering Technology Program (ETP) is one of three components of the High School L.E.R.C.I.P. This is an Agency-sponsored, eight-week research-based apprenticeship program designed to attract traditionally underrepresented high school students that demonstrate an aptitude for and interest in mathematics, science, engineering, and technology.

  7. Patient safety - the role of human factors and systems engineering.

    PubMed

    Carayon, Pascale; Wood, Kenneth E

    2010-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.

  8. Patient Safety: The Role of Human Factors and Systems Engineering

    PubMed Central

    Carayon, Pascale; Wood, Kenneth E.

    2011-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237

  9. Role of physics in Saudi engineering education

    NASA Astrophysics Data System (ADS)

    Ahmed, M.

    1984-05-01

    In recent years some engineering schools in the Middle East have proposed reducing the amount of basic science courses in their curricula. A conference on engineering education in the Arabian Gulf countries held in Kuwait in 1980 suggested that the number of courses in physics and chemistry should be reduced from the present level (Jamjoom 1980). The arguments often put forward can be summarised as follows. First, engineering students are at present overburdened with too many basic science courses which puts a strain on the average student. This in turn leads to a high drop-out as is witnessed in many engineering colleges in this region. This drop-out, as high as 20% in some Saudi universities, is a cause of great concern among the university authorities. Secondly, it is argued that the number of credit hours allocated to departmental requirements is not sufficient to give a student enough breadth and depth of knowledge in his specialisation in particular engineering branches. Universities in Saudi Arabia follow the American credit-hour system in which courses are given certain credit hours, ranging from two to four, depending on the number of lectures per week as well as laboratory and tutorial requirements. Engineering students have to complete about 150 credit hours to graduate, which they normally do in four to five years. Out of these credit hours, about two-thirds are allocated to core courses (including physics) common to all branches of engineering. The remaining one-third are reserved for departmental specialisation. Since there is no possibility of increasing the overall credit hours necessary for graduation, it is suggested that the extra credit hours demanded for increasing the number of departmental courses should be obtained by correspondingly curtailing those for the basic sciences. When carefully scrutinised the arguments do not appear to be well founded. The reasons for high drop-out can be traced to more deep-rooted factors.

  10. Finite-size scaling of survival probability in branching processes

    NASA Astrophysics Data System (ADS)

    Garcia-Millan, Rosalba; Font-Clos, Francesc; Corral, Álvaro

    2015-04-01

    Branching processes pervade many models in statistical physics. We investigate the survival probability of a Galton-Watson branching process after a finite number of generations. We derive analytically the existence of finite-size scaling for the survival probability as a function of the control parameter and the maximum number of generations, obtaining the critical exponents as well as the exact scaling function, which is G (y ) =2 y ey /(ey-1 ) , with y the rescaled distance to the critical point. Our findings are valid for any branching process of the Galton-Watson type, independently of the distribution of the number of offspring, provided its variance is finite. This proves the universal behavior of the finite-size effects in branching processes, including the universality of the metric factors. The direct relation to mean-field percolation is also discussed.

  11. Some NASA contributions to human factors engineering: A survey

    NASA Technical Reports Server (NTRS)

    Behan, R. A.; Wendhausen, H. W.

    1973-01-01

    This survey presents the NASA contributions to the state of the art of human factors engineering, and indicates that these contributions have a variety of applications to nonaerospace activities. Emphasis is placed on contributions relative to man's sensory, motor, decisionmaking, and cognitive behavior and on applications that advance human factors technology.

  12. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.

    PubMed

    Hubbard, Robert M; Bond, Barbara J; Senock, Randy S; Ryan, Michael G

    2002-06-01

    Recent studies have shown that stomata respond to changes in hydraulic conductance of the flow path from soil to leaf. In open-grown tall trees, branches of different heights may have different hydraulic conductances because of differences in path length and growth. We determined if leaf gas exchange, branch sap flux, leaf specific hydraulic conductance, foliar carbon isotope composition (delta13C) and ratios of leaf area to sapwood area within branches were dependent on branch height (10 and 25 m) within the crowns of four open-grown ponderosa pine (Pinus ponderosa Laws.) trees. We found no difference in leaf gas exchange or leaf specific hydraulic conductance from soil to leaf between the upper and lower canopy of our study trees. Branch sap flux per unit leaf area and per unit sapwood area did not differ between the 10- and 25-m canopy positions; however, branch sap flux per unit sapwood area at the 25-m position had consistently lower values. Branches at the 25-m canopy position had lower leaf to sapwood area ratios (0.17 m2 cm-2) compared with branches at the 10-m position (0.27 m2 cm-2) (P = 0.03). Leaf specific conductance of branches in the upper crown did not differ from that in the lower crown. Other studies at our site indicate lower hydraulic conductance, sap flux, whole-tree canopy conductance and photosynthesis in old trees compared with young trees. This study suggests that height alone may not explain these differences.

  13. Expression of T-box transcription factors 2, 4 and 5 is decreased in the branching airway mesenchyme of nitrofen-induced hypoplastic lungs.

    PubMed

    Takahashi, Toshiaki; Friedmacher, Florian; Zimmer, Julia; Puri, Prem

    2017-02-01

    Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major therapeutic challenge in newborns with congenital diaphragmatic hernia (CDH). T-box transcription factors (Tbx) have been identified as key components of the gene network that regulates fetal lung development. Tbx2, Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung, regulating the process of lung branching morphogenesis. Furthermore, lungs of Tbx2-, Tbx4- and Tbx5-deficient mice are hypoplastic and exhibit decreased lung branching, similar to PH in human CDH. We hypothesized that the expression of Tbx2, Tbx4 and Tbx5 is decreased in the branching airway mesenchyme of hypoplastic rat lungs with nitrofen-induced CDH. Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetuses were killed on D15, D18 and D21, and dissected lungs were divided into control and nitrofen-exposed specimens. Pulmonary gene expression of Tbx2, Tbx4 and Tbx5 was investigated by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for Tbx2, Tbx4 and Tbx5 was combined with the mesenchymal marker Fgf10 to assess protein expression and localization in branching airway tissue. Relative mRNA levels of Tbx2, Tbx4 and Tbx5 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Tbx2, Tbx4 and Tbx5 in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Decreased expression of Tbx2, Tbx4 and Tbx5 in the pulmonary mesenchyme during fetal lung development may lead to a decrease or arrest of airway branching, thus contributing to PH in the nitrofen-induced CDH model.

  14. Entanglement branching operator

    NASA Astrophysics Data System (ADS)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  15. Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

    NASA Technical Reports Server (NTRS)

    Stokes, Jack W.

    2003-01-01

    An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.

  16. Spatial regulation of controlled bioactive factor delivery for bone tissue engineering

    PubMed Central

    Samorezov, Julia E.; Alsberg, Eben

    2015-01-01

    Limitations of current treatment options for critical size bone defects create a significant clinical need for tissue engineered bone strategies. This review describes how control over the spatiotemporal delivery of growth factors, nucleic acids, and drugs and small molecules may aid in recapitulating signals present in bone development and healing, regenerating interfaces of bone with other connective tissues, and enhancing vascularization of tissue engineered bone. State-of-the-art technologies used to create spatially controlled patterns of bioactive factors on the surfaces of materials, to build up 3D materials with patterns of signal presentation within their bulk, and to pattern bioactive factor delivery after scaffold fabrication are presented, highlighting their applications in bone tissue engineering. As these techniques improve in areas such as spatial resolution and speed of patterning, they will continue to grow in value as model systems for understanding cell responses to spatially regulated bioactive factor signal presentation in vitro, and as strategies to investigate the capacity of the defined spatial arrangement of these signals to drive bone regeneration in vivo. PMID:25445719

  17. Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons

    PubMed Central

    Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William

    2010-01-01

    Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636

  18. Form factors and differential branching ratio of B →K μ+μ- in AdS/QCD

    NASA Astrophysics Data System (ADS)

    Momeni, S.; Khosravi, R.

    2018-03-01

    The holographic distribution amplitudes (DAs) for the K pseudoscalar meson are derived. For this aim, the light-front wave function (LFWF) of the K meson is extracted within the framework of the anti-de Sitter/quantum chromodynamics (AdS/QCD) correspondence. We consider a momentum-dependent (dynamical) helicity wave function that contains the dynamical spin effects. We use the LFWF to predict the radius and the electromagnetic form factor of the kaon and compare them with the experimental values. Then, the holographic twist-2 DA of K meson ϕK(α ,μ ) is investigated and compared with the result of the light-cone sum rules (LCSR). The transition form factors of the semileptonic B →K ℓ+ℓ- decays are derived from the holographic DAs of the kaon. With the help of these form factors, the differential branching ratio of the B →K μ+μ- on q2 is plotted. A comparison is made between our prediction in AdS/QCD and the results obtained from two models including the LCSR and the lattice QCD as well as the experimental values.

  19. Motivating Factors that Affect Enrolment and Student Performance in an ODL Engineering Program

    ERIC Educational Resources Information Center

    Dadigamuwa, P. R.; Senanayake, Samans

    2012-01-01

    The present study was carried out to determine the motivating factors for enrolling in an engineering study programme in open and distance learning (ODL) and the factors that affect the students' performance. The study was conducted with two convenient samples of students following distance learning courses in engineering technology, conducted by…

  20. Kodiak: An Implementation Framework for Branch and Bound Algorithms

    NASA Technical Reports Server (NTRS)

    Smith, Andrew P.; Munoz, Cesar A.; Narkawicz, Anthony J.; Markevicius, Mantas

    2015-01-01

    Recursive branch and bound algorithms are often used to refine and isolate solutions to several classes of global optimization problems. A rigorous computation framework for the solution of systems of equations and inequalities involving nonlinear real arithmetic over hyper-rectangular variable and parameter domains is presented. It is derived from a generic branch and bound algorithm that has been formally verified, and utilizes self-validating enclosure methods, namely interval arithmetic and, for polynomials and rational functions, Bernstein expansion. Since bounds computed by these enclosure methods are sound, this approach may be used reliably in software verification tools. Advantage is taken of the partial derivatives of the constraint functions involved in the system, firstly to reduce the branching factor by the use of bisection heuristics and secondly to permit the computation of bifurcation sets for systems of ordinary differential equations. The associated software development, Kodiak, is presented, along with examples of three different branch and bound problem types it implements.

  1. Human factors and systems engineering approach to patient safety for radiotherapy.

    PubMed

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  2. Identification of a conserved branched RNA structure that functions as a factor-independent terminator.

    PubMed

    Johnson, Christopher M; Chen, Yuqing; Lee, Heejin; Ke, Ailong; Weaver, Keith E; Dunny, Gary M

    2014-03-04

    Anti-Q is a small RNA encoded on pCF10, an antibiotic resistance plasmid of Enterococcus faecalis, which negatively regulates conjugation of the plasmid. In this study we sought to understand how Anti-Q is generated relative to larger transcripts of the same operon. We found that Anti-Q folds into a branched structure that functions as a factor-independent terminator. In vitro and in vivo, termination is dependent on the integrity of this structure as well as the presence of a 3' polyuridine tract, but is not dependent on other downstream sequences. In vitro, terminated transcripts are released from RNA polymerase after synthesis. In vivo, a mutant with reduced termination efficiency demonstrated loss of tight control of conjugation function. A search of bacterial genomes revealed the presence of sequences that encode Anti-Q-like RNA structures. In vitro and in vivo experiments demonstrated that one of these functions as a terminator. This work reveals a previously unappreciated flexibility in the structure of factor-independent terminators and identifies a mechanism for generation of functional small RNAs; it should also inform annotation of bacterial sequence features, such as terminators, functional sRNAs, and operons.

  3. Identification of a conserved branched RNA structure that functions as a factor-independent terminator

    PubMed Central

    Johnson, Christopher M.; Chen, Yuqing; Lee, Heejin; Ke, Ailong; Weaver, Keith E.; Dunny, Gary M.

    2014-01-01

    Anti-Q is a small RNA encoded on pCF10, an antibiotic resistance plasmid of Enterococcus faecalis, which negatively regulates conjugation of the plasmid. In this study we sought to understand how Anti-Q is generated relative to larger transcripts of the same operon. We found that Anti-Q folds into a branched structure that functions as a factor-independent terminator. In vitro and in vivo, termination is dependent on the integrity of this structure as well as the presence of a 3′ polyuridine tract, but is not dependent on other downstream sequences. In vitro, terminated transcripts are released from RNA polymerase after synthesis. In vivo, a mutant with reduced termination efficiency demonstrated loss of tight control of conjugation function. A search of bacterial genomes revealed the presence of sequences that encode Anti-Q–like RNA structures. In vitro and in vivo experiments demonstrated that one of these functions as a terminator. This work reveals a previously unappreciated flexibility in the structure of factor-independent terminators and identifies a mechanism for generation of functional small RNAs; it should also inform annotation of bacterial sequence features, such as terminators, functional sRNAs, and operons. PMID:24550474

  4. Human Factors Engineering #2 Crewstation Assessment for the OH-58F Helicopter

    DTIC Science & Technology

    2013-03-01

    1 ARMY RSCH LABORATORY – HRED (HC) HUMAN RSRCH AND ENGRNG DIRCTRT MCOE FIELD ELEMENT RDRL HRM DW C CARSTENS 6450 WAY ST BLDG 2839 RM... Human Factors Engineering #2 Crewstation Assessment for the OH-58F Helicopter by David B. Durbin, Jamison S. Hicks, Michael Sage Jessee...Research Laboratory Aberdeen Proving Ground, MD 21005 ARL-TR-6355 March 2013 Human Factors Engineering #2 Crewstation Assessment for the

  5. CryoEM structure of the spliceosome immediately after branching

    PubMed Central

    Galej, Wojciech P.; Wilkinson, Max E.; Fica, Sebastian M.; Oubridge, Chris; Newman, Andrew J.; Nagai, Kiyoshi

    2016-01-01

    Pre-mRNA splicing proceeds by two consecutive trans-esterification reactions via a lariat-intron intermediate. We present the 3.8Å cryoEM structure of the spliceosome immediately after lariat formation. The 5’-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 snRNA triplex, and the 5’-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2’OH. The 5’-exon is held between the Prp8 N-terminal and Linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5’-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step one factors Yju2 and Cwc25 stabilise docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 RT and Linker domains and extends towards Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation. PMID:27459055

  6. An Investigation of the Impact of International Branch Campuses on Organizational Culture

    ERIC Educational Resources Information Center

    Tierney, William G.; Lanford, Michael

    2015-01-01

    The authors first survey the factors related to globalization that have stimulated the creation of international branch campuses. They then contend that the viability of an international branch campus should not be solely evaluated from a rational choice perspective oriented toward economic self-interest. Rather, the organizational culture of the…

  7. Growth factor delivery for oral and periodontal tissue engineering

    PubMed Central

    Kaigler, Darnell; Cirelli, Joni A; Giannobile, William V

    2008-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. Growth factors are critical to the development, maturation, maintenance and repair of craniofacial tissues, as they establish an extracellular environment that is conducive to cell and tissue growth. Tissue-engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. These materials have been constructed into devices that can be used as vehicles for delivery of cells, growth factors and DNA. In this review, different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral- and tooth-supporting structures, namely the periodontium and alveolar bone. PMID:16948560

  8. Using human factors engineering to improve the effectiveness of infection prevention and control.

    PubMed

    Anderson, Judith; Gosbee, Laura Lin; Bessesen, Mary; Williams, Linda

    2010-08-01

    Human factors engineering is a discipline that studies the capabilities and limitations of humans and the design of devices and systems for improved performance. The principles of human factors engineering can be applied to infection prevention and control to study the interaction between the healthcare worker and the system that he or she is working with, including the use of devices, the built environment, and the demands and complexities of patient care. Some key challenges in infection prevention, such as delayed feedback to healthcare workers, high cognitive workload, and poor ergonomic design, are explained, as is how human factors engineering can be used for improvement and increased compliance with practices to prevent hospital-acquired infections.

  9. Bundle Branch Block

    MedlinePlus

    ... known cause. Causes can include: Left bundle branch block Heart attacks (myocardial infarction) Thickened, stiffened or weakened ... myocarditis) High blood pressure (hypertension) Right bundle branch block A heart abnormality that's present at birth (congenital) — ...

  10. Industrial biosystems engineering and biorefinery systems.

    PubMed

    Chen, Shulin

    2008-06-01

    The concept of Industrial Biosystems Engineering (IBsE) was suggested as a new engineering branch to be developed for meeting the needs for science, technology and professionals by the upcoming bioeconomy. With emphasis on systems, IBsE builds upon the interfaces between systems biology, bioprocessing, and systems engineering. This paper discussed the background, the suggested definition, the theoretical framework and methodologies of this new discipline as well as its challenges and future development.

  11. Acoustics: A branch of engineering at the Universidad Austral de Chile (UACh)

    NASA Astrophysics Data System (ADS)

    Poblete, Victor; Arenas, Jorge P.; Sommerhoff, Jorge

    2002-11-01

    At the end of the 1960s, the first acousticians graduating at UACh had acquired an education in applied physics and musical arts, since there was no College of Engineering at that time. Initially, they had a (rather modest) four-year undergraduate program, and most of the faculty were not specialized teachers. The graduates from such a program received a sound engineering degree and they were skilled for jobs in the musical industry and sound reinforcement companies. In addition, they worked as sound engineers and producers. Later, because of the scientific, industrial and educational changes in Chile during the 1980s, the higher education system had massive changes that affected all of the undergraduate and graduate programs of the 61 universities in Chile. The UACh College of Engineering was officially founded in 1989. Then, acoustics as an area of expertise was included, widened and developed as an interdisciplinary subject. Currently, the undergraduate program in acoustics at UACh offers a degree in engineering sciences and a 6-year professional studies in Civil Engineering (Acoustics), having two main fields: Sound and Image, and Environment and Industry.

  12. Launch Deployment Assembly Human Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Loughead, T.

    1996-01-01

    This report documents the human engineering analysis performed by the Systems Branch in support of the 6A cargo element design. The human engineering analysis is limited to the extra vehicular activities (EVA) which are involved in removal of various cargo items from the LDA and specific activities concerning deployment of the Space Station Remote Manipulator System (SSRMS).

  13. Branch Detonation of a Pulse Detonation Engine With Flash Vaporized JP-8

    DTIC Science & Technology

    2006-12-01

    Mark F. Reeder (Member) date iii Abstract Pulse Detonation Engines ( PDE ) operating on liquid hydrocarbon fuels are... Detonation Transition FF – Fill Fraction FN – Flow Number NPT – National Pipe Thread OH – Hydroxyl PDE – Pulse Detonation Engine PF – Purge...Introduction Motivation Research on Pulsed Detonation Engines ( PDE ) has increased over the past ten years due to the potential for increased

  14. The Significance of Including an Entrepreneurship Course in Engineering Programs

    ERIC Educational Resources Information Center

    Mosly, Ibrahim

    2017-01-01

    This paper studied the significance of entrepreneurship education in engineering programs. It looked into its influence on engineering students' perception and willingness to change their future job direction. The study was performed at the College of Engineering-Rabigh Branch, of King Abdulaiziz University in Saudi Arabia. Entrepreneurship…

  15. Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling

    PubMed Central

    Zschätzsch, Marlen; Oliva, Carlos; Langen, Marion; De Geest, Natalie; Özel, Mehmet Neset; Williamson, W Ryan; Lemon, William C; Soldano, Alessia; Munck, Sebastian; Hiesinger, P Robin; Sanchez-Soriano, Natalia; Hassan, Bassem A

    2014-01-01

    Axonal branching allows a neuron to connect to several targets, increasing neuronal circuit complexity. While axonal branching is well described, the mechanisms that control it remain largely unknown. We find that in the Drosophila CNS branches develop through a process of excessive growth followed by pruning. In vivo high-resolution live imaging of developing brains as well as loss and gain of function experiments show that activation of Epidermal Growth Factor Receptor (EGFR) is necessary for branch dynamics and the final branching pattern. Live imaging also reveals that intrinsic asymmetry in EGFR localization regulates the balance between dynamic and static filopodia. Elimination of signaling asymmetry by either loss or gain of EGFR function results in reduced dynamics leading to excessive branch formation. In summary, we propose that the dynamic process of axon branch development is mediated by differential local distribution of signaling receptors. DOI: http://dx.doi.org/10.7554/eLife.01699.001 PMID:24755286

  16. NCO Production Management Branch

    Science.gov Websites

    Climate Climate Prediction Climate Archives Weather Safety Storm Ready NOAA Central Library Photo Library Management Branch Production Management Branch About the Production Management Branch NCO REQUEST FOR CHANGE (RFC) DATABASE ACCESS NCO Request For Change (RFC) Archive [For INTERNAL Use Only] NCO Request For

  17. Ambulatory Antibiotic Stewardship through a Human Factors Engineering Approach: A Systematic Review.

    PubMed

    Keller, Sara C; Tamma, Pranita D; Cosgrove, Sara E; Miller, Melissa A; Sateia, Heather; Szymczak, Julie; Gurses, Ayse P; Linder, Jeffrey A

    2018-01-01

    In the United States, most antibiotics are prescribed in ambulatory settings. Human factors engineering, which explores interactions between people and the place where they work, has successfully improved quality of care. However, human factors engineering models have not been explored to frame what is known about ambulatory antibiotic stewardship (AS) interventions and barriers and facilitators to their implementation. We conducted a systematic review and searched OVID MEDLINE, Embase, Scopus, Web of Science, and CINAHL to identify controlled interventions and qualitative studies of ambulatory AS and determine whether and how they incorporated principles from a human factors engineering model, the Systems Engineering Initiative for Patient Safety 2.0 model. This model describes how a work system (ambulatory clinic) contributes to a process (antibiotic prescribing) that leads to outcomes. The work system consists of 5 components, tools and technology, organization, person, tasks, and environment, within an external environment. Of 1,288 abstracts initially identified, 42 quantitative studies and 17 qualitative studies met inclusion criteria. Effective interventions focused on tools and technology (eg, clinical decision support and point-of-care testing), the person (eg, clinician education), organization (eg, audit and feedback and academic detailing), tasks (eg, delayed antibiotic prescribing), the environment (eg, commitment posters), and the external environment (media campaigns). Studies have not focused on clinic-wide approaches to AS. A human factors engineering approach suggests that investigating the role of the clinic's processes or physical layout or external pressures' role in antibiotic prescribing may be a promising way to improve ambulatory AS. © Copyright 2018 by the American Board of Family Medicine.

  18. Some posterior branches of extralaryngeal recurrent laryngeal nerves have motor fibers.

    PubMed

    Cho, Ilyoung; Jo, Min-Gyu; Choi, Sung-Won; Jang, Jeon Yeob; Wang, Soo-Geun; Cha, Wonjae

    2017-11-01

    Anatomical variations of the recurrent laryngeal nerve (RLN), such as extralaryngeal branching, are a well-known risk factor for RLN injury during thyroid surgery. This study aimed to analyze the surgical anatomy and to investigate the existence of posterior branch motor fibers of extralaryngeal RLNs. Prospective consecutive observational study. This was a prospective cohort study of 366 patients between January 2014 and February 2016. Operative data included the type of operation, incidence of nerve bifurcation, the distances among anatomical landmarks. The motor fibers were evaluated using neurostimulation with laryngeal palpation. A total of 667 RLNs at risk were analyzed in this study, and of these 103 (14.5%) nerves were bifurcated or trifurcated before the laryngeal entry point (LEP). More extralaryngeal branched RLNs were observed on the right side than on the left (17.5% vs. 13.3%, P = .294). The mean distance of the LEP point of division was longer on the left side (16.2 ± 6.7 mm) than on the right (14.7 ± 5.9 mm, P = .132). All branched RLNs had a palpable laryngeal twitch when stimulating anterior branches. When stimulating posterior branches, 28.2%(29/103) of branched RLNs showed palpable laryngeal twitch. Overall incidence of posterior motor branch in total RLNs was 4.3% (29/667). The motor fibers of the RLN are all located in the anterior branch, whereas some posterior branches have motor function. Identification of all of the branches of the RLN may be mandatory to decrease the risk of postoperative nerve injury. 4. Laryngoscope, 127:2678-2685, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Branching morphogenesis in the fetal mouse submandibular gland is codependent on growth factors and extracellular matrix.

    PubMed

    Gresik, Edward W; Koyama, Noriko; Hayashi, Toru; Kashimata, Masanori

    2009-01-01

    Branching morphogenesis (BrM) is a basic developmental process for the formation of the lung, kidney, and all exocrine glands, including the salivary glands. This process proceeds as follows. An epithelial downgrowth invaginates into underlying mesenchyme, and forms a cleft at its distal end, which is the site of dichotomous branching and elongation; this process of clefting and elongation is repeated many times at the distal ends of the invading epithelium until the desired final extent of branching is reached. The distal ends of the epithelium differentiate into the secretory endpieces, and the elongated segments become the ducts. This presentation is a brief historical review of studies on BrM during the development of the submandibular gland (SMG).

  20. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas

    PubMed Central

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-01-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. PMID:26076970

  1. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.

    PubMed

    Bhardwaj, Nandana; Devi, Dipali; Mandal, Biman B

    2015-02-01

    Damage to cartilage represents one of the most challenging tasks of musculoskeletal therapeutics due to its limited propensity for healing and regenerative capabilities. Lack of current treatments to restore cartilage tissue function has prompted research in this rapidly emerging field of tissue regeneration of functional cartilage tissue substitutes. The development of cartilaginous tissue largely depends on the combination of appropriate biomaterials, cell source, and stimulating factors. Over the years, various biomaterials have been utilized for cartilage repair, but outcomes are far from achieving native cartilage architecture and function. This highlights the need for exploration of suitable biomaterials and stimulating factors for cartilage regeneration. With these perspectives, we aim to present an overview of cartilage tissue engineering with recent progress, development, and major steps taken toward the generation of functional cartilage tissue. In this review, we have discussed the advances and problems in tissue engineering of cartilage with strong emphasis on the utilization of natural polymeric biomaterials, various cell sources, and stimulating factors such as biophysical stimuli, mechanical stimuli, dynamic culture, and growth factors used so far in cartilage regeneration. Finally, we have focused on clinical trials, recent innovations, and future prospects related to cartilage engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure of FabH and factors affecting the distribution of branched fatty acids in Micrococcus luteus.

    PubMed

    Pereira, Jose H; Goh, Ee-Been; Keasling, Jay D; Beller, Harry R; Adams, Paul D

    2012-10-01

    Micrococcus luteus is a Gram-positive bacterium that produces iso- and anteiso-branched alkenes by the head-to-head condensation of fatty-acid thioesters [coenzyme A (CoA) or acyl carrier protein (ACP)]; this activity is of interest for the production of advanced biofuels. In an effort to better understand the control of the formation of branched fatty acids in M. luteus, the structure of FabH (MlFabH) was determined. FabH, or β-ketoacyl-ACP synthase III, catalyzes the initial step of fatty-acid biosynthesis: the condensation of malonyl-ACP with an acyl-CoA. Analysis of the MlFabH structure provides insights into its substrate selectivity with regard to length and branching of the acyl-CoA. The most structurally divergent region of FabH is the L9 loop region located at the dimer interface, which is involved in the formation of the acyl-binding channel and thus limits the substrate-channel size. The residue Phe336, which is positioned near the catalytic triad, appears to play a major role in branched-substrate selectivity. In addition to structural studies of MlFabH, transcriptional studies of M. luteus were also performed, focusing on the increase in the ratio of anteiso:iso-branched alkenes that was observed during the transition from early to late stationary phase. Gene-expression microarray analysis identified two genes involved in leucine and isoleucine metabolism that may explain this transition.

  3. Selected engagement factors and academic learning outcomes of undergraduate engineering students

    NASA Astrophysics Data System (ADS)

    Justice, Patricia J.

    The concept of student engagement and its relationship to successful student performance and learning outcomes has a long history in higher education (Kuh, 2007). Attention to faculty and student engagement has only recently become of interest to the engineering education community. This interest can be attributed to long-standing research by George Kuh's, National Survey of Student Engagement (NSSE) at the Indiana University Center for Postsecondary Research. In addition, research projects sponsored by the National Science Foundation, the Academic Pathway Study (APS) at the Center for the Advancement of Engineering Education (CAEE) and the Center for the Advancement of Scholarship on Engineering Education (CASEE), Measuring Student and Faculty Engagement in Engineering Education, at the National Academy of Engineering. These research studies utilized the framework and data from the Engineering Change study by the Center for the Study of Higher Education, Pennsylvania State, that evaluated the impact of the new Accreditation Board of Engineering and Technology (ABET) EC2000 "3a through k" criteria identify 11 learning outcomes expected of engineering graduates. The purpose of this study was to explore the extent selected engagement factors of 1. institution, 2. social, 3. cognitive, 4. finance, and 5. technology influence undergraduate engineering students and quality student learning outcomes. Through the descriptive statistical analysis indicates that there maybe problems in the engineering program. This researcher would have expected at least 50% of the students to fall in the Strongly Agree and Agree categories. The data indicated that the there maybe problems in the engineering program problems in the data. The problems found ranked in this order: 1). Dissatisfaction with faculty instruction methods and quality of instruction and not a clear understanding of engineering majors , 2). inadequate Engineering faculty and advisors availability especially applicable

  4. Combining living anionic polymerization with branching reactions in an iterative fashion to design branched polymers.

    PubMed

    Higashihara, Tomoya; Sugiyama, Kenji; Yoo, Hee-Soo; Hayashi, Mayumi; Hirao, Akira

    2010-06-16

    This paper reviews the precise synthesis of many-armed and multi-compositional star-branched polymers, exact graft (co)polymers, and structurally well-defined dendrimer-like star-branched polymers, which are synthetically difficult, by a commonly-featured iterative methodology combining living anionic polymerization with branched reactions to design branched polymers. The methodology basically involves only two synthetic steps; (a) preparation of a polymeric building block corresponding to each branched polymer and (b) connection of the resulting building unit to another unit. The synthetic steps were repeated in a stepwise fashion several times to successively synthesize a series of well-defined target branched polymers. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hydrologic and hydraulic analyses at Akin Branch and Cayce Valley Branch, Columbia, Tennessee

    USGS Publications Warehouse

    Outlaw, George S.

    1993-01-01

    The U.S. Geological Survey, in cooperation with the City of Columbia, Tennessee, conducted hydrologic and hydraulic analyses at Akin Branch and Cayce Valley Branch in the Little Bigby Creek watershed, Columbia, Tennessee, from 1990 through 1991. Results of the analyses can be used by city planners in the development of plans to replace several deteriorating and inadequate drainage structures. Akin Branch and Cayce Valley Branch drain small watersheds of 1.69 and 1.04 square miles, respectively. Flood discharges for 5-, lo-, and 25-year recurrence-interval storm events were calculated at the stream mouths using flood-frequency relations developed for use at small urban streams in Tennessee. For each stream, flood discharges at locations upstream from the mouth were calculated by subdividing the watershed and assigning a percentage of the discharge at the mouth, based on drainage area, to each subarea. Flood profiles for the selected recurrence-interval flood discharges were simulated for Akin Branch and Cayce Valley Branch for existing conditions and conditions that might exist if drainage improvements such as larger culverts and bridges and channel improvements are constructed. The results of the simulations were used to predict changes in flood elevations that might result from such drainage improvements. Analyses indicate that reductions in existing flood elevations of as much as 2.1 feet for the 5-year flood at some sites on Akin Branch and as much as 3.8 feet for the 5-year flood at some sites on Cayce Valley Branch might be expected with the drainage improvements.

  6. Fine-Branched Ridges

    NASA Image and Video Library

    2015-10-14

    This image from NASA Mars Reconnaissance Orbiter spacecraft shows numerous branching ridges with various degrees of sinuosity. These branching forms resemble tributaries funneling and draining into larger channel trunks towards the upper portion of the scene. The raised relief of these branching ridges suggests that these are ancient channels are inverted due to lithification and cementation of the riverbed sediment, which made it more resistant to erosion than the surrounding material. Wind-blown bedforms are abundant and resemble small ridges that are aligned in an approximately north-south direction. http://photojournal.jpl.nasa.gov/catalog/PIA20006

  7. Interference by 2,3,7,8-tetrachlorodibenzo-p-dioxin with cultured mouse submandibular gland branching morphogenesis involves reduced epidermal growth factor receptor signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiukkonen, Anu; Sahlberg, Carin; Partanen, Anna-Maija

    2006-05-01

    Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to mouse embryonic teeth, sharing features of early development with salivary glands in common, involves enhanced apoptosis and depends on the expression of epidermal growth factor (EGF) receptor. EGF receptor signaling, on the other hand, is essential for salivary gland branching morphogenesis. To see if TCDD impairs salivary gland morphogenesis and if the impairment is associated with EGF receptor signaling, we cultured mouse (NMRI) E13 submandibular glands with TCDD or TCDD in combination with EGF or fibronectin (FN), both previously found to enhance branching morphogenesis. Explants were examined stereomicroscopically and processed to paraffin sections. TCDD exposuremore » impaired epithelial branching and cleft formation, resulting in enlarged buds. The glands were smaller than normal. EGF and FN alone concentration-dependently stimulated or inhibited branching morphogenesis but when co-administered with TCDD, failed to compensate for its effect. TCDD induced cytochrome P4501A1 expression in the glandular epithelium, indicating activation of the aryl hydrocarbon receptor. TCDD somewhat increased epithelial apoptosis as observed by terminal deoxynucleotidyl transferase (TdT)-mediated nick end-labeling method but the increase could not be correlated with morphological changes. The frequency of proliferating cells was not altered. Corresponding to the reduced cleft sites in TCDD-exposed explants, FN immunoreactivity in the epithelium was reduced. The results show that TCDD, comparably with EGF and FN at morphogenesis-inhibiting concentrations, impaired salivary gland branching morphogenesis in vitro. Together with the failure of EGF and FN at morphogenesis-stimulating concentrations to compensate for the effect of TCDD this implies that TCDD toxicity to developing salivary gland involves reduced EGF receptor signaling.« less

  8. An Anatomical Assessment of Branch Abscission and Branch-base Hydraulic Architecture in the Endangered Wollemia nobilis

    PubMed Central

    Burrows, G. E.; Meagher, P. F.; Heady, R. D.

    2007-01-01

    Background and Aims The branch-base xylem structure of the endangered Wollemia nobilis was anatomically investigated. Wollemia nobilis is probably the only extant tree species that produces only first-order branches and where all branches are cleanly abscised. An investigation was carried out to see if these unusual features might influence branch-base xylem structure and water supply to the foliage. Methods The xylem was sectioned at various distances along the branch bases of 6-year-old saplings. Huber values and relative theoretical hydraulic conductivities were calculated for various regions of the branch base. Key Results The most proximal branch base featured a pronounced xylem constriction. The constriction had only 14–31 % (average 21 %) of the cross-sectional area and 20–42 % (average 28 %) of the theoretical hydraulic conductivity of the more distal branch xylem. Wollemia nobilis had extremely low Huber values for a conifer. Conclusions The branch-base xylem constriction would appear to facilitate branch abscission, while the associated Huber values show that W. nobilis supplies a relatively large leaf area through a relatively small diameter ‘pipe’. It is tempting to suggest that the pronounced decline of W. nobilis in the Tertiary is related to its unusual branch-base structure but physiological studies of whole plant conductance are still needed. PMID:17272303

  9. A branching morphogenesis program governs embryonic growth of the thyroid gland

    PubMed Central

    Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L.; Fagman, Henrik

    2018-01-01

    ABSTRACT The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1+ cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. PMID:29361553

  10. A branching morphogenesis program governs embryonic growth of the thyroid gland.

    PubMed

    Liang, Shawn; Johansson, Ellen; Barila, Guillermo; Altschuler, Daniel L; Fagman, Henrik; Nilsson, Mikael

    2018-01-25

    The developmental program that regulates thyroid progenitor cell proliferation is largely unknown. Here, we show that branching-like morphogenesis is a driving force to attain final size of the embryonic thyroid gland in mice. Sox9, a key factor in branching organ development, distinguishes Nkx2-1 + cells in the thyroid bud from the progenitors that originally form the thyroid placode in anterior endoderm. As lobes develop the thyroid primordial tissue branches several generations. Sox9 and Fgfr2b are co-expressed distally in the branching epithelium prior to folliculogenesis. The thyroid in Fgf10 null mutants has a normal shape but is severely hypoplastic. Absence of Fgf10 leads to defective branching and disorganized angiofollicular units although Sox9/Fgfr2b expression and the ability of cells to differentiate and form nascent follicles are not impaired. These findings demonstrate a novel mechanism of thyroid development reminiscent of the Fgf10-Sox9 program that characterizes organogenesis in classical branching organs, and provide clues to aid understanding of how the endocrine thyroid gland once evolved from an exocrine ancestor present in the invertebrate endostyle. © 2018. Published by The Company of Biologists Ltd.

  11. A Game-Theoretic Approach to Branching Time Abstract-Check-Refine Process

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Tamai, Tetsuo

    2009-01-01

    Since the complexity of software systems continues to grow, most engineers face two serious problems: the state space explosion problem and the problem of how to debug systems. In this paper, we propose a game-theoretic approach to full branching time model checking on three-valued semantics. The three-valued models and logics provide successful abstraction that overcomes the state space explosion problem. The game style model checking that generates counter-examples can guide refinement or identify validated formulas, which solves the system debugging problem. Furthermore, output of our game style method will give significant information to engineers in detecting where errors have occurred and what the causes of the errors are.

