Sample records for factors including hormones

  1. Plant hormones including ethylene are recruited in calyx inflation in Solanaceous plants.

    PubMed

    Khan, Muhammad Ramzan; Hu, Jinyong; He, Chaoying

    2012-07-01

    Plant hormones direct many processes of floral and post-floral morphogenesis in Angiosperms. However, their role in shaping floral morphological novelties, such as inflated calyx syndrome (ICS) exhibited by a few genera of the Solanaceae, remains unknown. In Withania and Physalis, sepals resume growth after pollination and encapsulate the mature fruit to form a balloon-like structure, i.e. ICS. The epidermal cells of calyx show enlargement and lobation post-fertilization. Application of hormones to depistillated flower buds of Withania revealed that cytokinins and gibberellins mimic fertilization signals. The ICS development is a synchronous step with fruit development; both processes are under the control of more or less the same set of hormones, including cytokinins and gibberellic acids. Interestingly, inhibition of ethylene in the system is sufficient to yield inflated calyx in Withania. In contrast, Tubocapsicum, a closely related species and an evolutionary natural loss mutant of ICS - showed no response to applied hormones, and ethylene led to inflation of the receptacle indirectly. In addition to hormones, the expression of an MPF2-like MADS-box transcription factor in sepals is essential for ICS formation. Nevertheless, the interactions between MPF2-like genes and hormones are barely detectable at the transcript level. Our data provide insight into the role of hormones in generating floral morphological diversity during evolution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  2. Lifetime hormonal factors may predict late-life depression in women

    PubMed Central

    Ryan, Joanne; Carrière, Isabelle; Scali, Jacqueline; Ritchie, Karen; Ancelin, Marie-Laure

    2008-01-01

    Background Fluctuating hormone levels are known to influence a woman’s mood and well-being. This study aimed to determine whether lifetime hormonal markers are associated with late-life depression symptoms among elderly community-dwelling women. Method Detailed reproductive histories of 1013 women aged 65 years and over were obtained using questionnaires and depressive symptoms were assessed using the Centre for Epidemiological Studies Depression Scale. Multivariate logistic regression models were generated to determine whether any lifetime endogenous or exogenous hormonal factors were associated with late-life depression. Results The prevalence of depressive symptoms was 17%. Age at menopause was associated with depressive symptoms, but only among women with a lower education level. For these women, an earlier age at menopause increased their risk of late-life depression (linear effect, OR=0.95, 95%CI: 0.91–0.99). The odds of late-life depression were also increased for women who were past (OR=1.6, 95%CI: 1.1–2.5), but not current hormonal replacement users. On the other hand, long-term oral contraceptive use (≥10 years) was protective against depression (OR=0.3, 95%CI: 0.1–0.9). These associations remained significant even after extensive adjustment for a range of potential confounding factors, including socio-demographic factors, mental and physical incapacities, antidepressant use and past depression. The other factors examined, including age at first menses, parity, age at childbirth and surgical menopause, were not associated with late-life depressive symptoms. Conclusions Lifetime hormonal factors that are significantly associated with depression symptoms in later life have been identified. Further work is needed to determine how potential hormonal interventions could be used in the treatment of late-life depression in certain sub-groups of women. PMID:18533067

  3. Association of Serum Sex Hormones with Hemostatic Factors in Women On and Off Hormone Therapy: The Multiethnic Study of Atherosclerosis.

    PubMed

    Williams, Marlene S; Cushman, Mary; Ouyang, Pamela; Heckbert, Susan R; Kalyani, Rita Rastogi; Vaidya, Dhanajay

    2016-02-01

    Hormone therapy (HT) is associated with increased risk of both venous and arterial thrombosis, which are multifactorial in origin. Our objectives were twofold: first, we sought to examine associations between endogenous serum sex hormone levels and biomarkers of thrombosis and/or coagulation in postmenopausal hormone nonusers. Second, we separately studied the associations between serum sex hormone levels and biomarkers of thrombosis and/or coagulation in postmenopausal hormone users considering the fact that pattern of circulating hormones is different in women taking exogenous hormones. We performed a cross-sectional analysis of postmenopausal women enrolled in a large multiethnic community-based cohort study, The Multiethnic Study of Atherosclerosis. We hypothesized that higher levels of estrogen-related sex hormones would be associated with biomarkers of thrombosis, suggesting mechanisms for differences in thrombotic risk from HT. Women (n = 2878) were included if they were postmenopausal and had thrombotic biomarkers (homocysteine, fibrinogen, C-reactive protein [CRP], factor VIII, and d-dimer) and sex hormone levels (total testosterone [T], bioavailable testosterone, sex hormone binding globulin [SHBG], estradiol [E2], and dehydroepiandrosterone [DHEA]) measured. A smaller random sample of 491 women also had von Willebrand factor (vWF), plasminogen activator inhibitor (PAI-1), and tissue factor pathway inhibitor (TFPI) levels measured. We found that elevated levels of estradiol and SHBG in HT users were associated with elevated levels of CRP and lower levels of TFPI, both of which may be related to a prothrombotic milieu in HT users. HT nonusers had far more prothrombotic associations between elevated serum sex hormone levels and thrombotic biomarkers when compared with HT users.

  4. Female reproductive factors, menopausal hormone use, and Parkinson’s disease

    PubMed Central

    Liu, Rui; Baird, Donna; Park, Yikyung; Freedman, Neal D.; Huang, Xuemei; Hollenbeck, Albert; Blair, Aaron; Chen, Honglei

    2014-01-01

    Objective To examine the associations of reproductive factors and exogenous hormone use with risk of Parkinson’s disease (PD) among postmenopausal women. Methods The study comprised 119,166 postmenopausal women ages 50–71 years in the NIH-AARP Diet and Health Study, who completed a baseline questionnaire in 1995–1996 and a follow-up survey in 2004–2006. A total of 410 self-reported PD diagnoses were identified between 1995 and 2006. Multivariate odds ratios (OR) and 95% confidence intervals (CI) were derived from logistic regression models. Results PD risk was not significantly associated with female reproductive factors including age at menarche, age at first live birth, parity, and age at menopause. For example, compared with women with natural menopause at ages 50–54 years, the ORs were 1.18, (95% CI 0.78–1.79) for women with natural menopause at ages <45, 1.19 (0.88–1.61) for ages 45–49, and 1.33 (0.91–1.93) for ages 55 or later. We found that oral contraceptive use for ≥10 years (vs. never use) was associated with lower PD risk (OR=0.59; 0.38–0.92) but shorter use showed no association. Use of menopausal hormone therapy showed inconsistent results. Compared with non-hormone users at baseline, current hormone users of <5 years showed a higher risk of PD (OR=1.52; 1.11–2.08). However, no associations were observed for past hormone users or current users of ≥5 years. Conclusions Overall, this large prospective study provides little support for an association between female reproductive factors and PD risk. Our findings on long-term oral contraceptive use and current hormone therapy warrant further investigations. PMID:24352877

  5. Risk Factors for Breast Cancer, Including Occupational Exposures

    PubMed Central

    Meo, Margrethe; Vainio, Harri

    2011-01-01

    The knowledge on the etiology of breast cancer has advanced substantially in recent years, and several etiological factors are now firmly established. However, very few new discoveries have been made in relation to occupational risk factors. The International Agency for Research on Cancer has evaluated over 900 different exposures or agents to-date to determine whether they are carcinogenic to humans. These evaluations are published as a series of Monographs (www.iarc.fr). For breast cancer the following substances have been classified as "carcinogenic to humans" (Group 1): alcoholic beverages, exposure to diethylstilbestrol, estrogen-progestogen contraceptives, estrogen-progestogen hormone replacement therapy and exposure to X-radiation and gamma-radiation (in special populations such as atomic bomb survivors, medical patients, and in-utero exposure). Ethylene oxide is also classified as a Group 1 carcinogen, although the evidence for carcinogenicity in epidemiologic studies, and specifically for the human breast, is limited. The classification "probably carcinogenic to humans" (Group 2A) includes estrogen hormone replacement therapy, tobacco smoking, and shift work involving circadian disruption, including work as a flight attendant. If the association between shift work and breast cancer, the most common female cancer, is confirmed, shift work could become the leading cause of occupational cancer in women. PMID:22953181

  6. A case-control study of hormonal exposures as etiologic factors for ALS in women: Euro-MOTOR.

    PubMed

    Rooney, James P K; Visser, Anne E; D'Ovidio, Fabrizio; Vermeulen, Roel; Beghi, Ettore; Chio, Adriano; Veldink, Jan H; Logroscino, Giancarlo; van den Berg, Leonard H; Hardiman, Orla

    2017-09-19

    To investigate the role of hormonal risk factors for amyotrophic lateral sclerosis (ALS) among women from 3 European countries. ALS cases and matched controls were recruited over 4 years in Ireland, Italy, and the Netherlands. Hormonal exposures, including reproductive history, breastfeeding, contraceptive use, hormonal replacement therapy, and gynecologic surgical history, were recorded with a validated questionnaire. Logistic regression models adjusted for age, education, study site, smoking, alcohol, and physical activity were used to determine the association between female hormones and ALS risk. We included 653 patients and 1,217 controls. Oral contraceptive use was higher among controls (odds ratio [OR] 0.65, 95% confidence interval [CI] 0.51-0.84), and a dose-response effect was apparent. Hormone replacement therapy (HRT) was associated with a reduced risk of ALS only in the Netherlands (OR = 0.57, 95% CI 0.37-0.85). These findings were robust to sensitivity analysis, but there was some heterogeneity across study sites. This large case-control study across 3 different countries has demonstrated an association between exogenous estrogens and progestogens and reduced odds of ALS in women. These results are at variance with previous findings, which may be partly explained by differential regulatory, social, and cultural attitudes toward pregnancy, birth control, and HRT across the countries included. Our results indicate that hormonal factors may be important etiologic factors in ALS; however, a full understanding requires further investigation. © 2017 American Academy of Neurology.

  7. Growth hormone deficiency - children

    MedlinePlus

    ... be done include: Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 ( ... C, et al. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, ...

  8. The association of reproductive and lifestyle factors with a score of multiple endogenous hormones

    PubMed Central

    Shafrir, Amy L.; Zhang, Xuehong; Poole, Elizabeth M.; Hankinson, Susan E.; Tworoger, Shelley S.

    2014-01-01

    Introduction We recently reported that high levels of multiple sex and growth hormones were associated with increased postmenopausal breast cancer risk. Limited research has explored the relationship between reproductive, anthropometric, and lifestyle factors and levels of multiple hormones simultaneously. Methods This cross-sectional analysis included 738 postmenopausal Nurses' Health Study participants who were controls in a breast cancer nested case-control study and had measured levels of estrone, estradiol, estrone sulfate, testosterone, androstenedione, dehydroepiandrosterone sulfate, prolactin and sex hormone binding globulin (SHBG). A score was created by summing the number of hormones a woman had above (below for SHBG) each hormone's age-adjusted geometric mean. The association between lifestyle, anthropometric, and reproductive exposures and the score was assessed using generalized linear models. Results The hormone score ranged from 0 to 8 with a mean of 4.0 (standard deviation=2.2). Body mass index (BMI) and alcohol consumption at blood draw were positively associated with the hormone score: a 5 unit increase in BMI was associated with a 0.79 (95%CI: 0.63, 0.95) unit increase in the score (p<0.0001) and each 15 grams/day increase in alcohol consumption was associated with a 0.41 (95%CI: 0.18, 0.63) unit increase in the score (p=0.0004). Family history of breast cancer, age at menarche, and physical activity were not associated with the score. Conclusions Reproductive breast cancer risk factors were not associated with elevated levels of multiple endogenous hormones, whereas anthropometric and lifestyle factors, particularly BMI and alcohol consumption, tended to be associated with higher levels of multiple hormones. PMID:25048255

  9. The association of reproductive and lifestyle factors with a score of multiple endogenous hormones.

    PubMed

    Shafrir, Amy L; Zhang, Xuehong; Poole, Elizabeth M; Hankinson, Susan E; Tworoger, Shelley S

    2014-10-01

    We recently reported that high levels of multiple sex and growth hormones were associated with increased postmenopausal breast cancer risk. Limited research has explored the relationship between reproductive, anthropometric, and lifestyle factors and levels of multiple hormones simultaneously. This cross-sectional analysis included 738 postmenopausal Nurses' Health Study participants who were controls in a breast cancer nested case-control study and had measured levels of estrone, estradiol, estrone sulfate, testosterone, androstenedione, dehydroepiandrosterone sulfate, prolactin, and sex hormone binding globulin (SHBG). A score was created by summing the number of hormones a woman had above (below for SHBG) each hormone's age-adjusted geometric mean. The association between lifestyle, anthropometric, and reproductive exposures and the score was assessed using generalized linear models. The hormone score ranged from 0 to 8 with a mean of 4.0 (standard deviation = 2.2). Body mass index (BMI) and alcohol consumption at blood draw were positively associated with the hormone score: a 5 unit increase in BMI was associated with a 0.79 (95%CI: 0.63, 0.95) unit increase in the score (p < 0.0001) and each 15 g/day increase in alcohol consumption was associated with a 0.41 (95%CI: 0.18, 0.63) unit increase in the score (p = 0.0004). Family history of breast cancer, age at menarche, and physical activity were not associated with the score. Reproductive breast cancer risk factors were not associated with elevated levels of multiple endogenous hormones, whereas anthropometric and lifestyle factors, particularly BMI and alcohol consumption, tended to be associated with higher levels of multiple hormones.

  10. Acetylcholine Modulates the Hormones of the Growth Hormone/Insulinlike Growth Factor-1 Axis During Development in Mice.

    PubMed

    Lecomte, Marie-José; Bertolus, Chloé; Ramanantsoa, Nélina; Saurini, Françoise; Callebert, Jacques; Sénamaud-Beaufort, Catherine; Ringot, Maud; Bourgeois, Thomas; Matrot, Boris; Collet, Corinne; Nardelli, Jeannette; Mallet, Jacques; Vodjdani, Guilan; Gallego, Jorge; Launay, Jean-Marie; Berrard, Sylvie

    2018-04-01

    Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.

  11. Hormone therapy in acne.

    PubMed

    Lakshmi, Chembolli

    2013-01-01

    Underlying hormone imbalances may render acne unresponsive to conventional therapy. Relevant investigations followed by initiation of hormonal therapy in combination with regular anti-acne therapy may be necessary if signs of hyperandrogenism are present. In addition to other factors, androgen-stimulated sebum production plays an important role in the pathophysiology of acne in women. Sebum production is also regulated by other hormones, including estrogens, growth hormone, insulin, insulin-like growth factor-1, glucocorticoids, adrenocorticotropic hormone, and melanocortins. Hormonal therapy may also be beneficial in female acne patients with normal serum androgen levels. An understanding of the sebaceous gland and the hormonal influences in the pathogenesis of acne would be essential for optimizing hormonal therapy. Sebocytes form the sebaceous gland. Human sebocytes express a multitude of receptors, including receptors for peptide hormones, neurotransmitters and the receptors for steroid and thyroid hormones. Various hormones and mediators acting through the sebocyte receptors play a role in the orchestration of pathogenetic lesions of acne. Thus, the goal of hormonal treatment is a reduction in sebum production. This review shall focus on hormonal influences in the elicitation of acne via the sebocyte receptors, pathways of cutaneous androgen metabolism, various clinical scenarios and syndromes associated with acne, and the available therapeutic armamentarium of hormones and drugs having hormone-like actions in the treatment of acne.

  12. Intestinal hormones and growth factors: Effects on the small intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2009-01-01

    There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442

  13. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling. © 2014 Elsevier Inc. All rights reserved.

  14. Hormonal, anthropometric and lipid factors associated with idiopathic pubertal gynecomastia.

    PubMed

    Al Alwan, Ibrahim; Al Azkawi, Hanan; Badri, Motasim; Tamim, Hani; Al Dubayee, Mohammed; Tamimi, Waleed

    2013-01-01

    To determine factors associated with pubertal gynecomastia. A cross-sectional study among healthy male school children and adolescents in Riyadh, Saudi Arabia. Subjects were selected from diverse socioeconomic backgrounds. Tanner stage, height, weight, blood hormonal levels (leutilizing hormone [LH], follicle-stimulating hormone [FSH], total testosterone, and estradiol), and anthropometric and lipid parameters (body mass index [BMI], triglycerides, high-density lipoprotein [HDL], and low-density lipoprotein [LDL]), were collected and compared in children with and without gynecomastia. The study included 542 children and adolescents. Median (interquartile range) age in the whole group was 11(8-13) years. The prevalence of gynecomastia was 185/542 (34%), with a peak at age 14. The 2 groups compared had nonsignificant difference in cholesterol (P=.331), LH (P=.215) and FSH (P=.571) levels. Those with gynecomastia were significantly older, had lower gonad stage, had higher anthropometric (height, weight, and BMI), and lipid (triglycerides, HDL, and LDL) values. In multivariate regression analysis, factors significantly associated with gynecomastia were BMI (odds ratio [OR]=1.05; 95%CI 1.00-1.10; P=.013), HDL (OR=0.42; 95%CI 0.19-0.92; P=.03), and gonad (Stage II OR=2.23; 95%CI 1.27-3.92; P=.005, Stage III OR=6.40; 95%CI 2.70-15.0; P < .0001, Stage IV OR=3.24; 95%CI 1.32-7.95; P=.01, Stage V OR=1.37; 95%CI 0.52-3.56; P=.53, compared with stage I). Pubertal gynecomastia tends to increase in mid-puberty. In our setting, BMI, HDL, and gonad stage were the major factors associated with the development of pubertal gynecomastia.

  15. Rare Frequency of Mutations in Pituitary Transcription Factor Genes in Combined Pituitary Hormone or Isolated Growth Hormone Deficiencies in Korea.

    PubMed

    Choi, Jin Ho; Jung, Chang Woo; Kang, Eungu; Kim, Yoon Myung; Heo, Sun Hee; Lee, Beom Hee; Kim, Gu Hwan; Yoo, Han Wook

    2017-05-01

    Congenital hypopituitarism is caused by mutations in pituitary transcription factors involved in the development of the hypothalamic-pituitary axis. Mutation frequencies of genes involved in congenital hypopituitarism are extremely low and vary substantially between ethnicities. This study was undertaken to compare the clinical, endocrinological, and radiological features of patients with an isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD). This study included 27 patients with sporadic IGHD and CPHD. A mutation analysis of the POU1F1, PROP1, LHX3, LHX4, and HESX1 genes was performed using genomic DNA from peripheral blood leukocytes. IGHD and CPHD were observed in 4 and 23 patients, respectively. Mean age at diagnosis was 8.28±7.25 years for IGHD and 13.48±10.46 years for CPHD (p=0.37). Serum insulin-like growth factor-1 and peak growth hormone (GH) levels following GH stimulation tests were significantly lower in patients with CPHD than in those with IGHD (p<0.05). Sellar MRI findings revealed structural abnormalities in 3 patients with IGHD (75%) and 21 patients with CPHD (91.3%) (p=0.62). A mutation analysis identified homozygous p.R109Q mutations in HESX1 in a patient with CPHD. Patients with CPHD had more severe GHD than those with IGHD. The frequency of defects in the genes encoding pituitary transcription factors was extremely low in Korean patients with congenital hypopituitarism. Environmental factors and the impact of other causative genes may contribute to this clinical phenotype. © Copyright: Yonsei University College of Medicine 2017

  16. Rare Frequency of Mutations in Pituitary Transcription Factor Genes in Combined Pituitary Hormone or Isolated Growth Hormone Deficiencies in Korea

    PubMed Central

    Choi, Jin-Ho; Jung, Chang-Woo; Kang, Eungu; Kim, Yoon-Myung; Heo, Sun Hee; Lee, Beom Hee; Kim, Gu-Hwan

    2017-01-01

    Purpose Congenital hypopituitarism is caused by mutations in pituitary transcription factors involved in the development of the hypothalamic-pituitary axis. Mutation frequencies of genes involved in congenital hypopituitarism are extremely low and vary substantially between ethnicities. This study was undertaken to compare the clinical, endocrinological, and radiological features of patients with an isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD). Materials and Methods This study included 27 patients with sporadic IGHD and CPHD. A mutation analysis of the POU1F1, PROP1, LHX3, LHX4, and HESX1 genes was performed using genomic DNA from peripheral blood leukocytes. Results IGHD and CPHD were observed in 4 and 23 patients, respectively. Mean age at diagnosis was 8.28±7.25 years for IGHD and 13.48±10.46 years for CPHD (p=0.37). Serum insulin-like growth factor-1 and peak growth hormone (GH) levels following GH stimulation tests were significantly lower in patients with CPHD than in those with IGHD (p<0.05). Sellar MRI findings revealed structural abnormalities in 3 patients with IGHD (75%) and 21 patients with CPHD (91.3%) (p=0.62). A mutation analysis identified homozygous p.R109Q mutations in HESX1 in a patient with CPHD. Patients with CPHD had more severe GHD than those with IGHD. Conclusion The frequency of defects in the genes encoding pituitary transcription factors was extremely low in Korean patients with congenital hypopituitarism. Environmental factors and the impact of other causative genes may contribute to this clinical phenotype. PMID:28332357

  17. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    PubMed

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  18. Pregnancy, sex and hormonal factors in multiple sclerosis

    PubMed Central

    Miller, David H; Fazekas, Franz; Montalban, Xavier; Reingold, Stephen C; Trojano, Maria

    2014-01-01

    Background: Multiple sclerosis (MS) is influenced by pregnancy, sex and hormonal factors. Objectives: A comprehensive understanding of the role of pregnancy, sex and hormonal factors can provide insights into disease mechanisms, and new therapeutic developments and can provide improved patient care and treatment. Methods: Based on an international conference of experts and a comprehensive PubMed search for publications on these areas in MS, we provide a review of what is known about the impact of these factors on disease demographics, etiology, pathophysiology and clinical course and outcomes. Results and conclusions: Recommendations are provided for counseling and management of people with MS before conception, during pregnancy and after delivery. The use of disease-modifying and symptomatic therapies in pregnancy is problematic and such treatments are normally discontinued. Available knowledge about the impact of treatment on the mother, fetus and newborn is discussed. Recommendations for future research to fill knowledge gaps and clarify inconsistencies in available data are made. PMID:24446387

  19. Hormonal and reproductive risk factors of papillary thyroid cancer: A population-based case-control study in France.

    PubMed

    Cordina-Duverger, Emilie; Leux, Christophe; Neri, Monica; Tcheandjieu, Catherine; Guizard, Anne-Valérie; Schvartz, Claire; Truong, Thérèse; Guénel, Pascal

    2017-06-01

    The three times higher incidence of thyroid cancer in women compared to men points to a role of female sex hormones in its etiology. However the effects of these factors are poorly understood. We analyzed the association between thyroid cancer and hormonal and reproductive factors among women enrolled in CATHY, a population-based case-control study conducted in France. The study included 430 cases of papillary thyroid cancer and 505 controls frequency-matched on age and area of residence. The odds ratios for thyroid cancer increased with age at menarche (p trend 0.05). Postmenopausal women were at increased risk, as compared to premenopausal women, particularly if menopause followed an ovariectomy, and for women with age at menopause <55years. In addition, use of oral contraceptives and menopausal hormone therapy reduced the association with thyroid cancer by about one third, and breastfeeding by 27%. Overall, these findings provide evidence that the risk of thyroid cancer increases with later age at menarche and after menopause, and decreases with use of oral contraceptives and menopausal hormone therapy. These findings confirm an implication of hormonal factors in papillary thyroid cancer risk, whose mechanisms need to be elucidated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies

    PubMed Central

    Key, T J; Appleby, P N; Reeves, G K; Roddam, A W; Helzlsouer, K J; Alberg, A J; Rollison, D E; Dorgan, J F; Brinton, L A; Overvad, K; Kaaks, R; Trichopoulou, A; Clavel-Chapelon, F; Panico, S; Duell, E J; Peeters, P H M; Rinaldi, S; Fentiman, I S; Dowsett, M; Manjer, J; Lenner, P; Hallmans, G; Baglietto, L; English, D R; Giles, G G; Hopper, J L; Severi, G; Morris, H A; Hankinson, S E; Tworoger, S S; Koenig, K; Zeleniuch-Jacquotte, A; Arslan, A A; Toniolo, P; Shore, R E; Krogh, V; Micheli, A; Berrino, F; Barrett-Connor, E; Laughlin, G A; Kabuto, M; Akiba, S; Stevens, R G; Neriishi, K; Land, C E; Cauley, J A; Lui, Li Yung; Cummings, Steven R; Gunter, M J; Rohan, T E; Strickler, H D

    2011-01-01

    Background: Breast cancer risk for postmenopausal women is positively associated with circulating concentrations of oestrogens and androgens, but the determinants of these hormones are not well understood. Methods: Cross-sectional analyses of breast cancer risk factors and circulating hormone concentrations in more than 6000 postmenopausal women controls in 13 prospective studies. Results: Concentrations of all hormones were lower in older than younger women, with the largest difference for dehydroepiandrosterone sulphate (DHEAS), whereas sex hormone-binding globulin (SHBG) was higher in the older women. Androgens were lower in women with bilateral ovariectomy than in naturally postmenopausal women, with the largest difference for free testosterone. All hormones were higher in obese than lean women, with the largest difference for free oestradiol, whereas SHBG was lower in obese women. Smokers of 15+ cigarettes per day had higher levels of all hormones than non-smokers, with the largest difference for testosterone. Drinkers of 20+ g alcohol per day had higher levels of all hormones, but lower SHBG, than non-drinkers, with the largest difference for DHEAS. Hormone concentrations were not strongly related to age at menarche, parity, age at first full-term pregnancy or family history of breast cancer. Conclusion: Sex hormone concentrations were strongly associated with several established or suspected risk factors for breast cancer, and may mediate the effects of these factors on breast cancer risk. PMID:21772329

  1. Sex hormones, sex hormone binding globulin, and vertebral fractures in older men.

    PubMed

    Cawthon, Peggy M; Schousboe, John T; Harrison, Stephanie L; Ensrud, Kristine E; Black, Dennis; Cauley, Jane A; Cummings, Steven R; LeBlanc, Erin S; Laughlin, Gail A; Nielson, Carrie M; Broughton, Augusta; Kado, Deborah M; Hoffman, Andrew R; Jamal, Sophie A; Barrett-Connor, Elizabeth; Orwoll, Eric S

    2016-03-01

    The association between sex hormones and sex hormone binding globin (SHBG) with vertebral fractures in men is not well studied. In these analyses, we determined whether sex hormones and SHBG were associated with greater likelihood of vertebral fractures in a prospective cohort study of community dwelling older men. We included data from participants in MrOS who had been randomly selected for hormone measurement (N=1463, including 1054 with follow-up data 4.6years later). Major outcomes included prevalent vertebral fracture (semi-quantitative grade≥2, N=140, 9.6%) and new or worsening vertebral fracture (change in SQ grade≥1, N=55, 5.2%). Odds ratios per SD decrease in sex hormones and per SD increase in SHBG were estimated with logistic regression adjusted for potentially confounding factors, including age, bone mineral density, and other sex hormones. Higher SHBG was associated with a greater likelihood of prevalent vertebral fractures (OR: 1.38 per SD increase, 95% CI: 1.11, 1.72). Total estradiol analyzed as a continuous variable was not associated with prevalent vertebral fractures (OR per SD decrease: 0.86, 95% CI: 0.68 to 1.10). Men with total estradiol values ≤17pg/ml had a borderline higher likelihood of prevalent fracture than men with higher values (OR: 1.46, 95% CI: 0.99, 2.16). There was no association between total testosterone and prevalent fracture. In longitudinal analyses, SHBG (OR: 1.42 per SD increase, 95% CI: 1.03, 1.95) was associated with new or worsening vertebral fracture, but there was no association with total estradiol or total testosterone. In conclusion, higher SHBG (but not testosterone or estradiol) is an independent risk factor for vertebral fractures in older men. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Hormonal regulation of longevity in mammals

    PubMed Central

    Brown-Borg, Holly M.

    2007-01-01

    Multiple biological and environmental factors impact the life span of an organism. The endocrine system is a highly integrated physiological system in mammals that regulates metabolism, growth, reproduction, and response to stress, among other functions. As such, this pervasive entity has a major influence on aging and longevity. The growth hormone, insulin-like growth factor-1 and insulin pathways have been at the forefront of hormonal control of aging research in the last few years. Other hormones, including those from the thyroid and reproductive system have also been studied in terms of life span regulation. The relevance of these hormones to human longevity remains to be established, however the evidence from other species including yeast, nematodes, and flies suggest that evolutionarily well-conserved mechanisms are at play and the endocrine system is a key determinant. PMID:17360245

  3. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.

  4. Prognostic Factors for Hormone Sensitive Metastatic Prostate Cancer: Impact of Disease Volume

    PubMed

    Alhanafy, Alshimaa Mahmoud; Zanaty, Fouad; Ibrahem, Reda; Omar, Suzan

    2018-04-27

    Background and Aim: The optimal management of metastatic hormone-sensitive prostate cancer has been controversial in recent years with introduction of upfront chemohormonal treatment based on results of several Western studies. This changing landscape has renewed interest in the concept “disease volume”, the focus of the present study is the Egyptian patients. Methods: Patients with hormone sensitive metastatic prostate cancer presenting at Menoufia University Hospital, Egypt, during the period from June 2013 to May 2016, were enrolled. All received hormonal treatment. Radiologic images were evaluated and patients were stratified according to their disease volume into high or low, other clinical and pathological data that could affect survival also being collected and analyzed. Results: A total of 128 patients were included, with a median age of 70 years (53.9% ≥70). About 46% had co-morbidities, 62% having high volume disease. During the median follow up period of 28 months about half of the patients progressed and one third received chemotherapy. On univariate analysis, disease volume, performance status (PS), prostate specific antigen level (PSA) and presence of pain at presentation were identified as factors influencing overall survival. Multivariate analysis revealed the independent predictor factors for survival to be PS, PSA and disease volume. The median overall survival with 27 months was high volume versus 49 with low volume disease (hazard ratio 2.1; 95% CI 1.2 - 4.4; P=0.02). Median progression free survival was 19 months in the high volume, as compared with 48 months in the low volume disease patients (hazard ratio, 2.44; 95% CI, 1.42 – 7.4; P=0.009). Conclusions: Disease volume is a reliable predictor of survival which should be incorporated with other important factors as; patient performance status and comorbidities in treatment decision-making. Creative Commons Attribution License

  5. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    PubMed

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  6. Hormonal, lifestyle, and dietary factors in relation to leptin among elderly men.

    PubMed

    Lagiou, P; Signorello, L B; Mantzoros, C S; Trichopoulos, D; Hsieh, C C; Trichopoulou, A

    1999-01-01

    Leptin, the adipocyte-secreted protein product of the ob gene, has been strongly linked to obesity and is believed to play a role in the regulation of the reproductive system. This study examines the potential influence of lifestyle and dietary factors, as well as of other hormones, on serum levels of leptin. The authors studied a population of 48 healthy elderly Greek men. Sera from these men were analyzed for leptin, several steroid hormones, sex hormone-binding globulin, and insulin-like growth factor 1. The authors also utilized data from food frequency questionnaires and information on demographic, anthropometric, and lifestyle (cigarette smoking, alcohol and coffee drinking) factors. Using linear regression modeling, serum leptin levels were inversely associated with testosterone and positively associated with estradiol and dehydroepiandrosterone sulfate, after adjustment for the other hormones and body mass index (BMI). Leptin levels in men with a BMI >30 kg/m2 were 170% higher than in men with a BMI <27 kg/m2 (95% CI 63- 346%). Height was also positively associated with leptin, independent of BMI. No notable relationships were observed between leptin, on the one hand, and smoking, alcohol drinking, coffee drinking, or total energy intake, on the other. When total energy intake was separated into its three major components (carbohydrate, fat, and protein), it appeared that fat intake may have an isocalorically differential effect on serum leptin levels; one marginal quintile increase in fat intake corresponded to an 11% increase in leptin (95% CI 0-24%). Serum levels of leptin may be influenced by other endocrine factors, especially testosterone and estradiol, and may be positively associated with excess fat intake independently of obesity.

  7. Follicle stimulating hormone, its novel association with sex hormone binding globulin in men and postmenopausal women.

    PubMed

    Wang, Ningjian; Zhang, Kun; Han, Bing; Li, Qin; Chen, Yi; Zhu, Chunfang; Chen, Yingchao; Xia, Fangzhen; Zhai, Hualing; Jiang, Boren; Shen, Zhoujun; Lu, Yingli

    2017-06-01

    Follicle stimulating hormone plays direct roles in a variety of nongonadal tissues and sex hormone binding globulin is becoming the convergence of the crosstalk among metabolic diseases. However, no studies have explored the association between follicle stimulating hormone and sex hormone binding globulin. We aimed to study this association among men and women. SPECT-China is a population-based study conducted since 2014. This study included 4206 men and 2842 postmenopausal women. Collected serum was assayed for gonadotropins, sex hormone binding globulin, sex hormones etc. Regression analyses were performed to assess the relationship between sex hormone binding globulin and follicle stimulating hormone and other variables including metabolic factors, thyroid function and sex hormones. Treatment with follicle stimulating hormone at different concentrations of 0, 5, 50 and 100 IU/L for 24 h was performed in HepG2 cells. In Spearman correlation, sex hormone binding globulin was significantly correlated with FSH, triglycerides, thyroxins, body mass index and blood pressure in men and postmenopausal women (all P < 0.05). In regression analyses, follicle stimulating hormone was a significant predictor of sex hormone binding globulin in men and postmenopausal women (P < 0.05), independent of above variables. Follicle stimulating hormone induced sex hormone binding globulin expression in a dose-dependent fashion in HepG2 cells. Serum follicle stimulating hormone levels were positively associated with circulating sex hormone binding globulin levels in men and postmenopausal women. This association is independent of age, insulin resistance, hepatic function, lipid profile, thyroid function, adiposity, blood pressure, and endogenous sex hormones.

  8. Prediction of breast cancer risk by genetic risk factors, overall and by hormone receptor status.

    PubMed

    Hüsing, Anika; Canzian, Federico; Beckmann, Lars; Garcia-Closas, Montserrat; Diver, W Ryan; Thun, Michael J; Berg, Christine D; Hoover, Robert N; Ziegler, Regina G; Figueroa, Jonine D; Isaacs, Claudine; Olsen, Anja; Viallon, Vivian; Boeing, Heiner; Masala, Giovanna; Trichopoulos, Dimitrios; Peeters, Petra H M; Lund, Eiliv; Ardanaz, Eva; Khaw, Kay-Tee; Lenner, Per; Kolonel, Laurence N; Stram, Daniel O; Le Marchand, Loïc; McCarty, Catherine A; Buring, Julie E; Lee, I-Min; Zhang, Shumin; Lindström, Sara; Hankinson, Susan E; Riboli, Elio; Hunter, David J; Henderson, Brian E; Chanock, Stephen J; Haiman, Christopher A; Kraft, Peter; Kaaks, Rudolf

    2012-09-01

    There is increasing interest in adding common genetic variants identified through genome wide association studies (GWAS) to breast cancer risk prediction models. First results from such models showed modest benefits in terms of risk discrimination. Heterogeneity of breast cancer as defined by hormone-receptor status has not been considered in this context. In this study we investigated the predictive capacity of 32 GWAS-detected common variants for breast cancer risk, alone and in combination with classical risk factors, and for tumours with different hormone receptor status. Within the Breast and Prostate Cancer Cohort Consortium, we analysed 6009 invasive breast cancer cases and 7827 matched controls of European ancestry, with data on classical breast cancer risk factors and 32 common gene variants identified through GWAS. Discriminatory ability with respect to breast cancer of specific hormone receptor-status was assessed with the age adjusted and cohort-adjusted concordance statistic (AUROC(a)). Absolute risk scores were calculated with external reference data. Integrated discrimination improvement was used to measure improvements in risk prediction. We found a small but steady increase in discriminatory ability with increasing numbers of genetic variants included in the model (difference in AUROC(a) going from 2.7% to 4%). Discriminatory ability for all models varied strongly by hormone receptor status. Adding information on common polymorphisms provides small but statistically significant improvements in the quality of breast cancer risk prediction models. We consistently observed better performance for receptor-positive cases, but the gain in discriminatory quality is not sufficient for clinical application.

  9. Reproductive factors, exogenous hormone use, and risk of pancreatic cancer in postmenopausal women.

    PubMed

    Kabat, Geoffrey C; Kamensky, Victor; Rohan, Thomas E

    2017-08-01

    The epidemiologic literature on menstrual and reproductive factors associated with pancreatic cancer has yielded weak and inconsistent evidence of an association. Furthermore, few cohort studies have examined the association of exogenous hormone use, including type and duration, with this disease. The aim of this study was to assess the association of these exposures with risk of pancreatic cancer in a large cohort of postmenopausal women. We used data from the Women's Health Initiative on 1003 cases of pancreatic cancer diagnosed among 158,298 participants over 14.3 years of follow-up. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (95% CI) for the associations of interest. Being parous vs. nulliparous was associated with reduced risk (HR=0.84, 95% CI 0.70-1.00), and women who had 1-2 and 3-4 births were at decreased risk compared to nulliparous women, whereas women who had >5 births showed no decrease in risk. Compared to women who gave birth between the ages of 20-29, women who gave birth at age 30 or above were at increased risk (HR 1.23, 95% CI 1.00-1.53, p for trend 0.003). Other reproductive factors and exogenous hormone use were not associated with risk. Together with the existing literature on this topic, our results suggest that reproductive and hormonal exposures are unlikely to play an important role in the etiology of pancreatic cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Assessment of hormonal activity in patients with premature ejaculation

    PubMed Central

    Canat, Lütfi; Erbin, Akif; Canat, Masum; Dinek, Mehmet; Çaşkurlu, Turhan

    2017-01-01

    ABSTRACT Purpose Premature ejaculation is considered the most common type of male sexual dysfunction. Hormonal controls of ejaculation have not been exactly elucidated. The aim of our study is to investigate the role of hormonal factors in patients with premature ejaculation. Materials and Methods Sixty-three participants who consulted our outpatient clinics with complaints of premature ejaculation and 39 healthy men as a control group selected from volunteers were included in the study. A total of 102 sexual active men aged between 21 and 76 years were included. Premature ejaculation diagnostic tool questionnaires were used to assessment of premature ejaculation. Serum levels of follicle stimulating hormone, luteinizing hormone, prolactin, total and free testosterone, thyroid-stimulating hormone, free triiodothyronine and thyroxine were measured. Results Thyroid-stimulating hormone, luteinizing hormone, and prolactin levels were significantly lower in men with premature ejaculation according to premature ejaculation diagnostic tool (p=0.017, 0.007 and 0.007, respectively). Luteinizing hormone level (OR, 1.293; p=0.014) was found to be an independent risk factor for premature ejaculation. Conclusions Luteinizing hormone, prolactin, and thyroid-stimulating hormone levels are associated with premature ejaculation which was diagnosed by premature ejaculation diagnostic tool questionnaires. The relationship between these findings have to be determined by more extensive studies. PMID:27619666

  11. Hormone levels

    MedlinePlus

    Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...