  12. Gibberellin Promotes Shoot Branching in the Perennial Woody Plant Jatropha curcas.

    PubMed

    Ni, Jun; Gao, Congcong; Chen, Mao-Sheng; Pan, Bang-Zhen; Ye, Kaiqin; Xu, Zeng-Fu

    2015-08-01

    Strigolactone (SL), auxin and cytokinin (CK) interact to regulate shoot branching. CK has long been considered to be the only key phytohormone to promote lateral bud outgrowth. Here we report that gibberellin also acts as a positive regulator in the control of shoot branching in the woody plant Jatropha curcas. We show that gibberellin and CK synergistically promote lateral bud outgrowth, and that both hormones influence the expression of putative branching regulators, J. curcas BRANCHED1 and BRANCHED2, which are key transcription factors maintaining bud dormancy. Moreover, treatment with paclobutrazol, an inhibitor of de novo gibberellin biosynthesis, significantly reduced the promotion of bud outgrowth by CK, suggesting that gibberellin is required for CK-mediated axillary bud outgrowth. In addition, SL, a plant hormone involved in the repression of shoot branching, acted antagonistically to both gibberellin and CK in the control of lateral bud outgrowth. Consistent with this, the expression of JcMAX2, a J. curcas homolog of Arabidopsis MORE AXILLARY GROWTH 2 encoding an F-box protein in the SL signaling pathway, was repressed by gibberellin and CK treatment. We also provide physiological evidence that gibberellin also induces shoot branching in many other trees, such as papaya, indicating that a more complicated regulatory network occurs in the control of shoot branching in some perennial woody plants. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  13. Analysis of interface crack branching

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Mukai, D. J.; Miller, G. R.

    1989-01-01

    A solution is presented for the problem of a finite length crack branching off the interface between two bonded dissimilar isotropic materials. Results are presented in terms of the ratio of the energy release rate of a branched interface crack to the energy release rate of a straight interface crack with the same total length. It is found that this ratio reaches a maximum when the interface crack branches into the softer material. Longer branches tend to have smaller maximum energy release rate ratio angles indicating that all else being equal, a branch crack will tend to turn back parallel to the interface as it grows.

  14. Ecosystem engineering and manipulation of host plant tissues by the insect borer Oncideres albomarginata chamela.

    PubMed

    Calderón-Cortés, Nancy; Uribe-Mú, Claudia A; Martínez-Méndez, A Karen; Escalera-Vázquez, Luis H; Cristobal-Pérez, E Jacob; García-Oliva, Felipe; Quesada, Mauricio

    2016-01-01

    Ecosystem engineering by insect herbivores occurs as the result of structural modification of plants manipulated by insects. However, only few studies have evaluated the effect of these modifications on the plant responses induced by stem-borers that act as ecosystem engineers. In this study, we evaluated the responses induced by the herbivory of the twig-girdler beetle Oncideres albomarginata chamela (Cerambycidae: Lamiinae) on its host plant Spondias purpurea (Anacardiaceae), and its relationship with the ecosystem engineering process carried out by this stem-borer. Our results demonstrated that O. albomarginata chamela branch removal induced the development of lateral branches increasing the resources needed for the development of future insect generations, of its own offspring and of many other insect species. Detached branches represent habitats with high content of nitrogen and phosphorous, which eventually can be incorporated into the ecosystem, increasing nutrient cycling efficiency. Consequently, branch removal and the subsequent plant tissue regeneration induced by O. albomarginata chamela represent key mechanisms underlying the ecosystem engineering process carried out by this stem-borer, which enhances arthropod diversity in the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. [Croatian Medical Association--Branch Zagreb].

    PubMed

    Kaić, Zvonimir; Sain, Snjezana; Gulić, Mirjana; Mahovlić, Vjekoslav; Krznarić, Zeljko

    2014-01-01

    The available literature shows us that "Druztvo ljeciteljah u Zagrebus (the Society of Healers in Zagreb) was founded as far back as the year 1845 by a total of thirteen members. This data allows us to follow the role of doctors and health workers in Zagreb through their everyday profession, research, organizational and social work as well as management through a period of over one hundred to seventy years. The Branch Zagreb was active before the official establishment of subsidiaries of CMA which is evident from the minutes of the regular annual assembly of the Croatian Medical Association on 21 March 1948. Until the end of 1956, there was no clear division of labor, functions and competencies between the Branch and the Main Board. Their actions were instead consolidated and the Branch operated within and under the name of Croatian Medical Association. In that year the Branch became independent. The Branch Zagreb is the largest and one of the most active branches of the Croatian Medical Association. At the moment, the Branch brings together 3621 members, regular members--doctors of medicine (2497), doctors of dental medicine (384), retired physicians (710), and associate members (30 specialists with higher education who are not doctors). The Branch is especially accomplished in its activities in the area of professional development of its members and therefore organizes a series of scientific conferences in the framework of continuous education of physicians, allowing its members to acquire necessary points for the extension of their operating license. The choir "Zagrebacki lijecnici pjevaci" (Zagreb Physicians' Choir) of the Croatian Medical Music Society of the CMA and its activities are inseparable from the Branch Zagreb. The Branch is firmly linked to the parent body, the CMA, and thus has a visible impact on the strategy and the activities of the Association as a whole. Most professional societies of the CMA have their headquarters in Zagreb and this is

  16. Emission factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Chen, Yingjun; Tian, Chongguo; Lou, Diming; Li, Jun; Zhang, Gan; Matthias, Volker

    2016-05-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbour districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel-engine-powered offshore vessels in China (350, 600 and 1600 kW) were measured in this study. Concentrations, fuel-based and power-based emission factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emission factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low-engine-power vessel (HH) than for the two higher-engine-power vessels (XYH and DFH); for instance, HH had NOx EF (emission factor) of 25.8 g kWh-1 compared to 7.14 and 6.97 g kWh-1 of DFH, and XYH, and PM EF of 2.09 g kWh-1 compared to 0.14 and 0.04 g kWh-1 of DFH, and XYH. Average emission factors for all pollutants except sulfur dioxide in the low-engine-power engineering vessel (HH) were significantly higher than that of the previous studies (such as 30.2 g kg-1 fuel of CO EF compared to 2.17 to 19.5 g kg-1 fuel in previous studies, 115 g kg-1 fuel of NOx EF compared to 22.3 to 87 g kg-1 fuel in previous studies and 9.40 g kg-1 fuel of PM EF compared to 1.2 to 7.6 g kg-1 fuel in previous studies), while for the two higher-engine-power vessels (DFH and XYH), most of the average emission factors for pollutants were comparable to the results of the previous studies, engine type was

  17. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  18. Factors of airplane engine performance

    NASA Technical Reports Server (NTRS)

    Gage, Victor R

    1921-01-01

    This report is based upon an analysis of a large number of airplane-engine tests. It contains the results of a search for fundamental relations between many variables of engine operation. The data used came from over 100 groups of tests made upon several engines, primarily for military information. The types of engines were the Liberty 12 and three models of the Hispano-Suiza. The tests were made in the altitude chamber, where conditions simulated altitudes up to about 30,000 feet, with engine speeds ranging from 1,200 to 2,200 r.p.m. The compression ratios of the different engines ranged from under 5 to over 8 to 1. The data taken on the tests were exceptionally complete, including variations of pressure and temperature, besides the brake and friction torques, rates of fuel and air consumption, the jacket and exhaust heat losses.

  19. Interaction between different sports branches such as taekwondo, box, athletes and serum brain derived neurotrophic factor levels.

    PubMed

    Oztasyonar, Yunus

    2017-04-01

    This study aimed to compare serum brain-derived neurotrophic factor (BDNF) levels "which contributes in both neuron development/regeneration" between combat sport braches, which requires high attention and concentration and can lead micro and macro brain trauma, and athleticism, which requires durability in competition. The study design included 4 groups. Group 1 had sedentary participants, and group 2 athletes (middle and long runners) who exercised for two 2-hour daily training sessions 6 days a week. group 3 included boxers, and group 4 taekwondo fighters. We investigated changes in the blood BDNF levels of taekwondo fighters, boxers, and athletes before and after training and compared them among each other and with measurements of sedentary controls. All athletes had higher basal BDNF levels than sedentary participants. Boxers and taekwondo athletes had especially high basal BDNF levels. When we compared different sports branch each other Pre- and post- training BDNF values are ranked as follows: taekwondo > boxing > athletes > sedentary. In sport branches such as combat sports and athletes, serum BDNF levels have been demonstrated to be higher after training than before. In addition, serum BDNF levels were higher in taekwondo fighters and boxers than athletes. BDNF might have a role in the protection mechanism against brain damage or contributes in occurrence and maintenance of high attention and concentration especially among combat sports.

  20. Lidar Technology at the Goddard Laser and Electro-Optics Branch

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Obenschain, Arthur F. (Technical Monitor)

    2000-01-01

    The Laser and Electro-Optics Branch at Goddard Space flight Center was established about three years ago to provide a focused center of engineering support and technology development in these disciplines with an emphasis on spaced based instruments for Earth and Space Science. The Branch has approximately 15 engineers and technicians with backgrounds in physics, optics, and electrical engineering. Members of the Branch are currently supporting a number of space based lidar efforts as well as several technology efforts aimed at enabling future missions. The largest effort within the Branch is support of the Ice, Cloud, and land Elevation Satellite (ICESAT) carrying the Geoscience Laser Altimeter System (GLAS) instrument. The ICESAT/GLAS primary science objectives are: 1) To determine the mass balance of the polar ice sheets and their contributions to global sea level change; and 2) To obtain essential data for prediction of future changes in ice volume and sea-level. The secondary science objectives are: 1) To measure cloud heights and the vertical structure of clouds and aerosols in the atmosphere; 2) To map the topography of land surfaces; and 3) To measure roughness, reflectivity, vegetation heights, snow-cover, and sea-ice surface characteristics. Our efforts have concentrated on the GLAS receiver component development, the Laser Reference Sensor for the Stellar Reference System, the GLAS fiber optics subsystems, and the prelaunch calibration facilities. We will report on our efforts in the development of the space qualified interference filter [Allan], etalon filter, photon counting detectors, etalor/laser tracking system, and instrument fiber optics, as well as specification and selection of the star tracker and development of the calibration test bed. We are also engaged in development work on lidar sounders for chemical species. We are developing new lidar technology to enable a new class of miniature lidar instruments that are compatible with small

  1. The Drosophila homologue of SRF acts as a boosting mechanism to sustain FGF-induced terminal branching in the tracheal system.

    PubMed

    Gervais, Louis; Casanova, Jordi

    2011-04-01

    Recent data have demonstrated a crucial role for the transcription factor SRF (serum response factor) downstream of VEGF and FGF signalling during branching morphogenesis. This is the case for sprouting angiogenesis in vertebrates, axonal branching in mammals and terminal branching of the Drosophila tracheal system. However, the specific functions of SRF in these processes remain unclear. Here, we establish the relative contributions of the Drosophila homologues of FGF [Branchless (BNL)] and SRF [Blistered (BS)] in terminal tracheal branching. Conversely to an extended view, we show that BNL triggers terminal branching initiation in a DSRF-independent mechanism and that DSRF transcription induced by BNL signalling is required to maintain terminal branch elongation. Moreover, we report that increased and continuous FGF signalling can trigger tracheal cells to develop full-length terminal branches in the absence of DSRF transcription. Our results indicate that DSRF acts as an amplifying step to sustain the progression of terminal branch elongation even in the wild-type conditions of FGF signalling.

  2. Randomized branch sampling

    Treesearch

    Harry T. Valentine

    2002-01-01

    Randomized branch sampling (RBS) is a special application of multistage probability sampling (see Sampling, environmental), which was developed originally by Jessen [3] to estimate fruit counts on individual orchard trees. In general, the method can be used to obtain estimates of many different attributes of trees or other branched plants. The usual objective of RBS is...

  3. Roles of macrophage migration inhibitory factor in cartilage tissue engineering.

    PubMed

    Fujihara, Yuko; Hikita, Atsuhiko; Takato, Tsuyoshi; Hoshi, Kazuto

    2018-02-01

    To obtain stable outcomes in regenerative medicine, understanding and controlling immunological responses in transplanted tissues are of great importance. In our previous study, auricular chondrocytes in tissue-engineered cartilage transplanted in mice were shown to express immunological factors, including macrophage migration inhibitory factor (MIF). Since MIF exerts pleiotropic functions, in this study, we examined the roles of MIF in cartilage regenerative medicine. We made tissue-engineered cartilage consisting of auricular chondrocytes of C57BL/6J mouse, atellocollagen gel and a PLLA scaffold, and transplanted the construct subcutaneously in a syngeneic manner. Localization of MIF was prominent in cartilage areas of tissue-engineered cartilage at 2 weeks after transplantation, though it became less apparent by 8 weeks. Co-culture with RAW264 significantly increased the expression of MIF in chondrocytes, suggesting that the transplanted chondrocytes in tissue-engineered cartilage could enhance the expression of MIF by stimulation of surrounding macrophages. When MIF was added in the culture of chondrocytes, the expression of type II collagen was increased, indicating that MIF could promote the maturation of chondrocytes. Meanwhile, toluidine blue staining of constructs containing wild type (Mif+/+) chondrocytes showed increased metachromasia compared to MIF-knockout (Mif-/-) constructs at 2 weeks. However, this tendency was reversed by 8 weeks, suggesting that the initial increase in cartilage maturation in Mif+/+ constructs deteriorated by 8 weeks. Since the Mif+/+ constructs included more iNOS-positive inflammatory macrophages at 2 weeks, MIF might induce an M1 macrophage-polarized environment, which may eventually worsen the maturation of tissue-engineered cartilage in the long term. © 2017 Wiley Periodicals, Inc.

  4. Principles of Biomimetic Vascular Network Design Applied to a Tissue-Engineered Liver Scaffold

    PubMed Central

    Hoganson, David M.; Pryor, Howard I.; Spool, Ira D.; Burns, Owen H.; Gilmore, J. Randall

    2010-01-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow. PMID:20001254

  5. Principles of biomimetic vascular network design applied to a tissue-engineered liver scaffold.

    PubMed

    Hoganson, David M; Pryor, Howard I; Spool, Ira D; Burns, Owen H; Gilmore, J Randall; Vacanti, Joseph P

    2010-05-01

    Branched vascular networks are a central component of scaffold architecture for solid organ tissue engineering. In this work, seven biomimetic principles were established as the major guiding technical design considerations of a branched vascular network for a tissue-engineered scaffold. These biomimetic design principles were applied to a branched radial architecture to develop a liver-specific vascular network. Iterative design changes and computational fluid dynamic analysis were used to optimize the network before mold manufacturing. The vascular network mold was created using a new mold technique that achieves a 1:1 aspect ratio for all channels. In vitro blood flow testing confirmed the physiologic hemodynamics of the network as predicted by computational fluid dynamic analysis. These results indicate that this biomimetic liver vascular network design will provide a foundation for developing complex vascular networks for solid organ tissue engineering that achieve physiologic blood flow.

  6. Identifying the challenging factors in the transition from colleges of engineering to employment

    NASA Astrophysics Data System (ADS)

    Baytiyeh, Hoda; Naja, Mohamad

    2012-03-01

    The transition from university to a career in engineering is a challenging process. This study examined the perceptions of engineering graduates regarding the difficulties they encountered in their transition from the university to the workplace. Lebanese practising engineers (n=217), living around the world, were surveyed to identify their current employment situations and their attitudes toward their academic preparation. Factor analysis revealed three main challenges facing engineering graduates: communication; responsibility; self-confidence. Seventeen interviews were conducted to gather information on ways to facilitate this transition. Comments reflected the need for better collaboration between engineering schools and engineering firms. The results will provide insight for engineering colleges, faculty members and administrators into the challenges faced by graduates and their aspirations for a smoother transition into employment.

  7. Complexity of chemical graphs in terms of size, branching, and cyclicity.

    PubMed

    Balaban, A T; Mills, D; Kodali, V; Basak, S C

    2006-08-01

    Chemical graph complexity depends on many factors, but the main ones are size, branching, and cyclicity. Some molecular descriptors embrace together all these three parameters, which cannot then be disentangled. The topological index J (and its refinements that include accounting for bond multiplicity and the presence of heteroatoms) was designed to compensate in a significant measure for graph size and cyclicity, and therefore it contains information mainly on branching. In order to separate these factors, two new indices (F and G) related with J are proposed, which allow to group together graphs with the same size into families of constitutional formulas differing in their branching and cyclicity. A comparison with other topological indices revealed that a few other topological indices vary similarly with index G, notably DN2S4 among the triplet indices, and TOTOP among the indices contained in the Molconn-Z program. This comparison involved all possible chemical graphs (i.e. connected planar graphs with vertex degrees not higher than four) with four through six vertices, and all possible alkanes with four through nine carbon atoms.

  8. Air and Space Operations Center (AOC) Facility Design Guidelines: A Human Factors Engineering Perspective

    DTIC Science & Technology

    2006-07-01

    31 July 1995 3. Human Engineering Guide to Equipment Design, Department of Defense, Washington D.C., 1972 4. American National Standard for Human Factors Engineering of Visual Display Terminal Workstations , ANSI

  9. Effects of Curriculum and Nonacademic Factors on Undergraduate Electronic Engineering Program Retention

    NASA Astrophysics Data System (ADS)

    Sulaiman, Munir

    Science, technology, engineering, and mathematics (STEM) programs in higher education institutions, particularly engineering programs, face challenges related to recruitment, retention, and graduation rates. The purpose of this study was to determine whether there are significant relationships among students' major preference, academic skills, nonacademic characteristics and perceptions, and retention to year 2 among students in electronic engineering, other STEM, and non STEM majors. The academic skills considered were study habits, intellectual interest, verbal and writing confidence, and academic assistance. The non-academic factors included academic support, family support, financial support, and student social integration into the campus environment. Tinto's theory of retention served as the theoretical framework. The research design was quantitative with a general linear method of analysis using responses to the College Student Inventory (CSI) survey as secondary data to determine the relationships among the independent variables (major and academic and non-academic factors) and dependent variable (retention). Participants were 3,575 first year undergraduate full-time students from three entering classes, 2012 to 2014. Findings suggested that student major and non-academic factors had no effect on student retention, but student study habits and seeking academic assistance were predictors of retention in each of the three groups of majors: engineering, other STEM majors, and nonSTEM majors. Strategies to help increase undergraduate students' study skills and help seeking behaviors may contribute to positive social change at HBCU institutions.

  10. Human Factors Engineering: Current and Emerging Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Chandlee, G. O.; Goldsberry, B. S.

    1994-01-01

    Human Factors Engineering is a multidisciplinary endeavor in which information pertaining to human characteristics is used in the development of systems and machines. Six representatives considered to be experts from the public and private sectors were surveyed in an effort to identify the potential dual-use of human factors technology. Each individual was asked to provide a rating as to the dual-use of 85 identified NASA technologies. Results of the survey were as follows: nearly 75 percent of the technologies were identified at least once as high dual-use by one of the six survey respondents, and nearly 25 percent of the identified NASA technologies were identified as high dual-use technologies by a majority of the respondents. The perceived level of dual-use appeared to be independent of the technology category. Successful identification of dual-use technology requires expanded input from industry. As an adjunct, cost-benefit analysis should be conducted to identify the feasibility of the dual-use technology. Concurrent with this effort should be an examination of precedents established by other technologies in other industrial settings. Advances in human factors and systems engineering are critical to reduce risk in any workplace and to enhance industrial competitiveness.

  11. Evaluation of popliteal artery branching patterns and a new subclassification of the 'usual' branching pattern.

    PubMed

    Celtikci, Pinar; Ergun, Onur; Durmaz, Hasan Ali; Conkbayir, Isik; Hekimoglu, Baki

    2017-09-01

    To determine the frequency of popliteal artery branching variations in a wide study cohort and to investigate the relationship between these variations and infrapopliteal peripheral arterial disease (PAD). A subclassification was proposed for the most encountered type I-A, utilizing tibio-fibular trunk (TFT) length. A total number of 1184 lower extremity digital subtraction angiography (DSA) studies of 669 patients were evaluated. Following exclusion, 863 lower extremity DSA studies (431 right, 432 left) of 545 patients were enrolled. Popliteal artery branching type, patency of anterior tibial artery (ATA), fibular artery (FA) and posterior tibial artery (PTA) in each extremity and TFT length for type I-A extremities were recorded. Percentages of branching patterns, mean length and cut-off value of TFT and incidence of PAD in different types of branching were calculated. Type I-A was the most common type of branching (81.3%). Frequency of branching pattern variation was 18.7%, the most common variation category was category III (12.2%) and the most common variation type was type III-A (5.6%). ATA and PTA had higher percentages of PAD in extremities with variant branching types. Cut-off value of 3 cm for TFT length was proposed in order to subclassify type I-A. Our study cohort presents a higher incidence of popliteal artery branching variations. Some branching variations might have effect on the involvement pattern of the infrapopliteal arteries by PAD. We propose a subclassification for type I-A; type I-A-S (TFT < 3 cm) and type I-A-L (TFT ≥ 3 cm) which might have impact on interventional procedures.

  12. Command and Data Handling Branch Internship

    NASA Technical Reports Server (NTRS)

    Billings, Rachel Mae

    2016-01-01

    planes, layer stacks, and other specified design rules such as plane clearance and hole size. Multiple consultation sessions were held with Hester Yim, the technical discipline lead for the Command and Data Handling Branch, and Christy Herring, the lead PCB layout designer in the Electronic Design and Manufacturing Branch in order to ensure proper configuration. At themoment, the PCB is awaiting revision by the latter-mentioned branch. Afterwards, the board will begin to undergo the manufacturing and testing process.Throughout the internship at Johnson Space Center, I gained several technical and professional skills. I gained proficiency in Altium Designer and experience using subversion clients, as well as knowledge in PSpice with OrCAD and battery design for spaceflight from on-site. I also gained networking, organization, and communication skills throughout meetings with coworkers and other interns. This internship at Johnson Space Center has impacted my future aspirations by further inspiring me to follow a career path into space rated engineering technology and human spaceflight applications. After graduation, I plan to attend graduate school for a master's or doctorate degree in electrical or computer engineering.

  13. Evaluation and Influence of Brachiocephalic Branch Re-entry in Patients With Type A Acute Aortic Dissection.

    PubMed

    Yasuda, Shota; Imoto, Kiyotaka; Uchida, Keiji; Karube, Norihisa; Minami, Tomoyuki; Goda, Motohiko; Suzuki, Shinichi; Masuda, Munetaka

    2016-12-22

    Stanford type A acute aortic dissection (A-AAD) extends to the brachiocephalic branches in some patients. After ascending aortic replacement, a remaining re-entry tear in the distal brachiocephalic branches may act as an entry and result in a patent false lumen in the aortic arch. However, the effect of brachiocephalic branch re-entry concomitant with A-AAD remains unknown.Methods and Results:Eighty-five patients with A-AAD who underwent ascending aortic replacement in which both preoperative and postoperative multiple-detector computed tomography (MDCT) scans could be evaluated were retrospectively studied. The presence of a patent false lumen in at least one of the brachiocephalic branches on preoperative MDCT was defined as brachiocephalic branch re-entry, and 41 patients (48%) had this. Postoperatively, 47 of 85 (55%) patients had a patent false lumen in the aortic arch. False lumen remained patent after operation in 34 out of the 41 (83%) patients with brachiocephalic branch re-entry, as compared to that in 13 of the 44 (30%) patients without such re-entry (P<0.001). Brachiocephalic branch re-entry was a significant risk factor for a late increase in the aortic arch diameter greater than 10 mm (P=0.047). Brachiocephalic branch re-entry in patients with A-AAD is related to a patent false lumen in the aortic arch early after ascending aortic replacement and is a risk factor for late aortic arch enlargement.

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  15. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2005-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  16. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2006-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  17. Model-based branching point detection in single-cell data by K-branches clustering

    PubMed Central

    Chlis, Nikolaos K.; Wolf, F. Alexander; Theis, Fabian J.

    2017-01-01

    Abstract Motivation The identification of heterogeneities in cell populations by utilizing single-cell technologies such as single-cell RNA-Seq, enables inference of cellular development and lineage trees. Several methods have been proposed for such inference from high-dimensional single-cell data. They typically assign each cell to a branch in a differentiation trajectory. However, they commonly assume specific geometries such as tree-like developmental hierarchies and lack statistically sound methods to decide on the number of branching events. Results We present K-Branches, a solution to the above problem by locally fitting half-lines to single-cell data, introducing a clustering algorithm similar to K-Means. These halflines are proxies for branches in the differentiation trajectory of cells. We propose a modified version of the GAP statistic for model selection, in order to decide on the number of lines that best describe the data locally. In this manner, we identify the location and number of subgroups of cells that are associated with branching events and full differentiation, respectively. We evaluate the performance of our method on single-cell RNA-Seq data describing the differentiation of myeloid progenitors during hematopoiesis, single-cell qPCR data of mouse blastocyst development, single-cell qPCR data of human myeloid monocytic leukemia and artificial data. Availability and implementation An R implementation of K-Branches is freely available at https://github.com/theislab/kbranches. Contact fabian.theis@helmholtz-muenchen.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:28582478

  18. Leaf-to-branch scaling of C-gain in field-grown almond trees under different soil moisture regimes.

    PubMed

    Egea, Gregorio; González-Real, María M; Martin-Gorriz, Bernardo; Baille, Alain

    2014-06-01

    Branch/tree-level measurements of carbon (C)-acquisition provide an integration of the physical and biological processes driving the C gain of all individual leaves. Most research dealing with the interacting effects of high-irradiance environments and soil-induced water stress on the C-gain of fruit tree species has focused on leaf-level measurements. The C-gain of both sun-exposed leaves and branches of adult almond trees growing in a semi-arid climate was investigated to determine the respective costs of structural and biochemical/physiological protective mechanisms involved in the behaviour at branch scale. Measurements were performed on well-watered (fully irrigated, FI) and drought-stressed (deficit irrigated, DI) trees. Leaf-to-branch scaling for net CO2 assimilation was quantified by a global scaling factor (fg), defined as the product of two specific scaling factors: (i) a structural scaling factor (fs), determined under well-watered conditions, mainly involving leaf mutual shading; and (ii) a water stress scaling factor (fws,b) involving the limitations in C-acquisition due to soil water deficit. The contribution of structural mechanisms to limiting branch net C-gain was high (mean fs ∼0.33) and close to the projected-to-total leaf area ratio of almond branches (ε = 0.31), while the contribution of water stress mechanisms was moderate (mean fws,b ∼0.85), thus supplying an fg ranging between 0.25 and 0.33 with slightly higher values for FI trees with respect to DI trees. These results suggest that the almond tree (a drought-tolerant species) has acquired mechanisms of defensive strategy (survival) mainly based on a specific branch architectural design. This strategy allows the potential for C-gain to be preserved at branch scale under a large range of soil water deficits. In other words, almond tree branches exhibit an architecture that is suboptimal for C-acquisition under well-watered conditions, but remarkably efficient to counteract the impact

  19. Recruiting Faculty Abroad: Examining Factors That Induced American Faculty to Work at Branch Campuses in Qatar's Education City

    ERIC Educational Resources Information Center

    Laigo, Reginald H.

    2013-01-01

    This study examines the sustainability of international branch campuses by applying the "faculty migration" framework (Matier, 1988) from faculty recruitment literature to identify the incentives that influenced American faculty to work at branch campuses in Qatar's Education City. The purpose of this study was to determine the specific…

  20. Branched-chain amino acids to tyrosine ratio value as a potential prognostic factor for hepatocellular carcinoma.

    PubMed

    Ishikawa, Toru

    2012-05-07

    The prognosis of hepatocellular carcinoma (HCC) depends on tumor extension as well as hepatic function. Hepatic functional reserve is recognized as a factor affecting survival in the treatment of HCC; the Child-Pugh classification system is the most extensively used method for assessing hepatic functional reserve in patients with chronic liver disease, using serum albumin level to achieve accurate assessment of the status of protein metabolism. However, insufficient attention has been given to the status of amino acid (AA) metabolism in chronic liver disease and HCC. Fischer's ratio is the molar ratio of branched-chain AAs (BCAAs: leucine, valine, isoleucine) to aromatic AAs (phenylalanine, tyrosine) and is important for assessing liver metabolism, hepatic functional reserve and the severity of liver dysfunction. Although this ratio is difficult to determine in clinical situations, BCAAs/tyrosine molar concentration ratio (BTR) has been proposed as a simpler substitute. BTR correlates with various liver function examinations, including markers of hepatic fibrosis, hepatic blood flow and hepatocyte function, and can thus be considered as reflecting the degree of hepatic impairment. This manuscript examines the literature to clarify whether BTR can serve as a prognostic factor for treatment of HCC.

  1. Vegetation survey of PEN Branch wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizesmore » a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.« less

  2. Vegetation survey of PEN Branch wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizesmore » a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.« less

  3. Synthesis and excellent field emission properties of three-dimensional branched GaN nanowire homostructures

    NASA Astrophysics Data System (ADS)

    Li, Enling; Sun, Lihe; Cui, Zhen; Ma, Deming; Shi, Wei; Wang, Xiaolin

    2016-10-01

    Three-dimensional branched GaN nanowire homostructures have been synthesized on the Si substrate via a two-step approach by chemical vapor deposition. Structural characterization reveals that the single crystal GaN nanowire trunks have hexagonal wurtzite characteristics and grow along the [0001] direction, while the homoepitaxial single crystal branches grow in a radial direction from the six-sided surfaces of the trunks. The field emission measurements demonstrate that the branched GaN nanowire homostructures have excellent field emission properties, with low turn-on field at 2.35 V/μm, a high field enhancement factor of 2938, and long emission current stability. This indicates that the present branched GaN nanowire homostructures will become valuable for practical field emission applications.

  4. A systematic literature review of engineering identity: definitions, factors, and interventions affecting development, and means of measurement

    NASA Astrophysics Data System (ADS)

    Morelock, John R.

    2017-11-01

    Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity development, (c) interventions affecting engineering identity development, and (d) means of measuring identity. In doing so, this review provides strategies for future research and educational interventions to advance work related to engineering identity. Publications were selected for inclusion by screening and appraising results obtained from databases and keywords refined through a scoping study. Derived from key findings, suggestions for future research include bridging disparate strands of engineering identity literature and incorporating more varied methodological approaches. Also from key findings, suggestions for future practice involve better connecting existing definitions of engineering identity and factors known to affect identity development with identity-related interventions.

  5. Aircraft Maintenance Engineering: Factors Impacting Airlines E-Maintenance Technologies, Authoring and Illustrations

    NASA Astrophysics Data System (ADS)

    Karayianes, Frank

    The purpose of this research was to evaluate factors influencing acceptance and use of technologies in the field of aircraft maintenance authoring, graphics, and documentation. Maintenance engineering authors convert complex engineering used in aircraft production and transform that data using technology (tools) into usable technical publications data. While the current literature includes a large volume of research in technology acceptance in various domains of industry and business, the problem is that no such studies exist with respect to the aircraft maintenance engineering authoring, allowing any number of tools to be used and acceptance to be unsure. The study was based on theoretical approaches of the Technology Acceptance Model and the associated hypothesis related to eight research questions. A survey questionnaire was developed for data collection from a selected population of aircraft maintenance engineering authors. Data collected from 148 responses were exposed to a range of statistical methods and analyses. Analysis of data were performed within the structural equation model using exploratory factor analysis, confirmatory factor analysis, and a range of regression methods. The analyses generally provided results consistent with prior literature. Two survey questions yielded unexpected results contrary to similar studies. The relationship between prior experience and job level did not show a significant relationship with perceived usefulness or perceived ease of use. Other results included the significant relationship between Perceived Usefulness and Perceived Ease of Use with Technology acceptance. Recommendations include understanding how Technology Acceptance can be improved for the industry and the need for further research not covered to refine recommendations for technology acceptance related to the aviation industry.

  6. Acting on Lessons Learned: A NASA Glenn Acoustics Branch Perspective

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2008-01-01

    Lessons learned from the International Space Station have indicated that early attention to acoustics will be key to achieving safer, more productive environments for new long duration missions. Fans are known to be dominant noise sources, and reducing fan noise poses challenges for fan manufacturers and systems engineers. The NASA Glenn Acoustics Branch has considered ways in which expertise and capabilities traditionally used to understand and mitigate aircraft engine noise can be used to address small fan noise issues in Exploration and Information Technology applications. Many could benefit if NASA can capture what is known about small fan aero and acoustic performance in a "Guide for the Design, Selection, and Installation of Fans for Spaceflight Applications." A draft outline for this document will be offered as a useful starting point for brainstorming ideas for the various smaller, near-term research projects that would need to be addressed first.

  7. Human Factors Engineering. Part 2. HEDGE (Human Factors Engineering Data Guide for Evaluation)

    DTIC Science & Technology

    1983-11-30

    Use.Condit ions 0 7ý est Item ComoentsTask Categories EPurposes 2 ;c . INDEX TO THE INDEX MAN/ITEM TASK SHEET DETAILED DESIGN CONSIDERATION The purpose of...The use of these materials, in addition to standard Task and Design Checklists and Questionnaires, will enable you to tailor your FIFE subtest to a...specific Con item. The These materials have been prepared especially for you: I. They are intended to support test engineers not design engineers. 2

  8. Cambial activity in dry and rainy season on branches from woody species growing in Brazilian Cerrado

    Treesearch

    Carmen R. Marcati; Silvia R. Machado; Diego Sotto Podadera; Natalia O. Totti de Lara; Fabio Bosio; Alex C. Wiedenhoeft

    2016-01-01

    Seasonal cambial activity was investigated in one- to three-year-old branch modules (branch constructional units) of ten woody species from cerrado sensu stricto, a savanna-like ecosystem, of southernBrazil. Relationships between cambial activity and environmental factors (precipitation, temperature,day length) and leaf production were tested using...

  9. Structural dynamics branch research and accomplishments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.

  10. Dependency of branch diameter growth in young Acer trees on light availability and shoot elongation.

    PubMed

    Sone, Kosei; Noguchi, Ko; Terashima, Ichiro

    2005-01-01

    Many biomechanical and theoretical studies have been based on the pipe-model theory, according to which a tree is regarded as an assemblage of pipes, each having the same amount of leaf area or leaf mass. However, the physiological mechanisms underlying the theory have not been extensively examined, particularly at the branch level. We analyzed how branches and trunks thickened in nine young Acer mono Maxim. var. marmoratum (Nichols) Hara f. dissectum (Wesmael) Rehder. and A. rufinerve (Siebold & Zucc.) trees. In particular, we examined the roles of light, allocation of photosynthates and shoot heterogeneity. The cross-sectional area (A) of a branch was proportional to cumulative leaf mass or leaf area of the branch, and cumulative cross-sectional area of the daughter branches (SigmaA) above a branching point was equal to the A of the mother branch. These results indicate the validity of the pipe-model theory. However, the theory was invalid for current-year growth of branch cross-sectional area (DeltaA). The DeltaA/SigmaDeltaA for a branching point was greatest (nearly equal to 1) at the crown surface, decreased with crown depth, and tended to increase again at the trunk base, and DeltaA strongly depended on light interception and the yearly increment of leaves on the branch. We examined factors that influenced DeltaA with multiple regression analysis. The ratio of DeltaA of a branch to branch leaf area depended on both relative irradiance and mean current-year shoot length of the branch, suggesting that diameter growth of a branch is determined by the balance between supply of photosynthates, which depends on light interception by the branch, and demand for photosynthates, which is created by the high cambial activity associated with vigorous shoot elongation.

  11. Research program of the Geodynamics Branch

    NASA Technical Reports Server (NTRS)

    Kahn, W. D. (Editor); Cohen, S. C. (Editor); Boccucci, B. S. (Editor)

    1986-01-01

    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members.

  12. [Branches of the National Institute of Hygiene].

    PubMed

    Gromulska, Marta

    2008-01-01

    National Epidemiological Institute (National Institute of Hygiene, from 7th September 1923) was established in 1918 in Warsaw and acted at national level. Its actions in the field of diseases combat were supported by bacteriological stations and vaccine production in voivodeship cities, which were taken charge of by the state, and names "National Epidemiological Institutes". According to the ministers resolution from 6th July 1921,Epidemiological Institutes were merged to National Central Epidemiological Institutes (PZH), the epidemiological institutes outside Warsaw were named branches, which were to be located in every voivodeship city, according to the initial organizational resolutions. There were country branches of NCEI in: Cracow, Lwów, Lódź, Toruń, Lublin, and Wilno in the period 1919-1923. New branches in Poznań (1925), Gdynia(1934), Katowice (Voivodeship Institute of Hygiene (1936), Luck (1937), Stanisławów (1937), Kielce(1938), and Brześć/Bug (Municipal Station acting as branch of National Central Epidemiological Institute. Branches were subordinated to NCEI-PZH) in Warsaw where action plans and unified research and diagnostic method were established and annual meeting of the country branches managers took place. All branches cooperated with hospitals, national health services, district general practitioners and administration structure in control of infectious diseases. In 1938, the post of branch inspector was established, the first of whom was Feliks Przesmycki PhD. Branches cooperated also with University of Cracow, University of Lwów and University of Wilno. In 1935, National Institutes of Food Research was incorporated in PZH, Water Department was established, and these areas of activity began to develop in the branches accordingly. In 1938 there were 13 branches of PZH, and each had three divisions: bacteriological, food research and water research. Three branches in Cracow, Kielce and Lublin worked during World War II under German

  13. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    PubMed

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  14. 30 CFR 56.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Electric Blasting § 56.6403 Branch circuits. (a) If electric blasting includes the use of branch circuits, each... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 56.6403 Section 56.6403...

  15. 17 CFR 166.4 - Branch offices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Branch offices. 166.4 Section 166.4 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION CUSTOMER PROTECTION RULES § 166.4 Branch offices. Each branch office of each Commission registrant must use the name of the...

  16. Branch Input Resistance and Steady Attenuation for Input to One Branch of a Dendritic Neuron Model

    PubMed Central

    Rall, Wilfrid; Rinzel, John

    1973-01-01

    Mathematical solutions and numerical illustrations are presented for the steady-state distribution of membrane potential in an extensively branched neuron model, when steady electric current is injected into only one dendritic branch. Explicit expressions are obtained for input resistance at the branch input site and for voltage attenuation from the input site to the soma; expressions for AC steady-state input impedance and attenuation are also presented. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. Numerical examples illustrate how branch input resistance and steady attenuation depend upon the following: the number of dendritic trees, the orders of dendritic branching, the electrotonic length of the dendritic trees, the location of the dendritic input site, and the input resistance at the soma. The application to cat spinal motoneurons, and to other neuron types, is discussed. The effect of a large dendritic input resistance upon the amount of local membrane depolarization at the synaptic site, and upon the amount of depolarization reaching the soma, is illustrated and discussed; simple proportionality with input resistance does not hold, in general. Also, branch input resistance is shown to exceed the input resistance at the soma by an amount that is always less than the sum of core resistances along the path from the input site to the soma. PMID:4715583

  17. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2012-07-01 2012-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  18. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2013-07-01 2013-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  19. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2014-07-01 2014-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  20. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2011-07-01 2011-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  1. 39 CFR 241.2 - Stations and branches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... number, letter or name. As a general rule, branches are named. (2) Stations and branches transact... 39 Postal Service 1 2010-07-01 2010-07-01 false Stations and branches. 241.2 Section 241.2 Postal... DISCONTINUANCE § 241.2 Stations and branches. (a) Description. (1) Stations are established within the corporate...

  2. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGES

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  3. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  4. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  5. 7 CFR 51.578 - Branch.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...

  6. 7 CFR 51.578 - Branch.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Celery Definitions § 51.578 Branch. Branch means the leaf of a stalk and consists of the edible stem-like portion and the tops or leaf blades. ...

  7. 12 CFR 545.92 - Branch offices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Branch offices. 545.92 Section 545.92 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FEDERAL SAVINGS ASSOCIATIONS-OPERATIONS § 545.92 Branch offices. (a) Definition. A branch office of a Federal savings association (“you”) is any...

  8. A Systematic Literature Review of Engineering Identity: Definitions, Factors, and Interventions Affecting Development, and Means of Measurement

    ERIC Educational Resources Information Center

    Morelock, John R.

    2017-01-01

    Studies exploring what it means to be an engineer professionally have been conducted for decades, but have boomed in recent years. This systematic literature review aims to organise extant studies on engineering identity by coding around four key variables: (a) definitions of engineering identity, (b) factors affecting engineering identity…

  9. Coupling growth-factor engineering with nanotechnology for therapeutic angiogenesis.

    PubMed

    Sinha Roy, Rituparna; Soni, Shivani; Harfouche, Rania; Vasudevan, Pooja R; Holmes, Oliver; de Jonge, Hugo; Rowe, Arthur; Paraskar, Abhimanyu; Hentschel, Dirk M; Chirgadze, Dimitri; Blundell, Tom L; Gherardi, Ermanno; Mashelkar, Raghunath A; Sengupta, Shiladitya

    2010-08-03

    Therapeutic angiogenesis is an emerging paradigm for the management of ischemic pathologies. Proangiogenic Therapy is limited, however, by the current inability to deliver angiogenic factors in a sustained manner at the site of pathology. In this study, we investigated a unique nonglycosylated active fragment of hepatocyte growth factor/scatter factor, 1K1, which acts as a potent angiogenic agent in vitro and in a zebrafish embryo and a murine matrigel implant model. Furthermore, we demonstrate that nanoformulating 1K1 for sustained release temporally alters downstream signaling through the mitogen activated protein kinase pathway, and amplifies the angiogenic outcome. Merging protein engineering and nanotechnology offers exciting possibilities for the treatment of ischemic disease, and furthermore allows the selective targeting of downstream signaling pathways, which translates into discrete phenotypes.

  10. Engineering Margin Factors Used in the Design of the VVER Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Lizorkin, M. P.; Shishkov, L. K.

    2017-12-01

    The article describes methods for determination of the engineering margin factors currently used to estimate the uncertainties of the VVER reactor design parameters calculated via the KASKAD software package developed at the National Research Center Kurchatov Institute. These margin factors ensure the meeting of the operating (design) limits and a number of other restrictions under normal operating conditions.

  11. Turing mechanism underlying a branching model for lung morphogenesis.

    PubMed

    Xu, Hui; Sun, Mingzhu; Zhao, Xin

    2017-01-01

    The mammalian lung develops through branching morphogenesis. Two primary forms of branching, which occur in order, in the lung have been identified: tip bifurcation and side branching. However, the mechanisms of lung branching morphogenesis remain to be explored. In our previous study, a biological mechanism was presented for lung branching pattern formation through a branching model. Here, we provide a mathematical mechanism underlying the branching patterns. By decoupling the branching model, we demonstrated the existence of Turing instability. We performed Turing instability analysis to reveal the mathematical mechanism of the branching patterns. Our simulation results show that the Turing patterns underlying the branching patterns are spot patterns that exhibit high local morphogen concentration. The high local morphogen concentration induces the growth of branching. Furthermore, we found that the sparse spot patterns underlie the tip bifurcation patterns, while the dense spot patterns underlies the side branching patterns. The dispersion relation analysis shows that the Turing wavelength affects the branching structure. As the wavelength decreases, the spot patterns change from sparse to dense, the rate of tip bifurcation decreases and side branching eventually occurs instead. In the process of transformation, there may exists hybrid branching that mixes tip bifurcation and side branching. Since experimental studies have reported that branching mode switching from side branching to tip bifurcation in the lung is under genetic control, our simulation results suggest that genes control the switch of the branching mode by regulating the Turing wavelength. Our results provide a novel insight into and understanding of the formation of branching patterns in the lung and other biological systems.

  12. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus.

    PubMed

    Surger, Maximilian J; Angelov, Angel; Stier, Philipp; Übelacker, Maria; Liebl, Wolfgang

    2018-01-01

    Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus , whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus . We also show how

  13. Human Modeling for Ground Processing Human Factors Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  14. Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization

    PubMed Central

    Smith, Cody J.; O’Brien, Timothy; Chatzigeorgiou, Marios; Spencer, W. Clay; Feingold-Link, Elana; Husson, Steven J.; Hori, Sayaka; Mitani, Shohei; Gottschalk, Alexander; Schafer, William R.; Miller, David M.

    2013-01-01

    SUMMARY Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals. PMID:23889932

  15. 2014 Space Human Factors Engineering Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    The 2014 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Human Factors and Habitability (SHFH) Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 17, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated research plans for the Risk of Incompatible Vehicle/Habitat Design (HAB Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP also received a status update on the Risk of Inadequate Critical Task Design (Task Risk), the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), and the Risk of Inadequate Human-Computer Interaction (HCI Risk).

  16. Artificial Intelligence Research Branch future plans

    NASA Technical Reports Server (NTRS)

    Stewart, Helen (Editor)

    1992-01-01

    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.

  17. Guide to the Seattle Archives Branch.

    ERIC Educational Resources Information Center

    Hobbs, Richard, Comp.

    The guide presents an overview of the textual and microfilmed records located at the Seattle Branch of the National Archives of the United States. Established in 1969, the Seattle Archives Branch is one of 11 branches which preserve and make available for research those U.S. Government records of permanent value created and maintained by Federal…

  18. The Effects of a Branch Campus

    ERIC Educational Resources Information Center

    Lien, Donald; Wang, Yaqin

    2012-01-01

    We examine the effects of a branch campus on the social welfare of the host country and the foreign university. Overall, we find that a branch campus increases both the domestic social welfare (measured by the aggregate student utility) and the tuition revenue of the foreign university. The effect of a branch campus on the brain drain is…

  19. Dynamic Crack Branching - A Photoelastic Evaluation,

    DTIC Science & Technology

    1982-05-01

    0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD

  20. Modified parton branching model for multi-particle production in hadronic collisions: Application to SUSY particle branching

    NASA Astrophysics Data System (ADS)

    Yuanyuan, Zhang

    The stochastic branching model of multi-particle productions in high energy collision has theoretical basis in perturbative QCD, and also successfully describes the experimental data for a wide energy range. However, over the years, little attention has been put on the branching model for supersymmetric (SUSY) particles. In this thesis, a stochastic branching model has been built to describe the pure supersymmetric particle jets evolution. This model is a modified two-phase stochastic branching process, or more precisely a two phase Simple Birth Process plus Poisson Process. The general case that the jets contain both ordinary particle jets and supersymmetric particle jets has also been investigated. We get the multiplicity distribution of the general case, which contains a Hypergeometric function in its expression. We apply this new multiplicity distribution to the current experimental data of pp collision at center of mass energy √s = 0.9, 2.36, 7 TeV. The fitting shows the supersymmetric particles haven't participate branching at current collision energy.

  1. New branched DNA constructs.

    PubMed

    Chandra, Madhavaiah; Keller, Sascha; Gloeckner, Christian; Bornemann, Benjamin; Marx, Andreas

    2007-01-01

    The Watson-Crick base pairing of DNA is an advantageous phenomenon that can be exploited when using DNA as a scaffold for directed self-organization of nanometer-sized objects. Several reports have appeared in the literature that describe the generation of branched DNA (bDNA) with variable numbers of arms that self-assembles into predesigned architectures. These bDNA units are generated by using cleverly designed rigid crossover DNA molecules. Alternatively, bDNA can be generated by using synthetic branch points derived from either nucleoside or non-nucleoside building blocks. Branched DNA has scarcely been explored for use in nanotechnology or from self-assembling perspectives. Herein, we wish to report our results for the synthesis, characterization, and assembling properties of asymmetrical bDNA molecules that are able to generate linear and circular bDNA constructs. Our strategy for the generation of bDNA is based on a branching point that makes use of a novel protecting-group strategy. The bDNA units were generated by means of automated DNA synthesis methods and were used to generate novel objects by employing chemical and biological techniques. The entities generated might be useful building blocks for DNA-based nanobiotechnology.

  2. 75 FR 14643 - Office of New Reactors; Proposed Standard Review Plan, Branch Technical Position 7-19 on Guidance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ... electronic form, will be posted on the NRC Web site and on the Federal rulemaking Web site http://www... that they do not want publicly disclosed. Federal Rulemaking Web site: Go to http://www.regulations.gov... CONTACT: Mr. Ian C. Jung, Chief, Instrumentation, Controls and Electrical Engineering Branch 2, Division...

  3. Software Engineering Improvement Plan

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In performance of this task order, bd Systems personnel provided support to the Flight Software Branch and the Software Working Group through multiple tasks related to software engineering improvement and to activities of the independent Technical Authority (iTA) Discipline Technical Warrant Holder (DTWH) for software engineering. To ensure that the products, comments, and recommendations complied with customer requirements and the statement of work, bd Systems personnel maintained close coordination with the customer. These personnel performed work in areas such as update of agency requirements and directives database, software effort estimation, software problem reports, a web-based process asset library, miscellaneous documentation review, software system requirements, issue tracking software survey, systems engineering NPR, and project-related reviews. This report contains a summary of the work performed and the accomplishments in each of these areas.

  4. Exhaust gas recirculation system for an internal combustion engine

    DOEpatents

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  5. Sequential recognition of the pre-mRNA branch point by U2AF65 and a novel spliceosome-associated 28-kDa protein.

    PubMed Central

    Gaur, R K; Valcárcel, J; Green, M R

    1995-01-01

    Splicing of pre-mRNAs occurs via a lariat intermediate in which an intronic adenosine, embedded within a branch point sequence, forms a 2',5'-phosphodiester bond (RNA branch) with the 5' end of the intron. How the branch point is recognized and activated remains largely unknown. Using site-specific photochemical cross-linking, we have identified two proteins that specifically interact with the branch point during the splicing reaction. U2AF65, an essential splicing factor that binds to the adjacent polypyrimidine tract, crosslinks to the branch point at the earliest stage of spliceosome formation in an ATP-independent manner. A novel 28-kDa protein, which is a constituent of the mature spliceosome, contacts the branch point after the first catalytic step. Our results indicate that the branch point is sequentially recognized by distinct splicing factors in the course of the splicing reaction. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 PMID:7493318

  6. A New Method to Measure Temperature and Burner Pattern Factor Sensing for Active Engine Control

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    The determination of the temperatures of extended surfaces which exhibit non-uniform temperature variation is very important for a number of applications including the "Burner Pattern Factor" (BPF) of turbine engines. Exploratory work has shown that use of BPF to control engine functions can result in many benefits, among them reduction in engine weight, reduction in operating cost, increase in engine life, while attaining maximum engine efficiency. Advanced engines are expected to operate at very high temperature to achieve high efficiency. Brief exposure of engine components to higher than design temperatures due to non-uniformity in engine burner pattern can reduce engine life. The engine BPF is a measure of engine temperature uniformity. Attainment of maximum temperature uniformity and high temperatures is key to maximum efficiency and long life. A new approach to determine through the measurement of just one radiation spectrum by a multiwavelength pyrometer is possible. This paper discusses a new temperature sensing approach and its application to determine the BPF.

  7. Study of the various factors influencing deposit formation and operation of gasoline engine injection systems

    NASA Astrophysics Data System (ADS)

    Stepien, Z.

    2016-09-01

    Generally, ethanol fuel emits less pollutants than gasoline, it is completely renewable product and has the potential to reduce greenhouse gases emission but, at the same time can present a multitude of technical challenges to engine operation conditions including creation of very adverse engine deposits. These deposits increasing fuel consumption and cause higher exhaust emissions as well as poor performance in drivability. This paper describes results of research and determination the various factors influencing injector deposits build-up of ethanol-gasoline blends operated engine. The relationship between ethanol-gasoline fuel blends composition, their treatment, engine construction as well as its operation conditions and fuel injectors deposit formation has been investigated. Simulation studies of the deposit formation endanger proper functioning of fuel injection system were carried out at dynamometer engine testing. As a result various, important factors influencing the deposit creation process and speed formation were determined. The ability to control of injector deposits by multifunctional detergent-dispersant additives package fit for ethanol-gasoline blends requirements was also investigated.

  8. Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models

    PubMed Central

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065

  9. Tree branching: Leonardo da Vinci's rule versus biomechanical models.

    PubMed

    Minamino, Ryoko; Tateno, Masaki

    2014-01-01

    This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.

  10. Fatigue and Fracture Branch: A compendium of recently completed and on-going research projects

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1984-01-01

    This compendium of recently completed and ongoing research projects from the Fatigue and Fracture Branch at NASA Langley Research Center provides technical descriptions and key results of all such projects expected to lead to publication of significant findings. The common thread to all these studies is the application of fracture mechanics analyses to engineering problems in metals and composites, with particular emphasis on airframe structural materials. References to recent publications are included where appropriate.

  11. Differential Activity of Striga hermonthica Seed Germination Stimulants and Gigaspora rosea Hyphal Branching Factors in Rice and Their Contribution to Underground Communication

    PubMed Central

    Cardoso, Catarina; Charnikhova, Tatsiana; Jamil, Muhammad; Delaux, Pierre-Marc; Verstappen, Francel; Amini, Maryam; Lauressergues, Dominique; Ruyter-Spira, Carolien; Bouwmeester, Harro

    2014-01-01

    Strigolactones (SLs) trigger germination of parasitic plant seeds and hyphal branching of symbiotic arbuscular mycorrhizal (AM) fungi. There is extensive structural variation in SLs and plants usually produce blends of different SLs. The structural variation among natural SLs has been shown to impact their biological activity as hyphal branching and parasitic plant seed germination stimulants. In this study, rice root exudates were fractioned by HPLC. The resulting fractions were analyzed by MRM-LC-MS to investigate the presence of SLs and tested using bioassays to assess their Striga hermonthica seed germination and Gigaspora rosea hyphal branching stimulatory activities. A substantial number of active fractions were revealed often with very different effect on seed germination and hyphal branching. Fractions containing (−)−orobanchol and ent-2'-epi-5-deoxystrigol contributed little to the induction of S. hermonthica seed germination but strongly stimulated AM fungal hyphal branching. Three SLs in one fraction, putative methoxy-5-deoxystrigol isomers, had moderate seed germination and hyphal branching inducing activity. Two fractions contained strong germination stimulants but displayed only modest hyphal branching activity. We provide evidence that these stimulants are likely SLs although no SL-representative masses could be detected using MRM-LC-MS. Our results show that seed germination and hyphal branching are induced to very different extents by the various SLs (or other stimulants) present in rice root exudates. We propose that the development of rice varieties with different SL composition is a promising strategy to reduce parasitic plant infestation while maintaining symbiosis with AM fungi. PMID:25126953

  12. ETO - ENGINEERING TRADE-OFFS (SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The ETO - Engineering Trade-Offs program is to develop a new, integrated decision-making approach to compare/contrast two or more states of being: a benchmark and an alternative, a change in a production process, alternative processes or products. ETO highlights the difference in...

  13. Additional chain-branching pathways in the low-temperature oxidation of branched alkanes

    DOE PAGES

    Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; ...

    2015-12-31

    Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS).more » Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C 8H 14O 4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C 8H 16O 5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C 8H 16O 5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O 2 addition, intramolecular isomerization, and OH release; C 8H 14O 4 species are proposed to result from subsequent reactions of C 8H 16O 5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.« less

  14. First-year engineering students' views of the nature of engineering

    NASA Astrophysics Data System (ADS)

    Karatas, Faik O.

    The changing nature of engineering problems and new challenges that result from globalization and new ways of doing business have triggered calls for a revolutionary shift in engineering education. To respond to these challenges, the engineering education paradigm has been revised by adding more design and humanities/social sciences components to it. Philosophy, sociology, and history of engineering are more often cited as a major part of engineering education in this movement. Research on the nature of engineering (NOE), which is derived from philosophy, sociology, and the history of engineering, could have as much potential impact on engineering education as research on the nature of science (NOS) has had on science education. Thus, it is surprising that there has been no noteworthy research on this topic. The purpose of this study is to describe and determine first-year engineering students' views of the NOE and how these students differentiate engineering from science. In this research, an open-ended Views of the Nature of Engineering questionnaire (VNOE) was employed to collect baseline data. Semi-structured interviews based on the VNOE questionnaire were conducted with the second cohort of the participants. Data analysis was guided by a traditional phenomenographic approach, which is a branch of the hermeneutic tradition, coupled to constant comparison technique. The results of this study indicated that the participants' overall views of the nature of engineering were not ill-developed, but rather unarticulated. Moreover, the relationship between engineering and science was considered unidirectional rather than bidirectional. The results of this study could be used to inform engineering educators, first-year engineering coordinators, and policy makers as well as serving as the base for further research and potential implications for future first-year and K-12 engineering education.

  15. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.

    PubMed

    Chen, Xiaoyan; Xu, Jingliang; Yang, Liu; Yuan, Zhenhong; Xiao, Shiyuan; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2015-11-01

    Higher alcohols, longer chain alcohols, contain more than 3 carbon atoms, showed close energy advantages as gasoline, and were considered as the next generation substitution for chemical fuels. Higher alcohol biosynthesis by native microorganisms mainly needs gene expression of heterologous keto acid decarboxylase and alcohol dehydrogenases. In the present study, branched-chain α-keto acid decarboxylase gene from Lactococcus lactis subsp. lactis CICC 6246 (Kivd) and alcohol dehydrogenases gene from Zymomonas mobilis CICC 41465 (AdhB) were transformed into Escherichia coli for higher alcohol production. SDS-PAGE results showed these two proteins were expressed in the recombinant strains. The resulting strain was incubated in LB medium at 37 °C in Erlenmeyer flasks and much more 3-methyl-1-butanol (104 mg/L) than isobutanol (24 mg/L) was produced. However, in 5 g/L glucose-containing medium, the production of two alcohols was similar, 156 and 161 mg/L for C4 (isobutanol) and C5 (3-methyl-1-butanol) alcohol, respectively. Effects of fermentation factors including temperature, glucose content, and α-keto acid on alcohol production were also investigated. The increase of glucose content and the adding of α-keto acids facilitated the production of C4 and C5 alcohols. The enzyme activities of pure Kivd on α-ketoisovalerate and α-ketoisocaproate were 26.77 and 21.24 μmol min(-1) mg(-1), respectively. Due to its ability on decarboxylation of α-ketoisovalerate and α-ketoisocaproate, the recombinant E. coli strain showed potential application on isoamyl alcohol and isobutanol production.

  16. Branch Width and Height Influence the Incorporation of Branches into Foraging Trails and Travel Speed in Leafcutter Ants Atta cephalotes (L.) (Hymenoptera: Formicidae).

    PubMed

    Freeman, B M; Chaves-Campos, J

    2016-06-01

    Fallen branches are often incorporated into Atta cephalotes (L.) foraging trails to optimize leaf tissue transport rates and economize trail maintenance. Recent studies in lowlands show laden A. cephalotes travel faster across fallen branches than on ground, but more slowly ascending or descending a branch. The latter is likely because (1) it is difficult to travel up or downhill and (2) bottlenecks occur when branches are narrower than preceding trail. Hence, both branch height and width should determine whether branches decrease net travel times, but no study has evaluated it yet. Laden A. cephalotes were timed in relation to branch width and height across segments preceding, accessing, across, and departing a fallen branch in the highlands of Costa Rica. Ants traveled faster on branches than on cleared segments of trunk-trail, but accelerated when ascending or descending the branch-likely because of the absence of bottlenecks during the day in the highlands. Branch size did not affect ant speed in observed branches; the majority of which (22/24) varied from 11 to 120 mm in both height and width (average 66 mm in both cases). To determine whether ants exclude branches outside this range, ants were offered the choice between branches within this range and branches that were taller/wider than 120 mm. Ants strongly preferred the former. Our results indicate that A. cephalotes can adjust their speed to compensate for the difficulty of traveling on branch slopes. More generally, branch size should be considered when studying ant foraging efficiency.

  17. Nervous branch passing through an accessory canal in the sphenozygomatic suture: the temporal branch of the zygomatic nerve.

    PubMed

    Akita, K; Shimokawa, T; Tsunoda, A; Sato, T

    2002-05-01

    A nervous branch which passes through a small canal in the sphenozygomatic suture is sometimes observed during dissection. To examine the origin, course and distribution of this nervous branch, 42 head halves of 21 Japanese cadavers (11 males, 10 females) and 142 head halves of 71 human dry skulls were used. The branch was observed in seven sides (16.7%); it originated from the communication between the lacrimal nerve and the zygomaticotemporal branch of the zygomatic nerve or from the trunk of the zygomatic nerve. In two head halves (4.8%), the branch pierced the anterior part of the temporalis muscle during its course to the skin of the anterior part of the temple. The small canal in the suture was observed in 31 head halves (21.8%) of the dry skulls. Although this nervous branch is inconstantly observed, it should be called the temporal branch of the zygomatic nerve according to the constant positional relationship to the sphenoid and zygomatic bones. According to its origin, course and distribution, this nervous branch may be considered to be influential in zygomatic and retro-orbital pain due to entrapment and tension from the temporalis muscle and/or the narrow bony canal. The French version of this article is available in the form of electronic supplementary material and can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00276-002-0027-4.

  18. Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport

    NASA Astrophysics Data System (ADS)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2017-01-01

    Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.

  19. Application of fault factor method to fault detection and diagnosis for space shuttle main engine

    NASA Astrophysics Data System (ADS)

    Cha, Jihyoung; Ha, Chulsu; Ko, Sangho; Koo, Jaye

    2016-09-01

    This paper deals with an application of the multiple linear regression algorithm to fault detection and diagnosis for the space shuttle main engine (SSME) during a steady state. In order to develop the algorithm, the energy balance equations, which balances the relation among pressure, mass flow rate and power at various locations within the SSME, are obtained. Then using the measurement data of some important parameters of the engine, fault factors which reflects the deviation of each equation from the normal state are estimated. The probable location of each fault and the levels of severity can be obtained from the estimated fault factors. This process is numerically demonstrated for the SSME at 104% Rated Propulsion Level (RPL) by using the simulated measurement data from the mathematical models of the engine. The result of the current study is particularly important considering that the recently developed reusable Liquid Rocket Engines (LREs) have staged-combustion cycles similarly to the SSME.

  20. A Branch Meeting in Avon

    ERIC Educational Resources Information Center

    Vaughan, Kathryn; Coles, Alf

    2011-01-01

    The Association of Teachers of Mathematics (ATM) exists for, and is run by, its members. Branch meetings are so much more than the "grass roots" of the association--it can be a powerhouse of inspiration and creativity. In this article, the authors provide commentaries on a recent branch meeting.

  1. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments.

    PubMed

    Hagerty, Paul; Lee, Ann; Calve, Sarah; Lee, Cassandra A; Vidal, Martin; Baar, Keith

    2012-09-01

    Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Investigation of a method for repairing the hot gas system branch 2 of the Symphonie-Satellite MV2 in orbit

    NASA Technical Reports Server (NTRS)

    Braun, H.

    1981-01-01

    The failure of all engines on the Symphonie MV2 satellite is attributed to blockage of the oxidizer branch caused by metal salts precipitating and forming a gel which constricts the narrow passage. Laboratory tests and other simulations conducted to observe the behavior of artificially produced jellies on a vacuum show that a removal or at least a reduction of the blockage in the oxidizer branch is possible by evacuation. The greatest blockage appears to occur in the filter. This fact restricts the capability to perform repairs in orbit because the filter installed ahead of the valve cannot by subjected to a vacuum.

  3. Wind-Induced Reconfigurations in Flexible Branched Trees

    NASA Astrophysics Data System (ADS)

    Ojo, Oluwafemi; Shoele, Kourosh

    2017-11-01

    Wind induced stresses are the major mechanical cause of failure in trees. We know that the branching mechanism has an important effect on the stress distribution and stability of a tree in the wind. Eloy in PRL 2011, showed that Leonardo da Vinci's original observation which states the total cross section of branches is conserved across branching nodes is the best configuration for resisting wind-induced fracture in rigid trees. However, prediction of the fracture risk and pattern of a tree is also a function of their reconfiguration capabilities and how they mitigate large wind-induced stresses. In this studies through developing an efficient numerical simulation of flexible branched trees, we explore the role of the tree flexibility on the optimal branching. Our results show that the probability of a tree breaking at any point depends on both the cross-section changes in the branching nodes and the level of tree flexibility. It is found that the branching mechanism based on Leonardo da Vinci's original observation leads to a uniform stress distribution over a wide range of flexibilities but the pattern changes for more flexible systems.

  4. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds.

    PubMed

    González-Grandío, Eduardo; Pajoro, Alice; Franco-Zorrilla, José M; Tarancón, Carlos; Immink, Richard G H; Cubas, Pilar

    2017-01-10

    Shoot-branching patterns determine key aspects of plant life and are important targets for crop breeding. However, we are still largely ignorant of the genetic networks controlling locally the most important decision during branch development: whether the axillary bud, or branch primordium, grows out to give a lateral shoot or remains dormant. Here we show that, inside the buds, the TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factor BRANCHED1 (BRC1) binds to and positively regulates the transcription of three related Homeodomain leucine zipper protein (HD-ZIP)-encoding genes: HOMEOBOX PROTEIN 21 (HB21), HOMEOBOX PROTEIN 40 (HB40), and HOMEOBOX PROTEIN 53 (HB53). These three genes, together with BRC1, enhance 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) expression, lead to abscisic acid accumulation, and trigger hormone response, thus causing suppression of bud development. This TCP/HD-ZIP genetic module seems to be conserved in dicot and monocotyledonous species to prevent branching under light-limiting conditions.

  5. Neurophysiology and neural engineering: a review.

    PubMed

    Prochazka, Arthur

    2017-08-01

    Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight. Copyright © 2017 the American Physiological Society.

  6. Melatonin Inhibits Embryonic Salivary Gland Branching Morphogenesis by Regulating Both Epithelial Cell Adhesion and Morphology

    PubMed Central

    Miura, Jiro; Sakai, Manabu; Uchida, Hitoshi; Nakamura, Wataru; Nohara, Kanji; Maruyama, Yusuke; Hattori, Atsuhiko; Sakai, Takayoshi

    2015-01-01

    Many organs, including salivary glands, lung, and kidney, are formed by epithelial branching during embryonic development. Branching morphogenesis occurs via either local outgrowths or the formation of clefts that subdivide epithelia into buds. This process is promoted by various factors, but the mechanism of branching morphogenesis is not fully understood. Here we have defined melatonin as a potential negative regulator or “brake” of branching morphogenesis, shown that the levels of it and its receptors decline when branching morphogenesis begins, and identified the process that it regulates. Melatonin has various physiological functions, including circadian rhythm regulation, free-radical scavenging, and gonadal development. Furthermore, melatonin is present in saliva and may have an important physiological role in the oral cavity. In this study, we found that the melatonin receptor is highly expressed on the acinar epithelium of the embryonic submandibular gland. We also found that exogenous melatonin reduces salivary gland size and inhibits branching morphogenesis. We suggest that this inhibition does not depend on changes in either proliferation or apoptosis, but rather relates to changes in epithelial cell adhesion and morphology. In summary, we have demonstrated a novel function of melatonin in organ formation during embryonic development. PMID:25876057

  7. Dissociation of branched-chain alpha-keto acid dehydrogenase kinase (BDK) from branched-chain alpha-keto acid dehydrogenase complex (BCKDC) by BDK inhibitors.

    PubMed

    Murakami, Taro; Matsuo, Masayuki; Shimizu, Ayako; Shimomura, Yoshiharu

    2005-02-01

    Branched-chain alpha-keto acid dehydrogenase kinase (BDK) phosphorylates and inactivates the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), which is the rate-limiting enzyme in the branched-chain amino acid catabolism. BDK has been believed to be bound to the BCKDC. However, recent our studies demonstrated that protein-protein interaction between BDK and BCKDC is one of the factors to regulate BDK activity. Furthermore, only the bound form of BDK appears to have its activity. In the present study, we examined effects of BDK inhibitors on the amount of BDK bound to the BCKDC using rat liver extracts. The bound form of BDK in the extracts of liver from low protein diet-fed rats was measured by an immunoprecipitation pull down assay with or without BDK inhibitors. Among the BDK inhibitors. alpha-ketoisocaproate, alpha-chloroisocaproate, and a-ketoisovalerate released the BDK from the complex. Furthermore, the releasing effect of these inhibitors on the BDK appeared to depend on their inhibition constants. On the other hand, clofibric acid and thiamine pyrophosphate had no effect on the protein-protein interaction between two enzymes. These results suggest that the dissociation of the BDK from the BCKDC is one of the mechanisms responsible for the action of some inhibitors to BDK.

  8. Olive Tree Branches Burning: A major pollution source in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, Evangelia; Kaltsonoudis, Christos; Tsiflikiotou, Maria; Louvaris, Evangelos; Russell, Lynn; Pandis, Spyros

    2013-04-01

    Olive tree branches burning is a common agricultural waste management practice after the annual pruning of olive trees from November to February. Almost 1 billion (90%) of the olive trees in our planet are located around the Mediterranean, so the corresponding emissions of olive tree branches burning can be a significant source of fine aerosols during the cold months. Organic aerosol produced during the burning of olive tree branches (otBB-OA) was characterized with both direct source-sampling (using a mobile smog chamber) and ambient measurements during the burning season in the area of Patras, Greece. The aerosol emitted consists of organics, black carbon (BC), potassium, chloride, nitrate and sulfate. In addition to NOx, O3, CO and CO2, Volatile Organic Compounds (VOCs) such as methanol, acetonitrile, benzene and toluene were also produced. The Aerosol Mass Spectrometry (AMS) mass spectrum of otBB-OA is characterized by the m-z's27, 29, 39, 41, 43, 44, 55, 57, 67, 69 and 91 and changes as the emissions react with OH and O3. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that otBB-OA was composed of 48% alkane groups, 27% organic hydroxyl groups, 11% carboxylic acid groups, 11% primary amine groups and 4% carbonyl groups. The oxygen to carbon (O:C) ratio is 0.29±0.04. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra. The m-z60, used as levoglucosan tracer, is lower than in most biomass burning sources. This is confirmed by Gas Chromatography Mass Spectroscopy (GC-MS) analysis on filters where the levoglucosan to OC mass ratio was between 0.034 and 0.043, close to the lower limit of the reported values for most fuel types. This may lead to an underestimation of the otBB-OA contribution in Southern Europe if levoglucosan is being used as a wood burning tracer. During the olive tree branches burning season, 20 days of ambient measurements were performed. Applying positive matrix factorization (PMF) to the

  9. A comparison of educational factors promoting or discouraging the intent to remain in engineering by gender

    NASA Astrophysics Data System (ADS)

    Amelink, Catherine T.; Meszaros, Peggy S.

    2011-03-01

    This study seeks to examine key extrinsic and intrinsic factors that encourage or discourage persistence in attaining an engineering degree and pursuing an engineering-related career among both male and female undergraduates. Quantitative and qualitative findings from nine participating undergraduate degree programmes reveal that career expectations formulated through educational experiences as undergraduates play a key role in motivating students. Among females, faculty interaction in the classroom, such as feedback received and the degree to which the faculty treat them with respect, is an important encouraging factor. For both males and females, discouraging elements of the undergraduate experience include the amount of time for coursework, competition in engineering classes and grades. The findings have several practical implications that faculty and administrators can employ in shaping the undergraduate experience to encourage short- and long-term interest in engineering among both male and female students.

  10. Engineering and Software Engineering

    NASA Astrophysics Data System (ADS)

    Jackson, Michael

    The phrase ‘software engineering' has many meanings. One central meaning is the reliable development of dependable computer-based systems, especially those for critical applications. This is not a solved problem. Failures in software development have played a large part in many fatalities and in huge economic losses. While some of these failures may be attributable to programming errors in the narrowest sense—a program's failure to satisfy a given formal specification—there is good reason to think that most of them have other roots. These roots are located in the problem of software engineering rather than in the problem of program correctness. The famous 1968 conference was motivated by the belief that software development should be based on “the types of theoretical foundations and practical disciplines that are traditional in the established branches of engineering.” Yet after forty years of currency the phrase ‘software engineering' still denotes no more than a vague and largely unfulfilled aspiration. Two major causes of this disappointment are immediately clear. First, too many areas of software development are inadequately specialised, and consequently have not developed the repertoires of normal designs that are the indispensable basis of reliable engineering success. Second, the relationship between structural design and formal analytical techniques for software has rarely been one of fruitful synergy: too often it has defined a boundary between competing dogmas, at which mutual distrust and incomprehension deprive both sides of advantages that should be within their grasp. This paper discusses these causes and their effects. Whether the common practice of software development will eventually satisfy the broad aspiration of 1968 is hard to predict; but an understanding of past failure is surely a prerequisite of future success.

  11. Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus

    PubMed Central

    Figueiredo, Ana Sofia; Esser, Dominik; Haferkamp, Patrick; Wieloch, Patricia; Schomburg, Dietmar; Siebers, Bettina; Schaber, Jörg

    2017-01-01

    Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80°C and pH 2–4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel branches, the semi-phosphorylative and the non-phosphorylative. However, the strategy of S.solfataricus to endure in such an extreme environment in terms of robustness and adaptation is not yet completely understood. Here, we present the first dynamic mathematical model of the ED pathway parameterized with quantitative experimental data. These data consist of enzyme activities of the branched pathway at 70°C and 80°C and of metabolomics data at the same temperatures for the wild type and for a metabolic engineered knockout of the semi-phosphorylative branch. We use the validated model to address two questions: 1. Is this system more robust to perturbations at its optimal growth temperature? 2. Is the ED robust to deletion and perturbations? We employed a systems biology approach to answer these questions and to gain further knowledge on the emergent properties of this biological system. Specifically, we applied deterministic and stochastic approaches to study the sensitivity and robustness of the system, respectively. The mathematical model we present here, shows that: 1. Steady state metabolite concentrations of the ED pathway are consistently more robust to stochastic internal perturbations at 80°C than at 70°C; 2. These metabolite concentrations are highly robust when faced with the knockout of either branch. Connected with this observation, these two branches show different properties at the level of metabolite production and flux control. These new results reveal how enzyme kinetics and metabolomics synergizes with mathematical modelling to unveil new systemic properties of the ED pathway in S.solfataricus in terms of its adaptation and robustness. PMID

  12. Thermoelectric effects in disordered branched nanowires

    NASA Astrophysics Data System (ADS)

    Roslyak, Oleksiy; Piriatinskiy, Andrei

    2013-03-01

    We shall develop formalism of thermal and electrical transport in Si1 - x Gex and BiTe nanowires. The key feature of those nanowires is the possibility of dendrimer type branching. The branching tree can be of size comparable to the short wavelength of phonons and by far smaller than the long wavelength of conducting electrons. Hence it is expected that the branching may suppress thermal and let alone electrical conductance. We demonstrate that the morphology of branches strongly affects the electronic conductance. The effect is important to the class of materials known as thermoelectrics. The small size of the branching region makes large temperature and electrical gradients. On the other hand the smallness of the region would allow the electrical transport being ballistic. As usual for the mesoscopic systems we have to solve macroscopic (temperature) and microscopic ((electric potential, current)) equations self-consistently. Electronic conductance is studied via NEGF formalism on the irreducible electron transfer graph. We also investigate the figure of merit ZT as a measure of the suppressed electron conductance.

  13. Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models

    NASA Astrophysics Data System (ADS)

    Ocampo-García, A.; Barranco-Jiménez, M. A.; Angulo-Brown, F.

    2017-12-01

    A branch of finite-time thermodynamics (FTT) is the thermoeconomical analysis of simplified power plant models. The most studied models are those of the Curzon-Ahlborn (CA) and Novikov-Chambadal types. In the decade of 90's of the past century, the FTT analysis of thermal engines was extended to chemical engines. In the present paper we made a thermoeconomical analysis of heat engines and chemical engines of the CA and Novikov types. This study is carried out for isothermal endoreversible chemical engine models with a linear mass transfer law and under three different modes of thermodynamic performance (maximum power, maximum ecological function and maximum efficient power).

  14. 46 CFR 169.690 - Lighting branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Lighting branch circuits. 169.690 Section 169.690... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.690 Lighting branch circuits. Each lighting branch circuit must meet the requirements of § 111.75-5 of this chapter...

  15. Controls on stream network branching angles, tested using landscape evolution models

    NASA Astrophysics Data System (ADS)

    Theodoratos, Nikolaos; Seybold, Hansjörg; Kirchner, James W.