  12. Hormones and growth factors in the pathogenesis of spinal ligament ossification.

    PubMed

    Li, Hai; Jiang, Lei-Sheng; Dai, Li-Yang

    2007-08-01

    Ossification of the spinal ligaments (OSL) is a pathologic condition that causes ectopic bone formation and subsequently results in various degrees of neurological deficit, but the etiology of OSL remains almost unknown. Some systemic hormones, such as 1,25-dihydroxyvitamin D, parathyroid hormone (PTH), insulin and leptin, and local growth factors, such as transforming growth factor-beta (TGF-beta), and bone morphogenetic protein (BMP), have been studied and are thought to be involved in the initiation and development of OSL. This review article summarizes these studies, delineates the possible mechanisms, and puts forward doubts and new questions. The related findings from studies of genes and target cells in the ligament of OSL are also discussed. Although these findings may be helpful in understanding the pathogenesis of OSL, much more research needs to be conducted in order to investigate the nature of OSL.

  13. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 2; Hypothalamic Growth Hormone-Releasing Factor, Somatostatin Immunoreactivity, and Messenger RNA Levels in Microgravity

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1994-01-01

    Immunohistochemical analyses of hypothalamic hormones carried out on tissue from rats flown on an earlier flight (Cosmos 1887) suggested preferential effects on hypophysiotropic principles involved in the regulation of growth hormone secretion and synthesis. We found that staining in the median eminence for peptides that provide both stimulatory (growth hormone-releasing factor, or GRF) and inhibitory (somatostatin, SS) influences on growth hormone secretion were depressed in flight animals relative to synchronous controls, while staining for other neuroendocrine peptides, cortocotropin-releasing factor and arginine vasopressin, were similar in these two groups. While this suggests some selective impact of weightlessness on the two principal central nervous system regulators of growth hormone dynamics, the fact that both GRF- and SS-immunoreactivity (IR) appeared affected in the same direction is somewhat problematic, and makes tentative any intimation that effects on CNS control mechanisms may be etiologically significant contributors to the sequelae of reduced growth hormone secretion seen in prolonged space flight. To provide an additional, and more penetrating, analysis we attempted in hypothalamic material harvested from animals flown on Cosmos 2044 to complement immunohistochemical analyses of GRF and SS staining with quantitative, in situ assessments of messenger RNAs encoding the precursors for both these hormones.

  14. Hormonal control of euryhalinity

    USGS Publications Warehouse

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  15. Hormonal and reproductive risk factors associated with breast cancer in Isfahan patients

    PubMed Central

    Tazhibi, Mehdi; Dehghani, Mohsen; Babazadeh, Shadi; Makkarian, Fariborz; Tabatabaeian, Maryam; Sadeghi, Masoumeh; Rezaei, Parisa; Faghihi, Mehri

    2014-01-01

    Background: Breast cancer is the most prevalent type of cancer among Iranian females; it is noteworthy that the condition of this type of cancer among Iranian women does not significantly differ from what has been reported from other countries. Considering the importance of this issue, identification of the backgrounds factors and risk factors of the breast cancer risk are highly needed. Therefore, the present study is aimed to compare the risk factors of resident patients of Isfahan province, Iran, with accredited risk factors by other countries and also identify the importance of each factor in the incidence of cancer. Materials and Methods: The present work is a case-control study, which was conducted in 2011. In order to conduct the study, 216 women who had been clinically identified with breast cancer were selected from Seiedo-Shohada Hospital, Isfahan, Iran, as the case group. Moreover, 41 healthy women who were the relatives of the selected patients (i.e., sisters and aunts) were selected as the control group. The data and information of the patients from 1999 to 2010 were collected from either assessing the database system of the center for breast cancer research or interviewing the patients through phone. To analyze the data, multiple logistic regression method was applied. Results: The range of age among selected individuals in this study was from 20-75 years old. The determinant factors for odds of breast cancer included in the applied multiple logistic regression model were the use of oral contraceptive pills (OCPs) (odds ratio [OR] =0.18, 95% confidence interval [CI] = 0.04-0.75) as the protective factor, hormone replacement therapy (OR = 10.2, 95% CI = 1.18-88.89) and menopause at old age (OR = 1.26, 95% CI = 1.11-2.12) as the risk factors. Furthermore, there was not seen any significant relationship between age, vocation, and marital status with odds of breast cancer in multiple model. Conclusion: Based on the results, use of OCPs as protective

  16. Hormones and growth factors in the pathogenesis of spinal ligament ossification

    PubMed Central

    Li, Hai; Jiang, Lei-Sheng

    2007-01-01

    Ossification of the spinal ligaments (OSL) is a pathologic condition that causes ectopic bone formation and subsequently results in various degrees of neurological deficit, but the etiology of OSL remains almost unknown. Some systemic hormones, such as 1,25-dihydroxyvitamin D, parathyroid hormone (PTH), insulin and leptin, and local growth factors, such as transforming growth factor-β (TGF-β), and bone morphogenetic protein (BMP), have been studied and are thought to be involved in the initiation and development of OSL. This review article summarizes these studies, delineates the possible mechanisms, and puts forward doubts and new questions. The related findings from studies of genes and target cells in the ligament of OSL are also discussed. Although these findings may be helpful in understanding the pathogenesis of OSL, much more research needs to be conducted in order to investigate the nature of OSL. PMID:17426989

  17. Environmental and hormonal factors controlling reversible colour change in crab spiders.

    PubMed

    Llandres, Ana L; Figon, Florent; Christidès, Jean-Philippe; Mandon, Nicole; Casas, Jérôme

    2013-10-15

    Habitat heterogeneity that occurs within an individual's lifetime may favour the evolution of reversible plasticity. Colour reversibility has many different functions in animals, such as thermoregulation, crypsis through background matching and social interactions. However, the mechanisms underlying reversible colour changes are yet to be thoroughly investigated. This study aims to determine the environmental and hormonal factors underlying morphological colour changes in Thomisus onustus crab spiders and the biochemical metabolites produced during these changes. We quantified the dynamics of colour changes over time: spiders were kept in yellow and white containers under natural light conditions and their colour was measured over 15 days using a spectrophotometer. We also characterised the chemical metabolites of spiders changing to a yellow colour using HPLC. Hormonal control of colour change was investigated by injecting 20-hydroxyecdysone (20E) into spiders. We found that background colouration was a major environmental factor responsible for colour change in crab spiders: individuals presented with white and yellow backgrounds changed to white and yellow colours, respectively. An ommochrome precursor, 3-OH-kynurenine, was the main pigment responsible for yellow colour. Spiders injected with 20E displayed a similar rate of change towards yellow colouration as spiders kept in yellow containers and exposed to natural sunlight. This study demonstrates novel hormonal manipulations that are capable of inducing reversible colour change.

  18. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  20. Female reproductive and hormonal factors and incidence of primary total knee arthroplasty due to osteoarthritis.

    PubMed

    Hussain, Sultana Monira; Wang, Yuanyuan; Giles, Graham G; Graves, Stephen; Wluka, Anita E; Cicuttini, Flavia M

    2018-03-07

    To examine the associations of female reproductive and hormonal factors with incidence of total knee arthroplasty (TKA) for osteoarthritis, and whether the associations differ according to overweight/obesity status. This study included 22,289 women in the Melbourne Collaborative Cohort Study. Data on age at menarche, pregnancy, parity, years of menstruation, oral contraceptive pill (OCP), menopausal status and hormone replacement therapy (HRT) were collected in 1990-1994. Incidence of TKA during 2001-2013 was determined by linking cohort records to the National Joint Replacement Registry. All analyses were adjusted for age, BMI at midlife, change in BMI (early reproductive age to midlife), country of birth, physical activity, smoking, and education. Over 12.7 years, 1,208 TKAs for osteoarthritis were identified. Ever pregnancy was associated with increased TKA risk (HR=1.32, 95%CI 1.06-1.63). Parity was positively associated with TKA risk (p for trend=0.003). OCP users had increased TKA risk than non-users (OCP<5 years, HR=1.25, 95%CI 1.08-1.45; OCP≥5 years, HR=1.17, 95%CI 1.00-1.37). One year increase in menstruation was associated with 1% decreased TKA risk (HR=0.99, 95%CI 0.97-0.99). These associations remained significant only in normal weight women at early reproductive age. Current HRT users had increased TKA risk than non-users (HR=1.33, 95%CI 1.11-1.60); the association was significant only in non-obese women at midlife. Reproductive and hormonal factors were associated with knee osteoarthritis risk. These associations remained significant in normal weight women at early reproductive age and non-obese women at midlife. Further work is needed to understand the complex effect of these factors on knee osteoarthritis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. A Modified In vitro Invasion Assay to Determine the Potential Role of Hormones, Cytokines and/or Growth Factors in Mediating Cancer Cell Invasion.

    PubMed

    Bagati, Archis; Koch, Zethan; Bofinger, Diane; Goli, Haneesha; Weiss, Laura S; Dau, Rosie; Thomas, Megha; Zucker, Shoshanna N

    2015-04-24

    Blood serum serves as a chemoattractant towards which cancer cells migrate and invade, facilitating their intravasation into microvessels. However, the actual molecules towards which the cells migrate remain elusive. This modified invasion assay has been developed to identify targets which drive cell migration and invasion. This technique compares the invasion index under three conditions to determine whether a specific hormone, growth factor, or cytokine plays a role in mediating the invasive potential of a cancer cell. These conditions include i) normal fetal bovine serum (FBS), ii) charcoal-stripped FBS (CS-FBS), which removes hormones, growth factors, and cytokines and iii) CS-FBS + molecule (denoted "X"). A significant change in cell invasion with CS-FBS as compared to FBS, indicates the involvement of hormones, cytokines or growth factors in mediating the change. Individual molecules can then be added back to CS-FBS to assay their ability to reverse or rescue the invasion phenotype. Furthermore, two or more factors can be combined to evaluate the additive or synergistic effects of multiple molecules in driving or inhibiting invasion. Overall, this method enables the investigator to determine whether hormones, cytokines, and/or growth factors play a role in cell invasion by serving as chemoattractants or inhibitors of invasion for a particular type of cancer cell or a specific mutant. By identifying specific chemoattractants and inhibitors, this modified invasion assay may help to elucidate signaling pathways that direct cancer cell invasion.

  2. Steroid Sex Hormones, Sex Hormone-Binding Globulin, and Diabetes Incidence in the Diabetes Prevention Program.

    PubMed

    Mather, K J; Kim, C; Christophi, C A; Aroda, V R; Knowler, W C; Edelstein, S E; Florez, J C; Labrie, F; Kahn, S E; Goldberg, R B; Barrett-Connor, E

    2015-10-01

    Steroid sex hormones and SHBG may modify metabolism and diabetes risk, with implications for sex-specific diabetes risk and effects of prevention interventions. This study aimed to evaluate the relationships of steroid sex hormones, SHBG and SHBG single-nucleotide polymorphisms (SNPs) with diabetes risk factors and with progression to diabetes in the Diabetes Prevention Program (DPP). This was a secondary analysis of a multicenter randomized clinical trial involving 27 U.S. academic institutions. The study included 2898 DPP participants: 969 men, 948 premenopausal women not taking exogenous sex hormones, 550 postmenopausal women not taking exogenous sex hormones, and 431 postmenopausal women taking exogenous sex hormones. Participants were randomized to receive intensive lifestyle intervention, metformin, or placebo. Associations of steroid sex hormones, SHBG, and SHBG SNPs with glycemia and diabetes risk factors, and with incident diabetes over median 3.0 years (maximum, 5.0 y). T and DHT were inversely associated with fasting glucose in men, and estrone sulfate was directly associated with 2-hour post-challenge glucose in men and premenopausal women. SHBG was associated with fasting glucose in premenopausal women not taking exogenous sex hormones, and in postmenopausal women taking exogenous sex hormones, but not in the other groups. Diabetes incidence was directly associated with estrone and estradiol and inversely with T in men; the association with T was lost after adjustment for waist circumference. Sex steroids were not associated with diabetes outcomes in women. SHBG and SHBG SNPs did not predict incident diabetes in the DPP population. Estrogens and T predicted diabetes risk in men but not in women. SHBG and its polymorphisms did not predict risk in men or women. Diabetes risk is more potently determined by obesity and glycemia than by sex hormones.

  3. Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy

    PubMed Central

    Lindsey, Richard C.; Mohan, Subburaman

    2015-01-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  4. Factors Associated with Gender-Affirming Surgery and Age of Hormone Therapy Initiation Among Transgender Adults.

    PubMed

    Beckwith, Noor; Reisner, Sari L; Zaslow, Shayne; Mayer, Kenneth H; Keuroghlian, Alex S

    2017-01-01

    Purpose: Gender-affirming surgeries and hormone therapy are medically necessary treatments to alleviate gender dysphoria; however, significant gaps exist in the research and clinical literature on surgery utilization and age of hormone therapy initiation among transgender adults. Methods: We conducted a retrospective review of electronic health record data from a random sample of 201 transgender patients of ages 18-64 years who presented for primary care between July 1, 2010 and June 30, 2015 (inclusive) at an urban community health center in Boston, MA. Fifty percent in our analyses were trans masculine (TM), 50% trans feminine, and 24% reported a genderqueer/nonbinary gender identity. Regression models were fit to assess demographic, gender identity-related, sexual history, and mental health correlates of gender-affirming surgery and of age of hormone therapy initiation. Results: Overall, 95% of patients were prescribed hormones by their primary care provider, and the mean age of initiation of masculinizing or feminizing hormone prescriptions was 31.8 years (SD=11.1). Younger age of initiation of hormone prescriptions was associated with being TM, being a student, identifying as straight/heterosexual, having casual sexual partners, and not having past alcohol use disorder. Approximately one-third (32%) had a documented history of gender-affirming surgery. Factors associated with increased odds of surgery were older age, higher income levels, not identifying as bisexual, and not having a current psychotherapist. Conclusion: This study extends our understanding of prevalence and factors associated with gender-affirming treatments among transgender adults seeking primary care. Findings can inform future interventions to expand delivery of clinical care for transgender patients.

  5. Women Epidemiology Lung Cancer (WELCA) study: reproductive, hormonal, occupational risk factors and biobank.

    PubMed

    Stücker, Isabelle; Martin, Diane; Neri, Monica; Laurent-Puig, Pierre; Blons, Hélène; Antoine, Martine; Guiochon-Mantel, Anne; Brailly-Tabard, Sylvie; Canonico, Marianne; Wislez, Marie; Trédaniel, Jean

    2017-04-17

    Lung cancer aetiology and clinical aspects have been mainly studied in men, although specific risk factors probably exist in women. Here we present the rationale, design and organization of the WELCA study (Women Epidemiology Lung CAncer) that has been launched to investigate lung cancer in women, focusing particularly on hormonal and occupational factors. WELCA is a population based case-control study and planned to recruit 1000 cases and 1000 controls in three years, based on study power calculation. Eligible cases are female patients newly diagnosed with lung cancer, living in Paris and the Ile de France area and aged up to 75 years. Almost all Parisian pneumology and oncology clinical departments are involved. The control group is a random sample of the population living in the same area, frequency-matched on age and additionally stratified on the distribution of socio-professional categories of women residing there. After acquisition of written consent, research nurses administer standardized computer assisted questionnaires to all the subjects in face-to-face interviews and acquire anthropometric measures. Besides usual socio-demographic characteristics, information is gathered about menstrual and reproductive factors, hormonal treatments, lifestyle and leisure characteristics, occupational history, personal and familial medical history. Biological samples are also collected, in order to establish a biobank for molecular epidemiology studies. Molecular characteristics of the tumours will be obtained and patients will be followed up for five years. The WELCA study aims to answer key questions in lung cancer aetiology and clinical characteristics specifically in women. The role of hormonal impregnation is investigated, and the interactions with cigarette smoking or body mass index (BMI) will be analyzed in detail. The occupational history of the subjects is carefully reconstructed, focusing in particular on the service sector. The creation of a biobank for

  6. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. © 2016 S. Karger AG, Basel.

  7. Reproductive factors, hormone use, estrogen receptor expression and risk of non small-cell lung cancer in women.

    PubMed

    Schwartz, Ann G; Wenzlaff, Angela S; Prysak, Geoffrey M; Murphy, Valerie; Cote, Michele L; Brooks, Sam C; Skafar, Debra F; Lonardo, Fulvio

    2007-12-20

    Estrogen receptor (ER) expression in lung tumors suggests that estrogens may play a role in the development of lung cancer. We evaluated the role of hormone-related factors in determining risk of non-small-cell lung cancer (NSCLC) in women. We also evaluated whether risk factors were differentially associated with cytoplasmic ER-alpha and/or nuclear ER-beta expression-defined NSCLC in postmenopausal women. Population-based participants included women aged 18 to 74 years diagnosed with NSCLC in metropolitan Detroit between November 1, 2001 and October 31, 2005. Population-based controls were identified through random digit dialing, matched to patient cases on race and 5-year age group. Interview data were analyzed for 488 patient cases (241 with tumor ER results) and 498 controls. Increased duration of hormone replacement therapy (HRT) use in quartiles was associated with decreased risk of NSCLC in postmenopausal women (odds ratio = 0.88; 95% CI, 0.78 to 1.00; P = .04), adjusting for age, race, pack-years, education, family history of lung cancer, current body mass index, years exposed to second-hand smoke in the workplace, and obstructive lung disease history. Among postmenopausal women, ever using HRT, increasing HRT duration of use in quartiles, and increasing quartiles of estrogen use were significant predictors of reduced risk of NSCLC characterized as ER-alpha and/or ER-beta positive. None of the hormone-related variables were associated with nuclear ER-alpha- or ER-beta-negative NSCLC. These findings suggest that postmenopausal hormone exposures are associated with reduced risk of ER-alpha- and ER-beta-expressing NSCLC. Understanding tumor characteristics may direct development of targeted treatment for this disease.

  8. Associations of hormone-related factors with breast cancer risk according to hormone receptor status among white and African-American women

    PubMed Central

    Cui, Yong; Deming-Halverson, Sandra L.; Shrubsole, Martha J.; Beeghly-Fadiel, Alicia; Fair, Alecia M.; Sanderson, Maureen; Shu, Xiao-Ou; Kelley, Mark C.; Zheng, Wei

    2014-01-01

    Background Causes of racial disparities in breast cancer incidence and mortality between white and African-American women remain unclear. We evaluated associations of menstrual and reproductive factors with breast cancer risk by race and cancer subtypes. Patients and Methods Included in the study were 1,866 breast cancer cases and 2,306 controls recruited in the Nashville Breast Health Study, a population-based case-control study. Multivariable logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). Results African-American women were more likely to have estrogen receptor-negative (ER−), progesterone receptor-negative (PR−), and triple-negative (ER−PR−Her2−) breast cancer than white women. Age at menarche (≥ 14 years) and multiparity (≥ 3 live births) were inversely associated with (ER+) tumors only, while late age at first live birth (>30 years) and nulliparity were associated with elevated risk; such associations were predominantly seen in whites (OR = 0.70, 95% CI = 0.55–0.88; OR = 0.72, 95% CI = 0.56–0.92; OR = 1.42, 95% CI = 1.13–1.79; OR = 1.32, 95% CI = 1.06–1.63, respectively). Age at menopause between 47 and 51 years was associated with elevated risk of ER− tumors in both whites and African Americans. Among women who had natural menopause, positive association between ever-use of hormone replacement therapy and breast cancer risk was seen in whites only (OR = 1.39, 95% CI = 1.03–1.87). Conclusion Our study suggests that certain hormone-related factors are differentially associated with risk of breast cancer subtypes, and these associations also differ by race. PMID:24970715

  9. Contraceptive Hormone Use and Cardiovascular Disease

    PubMed Central

    Shufelt, Chrisandra L.; Noel Bairey Merz, C.

    2009-01-01

    Contraceptive hormones, most commonly prescribed as oral contraceptives (OC), are a widely utilized method to prevent ovulation, implantation and therefore pregnancy. The Women’s Health Initiative demonstrated cardiovascular risk linked to menopausal hormone therapy among women without pre-existing cardiovascular disease, prompting review of the safety, efficacy and side effects of other forms of hormone therapy. A variety of basic science, animal and human data suggest that contraceptive hormones have anti-atheromatous effects, however relatively less is known regarding the impact on atherosclerosis, thrombosis, vasomotion and arrhythmogenesis. Newer generation OC formulations currently in use indicate no increased myocardial infarction (MI) risk for current users, but a persistent increased risk of venous thrombo-embolism (VTE). There are no cardiovascular data available for the newest generation contraceptive hormone formulations, including those that contain newer progestins that lower blood pressure, as well as the non-oral routes (topical and vaginal). Current guidelines indicate that, as with all medication, contraceptive hormones should be selected and initiated by weighing risks and benefits for the individual patient. Women 35 years and older should be assessed for cardiovascular risk factors including hypertension, smoking, diabetes, nephropathy and other vascular diseases including migraines, prior to use. Existing data are mixed with regard to possible protection from OC for atherosclerosis and cardiovascular events; longer-term cardiovascular follow-up of menopausal women with regard to prior OC use, including subgroup information regarding adequacy of ovulatory cycling, the presence of hyperandrogenic conditions, and the presence of prothrombotic genetic disorders is needed to address this important issue. PMID:19147038

  10. Factors Associated with Gender-Affirming Surgery and Age of Hormone Therapy Initiation Among Transgender Adults

    PubMed Central

    Beckwith, Noor; Reisner, Sari L.; Zaslow, Shayne; Mayer, Kenneth H.; Keuroghlian, Alex S.

    2017-01-01

    Abstract Purpose: Gender-affirming surgeries and hormone therapy are medically necessary treatments to alleviate gender dysphoria; however, significant gaps exist in the research and clinical literature on surgery utilization and age of hormone therapy initiation among transgender adults. Methods: We conducted a retrospective review of electronic health record data from a random sample of 201 transgender patients of ages 18–64 years who presented for primary care between July 1, 2010 and June 30, 2015 (inclusive) at an urban community health center in Boston, MA. Fifty percent in our analyses were trans masculine (TM), 50% trans feminine, and 24% reported a genderqueer/nonbinary gender identity. Regression models were fit to assess demographic, gender identity-related, sexual history, and mental health correlates of gender-affirming surgery and of age of hormone therapy initiation. Results: Overall, 95% of patients were prescribed hormones by their primary care provider, and the mean age of initiation of masculinizing or feminizing hormone prescriptions was 31.8 years (SD=11.1). Younger age of initiation of hormone prescriptions was associated with being TM, being a student, identifying as straight/heterosexual, having casual sexual partners, and not having past alcohol use disorder. Approximately one-third (32%) had a documented history of gender-affirming surgery. Factors associated with increased odds of surgery were older age, higher income levels, not identifying as bisexual, and not having a current psychotherapist. Conclusion: This study extends our understanding of prevalence and factors associated with gender-affirming treatments among transgender adults seeking primary care. Findings can inform future interventions to expand delivery of clinical care for transgender patients. PMID:29159310

  11. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. © 2015 Authors; published by Portland Press Limited.

  12. Hormonal factors and incident asthma and allergic rhinitis during puberty in girls.

    PubMed

    Wei, Junxiang; Gerlich, Jessica; Genuneit, Jon; Nowak, Dennis; Vogelberg, Christian; von Mutius, Erika; Radon, Katja

    2015-07-01

    Accumulating evidence is indicating that hormonal factors play a role in new-onset allergic rhinitis and asthma after puberty. To determine whether age at menarche and use of hormonal contraceptives predict new-onset allergic rhinitis and asthma after puberty in young German women. A prospective community-based cohort study followed 1,191 girls 9 to 11 years old to early adulthood (19-24 years old). Self-administrated questionnaires concerning age at menarche, use of hormonal contraceptives, and status and age at onset of physician-diagnosed allergic rhinitis and asthma were collected at 16 to 18 and 19 to 24 years of age. Logistic regression models were used to analyze the incidence of asthma and allergic rhinitis after puberty and pooled estimates were obtained from the final model. Eleven percent of girls developed allergic rhinitis after menarche and 3% reported new-onset asthma. Late menarche (>13 years of age) was statistically significantly inversely related to allergic rhinitis (adjusted odds ratio [OR] 0.32, 95% confidence interval [CI] 0.14-0.74) but did not reach the level of statistical significance for asthma (OR 0.32, 95% CI 0.07-1.42). Use of hormonal contraceptives was inversely associated with new-onset allergic rhinitis (OR 0.14, 95% CI 0.08-0.23) and asthma (OR 0.27, 95% CI 0.12-0.58) after puberty. This study shows that girls with late onset of menarche are less likely to develop allergic rhinitis after puberty compared with those who have menarche at an average age. These findings also suggest that, in addition to endogenous hormones, hormonal contraceptives play a role and might protect young women from allergies and asthma. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Risk Factors for Eating Disorder Psychopathology within the Treatment Seeking Transgender Population: The Role of Cross-Sex Hormone Treatment.

    PubMed

    Jones, Bethany Alice; Haycraft, Emma; Bouman, Walter Pierre; Brewin, Nicola; Claes, Laurence; Arcelus, Jon

    2018-03-01

    Many transgender people experience high levels of body dissatisfaction, which is one of the numerous factors known to increase vulnerability to eating disorder symptoms in the cisgender (non-trans) population. Cross-sex hormones can alleviate body dissatisfaction so might also alleviate eating disorder symptoms. This study aimed to explore risk factors for eating disorder symptoms in transgender people and the role of cross-sex hormones. Individuals assessed at a national transgender health service were invited to participate (N = 563). Transgender people not on cross-sex hormones reported higher levels of eating disorder psychopathology than people who were. High body dissatisfaction, perfectionism, anxiety symptoms, and low self-esteem were risk factors for eating psychopathology, but, after controlling for these, significant differences in eating psychopathology between people who were and were not on cross-sex hormones disappeared. Cross-sex hormones may alleviate eating disorder psychopathology. Given the high prevalence of transgender identities, clinicians at eating disorder services should assess for gender identity issues. Copyright © 2018 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2018 John Wiley & Sons, Ltd and Eating Disorders Association.

  14. The effects of compounded bioidentical transdermal hormone therapy on hemostatic, inflammatory, immune factors; cardiovascular biomarkers; quality-of-life measures; and health outcomes in perimenopausal and postmenopausal women.

    PubMed

    Stephenson, Kenna; Neuenschwander, Pierre F; Kurdowska, Anna K

    2013-01-01

    Menopause impacts 25 million women world wide each year, and the World Health Organization estimates 1.2 billion women will be postmenopausal by 2030. Menopause has been associated with symptoms of hot flashes, night sweats, dysphoric mood, sleep disturbance, and conditions of cardiovascular disease, depression, osteoporosis, osteoarthritis, depression, dementia, and frailty. Conventional hormone replacement therapy results in increased thrombotic events, and an increased risk of breast cancer and dementia as evidenced in large prospective clinical trials including Heart and Estrogen/Progestin Replacement Study I and the Women's Health Initiative. A possible mechanism for these adverse events is the unfavorable net effects of conjugated equine estrogens and medroxyprogesterone acetate on the hemostatic balance and inflammatory and immune factors. Physiologic sex steroid therapy with transdermal delivery for peri/postmenopausal women may offer a different risk/benefit profile, yet long-term studies of this treatment model are lacking. The objective of this study was to examine the long-term effects of compounded bioidentical transdermal sex steroid therapy including estriol, estradiol, progesterone, DHEA, and testosterone on cardiovascular biomarkers, hemostatic, inflammatory, immune signaling factors; quality-of-life measures; and health outcomes in peri/postmenopausal women within the context of a hormone restoration model of care. A prospective, cohort, closed-label study received approval from the Human Subjects Committee. Recruitment from outpatient clinics at an academic medical center and the community at large resulted in three hundred women giving signed consent. Seventy-five women who met strict inclusion/exclusion criteria were enrolled. Baseline hormone evaluation was performed along with baseline experimental measures. Following this, women received compounded transdermal bioidentical hormone therapy of BiEst (80%Estriol/20%Estradiol), and

  15. Maternal hormonal interventions as a risk factor for Autism Spectrum Disorder: an epidemiological assessment from India.

    PubMed

    Mamidala, Madhu Poornima; Polinedi, Anupama; Kumar, P T V Praveen; Rajesh, N; Vallamkonda, Omsai Ramesh; Udani, Vrajesh; Singhal, Nidhi; Rajesh, Vidya

    2013-12-01

    Globalization and women empowerment have led to stressful life among Indian women. This stress impairs women's hormonal makeup and menstrual cycle, leading to infertility. National Family Health Survey-3 (NFHS-3) reports a decline in fertility status in India, indicating a rise in various infertility treatments involving hormonal interventions. No studies are available from India on the risk association link between maternal hormonal treatments and ASD. Hence, this study explores the association of maternal hormonal interventions with risk for ASD. Parents of 942 children (471 ASD and 471 controls) across 9 cities in India participated in the questionnaire-based study. The questionnaire was pilot tested and validated for its content and reliability as a psychometric instrument. Data collection was done at 70 centres through direct interaction with parents and with the help of trained staff. Statistical analysis of data was carried out using SAS 9.1.3. Out of the 471 ASD cases analysed, 58 mothers had undergone hormonal interventions (12.3 percent) while there were only 22 mothers among controls who underwent hormonal interventions (4.6 percent). According to logistic regression analysis maternal hormonal intervention (OR=2.24) was a significant risk factor for ASD.

  16. Ischemic stroke and select adipose-derived and sex hormones: a review.

    PubMed

    Meadows, Kristy L

    2018-06-06

    Ischemic stroke is the fifth leading cause of death in the USA and is the leading cause of serious, long-term disability worldwide. The principle sex hormones (estrogen, progesterone, and testosterone), both endogenous and exogenous, have profound effects on various stroke outcomes and have become the focus of a number of studies evaluating risk factors and treatment options for ischemic stroke. In addition, the expression of other hormones that may influence stroke outcome, including select adipose-derived hormones (adiponectin, leptin, and ghrelin), can be regulated by sex hormones and are also the focus of several ischemic stroke studies. This review aims to summarize some of the preclinical and clinical studies investigating the principle sex hormones, as well as select adipose-derived hormones, as risk factors or potential treatments for ischemic stroke. In addition, the potential for relaxin, a lesser studied sex hormone, as a novel treatment option for ischemic stroke is explored.

  17. Distribution of free and antibody-bound peptide hormones in two-phase aqueous polymer systems

    PubMed Central

    Desbuquois, Bernard; Aurbach, G. D.

    1972-01-01

    Peptide hormones labelled with radioactive iodine were partitioned into the aqueous two-phase polymer systems developed by Albertsson (1960) and the conditions required for separation of free from antibody-bound hormone have been worked out. Hormones studied included insulin, growth hormone, parathyroid hormone and [arginine]-vasopressin. Free and antibody-bound hormones show different distribution coefficients in a number of systems tested; two systems, the dextran–polyethylene glycol and dextran sulphate–polyethylene glycol system, give optimum separation. Free hormones distribute readily into the upper phase of these systems, whereas hormone–antibody complexes, as well as uncombined antibody, are found almost completely in the lower phase. Various factors including the polymer concentration, the ionic composition of the system, the nature of the hormone and the nature of added serum protein differentially affect the distribution coefficients for free and antibody-bound hormone. These factors can be adequately controlled so as to improve separation. The two-phase partition method has been successfully applied to measure binding of labelled hormone to antibody under standard radioimmunoassay conditions. It exhibits several advantages over the method of equilibration dialysis and can be applied to the study of non-immunological interactions. PMID:4672674

  18. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo.

    PubMed Central

    Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M

    1995-01-01

    Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125

  19. Sex in the brain: hormones and sex differences.

    PubMed

    Marrocco, Jordan; McEwen, Bruce S

    2016-12-01

    Contrary to popular belief, sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Many neural and behavioral functions are affected by estrogens, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences, and responses to sex hormones in brain regions and upon functions not previously regarded as subject to such differences, indicate that we are entering a new era in our ability to understand and appreciate the diversity of gender-related behaviors and brain functions.

  20. Circulating sex hormones in relation to anthropometric, sociodemographic and behavioural factors in an international dataset of 12,300 men.

    PubMed

    Watts, Eleanor L; Appleby, Paul N; Albanes, Demetrius; Black, Amanda; Chan, June M; Chen, Chu; Cirillo, Piera M; Cohn, Barbara A; Cook, Michael B; Donovan, Jenny L; Ferrucci, Luigi; Garland, Cedric F; Giles, Graham G; Goodman, Phyllis J; Habel, Laurel A; Haiman, Christopher A; Holly, Jeff M P; Hoover, Robert N; Kaaks, Rudolf; Knekt, Paul; Kolonel, Laurence N; Kubo, Tatsuhiko; Le Marchand, Loïc; Luostarinen, Tapio; MacInnis, Robert J; Mäenpää, Hanna O; Männistö, Satu; Metter, E Jeffrey; Milne, Roger L; Nomura, Abraham M Y; Oliver, Steven E; Parsons, J Kellogg; Peeters, Petra H; Platz, Elizabeth A; Riboli, Elio; Ricceri, Fulvio; Rinaldi, Sabina; Rissanen, Harri; Sawada, Norie; Schaefer, Catherine A; Schenk, Jeannette M; Stanczyk, Frank Z; Stampfer, Meir; Stattin, Pär; Stenman, Ulf-Håkan; Tjønneland, Anne; Trichopoulou, Antonia; Thompson, Ian M; Tsugane, Shoichiro; Vatten, Lars; Whittemore, Alice S; Ziegler, Regina G; Allen, Naomi E; Key, Timothy J; Travis, Ruth C

    2017-01-01

    Sex hormones have been implicated in the etiology of a number of diseases. To better understand disease etiology and the mechanisms of disease-risk factor associations, this analysis aimed to investigate the associations of anthropometric, sociodemographic and behavioural factors with a range of circulating sex hormones and sex hormone-binding globulin. Statistical analyses of individual participant data from 12,330 male controls aged 25-85 years from 25 studies involved in the Endogenous Hormones Nutritional Biomarkers and Prostate Cancer Collaborative Group. Analysis of variance was used to estimate geometric means adjusted for study and relevant covariates. Older age was associated with higher concentrations of sex hormone-binding globulin and dihydrotestosterone and lower concentrations of dehydroepiandrosterone sulfate, free testosterone, androstenedione, androstanediol glucuronide and free estradiol. Higher body mass index was associated with higher concentrations of free estradiol, androstanediol glucuronide, estradiol and estrone and lower concentrations of dihydrotestosterone, testosterone, sex hormone-binding globulin, free testosterone, androstenedione and dehydroepiandrosterone sulfate. Taller height was associated with lower concentrations of androstenedione, testosterone, free testosterone and sex hormone-binding globulin and higher concentrations of androstanediol glucuronide. Current smoking was associated with higher concentrations of androstenedione, sex hormone-binding globulin and testosterone. Alcohol consumption was associated with higher concentrations of dehydroepiandrosterone sulfate, androstenedione and androstanediol glucuronide. East Asians had lower concentrations of androstanediol glucuronide and African Americans had higher concentrations of estrogens. Education and marital status were modestly associated with a small number of hormones. Circulating sex hormones in men are strongly associated with age and body mass index, and to a

  1. The hormonal pathway to cognitive impairment in older men.

    PubMed

    Maggio, M; Dall'Aglio, E; Lauretani, F; Cattabiani, C; Ceresini, G; Caffarra, P; Valenti, G; Volpi, R; Vignali, A; Schiavi, G; Ceda, G P

    2012-01-01

    In older men there is a multiple hormonal dysregulation with a relative prevalence of catabolic hormones such as thyroid hormones and cortisol and a decline in anabolic hormones such as dehydroepiandrosterone sulphate, testosterone and insulin like growth factor 1 levels. Many studies suggest that this catabolic milieu is an important predictor of frailty and mortality in older persons. There is a close relationship between frailty and cognitive impairment with studies suggesting that development of frailty is consequence of cognitive impairment and others pointing out that physical frailty is a determinant of cognitive decline. Decline in cognitive function, typically memory, is a major symptom of dementia. The "preclinical phase" of cognitive impairment occurs many years before the onset of dementia. The identification of relevant modifiable factors, including the hormonal dysregulation, may lead to therapeutic strategies for preventing the cognitive dysfunction. There are several mechanisms by which anabolic hormones play a role in neuroprotection and neuromodulation. These hormones facilitate recovery after brain injury and attenuate the neuronal loss. In contrast, elevated thyroid hormones may increase oxidative stress and apoptosis, leading to neuronal damage or death. In this mini review we will address the relationship between low levels of anabolic hormones, changes in thyroid hormones and cognitive function in older men. Then, giving the contradictory data of the literature and the multi-factorial origin of dementia, we will introduce the hypothesis of multiple hormonal derangement as a better determinant of cognitive decline in older men.

  2. Steroid hormone and epidermal growth factor receptors in meningiomas.

    PubMed

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  3. Successful Pregnancies After Adequate Hormonal Replacement in Patients With Combined Pituitary Hormone Deficiencies.

    PubMed

    Correa, Fernanda A; Bianchi, Paulo H M; Franca, Marcela M; Otto, Aline P; Rodrigues, Rodrigo J M; Ejzenberg, Dani; Serafini, Paulo C; Baracat, Edmundo Chada; Francisco, Rossana P V; Brito, Vinicius N; Arnhold, Ivo J P; Mendonca, Berenice B; Carvalho, Luciani R

    2017-10-01

    Women with hypopituitarism have lower pregnancy rates after ovulation induction. Associated pituitary hormone deficiencies might play a role in this poorer outcome. We evaluated fertility treatment and pregnancy outcomes in five women with childhood-onset combined pituitary hormone deficiencies (CPHD). Five women with CPHD were referred for fertility treatment after adequacy of hormone replacement was determined. Patients were subjected to controlled ovarian stimulation (COS) for timed intercourse, intrauterine insemination, or in vitro fertilization, according to the presence or absence of other infertility factors (male or tubal). All women became pregnant. The number of COS attempts until pregnancy was achieved varied between 1 and 5. The duration of COS resulting in at least one dominant follicle varied between 9 and 28 days, and total gonadotropin consumed varied between 1200 and 3450 IU. Two patients with severely suppressed basal gonadotropin levels since an early age had a cancelled COS cycle. All pregnancies were singleton except one (monochorionic twin gestation). The gestational ages at birth ranged from 35 weeks to 39 weeks and 4 days; three patients underwent cesarean section, and two had vaginal deliveries. Only one newborn was small for gestational age (delivered at 35 weeks). Adequate hormonal replacement prior to ovarian stimulation resulted in successful pregnancies in patients with childhood-onset CPHD, indicating that hormone replacement, including growth hormone, is an important step prior to fertility treatments in these patients.