    2016-04-01

    Stream networks are striking landscape features. The topology of stream networks has been extensively studied, but their geometry has received limited attention. Analyses of nearly 1 million stream junctions across the contiguous United States [1] have revealed that stream branching angles vary systematically with climate and topographic gradients at continental scale. Stream networks in areas with wet climates and gentle slopes tend to have wider branching angles than in areas with dry climates or steep slopes, but the mechanistic linkages underlying these empirical correlations remain unclear. Under different climatic and topographic conditions different runoff generation mechanisms and, consequently, transport processes are dominant. Models [2] and experiments [3] have shown that the relative strength of channel incision versus diffusive hillslope transport controls the spacing between valleys, an important geometric property of stream networks. We used landscape evolution models (LEMs) to test whether similar factors control network branching angles as well. We simulated stream networks using a wide range of hillslope diffusion and channel incision parameters. The resulting branching angles vary systematically with the parameters, but by much less than the regional variability in real-world stream networks. Our results suggest that the competition between hillslope and channeling processes influences branching angles, but that other mechanisms may also be needed to account for the variability in branching angles observed in the field. References: [1] H. Seybold, D. H. Rothman, and J. W. Kirchner, 2015, Climate's watermark in the geometry of river networks, Submitted manuscript. [2] J. T. Perron, W. E. Dietrich, and J. W. Kirchner, 2008, Controls on the spacing of first-order valleys, Journal of Geophysical Research, 113, F04016. [3] K. E. Sweeney, J. J. Roering, and C. Ellis, 2015, Experimental evidence for hillslope control of landscape scale, Science, 349

  16. Pertinent Factors that Affect the Representation of Women and Minorities in Scientific, Engineering, and Technical Careers

    DTIC Science & Technology

    1990-07-01

    Upon the Supply of Minority and Women Scientists, Engineers , and Technologists (SETs) for Defense Industries and Installations." The purpose of the...the causes of the underrepresentation of minorities and women in scientific, engineering , and technolog- ical (SET) careers, and to establish a...DT ?copy- ARI Research Note 90-80 AD-A231 827 Pertinent Factors that Affect the Representation of Women and Minorities in Scientific, Engineering

  17. Branched Hamiltonians and supersymmetry

    DOE PAGES

    Curtright, Thomas L.; Zachos, Cosmas K.

    2014-03-21

    Some examples of branched Hamiltonians are explored both classically and in the context of quantum mechanics, as recently advocated by Shapere and Wilczek. These are in fact cases of switchback potentials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian chaotic dynamical systems in a classical setting, and as encountered in analogous renormalization group flows for quantum theories which exhibit RG cycles. In conclusion, a basic two-worlds model, with a pair of Hamiltonian branches related by supersymmetry, is considered in detail.

  18. Performance of various branch-point tolerant phase reconstructors with finite time delays and measurement noise

    NASA Astrophysics Data System (ADS)

    Zetterlind, Virgil E., III; Magee, Eric P.

    2002-06-01

    This study extends branch point tolerant phase reconstructor research to examine the effect of finite time delays and measurement error on system performance. Branch point tolerant phase reconstruction is particularly applicable to atmospheric laser weapon and communication systems, which operate in extended turbulence. We examine the relative performance of a least squares reconstructor, least squares plus hidden phase reconstructor, and a Goldstein branch point reconstructor for various correction time-delays and measurement noise scenarios. Performance is evaluated using a wave-optics simulation that models a 100km atmospheric propagation of a point source beacon to a transmit/receive aperture. Phase-only corrections are then calculated using the various reconstructor algorithms and applied to an outgoing uniform field. Point Strehl is used as the performance metric. Results indicate that while time delays and measurement noise reduce the performance of branch point tolerant reconstructors, these reconstructors can still outperform least squares implementations in many cases. We also show that branch point detection becomes the limiting factor in measurement noise corrupted scenarios.

  19. A Process for Capturing the Art of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Owens, Clark V., III; Sekeres, Carrie; Roumie, Yasmeen

    2016-01-01

    There is both an art and a science to systems engineering. The science of systems engineering is effectively captured in processes and procedures, but the art is much more elusive. We propose that there is six step process that can be applied to any systems engineering organization to create an environment from which the "art" of that organization can be captured, be allowed to evolve collaboratively and be shared with all members of the organization. This paper details this process as it was applied to NASA Launch Services Program (LSP) Integration Engineering Branch during a pilot program of Confluence, a Commercial Off The Shelf (COTS) wiki tool.

  20. Branching, Superdiffusion and Stress Relaxation in Surfactant Micelles

    NASA Astrophysics Data System (ADS)

    Sureshkumar, R.; Dhakal, S.; Syracuse University Team

    2016-11-01

    We investigate the mechanism of branch formation and its effects on the dynamics and rheology of a model cationic micellar fluid using molecular dynamics (MD) simulations. Branched structures are formed upon increasing counter ion density. A sharp decrease in the solution viscosity with increasing salinity has long been attributed to the sliding motion of micellar branches along the main chain. Simulations not only provide firm evidence of branch sliding in real time, but also show enhanced diffusion of surfactants by virtue of such motion. Insights into the mechanism of stress relaxation associated with branch sliding will be discussed. Specifically, an externally imposed stress damps out more quickly in a branched system compared to that in an unbranched one. NSF Grants 1049489, 1049454.

  1. Geology of the Cane Branch and Helton Branch watershed areas, McCreary County, Kentucky

    USGS Publications Warehouse

    Lyons, Erwin J.

    1957-01-01

    Cane Branch and Helton Branch in McCreary County, Kentucky, are about 1.4 miles apart (fig. 1). Can Branch, which is about 2.1 miles long, emptied into Hughes Fork of Beaver Creek. Its watershed area of about 1.5 square miles lies largely in the Wiborf 7 1/2-minute quadrangle (SW/4 Cumberland Falls 15-minute quadrangle), but the downstream part of the area extends northward into the Hail 7 1/2-minute quadrangle (NW/4 Cumberland Falls 15-minute quadrangle). Helton Branch, which is about 1.1 miles long, has two tributaries and empties into Little Hurricane Fork of Beaver Creek. It drains an area of about 0.8 square mile of while about 0.5 square mile is in the Hail quadrangle and the remainder in the Wilborg quadrangle. The total relief in the Can Branch area is about 500 feet and in the Helton Branch area about 400 feet. Narrow, steep-sided to canyon-like valley and winding ridges, typical of the Pottsville escarpment region, are characteristic of both areas. Thick woods and dense undergrowth cover much of the two areas. Field mapping was done on U.S. Geological Survey 7 1/2-minute maps having a scale of 1:24,000 and a contour interval of 20 feet. Elevations of lithologic contacts were determined with a barometer and a hand level. Aerial photographs were used principally to trace the cliffs formed by sandstone and conglomerate ledges. Exposures, except for those of the cliff- and ledge-forming sandstone and conglomerates, are not abundant. The most complete stratigraphic sections (secs. 3 and 4, fig. 2) in the two areas are exposed in cuts of newly completed Forest Service roads, but the rick in the upper parts of the exposures is weathered. To supplement these sections, additional sections were measured in cuts along the railroad and main highways in nor near the watersheds.

  2. Contamination Control for Thermal Engineers

    NASA Technical Reports Server (NTRS)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  3. Fuzzy branching temporal logic.

    PubMed

    Moon, Seong-ick; Lee, Kwang H; Lee, Doheon

    2004-04-01

    Intelligent systems require a systematic way to represent and handle temporal information containing uncertainty. In particular, a logical framework is needed that can represent uncertain temporal information and its relationships with logical formulae. Fuzzy linear temporal logic (FLTL), a generalization of propositional linear temporal logic (PLTL) with fuzzy temporal events and fuzzy temporal states defined on a linear time model, was previously proposed for this purpose. However, many systems are best represented by branching time models in which each state can have more than one possible future path. In this paper, fuzzy branching temporal logic (FBTL) is proposed to address this problem. FBTL adopts and generalizes concurrent tree logic (CTL*), which is a classical branching temporal logic. The temporal model of FBTL is capable of representing fuzzy temporal events and fuzzy temporal states, and the order relation among them is represented as a directed graph. The utility of FBTL is demonstrated using a fuzzy job shop scheduling problem as an example.

  4. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli.

    PubMed

    Menendez-Bravo, Simón; Comba, Santiago; Sabatini, Martín; Arabolaza, Ana; Gramajo, Hugo

    2014-07-01

    Microbial fatty acid (FA)-derived molecules have emerged as promising alternatives to petroleum-based chemicals for reducing dependence on fossil hydrocarbons. However, native FA biosynthetic pathways often yield limited structural diversity, and therefore restricted physicochemical properties, of the end products by providing only a limited variety of usually linear hydrocarbons. Here we have engineered into Escherichia coli a mycocerosic polyketide synthase-based biosynthetic pathway from Mycobacterium tuberculosis and redefined its biological role towards the production of multi-methyl-branched-esters (MBEs) with novel chemical structures. Expression of FadD28, Mas and PapA5 enzymes enabled the biosynthesis of multi-methyl-branched-FA and their further esterification to an alcohol. The high substrate tolerance of these enzymes towards different FA and alcohol moieties resulted in the biosynthesis of a broad range of MBE. Further metabolic engineering of the MBE producer strain coupled this system to long-chain-alcohol biosynthetic pathways resulting in de novo production of branched wax esters following addition of only propionate. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. The influence of environmental factors on bone tissue engineering.

    PubMed

    Szpalski, Caroline; Sagebin, Fabio; Barbaro, Marissa; Warren, Stephen M

    2013-05-01

    Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering. Copyright © 2012 Wiley Periodicals, Inc.

  6. In vitro reconstruction of branched tubular structures from lung epithelial cells in high cell concentration gradient environment.

    PubMed

    Hagiwara, Masaya; Peng, Fei; Ho, Chih-Ming

    2015-01-27

    We have succeeded in developing hollow branching structure in vitro commonly observed in lung airway using primary lung airway epithelial cells. Cell concentration gradient is the key factor that determines production of the branching cellular structures, as optimization of this component removes the need for heterotypic culture. The higher cell concentration leads to the more production of morphogens and increases the growth rate of cells. However, homogeneous high cell concentration does not make a branching structure. Branching requires sufficient space in which cells can grow from a high concentration toward a low concentration. Simulation performed using a reaction-diffusion model revealed that long-range inhibition prevents cells from branching when they are homogeneously spread in culture environments, while short-range activation from neighboring cells leads to positive feedback. Thus, a high cell concentration gradient is required to make branching structures. Spatial distributions of morphogens, such as BMP-4, play important roles in the pattern formation. This simple yet robust system provides an optimal platform for the further study and understanding of branching mechanisms in the lung airway, and will facilitate chemical and genetic studies of lung morphogenesis programs.

  7. The Need for a Southern Branch Campus of Ocean County College.

    ERIC Educational Resources Information Center

    Ocean County Coll., Toms River, NJ. Office of Institutional Research.

    In 1989, a study was conducted at Ocean County College (OCC) to determine the feasibility of establishing a branch campus in southern Ocean County, New Jersey. Specific factors examined in the study included Ocean County's demographic characteristics (e.g., land area and dispersion, population trends, public transportation, and economic trends);…

  8. A case of recurrence of congenital ocular toxoplasmosis with frosted branch angiitis (ocular toxoplasmosis with frosted branch angiitis).

    PubMed

    Suzuki, Takahiro; Onouchi, Hiromi; Nakagawa, Yoshihiro; Oohashi, Hideki; Kaiken, Han; Kawai, Kenji

    2010-12-20

    To describe a case of recurrence of congenital ocular toxoplasmosis with frosted branch angiitis. A 24-year-old woman presented with hyperemia in her right eye. Medical history included epilepsy at age 14 and mild mental retardation. Iridocyclitis and vitreous opacity were observed in the right eye, and furthermore widespread retinal vessel sheathing due to frosted branch angiitis was seen. Acyclovir was initiated for acute retinal necrosis with frosted branch angiitis. One week later, serologic tests showed elevated toxoplasma antibody level and toxoplasma antibody IgG level, and a white retinal exudative lesion with unclear margins was noted. Therefore, acetylspiramycin and prednisolone were initiated for a recurrence of congenital ocular toxoplasmosis. After treatment, inflammation subsided, the exudative lesion shrank, and the frosted branch angiitis improved. We encountered a case of ocular toxoplasmosis due to recurrence of congenital toxoplasmosis with frosted branch angiitis. The clinical symptoms of ocular toxoplasmosis can be varied and the diagnosis should be kept in mind.

  9. University Teachers' Perspectives on the Role of the Laplace Transform in Engineering Education

    ERIC Educational Resources Information Center

    Holmberg, Margarita; Bernhard, Jonte

    2017-01-01

    The Laplace transform is an important tool in many branches of engineering, for example, electric and control engineering, but is also regarded as a difficult topic for students to master. We have interviewed 22 university teachers from five universities in three countries (Mexico, Spain and Sweden) about their views on relationships among…

  10. Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines.

    PubMed

    Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L

    2016-04-19

    Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.

  11. Coulomb branches with complex singularities

    NASA Astrophysics Data System (ADS)

    Argyres, Philip C.; Martone, Mario

    2018-06-01

    We construct 4d superconformal field theories (SCFTs) whose Coulomb branches have singular complex structures. This implies, in particular, that their Coulomb branch coordinate rings are not freely generated. Our construction also gives examples of distinct SCFTs which have identical moduli space (Coulomb, Higgs, and mixed branch) geometries. These SCFTs thus provide an interesting arena in which to test the relationship between moduli space geometries and conformal field theory data. We construct these SCFTs by gauging certain discrete global symmetries of N = 4 superYang-Mills (sYM) theories. In the simplest cases, these discrete symmetries are outer automorphisms of the sYM gauge group, and so these theories have lagrangian descriptions as N = 4 sYM theories with disconnected gauge groups.

  12. Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing.

    PubMed

    Xu, Jason; Minin, Vladimir N

    2015-07-01

    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.

  13. Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing

    PubMed Central

    Xu, Jason; Minin, Vladimir N.

    2016-01-01

    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377

  14. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  15. Disassortativity of random critical branching trees

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Kahng, B.; Kim, D.

    2009-06-01

    Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the branching number is determined stochastically, independent of the degree of their ancestor. Here we show analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and observation support the argument that the fractal scaling in complex networks originates from the disassortativity in the DDC.

  16. Procurement engineering - the productivity factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bargerstock, S.B.

    1993-01-01

    The industry is several years on the road to implementation of the Nuclear Management and Resources Council (NUMARC) initiatives on commercial-grade item dedication and procurement. Utilities have taken several approaches to involve engineering in the procurement process. A common result for the approaches is the additional operations and maintenance (O M) cost imposed by the added resource requirements. Procurement engineering productivity is a key element in controlling this business area. Experience shows that 400 to 500% improvements in productivity are possible with a 2-yr period. Improving the productivity of the procurement engineering function is important in today's competitive utility environment.more » Procurement engineering typically involves four distinct technical evaluation responsibilities along with several administrative areas. Technical evaluations include the functionally based safety classification of replacement components and parts (lacking a master parts list), the determination of dedication requirements for safety-related commercial-grade items, the preparation of a procurement specification to maintain the licensed design bases, and the equivalency evaluation of alternate items not requiring the design-change process. Administrative duties include obtaining technical review of vendor-supplied documentation, identifying obsolete parts and components, resolving material nonconformances, initiating the design-change process for replacement items (as needed), and providing technical support to O M. Although most utilities may not perform or require all the noted activities, a large percentage will apply to each utility station.« less

  17. Branches of the NF-κB signaling pathway regulate proliferation of oval cells in rat liver regeneration.

    PubMed

    Zhao, W M; Qin, Y L; Niu, Z P; Chang, C F; Yang, J; Li, M H; Zhou, Y; Xu, C S

    2016-03-24

    The NF-kB (nuclear factor kB) pathway is involved in the proliferation of many cell types. To explore the mechanism of the NF-kB signaling pathway underlying the oval cell proliferation during rat liver regeneration, the Rat Genome 230 2.0 Array was used to detect expression changes of NF-kB signaling pathway-related genes in oval cells. The results revealed that the expression levels of many genes in the NF-kB pathway were significantly changed. This included 48 known genes and 16 homologous genes, as well as 370 genes and 85 homologous genes related to cell proliferation. To further understand the biological significance of these changes, an expression profile function was used to analyze the potential biological processes. The results showed that the NF-kB pathway promoted oval cell proliferation mainly through three signaling branches; the tumor necrosis factor alpha branch (TNF-a pathway), the growth factor branch, and the chemokine branch. An integrated statistics method was used to define the key genes in the NF-kB pathway. Seven genes were identified to play vital roles in the NF-kB pathway. To confirm these results, the protein content, including two key genes (TNF and FGF11) and two non-key genes (CCL2 and TNFRSF12A), were analyzed using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The results were generally consistent with those of the array data. To conclude, three branches and seven key genes were involved in the NF-kB signaling pathway that regulates oval cell proliferation during rat liver regeneration.

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IX, ENGINE COMPONENTS.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION, FUNCTION, AND MAINTENANCE OF DIESEL ENGINE CRANKSHAFTS, CAMSHAFTS, AND ASSOCIATED BEARINGS. TOPICS ARE SHAFTS AND BEARINGS, CAMSHAFTS, BEARINGS AND THEIR MAINTENANCE, AND DETECTING FAILURE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED…

  19. A Finite Speed Curzon-Ahlborn Engine

    ERIC Educational Resources Information Center

    Agrawal, D. C.

    2009-01-01

    Curzon and Ahlborn achieved finite power output by introducing the concept of finite rate of heat transfer in a Carnot engine. The finite power can also be achieved through a finite speed of the piston on the four branches of the Carnot cycle. The present paper combines these two approaches to study the behaviour of output power in terms of…

  20. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2

    PubMed Central

    Petry, Sabine; Groen, Aaron C.; Ishihara, Keisuke; Mitchison, Timothy J.; Vale, Ronald D.

    2013-01-01

    Summary The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence also has suggested that microtubules might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires gamma-tubulin and augmin and is stimulated by GTP-bound Ran and its effector TPX2, factors previously implicated in chromatin-stimulated nucleation. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. PMID:23415226

  1. Space Human Factors Engineering Gap Analysis Project Final Report

    NASA Technical Reports Server (NTRS)

    Hudy, Cynthia; Woolford, Barbara

    2006-01-01

    Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.

  2. Pacific Coastal Ecology Branch: Research Overview

    EPA Science Inventory

    The Pacific Coastal Ecology Branch, Newport, Oregon is part of the Western Ecology Division of the National Health and Environmental Effects Research Laboratory of the U.S. EPA. The Branch conducts research and provides scientific technical support to Headquarters and Regional O...

  3. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model.

    PubMed

    Scaini, Giselli; Comim, Clarissa M; Oliveira, Giovanna M T; Pasquali, Matheus A B; Quevedo, João; Gelain, Daniel P; Moreira, José Cláudio F; Schuck, Patrícia F; Ferreira, Gustavo C; Bogo, Maurício R; Streck, Emilio L

    2013-09-01

    Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.

  4. Flood-inundation maps for the North Branch Elkhart River at Cosperville, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Johnson, Esther M.

    2014-01-01

    Digital flood-inundation maps for a reach of the North Branch Elkhart River at Cosperville, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, Detroit District. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/in/nwis/uv?site_no=04100222. In addition, information has been provided to the National Weather Service (NWS) for incorporation into their Advanced Hydrologic Prediction Service (AHPS) flood warning system (http:/water.weather.gov/ahps/). The NWS AHPS forecasts flood hydrographs at many places that are often colocated with USGS streamgages, including the North Branch Elkhart River at Cosperville, Ind. NWS AHPS-forecast peak-stage information may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the North Branch Elkhart River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at USGS streamgage 04100222, North Branch Elkhart River at Cosperville, Ind., and preliminary high-water marks from the flood of March 1982. The calibrated hydraulic model was then used to determine four water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a geographic information system (GIS

  5. Crack branching in cross-ply composites

    NASA Astrophysics Data System (ADS)

    La Saponara, Valeria

    2001-10-01

    The purpose of this research work is to examine the behavior of an interface crack in a cross-ply laminate which is subject to static and fatigue loading. The failure mechanism analyzed here is crack branching (or crack kinking or intra-layer crack): the delamination located between two different plies starts growing as an interface crack and then may branch into the less tough ply. The specimens were manufactured from different types of Glass/Epoxy and Graphite/Epoxy, by hand lay-up, vacuum bagging and cure in autoclave. Each specimen had a delamination starter. Static mixed mode tests and compressive fatigue tests were performed. Experiments showed the scale of the problem, one ply thickness, and some significant features, like contact in the branched crack. The amount of scatter in the experiments required use of statistics. Exploratory Data Analysis and a factorial design of experiments based on a 8 x 8 Hadamard matrix were used. Experiments and statistics show that there is a critical branching angle above which crack growth is greatly accelerated. This angle seems: (1) not to be affected by the specimens' life; (2) not to depend on the specimen geometry and loading conditions; (3) to strongly depend on the amount of contact in the branched crack. Numerical analysis was conducted to predict crack propagation based on the actual displacement/load curves for static tests. This method allows us to predict the total crack propagation in 2D conditions, while neglecting branching. Finally, the existence of a solution based on analytic continuation is discussed.

  6. Pressure-Dependent Yields and Product Branching Ratios in the Broadband Photolysis of Chlorine Nitrate

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Sander, Stanley P.; Friedl, Randall R.

    1996-01-01

    The photolysis of chlorine nitrate was studied using broadband flash photolysis coupled with long-path ultraviolet-visible absorption spectroscopy. Branching ratios for the Cl + NO3 and ClO + NO2 product channels were determined from time-dependent measurements of ClO and NO3 concentrations. Yields of the ClO and NO3 products displayed a dependence on the bath gas density and the spectral distribution of the photolysis pulse. Product yields decreased with increasing bath gas density regardless of the spectral distribution of the photolysis pulse; however, the decrease in product yield was much more pronounced when photolysis was limited to longer wavelengths. For photolysis in a quartz cell (lambda > 200 nm) the yield decreased by a factor of 2 over the pressure 10-100 Torr. In a Pyrex cell (lambda > 300 nm), the yield decreased by a factor of 50 over the same pressure range. When photolysis was limited to lambda > 350 nm, the yield decreased by a factor of 250. Branching ratios for the photolysis channels [ClONO2 + h.nu yields ClO + NO2 (1a) and ClONO2 + h.nu yields Cl + NO3 (lb)] were determined from the relative ClO and NO3 product yields at various pressures. Although the absolute product yield displayed a pressure dependence, the branching between the two channels was independent of pressure. The relative branching ratios (assuming negligible contributions from other channels) are 0.61 +/- 0.20 for channel 1a and 0.39 +/- 0.20 for channel lb for photolysis with lambda > 200 nm and 0.44 +/- 0.08 for channel 1a and 0.56 +/- 0.08 for channel 1b for photolysis with lambda > 300 nm. The implications of these results for the chemistry of the lower stratosphere are discussed.

  7. BUILDING 67 CENTER, ENGINEERING AND FACILITIES MANAGEMENT TO THE RIGHT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING 67 CENTER, ENGINEERING AND FACILITIES MANAGEMENT TO THE RIGHT. BUILDING 67 IS SURMISED TO HAVE BEEN A RAILROAD STATION DAYS WHEN SITE WAS A RESORT - National Home for Disabled Volunteer Soldiers, Eastern Branch, 1 VA Center, Augusta, Kennebec County, ME

  8. Spontaneous Age-Related Neurite Branching in C. elegans

    PubMed Central

    Tank, Elizabeth M. H.; Rodgers, Kasey E.; Kenyon, Cynthia

    2011-01-01

    The analysis of morphological changes that occur in the nervous system during normal aging could provide insight into cognitive decline and neurodegenerative disease. Previous studies have suggested that the nervous system of C. elegans maintains its structural integrity with age despite the deterioration of surrounding tissues. Unexpectedly, we observed that neurons in aging animals frequently displayed ectopic branches, and that the prevalence of these branches increased with time. Within age-matched populations, the branching of mechnosensory neurons correlated with decreased response to light touch and decreased mobility. The incidence of branching was influenced by two pathways that can affect the rate of aging, the Jun kinase pathway and the insulin/IGF-1 pathway. Loss of Jun kinase signaling, which slightly shortens lifespan, dramatically increased and accelerated the frequency of neurite branching. Conversely, inhibition of the daf-2 insulin/IGF-1-like signaling pathway, which extends lifespan, delayed and suppressed branching, and this delay required DAF-16/FOXO activity. Both JNK-1 and DAF-16 appeared to act within neurons in a cell-autonomous manner to influence branching, and, through their tissue-specific expression, it was possible to disconnect the rate at which branching occurred from the overall rate of aging of the animal. Old age has generally been associated with the decline and deterioration of different tissues, except in the case of tumor cell growth. To our knowledge, this is the first indication that aging can potentiate another form of growth, the growth of neurite branches, in normal animals. PMID:21697377

  9. Mechanical Components Branch Test Facilities and Capabilities

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2004-01-01

    The Mechanical Components Branch at NASA Glenn Research Center formulates, conducts, and manages research focused on propulsion systems for both present and advanced aeronautical and space vehicles. The branch is comprised of research teams that perform basic research in three areas: mechanical drives, aerospace seals, and space mechanisms. Each team has unique facilities for testing aerospace hardware and concepts. This report presents an overview of the Mechanical Components Branch test facilities.

  10. Resonant energy transfer and trace-level sensing using branched Ag-rod-supported carbon dots

    NASA Astrophysics Data System (ADS)

    Nair, Radhika V.; Arya, M.; Vijayan, C.

    2018-05-01

    We report on the resonant energy transfer in branched Ag rod-supported carbon dots (C-dots) and its applications for the trace-level sensing of highly reactive oxygen species and organic pollutants based on surface plasmon enhanced energy transfer (SPEET) and surface enhanced Raman spectroscopy (SERS). The branched morphology of Ag is found to significantly enhance visible light absorption and thus increases the spectral overlap with C-dot emission. In addition, branched morphology results in the formation of a large number of plasmonic hotspots and efficient propagation of plasmons through the interconnections, as also supported by finite-difference time-domain simulations. Branched Ag-rod—C-dot composite is found to be able to detect 0.02 µM of hydrogen peroxide based on SPEET. The efficient transfer of electrons from C-dots to the Ag rod enhances the SERS efficiency of Ag resulting in an enhancement factor of the order of 108 and enables the composite to detect 10‑10 M of the organic pollutant Rhodamine 6G.

  11. The Search for a Non-Superallowed Branch in the β decay of ^38mK

    NASA Astrophysics Data System (ADS)

    Leach, Kyle; Bandyopadhyay, D.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Ball, G. C.; Bassiachvilli, E.; Ettenauer, S.; Hackman, G.; Morton, A. C.; Mythili, S.; Newman, O.; Pearson, C. J.; Pearson, M. R.; Savajols, H.; Leslie, J. R.; Melconian, D.; Austin, R. A. E.; Barton, C.

    2007-10-01

    The study presented is part of an experimental program exploring the properties of superallowed Fermi β decays conducted at the Isotope Separator and Accelerator (ISAC) facility at TRIUMF in Vancouver, B.C. Canada. Using the 8π γ-ray spectrometer and the Scintillating Electron Positron Tagging Array (SCEPTAR), it was possible to set a new upper limit on an unobserved non-analogue branch in the decay of ^38mK. This branch is expected to be extremely weak, and the removal of contaminant isobaric decays and background radiation in the spectra was thus exceedingly important during the analysis. Our work has reduced the previous upper limit by approximately a factor of two and is approaching the theoretically predicted branching ratio.

  12. Power of a Finite Speed Carnot Engine

    ERIC Educational Resources Information Center

    Agrawal, D. C.; Menon, V. J.

    2009-01-01

    A model of an endoreversible Carnot engine is considered where the piston moves with a constant speed "u." Expressions for the cycle time [tau] for the four branches, as well as output power, P[subscript W], are derived and the optimized root for maximum power is obtained in closed form. Our results are discussed in terms of the isothermal…

  13. Method and apparatus for rapid stopping and starting of a thermoacoustic engine

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-11-11

    A thermoacoustic engine-driven system with a hot heat exchanger, a regenerator or stack, and an ambient heat exchanger includes a side branch load for rapid stopping and starting, the side branch load being attached to a location in the thermoacoustic system having a nonzero oscillating pressure and comprising a valve, a flow resistor, and a tank connected in series. The system is rapidly stopped simply by opening the valve and rapidly started by closing the valve.

  14. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    PubMed

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  15. Branching habit and the allocation of reproductive resources in conifers.

    PubMed

    Leslie, Andrew B

    2012-09-01

    Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit.

  16. Branching habit and the allocation of reproductive resources in conifers

    PubMed Central

    Leslie, Andrew B.

    2012-01-01

    Background and Aims Correlated relationships between branch thickness, branch density, and twig and leaf size have been used extensively to study the evolution of plant canopy architecture, but fewer studies have explored the impact of these relationships on the allocation of reproductive resources. This study quantifies pollen cone production in conifers, which have similar basic reproductive biology but vary dramatically in branching habit, in order to test how differences in branch diameter influence pollen cone size and the density with which they are deployed in the canopy. Methods Measurements of canopy branch density, the number of cones per branch and cone size were used to estimate the amount of pollen cone tissues produced by 16 species in three major conifer clades. The number of pollen grains produced was also estimated using direct counts from individual pollen cones. Key Results The total amount of pollen cone tissues in the conifer canopy varied little among species and clades, although vegetative traits such as branch thickness, branch density and pollen cone size varied over several orders of magnitude. However, branching habit controls the way these tissues are deployed: taxa with small branches produce small pollen cones at a high density, while taxa with large branches produce large cones relatively sparsely. Conclusions Conifers appear to invest similar amounts of energy in pollen production independent of branching habit. However, similar associations between branch thickness, branch density and pollen cone size are seen across conifers, including members of living and extinct groups not directly studied here. This suggests that reproductive features relating to pollen cone size are in large part a function of the evolution of vegetative morphology and branching habit. PMID:22782240

  17. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  18. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  19. The influence of branch order on optimal leaf vein geometries: Murray's law and area preserving branching.

    PubMed

    Price, Charles A; Knox, Sarah-Jane C; Brodribb, Tim J

    2013-01-01

    Models that predict the form of hierarchical branching networks typically invoke optimization based on biomechanical similitude, the minimization of impedance to fluid flow, or construction costs. Unfortunately, due to the small size and high number of vein segments found in real biological networks, complete descriptions of networks needed to evaluate such models are rare. To help address this we report results from the analysis of the branching geometry of 349 leaf vein networks comprising over 1.5 million individual vein segments. In addition to measuring the diameters of individual veins before and after vein bifurcations, we also assign vein orders using the Horton-Strahler ordering algorithm adopted from the study of river networks. Our results demonstrate that across all leaves, both radius tapering and the ratio of daughter to parent branch areas for leaf veins are in strong agreement with the expectation from Murray's law. However, as veins become larger, area ratios shift systematically toward values expected under area-preserving branching. Our work supports the idea that leaf vein networks differentiate roles of leaf support and hydraulic supply between hierarchical orders.

  20. Pop tests of storable biopropellant liquid apogee engine

    NASA Astrophysics Data System (ADS)

    Kuroda, Yukio; Tadano, Makoto; Sato, Masahiro; Kusaka, Kazuo; Kobayashi, Hideyuki; Iihara, Sigeyasu; Ban, Hiroyuki

    1994-10-01

    A pressure-fed, blowdown, hydrazine/NTO apogee propulsion system had been selected for the ETS-6. One of the problems encountered during the development of the engine was the occurrence of pops (popping) at the higher operating chamber pressures. Pops are irregular high amplitude pressure pulses. It is generally agreed that pops is a liquid spray/gas two-phase explosion triggered by a local explosion near the jet impingement region. The effects of operating parameters on pops observed in the development tests of the apogee engine for the ETS-6 were inconsistent with those reported earlier for single impingement injectors; pops with the apogee engine injectors was more likely to occur at higher chamber pressures, higher injection velocities, and higher propellant temperatures. Pops data were correlated fairly well in chamber pressures (bar-P(sub c)) vs. fuel Reynolds number (R(sub ef)) plane. However, the range of operating parameters for the above correlation were very narrow since they were obtained during injector screening tests for a particular application to the apogee engine. It was also felt that the above correlation was too simplistic to capture any effect of design parameters of multi-element injectors. In the present study, the demarcation between pops and the pops-free region was determined in broader operating ranges and design parameters. The range of bar-P(sub c) and R(sub ef) was extended by exchanging graphite nozzle throat inserts with different throat diameters. The injectors were carefully selected to obtain effects, if any, of (1) film cooling fraction, (2) secondary mixing, and (3) number of elements and/or fuel orifice diameters. It was found that there was a threshold fuel Reynolds number below which no pops were observed at any chamber pressures and that the pops region curve in the bar-P(sub c)-R(sub ef) plane had two branches: upper branches and lower branches.

  1. ENGINEERING AND ECONOMIC FACTORS AFFECTING THE INSTALLATION OF CONTROL TECHNOLOGIES FOR MULTIPOLLUTANT STRATEGIES

    EPA Science Inventory

    The report evaluates the engineering and economic factors associated with installing air pollution control technologies to meet the requirements of strategies to control sulfur dioxide (SO2), oxides of nitrogen (NOX), and mercury under the Clear Skies Act multipollutant control s...

  2. Superradiant Quantum Heat Engine.

    PubMed

    Hardal, Ali Ü C; Müstecaplıoğlu, Özgür E

    2015-08-11

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  3. FDTD modeling of solar energy absorption in silicon branched nanowires.

    PubMed

    Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen

    2013-05-06

    Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.

  4. Cash efficiency for bank branches.

    PubMed

    Cabello, Julia García

    2013-01-01

    Bank liquidity management has become a major issue during the financial crisis as liquidity shortages have intensified and have put pressure on banks to diversity and improve their liquidity sources. While a significant strand of the literature concentrates on wholesale liquidity generation and on the alternative to deposit funding, the management of an inventory of cash holdings within the banks' branches is also a relevant issue as any significant improvement in cash management at the bank distribution channels may have a positive effect in reducing liquidity tensions. In this paper, we propose a simple programme of cash efficiency for the banks' branches, very easy to implement, which conform to a set of instructions to be imposed from the bank to their branches. This model proves to significantly reduce cash holdings at branches thereby providing efficiency improvements in liquidity management. The methodology we propose is based on the definition of some stochastic processes combined with renewal processes, which capture the random elements of the cash flow, before applying suitable optimization programmes to all the costs involved in cash movements. The classical issue of the Transaction Demand for the Cash and some aspects of Inventory Theory are also present. Mathematics Subject Classification (2000) C02, C60, E50.

  5. 30 CFR 57.6403 - Branch circuits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Electric Blasting-Surface and Underground § 57.6403 Branch circuits. (a) If electric blasting includes the use of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Branch circuits. 57.6403 Section 57.6403...

  6. Pulse Detonation Engine Test Bed Developed

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.

    2002-01-01

    A detonation is a supersonic combustion wave. A Pulse Detonation Engine (PDE) repetitively creates a series of detonation waves to take advantage of rapid burning and high peak pressures to efficiently produce thrust. NASA Glenn Research Center's Combustion Branch has developed a PDE test bed that can reproduce the operating conditions that might be encountered in an actual engine. It allows the rapid and cost-efficient evaluation of the technical issues and technologies associated with these engines. The test bed is modular in design. It consists of various length sections of both 2- and 2.6- in. internal-diameter combustor tubes. These tubes can be bolted together to create a variety of combustor configurations. A series of bosses allow instrumentation to be inserted on the tubes. Dynamic pressure sensors and heat flux gauges have been used to characterize the performance of the test bed. The PDE test bed is designed to utilize an existing calorimeter (for heat load measurement) and windowed (for optical access) combustor sections. It uses hydrogen as the fuel, and oxygen and nitrogen are mixed to simulate air. An electronic controller is used to open the hydrogen and air valves (or a continuous flow of air is used) and to fire the spark at the appropriate times. Scheduled tests on the test bed include an evaluation of the pumping ability of the train of detonation waves for use in an ejector and an evaluation of the pollutants formed in a PDE combustor. Glenn's Combustion Branch uses the National Combustor Code (NCC) to perform numerical analyses of PDE's as well as to evaluate alternative detonative combustion devices. Pulse Detonation Engine testbed.

  7. Building Virtual Spaces for Children in the Digital Branch

    ERIC Educational Resources Information Center

    DuBroy, Michelle

    2010-01-01

    Purpose: A digital branch is just like a physical branch except that content is delivered digitally via the web. A digital branch has staff, a collection, a community, and a building. The purpose of this paper is to explore the concept of building individual spaces for different user groups, specifically children, within a digital branch.…

  8. 12 CFR 208.6 - Establishment and maintenance of branches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the Board's Regulation K (12 CFR part 211). (3) Public notice of branch applications. (i) Location of... 12 Banks and Banking 2 2011-01-01 2011-01-01 false Establishment and maintenance of branches. 208... maintenance of national bank branches (12 U.S.C. 36 and 1831u), except that approval of such branches shall be...

  9. Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities.

    PubMed

    Zeng, Xianglong; Guo, Hairun; Zhou, Binbin; Bache, Morten

    2012-11-19

    We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression with a low effective order is realized, and high-quality few-cycle pulses with large compression factors are feasible. Each subsequent section is designed so that the compressed pulse exiting the previous section experiences an overall effective self-defocusing cubic nonlinearity corresponding to a modest soliton order, which is kept larger than unity to ensure further compression. This is done by increasing the cascaded quadratic nonlinearity in the new section with an engineered reduced residual phase mismatch. The low soliton orders in each section ensure excellent pulse quality and high efficiency. Numerical results show that compressed pulses with less than three-cycle duration can be achieved even when the compression factor is very large, and in contrast to standard soliton compression, these compressed pulses have minimal pedestal and high quality factor.