  4. Inhibition of growth hormone-releasing factor suppresses both sleep and growth hormone secretion in the rat.

    PubMed

    Obál, F; Payne, L; Kapás, L; Opp, M; Krueger, J M

    1991-08-23

    To study the possible involvement of hypothalamic growth hormone-releasing factor (GRF) in sleep regulation, a competitive GRF-antagonist, the peptide (N-Ac-Tyr1,D-Arg2)-GRF(1-29)-NH2, was intracerebroventricularly injected into rats (0.003, 0.3, and 14 nmol), and the EEG and brain temperature were recorded for 12 h during the light cycle of the day. Growth hormone (GH) concentrations were determined from plasma samples taken at 20-min intervals for 3 h after 14 nmol GRF-antagonist. The onset of non-rapid eye movement sleep (NREMS) was delayed in response to 0.3 and 14 nmol GRF-antagonist, the duration of NREMS was decreased for one or more hours and after 14 nmol EEG slow wave amplitudes were decreased during NREMS in postinjection hour 1. The high dose of GRF-antagonist also suppressed REMS for 4 h, inhibited GH secretion, and elicited a slight biphasic variation in brain temperature. These findings, together with previous observations indicating a sleep-promoting effect for GRF, support the hypothesis that hypothalamic GRF is involved in sleep regulation and might be responsible for the correlation between NREMS and GH secretion reported in various species.

  5. Effects of hormones on lipids and lipoproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, R.M.

    1991-12-01

    Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men andmore » are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.« less

  6. Insulin-like growth factor 1 (IGF-1): a growth hormone

    PubMed Central

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  7. Circulating sex hormones in relation to anthropometric, sociodemographic and behavioural factors in an international dataset of 12,300 men

    PubMed Central

    Appleby, Paul N.; Albanes, Demetrius; Black, Amanda; Chan, June M.; Chen, Chu; Cirillo, Piera M.; Cohn, Barbara A.; Cook, Michael B.; Donovan, Jenny L.; Ferrucci, Luigi; Garland, Cedric F.; Giles, Graham G.; Goodman, Phyllis J.; Habel, Laurel A.; Haiman, Christopher A.; Holly, Jeff M. P.; Hoover, Robert N.; Kaaks, Rudolf; Knekt, Paul; Kolonel, Laurence N.; Kubo, Tatsuhiko; Le Marchand, Loïc; Luostarinen, Tapio; MacInnis, Robert J.; Mäenpää, Hanna O.; Männistö, Satu; Metter, E. Jeffrey; Milne, Roger L.; Nomura, Abraham M. Y.; Oliver, Steven E.; Parsons, J. Kellogg; Peeters, Petra H.; Platz, Elizabeth A.; Riboli, Elio; Ricceri, Fulvio; Rinaldi, Sabina; Rissanen, Harri; Sawada, Norie; Schaefer, Catherine A.; Schenk, Jeannette M.; Stanczyk, Frank Z.; Stampfer, Meir; Stattin, Pär; Stenman, Ulf-Håkan; Tjønneland, Anne; Trichopoulou, Antonia; Thompson, Ian M.; Tsugane, Shoichiro; Vatten, Lars; Whittemore, Alice S.; Ziegler, Regina G.

    2017-01-01

    Introduction Sex hormones have been implicated in the etiology of a number of diseases. To better understand disease etiology and the mechanisms of disease-risk factor associations, this analysis aimed to investigate the associations of anthropometric, sociodemographic and behavioural factors with a range of circulating sex hormones and sex hormone-binding globulin. Methods Statistical analyses of individual participant data from 12,330 male controls aged 25–85 years from 25 studies involved in the Endogenous Hormones Nutritional Biomarkers and Prostate Cancer Collaborative Group. Analysis of variance was used to estimate geometric means adjusted for study and relevant covariates. Results Older age was associated with higher concentrations of sex hormone-binding globulin and dihydrotestosterone and lower concentrations of dehydroepiandrosterone sulfate, free testosterone, androstenedione, androstanediol glucuronide and free estradiol. Higher body mass index was associated with higher concentrations of free estradiol, androstanediol glucuronide, estradiol and estrone and lower concentrations of dihydrotestosterone, testosterone, sex hormone-binding globulin, free testosterone, androstenedione and dehydroepiandrosterone sulfate. Taller height was associated with lower concentrations of androstenedione, testosterone, free testosterone and sex hormone-binding globulin and higher concentrations of androstanediol glucuronide. Current smoking was associated with higher concentrations of androstenedione, sex hormone-binding globulin and testosterone. Alcohol consumption was associated with higher concentrations of dehydroepiandrosterone sulfate, androstenedione and androstanediol glucuronide. East Asians had lower concentrations of androstanediol glucuronide and African Americans had higher concentrations of estrogens. Education and marital status were modestly associated with a small number of hormones. Conclusion Circulating sex hormones in men are strongly associated

  8. Reproductive immunology: a focus on the role of female sex hormones and other gender-related factors.

    PubMed

    Peeva, Elena

    2011-02-01

    Reproductive immunology has attracted the attention of researchers interested in fertility and pregnancy as well as those interested in immunity and autoimmunity. Over the past couple of decades, a wealth of data on the immune-reproductive interactions has been generated. This issue of the Journal will examine several topics including the role of immune factors in the induction of anti-Ro antibody-mediated autoimmunity in neonates and the immunological effects of gender and sex hormones. The possible implications of the research reviewed here for the development of novel therapeutic approaches are also addressed.

  9. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men

    PubMed Central

    Allen, N E; Appleby, P N; Davey, G K; Key, T J

    2000-01-01

    Mean serum insulin-like growth factor-I was 9% lower in 233 vegan men than in 226 meat-eaters and 237 vegetarians (P = 0.002). Vegans had higher testosterone levels than vegetarians and meat-eaters, but this was offset by higher sex hormone binding globulin, and there were no differences between diet groups in free testosterone, androstanediol glucuronide or luteinizing hormone. © 2000 Cancer Research Campaign PMID:10883675

  10. The associations between the growth hormone/insulin-like growth factor-1 axis, adiponectin, resistin and metabolic profile in children with growth hormone deficiency before and during growth hormone treatment.

    PubMed

    Witkowska-Sędek, Ewelina; Rumińska, Małgorzata; Stelmaszczyk-Emmel, Anna; Majcher, Anna; Pyrżak, Beata

    2018-01-01

    This study investigated associations between the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis, adiponectin, resistin and metabolic profile in 47 GH-deficient children before and during 12 months of GH treatment. 23 short age-matched children without growth hormone deficiency (GHD) or any genetic or chronic disorders were recruited as controls at baseline. Metabolic evaluation included measurements of adiponectin, resistin, IGF-1, total cholesterol (total-C), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), glucose, insulin, glycated haemoglobin (HbA1c), thyroid stimulating hormone (TSH) and free thyroxine (free T4) concentrations. The GH-deficient children had significantly higher adiponectin (p<0.05) and total cholesterol (p<0.05) levels, and a significantly lower level of resistin (p<0.05) than the controls. Resistin at 6 months of GH treatment significantly correlated with changes in height SDS in that period (r=0.35) and with the level of fasting insulin (r=0.50), the HOMA-IR (r=0.56) and the QUICKI (r=-0.53) at 12 months of therapy. Adiponectin level at 12 months of GH treatment was significantly associated with changes in HDL-C within the first 6 (r=0.73) and within 12 (r=0.56) months of therapy, while resistin significantly correlated with an increment in IGF-1 within 12 months of treatment (r=0.49) and with total-C at 12 months (r=0.56). Untreated GH-deficient children had higher adiponectin and lower resistin levels than healthy short children without GHD. Adiponectin and resistin levels did not change significantly during the first 12 months of GH therapy. Good responders to GH treatment had a tendency for higher resistin level during GH therapy, which positively correlates with the insulin resistance parameters.

  11. Transcription elongation factors are involved in programming hormone production in pituitary neuroendocrine GH4C1 cells.

    PubMed

    Fujita, Toshitsugu; Piuz, Isabelle; Schlegel, Werner

    2010-05-05

    Transcription elongation of many eukaryotic genes is regulated. Two negative transcription elongation factors, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) sensitivity-inducing factor (DSIF) and negative elongation factor (NELF) are known to stall collaboratively RNA polymerase II promoter proximally. We discovered that DSIF and NELF are linked to hormone expression in rat pituitary GH4C1 cells. When NELF-E, a subunit of NELF or Spt5, a subunit of DSIF was stably knocked-down, prolactin (PRL) expression was increased both at the mRNA and protein levels. In contrast, stable knock-down of only Spt5 abolished growth hormone (GH) expression. Transient NELF-E knock-down increased coincidentally PRL expression and enhanced transcription of a PRL-promoter reporter gene. However, no direct interaction of NELF with the PRL gene could be demonstrated by chromatin immuno-precipitation. Thus, NELF suppressed PRL promoter activity indirectly. In conclusion, transcription regulation by NELF and DSIF is continuously involved in the control of hormone production and may contribute to neuroendocrine cell differentiation. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Gender Differences in Cardiovascular Disease: Hormonal and Biochemical Influences

    PubMed Central

    Pérez-López, Faustino R.; Larrad-Mur, Luis; Kallen, Amanda; Chedraui, Peter; Taylor, Hugh S.

    2011-01-01

    Objective Atherosclerosis is a complex process characterized by an increase in vascular wall thickness owing to the accumulation of cells and extracellular matrix between the endothelium and the smooth muscle cell wall. There is evidence that females are at lower risk of developing cardiovascular disease (CVD) as compared to males. This has led to an interest in examining the contribution of genetic background and sex hormones to the development of CVD. The objective of this review is to provide an overview of factors, including those related to gender, that influence CVD. Methods Evidence analysis from PubMed and individual searches concerning biochemical and endocrine influences and gender differences, which affect the origin and development of CVD. Results Although still controversial, evidence suggests that hormones including estradiol and androgens are responsible for subtle cardiovascular changes long before the development of overt atherosclerosis. Conclusion Exposure to sex hormones throughout an individual's lifespan modulates many endocrine factors involved in atherosclerosis. PMID:20460551

  13. Association between endogenous sex steroid hormones and insulin-like growth factor proteins in US men.

    PubMed

    Papatheodorou, Stefania I; Rohrmann, Sabine; Lopez, David S; Bradwin, Gary; Joshu, Corinne E; Kanarek, Norma; Nelson, William G; Rifai, Nader; Platz, Elizabeth A; Tsilidis, Konstantinos K

    2014-03-01

    Sex steroid hormone concentrations and insulin-like growth factor (IGF) proteins have been independently associated with risk of cancer, chronic diseases, and mortality. However, studies that evaluated the inter-relation between the sex hormones and IGF pathways have provided mixed results. We examined the association between endogenous sex hormones and sex hormone-binding globulin (SHBG) with IGF-1 and IGF-binding protein 3 (IGFBP-3) in a population-based sample of US men. Data from 1,135 men aged 20 years or older participating in the third National Health and Nutrition Examination Survey (NHANES III) were analyzed. Weighted linear regression was used to estimate geometric means and 95 % confidence intervals for IGF-1 and IGFBP-3 concentrations by sex steroid hormones and SHBG after adjusting for age, race/ethnicity, body mass index, waist circumference, alcohol consumption, cigarette smoking, physical activity, diabetes, and mutually adjusting for other sex hormones and SHBG. No significant association was observed between sex steroid hormones, SHBG, and IGF-1 concentrations. Total estradiol (% difference in Q5 - Q1 geometric means -9.7 %; P-trend 0.05) and SHBG (% difference -7.3 %; P-trend 0.02) were modestly inversely associated with IGFBP-3. Total testosterone was modestly inversely associated with IGFBP-3 (% difference -6.2 %; P-trend 0.01), but this association disappeared after adjustment for total estradiol and SHBG (% difference 2.6 %; P-trend 0.23). Androstanediol glucuronide was not associated with IGFBP-3. These findings suggest that there may be inter-relationships between circulating total estradiol, SHBG, and IGFBP-3 concentrations. Future research may consider these inter-relationships when evaluating potential joint effects of the sex hormones and IGF pathways.

  14. Successful Pregnancies After Adequate Hormonal Replacement in Patients With Combined Pituitary Hormone Deficiencies

    PubMed Central

    Bianchi, Paulo H. M.; Franca, Marcela M.; Otto, Aline P.; Rodrigues, Rodrigo J. M.; Ejzenberg, Dani; Serafini, Paulo C.; Baracat, Edmundo Chada; Francisco, Rossana P. V.; Brito, Vinicius N.; Arnhold, Ivo J. P.; Mendonca, Berenice B.

    2017-01-01

    Context: Women with hypopituitarism have lower pregnancy rates after ovulation induction. Associated pituitary hormone deficiencies might play a role in this poorer outcome. Objective: We evaluated fertility treatment and pregnancy outcomes in five women with childhood-onset combined pituitary hormone deficiencies (CPHD). Patients and Methods: Five women with CPHD were referred for fertility treatment after adequacy of hormone replacement was determined. Patients were subjected to controlled ovarian stimulation (COS) for timed intercourse, intrauterine insemination, or in vitro fertilization, according to the presence or absence of other infertility factors (male or tubal). Results: All women became pregnant. The number of COS attempts until pregnancy was achieved varied between 1 and 5. The duration of COS resulting in at least one dominant follicle varied between 9 and 28 days, and total gonadotropin consumed varied between 1200 and 3450 IU. Two patients with severely suppressed basal gonadotropin levels since an early age had a cancelled COS cycle. All pregnancies were singleton except one (monochorionic twin gestation). The gestational ages at birth ranged from 35 weeks to 39 weeks and 4 days; three patients underwent cesarean section, and two had vaginal deliveries. Only one newborn was small for gestational age (delivered at 35 weeks). Conclusion: Adequate hormonal replacement prior to ovarian stimulation resulted in successful pregnancies in patients with childhood-onset CPHD, indicating that hormone replacement, including growth hormone, is an important step prior to fertility treatments in these patients. PMID:29264457

  15. Sex and Stress Hormone Influences on the Expression and Activity of Brain-Derived Neurotrophic Factor

    PubMed Central

    Carbone, David L.; Handa, Robert J.

    2012-01-01

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of central nervous system ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in central nervous system development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of central nervous system physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids, have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor TrkB by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but on mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and glucocorticoids, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the central nervous system PMID:23211562

  16. Effect of thyrotropin-releasing factor on serum thyroid-stimulating hormone

    PubMed Central

    Costom, Bruce H.; Grumbach, Melvin M.; Kaplan, Selna L.

    1971-01-01

    To test the hypothesis that the primary defect in some patients with idiopathic hypopituitary dwarfism is failure to secrete hypothalamic hypophysiotropic-releasing factors, synthetic thyrotropin-releasing factor (TRF), 500 μg, wa given intravenously, and timed venous samples obtained for determination of the concentration of plasma TSH by radioimmunoassay in three groups of subjects: (a) 11 patients without evidence of endocrine or systemic disease, (group I) (b) 8 with isolated growth hormone deficiency and normal thyroid function, (group II) and (c) 9 patients with idiopathic hypopituitary dwarfism and thyroid-stimulating hormone (TSH) deficiency (group III). The mean fasting plasma TSH value was 4.1 μU/ml in group I, and 3.9 μU/ml in group II; in both groups there was a brisk rise in plasma TSH to peak levels of 12-45 μU/ml at 30-45 min, and a fall toward base line levels at 120 min. All children in group III had basal TSH levels of < 1.5 μU/ml; one failed to respond to TRF; eight exhibited a rise in plasma TSH with peak values comparable with those in groups I and II. In four of eight children in group III who responded to TRF, the TSH response was delayed and the initial rise in plasma TSH was not detectable until 10-60 min. In these four patients, plasma TSH levels continued to rise at 120 min. The mean fasting concentration of plasma thyroxine iodide (T4) in subjects with normal thyroid function (groups I and II) was 5.6 μg/100 ml, and the mean plasma T4 level at 120 min was 6.6 μg/100 ml. This difference between fasting and postTRF plasma T4 was significant (P < 0.001) by paired analysis. Mean fasting plasma T4 concentration in group III patients was 1.3 μg/100 ml; after TRF a significant rise in T4 concentration was not detected in this group. The results indicate that TRF test is useful in distinguishing between primary hypothalamic and pituitary forms of TSH deficiency. In light of the evidence of TRF deficiency in eight of nine patients with

  17. Heat shock proteins: the missing link between hormonal and reproductive factors and rheumatoid arthritis?

    PubMed

    da Silva, J A

    1991-10-01

    Epidemiologic data suggest a strong link between hormonal and reproductive factors and the incidence of rheumatoid arthritis. Of interest is a possible protective effect of oral contraceptives or estrogen replacement therapy against the development of rheumatoid arthritis. At least 1 pregnancy also appears to reduce the risk of this disease. It has been hypothesized that hormonal contraceptive use and pregnancy elicit the production of higher amounts of endogenous heat shock proteins, which, in turn, induce immunotolerance to subsequent exposure to the actual triggering agent of rheumatoid arthritis. A related possibility is that pregnant women are exposed to specific types of heat shock proteins produced by the fetus in high concentrations. Heat shock proteins are known to be the predominant antigens related to the induction of reactive arthritis. The production of some such proteins is dependent on sex hormones in a tissue-specific way and their concentrations are raised dramatically by stimulation with estrogen and progesterone. A possible mechanism for heat protein-induced immunotolerance would be the predominant stimulation of a suppressor T cell clone. More research on the pathogenesis of rheumatic diseases and the activity of sex hormones could result in the development of a vaccine against rheumatoid arthritis.

  18. Diseases associated with growth hormone-releasing hormone receptor (GHRHR) mutations.

    PubMed

    Martari, Marco; Salvatori, Roberto

    2009-01-01

    The growth hormone (GH)-releasing hormone (GHRH) receptor (GHRHR) belongs to the G protein-coupled receptors family. It is expressed almost exclusively in the anterior pituitary, where it is necessary for somatotroph cells proliferation and for GH synthesis and secretion. Mutations in the human GHRHR gene (GHRHR) can impair ligand binding and signal transduction, and have been estimated to cause about 10% of autosomal recessive familial isolated growth hormone deficiency (IGHD). Mutations reported to date include five splice donor site mutations, two microdeletions, two nonsense mutations, seven missense mutations, and one mutation in the promoter. These mutations have an autosomal recessive mode of inheritance, and heterozygous individuals do not show signs of IGHD, although the presence of an intermediate phenotype has been hypothesized. Conversely, patients with biallelic mutations have low serum insulin-like growth factor-1 and GH levels (with absent or reduced GH response to exogenous stimuli), resulting--if not treated--in proportionate dwarfism. This chapter reviews the biology of the GHRHR, the mutations that affect its gene and their effects in homozygous and heterozygous individuals. Copyright © 2009 Elsevier Inc. All rights reserved.

  19. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways.

    PubMed

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia.

  20. Digital gene expression analysis of male and female bud transition in Metasequoia reveals high activity of MADS-box transcription factors and hormone-mediated sugar pathways

    PubMed Central

    Zhao, Ying; Liang, Haiying; Li, Lan; Tang, Sha; Han, Xiao; Wang, Congpeng; Xia, Xinli; Yin, Weilun

    2015-01-01

    Metasequoia glyptostroboides is a famous redwood tree of ecological and economic importance, and requires more than 20 years of juvenile-to-adult transition before producing female and male cones. Previously, we induced reproductive buds using a hormone solution in juvenile Metasequoia trees as young as 5-to-7 years old. In the current study, hormone-treated shoots found in female and male buds were used to identify candidate genes involved in reproductive bud transition in Metasequoia. Samples from hormone-treated cone reproductive shoots and naturally occurring non-cone setting shoots were analyzed using 24 digital gene expression (DGE) tag profiles using Illumina, generating a total of 69,520 putative transcripts. Next, 32 differentially and specifically expressed transcripts were determined using quantitative real-time polymerase chain reaction, including the upregulation of MADS-box transcription factors involved in male bud transition and flowering time control proteins involved in female bud transition. These differentially expressed transcripts were associated with 243 KEGG pathways. Among the significantly changed pathways, sugar pathways were mediated by hormone signals during the vegetative-to-reproductive phase transition, including glycolysis/gluconeogenesis and sucrose and starch metabolism pathways. Key enzymes were identified in these pathways, including alcohol dehydrogenase (NAD) and glutathione dehydrogenase for the glycolysis/gluconeogenesis pathway, and glucanphosphorylase for sucrose and starch metabolism pathways. Our results increase our understanding of the reproductive bud transition in gymnosperms. In addition, these studies on hormone-mediated sugar pathways increase our understanding of the relationship between sugar and hormone signaling during female and male bud initiation in Metasequoia. PMID:26157452

  1. Circadian and sleep-dependent regulation of hormone release in humans

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    rhythm sleep disorders, including the dyssomnia of shift work and visual impairment. Yet to be fully investigated are the interactions of these factors with age and gender. Characterization of the factors governing hormone secretion is critical to understanding the temporal regulation of endocrine systems and presents many exciting areas for future research.

  2. Reproductive and hormonal risk factors of breast cancer: a historical perspective.

    PubMed

    Horn, Julie; Vatten, Lars J

    2017-01-01

    The complexity of breast cancer etiology has puzzled scientists for more than 300 years. In this brief review, we emphasize the importance of reproductive and hormonal factors in relation to the risk of breast cancer. By following the historical course of how various risk factors have been determined, this study attempts to illustrate the origin of hypotheses, their subsequent rejection, and development of new hypotheses. Starting with the contributions of Italian physicians in the 18th century and covering the activity of British epidemiologists before World War II, this review ends up with the international collaboration that became increasingly important in the second half of the 20th century.

  3. Hormone abuse in sports: the antidoping perspective.

    PubMed

    Barroso, Osquel; Mazzoni, Irene; Rabin, Olivier

    2008-05-01

    Since ancient times, unethical athletes have attempted to gain an unfair competitive advantage through the use of doping substances. A list of doping substances and methods banned in sports is published yearly by the World Anti-Doping Agency (WADA). A substance or method might be included in the List if it fulfills at least two of the following criteria: enhances sports performance; represents a risk to the athlete's health; or violates the spirit of sports. This list, constantly updated to reflect new developments in the pharmaceutical industry as well as doping trends, enumerates the drug types and methods prohibited in and out of competition. Among the substances included are steroidal and peptide hormones and their modulators, stimulants, glucocorticosteroids, beta2-agonists, diuretics and masking agents, narcotics, and cannabinoids. Blood doping, tampering, infusions, and gene doping are examples of prohibited methods indicated on the List. From all these, hormones constitute by far the highest number of adverse analytical findings reported by antidoping laboratories. Although to date most are due to anabolic steroids, the advent of molecular biology techniques has made recombinant peptide hormones readily available. These substances are gradually changing the landscape of doping trends. Peptide hormones like erythropoietin (EPO), human growth hormone (hGH), insulin, and insulin-like growth factor I (IGF-I) are presumed to be widely abused for performance enhancement. Furthermore, as there is a paucity of techniques suitable for their detection, peptide hormones are all the more attractive to dishonest athletes. This article will overview the use of hormones as doping substances in sports, focusing mainly on peptide hormones as they represent a pressing challenge to the current fight against doping. Hormones and hormones modulators being developed by the pharmaceutical industry, which could emerge as new doping substances, are also discussed. 2008, Asian

  4. HormoneBase, a population-level database of steroid hormone levels across vertebrates

    PubMed Central

    Vitousek, Maren N.; Johnson, Michele A.; Donald, Jeremy W.; Francis, Clinton D.; Fuxjager, Matthew J.; Goymann, Wolfgang; Hau, Michaela; Husak, Jerry F.; Kircher, Bonnie K.; Knapp, Rosemary; Martin, Lynn B.; Miller, Eliot T.; Schoenle, Laura A.; Uehling, Jennifer J.; Williams, Tony D.

    2018-01-01

    Hormones are central regulators of organismal function and flexibility that mediate a diversity of phenotypic traits from early development through senescence. Yet despite these important roles, basic questions about how and why hormone systems vary within and across species remain unanswered. Here we describe HormoneBase, a database of circulating steroid hormone levels and their variation across vertebrates. This database aims to provide all available data on the mean, variation, and range of plasma glucocorticoids (both baseline and stress-induced) and androgens in free-living and un-manipulated adult vertebrates. HormoneBase (www.HormoneBase.org) currently includes >6,580 entries from 476 species, reported in 648 publications from 1967 to 2015, and unpublished datasets. Entries are associated with data on the species and population, sex, year and month of study, geographic coordinates, life history stage, method and latency of hormone sampling, and analysis technique. This novel resource could be used for analyses of the function and evolution of hormone systems, and the relationships between hormonal variation and a variety of processes including phenotypic variation, fitness, and species distributions. PMID:29786693

  5. Hormones and tendinopathies: the current evidence.

    PubMed

    Oliva, Francesco; Piccirilli, Eleonora; Berardi, Anna C; Frizziero, Antonio; Tarantino, Umberto; Maffulli, Nicola

    2016-03-01

    Tendinopathies negatively affect the quality of life of millions of people, but we still do not know the factors involved in the development of tendon conditions. Published articles in English in PubMed and Google Scholar up to June 2015 about hormonal influence on tendinopathies onset. One hundred and two papers were included following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. In vitro and in vivo, tenocytes showed changes in their morphology and in their functional properties according to hormonal imbalances. Genetic pattern, sex, age and comorbidities can influence the hormonal effect on tendons. The increasing prevalence of metabolic disorders prompts to investigate the possible connection between metabolic problems and musculoskeletal diseases. The influence of hormones on tendon structure and metabolism needs to be further investigated. If found to be significant, multidisciplinary preventive and therapeutic strategies should then be developed. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone.

    PubMed

    Carrasco, Emilce; Blum, Mariann; Weickert, Cynthia Shannon; Casper, Diana

    2003-01-10

    It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.

  7. Female Reproductive Hormones and Biomarkers of Oxidative Stress in Genital Chlamydia Infection in Tubal Factor Infertility

    PubMed Central

    Nsonwu-Anyanwu, Augusta Chinyere; Charles-Davies, Mabel Ayebantoyo; Taiwo, Victor Olusegun; Li, Bin; Oni, Anthony Alabar; Bello, Folashade Adenike

    2015-01-01

    Background Genital Chlamydia infection (GCI) and the associated pathologies have been implicated in tubal infertility. Though the actual pathologic mechanisms are still uncertain, oxidative stress and other factors have been implicated. The purpose of the study was to determine the possible contribution of female reproductive hormones and biomarkers of oxidative stress in genital Chlamydial infection to tubal occlusion. Methods This prospective case control study was carried out by recruiting 150 age matched women grouped into infertile Chlamydia positive women (n = 50), fertile Chlamydia positive women (n = 50) and fertile Chlamydia negative women as controls (n = 50). High vaginal swabs and endocervical swabs were collected for screening Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis, Treponema pallidum, Staphylococcus aureus, and Candida albicans. Sera were collected for estimation of Chlamydia trachomatis antibody, female reproductive hormones [Follicle Stimulating Hormone (FSH), Luteinizing Hormone (LH), Oestradiol (E2), Progesterone (P4), Prolactin (PRL)] and biomarkers of oxidative stress [Total Antioxidant Capacity (TAC) and 8-hydroxyl-2-deoxyguanosine (8-OHdG)] by enzyme immunoassay (EIA). Data were analyzed using chi square, analysis of variance and LSD Post hoc to determine mean differences at p = 0.05. Results Among women with GCI, higher levels of LH and 8-OHdG were observed in infertile Chlamydia positive women compared to fertile Chlamydia positive women (p < 0.05). Higher levels of LH and 8-OHdG and lower TAC levels were observed in infertile Chlamydia positive women compared to fertile Chlamydia negative controls (p < 0.05). Conclusion Mechanisms including oxidative DNA damage and reduced antioxidant capacity may be involved in the pathology of Chlamydia induced tubal damage. PMID:25927024

  8. Interactions between the thyroid hormones and the hormones of the growth hormone axis.

    PubMed

    Laron, Zvi

    2003-12-01

    The normal secretion and action of the thyroid hormones and the hormones of the GH/IGF-I (growth hormone/ insulin-like growth factor I) axis are interdependent. Their interactions often differ in man from animal studies in rodents and sheep. Thus neonates with congenital hypothyroidism are of normal length in humans but IUGR (intrauterine growth retardation) in sheep. Postnatally normal GH/IGF-I secretion and action depends on an euthyroid state. Present knowledge on the interactions between the two axes is reviewed in states of hypo- and hyperthyroidism, states of GH/IGF-I deprivation and hypersecretion, as well as the relationship between IGF-I and thyroid cancer. Emphasis is given to data in children and aspects of linear growth and skeletal maturation.

  9. Thyroid hormone stimulates progesterone release from human luteal cells by generating a proteinaceous factor.

    PubMed

    Datta, M; Roy, P; Banerjee, J; Bhattacharya, S

    1998-09-01

    Blood samples collected from 29 women (aged between 19 and 35 years) during the luteal phase of the menstrual cycle (between days 18 and 23 of the cycle) showed that deficiency in thyroid hormone level is related to a decrease in progesterone (P4) secretion. To observe the effect of thyroid hormone on human ovarian luteal cells, 3,5,3'-triiodothyronine (T3; 125 ng/ml) was added to luteal cells in vitro. T3 significantly stimulated progesterone release (P < 0.01) from luteal cells and this could be blocked by cycloheximide, indicating a protein mediator for the T3 effect. The T3 stimulatory effect was inhibited by anti-T3 antibody suggesting specificity of T3 action. Addition of T3 caused a more than threefold increase in cellular protein synthesis which was inhibited by cycloheximide. Preparation of partially purified thyroid hormone-induced factor (TIF) (from peak II of Sephadex G 100 chromatography of T3-incubated cells), and its addition to luteal cell incubations caused a significant increase in P4 release (P < 0.05). Incubation with trypsin or treatment with heat destroyed the stimulatory effect of TIF on P4 release, indicating the proteinaceous nature of TIF. Purified thyroid hormone-induced protein. (TIP) from rat granulosa cells and fish ovarian follicles greatly stimulated P4 release from human luteal cells. These results suggest that T3 stimulation of P4 release from human luteal cells is not direct, but is mediated through a putative protein factor, which appears to be a protein conserved through evolution as far as its biological activity is concerned.

  10. Thyroid hormone modulates insulin-like growth factor-I(IGF-I) and IGF-binding protein-3, without mediation by growth hormone, in patients with autoimmune thyroid diseases.

    PubMed

    Inukai, T; Takanashi, K; Takebayashi, K; Fujiwara, Y; Tayama, K; Takemura, Y

    1999-10-01

    The expression and synthesis of insulin-like growth factor-1 (IGF-I) and IGF-binding protein-3 (IGFBP-3) are regulated by various hormones and nutritional conditions. We evaluated the effects of thyroid hormones on serum levels of IGF-I and IGFBP-3 levels in patients with autoimmune thyroid diseases including 54 patients with Graves' disease and 17 patients with Hashimoto's thyroiditis, and in 32 healthy age-matched control subjects. Patients were subdivided into hyperthyroid, euthyroid and hypothyroid groups that were untreated, or were treated with methylmercaptoimidazole (MMI) or L-thyroxine (L-T4). Serum levels of growth hormone (GH), IGF-I and IGFBP-3 were determined by radioimmunoassay. Serum GH levels did not differ significantly between the hyperthyroid and the age-matched euthyroid patients with Graves' disease. The serum levels of IGF-I and IGFBP-3 showed a significant positive correlation in the patients (R=0.616, P<0.001). The levels of both IGF-I and IFGBP-3 were significantly higher in the hyperthyroid patients with Graves' disease or in those with Hashimoto's thyroiditis induced by excess L-T4 administration than in control subjects. Patients with hypothyroid Graves' disease induced by the excess administration of MMI showed significantly lower IGFBP-3 levels as compared to those in healthy controls (P<0.05). Levels of IGFBP-3, but not IGF-I levels, showed a significant positive correlation with the levels of free T4 and free T3. In Graves' disease, levels of TPOAb, but not of TRAb, showed a significant positive correlation with IGFBP-3. We conclude that in patients with autoimmune thyroid diseases, thyroid hormone modulates the synthesis and/or the secretion of IGF-I and IGFBP-3, and this function is not mediated by GH.

  11. Pituitary transcription factor Prop-1 stimulates porcine pituitary glycoprotein hormone alpha subunit gene expression.

    PubMed

    Sato, Takanobu; Kitahara, Kousuke; Susa, Takao; Kato, Takako; Kato, Yukio

    2006-10-01

    Recently, we have reported that a Prophet of Pit-1 homeodomain factor, Prop-1, is a novel transcription factor for the porcine follicle-stimulating hormone beta subunit (FSHbeta) gene. This study subsequently aimed to examine the role of Prop-1 in the gene expression of two other porcine gonadotropin subunits, pituitary glycoprotein hormone alpha subunit (alphaGSU), and luteinizing hormone beta subunit (LHbeta). A series of deletion mutants of the porcine alphaGSU (up to -1059 bp) and LHbeta (up to -1277 bp) promoters were constructed in the reporter vector, fused with the secreted alkaline phosphatase gene (pSEAP2-Basic). Transient transfection studies using GH3 cells were carried out to estimate the activation of the porcine alphaGSU and LHbeta promoters by Prop-1, which was found to activate the alphaGSU promoter of -1059/+12 bp up to 11.7-fold but not the LHbeta promoter. Electrophoretic mobility shift assay and DNase I footprinting analysis revealed that Prop-1 binds to six positions, -1038/-1026, -942/-928, -495/-479, -338/-326, -153/-146, and -131/-124 bp, that comprise the A/T cluster. Oligonucleotides of six Prop-1 binding sites were directly connected to the minimum promoter of alphaGSU, fused in the pSEAP2-Basic vector, followed by transfecting GH3 cells to determine the cis-acting activity. Finally, we concluded that at least five Prop-1 binding sites are the cis-acting elements for alphaGSU gene expression. The present results revealed a notable feature of the proximal region, where three Prop-1-binding sites are close to and/or overlap the pituitary glycoprotein hormone basal element, GATA-binding element, and junctional regulatory element. To our knowledge, this is the first demonstration of the role of Prop-1 in the regulation of alphaGSU gene expression. These results, taken together with our previous finding that Prop-1 is a transcription factor for FSHbeta gene, confirm that Prop-1 modulates the synthesis of FSH at the transcriptional level. On

  12. Medical hypothesis: bifunctional genetic-hormonal pathways to breast cancer.

    PubMed

    Davis, D L; Telang, N T; Osborne, M P; Bradlow, H L

    1997-04-01

    As inherited germ line mutations, such as loss of BRCA1 or AT, account for less than 5% of all breast cancer, most cases involve acquired somatic perturbations. Cumulative lifetime exposure to bioavailable estradiol links most known risk factors (except radiation) for breast cancer. Based on a series of recent experimental and epidemiologic findings, we hypothesize that the multistep process of breast carcinogenesis results from exposure to endogenous or exogenous hormones, including phytoestrogens that directly or indirectly alter estrogen metabolism. Xenohormones are defined as xenobiotic materials that modify hormonal production; they can work bifunctionally, through genetic or hormonal paths, depending on the periods and extent of exposure. As for genetic paths, xenohormones can modify DNA structure or function. As for hormonal paths, two distinct mechanisms can influence the potential for aberrant cell growth: compounds can directly bind with endogenous hormone or growth factor receptors affecting cell proliferation or compounds can modify breast cell proliferation altering the formation of hormone metabolites that influence epithelial-stromal interaction and growth regulation. Beneficial xenohormones, such as indole-3-carbinol, genistein, and other bioflavonoids, may reduce aberrant breast cell proliferation, and influence the rate of DNA repair or apoptosis and thereby influence the genetic or hormonal microenvironments. Upon validation with appropriate in vitro and in vivo studies, biologic markers of the risk for breast cancer, such as hormone metabolites, total bioavailable estradiol, and free radical generators can enhance cancer detection and prevention.

  13. Evidence for disturbed insulin and growth hormone signaling as potential risk factors in the development of schizophrenia.

    PubMed

    van Beveren, N J M; Schwarz, E; Noll, R; Guest, P C; Meijer, C; de Haan, L; Bahn, S

    2014-08-26

    Molecular abnormalities in metabolic, hormonal and immune pathways are present in peripheral body fluids of a significant subgroup of schizophrenia patients. The authors have tested whether such disturbances also occur in psychiatrically ill and unaffected siblings of schizophrenia patients with the aim of identifying potential contributing factors to disease vulnerability. The subjects were recruited as part of the Genetic Risk and OUtcome of Psychosis (GROUP) study. The authors used multiplexed immunoassays to measure the levels of 184 molecules in serum from 112 schizophrenia patients, 133 siblings and 87 unrelated controls. Consistent with the findings of previous studies, serum from schizophrenia patients contained higher levels of insulin, C-peptide and proinsulin, decreased levels of growth hormone and altered concentrations of molecules involved in inflammation. In addition, significant differences were found in the levels of some of these proteins in siblings diagnosed with mood disorders (n=16) and in unaffected siblings (n=117). Most significantly, the insulin/growth hormone ratio was higher across all groups compared with the controls. Taken together, these findings suggest the presence of a molecular endophenotype involving disruption of insulin and growth factor signaling pathways as an increased risk factor for schizophrenia.

  14. Stress hormones, sleep deprivation and cognition in older adults.

    PubMed

    Maggio, Marcello; Colizzi, Elena; Fisichella, Alberto; Valenti, Giorgio; Ceresini, Graziano; Dall'Aglio, Elisabetta; Ruffini, Livia; Lauretani, Fulvio; Parrino, Liborio; Ceda, Gian Paolo

    2013-09-01

    Cognition can be deteriorated in older persons because of several potential mechanisms including the hormonal changes occurring with age. Stress events cause modification in hormonal balance with acute and chronic changes such as increase in cortisol and thyroid hormones, and simultaneous alterations in dehydroepiandrosterone sulphate, testosterone and insulin like growth factor-1 levels. The ability to cope with stress and regain previous healthy status, also called resiliency, is particularly impaired in older persons Thus, stressful conditions and hormonal dysregulation might concur to the onset of cognitive impairment in this population. In this review we address the relationship between stress hormones and cognitive function in older persons focusing on the role of one of the main stress factors, such as sleep deprivation (SD). We extracted and cross-checked data from 2000 to 2013 March and selected 112 full-text articles assessed for eligibility. In particular we considered 68 studies regarding the contribution of hormonal pathway to cognition in older adults, and 44 regarding hormones and SD both in rats and humans. We investigated how the activation of a stress-pattern response, like the one evoked from SD, can influence cognitive development and worsen cognitive status in the elderly. We will show the limited number of studies targeting the effects of SD and the consequent changes in stress hormones on cognitive function in this age group. We conclude that the current literature is not strong enough to give definitive answers on the role of stress hormonal pathway to the development of cognitive impairment in older individuals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Heterophilic antibody interference affecting multiple hormone assays: Is it due to rheumatoid factor?