  10. Vere-Jones' self-similar branching model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saichev, A.; Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095; Sornette, D.

    2005-11-01

    Motivated by its potential application to earthquake statistics as well as for its intrinsic interest in the theory of branching processes, we study the exactly self-similar branching process introduced recently by Vere-Jones. This model extends the ETAS class of conditional self-excited branching point-processes of triggered seismicity by removing the problematic need for a minimum (as well as maximum) earthquake size. To make the theory convergent without the need for the usual ultraviolet and infrared cutoffs, the distribution of magnitudes m{sup '} of daughters of first-generation of a mother of magnitude m has two branches m{sup '}m with exponent {beta}+d, where {beta} and d are two positive parameters. We investigate the condition and nature of the subcritical, critical, and supercritical regime in this and in an extended version interpolating smoothly between several models. We predict that the distribution of magnitudes of events triggered by a mother of magnitude m over all generations has also two branches m{sup '}m with exponent {beta}+h, with h=d{radical}(1-s), where s is the fraction of triggered events. This corresponds to a renormalization of the exponent d into h by the hierarchy of successive generations of triggered events. For a significant part of the parameter space, the distribution of magnitudes over a full catalog summed over an average steady flow of spontaneous sources (immigrants) reproduces the distribution of the spontaneous sources with a single branch and is blind to the exponents {beta},d of the distribution of triggered events. Since the distribution of earthquake magnitudes is usually obtained with catalogs including many sequences, we conclude that the two branches of the distribution of aftershocks are not directly observable and the model is compatible with real seismic catalogs. In summary, the exactly self-similar Vere-Jones model provides an

  11. Burning of olive tree branches: a major organic aerosol source in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Kaltsonoudis, C.; Tsiflikiotou, M.; Louvaris, E.; Russell, L. M.; Pandis, S. N.

    2013-09-01

    Aerosol produced during the burning of olive tree branches was characterized with both direct source sampling (using a mobile smog chamber) and with ambient measurements during the burning season. The fresh particles were composed of 80% organic matter, 8-10% black carbon (BC), 5% potassium, 3-4% sulfate, 2-3% nitrate and 0.8% chloride. Almost half of the fresh olive tree branches burning organic aerosol (otBB-OA) consisted of alkane groups. Their mode diameter was close to 70 nm. The oxygen to carbon (O : C) ratio of the fresh otBB-OA was 0.29 ± 0.04. The mass fraction of levoglucosan in PM1 was 0.034-0.043, relatively low in comparison with most fuel types. This may lead to an underestimation of the otBB-OA contribution if levoglucosan is being used as a wood burning tracer. Chemical aging was observed during smog chamber experiments, as f44 and O : C ratio increased, due to reactions with OH radicals and O3. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra, with a main difference at m/z 60, used as levoglucosan tracer. In addition to particles, volatile organic compounds (VOCs) such as methanol, acetonitrile, acrolein, benzene, toluene and xylenes are also emitted. Positive matrix factorization (PMF) was applied to the ambient organic aerosol data and 3 factors could be identified: OOA (oxygenated organic aerosol, 55%), HOA (hydrocarbon-like organic aerosol, 11.3%) and otBB-OA 33.7%. The fresh chamber otBB-OA AMS spectrum is close to the PMF otBB-OA spectrum and resembles the ambient mass spectrum during olive tree branches burning periods. We estimated an otBB-OA emission factor of 3.5 ± 0.9 g kg-1. Assuming that half of the olive tree branches pruned is burned in Greece, 2300 ± 600 tons of otBB-OA are emitted every year. This activity is one of the most important fine aerosol sources during the winter months in Mediterranean countries.

  12. Burning of olive tree branches: a major organic aerosol source in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Kostenidou, E.; Kaltsonoudis, C.; Tsiflikiotou, M.; Louvaris, E.; Russell, L. M.; Pandis, S. N.

    2013-03-01

    Aerosol produced during the burning of olive tree branches was characterized with both direct source-sampling (using a mobile smog chamber) and with ambient measurements during the burning season. The fresh particles were composed of 80% organic matter, 8-10% black carbon (BC), 5% potassium, 3-4% sulfate, 2-3% nitrate and 0.8% chloride. Almost half of the fresh olive tree branches burning organic aerosol (otBB-OA) consisted of alkane groups. Their mode diameter was close to 70 nm. The oxygen to carbon (O:C) ratio of the fresh otBB-OA was 0.29 ± 0.04. The mass fraction of levoglucosan in PM1 was 0.034-0.043, relatively low in comparison with most fuel types. This may lead to an underestimation of the otBB-OA contribution if levoglucosan is being used as a wood burning tracer. Chemical aging was observed during smog chamber experiments, as f44 and O:C ratio increased, due to reactions with OH radicals and O3. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra, with a main difference at m/z 60, used as levoglucosan tracer. In addition to particles, volatile organic compounds (VOCs) such as methanol, acetonitrile, acrolein, benzene, toluene and xylenes are also emitted. Positive matrix factorization (PMF) was applied to the ambient organic aerosol data and 3 factors could be identified: OOA (oxygenated organic aerosol, 55%), HOA (hydrocarbon-like organic aerosol, 11.3%) and otBB-OA 33.7%. The fresh chamber otBB-OA AMS spectrum is close to the PMF otBB-OA spectrum and resembles the ambient mass spectrum during olive tree branches burning periods. We estimated an otBB-OA emission factor of 3.5 ± 0.2 g kg-1. Assuming that half of the olive tree branches pruned is burned in Greece 2280 ± 140 tons of otBB-OA are emitted every year. This activity is one of the most important fine aerosol sources during the winter months in the Mediterranean countries.

  13. Software Engineering Research/Developer Collaborations (C104)

    NASA Technical Reports Server (NTRS)

    Shell, Elaine; Shull, Forrest

    2005-01-01

    The goal of this collaboration was to produce Flight Software Branch (FSB) process standards for software inspections which could be used across three new missions within the FSB. The standard was developed by Dr. Forrest Shull (Fraunhofer Center for Experimental Software Engineering, Maryland) using the Perspective-Based Inspection approach, (PBI research has been funded by SARP) , then tested on a pilot Branch project. Because the short time scale of the collaboration ruled out a quantitative evaluation, it would be decided whether the standard was suitable for roll-out to other Branch projects based on a qualitative measure: whether the standard received high ratings from Branch personnel as to usability and overall satisfaction. The project used for piloting the Perspective-Based Inspection approach was a multi-mission framework designed for reuse. This was a good choice because key representatives from the three new missions would be involved in the inspections. The perspective-based approach was applied to produce inspection procedures tailored for the specific quality needs of the branch. The technical information to do so was largely drawn through a series of interviews with Branch personnel. The framework team used the procedures to review requirements. The inspections were useful for indicating that a restructuring of the requirements document was needed, which led to changes in the development project plan. The standard was sent out to other Branch personnel for review. Branch personnel were very positive. However, important changes were identified because the perspective of Attitude Control System (ACS) developers had not been adequately represented, a result of the specific personnel interviewed. The net result is that with some further work to incorporate the ACS perspective, and in synchrony with the roll out of independent Branch standards, the PBI approach will be implemented in the FSB. Also, the project intends to continue its collaboration with

  14. Space Suits and Crew Survival Systems Branch Education and Public Outreach Support of NASA's Strategic Goals in Fiscal Year 2012

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.

    2012-01-01

    As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientist, and general public. This is so important to NASA future that it is one of the agencies strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in helping to achieve this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.

  15. Space Suits and Crew Survival Systems Branch Education and Public Outreach Support of NASA's Strategic Goals in Fiscal Year 2012

    NASA Technical Reports Server (NTRS)

    Jennings, Mallory A.

    2013-01-01

    As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientists, and the general public. This is so important to NASA s future that it is one of the agency s strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in achieving this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.

  16. The sensory-motor bridge neurorraphy: an anatomic study of feasibility between sensory branch of the musculocutaneous nerve and deep branch of the radial nerve.

    PubMed

    Goubier, Jean-Noel; Teboul, Frédéric

    2011-05-01

    Restoring elbow flexion remains the first step in the management of total palsy of the brachial plexus. Non avulsed upper roots may be grafted on the musculocutaneous nerve. When this nerve is entirely grafted, some motor fibres regenerate within the sensory fibres quota. Aiming potential utilization of these lost motor fibres, we attempted suturing the sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The objective of our study was to assess the anatomic feasibility of such direct suturing of the terminal sensory branch of the musculocutaneous nerve onto the deep branch of the radial nerve. The study was carried out with 10 upper limbs from fresh cadavers. The sensory branch of the musculocutaneous muscle was dissected right to its division. The motor branch of the radial nerve was identified and dissected as proximally as possible into the radial nerve. Then, the distance separating the two nerves was measured so as to assess whether direct neurorraphy of the two branches was feasible. The excessive distance between the two branches averaged 6 mm (1-13 mm). Thus, direct neurorraphy of the sensory branch of the musculocutaneous nerve and the deep branch of the radial nerve was possible. When the whole musculocutaneous nerve is grafted, some of its motor fibres are lost amongst the sensory fibres (cutaneous lateral antebrachial nerve). By suturing this sensory branch onto the deep branch of the radial nerve, "lost" fibres may be retrieved, resulting in restoration of digital extension. Copyright © 2011 Wiley-Liss, Inc.

  17. Branch breakage under snow and ice loads.

    PubMed

    Cannell, M G; Morgan, J

    1989-09-01

    Measurements were made on branches and trunks of Picea sitchensis (Bong.) Carr. to determine the relationship between (i) the bending moment at the bases of branches that cause breakage, and (ii) midpoint diameter cubed. The theory for cantilever beams was then used to calculate the basal bending moments and midpoint diameters of branches with different numbers of laterals and endpoint deflections, given previously measured values of Young's modulus, taper and weights of foliage and wood. Snow and ice loads (equal to 2 and 4 g cm(-1) of shoot, respectively) were then included in the calculation to determine whether the basal bending moments exceeded the breakage values. The likelihood of breakage increased with an increase in (i) number of laterals, and (ii) endpoint deflection under self weight (without snow or ice)-features that had previously been shown to lessen the amount of branch wood required to support a unit of foliage. However, branches which deflected moderately (> 10% of their length) under their own weight deflected greatly under snow or ice loads and might shed powdery snow before breakage occurs.

  18. Two-vehicle injury severity models based on integration of pavement management and traffic engineering factors.

    PubMed

    Jiang, Ximiao; Huang, Baoshan; Yan, Xuedong; Zaretzki, Russell L; Richards, Stephen

    2013-01-01

    The severity of traffic-related injuries has been studied by many researchers in recent decades. However, the evaluation of many factors is still in dispute and, until this point, few studies have taken into account pavement management factors as points of interest. The objective of this article is to evaluate the combined influences of pavement management factors and traditional traffic engineering factors on the injury severity of 2-vehicle crashes. This study examines 2-vehicle rear-end, sideswipe, and angle collisions that occurred on Tennessee state routes from 2004 to 2008. Both the traditional ordered probit (OP) model and Bayesian ordered probit (BOP) model with weak informative prior were fitted for each collision type. The performances of these models were evaluated based on the parameter estimates and deviances. The results indicated that pavement management factors played identical roles in all 3 collision types. Pavement serviceability produces significant positive effects on the severity of injuries. The pavement distress index (PDI), rutting depth (RD), and rutting depth difference between right and left wheels (RD_df) were not significant in any of these 3 collision types. The effects of traffic engineering factors varied across collision types, except that a few were consistently significant in all 3 collision types, such as annual average daily traffic (AADT), rural-urban location, speed limit, peaking hour, and light condition. The findings of this study indicated that improved pavement quality does not necessarily lessen the severity of injuries when a 2-vehicle crash occurs. The effects of traffic engineering factors are not universal but vary by the type of crash. The study also found that the BOP model with a weak informative prior can be used as an alternative but was not superior to the traditional OP model in terms of overall performance.

  19. Remediation of water and wastewater by using engineered nanomaterials: A review.

    PubMed

    Bishoge, Obadia K; Zhang, Lingling; Suntu, Shaldon L; Jin, Hui; Zewde, Abraham A; Qi, Zhongwei

    2018-05-12

    Nanotechnology is currently a fast-rising socioeconomic and political knowledge-based technology owing to the unique characteristics of its engineered nanomaterials. This branch of technology is useful for water and wastewater remediation. Many scientists and researchers have been conducting different studies and experiments on the applications of engineered nanomaterials at the local to international level. This review mainly aims to provide a current overview of existing knowledge on engineered nanomaterials and their applications in water and wastewater remediation. Furthermore, the present risks and challenges of nanotechnology are examined.

  20. Spatial Arrangement of Branches in Relation to Slope and Neighbourhood Competition

    PubMed Central

    SUMIDA, AKIHIRO; TERAZAWA, IKUE; TOGASHI, ASAKO; KOMIYAMA, AKIRA

    2002-01-01

    To gain a better understanding of the effects of spatial structure on patterns of neighbourhood competition among hardwood trees, the three‐dimensional extension of primary branches was surveyed for ten community‐grown Castanea crenata (Fagaceae) trees with respect to the positioning of neighbouring branches and the slope of the forest floor. There were significantly more branches extending towards the lower side of the slope than towards the upper side, but structural properties such as branch length and vertical angle were not affected by slope. When horizontal extension of a branch towards its neighbour was compared for a C. crenata branch and a neighbouring heterospecific, the former was significantly narrower than the latter when the inter‐branch distance (horizontal distance between the base positions of two neighbouring branches) was short (< approx. 5 m). Castanea crenata branches tended to extend in a direction avoiding neighbouring branches of heterospecifics when the inter‐branch distance was short. Furthermore, for an inter‐branch distance <3 m, the horizontal extension of a C. crenata branch was less when it was neighbouring a heterospecific branch than when neighbouring a conspecific branch. These results suggest that horizontal extension of C. crenata branches is more prone to spatial invasion by nearby neighbouring branches of heterospecifics, and that the invasion can be lessened when C. crenata trees are spatially aggregated. The reason why such an arrangement occurs is discussed in relation to the later leaf‐flush of C. crenata compared with that of other species in the forest. PMID:12096742

  1. Design engineer perceptions and attitudes regarding human factors application to nuclear power plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, R.; Jones, J. M.

    2006-07-01

    With the renewed interest in nuclear power and the possibility of constructing new reactors within the next decade in the U.S., there are several challenges for the regulators, designers, and vendors. One challenge is to ensure that Human Factors Engineering (HFE) is involved, and correctly applied in the life-cycle design of the Nuclear Power Plant (NPP). As an important part of the effort, people would ask: 'is the system-design engineer effectively incorporating HFE in the NPPs design?' The present study examines the sagacity of Instrumentation and Control design engineers on issues relating to awareness, attitude, and application of HFE inmore » NPP design. A questionnaire was developed and distributed, focusing on the perceptions and attitudes of the design engineers. The responses revealed that, while the participants had a relatively high positive attitude about HFE, their awareness and application of HFE were moderate. The results also showed that senior engineers applied HFE more frequently in their design work than young engineers. This study provides some preliminary results and implications for improved HFE education and application in NPP design. (authors)« less

  2. Branching processes in disease epidemics

    NASA Astrophysics Data System (ADS)

    Singh, Sarabjeet

    Branching processes have served as a model for chemical reactions, biological growth processes and contagion (of disease, information or fads). Through this connection, these seemingly different physical processes share some common universalities that can be elucidated by analyzing the underlying branching process. In this thesis, we focus on branching processes as a model for infectious diseases spreading between individuals belonging to different populations. The distinction between populations can arise from species separation (as in the case of diseases which jump across species) or spatial separation (as in the case of disease spreading between farms, cities, urban centers, etc). A prominent example of the former is zoonoses -- infectious diseases that spill from animals to humans -- whose specific examples include Nipah virus, monkeypox, HIV and avian influenza. A prominent example of the latter is infectious diseases of animals such as foot and mouth disease and bovine tuberculosis that spread between farms or cattle herds. Another example of the latter is infectious diseases of humans such as H1N1 that spread from one city to another through migration of infectious hosts. This thesis consists of three main chapters, an introduction and an appendix. The introduction gives a brief history of mathematics in modeling the spread of infectious diseases along with a detailed description of the most commonly used disease model -- the Susceptible-Infectious-Recovered (SIR) model. The introduction also describes how the stochastic formulation of the model reduces to a branching process in the limit of large population which is analyzed in detail. The second chapter describes a two species model of zoonoses with coupled SIR processes and proceeds into the calculation of statistics pertinent to cross species infection using multitype branching processes. The third chapter describes an SIR process driven by a Poisson process of infection spillovers. This is posed as a

  3. Closed-Cycle Engine Program Used to Study Brayton Power Conversion

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2005-01-01

    One form of power conversion under consideration in NASA Glenn Research Center's Thermal Energy Conversion Branch is the closed-Brayton-cycle engine. In the tens-of-kilowatts to multimegawatt class, the Brayton engine lends itself to potential space nuclear power applications such as electric propulsion or surface power. The Thermal Energy Conversion Branch has most recently concentrated its Brayton studies on electric propulsion for Prometheus. One piece of software used for evaluating such designs over a limited tradeoff space has been the Closed Cycle Engine Program (CCEP). The CCEP originated in the mid-1980s from a Fortran aircraft engine code known as the Navy/NASA Engine Program (NNEP). Components such as a solar collector, heat exchangers, ducting, a pumped-loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into a high-fidelity design and performance tool for closed-Brayton-cycle power conversion and heat rejection. CCEP was used in the 1990s in conjunction with the Solar Dynamic Ground Test Demonstration conducted at Glenn. Over the past year, updates were made to CCEP to adapt it for an electric propulsion application. The pumped-loop radiator coolant can now be n-heptane, water, or sodium-potassium (NaK); liquid-metal pump design tables were added to accommodate the NaK fluid. For the reactor and shield, a user can now elect to calculate a higher fidelity mass estimate. In addition, helium-xenon working-fluid properties were recalculated and updated.

  4. Progenitor Outgrowth from the Niche in Drosophila Trachea Is Guided by FGF from Decaying Branches

    PubMed Central

    Chen, Feng; Krasnow, Mark A.

    2014-01-01

    Although there has been progress identifying adult stem and progenitor cells and the signals that control their proliferation and differentiation, little is known about the substrates and signals that guide them out of their niche. By examining Drosophila tracheal outgrowth during metamorphosis, we show that progenitors follow a stereotyped path out of the niche, tracking along a subset of tracheal branches destined for destruction. The embryonic tracheal inducer branchless FGF (fibroblast growth factor) is expressed dynamically just ahead of progenitor outgrowth in decaying branches. Knockdown of branchless abrogates progenitor outgrowth, whereas misexpression redirects it. Thus, reactivation of an embryonic tracheal inducer in decaying branches directs outgrowth of progenitors that replace them. This explains how the structure of a newly generated tissue is coordinated with that of the old. PMID:24408434

  5. Progenitor outgrowth from the niche in Drosophila trachea is guided by FGF from decaying branches.

    PubMed

    Chen, Feng; Krasnow, Mark A

    2014-01-10

    Although there has been progress identifying adult stem and progenitor cells and the signals that control their proliferation and differentiation, little is known about the substrates and signals that guide them out of their niche. By examining Drosophila tracheal outgrowth during metamorphosis, we show that progenitors follow a stereotyped path out of the niche, tracking along a subset of tracheal branches destined for destruction. The embryonic tracheal inducer branchless FGF (fibroblast growth factor) is expressed dynamically just ahead of progenitor outgrowth in decaying branches. Knockdown of branchless abrogates progenitor outgrowth, whereas misexpression redirects it. Thus, reactivation of an embryonic tracheal inducer in decaying branches directs outgrowth of progenitors that replace them. This explains how the structure of a newly generated tissue is coordinated with that of the old.

  6. Factors that facilitate or inhibit interest of domestic students in the engineering PhD: A mixed methods study

    NASA Astrophysics Data System (ADS)

    Howell Smith, Michelle C.

    Given the increasing complexity of technology in our society, the United States has a growing demand for a more highly educated technical workforce. Unfortunately, the proportion of United States citizens earning a PhD in engineering has been declining and there is concern about meeting the economic, national security and quality of life needs of our country. This mixed methods sequential exploratory instrument design study identified factors that facilitate or inhibit interest in engineering PhD programs among domestic engineering undergraduate students in the United States. This study developed a testable theory for how domestic students become interested in engineering PhD programs and a measure of that process, the Exploring Engineering Interest Inventory (EEII). The study was conducted in four phases. The first phase of the study was a qualitative grounded theory exploration of interest in the engineering PhD. Qualitative data were collected from domestic engineering students, engineering faculty and industry professional who had earned a PhD in engineering. The second phase, instrument development, developed the Exploring Engineering Interest Inventory (EEII), a measurement instrument designed with good psychometric properties to test a series of preliminary hypotheses related to the theory generated in the qualitative phase. In the third phase of the study, the EEII was used to collect data from a larger sample of junior and senior engineering majors. The fourth phase integrated the findings from the qualitative and quantitative phases. Four factors were identified as being significant influences of interest in the engineering PhD: Personal characteristics, educational environment, misperceptions of the economic and personal costs, and misperceptions of engineering work. Recommendations include increasing faculty encouragement of students to pursue an engineering PhD and programming to correct the misperceptions of the costs of the engineering PhD and the

  7. 26 CFR 1.884-1 - Branch profits tax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 9 2013-04-01 2013-04-01 false Branch profits tax. 1.884-1 Section 1.884-1...) INCOME TAXES (CONTINUED) Foreign Corporations § 1.884-1 Branch profits tax. (a) General rule. A foreign corporation shall be liable for a branch profits tax in an amount equal to 30 percent of the foreign...

  8. 26 CFR 1.884-1 - Branch profits tax.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 9 2014-04-01 2014-04-01 false Branch profits tax. 1.884-1 Section 1.884-1...) INCOME TAXES (CONTINUED) Foreign Corporations § 1.884-1 Branch profits tax. (a) General rule. A foreign corporation shall be liable for a branch profits tax in an amount equal to 30 percent of the foreign...

  9. 26 CFR 1.884-1 - Branch profits tax.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 9 2012-04-01 2012-04-01 false Branch profits tax. 1.884-1 Section 1.884-1...) INCOME TAXES (CONTINUED) Foreign Corporations § 1.884-1 Branch profits tax. (a) General rule. A foreign corporation shall be liable for a branch profits tax in an amount equal to 30 percent of the foreign...

  10. Epicormic Branches and Lumber Grade of Bottomland Oak

    Treesearch

    James S. Meadows

    1995-01-01

    Epicormic branches can be a serious problem in management of hardwood forests for high-quality sawtimber production. In one study in central Alabama, defects caused by epicormic branches that developed following a partial cutting resulted in a 13 percent reduction in the value of willow oak lumber. Production of epicormic branches along the boles of hardwood trees is...

  11. Factors Affecting University Image Formation among Prospective Higher Education Students: The Case of International Branch Campuses

    ERIC Educational Resources Information Center

    Wilkins, Stephen; Huisman, Jeroen

    2015-01-01

    Previous research has found that the images of universities formed by prospective students greatly influence their choices. With the advent of international branch campuses in several higher education hubs worldwide, many international students now attempt to construct images of these institutions when deciding where to study. The aim of this…

  12. Factors Related to Successful Engineering Team Design

    NASA Technical Reports Server (NTRS)

    Nowaczyk, Ronald H.; Zang, Thomas A.

    1998-01-01

    The perceptions of a sample of 49 engineers and scientists from NASA Langley Research Center toward engineering design teams were evaluated. The respondents rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. Successful engineering teams may find their greatest challenges occurring during the early stages of their existence. In contrast to the prototypical business team, members on an engineering design share expertise and knowledge which allows them to deal with task issues sooner. However, discipline differences among team members can lead to conflicts regarding the best method or approach to solving the engineering problem.

  13. Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar.

    PubMed

    Padilla, Antonio; Pérez, Justo

    2013-08-28

    By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.

  14. Engineering phenolics metabolism in the grasses using transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotewold, Erich

    2013-07-26

    The economical competitiveness of agriculture-derived biofuels can be significantly enhanced by increasing biomass/acre yields and by furnishing the desired carbon balance for facilitating liquid fuel production (e.g., ethanol) or for high-energy solid waste availability to be used as biopower (e.g., for electricity production). Biomass production and carbon balance are tightly linked to the biosynthesis of phenolic compounds, which are found in crops and in agricultural residues either as lignins, as part of the cell wall, or as soluble phenolics which play a variety of functions in the biology of plants. The grasses, in particular maize, provide the single major sourcemore » of agricultural biomass, offering significant opportunities for increasing renewable fuel production. Our laboratory has pioneered the use of transcription factors for manipulating plant metabolic pathways, an approach that will be applied here towards altering the composition of phenolic compounds in maize. Previously, we identified a small group of ten maize R2R3-MYB transcription factors with all the characteristics of regulators of different aspects of phenolic biosynthesis. Here, we propose to investigate the participation of these R2R3-MYB factors in the regulation of soluble and insoluble maize phenolics, using a combination of over-expression and down-regulation of these transcription factors in transgenic maize cultured cells and in maize plants. Maize cells and plants altered in the activity of these regulatory proteins will be analyzed for phenolic composition by targeted metabolic profiling. Specifically, we will I) Investigate the effect of gain- and loss-of-function of a select group of R2R3-MYB transcription factors on the phenolic composition of maize plants and II) Identify the biosynthetic genes regulated by each of the selected R2R3-MYB factors. While a likely outcome of these studies are transgenic maize plants with altered phenolic composition, this research will

  15. * Central Growth Factor Loaded Depots in Bone Tissue Engineering Scaffolds for Enhanced Cell Attraction.

    PubMed

    Quade, Mandy; Knaack, Sven; Akkineni, Ashwini Rahul; Gabrielyan, Anastasia; Lode, Anja; Rösen-Wolff, Angela; Gelinsky, Michael

    2017-08-01

    Tissue engineering, the application of stem and progenitor cells in combination with an engineered extracellular matrix, is a promising strategy for bone regeneration. However, its success is limited by the lack of vascularization after implantation. The concept of in situ tissue engineering envisages the recruitment of cells necessary for tissue regeneration from the host environment foregoing ex vivo cell seeding of the scaffold. In this study, we developed a novel scaffold system for enhanced cell attraction, which is based on biomimetic mineralized collagen scaffolds equipped with a central biopolymer depot loaded with chemotactic agents. In humid milieu, as after implantation, the signaling factors are expected to slowly diffuse out of the central depot forming a gradient that stimulates directed cell migration toward the scaffold center. Heparin, hyaluronic acid, and alginate have been shown to be capable of depot formation. By using vascular endothelial growth factor (VEGF) as model factor, it was demonstrated that the release kinetics can be adjusted by varying the depot composition. While alginate and hyaluronic acid are able to reduce the initial burst and prolong the release of VEGF, the addition of heparin led to a much stronger retention that resulted in an almost linear release over 28 days. The biological activity of released VEGF was proven for all variants using an endothelial cell proliferation assay. Furthermore, migration experiments with endothelial cells revealed a relationship between the degree of VEGF retention and migration distance: cells invaded deepest in scaffolds containing a heparin-based depot indicating that the formation of a steep gradient is crucial for cell attraction. In conclusion, this novel in situ tissue engineering approach, specifically designed to recruit and accommodate endogenous cells upon implantation, appeared highly promising to stimulate cell invasion, which in turn would promote vascularization and finally new

  16. Cadaveric Study of the Articular Branches of the Shoulder Joint.

    PubMed

    Eckmann, Maxim S; Bickelhaupt, Brittany; Fehl, Jacob; Benfield, Jonathan A; Curley, Jonathan; Rahimi, Ohmid; Nagpal, Ameet S

    This cadaveric study investigated the anatomic relationships of the articular branches of the suprascapular (SN), axillary (AN), and lateral pectoral nerves (LPN), which are potential targets for shoulder analgesia. Sixteen embalmed cadavers and 1 unembalmed cadaver, including 33 shoulders total, were dissected. Following dissections, fluoroscopic images were taken to propose an anatomical landmark to be used in shoulder articular branch blockade. Thirty-three shoulders from 17 total cadavers were studied. In a series of 16 shoulders, 16 (100%) of 16 had an intact SN branch innervating the posterior head of the humerus and shoulder capsule. Suprascapular sensory branches coursed laterally from the spinoglenoid notch then toward the glenohumeral joint capsule posteriorly. Axillary nerve articular branches innervated the posterolateral head of the humerus and shoulder capsule in the same 16 (100%) of 16 shoulders. The AN gave branches ascending circumferentially from the quadrangular space to the posterolateral humerus, deep to the deltoid, and inserting at the inferior portion of the posterior joint capsule. In 4 previously dissected and 17 distinct shoulders, intact LPNs could be identified in 14 (67%) of 21 specimens. Of these, 12 (86%) of 14 had articular branches innervating the anterior shoulder joint, and 14 (100%) of 14 LPN articular branches were adjacent to acromial branches of the thoracoacromial blood vessels over the superior aspect of the coracoid process. Articular branches from the SN, AN, and LPN were identified. Articular branches of the SN and AN insert into the capsule overlying the glenohumeral joint posteriorly. Articular branches of the LPN exist and innervate a portion of the anterior shoulder joint.

  17. Finding the optimal lengths for three branches at a junction.

    PubMed

    Woldenberg, M J; Horsfield, K

    1983-09-21

    This paper presents an exact analytical solution to the problem of locating the junction point between three branches so that the sum of the total costs of the branches is minimized. When the cost per unit length of each branch is known the angles between each pair of branches can be deduced following reasoning first introduced to biology by Murray. Assuming the outer ends of each branch are fixed, the location of the junction and the length of each branch are then deduced using plane geometry and trigonometry. The model has applications in determining the optimal cost of a branch or branches at a junction. Comparing the optimal to the actual cost of a junction is a new way to compare cost models for goodness of fit to actual junction geometry. It is an unambiguous measure and is superior to comparing observed and optimal angles between each daughter and the parent branch. We present data for 199 junctions in the pulmonary arteries of two human lungs. For the branches at each junction we calculated the best fitting value of x from the relationship that flow alpha (radius)x. We found that the value of x determined whether a junction was best fitted by a surface, volume, drag or power minimization model. While economy of explanation casts doubt that four models operate simultaneously, we found that optimality may still operate, since the angle to the major daughter is less than the angle to the minor daughter. Perhaps optimality combined with a space filling branching pattern governs the branching geometry of the pulmonary artery.

  18. Factors associated with smoking among operating engineers.

    PubMed

    Choi, Seung Hee; Pohl, Joanne M; Terrell, Jeffrey E; Redman, Richard W; Duffy, Sonia A

    2013-09-01

    Although disparities in smoking prevalence between white collar workers and blue collar workers have been documented, reasons for these disparities have not been well studied. The objective of this study was to determine variables associated with smoking among Operating Engineers, using the Health Promotion Model as a guide. With cross-sectional data from a convenience sample of 498 Operating Engineers, logistic regression was used to determine personal and health behaviors associated with smoking. Approximately 29% of Operating Engineers currently smoked cigarettes. Multivariate analyses showed that younger age, unmarried, problem drinking, physical inactivity, and a lower body mass index were associated with smoking. Operating Engineers were at high risk of smoking, and smokers were more likely to engage in other risky health behaviors, which supports bundled health behavior interventions. Copyright 2013, SLACK Incorporated.

  19. Bird exclosures for branches and whole trees.

    Treesearch

    Robert W. Campbell; Torolf R. Torgersen; Steven C. Forrest; Lorna C. Youngs

    1981-01-01

    Two types of lightweight, portable bird exclosures are described. One is for individual branches or branch tips; the other is for whole trees up to 9 m tall. Several alternative configurations and uses of these exclosures are discussed.

  20. Technical activities of the configuration aeroelasticity branch

    NASA Technical Reports Server (NTRS)

    Cole, Stanley R. (Editor)

    1991-01-01

    A number of recent technical activities of the Configuration Aeroelasticity Branch of the NASA Langley Research Center are discussed in detail. The information on the research branch is compiled in twelve separate papers. The first of these topics is a summary of the purpose of the branch, including a full description of the branch and its associated projects and program efforts. The next ten papers cover specific projects and are as follows: Experimental transonic flutter characteristics of supersonic cruise configurations; Aeroelastic effects of spoiler surfaces mounted on a low aspect ratio rectangular wing; Planform curvature effects on flutter of 56 degree swept wing determined in Transonic Dynamics Tunnel (TDT); An introduction to rotorcraft testing in TDT; Rotorcraft vibration reduction research at the TDT; A preliminary study to determine the effects of tip geometry on the flutter of aft swept wings; Aeroelastic models program; NACA 0012 pressure model and test plan; Investigation of the use of extension twist coupling in composite rotor blades; and Improved finite element methods for rotorcraft structures. The final paper describes the primary facility operation by the branch, the Langley TDT.

  1. An Efficient Independence Sampler for Updating Branches in Bayesian Markov chain Monte Carlo Sampling of Phylogenetic Trees.

    PubMed

    Aberer, Andre J; Stamatakis, Alexandros; Ronquist, Fredrik

    2016-01-01

    Sampling tree space is the most challenging aspect of Bayesian phylogenetic inference. The sheer number of alternative topologies is problematic by itself. In addition, the complex dependency between branch lengths and topology increases the difficulty of moving efficiently among topologies. Current tree proposals are fast but sample new trees using primitive transformations or re-mappings of old branch lengths. This reduces acceptance rates and presumably slows down convergence and mixing. Here, we explore branch proposals that do not rely on old branch lengths but instead are based on approximations of the conditional posterior. Using a diverse set of empirical data sets, we show that most conditional branch posteriors can be accurately approximated via a [Formula: see text] distribution. We empirically determine the relationship between the logarithmic conditional posterior density, its derivatives, and the characteristics of the branch posterior. We use these relationships to derive an independence sampler for proposing branches with an acceptance ratio of ~90% on most data sets. This proposal samples branches between 2× and 3× more efficiently than traditional proposals with respect to the effective sample size per unit of runtime. We also compare the performance of standard topology proposals with hybrid proposals that use the new independence sampler to update those branches that are most affected by the topological change. Our results show that hybrid proposals can sometimes noticeably decrease the number of generations necessary for topological convergence. Inconsistent performance gains indicate that branch updates are not the limiting factor in improving topological convergence for the currently employed set of proposals. However, our independence sampler might be essential for the construction of novel tree proposals that apply more radical topology changes. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of

  2. Engineering tolerance to industrially relevant stress factors in yeast cell factories.

    PubMed

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R; Thevelein, Johan M

    2017-06-01

    The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. © FEMS 2017.

  3. Engineering tolerance to industrially relevant stress factors in yeast cell factories

    PubMed Central

    Deparis, Quinten; Claes, Arne; Foulquié-Moreno, Maria R.

    2017-01-01

    Abstract The main focus in development of yeast cell factories has generally been on establishing optimal activity of heterologous pathways and further metabolic engineering of the host strain to maximize product yield and titer. Adequate stress tolerance of the host strain has turned out to be another major challenge for obtaining economically viable performance in industrial production. Although general robustness is a universal requirement for industrial microorganisms, production of novel compounds using artificial metabolic pathways presents additional challenges. Many of the bio-based compounds desirable for production by cell factories are highly toxic to the host cells in the titers required for economic viability. Artificial metabolic pathways also turn out to be much more sensitive to stress factors than endogenous pathways, likely because regulation of the latter has been optimized in evolution in myriads of environmental conditions. We discuss different environmental and metabolic stress factors with high relevance for industrial utilization of yeast cell factories and the experimental approaches used to engineer higher stress tolerance. Improving stress tolerance in a predictable manner in yeast cell factories should facilitate their widespread utilization in the bio-based economy and extend the range of products successfully produced in large scale in a sustainable and economically profitable way. PMID:28586408

  4. Branched-chain amino acids and pigment epithelium-derived factor: novel therapeutic agents for hepatitis c virus-associated insulin resistance.

    PubMed

    Kawaguchi, T; Yamagishi, S; Sata, M

    2009-01-01

    Recent clinical studies have shown that patients with chronic liver disease are insulin resistant. Of all etiologies of chronic liver disease including non-alcoholic fatty liver disease, the one that causes the most sever insulin resistance is hepatitis C virus (HCV) infection. Since insulin resistance promotes inflammatory and fibrogenic reactions in the liver, thus leading to the development of liver cirrhosis and hepatocellular carcinoma (HCC) in patients with HCV infection, amelioration of insulin sensitivity may inhibit the progression of HCV-associated liver disease, and could improve the survival of these patients. HCV directly causes insulin resistance through HCV core protein-elicited proteasomal degradation of insulin receptor substrates and subsequent inactivation of intracellular insulin signaling molecules such as Akt. Furthermore, tumor necrosis factor-alpha (TNF-alpha) and/or triglyceride accumulation-induced nuclear factor-kappaB (NF-kappaB) activation in the liver is shown to play a role in insulin resistance in patients with HCV-related chronic liver disease as well. We, along with others, have recently found that branched-chain amino acids (BCAAs) and pigment epithelium-derived factor (PEDF) could improve the HCV-associated insulin resistance via suppression of NF-kappaB and preservation of insulin signaling pathway. In this review, we discuss the mechanisms for the actions of BCAAs and PEDF, and their clinical implications in insulin resistance of chronic liver disease in patients with HCV infection. We also discuss here which chemical structures could contribute to insulin-sensitization in patients with HCV infection.

  5. Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers.

    PubMed

    Laible, Philip D; Kirmaier, Christine; Udawatte, Chandani S M; Hofman, Samuel J; Holten, Dewey; Hanson, Deborah K

    2003-02-18

    Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional

  6. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing.