    PubMed

    Mongolu, Shiva; Armston, Annie E; Mozley, Erin; Nasruddin, Azraai

    2016-01-01

    Assay interference with heterophilic antibodies has been well described in literature. Rheumatoid factor is known to cause similar interference leading to falsely elevated hormone levels when measured by immunometric methods like enzyme-linked immunosorbent assay (ELISA) or multiplex immunoasays (MIA). We report a case of a 60-year-old male patient with a history of rheumatoid arthritis referred to our endocrine clinic for investigation of hypogonadism and was found to have high serum levels of LH, FSH, SHBG, Prolactin, HCG and TSH. We suspected assay interference and further tests were performed. We used Heteroblock tubes and PEG precipitation to eliminate the interference and the hormone levels post treatment were in the normal range. We believe the interference was caused by high serum levels of rheumatoid factor. Although he was treated with thyroxine for 3 years, we believe he may have been treated inappropriately as his Free T4 level was always normal despite high TSH due to assay interference. Our case illustrates the phenomenon of heterophilic antibody interference likely due to high levels of rheumatoid factor. It is essential for clinicians and endocrinologists in particular to be aware of this possibility when making treatment decisions in these groups of patients.

  16. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    PubMed Central

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  17. The clinicoaetiological, hormonal and histopathological characteristics of melasma in men.

    PubMed

    Handa, S; De, D; Khullar, G; Radotra, B D; Sachdeva, N

    2018-01-01

    Melasma is relatively uncommon in males, and there is a paucity of data on male melasma, including its clinical pattern, triggering factors, endocrine profile and histopathological findings. To characterize the clinical findings and aetiological factors, including hormonal and histopathological features, of male melasma. Male patients with melasma and age- and sex-matched healthy controls (HCs) were recruited. Demographic profile, risk factors, clinical pattern and Wood lamp findings of patients were recorded. Sera were obtained from patients and HCs to determine hormone levels. Biopsy specimens were obtained from lesional and adjacent nonlesional skin. In total, 50 male patients with melasma and 20 HCs were recruited into the study. Mean age of patients was 27.58 ± 4.51 years. The most common clinical pattern of melasma was malar, which occurred in 52% of cases. Positive family history was present in 16% of patients, while 34% had disease aggravation with sun exposure and 62% used mustard oil for hair growth and/or as an emollient. Wood lamp examination revealed epidermal-type melasma in 54% of patients. There were no significant differences in hormone levels between patients and HCs. Histologically, epidermal melanin, elastotic degeneration, vascular proliferation and mast cells were more pronounced in lesional compared with nonlesional skin. Absent to weak expression of oestrogen receptors, progesterone receptors and stem cell factor was observed in lesional skin. Ultraviolet light and mustard oil are important causative factors in male melasma. Although stress and family history may contribute, hormonal factors possibly have no role. Quantitative analysis of immunohistochemical markers would provide insight in understanding the pathogenesis of melasma. © 2017 British Association of Dermatologists.

  18. Hormones and arterial stiffness in patients with chronic kidney disease.

    PubMed

    Gungor, Ozkan; Kircelli, Fatih; Voroneanu, Luminita; Covic, Adrian; Ok, Ercan

    2013-01-01

    Cardiovascular disease constitutes the major cause of mortality in patients with chronic kidney disease. Arterial stiffness is an important contributor to the occurrence and progression of cardiovascular disease. Various risk factors, including altered hormone levels, have been suggested to be associated with arterial stiffness. Based on the background that chronic kidney disease predisposes individuals to a wide range of hormonal changes, we herein review the available data on the association between arterial stiffness and hormones in patients with chronic kidney disease and summarize the data for the general population.

  19. Postoperative Diabetes Insipidus and Hyponatremia in Children after Transsphenoidal Surgery for Adrenocorticotropin Hormone and Growth Hormone Secreting Adenomas.

    PubMed

    Saldarriaga, Carolina; Lyssikatos, Charlampos; Belyavskaya, Elena; Keil, Margaret; Chittiboina, Prashant; Sinaii, Ninet; Stratakis, Constantine A; Lodish, Maya

    2018-04-01

    To define the incidence and risk factors of postoperative sodium alterations in pediatric patients undergoing transsphenoidal surgery (TSS) for adrenocorticotropic hormone and growth hormone secreting pituitary adenomas. We retrospectively reviewed 160 patients ≤18 years of age who had TSS for pituitary adenomas at our institution from 1999 to 2017. Variables included daily serum sodium through postoperative day 10, urine specific gravity, and medications administered. We examined associations between sex, repeat surgery, manipulation of the posterior pituitary (PP), tumor invasion into the PP, tumor type and size, cerebrospinal fluid (CSF) leak, lumbar drain insertion, body mass index, puberty, and development of diabetes insipidus (DI) or syndrome of inappropriate antidiuretic hormone secretion (SIADH). Mean age was 12.9 ± 3.4 years (female = 81). Patients had adrenocorticotropic hormone (150/160) and growth hormone (10/160) producing adenomas. Forty-two (26%) patients developed DI. Among the 37 of 160 who required desmopressin acutely, 13 of 37 required it long term. Risk of long-term need for desmopressin was significantly higher in patients who had CSF leak 9 of 48 (P = .003), lumbar drain 6 of 30 (P = .019), manipulation 11 of 50 (P < .001), or invasion 4 of 15 (P = .022) of the PP. Sixty patients developed hyponatremia, 19 because of SIADH, 39 to hypotonic fluids and 2 to cerebral salt wasting syndrome. Patients with SIADH were placed on fluid restriction; 1 received salt tablets. Among 160 children who underwent TSS for pituitary adenomas, the incidence of DI and SIADH after TSS was 26% and 14%, respectively. Combined risk factors for DI and/or SIADH include female sex, manipulation of and/or tumor invasion into the PP, and CSF leak or lumbar drain. ClinicalTrials.gov: NCT00001595 and NCT00060541. Published by Elsevier Inc.

  20. Interaction between body mass index and hormone-receptor status as a prognostic factor in lymph-node-positive breast cancer

    PubMed Central

    Chung, Il Yong; Park, Yu Rang; Min, Yul Ha; Lee, Yura; Yoon, Tae In; Sohn, Guiyun; Lee, Sae Byul; Kim, Jisun; Kim, Hee Jeong; Ko, Beom Seok; Son, Byung Ho; Ahn, Sei Hyun

    2017-01-01

    The aim of this study was to determine the relationship between the body mass index (BMI) at a breast cancer diagnosis and various factors including the hormone-receptor, menopause, and lymph-node status, and identify if there is a specific patient subgroup for which the BMI has an effect on the breast cancer prognosis. We retrospectively analyzed the data of 8,742 patients with non-metastatic invasive breast cancer from the research database of Asan Medical Center. The overall survival (OS) and breast-cancer-specific survival (BCSS) outcomes were compared among BMI groups using the Kaplan-Meier method and Cox proportional-hazards regression models with an interaction term. There was a significant interaction between BMI and hormone-receptor status for the OS (P = 0.029), and BCSS (P = 0.013) in lymph-node-positive breast cancers. Obesity in hormone-receptor-positive breast cancer showed a poorer OS (adjusted hazard ratio [HR] = 1.51, 95% confidence interval [CI] = 0.92 to 2.48) and significantly poorer BCSS (HR = 1.80, 95% CI = 1.08 to 2.99). In contrast, a high BMI in hormone-receptor-negative breast cancer revealed a better OS (HR = 0.44, 95% CI = 0.16 to 1.19) and BCSS (HR = 0.53, 95% CI = 0.19 to 1.44). Being underweight (BMI < 18.50 kg/m2) with hormone-receptor-negative breast cancer was associated with a significantly worse OS (HR = 1.98, 95% CI = 1.00–3.95) and BCSS (HR = 2.24, 95% CI = 1.12–4.47). There was no significant interaction found between the BMI and hormone-receptor status in the lymph-node-negative setting, and BMI did not interact with the menopause status in any subgroup. In conclusion, BMI interacts with the hormone-receptor status in a lymph-node-positive setting, thereby playing a role in the prognosis of breast cancer. PMID:28248981

  1. Hormonal enzymatic systems in normal and cancerous human breast: control, prognostic factors, and clinical applications.

    PubMed

    Pasqualini, Jorge R; Chetrite, Gérard S

    2012-04-01

    The bioformation and transformation of estrogens and other hormones in the breast tissue as a result of the activity of the various enzymes involved attract particular attention for the role they play in the development and pathogenesis of hormone-dependent breast cancer. The enzymatic process concerns the aromatase, which transforms androgens into estrogens; the sulfatase, which hydrolyzes the biologically inactive sulfates to the active hormone; the 17β-hydroxysteroid dehydrogenases, which are involved in the interconversion estradiol/estrone or testosterone/androstenedione; hydroxylases, which transform estrogens into mitotic and antimitotic derivatives; and sulfotransferases and glucuronidases, which, respectively convert into the biologically inactive sulfates and glucuronides. These enzymatic activities are more intense in the carcinoma than in the normal tissue. Concerning aromatase, the application of antiaromatase agents has been largely developed in the treatment of breast cancer patients, with very positive results. Various studies have shown that the activity levels of these enzymes and their mRNA can be involved as interesting prognostic factors for breast cancer. In conclusion, the application of new antienzymatic molecules can open attractive perspectives in the treatment of hormone-dependent breast cancer.

  2. Two novel LHX3 mutations in patients with combined pituitary hormone deficiency including cervical rigidity and sensorineural hearing loss.

    PubMed

    Ramzan, Khushnooda; Bin-Abbas, Bassam; Al-Jomaa, Lolwa; Allam, Rabab; Al-Owain, Mohammed; Imtiaz, Faiqa

    2017-03-16

    Congenital combined pituitary hormone deficiency (CPHD) is a rare heterogeneous group of conditions. CPHD-type 3 (CPHD3; MIM# 221750) is caused by recessive mutations in LHX3, a LIM-homeodomain transcription factor gene. The isoforms of LHX3 are critical for pituitary gland formation and specification of the anterior pituitary hormone-secreting cell types. They also play distinct roles in the development of neuroendocrine and auditory systems. Here, we summarize the clinical, endocrinological, radiological and molecular features of three patients from two unrelated families. Clinical evaluation revealed severe CPHD coupled with cervical vertebral malformations (rigid neck, scoliosis), mild developmental delay and moderate sensorineural hearing loss (SNHL). The patients were diagnosed with CPHD3 based on the array of hormone deficiencies and other associated syndromic symptoms, suggestive of targeted LHX3 gene sequencing. A novel missense mutation c.437G > T (p. Cys146Phe) and a novel nonsense mutation c.466C > T (p. Arg156Ter), both in homozygous forms, were found. The altered Cys146 resides in the LIM2 domain of the encoded protein and is a phylogenetically conserved residue, which mediates LHX3 transcription factor binding with a zinc cation. The p. Arg156Ter is predicted to result in a severely truncated protein, lacking the DNA binding homeodomain. Considering genotype/phenotype correlation, we suggest that the presence of SNHL and limited neck rotation should be considered in the differential diagnosis of CPHD3 to facilitate molecular diagnosis. This report describes the first LHX3 mutations from Saudi patients and highlights the importance of combining molecular diagnosis with the clinical findings. In addition, it also expands the knowledge of LHX3-related CPHD3 phenotype and the allelic spectrum for this gene.

  3. Small-Molecule Hormones: Molecular Mechanisms of Action

    PubMed Central

    Budzińska, Monika

    2013-01-01

    Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes. PMID:23533406

  4. Effects of fasting on growth hormone, growth hormone receptor, and insulin-like growth factor-I axis in seawater-acclimated tilapia, Oreochromis mossambicus.

    PubMed

    Fox, B K; Riley, L G; Hirano, T; Grau, E G

    2006-09-15

    Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.

  5. The concept of multiple hormonal dysregulation.

    PubMed

    Maggio, Marcello; Cattabiani, Chiara; Lauretani, Fulvio; Ferrucci, Luigi; Luci, Michele; Valenti, Giorgio; Ceda, Gianpaolo

    2010-01-01

    Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones that remain stable and anabolic hormones (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Despite the multiple hormonal dysregulation occurring with age, the prevalent line of research in the last decades has tried to explain many age-related phenomena as consequence of one single hormonal derangement with disappointing results. In this review we will list the relationship between hormonal anabolic deficiency and frailty and mortality in older population, providing evidence to the notion that multiple hormonal dysregulation rather than change in single anabolic hormone is a powerful marker of poor health status and mortality.

  6. Klotho and the Growth Hormone/Insulin-Like Growth Factor 1 Axis: Novel Insights into Complex Interactions.

    PubMed

    Rubinek, T; Modan-Moses, D

    2016-01-01

    The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is pivotal for many metabolic functions, including proper development and growth of bones, skeletal muscles, and adipose tissue. Defects in the axis' activity during childhood result in growth abnormalities, while increased secretion of GH from the pituitary results in acromegaly. In order to keep narrow physiologic concentration, GH and IGF-1 secretion and activity are tightly regulated by hypothalamic, pituitary, endocrine, paracrine, and autocrine factors. Klotho was first discovered as an aging-suppressor gene. Mice that do not express klotho die prematurely with multiple symptoms of aging, several of them are also characteristic of decreased GH/IGF-1 axis activity. Klotho is highly expressed in the brain, the kidney, and parathyroid and pituitary glands, but can also serve as a circulating hormone by its shedding, forming soluble klotho that can be detected in blood, cerebrospinal fluid, and urine. Several lines of evidence suggest an association between klotho levels and activity of the GH/IGF-1 axis: the GH-secreting cells in the anterior pituitary of klotho-deficient mice are hypotrophic; klotho levels are altered in subjects with pathologies of the GH/IGF-1 axis; and accumulating data indicate that klotho is a direct regulator of GH secretion. Thus, klotho seems to be a new player in the intricate regulation of the GH/IGF-1 axis. © 2016 Elsevier Inc. All rights reserved.

  7. The epidemiology of serum sex hormones in postmenopausal women

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauley, J.A.; Kuller, L.H.; LeDonne, D.

    1989-06-01

    Serum sex hormones may be related to the risk of several diseases including osteoporosis, heart disease, and breast and endometrial cancer in postmenopausal women. In the current report, the authors examined the epidemiology of serum sex hormones in 176 healthy, white postmenopausal women (mean age 58 years) recruited from the metropolitan Pittsburgh, Pennsylvania, area. The data were collected during 1982-1983; none of the women were on estrogen replacement therapy. Serum concentrations of estrone, estradiol, testosterone, and androstenedione were measured by a combination of extraction, column chromatography, and radioimmunoassay. Neither age nor time since menopause was a significant predictor of sexmore » hormones. The degree of obesity was a major determinant of estrone and estradiol. The estrone levels of obese women were about 40% higher than the levels of nonobese women. There was a weak relation between obesity and the androgens. Cigarette smokers had significantly higher levels of androstenedione than nonsmokers, with little difference in serum estrogens between smokers and nonsmokers. Both estrone and estradiol levels tended to decline with increasing alcohol consumption. Physical activity was an independent predictor of serum estrone. More active women had lower levels of estrone. There was a positive relation of muscle strength with estrogen levels. The data suggest interesting relations between environmental and lifestyle factors and serum sex hormones. These environmental and lifestyle factors are potentially modifiable and, hence, if associations between sex hormones and disease exist, modification of these factors could affect disease risks.« less

  8. Does postmenopausal hormone replacement therapy affect intraocular pressure?

    PubMed

    Abramov, Yoram; Borik, Sharon; Yahalom, Claudia; Fatum, Muhammad; Avgil, Gadiel; Brzezinski, Amnon; Banin, Eyal

    2005-08-01

    To assess the effects of postmenopausal hormone replacement therapy (HRT) on intraocular pressure (IOP). This was a cross-sectional controlled study, including 107 women aged 60 to 80 years receiving HRT and 107 controls who have never received HRT. All subjects underwent IOP assessment and funduscopic photography for cup-to-disc (C/D) ratios, and completed questionnaires regarding personal and family history of glaucoma, hormone replacement therapy, lifetime estrogen and progesterone exposure, and cardiovascular risk factors. Main Outcome Measures included IOP, prevalence of increased IOP, and C/D ratios. The groups did not differ in mean IOP (15.3 versus 15.3 mm Hg), mean vertical (0.18 versus 0.21) and horizontal (0.17 versus 0.14) C/D ratios, and in prevalence of increased IOP (15% versus 14%), C/D ratio (7% versus 7%), or glaucoma (9% versus 11%). A personal history of ischemic heart disease was the only risk factor associated with increased IOP (O.R. = 4.63, P = 0.003). Lifetime estrogen and progesterone exposure, including pregnancies, deliveries, menstruation years, and the use of oral contraceptives did not significantly affect the risk for increased IOP. Hormone replacement therapy and lifetime estrogen and progesterone exposure do not seem to affect IOP or the risk for increased IOP. A personal history of ischemic heart disease may be associated with a higher risk for this disorder.

  9. Differential action of glycoprotein hormones: significance in cancer progression.

    PubMed

    Govindaraj, Vijayakumar; Arya, Swathy V; Rao, A J

    2014-02-01

    Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

  10. Steroid hormone receptor status defines the MMTV promoter chromatin structure in vivo.

    PubMed

    Archer, T K; Fryer, C J; Lee, H L; Zaniewski, E; Liang, T; Mymryk, J S

    1995-06-01

    The ability to respond to small signalling molecules such as steroid hormones is important for many physiological processes. Steroid hormones act through a group of high affinity receptors that regulate transcription by binding to hormone response elements (HREs) located within the promoters of target genes, which themselves are organized with nuclear proteins to form chromatin. To dissect the mechanisms(s) of steroid hormone action we have used the steroid inducible mouse mammary tumor virus (MMTV) promoter as a model system. The MMTV promoter is assembled into a phased array of nucleosomes that are specifically positioned in rodent cells. Induction of transcription by glucocorticoids is accompanied by the appearance of a hypersensitive region in the proximal promoter which allows the hormone dependent assembly of a preinitiation complex including transcription factors such as nuclear factor 1 (NF1) and the octamer transcription factor (OTF). Surprisingly, when introduced by transient transfection, the progesterone receptor (PR) is unable to activate this promoter in vivo, a finding that may result from its inability to alter MMTV promoter chromatin. In an attempt to investigate the failure of the PR to activate the promoter, we have stably introduced the MMTV promoter into human T47D breast cancer cells that express high levels of the PR. In contrast to what has been observed previously in rodent cells, the MMTV templates resident in human breast cancer cells adopt a novel and constitutively open chromatin structure. The constitutively open chromatin structure is accompanied by the hormone independent loading of transcription factors including the PR and NF1. In T47D cells that stably express the glucocorticoid receptor, the MMTV promoter responds to glucocorticoids, but not progestins, and displays glucocorticoid induced restriction enzyme hypersensitivity and transcription factor loading. These findings suggest that the organization of the MMTV chromatin

  11. The concept of multiple hormonal dysregulation

    PubMed Central

    Maggio, Marcello; Cattabiani, Chiara; Lauretani, Fulvio; Ferrucci, Luigi; Luci, Michele; Valenti, Giorgio; Ceda, Gianpaolo

    2016-01-01

    Aging process is accompanied by hormonal changes characterized by an imbalance between catabolic hormones that remain stable and anabolic hormones (testosterone, insulin like growth factor-1 (IGF-1) and dehydroepiandrosterone sulphate (DHEAS), that decrease with age. Despite the multiple hormonal dysregulation occurring with age, the prevalent line of research in the last decades has tried to explain many age-related phenomena as consequence of one single hormonal derangement with disappointing results. In this review we will list the relationship between hormonal anabolic deficiency and frailty and mortality in older population, providing evidence to the notion that multiple hormonal dysregulation rather than change in single anabolic hormone is a powerful marker of poor health status and mortality. (www.actabiomedica.it) PMID:20518188

  12. Model of pediatric pituitary hormone deficiency separates the endocrine and neural functions of the LHX3 transcription factor in vivo.

    PubMed

    Colvin, Stephanie C; Malik, Raleigh E; Showalter, Aaron D; Sloop, Kyle W; Rhodes, Simon J

    2011-01-04

    The etiology of most pediatric hormone deficiency diseases is poorly understood. Children with combined pituitary hormone deficiency (CPHD) have insufficient levels of multiple anterior pituitary hormones causing short stature, metabolic disease, pubertal failure, and often have associated nervous system symptoms. Mutations in developmental regulatory genes required for the specification of the hormone-secreting cell types of the pituitary gland underlie severe forms of CPHD. To better understand these diseases, we have created a unique mouse model of CPHD with a targeted knockin mutation (Lhx3 W227ter), which is a model for the human LHX3 W224ter disease. The LHX3 gene encodes a LIM-homeodomain transcription factor, which has essential roles in pituitary and nervous system development in mammals. The introduced premature termination codon results in deletion of the carboxyl terminal region of the LHX3 protein, which is critical for pituitary gene activation. Mice that lack all LHX3 function do not survive beyond birth. By contrast, the homozygous Lhx3 W227ter mice survive, but display marked dwarfism, thyroid disease, and female infertility. Importantly, the Lhx3 W227ter mice have no apparent nervous system deficits. The Lhx3 W227ter mouse model provides a unique array of hormone deficits and facilitates experimental approaches that are not feasible with human patients. These experiments demonstrate that the carboxyl terminus of the LHX3 transcription factor is not required for viability. More broadly, this study reveals that the in vivo actions of a transcription factor in different tissues are molecularly separable.

  13. Model of pediatric pituitary hormone deficiency separates the endocrine and neural functions of the LHX3 transcription factor in vivo

    PubMed Central

    Colvin, Stephanie C.; Malik, Raleigh E.; Showalter, Aaron D.; Sloop, Kyle W.; Rhodes, Simon J.

    2011-01-01

    The etiology of most pediatric hormone deficiency diseases is poorly understood. Children with combined pituitary hormone deficiency (CPHD) have insufficient levels of multiple anterior pituitary hormones causing short stature, metabolic disease, pubertal failure, and often have associated nervous system symptoms. Mutations in developmental regulatory genes required for the specification of the hormone-secreting cell types of the pituitary gland underlie severe forms of CPHD. To better understand these diseases, we have created a unique mouse model of CPHD with a targeted knockin mutation (Lhx3 W227ter), which is a model for the human LHX3 W224ter disease. The LHX3 gene encodes a LIM-homeodomain transcription factor, which has essential roles in pituitary and nervous system development in mammals. The introduced premature termination codon results in deletion of the carboxyl terminal region of the LHX3 protein, which is critical for pituitary gene activation. Mice that lack all LHX3 function do not survive beyond birth. By contrast, the homozygous Lhx3 W227ter mice survive, but display marked dwarfism, thyroid disease, and female infertility. Importantly, the Lhx3 W227ter mice have no apparent nervous system deficits. The Lhx3 W227ter mouse model provides a unique array of hormone deficits and facilitates experimental approaches that are not feasible with human patients. These experiments demonstrate that the carboxyl terminus of the LHX3 transcription factor is not required for viability. More broadly, this study reveals that the in vivo actions of a transcription factor in different tissues are molecularly separable. PMID:21149718

  14. Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis.

    PubMed

    Schmitt-Ney, M; Happ, B; Hofer, P; Hynes, N E; Groner, B

    1992-12-01

    The mammary gland-specific nuclear factor (MGF) is a crucial contributor to the regulation of transcription from the beta-casein gene promoter. The beta-casein gene encodes a major milk protein, which is expressed in mammary epithelial cells during lactation and can be induced by lactogenic hormones in the clonal mammary epithelial cell line HC11. We have investigated the specific DNA-binding activity of MGF in mammary epithelial cells in vivo and in vitro. Comparison of MGF in HC11 cells and mammary gland cells from lactating mice revealed molecules with identical DNA-binding properties. Bandshift and UV cross-linking experiments indicated that MGF in HC11 cells has a higher mol wt than MGF found in mice. Little MGF activity was detected in nuclear extracts from HC11 cells cultured in the absence of lactogenic hormones. Lactogenic hormone treatment of HC11 cells led to a strong induction of MGF activity. The induction of MGF activity as well as utilization of the beta-casein promoter were suppressed when epidermal growth factor was present in the tissue culture medium simultaneously with the lactogenic hormones. In lactating animals, MGF activity is regulated by suckling, milk stasis, and systemic hormone signals. The mammary glands from maximally lactating animals, 16 days postpartum, contain drastically reduced MGF activity after removal of the pups for only 8 h. The down-regulation of MGF by pup withdrawal was slower in early lactation, 6 days postpartum. We also investigated the relative contributions of local signals, generated by milk stasis, and systemic hormone signals to the regulation of MGF activity. The access to one row of mammary glands of lactating mothers was denied to the pups for 24 h. High levels of MGF were found in the accessible mammary glands, and intermediate levels of MGF were found in the inaccessible glands of the same mouse. Very low MGF levels were detected when the pups were removed from the dams for 24 h. We conclude that systemic as

  15. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    PubMed

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  16. Plant hormone signaling lightens up: integrators of light and hormones.

    PubMed

    Lau, On Sun; Deng, Xing Wang

    2010-10-01

    Light is an important environmental signal that regulates diverse growth and developmental processes in plants. In these light-regulated processes, multiple hormonal pathways are often modulated by light to mediate the developmental changes. Conversely, hormone levels in plants also serve as endogenous cues in influencing light responsiveness. Although interactions between light and hormone signaling pathways have long been observed, recent studies have advanced our understanding by identifying signaling integrators that connect the pathways. These integrators, namely PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), PIF4, PIF3-LIKE 5 (PIL5)/PIF1 and LONG HYPOCOTYL 5 (HY5), are key light signaling components and they link light signals to the signaling of phytohormones, such as gibberellin (GA), abscisic acid (ABA), auxin and cytokinin, in regulating seedling photomorphogenesis and seed germination. This review focuses on these integrators in illustrating how light and hormone interact. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. European Code against Cancer 4th Edition: Medical exposures, including hormone therapy, and cancer.

    PubMed

    Friis, Søren; Kesminiene, Ausrele; Espina, Carolina; Auvinen, Anssi; Straif, Kurt; Schüz, Joachim

    2015-12-01

    The 4th edition of the European Code against Cancer recommends limiting - or avoiding when possible - the use of hormone replacement therapy (HRT) because of the increased risk of cancer, nevertheless acknowledging that prescription of HRT may be indicated under certain medical conditions. Current evidence shows that HRT, generally prescribed as menopausal hormone therapy, is associated with an increased risk of cancers of the breast, endometrium, and ovary, with the risk pattern depending on factors such as the type of therapy (oestrogen-only or combined oestrogen-progestogen), duration of treatment, and initiation according to the time of menopause. Carcinogenicity has also been established for anti-neoplastic agents used in cancer therapy, immunosuppressants, oestrogen-progestogen contraceptives, and tamoxifen. Medical use of ionising radiation, an established carcinogen, can provide major health benefits; however, prudent practices need to be in place, with procedures and techniques providing the needed diagnostic information or therapeutic gain with the lowest possible radiation exposure. For pharmaceutical drugs and medical radiation exposure with convincing evidence on their carcinogenicity, health benefits have to be balanced against the risks; potential increases in long-term cancer risk should be considered in the context of the often substantial and immediate health benefits from diagnosis and/or treatment. Thus, apart from HRT, no general recommendations on reducing cancer risk were given for carcinogenic drugs and medical radiation in the 4th edition of European Code against Cancer. It is crucial that the application of these measures relies on medical expertise and thorough benefit-risk evaluation. This also pertains to cancer-preventive drugs, and self-medication with aspirin or other potential chemopreventive drugs is strongly discouraged because of the possibility of serious, potentially lethal, adverse events. Copyright © 2015 International

  18. Hormonal therapy followed by chemotherapy or the reverse sequence as first-line treatment of hormone-responsive, human epidermal growth factor receptor-2 negative metastatic breast cancer patients: results of an observational study.

    PubMed

    Bighin, Claudia; Dozin, Beatrice; Poggio, Francesca; Ceppi, Marcello; Bruzzi, Paolo; D'Alonzo, Alessia; Levaggi, Alessia; Giraudi, Sara; Lambertini, Matteo; Miglietta, Loredana; Vaglica, Marina; Fontana, Vincenzo; Iacono, Giuseppina; Pronzato, Paolo; Del Mastro, Lucia

    2017-07-04

    Introduction Although hormonal-therapy is the preferred first-line treatment for hormone-responsive, HER2 negative metastatic breast cancer, no data from clinical trials support the choice between hormonal-therapy and chemotherapy.Methods Patients were divided into two groups according to the treatment: chemotherapy or hormonal-therapy. Outcomes in terms of clinical benefit and median overall survival (OS) were retrospectively evaluated in the two groups. To calculate the time spent in chemotherapy with respect to OS in the two groups, the proportion of patients in chemotherapy relative to those present in either group was computed at every day from the start of therapy.Results From 1999 to 2013, 119 patients received first-line hormonal-therapy (HT-first group) and 100 first-line chemotherapy (CT-first group). Patients in the CT-first group were younger and with poorer prognostic factors as compared to those in HT-first group. Clinical benefit (77 vs 81%) and median OS (50.7 vs 51.1 months) were similar in the two groups. Time spent in chemotherapy was significantly longer during the first 3 years in CT-first group (54-34%) as compared to the HT-first group (11-18%). This difference decreased after the third year and overall was 28% in the CT-first group and 18% in the HT-first group.Conclusions The sequence first-line chemotherapy followed by hormonal-therapy, as compared with the opposite sequence, is associated with a longer time of OS spent in chemotherapy. However, despite the poorer prognostic factors, patients in the CT-first group had a superimposable OS than those in the HT-first group.

  19. Enriched environment influences hormonal status and hippocampal brain derived neurotrophic factor in a sex dependent manner.

    PubMed

    Bakos, J; Hlavacova, N; Rajman, M; Ondicova, K; Koros, C; Kitraki, E; Steinbusch, H W M; Jezova, D

    2009-12-01

    The present study is aimed at testing the hypothesis that an enriched environment (EE) induces sex-dependent changes in stress hormone release and in markers of increased brain plasticity. The focus was on hypothalamic-pituitary-adrenocortical (HPA) axis activity, plasma levels of stress hormones, gene expression of glutamate receptor subunits and concentrations of brain-derived neurotrophic factor (BDNF) in selected brain regions. Rats exposed to EE were housed in groups of 12 in large cages with various objects, which were frequently changed, for 6 weeks. Control animals were housed four per cage under standard conditions. In females the EE-induced rise in hippocampal BDNF, a neurotrophic factor associated with increased neural plasticity, was more pronounced than in males. Similar sex-specific changes were observed in BDNF concentrations in the hypothalamus. EE also significantly attenuated oxytocin and aldosterone levels only in female but not male rats. Plasma testosterone positively correlated with hippocampal BDNF in female but not male rats housed in EE. In male rats housing in EE led to enhanced levels of testosterone and adrenocorticotropic hormone (ACTH), this was not seen in females. Hippocampal glucocorticoid but not mineralocorticoid receptor levels decreased in rats housed in EE irrespective of sex. Housing conditions failed to modify mRNA levels of glutamate receptor type 1 (Glur1) and metabotropic glutamate receptor subtype 5 (mGlur5) subunits of glutamate receptors in the forebrain. Moreover, a negative association between corticosterone and BDNF was observed in both sexes. The results demonstrate that the association between hormones and changes in brain plasticity is sex related. In particular, testosterone seems to be involved in the regulatory processes related to neuroplasticity in females.

  20. Hormonal Aspects of Epilepsy

    PubMed Central

    Pennell, Page B.

    2009-01-01

    Synopsis The interactions between hormones, epilepsy, and the medications used to treat epilepsy are complex, with tridirectional interactions which affect both men and women in various ways. Abnormalities of baseline endocrine status occur more commonly in people with epilepsy, and are most often described for the sex steroid hormone axis. Common symptoms include sexual dysfunction, decreased fertility, premature menopause, and polycystic ovarian syndrome. Antiepileptic drugs and hormones have a bidirectional interaction, with a decrease in the efficacy of hormonal contraceptive agents with some AEDs and a decrease in the concentration and efficacy of other AEDs with hormonal contraceptives. Endogenous hormones can influence seizure severity and frequency, resulting in catamenial patterns of epilepsy. However, this knowledge can be used to develop hormonal strategies to improve seizure control in people with epilepsy. PMID:19853217

  1. Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of corti

    PubMed Central

    2013-01-01

    Background Thyroid hormones regulate growth and development. However, the molecular mechanisms by which thyroid hormone regulates cell structural development are not fully understood. The mammalian cochlea is an intriguing system to examine these mechanisms, as cellular structure plays a key role in tissue development, and thyroid hormone is required for the maturation of the cochlea in the first postnatal week. Results In hypothyroid conditions, we found disruptions in sensory outer hair cell morphology and fewer microtubules in non-sensory supporting pillar cells. To test the functional consequences of these cytoskeletal defects on cell mechanics, we combined atomic force microscopy with live cell imaging. Hypothyroidism stiffened outer hair cells and supporting pillar cells, but pillar cells ultimately showed reduced cell stiffness, in part from a lack of microtubules. Analyses of changes in transcription and protein phosphorylation suggest that hypothyroidism prolonged expression of fibroblast growth factor receptors, and decreased phosphorylated Cofilin. Conclusions These findings demonstrate that thyroid hormones may be involved in coordinating the processes that regulate cytoskeletal dynamics and suggest that manipulating thyroid hormone sensitivity might provide insight into the relationship between cytoskeletal formation and developing cell mechanical properties. PMID:23394545

  2. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis

    PubMed Central

    Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei

    2009-01-01

    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed. PMID:19015126

  3. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis.

    PubMed

    Peng, Zhi-yu; Zhou, Xin; Li, Linchuan; Yu, Xiangchun; Li, Hongjiang; Jiang, Zhiqiang; Cao, Guangyu; Bai, Mingyi; Wang, Xingchun; Jiang, Caifu; Lu, Haibin; Hou, Xianhui; Qu, Lijia; Wang, Zhiyong; Zuo, Jianru; Fu, Xiangdong; Su, Zhen; Li, Songgang; Guo, Hongwei

    2009-01-01

    Plant hormones are small organic molecules that influence almost every aspect of plant growth and development. Genetic and molecular studies have revealed a large number of genes that are involved in responses to numerous plant hormones, including auxin, gibberellin, cytokinin, abscisic acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroid. Here, we develop an Arabidopsis hormone database, which aims to provide a systematic and comprehensive view of genes participating in plant hormonal regulation, as well as morphological phenotypes controlled by plant hormones. Based on data from mutant studies, transgenic analysis and gene ontology (GO) annotation, we have identified a total of 1026 genes in the Arabidopsis genome that participate in plant hormone functions. Meanwhile, a phenotype ontology is developed to precisely describe myriad hormone-regulated morphological processes with standardized vocabularies. A web interface (http://ahd.cbi.pku.edu.cn) would allow users to quickly get access to information about these hormone-related genes, including sequences, functional category, mutant information, phenotypic description, microarray data and linked publications. Several applications of this database in studying plant hormonal regulation and hormone cross-talk will be presented and discussed.

  4. Multiple Hormonal Dysregulation as Determinant of Low Physical Performance and Mobility in Older Persons

    PubMed Central

    Maggio, Marcello; Lauretani, Fulvio; De Vita, Francesca; Basaria, Shehzad; Lippi, Giuseppe; Buttò, Valeria; Luci, Michele; Cattabiani, Chiara; Ceresini, Graziano; Verzicco, Ignazio; Ferrucci, Luigi; Ceda, Gian Paolo

    2015-01-01

    Mobility-disability is a common condition in older individuals. Many factors, including the age-related hormonal dysregulation, may concur to the development of disability in the elderly. In fact, during the aging process it is observed an imbalance between anabolic hormones that decrease (testosterone, dehydroepiandrosterone sulphate (DHEAS), estradiol, insulin like growth factor-1 (IGF-1) and Vitamin D) and catabolic hormones (cortisol, thyroid hormones) that increase. We start this review focusing on the mechanisms by which anabolic and catabolic hormones may affect physical performance and mobility. To address the role of the hormonal dysregulation to mobility-disability, we start to discuss the contribution of the single hormonal derangement. The studies used in this review were selected according to the period of time of publication, ranging from 2002 to 2013, and the age of the participants (≥65 years). We devoted particular attention to the effects of anabolic hormones (DHEAS, testosterone, estradiol, Vitamin D and IGF-1) on both skeletal muscle mass and strength, as well as other objective indicators of physical performance. We also analyzed the reasons beyond the inconclusive data coming from RCTs using sex hormones, thyroid hormones, and vitamin D (dosage, duration of treatment, baseline hormonal values and reached hormonal levels). We finally hypothesized that the parallel decline of anabolic hormones has a higher impact than a single hormonal derangement on adverse mobility outcomes in older population. Given the multifactorial origin of low mobility, we underlined the need of future synergistic optional treatments (micronutrients and exercise) to improve the effectiveness of hormonal treatment and to safely ameliorate the anabolic hormonal status and mobility in older individuals. PMID:24050169

  5. Multiple hormonal dysregulation as determinant of low physical performance and mobility in older persons.

    PubMed

    Maggio, Marcello; Lauretani, Fulvio; De Vita, Francesca; Basaria, Shehzad; Lippi, Giuseppe; Butto, Valeria; Luci, Michele; Cattabiani, Chiara; Ceresini, Graziano; Verzicco, Ignazio; Ferrucci, Luigi; Ceda, Gian Paolo

    2014-01-01

    Mobility-disability is a common condition in older individuals. Many factors, including the age-related hormonal dysregulation, may concur to the development of disability in the elderly. In fact, during the aging process it is observed an imbalance between anabolic hormones that decrease (testosterone, dehydroepiandrosterone sulphate (DHEAS), estradiol, insulin like growth factor-1 (IGF-1) and Vitamin D) and catabolic hormones (cortisol, thyroid hormones) that increase. We start this review focusing on the mechanisms by which anabolic and catabolic hormones may affect physical performance and mobility. To address the role of the hormonal dysregulation to mobility-disability, we start to discuss the contribution of the single hormonal derangement. The studies used in this review were selected according to the period of time of publication, ranging from 2002 to 2013, and the age of the participants (≥65 years). We devoted particular attention to the effects of anabolic hormones (DHEAS, testosterone, estradiol, Vitamin D and IGF-1) on both skeletal muscle mass and strength, as well as other objective indicators of physical performance. We also analyzed the reasons beyond the inconclusive data coming from RCTs using sex hormones, thyroid hormones, and vitamin D (dosage, duration of treatment, baseline hormonal values and reached hormonal levels). We finally hypothesized that the parallel decline of anabolic hormones has a higher impact than a single hormonal derangement on adverse mobility outcomes in older population. Given the multifactorial origin of low mobility, we underlined the need of future synergistic optional treatments (micronutrients and exercise) to improve the effectiveness of hormonal treatment and to safely ameliorate the anabolic hormonal status and mobility in older individuals.