    PubMed

    Mansfeld, Johannes; Urban, Nadine; Priebe, Steffen; Groth, Marco; Frahm, Christiane; Hartmann, Nils; Gebauer, Juliane; Ravichandran, Meenakshi; Dommaschk, Anne; Schmeisser, Sebastian; Kuhlow, Doreen; Monajembashi, Shamci; Bremer-Streck, Sibylle; Hemmerich, Peter; Kiehntopf, Michael; Zamboni, Nicola; Englert, Christoph; Guthke, Reinhard; Kaleta, Christoph; Platzer, Matthias; Sühnel, Jürgen; Witte, Otto W; Zarse, Kim; Ristow, Michael

    2015-12-01

    Ageing has been defined as a global decline in physiological function depending on both environmental and genetic factors. Here we identify gene transcripts that are similarly regulated during physiological ageing in nematodes, zebrafish and mice. We observe the strongest extension of lifespan when impairing expression of the branched-chain amino acid transferase-1 (bcat-1) gene in C. elegans, which leads to excessive levels of branched-chain amino acids (BCAAs). We further show that BCAAs reduce a LET-363/mTOR-dependent neuro-endocrine signal, which we identify as DAF-7/TGFβ, and that impacts lifespan depending on its related receptors, DAF-1 and DAF-4, as well as ultimately on DAF-16/FoxO and HSF-1 in a cell-non-autonomous manner. The transcription factor HLH-15 controls and epistatically synergizes with BCAT-1 to modulate physiological ageing. Lastly and consistent with previous findings in rodents, nutritional supplementation of BCAAs extends nematodal lifespan. Taken together, BCAAs act as periphery-derived metabokines that induce a central neuro-endocrine response, culminating in extended healthspan.

  7. Branched-chain amino acid catabolism is a conserved regulator of physiological ageing

    PubMed Central

    Mansfeld, Johannes; Urban, Nadine; Priebe, Steffen; Groth, Marco; Frahm, Christiane; Hartmann, Nils; Gebauer, Juliane; Ravichandran, Meenakshi; Dommaschk, Anne; Schmeisser, Sebastian; Kuhlow, Doreen; Monajembashi, Shamci; Bremer-Streck, Sibylle; Hemmerich, Peter; Kiehntopf, Michael; Zamboni, Nicola; Englert, Christoph; Guthke, Reinhard; Kaleta, Christoph; Platzer, Matthias; Sühnel, Jürgen; Witte, Otto W.; Zarse, Kim; Ristow, Michael

    2015-01-01

    Ageing has been defined as a global decline in physiological function depending on both environmental and genetic factors. Here we identify gene transcripts that are similarly regulated during physiological ageing in nematodes, zebrafish and mice. We observe the strongest extension of lifespan when impairing expression of the branched-chain amino acid transferase-1 (bcat-1) gene in C. elegans, which leads to excessive levels of branched-chain amino acids (BCAAs). We further show that BCAAs reduce a LET-363/mTOR-dependent neuro-endocrine signal, which we identify as DAF-7/TGFβ, and that impacts lifespan depending on its related receptors, DAF-1 and DAF-4, as well as ultimately on DAF-16/FoxO and HSF-1 in a cell-non-autonomous manner. The transcription factor HLH-15 controls and epistatically synergizes with BCAT-1 to modulate physiological ageing. Lastly and consistent with previous findings in rodents, nutritional supplementation of BCAAs extends nematodal lifespan. Taken together, BCAAs act as periphery-derived metabokines that induce a central neuro-endocrine response, culminating in extended healthspan. PMID:26620638

  8. ["Long-branch Attraction" artifact in phylogenetic reconstruction].

    PubMed

    Li, Yi-Wei; Yu, Li; Zhang, Ya-Ping

    2007-06-01

    Phylogenetic reconstruction among various organisms not only helps understand their evolutionary history but also reveal several fundamental evolutionary questions. Understanding of the evolutionary relationships among organisms establishes the foundation for the investigations of other biological disciplines. However, almost all the widely used phylogenetic methods have limitations which fail to eliminate systematic errors effectively, preventing the reconstruction of true organismal relationships. "Long-branch Attraction" (LBA) artifact is one of the most disturbing factors in phylogenetic reconstruction. In this review, the conception and analytic method as well as the avoidance strategy of LBA were summarized. In addition, several typical examples were provided. The approach to avoid and resolve LBA artifact has been discussed.

  9. Factors that Affect Operational Reliability of Turbojet Engines

    NASA Technical Reports Server (NTRS)

    1956-01-01

    The problem of improving operational reliability of turbojet engines is studied in a series of papers. Failure statistics for this engine are presented, the theory and experimental evidence on how engine failures occur are described, and the methods available for avoiding failure in operation are discussed. The individual papers of the series are Objectives, Failure Statistics, Foreign-Object Damage, Compressor Blades, Combustor Assembly, Nozzle Diaphrams, Turbine Buckets, Turbine Disks, Rolling Contact Bearings, Engine Fuel Controls, and Summary Discussion.

  10. Computational models of airway branching morphogenesis.

    PubMed

    Varner, Victor D; Nelson, Celeste M

    2017-07-01

    The bronchial network of the mammalian lung consists of millions of dichotomous branches arranged in a highly complex, space-filling tree. Recent computational models of branching morphogenesis in the lung have helped uncover the biological mechanisms that construct this ramified architecture. In this review, we focus on three different theoretical approaches - geometric modeling, reaction-diffusion modeling, and continuum mechanical modeling - and discuss how, taken together, these models have identified the geometric principles necessary to build an efficient bronchial network, as well as the patterning mechanisms that specify airway geometry in the developing embryo. We emphasize models that are integrated with biological experiments and suggest how recent progress in computational modeling has advanced our understanding of airway branching morphogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Enzymes involved in branched-chain amino acid metabolism in humans.

    PubMed

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  12. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  13. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  14. Three ancient hormonal cues co-ordinate shoot branching in a moss.

    PubMed

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-03-25

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.

  15. Three ancient hormonal cues co-ordinate shoot branching in a moss

    PubMed Central

    Coudert, Yoan; Palubicki, Wojtek; Ljung, Karin; Novak, Ondrej; Leyser, Ottoline; Harrison, C Jill

    2015-01-01

    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport. DOI: http://dx.doi.org/10.7554/eLife.06808.001 PMID:25806686

  16. Oscillating side-branch enhancements of thermoacoustic heat exchangers

    DOEpatents

    Swift, Gregory W.

    2003-05-13

    A regenerator-based engine or refrigerator has a regenerator with two ends at two different temperatures, through which a gas oscillates at a first oscillating volumetric flow rate in the direction between the two ends and in which the pressure of the gas oscillates, and first and second heat exchangers, each of which is at one of the two different temperatures. A dead-end side branch into which the gas oscillates has compliance and is connected adjacent to one of the ends of the regenerator to form a second oscillating gas flow rate additive with the first oscillating volumetric flow rate, the compliance having a volume effective to provide a selected total oscillating gas volumetric flow rate through the first heat exchanger. This configuration enables the first heat exchanger to be configured and located to better enhance the performance of the heat exchanger rather than being confined to the location and configuration of the regenerator.

  17. [The role of branched-chain amino acids metabolism in development of cardiovascular diseases and its risk factors].

    PubMed

    Lyzohub, V H; Zaval's'ka, T V; Savchenko, O V; Tyravs'ka, Iu V

    2013-01-01

    Branched-chain amino acids play the key role in many metabolism processes in organism generally and in cardiovascular protection. It was discovered its importance in mitochondrial biogenesis, antioxidant and antiaging processes, its antihypertension and antiarrhythmic effects, its role in obesity and diabetes mellitus.

  18. Motivational Factors of Professional Engineers and Non-Professional Engineers in Applying for License as Professional Engineer: A Comparative Study

    ERIC Educational Resources Information Center

    Khamis, Nor Kamaliana; Harun, Zambri; Tahir, Mohd Faizal Mat; Wahid, Zaliha; Sabri, Mohd Anas Mohd

    2013-01-01

    All engineering faculties in Malaysia are required to have at least three academics who have engineering competency for each program. Having an engineering competency means academics has obtained the compulsory endorsements from the Boards of Engineers, Malaysia, BEM. Upon approval, academics seeking such competency could carry the suffix Ir. to…

  19. Automated branching pattern report generation for laparoscopic surgery assistance

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Matsuzaki, Tetsuro; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku

    2015-05-01

    This paper presents a method for generating branching pattern reports of abdominal blood vessels for laparoscopic gastrectomy. In gastrectomy, it is very important to understand branching structure of abdominal arteries and veins, which feed and drain specific abdominal organs including the stomach, the liver and the pancreas. In the real clinical stage, a surgeon creates a diagnostic report of the patient anatomy. This report summarizes the branching patterns of the blood vessels related to the stomach. The surgeon decides actual operative procedure. This paper shows an automated method to generate a branching pattern report for abdominal blood vessels based on automated anatomical labeling. The report contains 3D rendering showing important blood vessels and descriptions of branching patterns of each vessel. We have applied this method for fifty cases of 3D abdominal CT scans and confirmed the proposed method can automatically generate branching pattern reports of abdominal arteries.

  20. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.

    PubMed

    Font Tellado, Sonia; Balmayor, Elizabeth R; Van Griensven, Martijn

    2015-11-01

    Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Molecular basis of branched peptides resistance to enzyme proteolysis.

    PubMed

    Falciani, Chiara; Lozzi, Luisa; Pini, Alessandro; Corti, Federico; Fabbrini, Monica; Bernini, Andrea; Lelli, Barbara; Niccolai, Neri; Bracci, Luisa

    2007-03-01

    We found that synthetic peptides in the form of dendrimers become resistant to proteolysis. To determine the molecular basis of this resistance, different bioactive peptides were synthesized in monomeric, two-branched and tetra-branched form and incubated with human plasma and serum. Proteolytic resistance of branched multimeric sequences was compared to that of the same peptides synthesized as multimeric linear molecules. Unmodified peptides and cleaved sequences were detected by high pressure liquid chromatography and mass spectrometry. An increase in peptide copies did not increase peptide resistance in linear multimeric sequences, whereas multimericity progressively enhanced proteolytic stability of branched multimeric peptides. A structure-based hypothesis of branched peptide resistance to proteolysis by metallopeptidases is presented.

  2. 47 CFR 32.6341 - Large private branch exchange expense.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Large private branch exchange expense. 32.6341... Large private branch exchange expense. This account shall include expenses associated with large private branch exchanges. Expenses associated with company internal use communication equipment shall be recorded...

  3. SPL13 regulates shoot branching and flowering time in Medicago sativa.

    PubMed

    Gao, Ruimin; Gruber, Margaret Y; Amyot, Lisa; Hannoufa, Abdelali

    2018-01-01

    Our results show SPL13 plays a crucial role in regulating vegetative and reproductive development in Medicago sativa L. (alfalfa), and that MYB112 is targeted and downregulated by SPL13 in alfalfa. We previously showed that transgenic Medicago sativa (alfalfa) plants overexpressing microRNA156 (miR156) show a bushy phenotype, reduced internodal length, delayed flowering time, and enhanced biomass yield. In alfalfa, transcripts of seven SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, including SPL13, are targeted for cleavage by miR156. Thus, association of each target SPL gene to a trait or set of traits is essential for developing molecular markers for alfalfa breeding. In this study, we investigated SPL13 function using SPL13 overexpression and silenced alfalfa plants. Severe growth retardation, distorted branches and up-curled leaves were observed in miR156-impervious 35S::SPL13m over-expression plants. In contrast, more lateral branches and delayed flowering time were observed in SPL13 silenced plants. SPL13 transcripts were predominantly present in the plant meristems, indicating that SPL13 is involved in regulating shoot branch development. Accordingly, the shoot branching-related CAROTENOID CLEAVAGE DIOXYGENASE 8 gene was found to be significantly downregulated in SPL13 RNAi silencing plants. A R2R3-MYB gene MYB112 was also identified as being directly silenced by SPL13 based on Next Generation Sequencing-mediated transcriptome analysis and chromatin immunoprecipitation assays, suggesting that MYB112 may be involved in regulating alfalfa vegetative growth.

  4. Modal test of Shuttle engine nozzle

    NASA Technical Reports Server (NTRS)

    Johnston, G. D.; Coleman, A. D.

    1983-01-01

    A structural failure occurred on the main propulsion test stand at NSTL causing a hydrogen fire and damage to the engines to be used on the Orbiter Columbia. Scattered accelerometer measurements indicated very high response levels at 254 hertz and 311 hertz. The Engine Office at MSFC asked the Dynamics Test Branch to try and find out what caused the failure. All three nozzles were sent to Huntsville for testing. Modal test data revealed very quickly how the failure occurred in the steerhorn and also pointed out two other structural problems. A complete set of data is presented along with a narrative explanation of the steps taken to identify and verify the structural problem.

  5. Synthetic heparin-binding factor analogs

    DOEpatents

    Pena, Louis A [Poquott, NY; Zamora, Paul O [Gaithersburg, MD; Lin, Xinhua [Plainview, NY; Glass, John D [Shoreham, NY

    2010-04-20

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain, and preferably two peptide chains branched from a dipeptide branch moiety composed of two trifunctional amino acid residues, which peptide chain or chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a linker, which may be a hydrophobic linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  6. Structural Dynamics Branch research and accomplishments for FY 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Presented here is a collection of FY 1990 research highlights from the Structural Dynamics Branch at the NASA Lewis Research Center. Highlights are from the branch's major work areas: aeroelasticity, vibration control, dynamic systems, and computational structural methods. A listing is given of FY 1990 branch publications.

  7. Topological analysis of long-chain branching patterns in polyolefins.

    PubMed

    Bonchev, D; Markel, E; Dekmezian, A

    2001-01-01

    Patterns in molecular topology and complexity for long-chain branching are quantitatively described. The Wiener number, the topological complexity index, and a new index of 3-starness are used to quantify polymer structure. General formulas for these indices were derived for the cases of 3-arm star, H-shaped, and B-arm comb polymers. The factors affecting complexity in monodisperse polymer systems are ranked as follows: number of arms > arm length > arm central position approximately equal to arm clustering > total molecular weight approximately equal to backbone molecular weight. Topological indices change rapidly and then plateau as the molecular weight of branches on a polyolefin backbone increases from 0 to 5 kD. Complexity calculations relate 2-arm or 3-arm comb structures to the corresponding 3-arm stars of equivalent complexity but much higher molecular weight. In a subsequent paper, we report the application of topological analysis for developing structure/property relationships for monodisperse polymers. While the focus of the present work is on the description of monodisperse, well-defined architectures, the methods may be extended to the description of polydisperse systems.

  8. Water-quality reconnaissance of the Middle and North Branch Park River watersheds, northeastern North Dakota

    USGS Publications Warehouse

    Ackerman, D.J.

    1980-01-01

    In order to design a network to monitor the effects of works of improvement in the Middle and North Branch Park River watersheds, and to determine the major factors controlling water-quality conditions in the watersheds, an evaluation of sediment transport, water chemistry, and biology was conducted during the spring and early summer of 1978.Major factors controlling water quality are geology, stream gradient, ground-water seepage, and the duration of streamflow.Sediment loads originate on the Pembina Escarpment. The coarse silt and sand parts of these loads are deposited on the Lake Agassiz Plain. Transport of sediment is lowered and flow duration is increased on the Middle Branch Park River due to the presence of small dams. Observations suggest that bedload transport is a significant process, particularly in the upstream reaches. However, no quantitative bedload data were collected.During periods of low flow, analyses of water from the rivers in both watersheds show downstream increases in sodium and chloride due to ground-water seepage or the unregulated flow of wells. Diversity of benthic invertebrates indicates water-quality conditions are better on the Middle Branch Park River than on the North Branch, and are better at upstream sites than at downstream sites. A program through which the Soil Conservation Service can monitor the effects of present and future works of improvement on the watersheds was designed. The monitoring program consists of intensive sampling at four locations for sediment and water chemistry during spring and early summer runoff events and by profiles of water chemistry during summer base runoff.

  9. Differential Effects of RET and TRKB on Axonal Branching and Survival of Parasympathetic Neurons

    PubMed Central

    Simpson, Julie; Keefe, Julie; Nishi, Rae

    2014-01-01

    Interactions between neurons and their targets of innervation influence many aspects of neural development. To examine how synaptic activity interacts with neurotrophic signaling, we determined the effects of blocking neuromuscular transmission on survival and axonal outgrowth of ciliary neurons from the embryonic chicken ciliary ganglion. Ciliary neurons undergo a period of cell loss due to programmed cell death between embryonic Days (E) 8 and 14 and they innervate the striated muscle of the iris. The nicotinic antagonist d-tubocurarine (dTC) induces an increase in branching measured by counting neurofilament-positive voxels (NF-VU) in the iris between E14–17 while reducing ciliary neuron survival. Blocking ganglionic transmission with dihyro-β-erythroidin and α-methyllycacontine does not mimic dTC. At E8, many trophic factors stimulate neurite outgrowth and branching of neurons placed in cell culture; however, at E13, only GDNF stimulates branching selectively in cultured ciliary neurons. The GDNF-induced branching at E13 could be inhibited by BDNF. Blocking ret signaling in vivo with a dominant negative (dn)ret decreases survival of ciliary and choroid neurons at E14 and prevents dTC induced increases in NF-VU in the iris at E17. Blocking TRKB signaling with dn TRKB increases NF-VU in the iris at E17 and decreases neuronal survival at E17, but not at E14. Thus, RET promotes survival during programmed cell death in the ciliary ganglion and contributes to promoting branching when synaptic transmission is blocked while TRKB inhibits branching and promotes maintenance of neuronal survival. These studies highlight the multifunctional nature of trophic molecule function during neuronal development. PMID:22648743

  10. An Examination of Interconnectedness between U.S. International Branch Campuses and Their Host Countries

    ERIC Educational Resources Information Center

    Crombie-Borgos, Jill

    2013-01-01

    This qualitative study examines U. S. international branch campus (IBC) administrative leadership structures and the interconnections they have to their respective host countries. While several factors concerning the sustainability of IBCs have been cited, this study introduces "leadership networks" to the discourse on IBC…

  11. Fluoropolymer Dynamics: Effects of Perfluoromethyl Branches

    NASA Astrophysics Data System (ADS)

    Eby, R. K.; Holt, D. B.; Farmer, B. L.; Adams, D. D.

    1997-03-01

    Previous simulations of polytetrafluoroethylene (PTFE) in the solid state showed that the interaction and movement of helix reversals plays an important role in the dynamic behavior of this important polymer. Copolymers of TFE and hexafluoropropylene (HFP), which can be viewed as PTFE with perfluoromethyl (PFM) group branch defects, is also widely used. Molecular mechanics and dynamics calculations have been performed with PTFE chain clusters containing PFM branches to investigate the effect of these defects on the local crystalline environment (and vice versa) and on the motions and interactions of helix reversals. Initial results indicate that helix reversals are attracted to sites of PFM branches in a chain. Such an interaction will impede the motions of helix reversals and have an impact on macroscopic mechanical properties such as resistance to plastic deformation under shear.

  12. Multidisciplinary Optimization Branch Experience Using iSIGHT Software

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Korte, J. J.; Dunn, H. J.; Salas, A. O.

    1999-01-01

    The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. An optimization framework call improve the design process while reducing time and costs. A framework provides software and system services to integrate computational tasks and allows the researcher to concentrate more on the application and less on the programming details. A framework also provides a common working environment and a full range of optimization tools, and so increases the productivity of multidisciplinary research teams. Finally, a framework enables staff members to develop applications for use by disciplinary experts in other organizations. Since the release of version 4.0, the MDO Branch has gained experience with the iSIGHT framework developed by Engineous Software, Inc. This paper describes experiences with four aerospace applications: (1) reusable launch vehicle sizing, (2) aerospike nozzle design, (3) low-noise rotorcraft trajectories, and (4) acoustic liner design. All applications have been successfully tested using the iSIGHT framework, except for the aerospike nozzle problem, which is in progress. Brief overviews of each problem are provided. The problem descriptions include the number and type of disciplinary codes, as well as all estimate of the multidisciplinary analysis execution time. In addition, the optimization methods, objective functions, design variables, and design constraints are described for each problem. Discussions on the experience gained and lessons learned are provided for each problem. These discussions include the advantages and disadvantages of using the iSIGHT framework for each case as well as the ease of use of various advanced features. Potential areas of improvement are identified.

  13. Critical needs for piston engine overhaul centre in Malaysia

    NASA Astrophysics Data System (ADS)

    Khairuddin, M. H.; Yahya, M. Y.; Johari, M. K.

    2017-12-01

    Piston engine overhaul centre (PEOC) is the branch of aviation Maintenance, Repair and Overhaul (MRO) providers, which plays a pivotal role in maintaining the fleet of business and commercial aircraft in the world. The centre typically offers three main MRO capabilities: airframe, engine and component services. Companies holding a PEOC(s) are all subjected to stringent procedures and conditions regulated and audited by the International Civil Aviation Organization. Currently, piston engine maintenance and repair for Asian countries is conducted only in Singapore. The focus of this study is to establish the needs for a PEOC in Malaysia, which will cater almost all small local aircraft companies such as transport and flying school companies.

  14. AmeriFlux US-WBW Walker Branch Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, Tilden

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-WBW Walker Branch Watershed. Site Description - The stand is over 50 years old, having regenerated from agricultural land.This site is located near Oak Ridge, Tennessee near the Walker Branch Watershed.

  15. Radioiodinated branched carbohydrates

    DOEpatents

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1989-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  16. 20 CFR 422.5 - District offices and branch offices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... office is the manager. The principal officer in each branch office is the officer-in-charge. Each... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false District offices and branch offices. 422.5... and Functions of the Social Security Administration § 422.5 District offices and branch offices. There...

  17. 20 CFR 422.5 - District offices and branch offices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... office is the manager. The principal officer in each branch office is the officer-in-charge. Each... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false District offices and branch offices. 422.5... and Functions of the Social Security Administration § 422.5 District offices and branch offices. There...

  18. 20 CFR 422.5 - District offices and branch offices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false District offices and branch offices. 422.5... and Functions of the Social Security Administration § 422.5 District offices and branch offices. There are over 700 social security district offices and branch offices located in the principal cities and...

  19. Mass loss during the RR Lyrae phase of the horizontal branch: Mass dispersion on the horizontal branch and RR Lyrae period changes

    NASA Technical Reports Server (NTRS)

    Koopmann, Rebecca A.; Lee, Young-Wook; Demarque, Pierre; Howard, Jamie M.

    1994-01-01

    Mass loss on the horizontal branch has been invoked in the literature to explain such phenomena as the color (mass) dispersion of the horizontal branch and the observed distribution of period changes in RR Lyrae stars. To test these claims, the Yale stellar evolution code was used to evolve horizontal branch models of masses 0.64, 0.66, 0.68, 0.70, and 0.72 solar mass with Z of 0.001, core mass of 0.4893, main-sequence helium abundance of 0.23, and constant mass loss rates of 0, 10(exp -10), 5 x 10(exp -10), and 10(exp -9) solar mass/yr. Mass loss was assumed to occur only in the instability strip, where a mechanism is most likely to exist. Synthetic horizontal branches, constructed from the models, show that mass loss on the horizontal branch cannot produce the observed color dispersion even for the highest mass-loss rate of 10(exp -9) solar mass/yr. Mass loss is unlikely to occur at a higher rate without significant effects on the horizontal branch morphology, which would destroy the good agreement between standard synthetic models without mass loss and observed horizontal branches. Periods and period changes were calculated for all models. The period changes are not significantly larger for models with mass loss. The effect of mass loss in clusters of other metallicities is discussed.

  20. Air Force Civil Engineer, Winter 2001, Volume 9, Number 4

    DTIC Science & Technology

    2001-01-01

    we don’t mind the TDYs, provided Colombian guerillas keep their distance,” said Coby Davis, Real Estate Branch chief. A heavy TDY commitment is just...The Civil Engineer HQ AFSPC Brackett, James S. (sel) Peterson AFB Chief, Programs Division ODUSD/I&E Bradshaw, Joel C. III Pentagon Chief, Air Force

  1. Pathway of actin filament branch formation by Arp2/3 complex revealed by single-molecule imaging

    PubMed Central

    Smith, Benjamin A.; Daugherty-Clarke, Karen; Goode, Bruce L.; Gelles, Jeff

    2013-01-01

    Actin filament nucleation by actin-related protein (Arp) 2/3 complex is a critical process in cell motility and endocytosis, yet key aspects of its mechanism are unknown due to a lack of real-time observations of Arp2/3 complex through the nucleation process. Triggered by the verprolin homology, central, and acidic (VCA) region of proteins in the Wiskott-Aldrich syndrome protein (WASp) family, Arp2/3 complex produces new (daughter) filaments as branches from the sides of preexisting (mother) filaments. We visualized individual fluorescently labeled Arp2/3 complexes dynamically interacting with and producing branches on growing actin filaments in vitro. Branch formation was strikingly inefficient, even in the presence of VCA: only ∼1% of filament-bound Arp2/3 complexes yielded a daughter filament. VCA acted at multiple steps, increasing both the association rate of Arp2/3 complexes with mother filament and the fraction of filament-bound complexes that nucleated a daughter. The results lead to a quantitative kinetic mechanism for branched actin assembly, revealing the steps that can be stimulated by additional cellular factors. PMID:23292935

  2. Persistence Factors Associated with First-Year Engineering Technology Learners

    ERIC Educational Resources Information Center

    Christe, Barbara

    2015-01-01

    Engineering technology learners are understudied group that comprise the "T" of the science, technology, engineering, and mathematics disciplines. Attrition from engineering technology majors is a profound and complex challenge, as substantially less than half of students who begin an engineering technology major persist through the…

  3. Vertical profile of branch CO2 efflux in a Norway spruce tree: a case study

    NASA Astrophysics Data System (ADS)

    Acosta, M.; Pavelka, M.

    2012-04-01

    Despite woody-tissue CO2 effluxes having been recognized as an important component of forest carbon budget due to the fraction of assimilates used and the dramatic increase in woody with stand development, there is limited research to determine the CO2 efflux vertical variability of woody-tissue components. For a better understanding and quantification of branch woody-tissue CO2 efflux in forest ecosystems, it is necessary to identify the environmental factors influencing it and the role of the branch distribution within the canopy. The proper assessment of this forest component will improve the knowledge of the ratio between ecosystem respiration and gross primary production at forest ecosystem. In order to achieve this goal, branch CO2 efflux of Norway spruce tree was measured in ten branches at five different whorls during the growing season 2004 (from June till October) in campaigns of 3-4 times per month at the Beskydy Mts., the Czech Republic, using a portable infrared gas analyzer operating as a closed system. Branch woody tissue temperature was measured continuously in ten minutes intervals for each sample position during the whole experiment period. On the basis of relation between CO2 efflux rate and woody tissue temperature a value of Q10 and normalized CO2 efflux rate (E10 - CO2 efflux rate at 10° C) were calculated for each sampled position. Estimated Q10 values ranged from 2.12 to 2.89 and E10 ranged from 0.41 to 1.19 ?molCO2m-2 s-1. Differences in branch CO2 efflux were found between orientations; East side branches presented higher efflux rate than west side branches. The highest branch CO2 efflux rate values were measured in August and the lowest in October, which were connected with woody tissue temperature and ontogenetic processes during these periods. Branch CO2 efflux was significantly and positively correlated with branch position within canopy and woody tissue temperature. Branches from the upper whorls showed higher respiration activity

  4. Structural dynamics branch research and accomplishments to FY 1992

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1992-01-01

    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.

  5. BPP: a sequence-based algorithm for branch point prediction.

    PubMed

    Zhang, Qing; Fan, Xiaodan; Wang, Yejun; Sun, Ming-An; Shao, Jianlin; Guo, Dianjing

    2017-10-15

    Although high-throughput sequencing methods have been proposed to identify splicing branch points in the human genome, these methods can only detect a small fraction of the branch points subject to the sequencing depth, experimental cost and the expression level of the mRNA. An accurate computational model for branch point prediction is therefore an ongoing objective in human genome research. We here propose a novel branch point prediction algorithm that utilizes information on the branch point sequence and the polypyrimidine tract. Using experimentally validated data, we demonstrate that our proposed method outperforms existing methods. Availability and implementation: https://github.com/zhqingit/BPP. djguo@cuhk.edu.hk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Measurement of prominent eta-decay branching fractions.

    PubMed

    Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Ecklund, K M; Severini, H; Love, W; Savinov, V

    2007-09-21

    The decay psi(2S) --> etaJ/psi is used to measure, for the first time, all prominent eta-meson branching fractions with the same experiment in the same dataset, thereby providing a consistent treatment of systematics across branching fractions. We present results for eta decays to gamma gamma, pi(+)pi(-)pi(0), 3pi(0), pi(+)pi(-)gamma and e(+)e(-)gamma, accounting for 99.9% of all eta decays. The precision of several of the branching fractions and their ratios is improved. Two channels, pi(+)pi(-)gamma and e(+)e(-)gamma, show results that differ at the level of three standard deviations from those previously determined.

  7. Measurement of Prominent η-Decay Branching Fractions

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Mehrabyan, S.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Menaa, N.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sia, R.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.; Adam, N. E.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Ernst, J.; Ecklund, K. M.; Severini, H.; Love, W.; Savinov, V.

    2007-09-01

    The decay ψ(2S)→ηJ/ψ is used to measure, for the first time, all prominent η-meson branching fractions with the same experiment in the same dataset, thereby providing a consistent treatment of systematics across branching fractions. We present results for η decays to γγ, π+π-π0, 3π0, π+π-γ and e+e-γ, accounting for 99.9% of all η decays. The precision of several of the branching fractions and their ratios is improved. Two channels, π+π-γ and e+e-γ, show results that differ at the level of three standard deviations from those previously determined.

  8. Uncertainty and probability for branching selves

    NASA Astrophysics Data System (ADS)

    Lewis, Peter J.

    Everettian accounts of quantum mechanics entail that people branch; every possible result of a measurement actually occurs, and I have one successor for each result. Is there room for probability in such an account? The prima facie answer is no; there are no ontic chances here, and no ignorance about what will happen. But since any adequate quantum mechanical theory must make probabilistic predictions, much recent philosophical labor has gone into trying to construct an account of probability for branching selves. One popular strategy involves arguing that branching selves introduce a new kind of subjective uncertainty. I argue here that the variants of this strategy in the literature all fail, either because the uncertainty is spurious, or because it is in the wrong place to yield probabilistic predictions. I conclude that uncertainty cannot be the ground for probability in Everettian quantum mechanics.

  9. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  10. Dynamics of pulsatile flow in fractal models of vascular branching networks.

    PubMed

    Bui, Anh; Sutalo, Ilija D; Manasseh, Richard; Liffman, Kurt

    2009-07-01

    Efficient regulation of blood flow is critically important to the normal function of many organs, especially the brain. To investigate the circulation of blood in complex, multi-branching vascular networks, a computer model consisting of a virtual fractal model of the vasculature and a mathematical model describing the transport of blood has been developed. Although limited by some constraints, in particular, the use of simplistic, uniformly distributed model for cerebral vasculature and the omission of anastomosis, the proposed computer model was found to provide insights into blood circulation in the cerebral vascular branching network plus the physiological and pathological factors which may affect its functionality. The numerical study conducted on a model of the middle cerebral artery region signified the important effects of vessel compliance, blood viscosity variation as a function of the blood hematocrit, and flow velocity profile on the distributions of flow and pressure in the vascular network.

  11. The futures of climate engineering

    NASA Astrophysics Data System (ADS)

    Low, Sean

    2017-01-01

    This piece examines the need to interrogate the role of the conceptions of the future, as embedded in academic papers, policy documents, climate models, and other artifacts that serve as currencies of the science-society interface, in shaping scientific and policy agendas in climate engineering. Growing bodies of work on framings, metaphors, and models in the past decade serve as valuable starting points, but can benefit from integration with science and technology studies work on the sociology of expectations, imaginaries, and visions. Potentially valuable branches of work to come might be the anticipatory use of the future: the design of experimental spaces for exploring the future of an engineered climate in service of responsible research and innovation, and the integration of this work within the unfolding context of the Paris Agreement.

  12. Dendrimers and methods of preparing same through proportionate branching

    DOEpatents

    Yu, Yihua; Yue, Xuyi

    2015-09-15

    The present invention provides for monodispersed dendrimers having a core, branches and periphery ends, wherein the number of branches increases exponentially from the core to the periphery end and the length of the branches increases exponentially from the periphery end to the core, thereby providing for attachment of chemical species at the periphery ends without exhibiting steric hindrance.

  13. Short branches lead to systematic artifacts when BLAST searches are used as surrogate for phylogenetic reconstruction.

    PubMed

    Dick, Amanda A; Harlow, Timothy J; Gogarten, J Peter

    2017-02-01

    Long Branch Attraction (LBA) is a well-known artifact in phylogenetic reconstruction when dealing with branch length heterogeneity. Here we show another phenomenon, Short Branch Attraction (SBA), which occurs when BLAST searches, a phenetic analysis, are used as a surrogate method for phylogenetic analysis. This error also results from branch length heterogeneity, but this time it is the short branches that are attracting. The SBA artifact is reciprocal and can be returned 100% of the time when multiple branches differ in length by a factor of more than two. SBA is an intended feature of BLAST searches, but becomes an issue, when top scoring BLAST hit analyses are used to infer Horizontal Gene Transfers (HGTs), assign taxonomic category with environmental sequence data in phylotyping, or gather homologous sequences for building gene families. SBA can lead researchers to believe that there has been a HGT event when only vertical descent has occurred, cause slowly evolving taxa to be over-represented and quickly evolving taxa to be under-represented in phylotyping, or systematically exclude quickly evolving taxa from analyses. SBA also contributes to the changing results of top scoring BLAST hit analyses as the database grows, because more slowly evolving taxa, or short branches, are added over time, introducing more potential for SBA. SBA can be detected by examining reciprocal best BLAST hits among a larger group of taxa, including the known closest phylogenetic neighbors. Therefore, one should look for this phenomenon when conducting best BLAST hit analyses as a surrogate method to identify HGTs, in phylotyping, or when using BLAST to gather homologous sequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Enrolling in Science and Engineering Academic Programs—Motivating and Deterring Factors

    NASA Astrophysics Data System (ADS)

    Pomazan, Valentina; Mihalaşcu, Doina; Petcu, Lucian C.; Gîrtu, Mihai A.

    2010-01-01

    We report the results of the student responses to a survey aiming to determine the factors influencing the young generation in choosing a career in science and technology. The goal of the study is twofold: to identify the motives that determine students to enroll in university programs in science and technology and to engage in applied science and engineering careers and to discover the barriers that manifest at different age levels, preventing students from making such choices. The study was conducted at the Ovidius University and the "Energetic" Technical High School, both in Constanta, Romania, with samples of 257 and 106 students respectively, based on a 38 item online questionnaire. The samples selected from the student population allow for a wide range of analyses with respect to gender, family and educational background, field of study, etc. We discuss the role of the raw models, parents, educators, and we comment on ways to increase student enrollment in science and engineering.

  15. On extreme events for non-spatial and spatial branching Brownian motions

    NASA Astrophysics Data System (ADS)

    Avan, Jean; Grosjean, Nicolas; Huillet, Thierry

    2015-04-01

    We study the impact of having a non-spatial branching mechanism with infinite variance on some parameters (height, width and first hitting time) of an underlying Bienaymé-Galton-Watson branching process. Aiming at providing a comparative study of the spread of an epidemics whose dynamics is given by the modulus of a branching Brownian motion (BBM) we then consider spatial branching processes in dimension d, not necessarily integer. The underlying branching mechanism is either a binary branching model or one presenting infinite variance. In particular we evaluate the chance p(x) of being hit if the epidemics started away at distance x. We compute the large x tail probabilities of this event, both when the branching mechanism is regular and when it exhibits very large fluctuations.

  16. Causes and risk factors for fatal accidents in non-commercial twin engine piston general aviation aircraft.

    PubMed

    Boyd, Douglas D

    2015-04-01

    Accidents in twin-engine aircraft carry a higher risk of fatality compared with single engine aircraft and constitute 9% of all general aviation accidents. The different flight profile (higher airspeed, service ceiling, increased fuel load, and aircraft yaw in engine failure) may make comparable studies on single-engine aircraft accident causes less relevant. The objective of this study was to identify the accident causes for non-commercial operations in twin engine aircraft. A NTSB accident database query for accidents in twin piston engine airplanes of 4-8 seat capacity with a maximum certified weight of 3000-8000lbs. operating under 14CFR Part 91 for the period spanning 2002 and 2012 returned 376 accidents. Accident causes and contributing factors were as per the NTSB final report categories. Total annual flight hour data for the twin engine piston aircraft fleet were obtained from the FAA. Statistical analyses employed Chi Square, Fisher's Exact and logistic regression analysis. Neither the combined fatal/non-fatal accident nor the fatal accident rate declined over the period spanning 2002-2012. Under visual weather conditions, the largest number, n=27, (27%) of fatal accidents was attributed to malfunction with a failure to follow single engine procedures representing the most common contributing factor. In degraded visibility, poor instrument approach procedures resulted in the greatest proportion of fatal crashes. Encountering thunderstorms was the most lethal of all accident causes with all occupants sustaining fatal injuries. At night, a failure to maintain obstacle/terrain clearance was the most common accident cause leading to 36% of fatal crashes. The results of logistic regression showed that operations at night (OR 3.7), off airport landings (OR 14.8) and post-impact fire (OR 7.2) all carried an excess risk of a fatal flight. This study indicates training areas that should receive increased emphasis for twin-engine training/recency. First, increased

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VIII. ENGINE COMPONENTS--PART I.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF DIESEL ENGINE CYLINDER HEADS AND CYLINDER ASSEMBLIES. TOPICS ARE CYLINDER ASSEMBLY (LINERS), CYLINDER HEADS, VALVES AND VALVE MECHANISMS, AND PISTON AND PISTON RINGS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  18. Branch architecture in Ginkgo biloba: wood anatomy and long shoot-short shoot interactions.