  6. Understanding Risky Behavior: The Influence of Cognitive, Emotional and Hormonal Factors on Decision-Making under Risk

    PubMed Central

    Kusev, Petko; Purser, Harry; Heilman, Renata; Cooke, Alex J.; Van Schaik, Paul; Baranova, Victoria; Martin, Rose; Ayton, Peter

    2017-01-01

    Financial risky decisions and evaluations pervade many human everyday activities. Scientific research in such decision-making typically explores the influence of socio-economic and cognitive factors on financial behavior. However, very little research has explored the holistic influence of contextual, emotional, and hormonal factors on preferences for risk in insurance and investment behaviors. Accordingly, the goal of this review article is to address the complexity of individual risky behavior and its underlying psychological factors, as well as to critically examine current regulations on financial behavior. PMID:28203215

  7. Understanding Risky Behavior: The Influence of Cognitive, Emotional and Hormonal Factors on Decision-Making under Risk.

    PubMed

    Kusev, Petko; Purser, Harry; Heilman, Renata; Cooke, Alex J; Van Schaik, Paul; Baranova, Victoria; Martin, Rose; Ayton, Peter

    2017-01-01

    Financial risky decisions and evaluations pervade many human everyday activities. Scientific research in such decision-making typically explores the influence of socio-economic and cognitive factors on financial behavior. However, very little research has explored the holistic influence of contextual, emotional, and hormonal factors on preferences for risk in insurance and investment behaviors. Accordingly, the goal of this review article is to address the complexity of individual risky behavior and its underlying psychological factors, as well as to critically examine current regulations on financial behavior.

  8. Preliminary Hormonal Correlations in Female Patients as a Function of Somatic and Neurological Symptom Clusters: An Exploratory Development of a Multi-Hormonal Map for Bio-Identical Replacement Therapy (MHRT).

    PubMed

    Braverman, Eric R; Oscar-Berman, Marlene; Kreuk, Florian; Kerner, Mallory; Dushaj, Kristina; Li, Mona; Stratton, Danielle; Trudesdell, Courtney; Blum, Kenneth

    2013-12-06

    Females develop multiple hormonal alterations and certain genes may be involved in the intensity of subsequent symptoms including both mood and drug seeking. Seventy Four (74) females were included (mean age=60.23, SD=9.21, [43-87]). A medical evaluation was completed with hormone screening using a number of statistical analyses such as Pearson product moment; one way ANOVA and Regression analysis along with a Bonferroni significance correction p<.004. Of 120 correlations performed, significant hormone/domain correlations were as follows: DHEA/Genitourinary (r=.30, p<.05); FSH/Pulmonary (r=-.29, p<.05); Pregnenolone/Genitourinary (r=.40, p<.006) /Immunological (r=.38, p<.008); Testosterone/total endorsed symptoms (r=-0.34, p<.016); TSH/Pulmonary (r=-.33, p<.03) /Gynecological (r=.30, p<.05). Estrone/Musculoskeletal (r=-0.43, p<.012). After a Bonferroni correction (experiment-wise p<.00045) for statistical significance, no hormones remained significance. In the follow-up phase FSH/Neuropsychiatric (r=.56, p<.05) and Musculoskeletal (r=.67, p<.013); DHEA/Immunological (r=.64, p<.04); LH/ Musculoskeletal (r=.59, p<.34); Free Testosterone/Neuropsychiatric (r=.64, p<.019), Musculoskeletal (r=.68, p<.01), and Dermatologic (r=.57, p<.04); Total Testosterone/Immunological (r=.63, p<.028); TSH/Endocrinological (r=-.62, p<.031). Factor analysis of the MQ yielded two factors with eigenvalues > 1.0 (high loadings: first: Pulmonary, GI, Cardiovascular, and Immunological; second: Musculoskeletal, Gynecological, and the three Neurological domains). Both factors had significant correlations: first/pregnenolone (r=.37, p<.019); second/TSH (r=.33, p<.034). An additional factor analysis of hormone level clusters showed significant correlations with various domains. This study highlights the need to test the core biological endocrine hormones associated with females. Future research will focus on the relationship of for example Leptin and the electrophysiology of the brain. We are

  9. Exaggerated gonadotropin response to luteinizing hormone-releasing hormone in amenorrheic runners.

    PubMed

    Yahiro, J; Glass, A R; Fears, W B; Ferguson, E W; Vigersky, R A

    1987-03-01

    Most studies of exercise-induced amenorrhea have compared amenorrheic athletes (usually runners) with sedentary control subjects. Such comparisons will identify hormonal changes that develop as a result of exercise training but cannot determine which of these changes play a role in causing amenorrhea. To obviate this problem, we assessed reproductive hormone status in a group of five amenorrheic runners and compared them to a group of six eumenorrheic runners matched for body fatness, training intensity, and exercise performance. Compared to the eumenorrheic runners, the amenorrheic runners had lower serum estradiol concentrations, similar basal serum luteinizing hormone and follicle-stimulating hormone concentrations, and exaggerated responses of serum gonadotropins after administration of luteinizing hormone-releasing hormone (100 micrograms intravenous bolus). Serum prolactin levels, both basally and after thyrotropin-releasing hormone administration (500 micrograms intravenous bolus) or treadmill exercise, was similar in the two groups, as were serum thyroid function tests (including thyrotropin response to thyrotropin-releasing hormone). Changes in serum cortisol levels after short-term treadmill exercise were similar in both groups, and serum testosterone levels increased after exercise only in the eumenorrheic group. In neither group did such exercise change serum luteinizing hormone, follicle-stimulating hormone, or thyrotropin levels. We concluded that exercise-induced amenorrhea is not solely related to the development of increased prolactin output after exercise training. The exaggerated gonadotropin response to luteinizing hormone-releasing hormone seen in amenorrheic runners in comparison with matched eumenorrheic runners is consistent with a hypothalamic etiology for the menstrual dysfunction, analogous to that previously described in "stress-induced" or "psychogenic" amenorrhea.

  10. Molecular Aspects of Thyroid Hormone Actions

    PubMed Central

    Cheng, Sheue-Yann; Leonard, Jack L.; Davis, Paul J.

    2010-01-01

    ion transport systems, such as the Na+/H+ exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T4 is an agonist at the plasma membrane without conversion to T3. Tetraiodothyroacetic acid is a T4 analog that inhibits the actions of T4 and T3 at the integrin, including angiogenesis and tumor cell proliferation. T3 can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin αvβ3. Downstream consequences of phosphatidylinositol 3-kinase activation by T3 include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T3 and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T4 and rT3, but not T3, is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRα1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton. PMID:20051527

  11. Towards the emerging crosstalk: ERBB family and steroid hormones.

    PubMed

    D'Uva, Gabriele; Lauriola, Mattia

    2016-02-01

    Growth factors acting through receptor tyrosine kinases (RTKs) of ERBB family, along with steroid hormones (SH) acting through nuclear receptors (NRs), are critical signalling mediators of cellular processes. Deregulations of ERBB and steroid hormone receptors are responsible for several diseases, including cancer, thus demonstrating the central role played by both systems. This review will summarize and shed light on an emerging crosstalk between these two important receptor families. How this mutual crosstalk is attained, such as through extensive genomic and non-genomic interactions, will be addressed. In light of recent studies, we will describe how steroid hormones are able to fine-tune ERBB feedback loops, thus impacting on cellular output and providing a new key for understanding the complexity of biological processes in physiological or pathological conditions. In our understanding, the interactions between steroid hormones and RTKs deserve further attention. A system biology approach and advanced technologies for the analysis of RTK-SH crosstalk could lead to major advancements in molecular medicine, providing the basis for new routes of pharmacological intervention in several diseases, including cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Menstrual cycle characteristics and steroid hormone, prolactin, and growth factor levels in premenopausal women.

    PubMed

    Farland, Leslie V; Mu, Fan; Eliassen, A Heather; Hankinson, Susan E; Tworoger, Shelley S; Barbieri, Robert L; Dowsett, Mitch; Pollak, Michael N; Missmer, Stacey A

    2017-12-01

    Menstrual cycle characteristics are markers of endocrine milieu. However, associations between age at menarche and adulthood sex steroid hormone levels have been inconsistent, and data on menstrual characteristics and non-sex steroid hormones are sparse. We assessed the relations of menstrual characteristics with premenopausal plasma sex steroid hormones, sex hormone binding globulin (SHBG), prolactin, and growth factors among 2,745 premenopausal women (age 32-52) from the Nurses' Health Study II. Geometric means and tests for trend were calculated using multivariable general linear models. Early age at menarche was associated with higher premenopausal early-follicular free estradiol (percent difference < 12 vs. > 13 years = 11%), early-follicular estrone (7%), luteal estrone (7%), and free testosterone (8%) (all p trend  < 0.05). Short menstrual cycle length at age 18-22 was associated with higher early-follicular total (< 26 vs. > 39 days = 18%) and free estradiol (16%), early-follicular estrone (9%), SHBG (7%), lower luteal free estradiol (- 14%), total (- 6%), and free testosterone (- 15%) (all p trend  < 0.05). Short adult menstrual length was associated with higher early-follicular total estradiol (< 26 vs. > 31 days = 14%), SHBG (10%), lower luteal estrone (- 8%), progesterone (- 9%), total (- 11%) and free testosterone (- 25%), and androstenedione (- 14%) (all p trend  < 0.05). Irregularity of menses at 18-22 was associated with lower early-follicular total (irregular vs. very regular = - 14%) and free estradiol (- 14%), and early-follicular estrone (- 8%) (All p trend  < 0.05). Irregularity of adult menstrual cycle was associated with lower luteal total estradiol (irregular vs. very regular = - 8%), SHBG (- 3%), higher total (8%), and free testosterone (11%) (all p trend  < 0.05). Early-life and adulthood menstrual characteristics are moderately associated with mid

  13. [Action of hormones at the molecular level].

    PubMed

    Korolkovas, A

    1973-03-01

    A review of the literature (the list of citations is available from the author on request) is given on the molecular pharmacology of steroid hormones and on efforts to isolate androgen, estrogen, and progestogen receptors with the object of understanding the mechanism of action at the cellular and molecular levels. Complementarity is the necessary factor for interaction between drug and chemoreceptor or the tension induced by proximity, as in the case of enzyme-substrate interaction. In reacting with a receptor, the drug molecule is seen as being, in general, in a state of least energy. Binding forces are the same as those operating in the interior of simple molecules. 2 factors are of special importance to the complex action of drug-receptor: the distribution of the electron charge in each and the molecular conformation of each. A number of examples illustrates this structure-activity relationship. For steroid hormones, 3 stereochemical aspects are significant for their molecular action: 1) binding sites (equatorial or axial), 2) the position of substituents, and 3) the form of cyclohexane (bound and most stable or free and thermodynamically less stable). The mode of action of steroid hormones is outlined, including a diagram of gene regulation and the function of operons and messenger RNA. Androgens, estrogens, and progestogens each owe their specific biological activity to interaction with a macromolecular receptor, such interaction presumably being due to complementarity between receptor and hormone surfaces. Several theories to account for this interaction are discussed and diagrammed.

  14. Growth hormone and insulin-like growth factors in fish: Where we are and where to go

    USGS Publications Warehouse

    Reinecke, M.; Bjornsson, Bjorn Thrandur; Dickhoff, Walton W.; McCormick, S.D.; Navarro, I.; Power, D.M.; Gutierrez, J.

    2005-01-01

    This communication summarizes viewpoints, discussion, perspectives, and questions, put forward at a workshop on "Growth hormone and insulin-like growth factors in fish" held on September 7th, 2004, at the 5th International Symposium on Fish Endocrinology in Castello??n, Spain. ?? 2005 Elsevier Inc. All rights reserved.

  15. Hormonal control of implantation.

    PubMed

    Sandra, Olivier

    2016-06-01

    In mammals, implantation represents a key step of pregnancy and its progression conditions not only the success of pregnancy but health of the offspring. Implantation requires a complex and specific uterine tissue, the endometrium, whose biological functions are tightly regulated by numerous signals, including steroids and polypeptide hormones. Endometrial tissue is endowed with dynamic properties that associate its ability to control the developmental trajectory of the embryo (driver property) and its ability to react to embryos displaying distinct capacities to develop to term (sensor property). Since dynamical properties of the endometrium can be affected by pre- and post-conceptional environment, determining how maternal hormonal signals and their biological actions are affected by environmental factors (e.g. nutrition, stress, infections) is mandatory to reduce or even to prevent their detrimental effects on endometrial physiology in order to preserve the optimal functionality of this tissue. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    USDA-ARS?s Scientific Manuscript database

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  17. Hormone-dependent control of developmental timing through regulation of chromatin accessibility

    PubMed Central

    Uyehara, Christopher M.; Nystrom, Spencer L.; Niederhuber, Matthew J.; Leatham-Jensen, Mary; Ma, Yiqin; Buttitta, Laura A.

    2017-01-01

    Specification of tissue identity during development requires precise coordination of gene expression in both space and time. Spatially, master regulatory transcription factors are required to control tissue-specific gene expression programs. However, the mechanisms controlling how tissue-specific gene expression changes over time are less well understood. Here, we show that hormone-induced transcription factors control temporal gene expression by regulating the accessibility of DNA regulatory elements. Using the Drosophila wing, we demonstrate that temporal changes in gene expression are accompanied by genome-wide changes in chromatin accessibility at temporal-specific enhancers. We also uncover a temporal cascade of transcription factors following a pulse of the steroid hormone ecdysone such that different times in wing development can be defined by distinct combinations of hormone-induced transcription factors. Finally, we show that the ecdysone-induced transcription factor E93 controls temporal identity by directly regulating chromatin accessibility across the genome. Notably, we found that E93 controls enhancer activity through three different modalities, including promoting accessibility of late-acting enhancers and decreasing accessibility of early-acting enhancers. Together, this work supports a model in which an extrinsic signal triggers an intrinsic transcription factor cascade that drives development forward in time through regulation of chromatin accessibility. PMID:28536147

  18. Mammary cell-activating factor regulates the hormone-independent transcription of the early lactation protein (ELP) gene in a marsupial.

    PubMed

    Pharo, Elizabeth A; Renfree, Marilyn B; Cane, Kylie N

    2016-11-15

    The regulation of the tammar wallaby (Macropus eugenii) early lactation protein (ELP) gene is complex. ELP is responsive to the lactogenic hormones; insulin (I), hydrocortisone (HC) and prolactin (PRL) in mammary gland explants but could not be induced with lactogenic hormones in tammar primary mammary gland cells, nor in KIM-2 conditionally immortalised murine mammary epithelial cells. Similarly, ELP promoter constructs transiently-transfected into human embryonic kidney (HEK293T) cells constitutively expressing the prolactin receptor (PRLR) and Signal Transducer and Activator of Transcription (STAT)5A were unresponsive to prolactin, unlike the rat and mouse β-casein (CSN2) promoter constructs. Identification of the minimal promoter required for the hormone-independent transcription of tammar ELP in HEK293Ts and comparative analysis of the proximal promoters of marsupial ELP and the orthologous eutherian colostrum trypsin inhibitor (CTI) gene suggests that mammary cell-activating factor (MAF), an E26 transformation-specific (ETS) factor, may bind to an AGGAAG motif and activate tammar ELP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Auxin, the organizer of the hormonal/environmental signals for root hair growth

    PubMed Central

    Lee, Richard D.-W.; Cho, Hyung-Taeg

    2013-01-01

    The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth. PMID:24273547

  20. Thyroid hormone deiodination in birds.

    PubMed

    Darras, Veerle M; Verhoelst, Carla H J; Reyns, Geert E; Kühn, Eduard R; Van der Geyten, Serge

    2006-01-01

    Because the avian thyroid gland secretes almost exclusively thyroxine (T4), the availability of receptor-active 3,3',5-triiodothyronine (T3) has to be regulated in the extrathyroidal tissues, essentially by deiodination. Like mammals and most other vertebrates, birds possess three types of iodothyronine deiodinases (D1, D2, and D3) that closely resemble their mammalian counterparts, as shown by biochemical characterization studies in several avian species and by cDNA cloning of the three enzymes in chicken. The tissue distribution of these deiodinases has been studied in detail in chicken at the level of activity and mRNA expression. More recently specific antibodies were used to study cellular localization at the protein level. The abundance and distribution of the different deiodinases shows substantial variation during embryonic development and postnatal life. Deiodination in birds is subject to regulation by hormones from several endocrine axes, including thyroid hormones, growth hormone and glucocorticoids. In addition, deiodination is also influenced by external parameters, such as nutrition, temperature, light and also a number of environmental pollutants. The balance between the outer and inner ring deiodination resulting from the impact of all these factors ultimately controls T3 availability.

  1. The rate of change in declining steroid hormones: a new parameter of healthy aging in men?

    PubMed

    Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike

    2016-09-20

    Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.

  2. The rate of change in declining steroid hormones: a new parameter of healthy aging in men?

    PubMed Central

    Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike

    2016-01-01

    Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors. PMID:27589836

  3. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation

    PubMed Central

    Fraser, Scott P.; Ozerlat-Gunduz, Iley; Brackenbury, William J.; Fitzgerald, Elizabeth M.; Campbell, Thomas M.; Coombes, R. Charles; Djamgoz, Mustafa B. A.

    2014-01-01

    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na+ channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer. PMID:24493753

  4. Prolactin and growth hormone in fish osmoregulation

    USGS Publications Warehouse

    Sakamoto, T.; McCormick, S.D.

    2006-01-01

    Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids. ?? 2005 Elsevier Inc. All rights reserved.

  5. Factors associated with sex hormones and erectile dysfunction in male Taiwanese participants with obesity.

    PubMed

    Shi, Ming-Der; Chao, Jian-Kang; Ma, Mi-Chia; Hao, Lyh-Jyh; Chao, I-Chen

    2014-01-01

    Obesity has been receiving an increasing amount of attention recently, but investigations regarding the potential impact of obesity, sexual behaviors, and sex hormones on erectile dysfunction (ED) in men have not completely clarified the association. To identify the relationship between ED, sexual behavior, sexual satisfaction, sex hormones, and obesity in older adult males in Taiwan. Data were obtained from a baseline survey of 476 older adult males (≧40 years old). Their demographic data, body mass index (BMI), sex hormones, sexual desire, sexual satisfaction, and ED status were assessed. The International Index of Erectile Function-5 (IIEF-5), Sexual Desire Inventory (SDI), and Sexual Satisfaction Scale (SSS) were used to assess ED, sexual desire, and sexual satisfaction. In all, 476 men were available for analysis. The mean age of the sample was 51.34 ± 7.84 years (range 40 to 70 years). The IIEF total score had a mean of 19.44 ± 4.98; 264 (55.5%) subjects had ED, 250 (52.9%) were currently obese (BMI ≧27), and 297 (62.4%) had metabolic syndrome. The results showed an increased risk of ED among obese men and subjects with lower levels of sex hormones and lower sexual desire. Testosterone levels were lower in subjects with obesity (P < 0.001). Among the predictors of ED, obesity (odds ratio [OR] = 1.62, 95% CI = 1.07-2.44, P = 0.021), abnormal high sensitivity C-reactive protein (hs-CRP) (OR = 10.59, 95% CI = 4.70-23.87, P < 0.001), and lower serum full testosterone (OR = 3.27, 95% CI = 2.16-4.93, P < 0.001) were significantly independent factors. This study supports the idea of a close relationship between low levels of sex hormones, sexual desire, sexual satisfaction, obesity, and ED, and also shows that low free testosterone and hs-CRP may predict ED, even in obese populations. © 2013 International Society for Sexual Medicine.

  6. Hormones and endocrine disruptors in human seminal plasma.

    PubMed

    Hampl, R; Kubatova, J; Heracek, J; Sobotka, V; Starka, L

    2013-07-01

    Seminal plasma represents a unique environment for maturation, nutrition, and protection of male germ cells from damaging agents. It contains an array of organic as well as inorganic chemicals, encompassing a number of biologically and immunologically active compounds, including hormones. Seminal plasma contains also various pollutants transferred from outer environment known as endocrine disruptors. They interfere with hormones at the receptor level, act as inhibitors of their biosynthesis, and affect hormone regulation.In this minireview, the main groups of hormones detected in seminal plasma are summarized. Seminal gonadal steroids were investigated mostly with aim to use them as biomarkers of impaired spermatogenesis (sperm count, motility, morphology). Concentrations of hormones in the seminal plasma often differ considerably from the blood plasma levels in dependence on their origin. In some instances (dihydrotestosterone, estradiol), their informative value is higher than determination in blood.Out of peptide hormones detected in seminal plasma, peptides of transforming growth factor beta family, especially antimullerian hormone, and oligopeptides related to thyrotropin releasing hormone have the high informative value, while assessment of seminal gonadotropins and prolactin does not bring advantage over determination in blood.Though there is a large body of information about the endocrine disruptors' impact on male reproduction, especially with their potential role in decline of male reproductive functions within the last decades, there are only scarce reports on their presence in seminal plasma. Herein, the main groups of endocrine disruptors found in seminal plasma are reviewed, and the use of their determination for investigation of fertility disorders is discussed.

  7. Hormonal treatment, mild cognitive impairment and Alzheimer's disease

    PubMed Central

    Ryan, Joanne; Scali, Jaqueline; Carriere, Isabelle; Ritchie, Karen; Ancelin, Marie-Laure

    2008-01-01

    A plethora of in vitro and in vivo studies have supported the neuroprotective role of estrogens and their impact on the neurotransmitter systems implicated in cognition. Recent hormonal replacement therapy trials in non-demented post-menopausal women suggest a temporary positive effect (notably on verbal memory), and four meta-analyses converge to suggest a possible protective effect in relation to Alzheimer’s disease (reducing risk by 29 to 44%). However, data from the only large randomized controlled trial published to date, the Women’s Health Initiative Memory Study, did not confirm these observations and have even suggested an increase in dementia risk for women using hormonal replacement therapy compared to controls. Apart from methodological differences, one key short-coming of this trial has probably been the focus on late-onset (postmenopausal) hormonal changes, i.e. at a time when the neurodegenerative process has already begun and without taking into account individual lifetime exposure to hormone variability. Multifactorial models based on an exhaustive view of all hormonal events throughout the reproductive life (rather than on a specific exposure to a given steroid) together with other risk factors (notably genetic risk factors related to estrogen receptor polymorphisms) should be explored to clarify the role of hormonal risk factors, or protective factors for cognitive dysfunction and dementia. PMID:18072983

  8. A common polymorphism of the growth hormone receptor is associated with increased responsiveness to growth hormone.

    PubMed

    Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre

    2004-07-01

    Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.

  9. Role of various hormones in photosynthetic responses of green plants under environmental stresses.

    PubMed

    Poonam; Bhardwaj, Renu; Kaur, Ravdeep; Bali, Shagun; Kaur, Parminder; Sirhindi, Geetika; Thukral, Ashwani K; Ohri, Puja; Vig, Adarsh P

    2015-01-01

    Environmental stress includes adverse factors like water deficit, high salinity, enhanced temperature and heavy metals etc. These stresses alter the normal growth and metabolic processes of plants including photosynthesis. Major photosynthetic responses under various stresses include inhibition of photosystems (I and II), changes in thylakoid complexes, decreased photosynthetic activity and modifications in structure and functions of chloroplasts etc. Various defense mechanisms are triggered inside the plants in response to these stresses that are regulated by plant hormones or plant growth regulators. These phytohormones include abscisic acid, auxins, cytokinins, ethylene, brassinosteroids, jasmonates and salicylic acid etc. The present review focuses on stress protective effects of plants hormones on the photosynthetic responses.

  10. Autosomal Dominant Growth Hormone Deficiency (Type II).

    PubMed

    Alatzoglou, Kyriaki S; Kular, Dalvir; Dattani, Mehul T

    2015-06-01

    Isolated growth hormone deficiency (IGHD) is the commonest pituitary hormone deficiency resulting from congenital or acquired causes, although for most patients its etiology remains unknown. Among the known factors, heterozygous mutations in the growth hormone gene (GH1) lead to the autosomal dominant form of GHD, also known as type II GHD. In many cohorts this is the commonest form of congenital isolated GHD and is mainly caused by mutations that affect the correct splicing of GH-1. These mutations cause skipping of the third exon and lead to the production of a 17.5-kDa GH isoform that exerts a dominant negative effect on the secretion of the wild type GH. The identification of these mutations has clinical implications for the management of patients, as there is a well-documented correlation between the severity of the phenotype and the increased expression of the 17.5-kDa isoform. Patients with type II GHD have a variable height deficit and severity of GHD and may develop additional pituitary hormone defiencies over time, including ACTH, TSH and gonadotropin deficiencies. Therefore, their lifelong follow-up is recommended. Detailed studies on the effect of heterozygous GH1 mutations on the trafficking, secretion and action of growth hormone can elucidate their mechanism on a cellular level and may influence future treatment options for GHD type II.

  11. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity.

    PubMed

    Laron, Zvi

    2002-01-01

    Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.

  12. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency.

    PubMed

    Cerbone, Manuela; Dattani, Mehul T

    2017-12-01

    Growth hormone deficiency (GHD) can present at any time of life from the neonatal period to adulthood, as a result of congenital or acquired insults. It can present as an isolated problem (IGHD) or in combination with other pituitary hormone deficiencies (CPHD). Pituitary deficits can evolve at any time from GHD diagnosis. The number, severity and timing of occurrence of additional endocrinopathies are highly variable. The risk of progression from IGHD to CPHD in children varies depending on the etiology (idiopathic vs organic). The highest risk is displayed by children with abnormalities in the Hypothalamo-Pituitary (H-P) region. Heterogeneous data have been reported on the type and timing of onset of additional pituitary hormone deficits, with TSH deficiency being most frequent and Diabetes Insipidus the least frequent additional deficit in the majority, but not all, of the studies. ACTH deficiency may gradually evolve at any time during follow-up in children or adults with childhood onset IGHD, particularly (but not only) in presence of H-P abnormalities and/or TSH deficiency. Hence there is a need in these patients for lifelong monitoring for ACTH deficiency. GH treatment unmasks central hypothyroidism mainly in patients with organic GHD, but all patients starting GH should have their thyroid function monitored closely. Main risk factors for development of CPHD include organic etiology, H-P abnormalities (in particular pituitary stalk abnormalities, empty sella and ectopic posterior pituitary), midline brain (corpus callosum) and optic nerves abnormalities, genetic defects and longer duration of follow-up. The current available evidence supports longstanding recommendations for the need, in all patients diagnosed with IGHD, of a careful and indefinite follow-up for additional pituitary hormone deficiencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Anthropometric and hormonal risk factors for male breast cancer: male breast cancer pooling project results.

    PubMed

    Brinton, Louise A; Cook, Michael B; McCormack, Valerie; Johnson, Kenneth C; Olsson, Håkan; Casagrande, John T; Cooke, Rosie; Falk, Roni T; Gapstur, Susan M; Gaudet, Mia M; Gaziano, J Michael; Gkiokas, Georgios; Guénel, Pascal; Henderson, Brian E; Hollenbeck, Albert; Hsing, Ann W; Kolonel, Laurence N; Isaacs, Claudine; Lubin, Jay H; Michels, Karin B; Negri, Eva; Parisi, Dominick; Petridou, Eleni Th; Pike, Malcolm C; Riboli, Elio; Sesso, Howard D; Snyder, Kirk; Swerdlow, Anthony J; Trichopoulos, Dimitrios; Ursin, Giske; van den Brandt, Piet A; Van Den Eeden, Stephen K; Weiderpass, Elisabete; Willett, Walter C; Ewertz, Marianne; Thomas, David B

    2014-03-01

    The etiology of male breast cancer is poorly understood, partly because of its relative rarity. Although genetic factors are involved, less is known regarding the role of anthropometric and hormonally related risk factors. In the Male Breast Cancer Pooling Project, a consortium of 11 case-control and 10 cohort investigations involving 2405 case patients (n = 1190 from case-control and n = 1215 from cohort studies) and 52013 control subjects, individual participant data were harmonized and pooled. Unconditional logistic regression generated study design-specific (case-control/cohort) odds ratios (ORs) and 95% confidence intervals (CIs), with exposure estimates combined using fixed effects meta-analysis. All statistical tests were two-sided. Risk was statistically significantly associated with weight (highest/lowest tertile: OR = 1.36; 95% CI = 1.18 to 1.57), height (OR = 1.18; 95% CI = 1.01 to 1.38), and body mass index (BMI; OR = 1.30; 95% CI = 1.12 to 1.51), with evidence that recent rather than distant BMI was the strongest predictor. Klinefelter syndrome (OR = 24.7; 95% CI = 8.94 to 68.4) and gynecomastia (OR = 9.78; 95% CI = 7.52 to 12.7) were also statistically significantly associated with risk, relations that were independent of BMI. Diabetes also emerged as an independent risk factor (OR = 1.19; 95% CI = 1.04 to 1.37). There were also suggestive relations with cryptorchidism (OR = 2.18; 95% CI = 0.96 to 4.94) and orchitis (OR = 1.43; 95% CI = 1.02 to 1.99). Although age at onset of puberty and histories of infertility were unrelated to risk, never having had children was statistically significantly related (OR = 1.29; 95% CI = 1.01 to 1.66). Among individuals diagnosed at older ages, a history of fractures was statistically significantly related (OR = 1.41; 95% CI = 1.07 to 1.86). Consistent findings across case-control and cohort investigations, complemented by pooled analyses, indicated important roles for anthropometric and hormonal risk factors in the

  14. Thyroid stimulating hormone and serum, plasma, and platelet brain-derived neurotrophic factor during a 3-month follow-up in patients with major depressive disorder.

    PubMed

    Baek, Ji Hyun; Kang, Eun-Suk; Fava, Maurizio; Mischoulon, David; Nierenberg, Andrew A; Lee, Dongsoo; Heo, Jung-Yoon; Jeon, Hong Jin

    2014-12-01

    Thyroid dysfunction and elevated thyroid stimulating hormone (TSH) are common in patients with depression. TSH might exert its function in the brain through blood levels of brain-derived neurotrophic factor (BDNF). BDNF decreases during depressed states and normalize after treatment. The gap is that the association between TSH and BDNF in patients with major depressive disorder (MDD) is unknown. We studied 105 subjects ≥18 years of age with MDD and measured serum, plasma, and platelet BDNF at baseline, 1 month and 3 months during antidepressant treatment. Other baseline measurements included hypothalamic-pituitary-thyroid axis hormones such as TSH, triiodothyronine (T3) and thyroxine (T4); hypothalamic-pituitary-adrenal (HPA) axis hormones and hypothalamic-pituitary-gonadal (HPG) axis hormones and prolactin. Linear mixed model effect analyses revealed that baseline TSH level was negatively associated with changes of serum BDNF from baseline to 3 months (F=7.58, p=0.007) after adjusting for age, sex, and body mass index, but was not associated with plasma and platelet BDNF. In contrast, T3 and T4, HPA axis hormones, HPG axis hormones, and prolactin were not associated with serum, plasma, or platelet BDNF levels. Patients in the highest quartile of TSH showed significantly lower serum BDNF than in the other quartiles (F=4.54, p=0.038), but no significant differences were found based on T3 and T4 levels. TSH was only measured at baseline. Higher TSH is associated with lower baseline and reduced the increase of serum BDNF levels during antidepressant treatment in patients with MDD. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Collective hormonal profiles predict group performance.

    PubMed

    Akinola, Modupe; Page-Gould, Elizabeth; Mehta, Pranjal H; Lu, Jackson G

    2016-08-30

    Prior research has shown that an individual's hormonal profile can influence the individual's social standing within a group. We introduce a different construct-a collective hormonal profile-which describes a group's hormonal make-up. We test whether a group's collective hormonal profile is related to its performance. Analysis of 370 individuals randomly assigned to work in 74 groups of three to six individuals revealed that group-level concentrations of testosterone and cortisol interact to predict a group's standing across groups. Groups with a collective hormonal profile characterized by high testosterone and low cortisol exhibited the highest performance. These collective hormonal level results remained reliable when controlling for personality traits and group-level variability in hormones. These findings support the hypothesis that groups with a biological propensity toward status pursuit (high testosterone) coupled with reduced stress-axis activity (low cortisol) engage in profit-maximizing decision-making. The current work extends the dual-hormone hypothesis to the collective level and provides a neurobiological perspective on the factors that determine who rises to the top across, not just within, social hierarchies.

  16. The Krüppel-like factor 4 controls biosynthesis of thyrotropin-releasing hormone during hypothalamus development.

    PubMed

    Pérez-Monter, Carlos; Martínez-Armenta, Miriam; Miquelajauregui, Amaya; Furlan-Magaril, Mayra; Varela-Echavarría, Alfredo; Recillas-Targa, Félix; May, Víctor; Charli, Jean-Louis; Pérez-Martínez, Leonor

    2011-02-20

    Embryonic neurogenesis is controlled by the activation of specific genetic programs. In the hypothalamus, neuronal thyrotropin-releasing hormone (TRH) populations control important physiological process, including energy homeostasis and autonomic function; however, the genetic program leading to the TRH expression is poorly understood. Here, we show that the Klf4 gene, encoding the transcription factor Krüppel-like factor 4 (Klf4), was expressed in the rat hypothalamus during development and regulated Trh expression. In rat fetal hypothalamic cells Klf4 regulated Trh promoter activity through CACCC and GC motifs present on the Trh gene promoter. Accordingly, hypothalamic Trh expression was down-regulated at embryonic day 15 in the Klf4(-/-) mice resulting in diminished bioactive peptide levels. Although at the neonatal stage the Trh transcript levels of the Klf4(-/-) mice were normal, the reduction in peptide levels persisted. Thus, our data indicate that Klf4 plays a key role in the maturation of TRH expression in hypothalamic neurons. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. The Influence of Hormonal Factors on the Risk of Developing Cervical Cancer and Pre-Cancer: Results from the EPIC Cohort

    PubMed Central

    Roura, Esther; Travier, Noémie; Waterboer, Tim; de Sanjosé, Silvia; Bosch, F. Xavier; Pawlita, Michael; Pala, Valeria; Weiderpass, Elisabete; Margall, Núria; Dillner, Joakim; Gram, Inger T.; Tjønneland, Anne; Munk, Christian; Palli, Domenico; Khaw, Kay-Tee; Overvad, Kim; Clavel-Chapelon, Françoise; Mesrine, Sylvie; Fournier, Agnès; Fortner, Renée T.; Ose, Jennifer; Steffen, Annika; Trichopoulou, Antonia; Lagiou, Pagona; Orfanos, Philippos; Masala, Giovanna; Tumino, Rosario; Sacerdote, Carlotta; Polidoro, Silvia; Mattiello, Amalia; Lund, Eiliv; Peeters, Petra H.; Bueno-de-Mesquita, H. B(as).; Quirós, J. Ramón; Sánchez, María-José; Navarro, Carmen; Barricarte, Aurelio; Larrañaga, Nerea; Ekström, Johanna; Lindquist, David; Idahl, Annika; Travis, Ruth C.; Merritt, Melissa A.; Gunter, Marc J.; Rinaldi, Sabina; Tommasino, Massimo; Franceschi, Silvia; Riboli, Elio; Castellsagué, Xavier

    2016-01-01

    Background In addition to HPV, high parity and hormonal contraceptives have been associated with cervical cancer (CC). However, most of the evidence comes from retrospective case-control studies. The aim of this study is to prospectively evaluate associations between hormonal factors and risk of developing cervical intraepithelial neoplasia grade 3 (CIN3)/carcinoma in situ (CIS) and invasive cervical cancer (ICC). Methods and Findings We followed a cohort of 308,036 women recruited in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. At enrollment, participants completed a questionnaire and provided serum. After a 9-year median follow-up, 261 ICC and 804 CIN3/CIS cases were reported. In a nested case-control study, the sera from 609 cases and 1,218 matched controls were tested for L1 antibodies against HPV types 11,16,18,31,33,35,45,52,58, and antibodies against Chlamydia trachomatis and Human herpesvirus 2. Multivariate analyses were performed to estimate hazard ratios (HR), odds ratios (OR) and corresponding 95% confidence intervals (CI). The cohort analysis showed that number of full-term pregnancies was positively associated with CIN3/CIS risk (p-trend = 0.03). Duration of oral contraceptives use was associated with a significantly increased risk of both CIN3/CIS and ICC (HR = 1.6 and HR = 1.8 respectively for ≥15 years versus never use). Ever use of menopausal hormone therapy was associated with a reduced risk of ICC (HR = 0.5, 95%CI: 0.4–0.8). A non-significant reduced risk of ICC with ever use of intrauterine devices (IUD) was found in the nested case-control analysis (OR = 0.6). Analyses restricted to all cases and HPV seropositive controls yielded similar results, revealing a significant inverse association with IUD for combined CIN3/CIS and ICC (OR = 0.7). Conclusions Even though HPV is the necessary cause of CC, our results suggest that several hormonal factors are risk factors for cervical carcinogenesis. Adherence to

  18. A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck-a case report and review of the literature.

    PubMed

    Bonfig, Walter; Krude, Heiko; Schmidt, Heinrich

    2011-08-01

    The LHX3 LIM-homeodomain transcription factor gene is required for normal pituitary and motoneuron development. LHX3 mutations are associated with growth hormone, prolactin, gonadotropin, and TSH deficiency; abnormal pituitary morphology; and may be accompanied with limited neck rotation and sensorineural hearing loss. We report on a boy, who presented with hypoglycemia in the newborn period. He is the second child of healthy unrelated parents. Short neck, growth hormone deficiency, and central hypothyroidism were diagnosed at a general pediatric hospital. Growth hormone and levothyroxine treatment were started, and blood sugar normalized with this treatment. On cerebral MRI, the anterior pituitary gland was hypoplastic. Sensorineural hearing loss was diagnosed by auditory testing. During follow-up, six repeatedly low morning cortisol levels (<1 μg/dl) and low ACTH levels (<10 pg/ml) were documented, so ACTH deficiency had developed over time and therefore hydrocortisone replacement was started at 1.5 years of age. Mutation analysis of the LHX3 gene revealed a homozygous stop mutation in exon 2: c.229C>T (CGA > TGA), Arg77stop (R77X). A complete loss of function is assumed with this homozygous stop mutation. We report a novel LHX3 mutation, which is associated with combined pituitary hormone deficiency including ACTH deficiency, short neck, and sensorineural hearing loss. All patients with LHX3 defects should undergo longitudinal screening for ACTH deficiency, since corticotrope function may decline over time. All patients should have auditory testing to allow for regular speech development.

  19. Hormonal control of aging in rodents: The somatotropic axis

    PubMed Central

    Brown-Borg, Holly M.

    2015-01-01

    There is a growing body of literature focusing on the somatotropic axis and regulation of aging and longevity. Many of these reports derive data from multiple endocrine mutants, those that exhibit both elevated growth hormone (GH) and insulin-like growth factor I (IGF-1) or deficiencies in one or both of these hormones. In general, both spontaneous and genetically engineered GH and IGF-1 deficiencies have lead to small body size, delayed development of sexual maturation and age-related pathology, and life span extension. In contrast, characteristics of high circulating GH included larger body sizes, early puberty and reproductive senescence, increased cancer incidence and reduced life span when compared to wild-type animals with normal plasma hormone concentrations. This information, along with that found in multiple other species, implicates this anabolic pathway as the major regulator of longevity in animals. PMID:18674587

  20. Hormone Profiling in Plant Tissues.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  1. Thyroid profiles in a patient with resistance to thyroid hormone and episodes of thyrotoxicosis, including repeated painless thyroiditis.

    PubMed

    Taniyama, Matsuo; Otsuka, Fumiko; Tozaki, Teruaki; Ban, Yoshiyuki

    2013-07-01

    Thyrotoxic disease can be difficult to recognize in patients with resistance to thyroid hormone (RTH) because the clinical symptoms of thyrotoxicosis cannot be observed, and thyrotropin (TSH) may not be suppressed because of hormone resistance. Painless thyroiditis is a relatively common cause of thyrotoxicosis, but its occurrence in RTH has not been reported. We assessed the thyroid profile in a patient with RTH and episodes of thyrotoxicosis who experienced repeated painless thyroiditis. A 44-year-old Japanese woman with RTH, which was confirmed by the presence of a P453A mutation in the thyroid hormone receptor β (TRβ) gene, showed a slight elevation of the basal levels of thyroid hormones, which indicated that her pituitary RTH was mild. She experienced a slight exacerbation of hyperthyroxinemia concomitant with TSH suppression. A diagnosis of painless thyroiditis was made because of the absence of TSH receptor antibodies, low Tc-99m pertechnetate uptake by the thyroid gland, and transient suppression followed by a slight elevation of TSH following the elevation of thyroid hormones. The patient's complaints of general malaise and occasional palpitations did not change throughout the course of painless thyroiditis. Three years later, painless thyroiditis occurred again without any deterioration of the clinical manifestations. Mild pituitary RTH can be overcome by slight exacerbation of hyperthyroxinemia during mild thyrotoxicosis. When pituitary resistance is severe and TSH is not suppressed, thyrotoxicosis may be overlooked.

  2. Steroidogenic Factor 1, Pit-1, and Adrenocorticotropic Hormone: A Rational Starting Place for the Immunohistochemical Characterization of Pituitary Adenoma.

    PubMed

    McDonald, William C; Banerji, Nilanjana; McDonald, Kelsey N; Ho, Bridget; Macias, Virgilia; Kajdacsy-Balla, Andre

    2017-01-01

    -Pituitary adenoma classification is complex, and diagnostic strategies vary greatly from laboratory to laboratory. No optimal diagnostic algorithm has been defined. -To develop a panel of immunohistochemical (IHC) stains that provides the optimal combination of cost, accuracy, and ease of use. -We examined 136 pituitary adenomas with stains of steroidogenic factor 1 (SF-1), Pit-1, anterior pituitary hormones, cytokeratin CAM5.2, and α subunit of human chorionic gonadotropin. Immunohistochemical staining was scored using the Allred system. Adenomas were assigned to a gold standard class based on IHC results and available clinical and serologic information. Correlation and cluster analyses were used to develop an algorithm for parsimoniously classifying adenomas. -The algorithm entailed a 1- or 2-step process: (1) a screening step consisting of IHC stains for SF-1, Pit-1, and adrenocorticotropic hormone; and (2) when screening IHC pattern and clinical history were not clearly gonadotrophic (SF-1 positive only), corticotrophic (adrenocorticotropic hormone positive only), or IHC null cell (negative-screening IHC), we subsequently used IHC for prolactin, growth hormone, thyroid-stimulating hormone, and cytokeratin CAM5.2. -Comparison between diagnoses generated by our algorithm and the gold standard diagnoses showed excellent agreement. When compared with a commonly used panel using 6 IHC for anterior pituitary hormones plus IHC for a low-molecular-weight cytokeratin in certain tumors, our algorithm uses approximately one-third fewer IHC stains and detects gonadotroph adenomas with greater sensitivity.

  3. Broodstock management and hormonal manipulations of fish reproduction.

    PubMed

    Mylonas, Constantinos C; Fostier, Alexis; Zanuy, Silvia

    2010-02-01

    Control of reproductive function in captivity is essential for the sustainability of commercial aquaculture production, and in many fishes it can be achieved by manipulating photoperiod, water temperature or spawning substrate. The fish reproductive cycle is separated in the growth (gametogenesis) and maturation phase (oocyte maturation and spermiation), both controlled by the reproductive hormones of the brain, pituitary and gonad. Although the growth phase of reproductive development is concluded in captivity in most fishes-the major exemption being the freshwater eel (Anguilla spp.), oocyte maturation (OM) and ovulation in females, and spermiation in males may require exogenous hormonal therapies. In some fishes, these hormonal manipulations are used only as a management tool to enhance the efficiency of egg production and facilitate hatchery operations, but in others exogenous hormones are the only way to produce fertilized eggs reliably. Hormonal manipulations of reproductive function in cultured fishes have focused on the use of either exogenous luteinizing hormone (LH) preparations that act directly at the level of the gonad, or synthetic agonists of gonadotropin-releasing hormone (GnRHa) that act at the level of the pituitary to induce release of the endogenous LH stores, which, in turn act at the level of the gonad to induce steroidogenesis and the process of OM and spermiation. After hormonal induction of maturation, broodstock should spawn spontaneously in their rearing enclosures, however, the natural breeding behavior followed by spontaneous spawning may be lost in aquaculture conditions. Therefore, for many species it is also necessary to employ artificial gamete collection and fertilization. Finally, a common question in regards to hormonal therapies is their effect on gamete quality, compared to naturally maturing or spawning broodfish. The main factors that may have significant consequences on gamete quality-mainly on eggs-and should be considered

  4. Effects of Hypergravity Rearing on Growth Hormone and Insulin-Like Growth Factor in Rat Pups

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.

    2003-01-01

    Body weights of rat pups reared during exposure to hypergravity (hg) are significantly reduced relative to 1 g controls. In the present study, we examined in hg-reared rat pups two major contributors to growth and development, namely growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Beginning on Gestational day (G)11 of the rats 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g or 2.0-g. On Postnatal day (P)l0, plasma GH and IGF-1 were analyzed using radioimmunoassay (RIA). Both hormones were significantly elevated in hg pups relative to 1-g control pups. Together, these findings suggest that GH and IGF-1 are not primary determinants of reduced body weights observed in hg-reared pups. The significant elevations in pup GH and IGF-1 may be related to increased physical stimulation in hypergravity.

  5. Understanding the Broad Influence of Sex Hormones and Sex Differences in the Brain

    PubMed Central

    McEwen, Bruce S.; Milner, Teresa A.

    2016-01-01

    Sex hormones act throughout the entire brain of both males and females via both genomic and non-genomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes where they are associated with presynaptic terminals, mitochondria, spine apparatus, post-synaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects upon gene expression induce spine synapses, up- or down-regulate and alter the distribution of neurotransmitter receptors, regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not-yet-precisely-defined genetic factors including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, and upon functions not previously regarded as subject to such differences, indicates that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. PMID:27870427

  6. Nuclear hormone receptor coregulator: role in hormone action, metabolism, growth, and development.

    PubMed

    Mahajan, Muktar A; Samuels, Herbert H

    2005-06-01

    Nuclear hormone receptor coregulator (NRC) (also referred to as activating signal cointegrator-2, thyroid hormone receptor-binding protein, peroxisome proliferator activating receptor-interacting protein, and 250-kDa receptor associated protein) belongs to a growing class of nuclear cofactors widely known as coregulators or coactivators that are necessary for transcriptional activation of target genes. The NRC gene is also amplified and overexpressed in breast, colon, and lung cancers. NRC is a 2063-amino acid protein that harbors a potent N-terminal activation domain (AD1) and a second more centrally located activation domain (AD2) that is rich in Glu and Pro. Near AD2 is a receptor-interacting domain containing an LxxLL motif (LxxLL-1), which interacts with a wide variety of ligand-bound nuclear hormone receptors with high affinity. A second LxxLL motif (LxxLL-2) located in the C-terminal region of NRC is more restricted in its nuclear hormone receptor specificity. The intrinsic activation potential of NRC is regulated by a C-terminal serine, threonine, leucine-regulatory domain. The potential role of NRC as a cointegrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known transcriptional regulators including CBP/p300. Recent studies in mice indicate that deletion of both NRC alleles leads to embryonic lethality resulting from general growth retardation coupled with developmental defects in the heart, liver, brain, and placenta. NRC(-/-) mouse embryo fibroblasts spontaneously undergo apoptosis, indicating the importance of NRC as a prosurvival and antiapoptotic gene. Studies with 129S6 NRC(+/-) mice indicate that NRC is a pleiotropic regulator that is involved in growth, development, reproduction, metabolism, and wound healing.

  7. Activational effects of sex hormones on cognition in men.

    PubMed

    Ulubaev, A; Lee, D M; Purandare, N; Pendleton, N; Wu, F C W

    2009-11-01

    Changing world demographic patterns, such as the increasing number of older people and the growing prevalence of cognitive impairment, present serious obstacles to preserving the quality of life and productivity of individuals. The severity of dementia varies from subclinical, mild cognitive impairment to neurodegenerative diseases such as Alzheimer's. In normally ageing men, these age-related cognitive declines are accompanied by gradual but marked decreases in androgen levels and changes in other hormone profiles. While developmental effects of sex hormones on cognition in the pre- and early postnatal period have been demonstrated, their activational effects in later life are still a focus of contemporary research. Although there is a plethora of published research on the topic, results have been inconsistent with different studies reporting positive, negative or no effects of sex hormones on various aspects of mental agility. This review summarizes the evidence supporting the biological plausibility of the activational effects of sex hormones upon cognition and describes the mechanisms of their actions. It offers a comprehensive summary of the studies of the effects of sex hormones on fluid intelligence in men utilizing elements from the Cochrane Collaboration Guidelines for Reviews. The results of both observational (cross-sectional and longitudinal) and interventional studies published to date are collated in table form and further discussed in the text. Factors contributing to the difficulties in understanding the effects of sex hormones on cognition are also examined. Although there is convincing evidence that steroid sex hormones play an organizational role in brain development in men, the evidence for activational effects of sex hormones affecting cognition in healthy men throughout adult life remains inconsistent. To address this issue, a new multifactorial approach is proposed which takes into account the status of other elements of the sex hormones axis

  8. Thyroid Hormone, Cancer, and Apoptosis.

    PubMed

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-06-13

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  9. Hepatocyte nuclear factor 4alpha contributes to thyroid hormone homeostasis by cooperatively regulating the type 1 iodothyronine deiodinase gene with GATA4 and Kruppel-like transcription factor 9.

    PubMed

    Ohguchi, Hiroto; Tanaka, Toshiya; Uchida, Aoi; Magoori, Kenta; Kudo, Hiromi; Kim, Insook; Daigo, Kenji; Sakakibara, Iori; Okamura, Masashi; Harigae, Hideo; Sasaki, Takeshi; Osborne, Timothy F; Gonzalez, Frank J; Hamakubo, Takao; Kodama, Tatsuhiko; Sakai, Juro

    2008-06-01

    Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4alpha (HNF4alpha)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4alpha-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4alpha plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4alpha site (direct repeat 1 [TGGACAAAGGTGC]; HNF4alpha-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4alpha. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4alpha-RE. Furthermore, KLF9 functions together with HNF4alpha and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4alpha and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4alpha regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9.

  10. Effects of Calcium, Vitamin D, and Hormone Therapy on Cardiovascular Disease Risk Factors in the Women's Health Initiative: A Randomized Controlled Trial

    PubMed Central

    Schnatz, Peter F.; Jiang, Xuezhi; Aragaki, Aaron K.; Nudy, Matthew; O'Sullivan, David M.; Williams, Mark; LeBlanc, Erin S.; Martin, Lisa W.; Manson, JoAnn E.; Shikany, James M.; Johnson, Karen C.; Stefanick, Marcia L.; Payne, Martha E.; Cauley, Jane A.; Howard, Barbara V.; Robbins, John

    2016-01-01

    Objective To analyze the treatment effect of calcium + Vitamin D supplementation, hormone therapy, both, and neither on cardiovascular disease risk factors. Methods We conducted a prospective, randomized, double-blind, placebo controlled trial among Women's Health Initiative participants. The predefined primary outcome was low-density lipoprotein cholesterol (LDL-C). Results Between September 1993 to October 1998, a total of 68,132 women aged 50-79 were recruited and randomized to the WHI-Dietary Modification (WHI-DM) (n=48,835) and WHI-Hormone Therapy (WHI-HT) trials (n=27,347). Subsequently, 36,282 women from WHI-HT (16,089) and WHI-DM (n=25,210) trials were randomized in the WHI-calcium + Vitamin D (WHI-CaD) trial to 1,000 mg of elemental calcium carbonate plus 400 IU of vitamin D3 daily or placebo. Our study group included 1,521 women who participated in both the HT and CaD trials and were in the 6% subsample of trial participants with blood sample collections at baseline and years 1, 3, and 6. The average treatment effect with 95% confidence interval, for LDL-C, compared to placebo, was −1.6 ,(95th CI–5.5, 2.2) mg/dL for calcium + Vitamin D-alone, −9.0 (95th CI, −13.0, −5.1) mg/dL for hormone therapy alone, and −13.8 (95th CI,−17.8, −9.8) mg/dL for the combination. There was no evidence of a synergistic effect of calcium + Vitamin D + hormone therapy on LDL-C (p-value for interaction (p-int) = 0.26) except in those with low total intakes of vitamin D, for whom there was a significant synergistic effect on LDL (p-int = 0.03). Conclusion Reductions in LDL-C were greater among women randomized to both calcium + Vitamin D and hormone therapy than for those randomized to either intervention alone or to placebo. The treatment effect observed in the calcium + Vitamin D + hormone therapy combination group may be additive rather than synergistic. For clinicians and patients deciding to begin calcium + Vitamin D supplementation, current use of hormone

  11. The Role of Growth Hormone and Insulin-Like Growth Factor-I in the Liver.

    PubMed

    Takahashi, Yutaka

    2017-07-05

    Adult growth hormone deficiency (GHD) is characterized by metabolic abnormalities associated with visceral obesity, impaired quality of life, and increased mortality. Patients with adult GHD show increased prevalence of non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH), and growth hormone (GH) replacement therapy has been shown to improve these conditions. It has also been demonstrated that a decrease in the GH insulin-like growth factor-I (IGF-I) axis is closely associated with the progression of general NAFLD, suggesting a physiological role of these hormones for the maintenance of the liver. NASH histologically demonstrates inflammation, necrosis, and fibrosis, in addition to steatosis (and is a serious disease because it can progress to liver cirrhosis and hepatocellular carcinoma in a subset of cases). While fibrosis determines the prognosis of the patient, efficacious treatment for fibrosis is crucial; however, it has not yet been established. Recent studies have clarified the essential roles of GH and IGF-I in the liver. GH profoundly reduces visceral fat, which plays an important role in the development of NAFLD. Furthermore, GH directly reduces lipogenesis in the hepatocytes. IGF-I induces cellular senescence and inactivates hepatic stellate cells, therefore ameliorating fibrosis. IGF-I treatment has been shown to improve animal models of NASH and cirrhosis, suggesting potential clinical applications of IGF-I in these conditions. In this review, I will focus on the important roles of GH and IGF-I in the liver, their underlying mechanisms, and their potential therapeutic applications.

  12. Collective hormonal profiles predict group performance

    PubMed Central

    Akinola, Modupe; Page-Gould, Elizabeth; Mehta, Pranjal H.; Lu, Jackson G.

    2016-01-01

    Prior research has shown that an individual’s hormonal profile can influence the individual’s social standing within a group. We introduce a different construct—a collective hormonal profile—which describes a group’s hormonal make-up. We test whether a group’s collective hormonal profile is related to its performance. Analysis of 370 individuals randomly assigned to work in 74 groups of three to six individuals revealed that group-level concentrations of testosterone and cortisol interact to predict a group’s standing across groups. Groups with a collective hormonal profile characterized by high testosterone and low cortisol exhibited the highest performance. These collective hormonal level results remained reliable when controlling for personality traits and group-level variability in hormones. These findings support the hypothesis that groups with a biological propensity toward status pursuit (high testosterone) coupled with reduced stress-axis activity (low cortisol) engage in profit-maximizing decision-making. The current work extends the dual-hormone hypothesis to the collective level and provides a neurobiological perspective on the factors that determine who rises to the top across, not just within, social hierarchies. PMID:27528679

  13. Role of Growth Hormone in Breast Cancer.

    PubMed

    Subramani, Ramadevi; Nandy, Sushmita B; Pedroza, Diego A; Lakshmanaswamy, Rajkumar

    2017-06-01

    Breast cancer is one of the most common cancers diagnosed in women. Approximately two-thirds of all breast cancers diagnosed are classified as hormone dependent, which indicates that hormones are the key factors that drive the growth of these breast cancers. Ovarian and pituitary hormones play a major role in the growth and development of normal mammary glands and breast cancer. In particular, the effect of the ovarian hormone estrogen has received much attention in regard to breast cancer. Pituitary hormones prolactin and growth hormone have also been associated with breast cancer. Although the role of these pituitary hormones in breast cancers has been studied, it has not been investigated extensively. In this review, we attempt to compile basic information from most of the currently available literature to understand and demonstrate the significance of growth hormone in breast cancer. Based on the available literature, it is clear that growth hormone plays a significant role in the development, progression, and metastasis of breast cancer by influencing tumor angiogenesis, stemness, and chemoresistance. Copyright © 2017 Endocrine Society.

  14. The relationship between alkaline phosphatase and bone alkaline phosphatase activity and the growth hormone/insulin-like growth factor-1 axis and vitamin D status in children with growth hormone deficiency.

    PubMed

    Witkowska-Sędek, Ewelina; Stelmaszczyk-Emmel, Anna; Majcher, Anna; Demkow, Urszula; Pyrżak, Beata

    2018-04-13

    The relationships between bone turnover, the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis and vitamin D are complex, but still not fully explained. The GH/IGF-1 axis and vitamin D can mutually modulate each other's metabolism and influence the activation of cell proliferation, maturation, and mineralization as well as bone resorption. The aim of this study was to evaluate the reciprocal associations between bone formation markers [alkaline phosphatase (ALP), bone alkaline phosphatase (BALP)], the GH/IGF-1 axis and 25-hydroxyvitamin D [25(OH)D] in children with growth hormone deficiency at baseline and during recombinant human growth hormone (rhGH) therapy. ALP, BALP, 25(OH)D and IGF-1 levels were evaluated in 53 patients included in this prospective three-year study. ALP, BALP and IGF-1 increased during rhGH therapy. Baseline ALP activity correlated positively with baseline height velocity (HV). ALP and BALP activity at 12 months correlated positively with HV in the first year of therapy. We found positive correlations between ALP and IGF-1 at baseline and during the first year of therapy, between BALP activity at 12 months and rhGH dose in the first year of therapy, and between doses of cholecalciferol in the first year of rhGH therapy and early changes in BALP activity during rhGH therapy. Our results indicate that vitamin D supplementation enhances the effect of rhGH on bone formation process, which could improve the effects of rhGH therapy. ALP and BALP activity are useful in the early prediction of the effects of rhGH therapy, but their utility as long-term predictors seemed insufficient.

  15. Growth factors and hormones pro-peptides: the unexpected adventures of the BDNF prodomain.

    PubMed

    Zanin, Juan Pablo; Unsain, Nicolás; Anastasia, Agustin

    2017-05-01

    Most growth factors and hormones are synthesized as pre-pro-proteins which are processed to the biologically active mature protein. The pre- and prodomains are cleaved from the precursor protein in the secretory pathway or, in some cases, extracellularly. The canonical functions of these prodomains are to assist in folding and stabilization of the mature domain, to direct intra and extracellular localization, to facilitate storage, and to regulate bioavailability of their mature counterpart. Recently, exciting evidence has revealed that prodomains of certain growth factors, after cleaved from the precursor pro-protein, can act as independent active signaling molecules. In this review, we discuss the various classical functions of prodomains, and the biological consequences of these pro-peptides acting as ligands. We will focus our attention on the brain-derived neurotrophic factor prodomain (pBDNF), which has been recently described as a novel secreted ligand influencing neuronal morphology and physiology. © 2017 International Society for Neurochemistry.

  16. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations

    USDA-ARS?s Scientific Manuscript database

    The Growth Hormone (GH) Research Society (GRS) convened a workshop to address important issues regarding trial design, efficacy, and safety of long-acting growth hormone preparations (LAGH). A closed meeting of 55 international scientists with expertise in GH, including pediatric and adult endocrino...

  17. Does lifetime exposure to hormones predict pretreatment cognitive function in women before adjuvant therapy for breast cancer?

    PubMed Central

    Bender, Catherine M.; Sereika, Susan M.; Ryan, Christopher M.; Brufsky, Adam M.; Puhalla, Shannon; Berga, Sarah L.

    2013-01-01

    Objective Women with breast cancer have been found to have poorer cognitive function before the initiation of systemic adjuvant therapy than their age- and education-matched counterparts. The basis for this may partly include hormone exposure during the course of a woman’s life. Methods We compared cognitive function between postmenopausal women with breast cancer before the initiation of systemic adjuvant therapy and healthy age- and education-matched postmenopausal women and examined whether factors related to lifetime exposure to hormones predicted cognitive function before therapy. Results We found that, compared with healthy women, women with breast cancer had poorer memory (P = 0.05) and attention (P = 0.006). Controlling for the covariates age and estimated verbal intelligence, we found that factors related to greater lifetime hormone exposure (oral contraceptive use, greater years since menopause, and longer duration of hormone therapy) predicted cognitive function (executive function, verbal learning and memory, attention, psychomotor efficiency, and visual sustained attention) in women with and without breast cancer but did not explain the differences in cognitive function observed at pretreatment in women with breast cancer. Conclusions Other factors may explain the poorer pretreatment cognitive function in women with breast cancer, including persistent effects of surgical operation and anesthesia, sleep problems, and tumor-related factors. Additional studies are needed to explicate the basis of poorer pretherapy cognitive function in this population. PMID:23481123

  18. Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient Little mice

    PubMed Central

    Peroni, Cibele N.; Hayashida, Cesar Y.; Nascimento, Nancy; Longuini, Viviane C.; Toledo, Rodrigo A.; Bartolini, Paolo; Bowers, Cyril Y.; Toledo, Sergio P.A.

    2012-01-01

    OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a. PMID:22473409

  19. Candidate genes associated with testicular development, sperm quality, and hormone levels of inhibin, luteinizing hormone, and insulin-like growth factor 1 in Brahman bulls.

    PubMed

    Fortes, Marina R S; Reverter, Antonio; Hawken, Rachel J; Bolormaa, Sunduimijid; Lehnert, Sigrid A

    2012-09-01

    Bull fertility is an important target for genetic improvement, and early prediction using genetic markers is therefore a goal for livestock breeding. We performed genome-wide association studies to identify genes associated with fertility traits measured in young bulls. Data from 1118 Brahman bulls were collected for six traits: blood hormone levels of inhibin (IN) at 4 mo, luteinizing hormone (LH) following a gonadotropin-releasing hormone challenge at 4 mo, and insulin-like growth factor 1 (IGF1) at 6 mo, scrotal circumference (SC) at 12 mo, ability to produce sperm (Sperm) at 18 mo, and percentage of normal sperm (PNS) at 24 mo. All the bulls were genotyped with the BovineSNP50 chip. Sires and dams of the bull population (n = 304) were genotyped with the high-density chip (∼800 000 polymorphisms) to allow for imputation, thereby contributing detail on genome regions of interest. Polymorphism associations were discovered for all traits, except for Sperm. Chromosome 2 harbored polymorphisms associated with IN. For LH, associated polymorphisms were located in five different chromosomes. A region of chromosome 14 contained polymorphisms associated with IGF1 and SC. Regions of the X chromosome showed associations with SC and PNS. Associated polymorphisms yielded candidate genes in chromosomes 2, 14, and X. These findings will contribute to the development of genetic markers to help select cattle with improved fertility and will lead to better annotation of gene function in the context of reproductive biology.

  20. Associations of Breast Cancer Risk Factors with Premenopausal Sex Hormones in Women with Very Low Breast Cancer Risk

    PubMed Central

    Houghton, Lauren C.; Ganmaa, Davaasambuu; Rosenberg, Philip S.; Davaalkham, Dambadarjaa; Stanczyk, Frank Z.; Hoover, Robert N.; Troisi, Rebecca

    2016-01-01

    Breast cancer incidence rates are low but rising in urban Mongolia. We collected reproductive and lifestyle factor information and measured anthropometrics and serum sex steroid concentrations among 314 premenopausal women living in Ulaanbaatar, Mongolia. Mean differences in hormone concentrations by these factors were calculated using age-adjusted quadratic regression splines. Estrone and estradiol in college-educated women were, respectively, 18.2% (p = 0.03) and 23.6% (p = 0.03) lower than in high-school-educated women. Progesterone concentrations appeared 55.8% lower (p = 0.10) in women residing in modern housing compared with women living in traditional housing (gers), although this finding was not statistically significant. Testosterone concentrations were positively associated with adiposity and central fat distribution; 17.1% difference (p = 0.001) for highest vs. lowest quarter for body mass index and 15.1% difference (p = 0.005) for waist-to-height ratio. Estrogens were higher in the follicular phase of women who breastfed each child for shorter durations. A distinct hormonal profile was associated with an urban lifestyle in premenopausal, Mongol women. In particular, heavier, more-educated women living in urban dwellings had higher testosterone and lower estrogen and progesterone levels. Higher breast cancer incidence in urban compared with rural women suggest that the hormonal profile associated with a more traditional lifestyle may be protective among Mongol women. PMID:27809264

  1. Associations of Breast Cancer Risk Factors with Premenopausal Sex Hormones in Women with Very Low Breast Cancer Risk.

    PubMed

    Houghton, Lauren C; Ganmaa, Davaasambuu; Rosenberg, Philip S; Davaalkham, Dambadarjaa; Stanczyk, Frank Z; Hoover, Robert N; Troisi, Rebecca

    2016-10-31

    Breast cancer incidence rates are low but rising in urban Mongolia. We collected reproductive and lifestyle factor information and measured anthropometrics and serum sex steroid concentrations among 314 premenopausal women living in Ulaanbaatar, Mongolia. Mean differences in hormone concentrations by these factors were calculated using age-adjusted quadratic regression splines. Estrone and estradiol in college-educated women were, respectively, 18.2% ( p = 0.03) and 23.6% ( p = 0.03) lower than in high-school-educated women. Progesterone concentrations appeared 55.8% lower ( p = 0.10) in women residing in modern housing compared with women living in traditional housing (gers), although this finding was not statistically significant. Testosterone concentrations were positively associated with adiposity and central fat distribution % difference for highest vs. lowest quarter for body mass index (17.1% ( p = 0.001)) and waist-to-height ratio (15.1% ( p = 0.005)). Estrogens were higher in the follicular phase of women who breastfed each child for shorter durations. A distinct hormonal profile was associated with an urban lifestyle in premenopausal, Mongol women. In particular, heavier, more-educated women living in urban dwellings had higher testosterone and lower estrogen and progesterone levels. Higher breast cancer incidence in urban compared with rural women suggest that the hormonal profile associated with a more traditional lifestyle may be protective among Mongol women.

  2. Effect of hormonal and energy-related factors on plasma adiponectin in transition dairy cows.

    PubMed

    Krumm, C S; Giesy, S L; Caixeta, L S; Butler, W R; Sauerwein, H; Kim, J W; Boisclair, Y R

    2017-11-01

    In transition dairy cows, plasma levels of the insulin-sensitizing hormone adiponectin fall to a nadir at parturition and recover in early lactation. The transition period is also characterized by rapid changes in metabolic and hormonal factors implicated in other species as positive regulators of adiponectin production (i.e., negative energy balance, lipid mobilization) and others as negative regulators (i.e., reduced leptin and insulin and increased growth hormone and plasma fatty acids). To assess the role of onset of negative energy balance and lipid mobilization after parturition, dairy cows were either milked thrice daily (lactating) or never milked (nonlactating) for up to 4 wk after parturition. Plasma adiponectin was 21% higher across time in nonlactating than lactating cows. Moreover, nonlactating cows recovered plasma adiponectin at similar rates as lactating cows even though they failed to lose body condition. Next, we assessed the ability of individual hormones to alter plasma adiponectin in transition dairy cows. In the first experiment, dairy cows received a constant 96-h intravenous infusion of either saline or recombinant human leptin starting on d 8 of lactation. In the second experiment, dairy cows were studied in late pregnancy (LP, starting on prepartum d -31) and again in early lactation (EL, starting on d 7 postpartum) during a 66-h period of basal sampling followed by 48 h of hyperinsulinemic-euglycemia. In the third experiment, cows were studied either in LP (starting on d -40 prepartum) or EL (starting on d 7 postpartum) during a 3-h period of basal sampling followed by 5 d of bovine somatotropin treatment. Plasma adiponectin was reduced by an average of 21% in EL relative to LP in these experiments, but neither leptin, insulin, or growth hormone treatment affected adiponectin in LP or EL. Finally, the possibility that plasma fatty acids repress plasma adiponectin was evaluated by intravenous infusion of a lipid emulsion in nonpregnant

  3. Sex hormones in the modulation of irritable bowel syndrome.

    PubMed

    Mulak, Agata; Taché, Yvette; Larauche, Muriel

    2014-03-14

    Compelling evidence indicates sex and gender differences in epidemiology, symptomatology, pathophysiology, and treatment outcome in irritable bowel syndrome (IBS). Based on the female predominance as well as the correlation between IBS symptoms and hormonal status, several models have been proposed to examine the role of sex hormones in gastrointestinal (GI) function including differences in GI symptoms expression in distinct phases of the menstrual cycle, in pre- and post-menopausal women, during pregnancy, hormonal treatment or after oophorectomy. Sex hormones may influence peripheral and central regulatory mechanisms of the brain-gut axis involved in the pathophysiology of IBS contributing to the alterations in visceral sensitivity, motility, intestinal barrier function, and immune activation of intestinal mucosa. Sex differences in stress response of the hypothalamic-pituitary-adrenal axis and autonomic nervous system, neuroimmune interactions triggered by stress, as well as estrogen interactions with serotonin and corticotropin-releasing factor signaling systems are being increasingly recognized. A concept of "microgenderome" related to the potential role of sex hormone modulation of the gut microbiota is also emerging. Significant differences between IBS female and male patients regarding symptomatology and comorbidity with other chronic pain syndromes and psychiatric disorders, together with differences in efficacy of serotonergic medications in IBS patients confirm the necessity for more sex-tailored therapeutic approach in this disorder.

  4. Effects of recombinant human growth hormone in the treatment of dwarfism and relationship between IGF-1, IGFBP-3 and thyroid hormone

    PubMed Central

    Ren, Shanxiang; Nie, Yuxiang; Wang, Aihong

    2016-01-01

    The effects of recombinant human growth hormone (rhGH) in the treatment of dwarfism and the relationship between insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3 and thyroid hormone were examined in the present study. For this purpose, 66 patients diagnosed with dwarfism were selected retrospectively, with 36 cases of growth hormone deficiency (GHD) and 30 cases of idiopathic short stature (ISS). The therapeutic dose of GHD 0.10 IU/kg·day and ISS 0.15 IU/kg·day were injected subcutaneously every night before sleep until adulthood. The average follow-up was 5 years, and the results were evaluated and measured every 3 months, including height, BA, secondary test of growth hormone (GH peak), IGF-1, IGFBP-3 and thyroid hormone (FT3, FT4 and TSH). After treatment, the height, BA, GH peak, IGF-A and IGFBP-3 of the GHD group were all increased, and the differences were statistically significant (P<0.05), while FT3, FT4 and TSH had no significant change (P<0.05). The height and BA increased and the differences were statistically significant (P<0.05). The indexes of the ISS group were not statistically significant (P>0.05). The results of the Pearson-related analysis suggested that GH peak of the GHD group, IGF-1 and IGFBP-3 were positively associated with height (P<0.05), and had no relationship with BA (P<0.05). None of the above indexes of the ISS group had an obvious correlation with height and BA (P>0.05). rhGH was effective for GHD and ISS, with the GHD effect being positively associated with the GH peak, IGF-1 and IGFBP-3. ISS had no obvious relationship with GH peak, IGF-1 and IGFBP-3 although other influencing factors may be involved. PMID:28105090

  5. Effects of recombinant human growth hormone in the treatment of dwarfism and relationship between IGF-1, IGFBP-3 and thyroid hormone.

    PubMed

    Ren, Shanxiang; Nie, Yuxiang; Wang, Aihong

    2016-12-01

    The effects of recombinant human growth hormone (rhGH) in the treatment of dwarfism and the relationship between insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3 and thyroid hormone were examined in the present study. For this purpose, 66 patients diagnosed with dwarfism were selected retrospectively, with 36 cases of growth hormone deficiency (GHD) and 30 cases of idiopathic short stature (ISS). The therapeutic dose of GHD 0.10 IU/kg·day and ISS 0.15 IU/kg·day were injected subcutaneously every night before sleep until adulthood. The average follow-up was 5 years, and the results were evaluated and measured every 3 months, including height, BA, secondary test of growth hormone (GH peak), IGF-1, IGFBP-3 and thyroid hormone (FT3, FT4 and TSH). After treatment, the height, BA, GH peak, IGF-A and IGFBP-3 of the GHD group were all increased, and the differences were statistically significant (P<0.05), while FT3, FT4 and TSH had no significant change (P<0.05). The height and BA increased and the differences were statistically significant (P<0.05). The indexes of the ISS group were not statistically significant (P>0.05). The results of the Pearson-related analysis suggested that GH peak of the GHD group, IGF-1 and IGFBP-3 were positively associated with height (P<0.05), and had no relationship with BA (P<0.05). None of the above indexes of the ISS group had an obvious correlation with height and BA (P>0.05). rhGH was effective for GHD and ISS, with the GHD effect being positively associated with the GH peak, IGF-1 and IGFBP-3. ISS had no obvious relationship with GH peak, IGF-1 and IGFBP-3 although other influencing factors may be involved.

  6. Serum steroid hormones including 11-ketotestosterone, 11-ketoandrostenedione, and dihydroprogesterone in juvenile and adult bonnethead sharks, Sphyrna tiburo.

    PubMed

    Manire, C A; Rasmussen, L E; Gross, T S

    1999-10-01

    Previous studies in the placental viviparous bonnethead shark, Sphyrna tiburo, have correlated 17 beta-estradiol, progesterone, testosterone, and dihydrotestosterone with reproductive events in both males and females. However, several key reproductive events, including implantation, maintenance of pregnancy, and parturition, did not correlate with these four steroid hormones. Therefore, the present study investigated three steroid hormones, 11-ketotestosterone, 11-ketoandrostenedione, and dihydroprogesterone, which have demonstrably important roles in the reproductive cycles of teleosts. It was hypothesized that one or more of these three hormones would correlate with specific reproductive events in S. tiburo. Concurrently, developmental (growth and/or maturation) analyses of these three steroids plus 17 beta-estradiol, progesterone, testosterone, and dihydrotestosterone were investigated in juvenile bonnethead sharks. Serum dihydroprogesterone concentrations were highest in mature females and 11-ketotestosterone concentrations were highest in mature males. In mature females, 11-ketoandrostenedione levels were elevated from the time of mating, through six months of sperm storage and another four months of gestation. At parturition concentrations became significantly lower and remained lower until mating occurred again in another two to three months. Serum 11-ketotestosterone concentrations were the highest at implantation though not significant. In mature males, significantly elevated serum levels of dihydroprogesterone occurred in April and May, near the start of annual testicular development. During growth in males, testosterone and dihydrotestosterone increased progressively and in females, testosterone increased progressively. At maturity in males, significant increases occurred in testosterone and 11-ketotestosterone concentrations while, in females, dihydroprogesterone, 11-ketotestosterone, 17 beta-estradiol, progesterone, testosterone, and

  7. Association between asthma and female sex hormones.

    PubMed

    Baldaçara, Raquel Prudente de Carvalho; Silva, Ivaldo

    2017-01-01

    The relationship between sex hormones and asthma has been evaluated in several studies. The aim of this review article was to investigate the association between asthma and female sex hormones, under different conditions (premenstrual asthma, use of oral contraceptives, menopause, hormone replacement therapy and pregnancy). Narrative review of the medical literature, Universidade Federal do Tocantins (UFT) and Universidade Federal de São Paulo (Unifesp). We searched the CAPES journal portal, a Brazilian platform that provides access to articles in the MEDLINE, PubMed, SciELO, and LILACS databases. The following keywords were used based on Medical Subject Headings: asthma, sex hormones, women and use of oral contraceptives. The associations between sex hormones and asthma remain obscure. In adults, asthma is more common in women than in men. In addition, mortality due to asthma is significantly higher among females. The immune system is influenced by sex hormones: either because progesterone stimulates progesterone-induced blocking factor and Th2 cytokines or because contraceptives derived from progesterone and estrogen stimulate the transcription factor GATA-3. The associations between asthma and female sex hormones remain obscure. We speculate that estrogen fluctuations are responsible for asthma exacerbations that occur in women. Because of the anti-inflammatory action of estrogen, it decreases TNF-α production, interferon-γ expression and NK cell activity. We suggest that further studies that highlight the underlying physiopathological mechanisms contributing towards these interactions should be conducted.

  8. Evidence of insulin-like growth factor binding protein-3 proteolysis during growth hormone stimulation testing.

    PubMed

    Nwosu, Benjamin U; Soyka, Leslie A; Angelescu, Amanda; Lee, Mary M

    2011-01-01

    The ternary complex is composed of insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3 and acid labile subunit (ALS). Growth hormone (GH) promotes IGFBP-3 proteolysis to release free IGF-I, ALS, and IGFBP-3 fragments. Our aim was to determine whether elevated GH levels during GH stimulation testing would trigger IGFBP-3 proteolysis. This prospective study of 10 short prepubertal children (height standard deviation score -2.37 +/- 0.31) used arginine and GH releasing hormone stimulation to study dynamic changes in the ternary complex moieties. IGFBP-3 was measured in two assays: a radioimmunoassay (RIA) that detects both cleaved and intact IGFBP-3; and an immunochemiluminescence assay (ICMA) that detects only intact IGFBP-3. IGFBP-3 measured by RIA increased by 19% (p < 0.05), while IGFBP-3 measured by ICMA did not significantly increase (6.1%). The significant increase in IGFBP-3 measured by RIA, but not ICMA, provides evidence of IGFBP-3 proteolysis during acute GH stimulation.