    PubMed

    Little, Stefan A; Jacobs, Brooke; McKechnie, Steven J; Cooper, Ranessa L; Christianson, Michael L; Jernstedt, Judith A

    2013-10-01

    Ginkgo, centrally placed in seed plant phylogeny, is considered important in many phylogenetic and evolutionary studies. Shoot dimorphism of Ginkgo has been long noted, but no work has yet been done to evaluate the relationships between overall branch architecture and wood ring characters, shoot growth, and environmental conditions. • Branches, sampled from similar canopy heights, were mapped with the age of each long shoot segment determined by counting annual leaf-scar series on its short shoots. Transverse sections were made for each long shoot segment and an adjacent short shoot; wood ring thickness, number of rings, and number of tracheids/ring were determined. Using branch maps, we identified wood rings for each long shoot segment to year and developmental context of each year (distal short shoot growth only vs. at least one distal long shoot). Climate data were also analyzed in conjunction with developmental context. • Significantly thicker wood rings occur in years with distal long shoot development. The likelihood that a branch produced long shoots in a given year was lower with higher maximum annual temperature. Annual maximum temperature was negatively correlated with ring thickness in microsporangiate trees only. Annual minimum temperatures were correlated differently with ring thickness of megasporangiate and microsporangiate trees, depending on the developmental context. There were no significant effects associated with precipitation. • Overall, developmental context alone predicts wood ring thickness about as well as models that include temperature. This suggests that although climatic factors may be strongly correlated with wood ring data among many gymnosperm taxa, at least for Ginkgo, correlations with climate data are primarily due to changes in proportions of shoot developmental types (LS vs. SS) across branches.

  19. Avoiding Steric Congestion in Dendrimer Growth through Proportionate Branching. A Twist on da Vinci's Rule of Tree Branching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Xuyi; Taraban, Marc B.; Hyland, Laura L.

    2012-10-05

    In making defect-free macromolecules, the challenge occurs during chemical synthesis. This challenge is especially pronounced in dendrimer synthesis where exponential growth quickly leads to steric congestion. To overcome this difficulty, proportionate branching in dendrimer growth is proposed. In proportionate branching, both the number and the length of branches increase exponentially but in opposite directions to mimic tree growth. The effectiveness of this strategy is demonstrated through the synthesis of a fluorocarbon dendron containing 243 chemically identical fluorine atoms with a MW of 9082 Da. Monodispersity is confirmed by nuclear magnetic resonance spectroscopy, mass spectrometry, and small-angle X-ray scattering. Moreover, growingmore » different parts proportionately, as nature does, could be a general strategy to achieve defect-free synthesis of macromolecules.« less

  20. Chemical Engineering in the "BIO" World.

    PubMed

    Chiarappa, Gianluca; Grassi, Mario; Abrami, Michela; Abbiati, Roberto Andrea; Barba, Anna Angela; Boisen, Anja; Brucato, Valerio; Ghersi, Giulio; Caccavo, Diego; Cascone, Sara; Caserta, Sergio; Elvassore, Nicola; Giomo, Monica; Guido, Stefano; Lamberti, Gaetano; Larobina, Domenico; Manca, Davide; Marizza, Paolo; Tomaiuolo, Giovanna; Grassi, Gabriele

    2017-01-01

    Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Branch and foliage morphological plasticity in old-growth Thuja plicata.

    PubMed

    Edelstein, Zoe R; Ford, E David

    2003-07-01

    At the Wind River Canopy Crane Facility in southeastern Washington State, USA, we examined phenotypic variation between upper- and lower-canopy branches of old-growth Thuja plicata J. Donn ex D. Don (western red cedar). Lower-canopy branches were longer, sprouted fewer daughter branches per unit stem length and were more horizontal than upper-canopy branches. Thuja plicata holds its foliage in fronds, and these had less projected area per unit mass, measured by specific frond area, and less overlap, measured by silhouette to projected area ratio (SPARmax), in the lower canopy than in the upper canopy. The value of SPARmax, used as an indicator of sun and shade foliage in needle-bearing species, did not differ greatly between upper- and lower-canopy branches. We suggest that branching patterns, as well as frond structure, are important components of morphological plasticity in T. plicata. Our results imply that branches of old-growth T. plicata trees have a guerilla growth pattern, responding to changes in solar irradiance in a localized manner.

  2. Directing the Branching Growth of Cuprous Oxide by OH- Ions

    NASA Astrophysics Data System (ADS)

    Chen, Kunfeng; Si, Yunfei; Xue, Dongfeng

    The effect of OH- ions on the branching growth of cuprous oxide microcrystals was systematically studied by a reduction route, where copper-citrate complexes were reduced by glucose under alkaline conditions. Different copper salts including Cu(NO3)2, CuCl2, CuSO4, and Cu(Ac)2 were used in this work. The results indicate that the Cu2O branching growth habit is closely correlated to the concentration of OH- ions, which plays an important role in directing the diffusion-limited branching growth of Cu2O and influencing the reduction power of glucose. A variety of Cu2O branching patterns including 6-pod, 8-pod and 24-pod branches, have been achieved without using template and surfactant. The current method can provide a good platform for studying the growth mechanism of microcrystal branching patterns.

  3. ["Habitual" left branch block alternating with 2 "disguised" bracnch block].

    PubMed

    Lévy, S; Jullien, G; Mathieu, P; Mostefa, S; Gérard, R

    1976-10-01

    Two cases of alternating left bundle branch block and "masquerading block" (with left bundle branch morphology in the stnadard leads and right bundle branch block morphology in the precordial leads) were studied by serial tracings and his bundle electrocardiography. In case 1 "the masquerading" block was associated with a first degree AV block related to a prolongation of HV interval. This case is to our knowledge the first cas of alternating bundle branch block in which his bundle activity was recorded in man. In case 2, the patient had atrial fibrilation and His bundle recordings were performed while differents degrees of left bundle branch block were present: The mechanism of the alternation and the concept of "masquerading" block are discussed. It is suggested that this type of block represents a right bundle branch block associated with severe lesions of the "left system".

  4. Characterization of branch complexity by fractal analyses

    USGS Publications Warehouse

    Alados, C.L.; Escos, J.; Emlen, J.M.; Freeman, D.C.

    1999-01-01

    The comparison between complexity in the sense of space occupancy (box-counting fractal dimension D(c) and information dimension D1) and heterogeneity in the sense of space distribution (average evenness index f and evenness variation coefficient J(cv)) were investigated in mathematical fractal objects and natural branch structures. In general, increased fractal dimension was paired with low heterogeneity. Comparisons between branch architecture in Anthyllis cytisoides under different slope exposure and grazing impact revealed that branches were more complex and more homogeneously distributed for plants on northern exposures than southern, while grazing had no impact during a wet year. Developmental instability was also investigated by the statistical noise of the allometric relation between internode length and node order. In conclusion, our study demonstrated that fractal dimension of branch structure can be used to analyze the structural organization of plants, especially if we consider not only fractal dimension but also shoot distribution within the canopy (lacunarity). These indexes together with developmental instability analyses are good indicators of growth responses to the environment.

  5. Structural development of redwood branches and its effects on wood growth.

    PubMed

    Kramer, Russell D; Sillett, Stephen C; Carroll, Allyson L

    2014-03-01

    Redwood branches provide all the carbohydrates for the most carbon-heavy forests on Earth, and recent whole-tree measurements have quantified trunk growth rates associated with complete branch inventories. Providing all of a tree's photosynthetic capacity, branches represent an increasing proportion of total aboveground wood production as trees enlarge. To examine branch development and its effects on wood volume growth, we dissected 31 branches from eight Sequoia sempervirens (D. Don) Endl. and seven Sequoiadendron giganteum Lindl. trees. The cambium-area-to-leaf-area ratio was maintained with size and age but increased with light availability, whereas the heartwood-deposition-area-to-leaf-area ratio increased with size and age but was insensitive to light availability. The proportion of foliage mass arrayed in <1-cm-diameter epicormic shoots increased with decreasing light and was higher in Sequoia (20-60%) than in Sequoiadendron (3-16%). Well-illuminated branches concentrated leaves higher and distally, while shaded branches distributed leaves lower and proximally. In similar light environments, older branches distributed leaves lower and more proximally than younger branches. Branch size, light, species, heartwood area, a heartwood-area-species interaction, and ovulate cone mass predicted 87.5% of the variability in wood volume growth of branches. After accounting for the positive effects of size and light, wood volume growth declined with heartwood area and age. The effect of age was trivial compared to the effect of heartwood area, suggesting that heartwood expansion caused the age-related decline in wood volume growth. Additionally, Sequoiadendron branches of similar size and light environment with more ovulate cones produced less wood, even though these cones were long-lived and photosynthetic, reflecting the energetic cost of seed production. These results contributed to a conceptual model of branch development in which light availability, injury

  6. Tillering and panicle branching genes in rice.

    PubMed

    Liang, Wei-hong; Shang, Fei; Lin, Qun-ting; Lou, Chen; Zhang, Jing

    2014-03-01

    Rice (Oryza sativa L.) is one of the most important staple food crops in the world, and rice tillering and panicle branching are important traits determining grain yield. Since the gene MONOCULM 1 (MOC 1) was first characterized as a key regulator in controlling rice tillering and branching, great progress has been achieved in identifying important genes associated with grain yield, elucidating the genetic basis of yield-related traits. Some of these important genes were shown to be applicable for molecular breeding of high-yielding rice. This review focuses on recent advances, with emphasis on rice tillering and panicle branching genes, and their regulatory networks. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress.

    PubMed

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-12-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. © 2014 American Society of Plant Biologists. All rights reserved.

  8. Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches.

    PubMed

    Ketschek, Andrea; Spillane, Mirela; Dun, Xin-Peng; Hardy, Holly; Chilton, John; Gallo, Gianluca

    2016-10-01

    Drebrin is a cytoskeleton-associated protein which can interact with both actin filaments and the tips of microtubules. Its roles have been studied mostly in dendrites, and the functions of drebrin in axons are less well understood. In this study, we analyzed the role of drebrin, through shRNA-mediated depletion and overexpression, in the collateral branching of chicken embryonic sensory axons. We report that drebrin promotes the formation of axonal filopodia and collateral branches in vivo and in vitro. Live imaging of cytoskeletal dynamics revealed that drebrin promotes the formation of filopodia from precursor structures termed axonal actin patches. Endogenous drebrin localizes to actin patches and depletion studies indicate that drebrin contributes to the development of patches. In filopodia, endogenous drebrin localizes to the proximal portion of the filopodium. Drebrin was found to promote the stability of axonal filopodia and the entry of microtubule plus tips into axonal filopodia. The effects of drebrin on the stabilization of filopodia are independent of its effects on promoting microtubule targeting to filopodia. Inhibition of myosin II induces a redistribution of endogenous drebrin distally into filopodia, and further increases branching in drebrin overexpressing neurons. Finally, a 30 min treatment with the branch-inducing signal nerve growth factor increases the levels of axonal drebrin. This study determines the specific roles of drebrin in the regulation of the axonal cytoskeleton, and provides evidence that drebrin contributes to the coordination of the actin and microtubule cytoskeleton during the initial stages of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1092-1110, 2016. © 2016 Wiley Periodicals, Inc.

  9. Drebrin Coordinates the Actin and Microtubule Cytoskeleton During the Initiation of Axon Collateral Branches

    PubMed Central

    Ketschek, Andrea; Spillane, Mirela; Dun, Xin-Peng; Hardy, Holly; Chilton, John; Gallo, Gianluca

    2016-01-01

    Drebrin is a cytoskeleton-associated protein which can interact with both actin filaments and the tips of microtubules. Its roles have been studied mostly in dendrites, and the functions of drebrin in axons are less well understood. In this work we analyzed the role of drebrin, through shRNA-mediated depletion and over-expression, in the collateral branching of chicken embryonic sensory axons. We report that drebrin promotes the formation of axonal filopodia and collateral branches in vivo and in vitro. Live imaging of cytoskeletal dynamics revealed that drebrin promotes the formation of filopodia from precursor structures termed axonal actin patches. Endogenous drebrin localizes to actin patches and depletion studies indicate that drebrin contributes to the development of patches. In filopodia, endogenous drebrin localizes to the proximal portion of the filopodium. Drebrin was found to promote the stability of axonal filopodia and the entry of microtubule plus tips into axonal filopodia. The effects of drebrin on the stabilization of filopodia are independent of its effects on promoting microtubule targeting to filopodia. Inhibition of myosin II induces a redistribution of endogenous drebrin distally into filopodia, and further increases branching in drebrin overexpressing neurons. Finally, a 30 minute treatment with the branch inducing signal nerve growth factor increases the levels of axonal drebrin. The current study determines the specific roles of drebrin in the regulation of the axonal cytoskeleton, and provides evidence that drebrin contributes to the coordination of the actin and microtubule cytoskeleton during the initial stages of axon branching. PMID:26731339

  10. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia.

    PubMed

    Drummond, Revel S M; Martínez-Sánchez, N Marcela; Janssen, Bart J; Templeton, Kerry R; Simons, Joanne L; Quinn, Brian D; Karunairetnam, Sakuntala; Snowden, Kimberley C

    2009-12-01

    One of the key factors that defines plant form is the regulation of when and where branches develop. The diversity of form observed in nature results, in part, from variation in the regulation of branching between species. Two CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes, CCD7 and CCD8, are required for the production of a branch-suppressing plant hormone. Here, we report that the decreased apical dominance3 (dad3) mutant of petunia (Petunia hybrida) results from the mutation of the PhCCD7 gene and has a less severe branching phenotype than mutation of PhCCD8 (dad1). An analysis of the expression of this gene in wild-type, mutant, and grafted petunia suggests that in petunia, CCD7 and CCD8 are coordinately regulated. In contrast to observations in Arabidopsis (Arabidopsis thaliana), ccd7ccd8 double mutants in petunia show an additive phenotype. An analysis using dad3 or dad1 mutant scions grafted to wild-type rootstocks showed that when these plants produce adventitious mutant roots, branching is increased above that seen in plants where the mutant roots are removed. The results presented here indicate that mutation of either CCD7 or CCD8 in petunia results in both the loss of an inhibitor of branching and an increase in a promoter of branching.

  11. Acoustic-optical phonon branch crossings and lattice thermal transport in La3Cu3X4 (X = P, As, Sb, and Bi) systems

    NASA Astrophysics Data System (ADS)

    Pandey, Tribhuwan; Polanco, Carlos A.; Lindsay, Lucas; Parker, David S.

    Thermoelectric properties of La3Cu3X4 (X = P, As, Sb, and Bi) compounds are examined using first-principles density functional theory and Boltzmann transport calculations. It is well known that the lattice thermal conductivity (κl) of bulk materials typically decreases with increasing atomic masses of the constituent elements. In this study, however, we observe contrary behavior: lighter mass, larger sound velocity La3Cu3P4 and La3Cu3As4 systems have lower κl than heavier mass, smaller sound velocity La3Cu3Sb4 and La3Cu3Bi4 systems. Analysis of three phonon scattering rates and other phonon properties demonstrate that the trend in κl behavior is governed by Grüneisen parameters, a measure of phonon anharmonicity. The Grüneisen parameters and lower κl of the P and As compounds are closely related to an avoided crossing between the lowest optical branches and the longitudinal acoustic branch, which results in abrupt changes in Grüneisen parameters. Additionally, electronic structure calculations show heavy and light bands near the band edges, which lead to large power factors important for good thermoelectric performance. T. P, C. A. P, L. L. and D. S. P. acknowledge support from the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  12. Branching out Has So Much to Offer

    ERIC Educational Resources Information Center

    Murray, Joe

    2012-01-01

    In 1989 there were thirty ATM branches nationally. In January 2012 there were just twelve ATM branches with another three "proposed". How can that happen? How did it happen? Maybe the most pertinent question is: Why did it happen? There is no single answer to the last question, but perhaps it was something to do with the changes that…

  13. RIAD visual imaging branch assessment

    NASA Technical Reports Server (NTRS)

    Beam, Sherilee F.

    1993-01-01

    Every year the demand to visualize research efforts increases. The visualization provides the means to effectively analyze data and present the results. The technology support for visualization is constantly changing, improving, and being made available to users everywhere. As such, many researchers are entering into the practice of doing their own visualization in house - sometimes successfully, sometimes not. In an effort to keep pace with the visualization needs of researchers, the Visual Imaging Branch of the Research, Information, and Applications Division at NASA Langley Research Center has conducted an investigation into the current status of imaging technology and imaging production throughout the various research branches at the center. This investigation will allow the branch to evaluate its current resources and personnel in an effort to identify future directions for meeting the needs of the researchers at the center. The investigation team, which consisted of the ASEE fellow, the head of the video section, and the head of the photo section, developed an interview format that could be accomplished during a short interview period with researchers, and yet still provide adequate statistics about items such as in-house equipment and usage.

  14. An unusual branch of celiac trunk feeding suprarenal gland - a case report.

    PubMed

    Sarkar, Munmun; Mukherjee, Pranab; Roy, Hironmoy; Sengupta, Sandip Kumar; Sarkar, Amarendra Nath

    2014-04-01

    During routine dissection, variation in branching pattern of coeliac trunk has been observed in adult 54-year-old male cadaver. Instead of normal three branches an additional branch i.e., Left inferior phrenic artery originated from it as fourth branch. Then it divided into two branches, one directly supplied the diaphragm and other branch divided into three sub-branches. First and second branch entered into the left suprarenal gland at its upper and middle pole and third one finally terminated by supplying to the diaphragm. There is no separate middle suprarenal artery on the left side, but inferior suprarenal artery was as usual. No variations have been found on right side in the lateral branches of abdominal aorta. Such a quadrifurcation of celiac trunk to supply suprarenal gland is quiet unique so far searched in literature.

  15. Knowledge engineering in volcanology: Practical claims and general approach

    NASA Astrophysics Data System (ADS)

    Pshenichny, Cyril A.

    2014-10-01

    Knowledge engineering, being a branch of artificial intelligence, offers a variety of methods for elicitation and structuring of knowledge in a given domain. Only a few of them (ontologies and semantic nets, event/probability trees, Bayesian belief networks and event bushes) are known to volcanologists. Meanwhile, the tasks faced by volcanology and the solutions found so far favor a much wider application of knowledge engineering, especially tools for handling dynamic knowledge. This raises some fundamental logical and mathematical problems and requires an organizational effort, but may strongly improve panel discussions, enhance decision support, optimize physical modeling and support scientific collaboration.

  16. Effects of olive tree branches burning emissions on PM2.5 concentrations

    NASA Astrophysics Data System (ADS)

    Papadakis, G. Z.; Megaritis, A. G.; Pandis, S. N.

    2015-07-01

    An olive tree branches burning emission inventory for Greece is developed based on recently measured emission factors and the spatial distribution of olive trees. A three-dimensional chemical transport model (CTM), PMCAMx, is used to estimate the corresponding impact on PM2.5 concentrations during a typical winter period. Assuming that burning of olive tree branches takes place only during days with low wind speed and without precipitation, the contribution of olive tree branches burning emissions on PM2.5 levels is more significant during the most polluted days. Increases of hourly PM2.5 exceeding 50% and locally reaching up to 150% in Crete are predicted during the most polluted periods. On a monthly-average basis, the corresponding emissions are predicted to increase PM2.5 levels up to 1.5 μg m-3 (20%) in Crete and Peloponnese, where the largest fraction of olive trees is located, and by 0.4 μg m-3 (5%) on average over Greece. OA and EC levels increase by 20% and 13% respectively on average over Greece, and up to 70% in Crete. The magnitude of the effect is quite sensitive to burning practices. Assuming that burning of olive tree branches takes place during all days results in a smaller effect of burning on PM2.5 levels (9% increase instead of 20%). These results suggest that this type of agricultural waste burning is a major source of particulate pollution in the Mediterranean countries where this practice is prevalent during winter.

  17. "Dangerous" anatomic varieties of recurrent motor branch of median nerve.

    PubMed

    Elsaftawy, Ahmed; Gworys, Bohdan; Jabłecki, Jerzy; Szajerka, Tobiasz

    2013-08-01

    Carpal tunnel release became one of the most common operations in the field of hand surgery. Many controversies has been made about frequency of the so-called dangerous variations of motor branch of the median nerve. Knowledge of all the anatomical variations motor branches is the duty of every surgeon dealing with the subject. The aim of the study was to present the incidence of dangerous variants of median nerve motor branch in the carpal tunnel based on both clinical experience and anatomical studies performed on 20 cadaver wrists. Between 2006-2012 during minimally open carpal tunnel release we made photographic documentation of all visible dangerous varieties of recurrent motor branches of the median nerve. We also studied 20 cadaver wrists in the Department of Anatomy Medical University in Wrocław. Dangerous varieties of the motor branch of median nerve was found in three clinical cases and in one cadaver wrist. Also In one wrist we found one regular branche, which, however, has atypical two separate branches supplying the thenar muscles. Dangerous varieties of the motor branch of median nerve occur very rare in the population, but does not release from the fact that in each case special attention must be given.We also conclude that, at the minimally open carpal tunnel release procedure, the transverse carpal ligament should be released rather from the line of radial border of the 4th finger to minimize the risk of injury to the recurrent motor branch of median nerve.

  18. Formation of crystal-like structures and branched networks from nonionic spherical micelles

    NASA Astrophysics Data System (ADS)

    Cardiel, Joshua J.; Furusho, Hirotoshi; Skoglund, Ulf; Shen, Amy Q.

    2015-12-01

    Crystal-like structures at nano and micron scales have promise for purification and confined reactions, and as starting points for fabricating highly ordered crystals for protein engineering and drug discovery applications. However, developing controlled crystallization techniques from batch processes remain challenging. We show that neutrally charged nanoscale spherical micelles from biocompatible nonionic surfactant solutions can evolve into nano- and micro-sized branched networks and crystal-like structures. This occurs under simple combinations of temperature and flow conditions. Our findings not only suggest new opportunities for developing controlled universal crystallization and encapsulation procedures that are sensitive to ionic environments and high temperatures, but also open up new pathways for accelerating drug discovery processes, which are of tremendous interest to pharmaceutical and biotechnological industries.

  19. An Investigation of Factors Related to Self-Efficacy for Java Programming among Engineering Students

    ERIC Educational Resources Information Center

    Askar, Petek; Davenport, David

    2009-01-01

    The purpose of this study was to examine the factors related to self-efficacy for Java programming among first year engineering students. An instrument assessing Java programming self-efficacy was developed from the computer programming self-efficacy scale of Ramalingam & Wiedenbeck. The instrument was administered at the beginning of the…

  20. Secondary motion in three-dimensional branching networks

    PubMed Central

    Guha, Abhijit; Pradhan, Kaustav

    2017-01-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity v→S, streamwise vorticity ωS, and λ2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P,

  1. Secondary motion in three-dimensional branching networks

    NASA Astrophysics Data System (ADS)

    Guha, Abhijit; Pradhan, Kaustav

    2017-06-01

    A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity | v → S | , streamwise vorticity ω S , and λ 2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters

  2. On an Integral with Two Branch Points

    ERIC Educational Resources Information Center

    de Oliveira, E. Capelas; Chiacchio, Ary O.

    2006-01-01

    The paper considers a class of real integrals performed by using a convenient integral in the complex plane. A complex integral containing a multi-valued function with two branch points is transformed into another integral containing a pole and a unique branch point. As a by-product we obtain a new class of integrals which can be calculated in a…

  3. Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control.

    PubMed

    Dai, Dongjuan; Prussin, Aaron J; Marr, Linsey C; Vikesland, Peter J; Edwards, Marc A; Pruden, Amy

    2017-07-18

    The "exposome" is a term describing the summation of one's lifetime exposure to microbes and chemicals. Such exposures are now recognized as major drivers of human health and disease. Because humans spend ∼90% of their time indoors, the built environment exposome merits particular attention. Herein we utilize an engineering perspective to advance understanding of the factors that shape the built environment exposome and its influence on human wellness and disease, while simultaneously informing development of a framework for intentionally controlling the exposome to protect public health. Historically, engineers have been focused on controlling chemical and physical contaminants and on eradicating microbes; however, there is a growing awareness of the role of "beneficial" microbes. Here we consider the potential to selectively control the materials and chemistry of the built environment to positively influence the microbial and chemical components of the indoor exposome. Finally, we discuss research gaps that must be addressed to enable intentional engineering design, including the need to define a "healthy" built environment exposome and how to control it.

  4. Association of branched-chain amino acids with carotid intima-media thickness and coronary artery disease risk factors.

    PubMed

    Yang, Ruiyue; Dong, Jun; Zhao, Haijian; Li, Hongxia; Guo, Hanbang; Wang, Shu; Zhang, Chuanbao; Wang, Siming; Wang, Mo; Yu, Songlin; Chen, Wenxiang

    2014-01-01

    Recent studies have determined that branched-chain (BCAAs) and aromatic (AAAs) amino acids are strongly correlated with obesity and atherogenic dyslipidemia and are strong predictors of diabetes. However, it is not clear if these amino acids are capable of identifying subjects with coronary artery disease (CAD), particularly with subclinical atherosclerosis who are at risk of developing CAD. Four hundred and seventy two Chinese subjects (272 males and 200 females, 42-97 y of age) undergoing physical exams were recruited at random for participation in the cross-sectional study. Serum BCAAs and AAAs were measured using our previously reported isotope dilution liquid chromatography tandem mass spectrometry method. Bilateral B-mode carotid artery images for carotid intima-media thickness (cIMT) were acquired at end diastole and cIMT values more than 0.9 mm were categorized as increased. Correlations of BCAAs with cIMT and other CAD risk factors were analyzed. BCAAs and AAAs were significantly and positively associated with risk factors of CAD, e.g., cIMT, BMI, waist circumference, blood pressure, fasting blood glucose, TG, apoB, apoB/apoAI ratio, apoCII, apoCIII and hsCRP, and were significantly and negatively associated with HDL-C and apoAI. Stepwise multiple linear regression analysis revealed that age (β = 0.175, P<0.001), log BCAA (β = 0.147, P<0.001) and systolic blood pressure (β = 0.141, P = 0.012) were positively and independently associated with cIMT. In the logistic regression model, the most and only powerful laboratory factor correlated with increased cIMT was BCAA (the odds ratio of the fourth quartile compared to the first quartile was 2.679; P = 0.009). BCAAs are independently correlated with increased cIMT. This correlation would open a new field of research in the mechanistic understanding and risk assessment of CAD.

  5. Factors Associated With Smoking Behavior Among Operating Engineers

    PubMed Central

    Choi, Seung Hee; Pohl, Joanne M.; Terrell, Jeffrey E.; Redman, Richard W.

    2016-01-01

    Although disparities in smoking prevalence between white collar workers and blue collar workers have been documented, reasons for these disparities have not been well studied. The objective of this study was to determine variables associated with smoking among Operating Engineers, using the Health Promotion Model as a guide. With cross-sectional data from a convenience sample of 498 Operating Engineers, logistic regression was used to determine personal and health behaviors associated with smoking. Approximately 29% of Operating Engineers currently smoked cigarettes. Multivariate analyses showed that younger age, unmarried, problem drinking, physical inactivity, and a lower body mass index were associated with smoking. Operating Engineers were at high risk of smoking, and smokers were more likely to engage in other risky health behaviors, which supports bundled health behavior interventions. PMID:23957830

  6. Branch length mediates flower production and inflorescence architecture of Fouquieria splendens (ocotillo)

    USGS Publications Warehouse

    Bowers, Janice E.

    2006-01-01

    The capacity of individual branches to store water and fix carbon can have profound effects on inflorescence size and architecture, thus on floral display, pollination, and fecundity. Mixed regression was used to investigate the relation between branch length, a proxy for plant resources, and floral display of Fouquieria splendens (ocotillo), a woody, candelabraform shrub of wide distribution in arid North America. Long branches produced three times as many flowers as short branches, regardless of overall plant size. Long branches also had more complex panicles with more cymes and cyme types than short branches; thus, branch length also influenced inflorescence architecture. Within panicles, increasing the number of cymes by one unit added about two flowers, whereas increasing the number of cyme types by one unit added about 21 flowers. Because flower production is mediated by branch length, and because most plants have branches of various lengths, the floral display of individual plants necessarily encompasses a wide range of inflorescence size and structure. ?? Springer 2006.

  7. Geranylgeranyl Diphosphate Synthase Modulates Fetal Lung Branching Morphogenesis Possibly through Controlling K-Ras Prenylation.

    PubMed

    Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun

    2016-06-01

    G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    NASA Technical Reports Server (NTRS)

    Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)

    2003-01-01

    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.

  9. Updating the biomedical engineering curriculum: Inclusion of Health Technology Assessment subjects.

    PubMed

    Martinez Licona, Fabiola; Urbina, Edmundo Gerardo; Azpiroz-Leehan, Joaquin

    2010-01-01

    This paper describes the work being carried out at Metropolitan Autonomous University (UAM) in Mexico City with regard to the continuous evaluation and updating of the Biomedical Engineering (BME) curriculum. In particular the courses regarded as part of the BME basic branch are reduced and new sets of elective subjects are proposed in order to bring closer the research work at UAM with the subjects in the BME curriculum. Special emphasis is placed on subjects dealing with Health Technology Assessment (HTA) and Health economics, as this branch of the BME discipline is quite promising in Mexico, but there are very few professionals in the field with adequate qualifications.

  10. Branched terthiophenes in organic electronics: from small molecules to polymers.

    PubMed

    Scheuble, Martin; Goll, Miriam; Ludwigs, Sabine

    2015-01-01

    A zoo of chemical structures is accessible when the branched unit 2,2':3',2″-terthiophene (3T) is included both in structurally well-defined small molecules and polymer-like architectures. The first part of this review article highlights literature on all-thiophene based branched oligomers including dendrimers as well as combinations of 3T-units with functional moieties for light-harvesting systems. Motivated by the perfectly branched macromolecular dendrimers both electropolymerization as well as chemical approaches are presented as methods for the preparation of branched polythiophenes with different branching densities. Structure-function relationships between the molecular architecture and optical and electronic properties are discussed throughout the article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Improved deoxyribozymes for synthesis of covalently branched DNA and RNA.

    PubMed

    Lee, Christine S; Mui, Timothy P; Silverman, Scott K

    2011-01-01

    A covalently branched nucleic acid can be synthesized by joining the 2'-hydroxyl of the branch-site ribonucleotide of a DNA or RNA strand to the activated 5'-phosphorus of a separate DNA or RNA strand. We have previously used deoxyribozymes to synthesize several types of branched nucleic acids for experiments in biotechnology and biochemistry. Here, we report in vitro selection experiments to identify improved deoxyribozymes for synthesis of branched DNA and RNA. Each of the new deoxyribozymes requires Mn²(+) as a cofactor, rather than Mg²(+) as used by our previous branch-forming deoxyribozymes, and each has an initially random region of 40 rather than 22 or fewer combined nucleotides. The deoxyribozymes all function by forming a three-helix-junction (3HJ) complex with their two oligonucleotide substrates. For synthesis of branched DNA, the best new deoxyribozyme, 8LV13, has k(obs) on the order of 0.1 min⁻¹, which is about two orders of magnitude faster than our previously identified 15HA9 deoxyribozyme. 8LV13 also functions at closer-to-neutral pH than does 15HA9 (pH 7.5 versus 9.0) and has useful tolerance for many DNA substrate sequences. For synthesis of branched RNA, two new deoxyribozymes, 8LX1 and 8LX6, were identified with broad sequence tolerances and substantial activity at pH 7.5, versus pH 9.0 for many of our previous deoxyribozymes that form branched RNA. These experiments provide new, and in key aspects improved, practical catalysts for preparation of synthetic branched DNA and RNA.

  12. Sustainable Engineering and Improved Recycling of PET for High-Value Applications: Transforming Linear PET to Lightly Branched PET with a Novel, Scalable Process

    NASA Astrophysics Data System (ADS)

    Pierre, Cynthia; Torkelson, John

    2009-03-01

    A major challenge for the most effective recycling of poly(ethylene terephthalate) concerns the fact that initial melt processing of PET into a product leads to substantial degradation of molecular weight. Thus, recycled PET has insufficient melt viscosity for reuse in high-value applications such as melt-blowing of PET bottles. Academic and industrial research has tried to remedy this situation by synthesis and use of ``chain extenders'' that can lead to branched PET (with higher melt viscosity than the linear recycled PET) via condensation reactions with functional groups on the PET. Here we show that simple processing of PET via solid-state shear pulverization (SSSP) leads to enhanced PET melt viscosity without need for chemical additives. We hypothesize that this branching results from low levels of chain scission accompanying SSSP, leading to formation of polymeric radicals that participate in chain transfer and combination reactions with other PET chains and thereby to in situ branch formation. The pulverized PET exhibits vastly enhanced crystallization kinetics, eliminating the need to employ cold crystallization to achieve maximum PET crystallinity. Results of SSSP processing of PET will be compared to results obtained with poly(butylene terephthalate).

  13. 47 CFR 32.2341 - Large private branch exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32... cost of installation, of multiple manual private branch exchanges and of dial system private branch...) Embedded CPE is that equipment or inventory which is tariffed or otherwise subject to the jurisdictional...

  14. 47 CFR 32.2341 - Large private branch exchanges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32... cost of installation, of multiple manual private branch exchanges and of dial system private branch...) Embedded CPE is that equipment or inventory which is tariffed or otherwise subject to the jurisdictional...

  15. 47 CFR 32.2341 - Large private branch exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32... cost of installation, of multiple manual private branch exchanges and of dial system private branch...) Embedded CPE is that equipment or inventory which is tariffed or otherwise subject to the jurisdictional...

  16. 47 CFR 32.2341 - Large private branch exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32... cost of installation, of multiple manual private branch exchanges and of dial system private branch...) Embedded CPE is that equipment or inventory which is tariffed or otherwise subject to the jurisdictional...

  17. Branching instability in expanding bacterial colonies.

    PubMed

    Giverso, Chiara; Verani, Marco; Ciarletta, Pasquale

    2015-03-06

    Self-organization in developing living organisms relies on the capability of cells to duplicate and perform a collective motion inside the surrounding environment. Chemical and mechanical interactions coordinate such a cooperative behaviour, driving the dynamical evolution of the macroscopic system. In this work, we perform an analytical and computational analysis to study pattern formation during the spreading of an initially circular bacterial colony on a Petri dish. The continuous mathematical model addresses the growth and the chemotactic migration of the living monolayer, together with the diffusion and consumption of nutrients in the agar. The governing equations contain four dimensionless parameters, accounting for the interplay among the chemotactic response, the bacteria-substrate interaction and the experimental geometry. The spreading colony is found to be always linearly unstable to perturbations of the interface, whereas branching instability arises in finite-element numerical simulations. The typical length scales of such fingers, which align in the radial direction and later undergo further branching, are controlled by the size parameters of the problem, whereas the emergence of branching is favoured if the diffusion is dominant on the chemotaxis. The model is able to predict the experimental morphologies, confirming that compact (resp. branched) patterns arise for fast (resp. slow) expanding colonies. Such results, while providing new insights into pattern selection in bacterial colonies, may finally have important applications for designing controlled patterns. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Methods and Technologies Branch (MTB)

    Cancer.gov

    The Methods and Technologies Branch focuses on methods to address epidemiologic data collection, study design and analysis, and to modify technological approaches to better understand cancer susceptibility.

  19. Discriminative non-negative matrix factorization (DNMF) and its application to the fault diagnosis of diesel engine

    NASA Astrophysics Data System (ADS)

    Yang, Yong-sheng; Ming, An-bo; Zhang, You-yun; Zhu, Yong-sheng

    2017-10-01

    Diesel engines, widely used in engineering, are very important for the running of equipments and their fault diagnosis have attracted much attention. In the past several decades, the image based fault diagnosis methods have provided efficient ways for the diesel engine fault diagnosis. By introducing the class information into the traditional non-negative matrix factorization (NMF), an improved NMF algorithm named as discriminative NMF (DNMF) was developed and a novel imaged based fault diagnosis method was proposed by the combination of the DNMF and the KNN classifier. Experiments performed on the fault diagnosis of diesel engine were used to validate the efficacy of the proposed method. It is shown that the fault conditions of diesel engine can be efficiently classified by the proposed method using the coefficient matrix obtained by DNMF. Compared with the original NMF (ONMF) and principle component analysis (PCA), the DNMF can represent the class information more efficiently because the class characters of basis matrices obtained by the DNMF are more visible than those in the basis matrices obtained by the ONMF and PCA.

  20. Ecological effects of contaminants in McCoy Branch, 1989-1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryon, M.G.

    1992-01-01

    The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Such a RCRA Facility Investigation (RFI) was required of the Y-12 Plant for their Filled Coal Ash Pond on McCoy Branch. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps were implemented or planned for McCoy Branch to address disposal problems. The McCoy Branch RFI plan included provisions for biological monitoring of the McCoy Branch watershed.more » The objectives of the biological monitoring were to: (1) document changes in biological quality of McCoy Branch after completion of a pipeline and after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program will also determine if the classified uses, as identified by the State of Tennessee, of McCoy Branch are being protected and maintained. This report discusses results from toxicity monitoring of snails fish community assessment, and a Benthic macroinvertebrate community assessment.« less

  1. Phototropic growth in a reef flat acroporid branching coral species.

    PubMed

    Kaniewska, Paulina; Campbell, Paul R; Fine, Maoz; Hoegh-Guldberg, Ove

    2009-03-01

    Many terrestrial plants form complex morphological structures and will alter these growth patterns in response to light direction. Similarly reef building corals have high morphological variation across coral families, with many species also displaying phenotypic plasticity across environmental gradients. In particular, the colony geometry in branching corals is altered by the frequency, location and direction of branch initiation and growth. This study demonstrates that for the branching species Acropora pulchra, light plays a key role in axial polyp differentiation and therefore axial corallite development--the basis for new branch formation. A. pulchra branches exhibited a directional growth response, with axial corallites only developing when light was available, and towards the incident light. Field experimentation revealed that there was a light intensity threshold of 45 micromol m(-2) s(-1), below which axial corallites would not develop and this response was blue light (408-508 nm) dependent. There was a twofold increase in axial corallite growth above this light intensity threshold and a fourfold increase in axial corallite growth under the blue light treatment. These features of coral branch growth are highly reminiscent of the initiation of phototropic branch growth in terrestrial plants, which is directed by the blue light component of sunlight.