  9. [Therapy with recombinant growth hormone].

    PubMed

    Wabitsch, Martin

    2007-06-07

    Therapy with recombinant growth hormone is currently approved for the indications growth hormone deficiency,Turner syndrome, chronic renal failure, small for gestational age (SGA) and Prader-Willi syndrome. Positive experience from on-going clinical studies (e.g. on obesity, type 2 diabetes, Crohn's disease) support an extended range of applications for recombinant growth hormone. However, growth hormone therapy is very expensive. On the other hand, biosimilars are already available that are significantly lower in price. During the coming years, research must show whether the efficacy and safety of biosimilars (including possible new indications) are equal to that of the established preparations.

  10. The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us?

    PubMed

    Figueira, Marília I; Cardoso, Henrique J; Correia, Sara; Maia, Cláudio J; Socorro, Sílvia

    2017-10-01

    The tyrosine kinase receptor c-KIT and its ligand, the stem cell factor (SCF) are expressed in several tissues of male and female reproductive tract, playing an important role in the regulation of basic biological processes. The activation of c-KIT by SCF controls, cell survival and death, cell differentiation and migration. Also, the SCF/c-KIT system has been implicated in carcinogenesis of reproductive tissues due to its altered expression pattern or overactivation in consequence of gain-of-functions mutations. Over the years, it has also been shown that hormones, the primary regulators of reproductive function and causative agents in the case of hormone-dependent cancers, are also able to control the SCF/c-KIT tissue levels. Therefore, it is liable to suppose that disturbed SCF/c-KIT expression driven by (de)regulated hormone actions can be a relevant step towards carcinogenesis. The present review describes the SCF and c-KIT expression in cancers of reproductive tissues, discussing the implications of the hormonal regulation of the SCF/c-KIT system in cancer development. Understanding the relationship between hormonal imbalance and the SCF/c-KIT expression and activity would be relevant in the context of novel therapeutic approaches in reproductive cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Physical examination prior to initiating hormonal contraception: a systematic review.

    PubMed

    Tepper, Naomi K; Curtis, Kathryn M; Steenland, Maria W; Marchbanks, Polly A

    2013-05-01

    Provision of contraception is often linked with physical examination, including clinical breast examination (CBE) and pelvic examination. This review was conducted to evaluate the evidence regarding outcomes among women with and without physical examination prior to initiating hormonal contraceptives. The PubMed database was searched from database inception through March 2012 for all peer-reviewed articles in any language concerning CBE and pelvic examination prior to initiating hormonal contraceptives. The quality of each study was assessed using the United States Preventive Services Task Force grading system. The search did not identify any evidence regarding outcomes among women screened versus not screened with CBE prior to initiation of hormonal contraceptives. The search identified two case-control studies of fair quality which compared women who did or did not undergo pelvic examination prior to initiating oral contraceptives (OCs) or depot medroxyprogesterone acetate (DMPA). No differences in risk factors for cervical neoplasia, incidence of sexually transmitted infections, incidence of abnormal Pap smears or incidence of abnormal wet mount findings were observed. Although women with breast cancer should not use hormonal contraceptives, there is little utility in screening prior to initiation, due to the low incidence of breast cancer and uncertain value of CBE among women of reproductive age. Two fair quality studies demonstrated no differences between women who did or did not undergo pelvic examination prior to initiating OCs or DMPA with respect to risk factors or clinical outcomes. In addition, pelvic examination is not likely to detect any conditions for which hormonal contraceptives would be unsafe. Published by Elsevier Inc.

  12. The Influence of Thyroid-Stimulating Hormone and Thyroid-Stimulating Hormone Receptor Antibodies on Osteoclastogenesis

    PubMed Central

    Morshed, Syed; Latif, Rauf; Zaidi, Mone; Davies, Terry F.

    2011-01-01

    Background We have shown that thyroid-stimulating hormone (TSH) has a direct inhibitory effect on osteoclastic bone resorption and that TSH receptor (TSHR) null mice display osteoporosis. To determine the stage of osteoclast development at which TSH may exert its effect, we examined the influence of TSH and agonist TSHR antibodies (TSHR-Ab) on osteoclast differentiation from murine embryonic stem (ES) cells to gain insight into bone remodeling in hyperthyroid Graves' disease. Methods Osteoclast differentiation was initiated in murine ES cell cultures through exposure to macrophage colony stimulation factor, receptor activator of nuclear factor кB ligand, vitamin D, and dexamethasone. Results Tartrate resistant acid phosphatase (TRAP)-positive osteoclasts formed in ∼12 days. This coincided with the expected downregulation of known markers of self renewal and pluripotency (including Oct4, Sox2, and REX1). Both TSH and TSHR-Abs inhibited osteoclastogenesis as evidenced by decreased development of TRAP-positive cells (∼40%–50% reduction, p = 0.0047), and by decreased expression, in a concentration-dependent manner, of osteoclast differentiation markers (including the calcitonin receptor, TRAP, cathepsin K, matrix metallo-proteinase-9, and carbonic anhydrase II). Similar data were obtained using serum immunoglobulin-Gs (IgGs) from patients with hyperthyroid Graves' disease and known TSHR-Abs. TSHR stimulators inhibited tumor necrosis factor-alpha mRNA and protein expression, but increased the expression of osteoprotegerin (OPG), an antiosteoclastogenic human soluble receptor activator of nuclear factor кB ligand receptor. Neutralizing antibody to OPG reversed the inhibitory effect of TSH on osteoclast differentiation evidencing that the TSH effect was at least in part mediated by increased OPG. Conclusion These data establish ES-derived osteoclastogenesis as an effective model system to study the regulation of osteoclast differentiation in early development

  13. Understanding the broad influence of sex hormones and sex differences in the brain.

    PubMed

    McEwen, Bruce S; Milner, Teresa A

    2017-01-02

    Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    PubMed

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  15. Analysis of plant hormone profiles in response to moderate dehydration stress.

    PubMed

    Urano, Kaoru; Maruyama, Kyonoshin; Jikumaru, Yusuke; Kamiya, Yuji; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2017-04-01

    Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA 4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  16. [Thyroid hormone metabolism and action].

    PubMed

    Köhrle, Josef

    2004-05-01

    Reductive deiodination of thyroid hormones at the phenolic and tyrosyl ring leads to the activation or inactivation of the thyromimetic activity inherent to thyroid hormones. Alterations in the activities of the three selenocysteine-containing enzymes, the iodothyronine deiodinases, have been reported during development and in specific cells and tissues of the adult organism. Furthermore, pathophysiological changes in the deiodinase expression lead to therapeutically relevant disturbances of the homeostasis of thyroid hormones. Metabolisation of thyroid hormones by conjugation of their phenolic 4'-OH group, their alanine side chain or cleavage of their diphenylether bridge also contributes to both local and systemic supply of thyromimetic activity or hormone degradation. Further components mediating the pleiotropic action of thyroid hormones in part include redundant T3 receptors, binding and transport proteins, metabolising enzymes and T3-regulated gene products. This is achieved in a finely tuned manner with multiple feedback control, malfunction or complete failure of individual components and networks involved in the iodothyronine metabolism and thyroid hormone action can thus be compensated or prevented.

  17. Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors.

    PubMed

    Li, Aixin; Zhou, Mingqi; Wei, Donghui; Chen, Hu; You, Chenjiang; Lin, Juan

    2017-01-01

    C-repeat binding factors (CBF) are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3 , were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq). Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA) and Salicylic acid (SA), as well as the signal sensing of Brassinolide (BR) and SA, were down-regulated, while genes associated with Gibberellin (GA) deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis . The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes.

  18. Transcriptome Profiling Reveals the Negative Regulation of Multiple Plant Hormone Signaling Pathways Elicited by Overexpression of C-Repeat Binding Factors

    PubMed Central

    Li, Aixin; Zhou, Mingqi; Wei, Donghui; Chen, Hu; You, Chenjiang; Lin, Juan

    2017-01-01

    C-repeat binding factors (CBF) are a subfamily of AP2 transcription factors that play critical roles in the regulation of plant cold tolerance and growth in low temperature. In the present work, we sought to perform a detailed investigation into global transcriptional regulation of plant hormone signaling associated genes in transgenic plants engineered with CBF genes. RNA samples from Arabidopsis thaliana plants overexpressing two CBF genes, CBF2 and CBF3, were subjected to Illumina HiSeq 2000 RNA sequencing (RNA-Seq). Our results showed that more than half of the hormone associated genes that were differentially expressed in CBF2 or CBF3 transgenic plants were related to auxin signal transduction and metabolism. Most of these alterations in gene expression could lead to repression of auxin signaling. Accordingly, the IAA content was significantly decreased in young tissues of plants overexpressing CBF2 and CBF3 compared with wild type. In addition, genes associated with the biosynthesis of Jasmonate (JA) and Salicylic acid (SA), as well as the signal sensing of Brassinolide (BR) and SA, were down-regulated, while genes associated with Gibberellin (GA) deactivation were up-regulated. In general, overexpression of CBF2 and CBF3 negatively affects multiple plant hormone signaling pathways in Arabidopsis. The transcriptome analysis using CBF2 and CBF3 transgenic plants provides novel and integrated insights into the interaction between CBFs and plant hormones, particularly the modulation of auxin signaling, which may contribute to the improvement of crop yields under abiotic stress via molecular engineering using CBF genes. PMID:28983312

  19. Expression of growth hormone and its transcription factor, Pit-1, in early bovine development.

    PubMed

    Joudrey, E M; Lechniak, D; Petrik, J; King, W A

    2003-03-01

    During bovine embryogenesis, bovine growth hormone (bGH) contributes to proliferation, differentiation, and modulation of embryo metabolism. Pituitary-specific transcription factor-1 (Pit-1) is a transcription factor that binds to promoters of GH, prolactin (PRL), and thyroid-stimulating hormone-beta (TSHbeta) encoding genes. A polymorphism in the fifth exon of the bGH gene resulting in a leucine (Leu) to valine (Val) substitution provides an Alu I restriction site when the Leu allele is present. To determine the onset of embryonic expression of the bGH gene, oocytes derived from ovaries homozygous for Leu alleles were fertilized in vitro with spermatozoa obtained from a Val homozygote. For each developmental stage examined, three separate pools of embryos composed of approximately 100 cell samples underwent RNA isolation, reverse transcription to cDNA, and amplification by nested PCR (nPCR). Bovine GH gene transcripts were identified at 2- to 4-cell (n = 162), 8- to 16-cell (n = 73), morulae (n = 51), and blastocyst (n = 15) stages. Likewise, transcripts for Pit-1 were detected at 2-cell (n = 125), 4-cell (n = 114), 8-cell (n = 56), 12-to-32-cell (n = 32), morulae (n = 68), and blastocyst (n = 14) stages. After digestion with Alu1, bGH cDNA was genotyped by restriction fragment length polymorphism (RFLP) analysis. Bovine GH mRNA was present in all pools of stages examined. Both Leu and Val alleles (maternal and paternal) were only detected in pools of embryos that had reached 8- to 16-cell stage. Results suggest that transcription of the bGH gene begins at the 8- to 16-cell stage in bovine embryos, possibly under control of the transcription factor, Pit-1, and that RFLP analysis of the bGH gene can be used to determine parental origin of transcripts in early embryonic development. Copyright 2003 Wiley-Liss, Inc.

  20. Hormones and the blood-brain barrier.

    PubMed

    Hampl, Richard; Bičíková, Marie; Sosvorová, Lucie

    2015-03-01

    Hormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.

  1. The FOXO transcription factor controls insect growth and development by regulating juvenile hormone degradation in the silkworm, Bombyx mori.

    PubMed

    Zeng, Baosheng; Huang, Yuping; Xu, Jun; Shiotsuki, Takahiro; Bai, Hua; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2017-07-14

    Forkhead box O (FOXO) functions as the terminal transcription factor of the insulin signaling pathway and regulates multiple physiological processes in many organisms, including lifespan in insects. However, how FOXO interacts with hormone signaling to modulate insect growth and development is largely unknown. Here, using the transgene-based CRISPR/Cas9 system, we generated and characterized mutants of the silkworm Bombyx mori FOXO ( BmFOXO ) to elucidate its physiological functions during development of this lepidopteran insect. The BmFOXO mutant (FOXO-M) exhibited growth delays from the first larval stage and showed precocious metamorphosis, pupating at the end of the fourth instar (trimolter) rather than at the end of the fifth instar as in the wild-type (WT) animals. However, different from previous reports on precocious metamorphosis caused by juvenile hormone (JH) deficiency in silkworm mutants, the total developmental time of the larval period in the FOXO-M was comparable with that of the WT. Exogenous application of 20-hydroxyecdysone (20E) or of the JH analog rescued the trimolter phenotype. RNA-seq and gene expression analyses indicated that genes involved in JH degradation but not in JH biosynthesis were up-regulated in the FOXO-M compared with the WT animals. Moreover, we identified several FOXO-binding sites in the promoter of genes coding for JH-degradation enzymes. These results suggest that FOXO regulates JH degradation rather than its biosynthesis, which further modulates hormone homeostasis to control growth and development in B. mori In conclusion, we have uncovered a pivotal role for FOXO in regulating JH signaling to control insect development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Hormonal and Local Regulation of Bone Formation.

    ERIC Educational Resources Information Center

    Canalis, Ernesto

    1985-01-01

    Reviews effects of hormones, systemic factors, and local regulators on bone formation. Identifies and explains the impact on bone growth of several hormones as well as the components of systemic and local systems. Concentrates on bone collagen and DNA synthesis. (Physicians may earn continuing education credit by completing an appended test). (ML)

  3. The Physiology of Growth Hormone-Releasing Hormone (GHRH) in Breast Cancer

    DTIC Science & Technology

    2003-06-01

    production of growth hormone-releasing factor by carcinoid and pancreatic islet tumors associated with acromegaly . Prog Clin Biol Res 1981; 74:259-271. (16...promotion of apop- cause of acromegaly . More recently, expression has been tosis. These results indicate that disruption of enaog- demonstrated in tumors

  4. Primary growth hormone insensitivity (Laron syndrome) and acquired hypothyroidism: a case report

    PubMed Central

    2011-01-01

    Introduction Primary growth hormone resistance or growth hormone insensitivity syndrome, also known as Laron syndrome, is a hereditary disease caused by deletions or different types of mutations in the growth hormone receptor gene or by post-receptor defects. This disorder is characterized by a clinical appearance of severe growth hormone deficiency with high levels of circulating growth hormone in contrast to low serum insulin-like growth factor 1 values. Case presentation We report the case of a 15-year-old Caucasian girl who was diagnosed with Silver-Russell syndrome at the age of four and a half years. Recombinant growth hormone was administered for 18 months without an appropriate increase in growth velocity. At the age of seven years, her serum growth hormone levels were high, and an insulin-like growth factor 1 generation test did not increase insulin-like growth factor 1 levels (baseline insulin-like growth factor 1 levels, 52 μg/L; reference range, 75 μg/L to 365 μg/L; and peak, 76 μg/L and 50 μg/L after 12 and 84 hours, respectively, from baseline). The genetic analysis showed that the patient was homozygous for the R217X mutation in the growth hormone receptor gene, which is characteristic of Laron syndrome. On the basis of these results, the diagnosis of primary growth hormone insensitivity syndrome was made, and recombinant insulin-like growth factor 1 therapy was initiated. The patient's treatment was well tolerated, but unexplained central hypothyroidism occurred at the age of 12.9 years. At the age of 15 years, when the patient's sexual development was almost completed and her menstrual cycle occurred irregularly, her height was 129.8 cm, which is 4.71 standard deviations below the median for normal girls her age. Conclusion The most important functional tests for the diagnosis of growth hormone insensitivity are the insulin-like growth factor 1 generation test and genetic analysis. Currently, the only effective treatment is daily

  5. Primary growth hormone insensitivity (Laron syndrome) and acquired hypothyroidism: a case report.

    PubMed

    Cotta, Oana R; Santarpia, Libero; Curtò, Lorenzo; Aimaretti, Gianluca; Corneli, Ginevra; Trimarchi, Francesco; Cannavò, Salvatore

    2011-07-11

    Primary growth hormone resistance or growth hormone insensitivity syndrome, also known as Laron syndrome, is a hereditary disease caused by deletions or different types of mutations in the growth hormone receptor gene or by post-receptor defects. This disorder is characterized by a clinical appearance of severe growth hormone deficiency with high levels of circulating growth hormone in contrast to low serum insulin-like growth factor 1 values. We report the case of a 15-year-old Caucasian girl who was diagnosed with Silver-Russell syndrome at the age of four and a half years. Recombinant growth hormone was administered for 18 months without an appropriate increase in growth velocity. At the age of seven years, her serum growth hormone levels were high, and an insulin-like growth factor 1 generation test did not increase insulin-like growth factor 1 levels (baseline insulin-like growth factor 1 levels, 52 μg/L; reference range, 75 μg/L to 365 μg/L; and peak, 76 μg/L and 50 μg/L after 12 and 84 hours, respectively, from baseline). The genetic analysis showed that the patient was homozygous for the R217X mutation in the growth hormone receptor gene, which is characteristic of Laron syndrome. On the basis of these results, the diagnosis of primary growth hormone insensitivity syndrome was made, and recombinant insulin-like growth factor 1 therapy was initiated. The patient's treatment was well tolerated, but unexplained central hypothyroidism occurred at the age of 12.9 years. At the age of 15 years, when the patient's sexual development was almost completed and her menstrual cycle occurred irregularly, her height was 129.8 cm, which is 4.71 standard deviations below the median for normal girls her age. The most important functional tests for the diagnosis of growth hormone insensitivity are the insulin-like growth factor 1 generation test and genetic analysis. Currently, the only effective treatment is daily administration of recombinant insulin-like growth

  6. Side effects resulting from the use of growth hormone and insulin-like growth factor-I as combined therapy to frail elderly patients.

    PubMed

    Sullivan, D H; Carter, W J; Warr, W R; Williams, L H

    1998-05-01

    The objective of this study was to examine the relationship between serum IGF-I concentration and the incidence of side effects of therapy with recombinant human growth hormone (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I). Thirteen high-risk, undernourished elderly males were started on a 15-day course of rhGH and rhIGF-I by subcutaneous injection. The dose of rhGH was held constant at .0125 mg/kg/day, whereas the dose of rhIGF-I was increased in a stepwise fashion from 10 micrograms/kg to the targeted dose of 40 micrograms/kg twice a day. Nine subjects completed the protocol and reached the full target dose of both hormones. Fluid retention, gynecomastia, and orthostatic hypotension were the most common complications. The hormone injections increased the serum concentration of IGF-I (from 72.7 +/- 40.9 to 483.7 +/- 251.4 eta g/ml, p = .001) and IGFBP-3 (from 1.82 +/- 0.66 to 2.72 +/- 1.18 mg/L, p = .012), and decreased serum albumin (from 34.3 +/- 5.5 to 31.4 +/- 4.6 g/L, p = .009). The magnitude of the initial increase in the serum IGF-I concentration was a powerful risk factor for severe orthostatic hypotension, diffuse myalgias, and drug-induced hepatitis. There was no association between the serum IGF-I concentration and fluid retention or gynecomastia. Treatment of the undernourished frail elderly with the anabolic agents rhGH and rhIGF-I at the specified dosages may produce undesirable side effects including fluid retention, gynecomastia, and orthostatic hypotension. Although these agents hold therapeutic promise, they must be used with caution in this high-risk population.

  7. The role of hormones in muscle hypertrophy.

    PubMed

    Fink, Julius; Schoenfeld, Brad Jon; Nakazato, Koichi

    2018-02-01

    Anabolic-androgenic steroids (AAS) and other hormones such as growth hormone (GH) and insulin-like growth factor-1 (IGF-1) have been shown to increase muscle mass in patients suffering from various diseases related to muscle atrophy. Despite known side-effects associated with supraphysiologic doses of such drugs, their anabolic effects have led to their widespread use and abuse by bodybuilders and athletes such as strength athletes seeking to improve performance and muscle mass. On the other hand, resistance training (RT) has also been shown to induce significant endogenous hormonal (testosterone (T), GH, IGF-1) elevations. Therefore, some bodybuilders employ RT protocols designed to elevate hormonal levels in order to maximize anabolic responses. In this article, we reviewed current RT protocol outcomes with and without performance enhancing drug usage. Acute RT-induced hormonal elevations seem not to be directly correlated with muscle growth. On the other hand, supplementation with AAS and other hormones might lead to supraphysiological muscle hypertrophy, especially when different compounds are combined.

  8. Adrenal Hormones in Common Bottlenose Dolphins (Tursiops truncatus): Influential Factors and Reference Intervals

    PubMed Central

    Hart, Leslie B.; Wells, Randall S.; Kellar, Nick; Balmer, Brian C.; Hohn, Aleta A.; Lamb, Stephen V.; Rowles, Teri; Zolman, Eric S.; Schwacke, Lori H.

    2015-01-01

    Inshore common bottlenose dolphins (Tursiops truncatus) are exposed to a broad spectrum of natural and anthropogenic stressors. In response to these stressors, the mammalian adrenal gland releases hormones such as cortisol and aldosterone to maintain physiological and biochemical homeostasis. Consequently, adrenal gland dysfunction results in disruption of hormone secretion and an inappropriate stress response. Our objective herein was to develop diagnostic reference intervals (RIs) for adrenal hormones commonly associated with the stress response (i.e., cortisol, aldosterone) that account for the influence of intrinsic (e.g., age, sex) and extrinsic (e.g., time) factors. Ultimately, these reference intervals will be used to gauge an individual’s response to chase-capture stress and could indicate adrenal abnormalities. Linear mixed models (LMMs) were used to evaluate demographic and sampling factors contributing to differences in serum cortisol and aldosterone concentrations among bottlenose dolphins sampled in Sarasota Bay, Florida, USA (2000–2012). Serum cortisol concentrations were significantly associated with elapsed time from initial stimulation to sample collection (p<0.05), and RIs were constructed using nonparametric methods based on elapsed sampling time for dolphins sampled in less than 30 minutes following net deployment (95% RI: 0.91–4.21 µg/dL) and following biological sampling aboard a research vessel (95% RI: 2.32–6.68 µg/dL). To examine the applicability of the pre-sampling cortisol RI across multiple estuarine stocks, data from three additional southeast U.S. sites were compared, revealing that all of the dolphins sampled from the other sites (N = 34) had cortisol concentrations within the 95th percentile RI. Significant associations between serum concentrations of aldosterone and variables reported in previous studies (i.e., age, elapsed sampling time) were not observed in the current project (p<0.05). Also, approximately 16% of

  9. Adrenal Hormones in Common Bottlenose Dolphins (Tursiops truncatus): Influential Factors and Reference Intervals.

    PubMed

    Hart, Leslie B; Wells, Randall S; Kellar, Nick; Balmer, Brian C; Hohn, Aleta A; Lamb, Stephen V; Rowles, Teri; Zolman, Eric S; Schwacke, Lori H

    2015-01-01

    Inshore common bottlenose dolphins (Tursiops truncatus) are exposed to a broad spectrum of natural and anthropogenic stressors. In response to these stressors, the mammalian adrenal gland releases hormones such as cortisol and aldosterone to maintain physiological and biochemical homeostasis. Consequently, adrenal gland dysfunction results in disruption of hormone secretion and an inappropriate stress response. Our objective herein was to develop diagnostic reference intervals (RIs) for adrenal hormones commonly associated with the stress response (i.e., cortisol, aldosterone) that account for the influence of intrinsic (e.g., age, sex) and extrinsic (e.g., time) factors. Ultimately, these reference intervals will be used to gauge an individual's response to chase-capture stress and could indicate adrenal abnormalities. Linear mixed models (LMMs) were used to evaluate demographic and sampling factors contributing to differences in serum cortisol and aldosterone concentrations among bottlenose dolphins sampled in Sarasota Bay, Florida, USA (2000-2012). Serum cortisol concentrations were significantly associated with elapsed time from initial stimulation to sample collection (p<0.05), and RIs were constructed using nonparametric methods based on elapsed sampling time for dolphins sampled in less than 30 minutes following net deployment (95% RI: 0.91-4.21 µg/dL) and following biological sampling aboard a research vessel (95% RI: 2.32-6.68 µg/dL). To examine the applicability of the pre-sampling cortisol RI across multiple estuarine stocks, data from three additional southeast U.S. sites were compared, revealing that all of the dolphins sampled from the other sites (N = 34) had cortisol concentrations within the 95th percentile RI. Significant associations between serum concentrations of aldosterone and variables reported in previous studies (i.e., age, elapsed sampling time) were not observed in the current project (p<0.05). Also, approximately 16% of Sarasota Bay

  10. Influence of thyroid hormones and transforming growth factor-β1 on cystatin C concentrations.

    PubMed

    Kotajima, N; Yanagawa, Y; Aoki, T; Tsunekawa, K; Morimura, T; Ogiwara, T; Nara, M; Murakami, M

    2010-01-01

    Serum cystatin C concentrations are reported to increase in the hyperthyroid state. Serum concentrations of cystatin C and transforming growth factor-β1 (TGF-β1) were measured in patients with thyroid dysfunction, and the effects of 3,5,3'-tri-iodothyronine (T(3)) and TGF-β1 on cystatin C production in human hepatoblastoma (Hep G2) cells were studied. Serum concentrations of cystatin C and TGF-β1 were significantly higher in patients with Graves' disease compared with control subjects. Significantly positive correlations were observed between thyroid hormones and cystatin C, thyroid hormones and TGF-β1, and TGF-β1 and cystatin C in patients with thyroid dysfunction. Serum concentrations of cystatin C and TGF-β1 decreased after treatment for hyperthyroidism. Cystatin C mRNA levels and cystatin C secretion were increased by T(3) and TGF-β1 in cultured Hep G2 cells. These results suggest that serum cystatin C concentrations increase in patients with hyperthyroidism. The mechanisms for this may involve elevation of serum TGF-β1 levels and the stimulatory effects of T(3) and TGF-β1 on cystatin C production.

  11. Steroid hormones in bluegill, a species with male alternative reproductive tactics including female mimicry.

    PubMed

    Knapp, Rosemary; Neff, Bryan D

    2007-12-22

    The proximate mechanisms underlying the evolution and maintenance of within-sex variation in mating behaviour are still poorly understood. Species characterized by alternative reproductive tactics provide ideal opportunities to investigate such mechanisms. Bluegill (Lepomis macrochirus) are noteworthy in this regard because they exhibit two distinct cuckolder (parasitic) morphs (called sneaker and satellite) in addition to the parental males that court females. Here we confirm previous findings that spawning cuckolder and parental males have significantly different levels of testosterone and 11-ketotestosterone. We also report, for the first time, that oestradiol and cortisol levels are higher in cuckolders than in parental males. The two cuckolder morphs did not differ in average levels of any of the four hormones. However, among satellite males which mimic females in appearance and behaviour, there was a strong negative relationship between oestradiol levels and body length, a surrogate for age. This finding suggests that for satellite males, oestradiol dependency of mating behaviour decreases with increasing mating experience. Although such decreased hormone dependence of mating behaviour has been reported in other taxa, our data represent the first suggestion of the relationship in fishes.

  12. Sex Hormones and Healthy Psychological Aging in Women

    PubMed Central

    Navarro-Pardo, Esperanza; Holland, Carol A.; Cano, Antonio

    2018-01-01

    Besides their key role in reproduction, estrogens have effects in several organs in the body, as confirmed by the identification of estrogen receptors (ER) in multiple tissues. Experimental evidence has shown that estrogens have significant impacts on the central nervous system (CNS), and a key question is to what extent the fall in estrogen levels in the blood that occurs with increasing age, particularly around and following the menopause, has an impact on the cognitive function and psychological health of women, specifically regarding mood. This review will consider direct effects of menopausal changes in estrogens on the brain, including cognitive function and mood. Secondary pathways whereby health factors affected by changes in estrogens may interact with CNS functions, such as cardiovascular factors, will be reviewed as well insofar as they also have an impact on cognitive function. Finally, because decline in estrogens may induce changes in the CNS, there is interest in clarifying whether hormone therapy may offer a beneficial balance and the impact of hormone therapy on cognition will also be considered. PMID:29375366

  13. Cellular organization of pre-mRNA splicing factors in several tissues. Changes in the uterus by hormone action.

    PubMed

    George-Téllez, R; Segura-Valdez, M L; González-Santos, L; Jiménez-García, L F

    2002-05-01

    In the mammalian cell nucleus, splicing factors are distributed in nuclear domains known as speckles or splicing factor compartments (SFCs). In cultured cells, these domains are dynamic and reflect transcriptional and splicing activities. We used immunofluorescence and confocal microscopy to monitor whether splicing factors in differentiated cells display similar features. Speckled patterns are observed in rat hepatocytes, beta-cells, bronchial and intestine epithelia and also in three cell types of the uterus. Moreover, the number, distribution and sizes of the speckles vary among them. In addition, we studied variations in the circular form (shape) of speckles in uterine cells that are transcriptionally modified by a hormone action. During proestrus of the estral cycle, speckles are irregular in shape while in diestrus I they are circular. Experimentally, in castrated rats luminal epithelial cells show a pattern where speckles are dramatically rounded, but they recover their irregular shape rapidly after an injection of estradiol. The same results were observed in muscle and gland epithelial cells of the uterus. We concluded that different speckled patterns are present in various cells types in differentiated tissues and that these patterns change in the uterus depending upon the presence or absence of hormones such as estradiol.

  14. Is the iron regulatory hormone hepcidin a risk factor for alcoholic liver disease?

    PubMed Central

    Harrison-Findik, Duygu Dee

    2009-01-01

    Despite heavy consumption over a long period of time, only a small number of alcoholics develop alcoholic liver disease. This alludes to the possibility that other factors, besides alcohol, may be involved in the progression of the disease. Over the years, many such factors have indeed been identified, including iron. Despite being crucial for various important biological processes, iron can also be harmful due to its ability to catalyze Fenton chemistry. Alcohol and iron have been shown to interact synergistically to cause liver injury. Iron-mediated cell signaling has been reported to be involved in the pathogenesis of experimental alcoholic liver disease. Hepcidin is an iron-regulatory hormone synthesized by the liver, which plays a pivotal role in iron homeostasis. Both acute and chronic alcohol exposure suppress hepcidin expression in the liver. The sera of patients with alcoholic liver disease, particularly those exhibiting higher serum iron indices, have also been reported to display reduced prohepcidin levels. Alcohol-mediated oxidative stress is involved in the inhibition of hepcidin promoter activity and transcription in the liver. This in turn leads to an increase in intestinal iron transport and liver iron storage. Hepcidin is expressed primarily in hepatocytes. It is noteworthy that both hepatocytes and Kupffer cells are involved in the progression of alcoholic liver disease. However, the activation of Kupffer cells and TNF-α signaling has been reported not to be involved in the down-regulation of hepcidin expression by alcohol in the liver. Alcohol acts within the parenchymal cells of the liver to suppress the synthesis of hepcidin. Due to its crucial role in the regulation of body iron stores, hepcidin may act as a secondary risk factor in the progression of alcoholic liver disease. The clarification of the mechanisms by which alcohol disrupts iron homeostasis will allow for further understanding of the pathogenesis of alcoholic liver disease. PMID

  15. Outcome after discontinuing anticoagulant therapy in women with venous thromboembolism during hormonal use.

    PubMed

    Blanco-Molina, Ángeles; Trujillo-Santos, Javier; Pesavento, Raffaele; Rosa, Vladimir; Falgá, Conxita; Tolosa, Carles; Mazzolai, Lucia; Sampériz, Ángel; Duce, Rita; Monreal, Manuel

    2017-03-01

    Whether women developing venous thromboembolism (VTE) while using hormonal therapy should be classified as having "unprovoked" or "provoked" VTE is controversial. We used the RIETE (Registro Informatizado Enfermedad TromboEmbólica) database to compare the rate of symptomatic VTE recurrences after discontinuing anticoagulation in 3 subgroups of women aged ≤50years without cancer, pregnancy or puerperium: (1) those with hormonal therapy and no additional risk factors (hormonal users only); (2) those with unprovoked VTE; and (3) those with additional risk factors, with or without hormonal therapy. As of March 2016, 1513 women had been followed-up for at least one month after discontinuing anticoagulation. Of these, 654 (43%) were hormonal users only, 390 (26%) had unprovoked VTE and 469 (31%) had transient risk factors with or without hormonal therapy. After discontinuing anticoagulation, the rate of VTE recurrences in women with hormonal use only (2.44 per 100 patient-years; 95% CI: 1.53-3.69) was significantly lower than in those with unprovoked VTE (6.03; 95% CI: 3.97-8.77) and similar to those with transient risk factors (2.58; 95% CI: 1.50-4.13). Interestingly, the rate of VTE recurrences presenting as pulmonary embolism in women with hormonal use only (0.55 per 100 patient-years; 95% CI: 0.18-1.29) was similar to those with transient risk factors (0.46; 95% CI: 0.09-1.33) and 4-fold lower than in women with unprovoked VTE (2.23; 95% CI: 1.07-4.10). After discontinuing anticoagulation, the rate of VTE recurrences in hormonal users only was significantly lower than in women with unprovoked VTE and similar to the rate in women with additional risk factors. © 2017 Elsevier Ltd. All rights reserved.

  16. Hormonal causes of recurrent pregnancy loss (RPL).

    PubMed

    Pluchino, Nicola; Drakopoulos, Panagiotis; Wenger, Jean Marie; Petignat, Patrick; Streuli, Isabelle; Genazzani, Andrea Riccardo

    2014-01-01

    Endocrine disorders play a major role in approximately 8% to 12% of recurrent pregnancy loss (RPL). Indeed, the local hormonal milieu is crucial in both embryo attachment and early pregnancy. Endocrine abnormalities, including thyroid disorders, luteal phase defects, polycystic ovary syndrome, hyperprolactinaemia and diabetes have to be evaluated in any case of RPL. Moreover, elevated androgen levels and some endocrinological aspects of endometriosis are also factors contributing to RPL. In the present article, we review the significance of endocrine disease on RPL.

  17. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  18. Stress and hormones

    PubMed Central

    Ranabir, Salam; Reetu, K.

    2011-01-01

    In the modern environment one is exposed to various stressful conditions. Stress can lead to changes in the serum level of many hormones including glucocorticoids, catecholamines, growth hormone and prolactin. Some of these changes are necessary for the fight or flight response to protect oneself. Some of these stressful responses can lead to endocrine disorders like Graves’ disease, gonadal dysfunction, psychosexual dwarfism and obesity. Stress can also alter the clinical status of many preexisting endocrine disorders such as precipitation of adrenal crisis and thyroid storm. PMID:21584161

  19. The role of the Wnt signaling pathway in incretin hormone production and function

    PubMed Central

    Chiang, Yu-ting A.; Ip, Wilfred; Jin, Tianru

    2012-01-01

    Glucose metabolism is tightly controlled by multiple hormones and neurotransmitters in response to nutritional, environmental, and emotional changes. In addition to insulin and glucagon produced by pancreatic islets, two incretin hormones, namely glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP, also known as glucose-dependent insulinotropic peptide), also play important roles in blood glucose homeostasis. The incretin hormones mainly exert their regulatory effects via their corresponding receptors, which are expressed in pancreatic islets as well as many other extra-pancreatic organs. Recent studies have shown that the genes which encode these two incretin hormones can be regulated by the effectors of the Wnt signaling pathway, including TCF7L2, a transcription factor identified recently by extensive genome wide association studies as an important type 2 diabetes risk gene. Interestingly, TCF7L2 and β-catenin (β-cat), another effector of Wnt signaling pathway, may also mediate the function of the incretin hormones as well as the expression of their receptors in pancreatic β-cells. In this review, we have introduced the incretin hormones and the Wnt signaling pathway, summarized recent findings in the field, and provided our perspectives. PMID:22934027

  20. Thyroid hormone accelerates the differentiation of adult hippocampal progenitors.

    PubMed

    Kapoor, R; Desouza, L A; Nanavaty, I N; Kernie, S G; Vaidya, V A

    2012-09-01

    Disrupted thyroid hormone function evokes severe physiological consequences in the immature brain. In adulthood, although clinical reports document an effect of thyroid hormone status on mood and cognition, the molecular and cellular changes underlying these behavioural effects are poorly understood. More recently, the subtle effects of thyroid hormone on structural plasticity in the mature brain, in particular on adult hippocampal neurogenesis, have come to be appreciated. However, the specific stages of adult hippocampal progenitor development that are sensitive to thyroid hormone are not defined. Using nestin-green fluorescent protein reporter mice, we demonstrate that thyroid hormone mediates its effects on hippocampal neurogenesis by influencing Type 2b and Type 3 progenitors, although it does not alter proliferation of either the Type 1 quiescent progenitor or the Type 2a amplifying neural progenitor. Thyroid hormone increases the number of doublecortin (DCX)-positive Type 3 progenitors, and accelerates neuronal differentiation into both DCX-positive immature neurones and neuronal nuclei-positive granule cell neurones. Furthermore, we show that this increase in neuronal differentiation is accompanied by a significant induction of specific transcription factors involved in hippocampal progenitor differentiation. In vitro studies using the neurosphere assay support a direct effect of thyroid hormone on progenitor development because neurospheres treated with thyroid hormone are shifted to a more differentiated state. Taken together, our results indicate that thyroid hormone mediates its neurogenic effects via targeting Type 2b and Type 3 hippocampal progenitors, and suggests a role for proneural transcription factors in contributing to the effects of thyroid hormone on neuronal differentiation of adult hippocampal progenitors. © 2012 The Authors. Journal of Neuroendocrinology © 2012 British Society for Neuroendocrinology.

  1. Celecoxib plus hormone therapy versus hormone therapy alone for hormone-sensitive prostate cancer: first results from the STAMPEDE multiarm, multistage, randomised controlled trial

    PubMed Central

    James, Nicholas D; Sydes, Matthew R; Mason, Malcolm D; Clarke, Noel W; Anderson, John; Dearnaley, David P; Dwyer, John; Jovic, Gordana; Ritchie, Alastair WS; Russell, J Martin; Sanders, Karen; Thalmann, George N; Bertelli, Gianfilippo; Birtle, Alison J; O'Sullivan, Joe M; Protheroe, Andrew; Sheehan, Denise; Srihari, Narayanan; Parmar, Mahesh KB

    2012-01-01

    Summary Background Long-term hormone therapy alone is standard care for metastatic or high-risk, non-metastatic prostate cancer. STAMPEDE—an international, open-label, randomised controlled trial—uses a novel multiarm, multistage design to assess whether the early additional use of one or two drugs (docetaxel, zoledronic acid, celecoxib, zoledronic acid and docetaxel, or zoledronic acid and celecoxib) improves survival in men starting first-line, long-term hormone therapy. Here, we report the preplanned, second intermediate analysis comparing hormone therapy plus celecoxib (arm D) with hormone therapy alone (control arm A). Methods Eligible patients were men with newly diagnosed or rapidly relapsing prostate cancer who were starting long-term hormone therapy for the first time. Hormone therapy was given as standard care in all trial arms, with local radiotherapy encouraged for newly diagnosed patients without distant metastasis. Randomisation was done using minimisation with a random element across seven stratification factors. Patients randomly allocated to arm D received celecoxib 400 mg twice daily, given orally, until 1 year or disease progression (including prostate-specific antigen [PSA] failure). The intermediate outcome was failure-free survival (FFS) in three activity stages; the primary outcome was overall survival in a subsequent efficacy stage. Research arms were compared pairwise against the control arm on an intention-to-treat basis. Accrual of further patients was discontinued in any research arm showing safety concerns or insufficient evidence of activity (lack of benefit) compared with the control arm. The minimum targeted activity at the second intermediate activity stage was a hazard ratio (HR) of 0·92. This trial is registered with ClinicalTrials.gov, number NCT00268476, and with Current Controlled Trials, number ISRCTN78818544. Findings 2043 patients were enrolled in the trial from Oct 17, 2005, to Jan 31, 2011, of whom 584 were randomly

  2. Regulation of steroid hormone receptors and coregulators during the cell cycle highlights potential novel function in addition to roles as transcription factors

    PubMed Central

    Zheng, Yingfeng; Murphy, Leigh C.