  2. Academic Life at the Franchise: Faculty Culture in a Rural Two-Year Branch Campus.

    ERIC Educational Resources Information Center

    Wolfe, John R.; Strange, C. Carney

    2003-01-01

    This case study of faculty culture focused on the dynamics of a small, rural, two-year branch campus of a large state university. It reports descriptive themes concerning the isolation and rural location of the campus, its diminutive size, faculty role perspectives, and factors related to faculty role implementation. It provides a portrait of this…

  3. [Croatian Medical Association--Branch Slavonski Brod].

    PubMed

    Mahovne, Zvonimir

    2014-01-01

    The branch of the Croatian Medical Association in Slav. Brod was founded in 1953. The economic and social progress in subsequent years led to the increased number of health institutions, health professionals and owing to their activity to better health care. The branch survived very difficult war years from 1991 to 1995. Our members treated thousands of wounded and ill and gave the best of their skill and humanity. In the last decade our members took part in educational and scientific activities of School of Medicine, J. J. Strossmayer University in Osijek.

  4. Frequency and associated risk factors for neck pain among software engineers in Karachi, Pakistan.

    PubMed

    Rasim Ul Hasanat, Mohammad; Ali, Syed Shahzad; Rasheed, Abdur; Khan, Muhammad

    2017-07-01

    To determine the frequency of neck pain and its association with risk factors among software engineers. This descriptive, cross-sectional study was conducted at the Dow University of Health Sciences, Karachi, from February to March 2016, and comprised software engineers from 19 different locations. Non-probability purposive sampling technique was used to select individuals spending at least 6 hours in front of computer screens every day and having a work experience of at least 6 months. Data were collected using a self-administrable questionnaire. SPSS 21 was used for data analysis. Of the 185 participants, 49(26.5%) had neck pain at the time of data-gathering, while 136(73.5%) reported no pain. However, 119(64.32%) participants had a previous history of neck pain. Other factors like smoking, physical inactivity, history of any muscular pain and neck pain, uncomfortable workstation, and work-related mental stress and insufficient sleep at night, were found to be significantly associated with current neck pain (p<0.05 each). Intensive computer users are likely to experience at least one episode of computer-associated neck pain.

  5. Electromagnetic Nucleus - Nucleus Cross Sections Using Energy Dependent Branching Ratios

    NASA Astrophysics Data System (ADS)

    Adamczyk, Anne; Norbury, John

    2009-11-01

    Energy dependent branching ratios, derived from Weisskopf-Ewing theory, are presented and compared to an energy independent formalism, developed by Norbury, Townsend, and Westfall. The energy dependent branching ratio formalism is more versatile since it allows for not only neutron and proton emission, but also alpha particle, deuteron, helion, and triton emission. A new theoretical method for calculating electromagnetic dissociation (EMD) nucleus - nucleus cross sections, with energy dependent branching ratios, is introduced. Comparisons of photonuclear and nucleus - nucleus cross sections, using energy dependent and independent branching ratios, to experiment are presented. Experimental efforts, by various groups, have focused on measuring cross sections for proton and neutron emission, because proton and neutron emission is generally more probable than heavier particle emission. Consequently, comparisons of energy dependent and independent branching ratios to experiment are made for photoneutron and photoproton cross sections. EMD cross sections for single neutron, proton, and alpha particle removal are calculated and compared to experimental data for a variety of projectile, target, and energy combinations. Results indicate that using energy dependent branching ratios yields better estimates.

  6. Pahoehoe toe dimensions, morphology, and branching relationships at Mauna Ulu, Kilauea Volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Crown, David A.; Baloga, Stephen M.

    channels, consistent with field observations; and (e) Two distinct types of branching patterns (called monolayer and centrally ridged) were observed in preserved pahoehoe flow lobes. The significant variability in measured toe dimensions at Mauna Ulu suggests that toe dimensions are influenced by numerous locally defined, random factors, and that an approach based on stochastic methods can be used to model pahoehoe flow emplacement.

  7. Load and resistance factor design calibration to determine a resistance factor for the modification of the Kansas Department of Transportation-Engineering News Record formula.

    DOT National Transportation Integrated Search

    2014-02-01

    This report contains the results of a study describing the development of resistance factors for use : with the Kansas Department of Transportation (KDOT) Engineering News Record (ENR) formula for driven : piles. KDOT has verified driven pile resista...

  8. Developing Avionics Hardware and Software for Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Aberg, Bryce Robert

    2014-01-01

    My summer was spent working as an intern at Kennedy Space Center in the Propulsion Avionics Branch of the NASA Engineering Directorate Avionics Division. The work that I was involved with was part of Rocket University's Project Neo, a small scale liquid rocket engine test bed. I began by learning about the layout of Neo in order to more fully understand what was required of me. I then developed software in LabView to gather and scale data from two flowmeters and integrated that code into the main control software. Next, I developed more LabView code to control an igniter circuit and integrated that into the main software, as well. Throughout the internship, I performed work that mechanics and technicians would do in order to maintain and assemble the engine.

  9. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. Closeup view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  12. Phenomenological picture of fluctuations in branching random walks

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Munier, S.

    2014-10-01

    We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1 /√{t } correction to the average position of the rightmost particle of a branching random walk for large times t ≫1 , computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.

  13. Computational fluid dynamics - An introduction for engineers

    NASA Astrophysics Data System (ADS)

    Abbott, Michael Barry; Basco, David R.

    An introduction to the fundamentals of CFD for engineers and physical scientists is presented. The principal definitions, basic ideas, and most common methods used in CFD are presented, and the application of these methods to the description of free surface, unsteady, and turbulent flow is shown. Emphasis is on the numerical treatment of incompressible unsteady fluid flow with primary applications to water problems using the finite difference method. While traditional areas of application like hydrology, hydraulic and coastal engineering and oceanography get the main emphasis, newer areas of application such as medical fluid dynamics, bioengineering, and soil physics and chemistry are also addressed. The possibilities and limitations of CFD are pointed out along with the relations of CFD to other branches of science.

  14. Carbureting conditions characteristics of aircraft engines

    NASA Technical Reports Server (NTRS)

    Tice, Percival S

    1920-01-01

    Tests were conducted at the altitude laboratory erected at the Bureau of Standards for the National Advisory Committee for Aeronautics to determine the changes in engine performance with changes in atmospheric temperature and pressure at various levels above the earth's surface, with special reference to (a) the variables affecting the functioning of the carburetor and (b) the changes in performance resulting from variables in the carburetor itself. This report constitutes a concise statement of the difficulties to be encountered in this branch of carburetion.

  15. Absolute measurement of hadronic branching fractions of the Ds+ meson.

    PubMed

    Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2008-04-25

    The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.

  16. Absolute Measurement of Hadronic Branching Fractions of the Ds+ Meson

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Berkelman, K.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krüger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Wilksen, T.; Athar, S. B.; Patel, R.; Yelton, J.; Rubin, P.; Eisenstein, B. I.; Karliner, I.; Mehrabyan, S.; Lowrey, N.; Selen, M.; White, E. J.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Lang, B. W.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tomaradze, A.; Libby, J.; Powell, A.; Wilkinson, G.; Ecklund, K. M.; Love, W.; Savinov, V.; Lopez, A.; Mendez, H.; Ramirez, J.; Ge, J. Y.; Miller, D. H.; Sanghi, B.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J.; He, Q.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.; Artuso, M.; Blusk, S.; Khalil, S.; Li, J.; Mountain, R.; Nisar, S.; Randrianarivony, K.; Sultana, N.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Dubrovin, M.; Lincoln, A.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Naik, P.; Briere, R. A.; Ferguson, T.; Tatishvili, G.; Vogel, H.; Watkins, M. E.; Rosner, J. L.

    2008-04-01

    The branching fractions of Ds± meson decays serve to normalize many measurements of processes involving charm quarks. Using 298pb-1 of e+e- collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight Ds± decays with a double tag technique. In particular we determine the branching fraction B(Ds+→K-K+π+)=(5.50±0.23±0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K-K+π+ decay mode.

  17. Branched nanostructures and method of synthesizing the same

    NASA Technical Reports Server (NTRS)

    Fonseca, Luis F. (Inventor); Sola, Francisco (Inventor); Resto, Oscar (Inventor)

    2009-01-01

    A branched nanostructure is synthesized. A porous material, with pores having a diameter of approximately 1 .mu.m or less, is placed in a vacuum. It is irradiated with an electron beam. This causes a trunk to grow from the porous material and further causes branches to grow from the trunk.

  18. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  19. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  20. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  1. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  2. 33 CFR 117.927 - Coosaw River (Whale Branch).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Coosaw River (Whale Branch). 117.927 Section 117.927 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Whale Branch). The draw of the Seaboard System Railroad bridge, mile 5.3 at Seabrook, and the draw of...

  3. Rational selection and engineering of exogenous principal sigma factor (σHrdB) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus

    PubMed Central

    2014-01-01

    Background Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. Results It was illuminated that the σHrdB molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σHrdB molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Conclusions Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy. PMID:24428890

  4. Rational selection and engineering of exogenous principal sigma factor (σ(HrdB)) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus.

    PubMed

    Wang, Haiyong; Yang, Liu; Wu, Kuo; Li, Guanghui

    2014-01-16

    Transcriptional engineering has presented a strong ability of phenotypic improvement in microorganisms. However, it could not be directly applied to Actinoplanes teichomyceticus L-27 because of the paucity of endogenous transcription factors in the strain. In this study, exogenous transcription factors were rationally selected and transcriptional engineering was carried out to increase the productivity of teicoplanin in L-27. It was illuminated that the σ(HrdB) molecules shared strong similarity of amino acid sequences among some genera of actinomycetes. Combining this advantage with the ability of transcriptional engineering, exogenous sigma factor σ(HrdB) molecules were rationally selected and engineered to improve L-27. hrdB genes from Actinoplanes missouriensis 431, Micromonospora aurantiaca ATCC 27029 and Salinispora arenicola CNS-205 were selected based on molecular evolutionary analysis. Random mutagenesis, DNA shuffling and point mutation were subsequently performed to generate diversified mutants. A recombinant was identified through screening program, yielding 5.3 mg/ml of teicoplanin, over 2-fold compared to that of L-27. More significantly, the engineered strain presented a good performance in 500-l pilot scale fermentation, which meant its valuable potential application in industry. Through rational selection and engineering of exogenous transcriptional factor, we have extended the application of transcriptional engineering. To our knowledge, it is the first time to focus on the related issue. In addition, possessing the advantage of efficient metabolic perturbation in transcription level, this strategy could be useful in analyzing metabolic and physiological mechanisms of strains, especially those with the only information on taxonomy.

  5. Insulin-like growth factor-I and growth differentiation factor-5 promote the formation of tissue-engineered human nasal septal cartilage.

    PubMed

    Alexander, Thomas H; Sage, August B; Chen, Albert C; Schumacher, Barbara L; Shelton, Elliot; Masuda, Koichi; Sah, Robert L; Watson, Deborah

    2010-10-01

    Tissue engineering of human nasal septal chondrocytes offers the potential to create large quantities of autologous material for use in reconstructive surgery of the head and neck. Culture with recombinant human growth factors may improve the biochemical and biomechanical properties of engineered tissue. The objectives of this study were to (1) perform a high-throughput screen to assess multiple combinations of growth factors and (2) perform more detailed testing of candidates identified in part I. In part I, human nasal septal chondrocytes from three donors were expanded in monolayer with pooled human serum (HS). Cells were then embedded in alginate beads for 2 weeks of culture in medium supplemented with 2% or 10% HS and 1 of 90 different growth factor combinations. Combinations of insulin-like growth factor-I (IGF-1), bone morphogenetic protein (BMP)-2, BMP-7, BMP-13, growth differentiation factor-5 (GDF-5), transforming growth factor β (TGFβ)-2, insulin, and dexamethasone were evaluated. Glycosaminoglycan (GAG) accumulation was measured. A combination of IGF-1 and GDF-5 was selected for further testing based on the results of part I. Chondrocytes from four donors underwent expansion followed by three-dimensional alginate culture for 2 weeks in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5. Chondrocytes and their associated matrix were then recovered and cultured for 4 weeks in 12 mm transwells in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5 (the same medium used for alginate culture). Biochemical and biomechanical properties of the neocartilage were measured. In part I, GAG accumulation was highest for growth factor combinations including both IGF-1 and GDF-5. In part II, the addition of IGF-1 and GDF-5 to 2% HS resulted in a 12-fold increase in construct thickness compared with 2% HS alone (p < 0.0001). GAG and type II collagen accumulation was significantly higher with IGF-1 and GDF-5. Confined compression

  6. Global solution branches for a nonlocal Allen-Cahn equation

    NASA Astrophysics Data System (ADS)

    Kuto, Kousuke; Mori, Tatsuki; Tsujikawa, Tohru; Yotsutani, Shoji

    2018-05-01

    We consider the Neumann problem of a 1D stationary Allen-Cahn equation with nonlocal term. Our previous paper [4] obtained a local branch of asymmetric solutions which bifurcates from a point on the branch of odd-symmetric solutions. This paper derives the global behavior of the branch of asymmetric solutions, and moreover, determines the set of all solutions to the nonlocal Allen-Cahn equation. Our proof is based on a level set analysis for an integral map associated with the nonlocal term.

  7. Roles of DgBRC1 in Regulation of Lateral Branching in Chrysanthemum (Dendranthema ×grandiflora cv. Jinba)

    PubMed Central

    Chen, Xiaoli; Zhou, Xiaoyang; Xi, Lin; Li, Junxiang; Zhao, Ruiyan; Ma, Nan; Zhao, Liangjun

    2013-01-01

    The diverse plasticity of plant architecture is largely determined by shoot branching. Shoot branching is an event regulated by multiple environmental, developmental and hormonal stimuli through triggering lateral bud response. After perceiving these signals, the lateral buds will respond and make a decision on whether to grow out. TCP transcriptional factors, BRC1/TB1/FC1, were previously proven to be involved in local inhibition of shoot branching in Arabidopsis, pea, tomato, maize and rice. To investigate the function of BRC1, we isolated the BRC1 homolog from chrysanthemum. There were two transcripts of DgBRC1 coming from two alleles in one locus, both of which complemented the multiple branches phenotype of Arabidopsis brc1-1, indicating that both are functionally conserved. DgBRC1 was mainly expressed in dormant axillary buds, and down-regulated at the bud activation stage, and up-regulated by higher planting densities. DgBRC1 transcripts could respond to apical auxin supply and polar auxin transport. Moreover, we found that the acropetal cytokinin stream promoted branch outgrowth whether or not apical auxin was present. Basipetal cytokinin promoted outgrowth of branches in the absence of apical auxin, while strengthening the inhibitory effects on lower buds in the presence of apical auxin. The influence of auxin and strigolactons (SLs) on the production of cytokinin was investigated, we found that auxin locally down-regulated biosynthesis of cytokinin in nodes, SLs also down-regulated the biosynthesis of cytokinin, the interactions among these phytohormones need further investigation. PMID:23613914

  8. Critical branching neural networks.

    PubMed

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  9. Ecological effects of contaminants in McCoy Branch, 1991--1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryon, M.G.

    1996-09-01

    The 1984 Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA) required assessment of all current and former solid waste management units. Following guidelines under RCRA and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), a remedial investigation (RI) was required of the Y-12 Plant for their filled coal ash pond (FCAP) and associated areas on McCoy Branch. The RI process was initiated and assessments were presented. Because the disposal of coal ash in the ash pond, McCoy Branch, and Rogers Quarry was not consistent with the Tennessee Water Quality Act, several remediation steps weremore » implemented between 1986 and 1994 for McCoy Branch to address disposal problems. The required ecological risk assessments of McCoy Branch watershed included provisions for biological monitoring of the watershed. The objectives of the biological monitoring were to (1) document changes in biological quality of McCoy Branch after completion of a pipeline bypassing upper McCoy Branch and further, after termination of all discharges to Rogers Quarry, (2) provide guidance on the need for additional remediation, and (3) evaluate the effectiveness of implemented remedial actions. The data from the biological monitoring program may also determine whether the goals of protection of human health and the environment of McCoy Branch are being accomplished.« less

  10. Anatomic variations of the branches of the aortic arch in a Peruvian population.

    PubMed

    Huapaya, Julio Arturo; Chávez-Trujillo, Kristhy; Trelles, Miguel; Dueñas Carbajal, Roy; Ferrandiz Espadin, Renato

    2015-07-31

    Previous publications from two countries in South America found one anatomical variation not previously reported in the rest of the world, which in turn give some clues with regard to a racial difference. The objective of the present study is to describe variations in the anatomical distribution of the branches of the aortic arch in a Peruvian population. To describe variations in the anatomical distribution of the branches of the aortic arch in a Peruvian population. A descriptive study of patients who underwent a tomography angiography of the aorta was performed. We analyzed the reports that showed the description of the variations of the branches of the aortic arch based on the eight types currently described in the literature. From 361 analyzed reports, 282 patients (78.12%) had a normal aortic arch configuration (type I; aortic arch gives rise to the brachiocephalic trunk, left common carotid and left subclavian arteries); followed by type II (left common carotid artery as a branch of the aorta) with 41 patients (11.36%); and type IX (common ostium for the brachiocephalic trunk and the left common carotid artery) with 25 patients (6.93%). The latter and two other types are new variations. Aortic Arch Type I, Type II and Type IX were the most frequent variations in this Peruvian study. Additionally, we also found two more new types that have not been previously described in the literature. Further investigation regarding these variations is needed in order to assess a racial factor in South America and possible relationships with clinical or surgical events.

  11. Engineering success: Undergraduate Latina women's persistence in an undergradute engineering program

    NASA Astrophysics Data System (ADS)

    Rosbottom, Steven R.

    The purpose and focus of this narrative inquiry case study were to explore the personal stories of four undergraduate Latina students who persist in their engineering programs. This study was guided by two overarching research questions: a) What are the lived experiences of undergraduate Latina engineering students? b) What are the contributing factors that influence undergraduate Latina students to persist in an undergraduate engineering program? Yosso's (2005) community cultural wealth was used to the analyze data. Findings suggest through Yosso's (2005) aspirational capital, familial capital, social capital, navigational capital, and resistant capital the Latina student persisted in their engineering programs. These contributing factors brought to light five themes that emerged, the discovery of academic passions, guidance and support of family and teachers, preparation for and commitment to persistence, the power of community and collective engagement, and commitment to helping others. The themes supported their persistence in their engineering programs. Thus, this study informs policies, practices, and programs that support undergraduate Latina engineering student's persistence in engineering programs.

  12. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  13. Branching ratio and polarization of B→ρ(ω)ρ(ω) decays in perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Li, Ying; Lü, Cai-Dian

    2006-01-01

    In this work, we calculate the branching ratios, polarization fractions and CP asymmetry parameters of decay modes B→ρ(ω)ρ(ω) in the perturbative QCD approach, which is based on kT factorization. After calculation, we find that the branching ratios of B0→ρ+ρ-, B+→ρ+ρ0, and B+→ρ+ω are at the order of 10-5, and their longitudinal polarization fractions are more than 90%. The above results agree with BaBar’s measurements. We also calculate the branching ratios and polarization fractions of B0→ρ0ρ0, B0→ρ0ω, and B0→ωω decays. We find that their longitudinal polarization fractions are suppressed to 60-80% due to a small color suppressed tree contribution. The dominant penguin and nonfactorization tree contributions equally contribute to the longitudinal and transverse polarization, which will be tested in the future experiments. We predict the CP asymmetry of B0→ρ+ρ- and B+→ρ+ρ0, which will be measured in B factories.

  14. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens.

    PubMed

    Milla, R; Castro-Díez, P; Maestro-Martínez, M; Montserrat-Martí, G

    2005-10-01

    Few studies have examined the effects of plant growth on nutrient remobilization in phenologically contrasting species. Here we evaluated the consequences of above-ground seasonality of growth and leaf shedding on the remobilization of nutrients from branches in eight evergreen Mediterranean phanaerophytes that differ widely in phenology. Vegetative growth, flower bud formation, flowering, fruiting, leaf shedding, and the variations in nitrogen (N), phosphorus (P) and potassium (K) pools in branches throughout the year were monitored in each species. Nitrogen and P remobilization occurred in summer, after vegetative growth and synchronously with leaf shedding. Despite the time-lag between growth and remobilization, the branches that invested more nutrients in vegetative growth also remobilized more nutrients from their old organs. Potassium remobilization peaked in the climatically harshest periods, and appears to be related to osmotic requirements. We conclude that N and P remobilization occurs mainly associated with leaf senescence, which might be triggered by factors such as the replenishment of nutrient reserves in woody organs, the hormonal relations between new and old leaves, or the constraints that summer drought poses on the amount of leaf area per branch in summer.

  15. Do Vascular Networks Branch Optimally or Randomly across Spatial Scales?

    PubMed Central

    Newberry, Mitchell G.; Savage, Van M.

    2016-01-01

    Modern models that derive allometric relationships between metabolic rate and body mass are based on the architectural design of the cardiovascular system and presume sibling vessels are symmetric in terms of radius, length, flow rate, and pressure. Here, we study the cardiovascular structure of the human head and torso and of a mouse lung based on three-dimensional images processed via our software Angicart. In contrast to modern allometric theories, we find systematic patterns of asymmetry in vascular branching, potentially explaining previously documented mismatches between predictions (power-law or concave curvature) and observed empirical data (convex curvature) for the allometric scaling of metabolic rate. To examine why these systematic asymmetries in vascular branching might arise, we construct a mathematical framework to derive predictions based on local, junction-level optimality principles that have been proposed to be favored in the course of natural selection and development. The two most commonly used principles are material-cost optimizations (construction materials or blood volume) and optimization of efficient flow via minimization of power loss. We show that material-cost optimization solutions match with distributions for asymmetric branching across the whole network but do not match well for individual junctions. Consequently, we also explore random branching that is constrained at scales that range from local (junction-level) to global (whole network). We find that material-cost optimizations are the strongest predictor of vascular branching in the human head and torso, whereas locally or intermediately constrained random branching is comparable to material-cost optimizations for the mouse lung. These differences could be attributable to developmentally-programmed local branching for larger vessels and constrained random branching for smaller vessels. PMID:27902691

  16. Engineering complex tissues.

    PubMed

    Atala, Anthony; Kasper, F Kurtis; Mikos, Antonios G

    2012-11-14

    Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

  17. Gender, race, and electrophysiologic characteristics of the branched recurrent laryngeal nerve.

    PubMed

    Fontenot, Tatyana E; Randolph, Gregory W; Friedlander, Paul L; Masoodi, Hammad; Yola, Ibrahim M; Kandil, Emad

    2014-10-01

    The extralaryngeal branching of recurrent laryngeal nerves (RLN) conveys an increased risk of nerve injury during thyroid surgery. We hypothesized that racial and gender variations in prevalence of branched RLN exist. A retrospective review of all patients who underwent thyroid surgery in a 4-year period in a single surgeon practice. The RLN was routinely identified during thyroid surgery. Presence of RLN branching, its distance from the laryngeal nerve entry point (NEP), and functionality of the branches were ascertained. Patient demographics, rates of neural branching, and distance of bifurcation from the NEP were evaluated using statistical analysis. We identified 719 RLNs at risk in 491 patients who underwent central neck surgery. Four hundred and five (82.5%) patients were female and 86 (17.5%) patients were male. There were 218 (44.4%) African American patients and 251 (51.1 %) Caucasian patients. In African American patients, 42.1% RLNs bifurcated compared to 33.2% RLNs in Caucasian (P = 0.017) patients. The RLNs of African American and Caucasian patients bifurcated at comparable distances (P = 0.30). In male patients, 39.1% RLNs bifurcated; whereas in female patients 36.2% RLNs bifurcated (P = 0.53). On average, RLN bifurcation in female patients was at a longer distance from NEP compared to that of male patients (P = 0.012). Electrophysiologic testing found motor fibers in all anterior branches and three posterior extralaryngeal RLN branches. African American patients have a higher rate of RLN bifurcation compared to Caucasian patients but no statistically significant difference in distance from NEP. Female patients tend to have longer branching variants of bifid RLNs. RLN motor fibers reside primarily in the anterior branch but may occur in the posterior branch. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes.

    PubMed

    Henke, Helena; Posch, Sandra; Brüggemann, Oliver; Teasdale, Ian

    2016-05-01

    A new synthetic procedure is described for the preparation of poly(organo)phosphazenes with star-branched and star dendritic molecular brush type structures, thus describing the first time it has been possible to prepare controlled, highly branched architectures for this type of polymer. Furthermore, as a result of the extremely high-arm density generated by the phosphazene repeat unit, the second-generation structures represent quite unique architectures for any type of polymer. Using two relativity straight forward iterative syntheses it is possible to prepare globular highly branched polymers with up to 30 000 functional end groups, while keeping relatively narrow polydispersities (1.2-1.6). Phosphine mediated polymerization of chlorophosphoranimine is first used to prepare three-arm star polymers. Subsequent substitution with diphenylphosphine moieties gives poly(organo)phosphazenes to function as multifunctional macroinitiators for the growth of a second generation of polyphosphazene arms. Macrosubstitution with Jeffamine oligomers gives a series of large, water soluble branched macromolecules with high-arm density and hydrodynamic diameters between 10 and 70 nm. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Computer simulations of melts of randomly branching polymers

    NASA Astrophysics Data System (ADS)

    Rosa, Angelo; Everaers, Ralf

    2016-10-01

    Randomly branching polymers with annealed connectivity are model systems for ring polymers and chromosomes. In this context, the branched structure represents transient folding induced by topological constraints. Here we present computer simulations of melts of annealed randomly branching polymers of 3 ≤ N ≤ 1800 segments in d = 2 and d = 3 dimensions. In all cases, we perform a detailed analysis of the observed tree connectivities and spatial conformations. Our results are in excellent agreement with an asymptotic scaling of the average tree size of R ˜ N1/d, suggesting that the trees behave as compact, territorial fractals. The observed swelling relative to the size of ideal trees, R ˜ N1/4, demonstrates that excluded volume interactions are only partially screened in melts of annealed trees. Overall, our results are in good qualitative agreement with the predictions of Flory theory. In particular, we find that the trees swell by the combination of modified branching and path stretching. However, the former effect is subdominant and difficult to detect in d = 3 dimensions.

  20. Observing Holliday junction branch migration one step at a time

    NASA Astrophysics Data System (ADS)

    Ha, Taekjip

    2004-03-01

    During genetic recombination, two homologous DNA molecules undergo strand exchange to form a four-way DNA (Holliday) junction and the recognition and processing of this species by branch migration and junction resolving enzymes determine the outcome. We have used single molecule fluorescence techniques to study two intrinsic structural dynamics of the Holliday junction, stacking conformer transitions and spontaneous branch migration. Our studies show that the dynamics of branch migration, resolved with one base pair resolution, is determined by the stability of conformers which in turn depends on the local DNA sequences. Therefore, the energy landscape of Holliday junction branch migation is not uniform, but is rugged.

  1. Simple model of inhibition of chain-branching combustion processes

    NASA Astrophysics Data System (ADS)

    Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.

    2017-11-01

    A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.

  2. Branches of NF-κb signaling pathway regulate hepatocyte proliferation in rat liver regeneration.

    PubMed

    Chang, C F; Zhao, W M; Mei, J X; Zhou, Y; Pan, C Y; Xu, T T; Xu, C S

    2015-07-13

    Previous studies have demonstrated that the nuclear factor κB (NF-κB) pathway is involved in promoting cell proliferation. To further explore the regulatory branches and their sequence in the NF-κB pathway in the promotion of hepatocyte proliferation at the transcriptional level during rat liver regeneration, Rat Genome 230 2.0 array was used to detect the expression changes of the isolated hepatocytes. We found that many genes involved in the NF-κB pathway (including 73 known genes and 19 homologous genes) and cell proliferation (including 484 genes and 104 homologous genes) were associated with liver regeneration. Expression profile function (Ep) was used to analyze the biological processes. It was revealed that the NF-κB pathway promoted hepatocyte proliferation through three branches. Several methods of integrated statistics were applied to extract and screen key genes in liver regeneration, and it indicated that eight genes may play a vital role in rat liver regeneration. To confirm the above predicted results, Ccnd1, Jun and Myc were analyzed using qRT-PCR, and the results were generally consistent with that of microarray data. It is concluded that 3 branches and 8 key genes involved in the NF-κB pathway regulate hepatocyte proliferation during rat liver regeneration.

  3. The Coulomb Branch of 3d N= 4 Theories

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide

    2017-09-01

    We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.

  4. Protein engineering and its applications in food industry.

    PubMed

    Kapoor, Swati; Rafiq, Aasima; Sharma, Savita

    2017-07-24

    Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.

  5. Epicormic branching on hardwood trees bordering forest openings

    Treesearch

    G.R., Jr. Trimble; Donald W. Seegrist; Donald W. Seegrist

    1973-01-01

    Epicormic branching in hardwoods can degrade logs and reduce the dollar returns from growing trees. A study made around clearcut openings of various sizes showed that the following variables were related to the degree of epicormic branching on trees bordering the openings: size of opening, species, tree dominance class, exposure of tree bole, and position on tree bole...

  6. Modeling Radioactive Decay Chains with Branching Fraction Uncertainties

    DTIC Science & Technology

    2013-03-01

    moments methods with transmutation matrices. Uncertainty from both half-lives and branching fractions is carried through these calculations by Monte...moment methods, method for sampling from normal distributions for half- life uncertainty, and use of transmutation matrices were leveraged. This...distributions for half-life and branching fraction uncertainties, building decay chains and generating the transmutation matrix (T-matrix

  7. Motivational and Adaptational Factors of Successful Women Engineers

    ERIC Educational Resources Information Center

    Bornsen, Susan Edith

    2012-01-01

    It is no surprise that there is a shortage of women engineers. The reasons for the shortage have been researched and discussed in myriad papers, and suggestions for improvement continue to evolve. However, there are few studies that have specifically identified the positive aspects that attract women to engineering and keep them actively engaged…

  8. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment.

    PubMed

    Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul

    2017-05-01

    Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate

  9. Understanding the leaky engineering pipeline: Motivation and job adaptability of female engineers

    NASA Astrophysics Data System (ADS)

    Saraswathiamma, Manjusha Thekkedathu

    This dissertation is a mixed-method study conducted using qualitative grounded theory and quantitative survey and correlation approaches. This study aims to explore the motivation and adaptability of females in the engineering profession and to develop a theoretical framework for both motivation and adaptability issues. As a result, this study endeavors to design solutions for the low enrollment and attenuation of female engineers in the engineering profession, often referred to as the "leaky female engineering pipeline." Profiles of 123 female engineers were studied for the qualitative approach, and 98 completed survey responses were analyzed for the quantitative approach. The qualitative, grounded-theory approach applied the constant comparison method; open, axial, and selective coding was used to classify the information in categories, sub-categories, and themes for both motivation and adaptability. The emergent themes for decisions motivating female enrollment include cognitive, emotional, and environmental factors. The themes identified for adaptability include the seven job adaptability factors: job satisfaction, risk- taking attitude, career/skill development, family, gender stereotyping, interpersonal skills, and personal benefit, as well as the self-perceived job adaptability factor. Illeris' Three-dimensional Learning Theory was modified as a model for decisions motivating female enrollment. This study suggests a firsthand conceptual parallelism of McClusky's Theory of Margin for the adaptability of female engineers in the profession. Also, this study attempted to design a survey instrument to measure job adaptability of female engineers. The study identifies two factors that are significantly related to job adaptability: interpersonal skills (< p = 0.01) and family (< p = 0.05); gender stereotyping and personal benefit are other factors that are also significantly (< p = 0.1) related.

  10. 24 CFR 3280.804 - Disconnecting means and branch-circuit protective equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Disconnecting means and branch... SAFETY STANDARDS Electrical Systems § 3280.804 Disconnecting means and branch-circuit protective equipment. (a) The branch-circuit equipment is permitted to be combined with the disconnecting means as a...

  11. Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.

    PubMed

    Kozera, Katarzyna; Ciszek, Bogdan

    2016-01-01

    The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.

  12. The Intersection of the Extrinsic Hedgehog and WNT/Wingless Signals with the Intrinsic Hox Code Underpins Branching Pattern and Tube Shape Diversity in the Drosophila Airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Saigo, Kaoru; Samakovlis, Christos

    2015-01-01

    The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. PMID:25615601

  13. The History and Promise of Combined Cycle Engines for Access to Space Applications

    NASA Technical Reports Server (NTRS)

    Clark, Casie

    2010-01-01

    For the summer of 2010, I have been working in the Aerodynamics and Propulsion Branch at NASA Dryden Flight Research Center studying combined-cycle engines, a high speed propulsion concept. Combined cycle engines integrate multiple propulsion systems into a single engine capable of running in multiple modes. These different modes allow the engine to be extremely versatile and efficient in varied flight conditions. The two most common types of combined cycle engines are Rocket-Based Combined Cycle (RBCC) and Turbine Based Combined Cycle (TBCC). The RBCC essentially combines a rocket and ramjet engine, while the TBCC integrates a turbojet and ramjet1. These two engines are able to switch between different propulsion modes to achieve maximum performance. Extensive conceptual and ground test studies of RBCC engines have been undertaken; however, an RBCC engine has never, to my knowledge, been demonstrated in flight. RBCC engines are of particular interest because they could potentially power a reusable launch vehicle (RLV) into space. The TBCC has been flight tested and shown to be effective at reaching supersonic speeds, most notably in the SR-71 Blackbird2.

  14. Improving Safety through Human Factors Engineering.

    PubMed

    Siewert, Bettina; Hochman, Mary G

    2015-10-01

    Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.

  15. Title Sheet, National Home for Disabled Volunteer Soldiers, Northwestern Branch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Title Sheet, National Home for Disabled Volunteer Soldiers, Northwestern Branch - National Home for Disabled Volunteer Soldiers, Northwestern Branch, 5000 West National Avenue, Milwaukee, Milwaukee County, WI

  16. Atomic temporal interval relations in branching time: calculation and application

    NASA Astrophysics Data System (ADS)

    Anger, Frank D.; Ladkin, Peter B.; Rodriguez, Rita V.

    1991-03-01

    A practical method of reasoning about intervals in a branching-time model which is dense, unbounded, future-branching, without rejoining branches is presented. The discussion is based on heuristic constraint- propagation techniques using the relation algebra of binary temporal relations among the intervals over the branching-time model. This technique has been applied with success to models of intervals over linear time by Allen and others, and is of cubic-time complexity. To extend it to branding-time models, it is necessary to calculate compositions of the relations; thus, the table of compositions for the 'atomic' relations is computed, enabling the rapid determination of the composition of arbitrary relations, expressed as disjunctions or unions of the atomic relations.

  17. Sleep promotes branch-specific formation of dendritic spines after learning

    PubMed Central

    Yang, Guang; Lai, Cora Sau Wan; Cichon, Joseph; Ma, Lei; Li, Wei; Gan, Wen-Biao

    2015-01-01

    How sleep helps learning and memory remains unknown. We report in mouse motor cortex that sleep after motor learning promotes the formation of postsynaptic dendritic spines on a subset of branches of individual layer V pyramidal neurons. New spines are formed on different sets of dendritic branches in response to different learning tasks and are protected from being eliminated when multiple tasks are learned. Neurons activated during learning of a motor task are reactivated during subsequent non-rapid eye movement sleep, and disrupting this neuronal reactivation prevents branch-specific spine formation. These findings indicate that sleep has a key role in promoting learning-dependent synapse formation and maintenance on selected dendritic branches, which contribute to memory storage. PMID:24904169

  18. Improving engineering effectiveness

    NASA Technical Reports Server (NTRS)

    Fiero, J. D.

    1985-01-01

    Methodologies to improve engineering productivity were investigated. The rocky road to improving engineering effectiveness is reviewed utilizing a specific semiconductor engineering organization as a case study. The organization had a performance problem regarding new product introductions. With the help of this consultant as a change agent the engineering team used a systems approach to through variables that were effecting their output significantly. Critical factors for improving this engineering organization's effectiveness and the roles/responsibilities of management, the individual engineers and the internal consultant are discussed.

  19. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors.

    PubMed

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Barbas, Carlos F; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 -which resides mainly in resting CD4+ T cells--is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection.

  20. Reactivation of Latent HIV-1 Expression by Engineered TALE Transcription Factors

    PubMed Central

    Perdigão, Pedro; Gaj, Thomas; Santa-Marta, Mariana; Goncalves, Joao

    2016-01-01

    The presence of replication-competent HIV-1 –which resides mainly in resting CD4+ T cells–is a major hurdle to its eradication. While pharmacological approaches have been useful for inducing the expression of this latent population of virus, they have been unable to purge HIV-1 from all its reservoirs. Additionally, many of these strategies have been associated with adverse effects, underscoring the need for alternative approaches capable of reactivating viral expression. Here we show that engineered transcriptional modulators based on customizable transcription activator-like effector (TALE) proteins can induce gene expression from the HIV-1 long terminal repeat promoter, and that combinations of TALE transcription factors can synergistically reactivate latent viral expression in cell line models of HIV-1 latency. We further show that complementing TALE transcription factors with Vorinostat, a histone deacetylase inhibitor, enhances HIV-1 expression in latency models. Collectively, these findings demonstrate that TALE transcription factors are a potentially effective alternative to current pharmacological routes for reactivating latent virus and that combining synthetic transcriptional activators with histone deacetylase inhibitors could lead to the development of improved therapies for latent HIV-1 infection. PMID:26933881