    2016-01-01

    Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M. PMID:26778927

  3. Determining Baseline Stress-Related Hormone Values in Large Cetaceans

    DTIC Science & Technology

    2015-09-30

    individual whale. These reconstructed chemical profiles provided a unique window into stress-related hormone (cortisol, aldosterone , T3 and T4...stored under nitrogen at -30 °C. Stress-related hormone radioimmunoassay technique Cortisol, aldosterone , hormones thyroxine (T4) and...coefficients. These measurements will include all hormones ( aldosterone , T3, T4, and cortisol) as well as contaminants. The age trends for the 6 hormones will

  4. Gender-related differences in irritable bowel syndrome: Potential mechanisms of sex hormones

    PubMed Central

    Meleine, Mathieu; Matricon, Julien

    2014-01-01

    According to epidemiological studies, twice as many women as men are affected by irritable bowel syndrome (IBS) in western countries, suggesting a role for sex hormones in IBS pathophysiology. Despite growing evidence about the implications of sex hormones in IBS symptom modulation, data on mechanisms by which they influence disease development are sparse. This review aims to determine the state of knowledge about the role of sex hormones in sensorimotor dysfunctions and to address the possible interplay of sex hormones with common risk factors associated with IBS. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, sex, gender, ovarian hormone, estradiol, progesterone, testosterone, symptoms, pain, sensitivity, motility, permeability, stress, immune system, brain activity, spinal, supraspinal, imaging. Ovarian hormones variations along the menstrual cycle affect sensorimotor gastrointestinal function in both healthy and IBS populations. They can modulate pain processing by interacting with neuromodulator systems and the emotional system responsible for visceral pain perception. These hormones can also modulate the susceptibility to stress, which is a pivotal factor in IBS occurrence and symptom severity. For instance, estrogen-dependent hyper-responsiveness to stress can promote immune activation or impairments of gut barrier function. In conclusion, whereas it is important to keep in mind that ovarian hormones cannot be considered as a causal factor of IBS, they arguably modulate IBS onset and symptomatology. However, our understanding of the underlying mechanisms remains limited and studies assessing the link between IBS symptoms and ovarian hormone levels are needed to improve our knowledge of the disease evolution with regard to gender. Further studies assessing the role of male hormones are also needed to understand fully the role of sex hormones in IBS. Finally, investigation of brain-gut interactions is critical

  5. Gender-related differences in irritable bowel syndrome: potential mechanisms of sex hormones.

    PubMed

    Meleine, Mathieu; Matricon, Julien

    2014-06-14

    According to epidemiological studies, twice as many women as men are affected by irritable bowel syndrome (IBS) in western countries, suggesting a role for sex hormones in IBS pathophysiology. Despite growing evidence about the implications of sex hormones in IBS symptom modulation, data on mechanisms by which they influence disease development are sparse. This review aims to determine the state of knowledge about the role of sex hormones in sensorimotor dysfunctions and to address the possible interplay of sex hormones with common risk factors associated with IBS. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, sex, gender, ovarian hormone, estradiol, progesterone, testosterone, symptoms, pain, sensitivity, motility, permeability, stress, immune system, brain activity, spinal, supraspinal, imaging. Ovarian hormones variations along the menstrual cycle affect sensorimotor gastrointestinal function in both healthy and IBS populations. They can modulate pain processing by interacting with neuromodulator systems and the emotional system responsible for visceral pain perception. These hormones can also modulate the susceptibility to stress, which is a pivotal factor in IBS occurrence and symptom severity. For instance, estrogen-dependent hyper-responsiveness to stress can promote immune activation or impairments of gut barrier function. In conclusion, whereas it is important to keep in mind that ovarian hormones cannot be considered as a causal factor of IBS, they arguably modulate IBS onset and symptomatology. However, our understanding of the underlying mechanisms remains limited and studies assessing the link between IBS symptoms and ovarian hormone levels are needed to improve our knowledge of the disease evolution with regard to gender. Further studies assessing the role of male hormones are also needed to understand fully the role of sex hormones in IBS. Finally, investigation of brain-gut interactions is critical

  6. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2015-09-30

    ranging individuals support the existence of these same stress response pathways in marine mammals. 2 While the HPA axis and physiological processes...relying upon methods which include capture-release health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid, testosterone...Analyses Hormone concentrations (cortisol, aldosterone , reproductive and thyroid hormones) in serum samples were analyzed by Cornell’s Animal Health

  7. Effects of hormones on platelet aggregation.

    PubMed

    Farré, Antonio López; Modrego, Javier; Zamorano-León, José J

    2014-04-01

    Platelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.

  8. Hepatocyte Nuclear Factor 4α Contributes to Thyroid Hormone Homeostasis by Cooperatively Regulating the Type 1 Iodothyronine Deiodinase Gene with GATA4 and Krüppel-Like Transcription Factor 9▿ †

    PubMed Central

    Ohguchi, Hiroto; Tanaka, Toshiya; Uchida, Aoi; Magoori, Kenta; Kudo, Hiromi; Kim, Insook; Daigo, Kenji; Sakakibara, Iori; Okamura, Masashi; Harigae, Hideo; Sasaki, Takeshi; Osborne, Timothy F.; Gonzalez, Frank J.; Hamakubo, Takao; Kodama, Tatsuhiko; Sakai, Juro

    2008-01-01

    Type 1 iodothyronine deiodinase (Dio1), a selenoenzyme catalyzing the bioactivation of thyroid hormone, is highly expressed in the liver. Dio1 mRNA and enzyme activity levels are markedly reduced in the livers of hepatocyte nuclear factor 4α (HNF4α)-null mice, thus accounting for its liver-specific expression. Consistent with this deficiency, serum T4 and rT3 concentrations are elevated in these mice compared with those in HNF4α-floxed control littermates; however, serum T3 levels are unchanged. Promoter analysis of the mouse Dio1 gene demonstrated that HNF4α plays a key role in the transactivation of the mouse Dio1 gene. Deletion and substitution mutation analyses demonstrated that a proximal HNF4α site (direct repeat 1 [TGGACAAAGGTGC]; HNF4α-RE) is crucial for transactivation of the mouse Dio1 gene by HNF4α. Mouse Dio1 is also stimulated by thyroid hormone signaling, but a direct role for thyroid hormone receptor action has not been reported. We also showed that thyroid hormone-inducible Krüppel-like factor 9 (KLF9) stimulates the mouse Dio1 promoter very efficiently through two CACCC sequences that are located on either side of HNF4α-RE. Furthermore, KLF9 functions together with HNF4α and GATA4 to synergistically activate the mouse Dio1 promoter, suggesting that Dio1 is regulated by thyroid hormone in the mouse through an indirect mechanism requiring prior KLF9 induction. In addition, we showed that physical interactions between the C-terminal zinc finger domain (Cf) of GATA4 and activation function 2 of HNF4α and between the basic domain adjacent to Cf of GATA4 and a C-terminal domain of KLF9 are both required for this synergistic response. Taken together, these results suggest that HNF4α regulates thyroid hormone homeostasis through transcriptional regulation of the mouse Dio1 gene with GATA4 and KLF9. PMID:18426912

  9. [Natural factors influencing sleep].

    PubMed

    Jurkowski, Marek K; Bobek-Billewicz, Barbara

    2007-01-01

    Sleep is a universal phenomenon of human and animal lives, although the importance of sleep for homeo-stasis is still unknown. Sleep disturbances influence many behavioral and physiologic processes, leading to health complications including death. On the other hand, sleep improvement can beneficially influence the course of healing of many disorders and can be a prognostic of health recovery. The factors influencing sleep have different biological and chemical origins. They are classical hormones, hypothalamic releasing and inhibitory hormones, neuropeptides, peptides and others as cytokines, prostaglandins, oleamid, adenosine, nitric oxide. These factors regulate most physiologic processes and are likely elements integrating sleep with physiology and physiology with sleep in health and disorders.

  10. Plasma growth hormone response to human growth hormone releasing factor in rats administered with chlorpromazine and antiserum against somatostatin. Effects of hypo- and hyperthyroidism.

    PubMed

    Wakabayashi, I; Tonegawa, Y; Ihara, T; Hattori, M; Shibasaki, T; Ling, N

    1985-10-01

    The effect of hypo- and hyperthyroidism on the plasma growth hormone (GH) response to synthetic human growth hormone releasing factor (GRF) was determined in conscious, freely moving rats pretreated with chlorpromazine and antiserum against somatostatin. Chlorpromazine plus somatostatin antiserum pretreated rats gave consistent response to GRF which was not observed in untreated rats. Chlorpromazine alone has no effect on GH secretion induced by GRF in rat pituitary monolayer culture. In rats made hypothyroid by thyroidectomy, both basal and peak plasma GH responses to a small (0.25 microgram/kg bw) and a moderate dose of GRF (1 microgram/kg bw) were significantly reduced as compared to controls. In rats made hyperthyroid by the administration of thyroxine, basal and peak plasma GH responses to a small but not to a moderate dose of GRF were significantly reduced as compared to controls. A reduced plasma GH response to a small dose of GRF was observed 8 days after the cessation of thyroxine administration. The pituitary GH reserve was markedly reduced in hypothyroid but not in hyperthyroid rats as compared to their respective controls. These results indicate that plasma GH response to GRF is reduced both in hypo- and hyperthyroidism. The mechanism involved in the phenomenon appears to be different between the two conditions.

  11. Determining Baseline Stress-Related Hormone Values in Large Cetaceans

    DTIC Science & Technology

    2014-09-30

    reconstructed chemical profiles provided a unique window into stress-related hormone (cortisol, aldosterone , T3 and T4) concentrations and...Stress-related hormone radioimmunoassay technique Cortisol, aldosterone , hormones thyroxine (T4) and triiodothyronine (T3) levels in each identified...contaminant concentrations will be calculated using Pearson correlation coefficients. These measurements will include all hormones ( aldosterone , T3

  12. Demographic, lifestyle, and other factors in relation to antimüllerian hormone levels in mostly late premenopausal women.

    PubMed

    Jung, Seungyoun; Allen, Naomi; Arslan, Alan A; Baglietto, Laura; Brinton, Louise A; Egleston, Brian L; Falk, Roni; Fortner, Renée T; Helzlsouer, Kathy J; Idahl, Annika; Kaaks, Rudolph; Lundin, Eva; Merritt, Melissa; Onland-Moret, Charlotte; Rinaldi, Sabina; Sánchez, María-José; Sieri, Sabina; Schock, Helena; Shu, Xiao-Ou; Sluss, Patrick M; Staats, Paul N; Travis, Ruth C; Tjønneland, Anne; Trichopoulou, Antonia; Tworoger, Shelley; Visvanathan, Kala; Krogh, Vittorio; Weiderpass, Elisabete; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Dorgan, Joanne F

    2017-04-01

    To identify reproductive, lifestyle, hormonal, and other correlates of circulating antimüllerian hormone (AMH) concentrations in mostly late premenopausal women. Cross-sectional study. Not applicable. A total of 671 premenopausal women not known to have cancer. None. Concentrations of AMH were measured in a single laboratory using the picoAMH ELISA. Multivariable-adjusted median (and interquartile range) AMH concentrations were calculated using quantile regression for several potential correlates. Older women had significantly lower AMH concentrations (≥40 [n = 444] vs. <35 years [n = 64], multivariable-adjusted median 0.73 ng/mL vs. 2.52 ng/mL). Concentrations of AMH were also significantly lower among women with earlier age at menarche (<12 [n = 96] vs. ≥14 years [n = 200]: 0.90 ng/mL vs. 1.12 ng/mL) and among current users of oral contraceptives (n = 27) compared with never or former users (n = 468) (0.36 ng/mL vs. 1.15 ng/mL). Race, body mass index, education, height, smoking status, parity, and menstrual cycle phase were not significantly associated with AMH concentrations. There were no significant associations between AMH concentrations and androgen or sex hormone-binding globulin concentrations or with factors related to blood collection (e.g., sample type, time, season, and year of blood collection). Among premenopausal women, lower AMH concentrations are associated with older age, a younger age at menarche, and currently using oral contraceptives, suggesting these factors are related to a lower number or decreased secretory activity of ovarian follicles. Copyright © 2017 American Society for Reproductive Medicine. All rights reserved.

  13. Demographic, lifestyle, and other factors in relation to anti-Müllerian hormone levels in mostly late premenopausal women

    PubMed Central

    Jung, Seungyoun; Allen, Naomi; Arslan, Alan A.; Baglietto, Laura; Brinton, Louise A.; Egleston, Brian L.; Falk, Roni; Fortner, Renée T.; Helzlsouer, Kathy J.; Idahl, Annika; Kaaks, Rudolph; Lundin, Eva; Merritt, Melissa; Onland-Moret, Charlotte; Rinaldi, Sabina; Sánchez, María-José; Sieri, Sabina; Schock, Helena; Shu, Xiao-Ou; Sluss, Patrick M.; Staats, Paul N.; Travis, Ruth C.; Tjønneland, Anne; Trichopoulou, Antonia; Tworoger, Shelley; Visvanathan, Kala; Krogh, Vittorio; Weiderpass, Elisabete; Zeleniuch-Jacquotte, Anne; Zheng, Wei; Dorgan, Joanne F.

    2017-01-01

    Objective To identify reproductive, lifestyle, hormonal and other correlates of circulating anti-Müllerian Hormone (AMH) concentrations in mostly late premenopausal women Design Cross-sectional study Setting Nine cohorts that participated in the Prospective Study of AMH and Gynecologic Cancer Risk Patient(s) 671 premenopausal women not known to have cancer. Intervention(s) None Main Outcome Measure(s) AMH concentrations were measured in a single laboratory using the picoAMH enzyme-linked immunosorbent assay. Multivariable-adjusted median (and interquartile range) AMH concentrations were calculated using quantile regression for several potential correlates. Results Older women had significantly lower AMH concentrations (≥40, n=444 vs. <35 years, n=64, multivariable-adjusted median: 0.73 ng/mL vs. 2.52 ng/mL). AMH concentrations were also significantly lower among women with earlier age at menarche (<12, n=96 vs. ≥14 years, n=200: 0.90 ng/mL vs. 1.12 ng/mL) and among current users of oral contraceptives (n=27), compared to never or former users (n=468) (0.36 ng/mL vs. 1.15 ng/mL). Race, body mass index, education, height, smoking status, parity and menstrual cycle phase were not significantly associated with AMH concentrations. There were no significant associations between AMH concentrations and androgen or sex hormone-binding globulin concentrations or with factors related to blood collection (e.g., sample type, time, season, and year of blood collection). Conclusions Among premenopausal women, lower AMH concentrations are associated with older age, a younger age at menarche and currently using oral contraceptives, suggesting these factors are related to a lower number or decreased secretory activity of ovarian follicles. PMID:28366409

  14. TFOS DEWS II Sex, Gender, and Hormones Report.

    PubMed

    Sullivan, David A; Rocha, Eduardo M; Aragona, Pasquale; Clayton, Janine A; Ding, Juan; Golebiowski, Blanka; Hampel, Ulrike; McDermott, Alison M; Schaumberg, Debra A; Srinivasan, Sruthi; Versura, Piera; Willcox, Mark D P

    2017-07-01

    One of the most compelling features of dry eye disease (DED) is that it occurs more frequently in women than men. In fact, the female sex is a significant risk factor for the development of DED. This sex-related difference in DED prevalence is attributed in large part to the effects of sex steroids (e.g. androgens, estrogens), hypothalamic-pituitary hormones, glucocorticoids, insulin, insulin-like growth factor 1 and thyroid hormones, as well as to the sex chromosome complement, sex-specific autosomal factors and epigenetics (e.g. microRNAs). In addition to sex, gender also appears to be a risk factor for DED. "Gender" and "sex" are words that are often used interchangeably, but they have distinct meanings. "Gender" refers to a person's self-representation as a man or woman, whereas "sex" distinguishes males and females based on their biological characteristics. Both gender and sex affect DED risk, presentation of the disease, immune responses, pain, care-seeking behaviors, service utilization, and myriad other facets of eye health. Overall, sex, gender and hormones play a major role in the regulation of ocular surface and adnexal tissues, and in the difference in DED prevalence between women and men. The purpose of this Subcommittee report is to review and critique the nature of this role, as well as to recommend areas for future research to advance our understanding of the interrelationships between sex, gender, hormones and DED. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Hormones in Dairy Foods and Their Impact on Public Health - A Narrative Review Article

    PubMed Central

    MALEKINEJAD, Hassan; REZABAKHSH, Aysa

    2015-01-01

    Background: The presence of hormones in milk and dairy foods was discussed decades ago but rather more concerns attended to that with respect to finding hormones as biomarkers in milk for diseases and pregnancy diagnosis. Moreover, considerable amount of studies demonstrated that existing of hormones in humans and animals milk are essential for infants growing and immunity. During the last couple of years, increasing body of evidence are indicating another property of hormones in dairy products as possible impact on human health including the role of some estrogens and insulin-like growth factor-1 in initiation and provoking of breast, prostate and endometrial tumours. Methods: Data was gathered from the published articles in database such as MEDLINE, science direct, Google scholar and web of science. We put no limitation on date of published date. Moreover, our own published and conducted methods and results also are presented. In this review we concentrated on several aspects of presence of hormones in dairy foods with especial emphasize on cow’s milk as a major source of consuming milk for humans especially for children. Results: The collected data from other researchers and our own data are indicating that the presence of steroid hormones in dairy products could be counted as an important risk factor for various cancers in humans. Conclusion: Our gathered data in this review paper may suggest more sophisticate analytical detection methods for oestrogens determination and also could be considered as a remarkable concern for consumers, producers and public health authorities. PMID:26258087

  16. [Hormonal and inflammatory impact of different dietetic composition: emphasis on dietary patterns and specific dietary factors].

    PubMed

    Bressan, Josefina; Hermsdorff, Helen H M; Zulet, María Angeles; Martínez, José Alfredo

    2009-07-01

    Healthy dietary pattern, characterized by the consumption of fruits, vegetables, white meats, skim dairy products, nuts and moderate intake of vegetable oils and alcohol, is an important factor for a lower risk of chronic disease such as obesity, metabolic syndrome and cardiovascular disease. This beneficial effect can be explained, at least partially, by its modulating role on biomarkers of insulin sensitivity and atherosclerosis as well as of inflammation and endothelial function. On the other hand, the intake of specific dietary factors, such as unsaturated fatty acids (oleic and alpha-linolenic) and micronutrients with antioxidant properties (vitamins A, E and C; selenium, zinc) has been discussed, due to its potential protector action due to chronic disease occurrence and its possible profits in hormonal, metabolic and inflammatory regulations that these dietetic factors can provide within a nutritional treatment to obesity and metabolic syndrome.

  17. THE RELATIONSHIP BETWEEN SEX HORMONES, SEX HORMONE BINDING GLOBULIN AND PERIPHERAL ARTERY DISEASE IN OLDER PERSONS

    PubMed Central

    Maggio, M; Cattabiani, C; Lauretani, F; Artoni, A; Bandinelli, S; Schiavi, G; Vignali, A; Volpi, R; Ceresini, G; Lippi, G; Aloe, R; De Vita, F; Giallauria, F; McDermott, MM; Ferrucci, L; Ceda, GP

    2014-01-01

    Objective The prevalence of peripheral artery disease (PAD) increases with aging and is higher in persons with metabolic syndrome and diabetes. PAD is associated with adverse outcomes, including frailty and disability. The protective effect of testosterone and sex hormone binding globulin (SHBG) for diabetes in men suggests that the biological activity of sex hormones may affect PAD, especially in older populations. Methods Nine hundred and twenty-one elderly subjects with data on SHBG, testosterone (T), estradiol (E2) were selected from InCHIANTI study. PAD was defined as an Ankle-Brachial Index (ABI) <0.90. Logistic regression models adjusted for age (Model 1), age, BMI, insulin, interleukin-6, physical activity, smoking, chronic diseases including metabolic syndrome (Model 2), and a final model including also sex hormones (Model 3) were performed to test the relationship between SHBG, sex hormones and PAD. Results The mean age (± SD) of the 419 men and 502 women was 75.0 ± 6.8 years (Sixty two participants (41 men, 21 women) had ABI<0.90. Men with PAD had SHBG levels lower than men without PAD (p=0.03). SHBG was negatively and independently associated with PAD in men (p=0.028). but not in women. The relationship was however attenuated after adjusting for sex hormones (p=0.07). The E2 was not significantly associated with PAD in both men and women. In women, but not in men, T was positively associated with PAD, even after adjusting for multiple confounders, including E2 (p=0.01). Conclusions Low SHBG and high T levels are significantly and independently associated with the presence of PAD in older men and women, respectively. PMID:23102785

  18. [Recent advances in sample preparation methods of plant hormones].

    PubMed

    Wu, Qian; Wang, Lus; Wu, Dapeng; Duan, Chunfeng; Guan, Yafeng

    2014-04-01

    Plant hormones are a group of naturally occurring trace substances which play a crucial role in controlling the plant development, growth and environment response. With the development of the chromatography and mass spectroscopy technique, chromatographic analytical method has become a widely used way for plant hormone analysis. Among the steps of chromatographic analysis, sample preparation is undoubtedly the most vital one. Thus, a highly selective and efficient sample preparation method is critical for accurate identification and quantification of phytohormones. For the three major kinds of plant hormones including acidic plant hormones & basic plant hormones, brassinosteroids and plant polypeptides, the sample preparation methods are reviewed in sequence especially the recently developed methods. The review includes novel methods, devices, extractive materials and derivative reagents for sample preparation of phytohormones analysis. Especially, some related works of our group are included. At last, the future developments in this field are also prospected.

  19. Foot length before and during insulin-like growth factor-I treatment of children with laron syndrome compared to human growth hormone treatment of children with isolated growth hormone deficiency.

    PubMed

    Silbergeld, Aviva; Lilos, Pearl; Laron, Zvi

    2007-12-01

    To compare foot length deficits between patients with Laron syndrome (LS) (primary growth hormone [GH] insensitivity) and congenital isolated GH deficiency (IGHD) and their response to replacement therapy with insulin-like growth factor-I (IGF-I) and hGH, respectively. Data for the study were collected from the records of nine children with LS (3 M, 6 F) 7.8 +/- 4.8 years old (mean +/- SD), and nine children with IGHD (3 M, 6 F), 3.8 +/- 3.3 years old. Fifteen non-treated adult patients with LS were also included in the study. Measurements of foot length were recorded without treatment and monitored during 9 years of treatment in the children and in the untreated adult patients. For statistical analysis the non-parametric Mann-Whitney U test was used. With almost similar basal values in growth deficit and pre-treatment growth velocities, the achievements towards norms after 9 years of treatment were greater in the patients with IGHD than in the patients with LS: foot length reached -1.4 +/- 0.8 vs. -3.3 +/- 1.0 SDS (mean +/- SD), and body height -2.2 +/- 1.0 vs. -3.9 +/- 0.5 SDS. The difference between the two groups could be due to the initiation of replacement therapy in the patients with IGHD at a younger age. Adult foot size of untreated patients with LS is small but less retarded than the height deficit. Both IGF-I and hGH are potent growth stimulating hormones of linear growth and acrae as exemplified by foot growth.

  20. Hormone-controlled UV-B responses in plants.

    PubMed

    Vanhaelewyn, Lucas; Prinsen, Els; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-08-01

    Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Oral administration of arginine enhances the growth hormone response to growth hormone releasing hormone in short children.

    PubMed

    Loche, S; Carta, D; Muntoni, A C; Corda, R; Pintor, C

    1993-10-01

    We have evaluated the effect of oral administration of arginine chlorhydrate on the growth hormone response to growth hormone releasing hormone in a group of nine short prepubertal children (six boys and four girls). Arginine chlorhydrate 10 g, administered orally 60 min before an i.v. bolus injection of growth hormone releasing hormone 1-29, 1 microgram/kg, significantly enhanced the growth hormone response to the neuropeptide, confirming the results of previous studies which used the i.v. route. Furthermore, our data strengthen the view that the effects of arginine chlorhydrate on growth hormone secretion are mediated by inhibition of endogenous somatostatin release.

  2. Protein deficiency and intestinal nematode infection in pregnant mice differentially impact fetal growth through specific stress hormones, growth factors, and cytokines.

    PubMed

    Starr, Lisa M; Scott, Marilyn E; Koski, Kristine G

    2015-01-01

    Protein deficiency (PD) and intestinal nematode infections commonly co-occur during pregnancy and impair fetal growth, but the complex network of signals has not been explored. Our objective was to assess those stress hormones, growth factors, and cytokines affected by maternal PD and nematode infection and associated with fetal growth. Using a 2 × 2 factorial design, CD-1 mice, fed protein-sufficient (PS; 24%) or protein-deficient (PD; 6%) isoenergetic diets, were either uninfected or infected every 5 d with Heligmosomoides bakeri, beginning on gestational day (GD) 5. Biomarker concentrations were measured on GD 18 in maternal serum (m), fetal serum (f), and amniotic fluid (af) by using Luminex. Maternal PD lowered fetal body mass (PS/uninfected 1.25 ± 0.02 g, PS/infected 1.19 ± 0.02 g vs. PD/uninfected 1.11 ± 0.02 g, PD/infected 0.97 ± 0.02 g; P = 0.02), fetal lung (P = 0.005), and liver (P = 0.003) but not brain mass, whereas maternal infection lowered fetal length (PS/uninfected 2.28 ± 0.02 cm, PD/uninfected 2.27 ± 0.03 cm vs. PS/infected 2.21 ± 0.03 cm, PD/infected 2.11 ± 0.02 cm; P = 0.05) and kidney mass (P = 0.04). PD elevated stress hormones (m-adrenocortiotropic hormone, f-corticosterone, af-corticosterone) and reduced insulin-like growth factor 1 in all compartments (P ≤ 0.01), but these were unassociated with fetal mass or length. Fetal mass was positively associated with f-leptin (R(2) = 0.71, P = 0.0001) and negatively with fetal cytokines [tumor necrosis factor-α: R(2) = 0.62, P = 0.001; interleukin-4 (IL-4): R(2) = 0.63, P = 0.0004]. In contrast, maternal infection lowered f-prolactin (P = 0.02) that was positively associated with fetal length (R(2) = 0.43; P = 0.03); no other biomarker was affected by infection. Regression analyses showed associations between organ growth, cytokines, and growth factors: 1) thymus, spleen, heart, and brain with m-IL-10; 2) brain and kidney with f-vascular endothelial growth factor, af

  3. Impacts of stress and sex hormones on dopamine neurotransmission in the adolescent brain.

    PubMed

    Sinclair, Duncan; Purves-Tyson, Tertia D; Allen, Katherine M; Weickert, Cynthia Shannon

    2014-04-01

    Adolescence is a developmental period of complex neurobiological change and heightened vulnerability to psychiatric illness. As a result, understanding factors such as sex and stress hormones which drive brain changes in adolescence, and how these factors may influence key neurotransmitter systems implicated in psychiatric illness, is paramount. In this review, we outline the impact of sex and stress hormones at adolescence on dopamine neurotransmission, a signaling pathway which is critical to healthy brain function and has been implicated in psychiatric illness. We review normative developmental changes in dopamine, sex hormone, and stress hormone signaling during adolescence and throughout postnatal life, then highlight the interaction of sex and stress hormones and review their impacts on dopamine neurotransmission in the adolescent brain. Adolescence is a time of increased responsiveness to sex and stress hormones, during which the maturing dopaminergic neural circuitry is profoundly influenced by these factors. Testosterone, estrogen, and glucocorticoids interact with each other and have distinct, brain region-specific impacts on dopamine neurotransmission in the adolescent brain, shaping brain maturation and cognitive function in adolescence and adulthood. Some effects of stress/sex hormones on cortical and subcortical dopamine parameters bear similarities with dopaminergic abnormalities seen in schizophrenia, suggesting a possible role for sex/stress hormones at adolescence in influencing risk for psychiatric illness via modulation of dopamine neurotransmission. Stress and sex hormones may prove useful targets in future strategies for modifying risk for psychiatric illness.

  4. Use of antimüllerian hormone to predict the menopausal transition in HIV-infected women

    PubMed Central

    Scherzer, Rebecca; Greenblatt, Ruth M.; Merhi, Zaher O.; Kassaye, Seble; Lambert-Messerlian, Geralyn; Maki, Pauline M.; Murphy, Kerry; Karim, Roksana; Bacchetti, Peter

    2016-01-01

    BACKGROUND HIV infection has been associated with early menopausal onset, which may have adverse long-term health consequences. Antimüllerian hormone, a biomarker of ovarian reserve and gonadal aging, is reduced in HIV-infected women. OBJECTIVE We sought to assess the relationship of antimüllerian hormone to age of menopause onset in HIV-infected women. STUDY DESIGN We used antimüllerian hormone levels measured in plasma in 2461 HIV-infected participants from the Women’s Interagency HIV Study to model the age at final menstrual period. Multivariable normal mixture models for censored data were used to identify factors associated with age at final menstrual period. RESULTS Higher antimüllerian hormone at age 40 years was associated with later age at final menstrual period, even after multivariable adjustment for smoking, CD4 cell count, plasma HIV RNA, hepatitis C infection, and history of clinical AIDS. Each doubling of antimüllerian hormone was associated with a 1.5-year increase in the age at final menstrual period. Median age at final menstrual period ranged from 45 years for those in the 10th percentile of antimüllerian hormone to 52 years for those in the 90th percentile. Other factors independently associated with earlier age at final menstrual period included smoking, hepatitis C infection, higher HIV RNA levels, and history of clinical AIDS. CONCLUSION Antimüllerian hormone is highly predictive of age at final menstrual period in HIV-infected women. Measuring antimüllerian hormone in HIV-infected women may enable clinicians to predict risk of early menopause, and potentially implement individualized treatment plans to prevent menopause-related comorbidities and to aid in interpretation of symptoms. PMID:27473002

  5. Hormonal contraception in women with polycystic ovary syndrome: choices, challenges, and noncontraceptive benefits

    PubMed Central

    de Melo, Anderson Sanches; dos Reis, Rosana Maria; Ferriani, Rui Alberto; Vieira, Carolina Sales

    2017-01-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder among women of reproductive age characterized by chronic anovulation and polycystic ovary morphology and/or hyperandrogenism. Management of clinical manifestations of PCOS, such as menstrual irregularities and hyperandrogenism symptoms, includes lifestyle changes and combined hormonal contraceptives (CHCs). CHCs contain estrogen that exerts antiandrogenic properties by triggering the hepatic synthesis of sex hormone-binding globulin that reduces the free testosterone levels. Moreover, the progestogen present in CHCs and in progestogen-only contraceptives suppresses luteinizing hormone secretion. In addition, some types of progestogens directly antagonize the effects of androgens on their receptor and also reduce the activity of the 5α reductase enzyme. However, PCOS is related to clinical and metabolic comorbidities that may limit the prescription of CHCs. Clinicians should be aware of risk factors, such as age, smoking, obesity, diabetes, systemic arterial hypertension, dyslipidemia, and a personal or family history, of a venous thromboembolic event or thrombophilia. This article reports a narrative review of the available evidence of the safety of hormonal contraceptives in women with PCOS. Considerations are made for the possible impact of hormonal contraceptives on endocrine, metabolic, and cardiovascular health. PMID:29386951

  6. Hormonal contraception in women with polycystic ovary syndrome: choices, challenges, and noncontraceptive benefits.

    PubMed

    de Melo, Anderson Sanches; Dos Reis, Rosana Maria; Ferriani, Rui Alberto; Vieira, Carolina Sales

    2017-01-01

    Polycystic ovary syndrome (PCOS) is an endocrine disorder among women of reproductive age characterized by chronic anovulation and polycystic ovary morphology and/or hyperandrogenism. Management of clinical manifestations of PCOS, such as menstrual irregularities and hyperandrogenism symptoms, includes lifestyle changes and combined hormonal contraceptives (CHCs). CHCs contain estrogen that exerts antiandrogenic properties by triggering the hepatic synthesis of sex hormone-binding globulin that reduces the free testosterone levels. Moreover, the progestogen present in CHCs and in progestogen-only contraceptives suppresses luteinizing hormone secretion. In addition, some types of progestogens directly antagonize the effects of androgens on their receptor and also reduce the activity of the 5α reductase enzyme. However, PCOS is related to clinical and metabolic comorbidities that may limit the prescription of CHCs. Clinicians should be aware of risk factors, such as age, smoking, obesity, diabetes, systemic arterial hypertension, dyslipidemia, and a personal or family history, of a venous thromboembolic event or thrombophilia. This article reports a narrative review of the available evidence of the safety of hormonal contraceptives in women with PCOS. Considerations are made for the possible impact of hormonal contraceptives on endocrine, metabolic, and cardiovascular health.

  7. Growth hormone regulation of follicular growth.

    PubMed

    Lucy, Matthew C

    2011-01-01

    The somatotropic axis-consisting of growth hormone (GH), the insulin-like growth factors 1 and 2 (IGF1 and IGF2), GH binding protein (GHBP), IGF binding proteins (IGFBPs) 1 to 6, and the cell-surface receptors for GH and the IGFs-has major effects on growth, lactation and reproduction. The primary target tissues for GH are involved in growth and metabolism. The functionality of the somatotropic axis depends in part on the expression of liver GH receptor (GHR), which determines the amount of IGF1 released from the liver in response to GH. The IGF1 acts as a pleiotropic growth factor and also serves as the endocrine negative feedback signal controlling pituitary GH secretion. Growth hormone and IGF1 undergo dynamic changes throughout the life cycle, particularly when animals are either growing, early post partum or lactating. Cells within the reproductive tract can respond directly to GH but to a lesser degree than the primary target tissues. The major impact that GH has on reproduction, therefore, may be secondary to its systemic effects on metabolism (including insulin sensitivity) or secondary to the capacity for GH to control IGF1 secretion. Insulin-like growth factor 1 and IGFBP are also synthesised within the ovary and this local synthesis is a component of the collective IGF1 action on the follicle. Future studies of GH should focus on its direct effects on the follicle as well as its indirect effects mediated by shifts in nutrient metabolism, insulin sensitivity, IGF1 and IGFBP.

  8. Hormones and immune function: implications of aging.

    PubMed

    Arlt, Wiebke; Hewison, Martin

    2004-08-01

    Aging is associated with a decline in immunity described as immunosenescence. This is paralleled by a decline in the production of several hormones, as typically illustrated by the menopausal loss of ovarian oestrogen production. However, other hormonal changes that occur with aging and that potentially impact on immune function include the release of the pineal gland hormone melatonin and pituitary growth hormone, adrenal production of dehydroepiandrosterone and tissue-specific availability of active vitamin D. It remains to be established whether hormonal changes with aging actually contribute to immunosenescence and this area is at the interface of fact and fiction, clearly inviting systematic research efforts. As a step in this direction, the present review summarizes established facts on the physiology of secretion and function of hormones that, in most cases, decline with aging and that are likely to affect the immune system.

  9. Towards engineering of hormonal crosstalk in plant immunity.

    PubMed

    Shigenaga, Alexandra M; Berens, Matthias L; Tsuda, Kenichi; Argueso, Cristiana T

    2017-08-01

    Plant hormones regulate physiological responses in plants, including responses to pathogens and beneficial microbes. The last decades have provided a vast amount of evidence about the contribution of different plant hormones to plant immunity, and also of how they cooperate to orchestrate immunity activation, in a process known as hormone crosstalk. In this review we highlight the complexity of hormonal crosstalk in immunity and approaches currently being used to further understand this process, as well as perspectives to engineer hormone crosstalk for enhanced pathogen resistance and overall plant fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications.

    PubMed

    Galea, L A M; Wainwright, S R; Roes, M M; Duarte-Guterman, P; Chow, C; Hamson, D K

    2013-11-01

    The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress. © 2013 British Society for Neuroendocrinology.

  11. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes.

    PubMed

    Ruth, Katherine S; Campbell, Purdey J; Chew, Shelby; Lim, Ee Mun; Hadlow, Narelle; Stuckey, Bronwyn G A; Brown, Suzanne J; Feenstra, Bjarke; Joseph, John; Surdulescu, Gabriela L; Zheng, Hou Feng; Richards, J Brent; Murray, Anna; Spector, Tim D; Wilson, Scott G; Perry, John R B

    2016-02-01

    Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7,879,351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10(-8)), with minor allele frequencies of 1.3-23.9%. Novel signals included variants for progesterone (P=7.68 × 10(-12)), oestradiol (P=1.63 × 10(-8)) and FAI (P=1.50 × 10(-8)). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10(-8)) and LH (P=3.94 × 10(-9)) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10(-14)) and progesterone (P=6.09 × 10(-14)). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.

  12. Patterns of resource utilization and cost for postmenopausal women with hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer in Europe.

    PubMed

    Jerusalem, Guy; Neven, Patrick; Marinsek, Nina; Zhang, Jie; Degun, Ravi; Benelli, Giancarlo; Saletan, Stephen; Ricci, Jean-François; Andre, Fabrice

    2015-10-24

    Healthcare resource utilization in breast cancer varies by disease characteristics and treatment choices. However, lack of clarity in guidelines can result in varied interpretation and heterogeneous treatment management and costs. In Europe, the extent of this variability is unclear. Therefore, evaluation of chemotherapy use and costs versus hormone therapy across Europe is needed. This retrospective chart review (N = 355) examined primarily direct costs for chemotherapy versus hormone therapy in postmenopausal women with hormone-receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) advanced breast cancer across 5 European countries (France, Germany, The Netherlands, Belgium, and Sweden). Total direct costs across the first 3 treatment lines were approximately €10,000 to €14,000 lower for an additional line of hormone therapy-based treatment versus switching to chemotherapy-based treatment. Direct cost difference between chemotherapy-based and hormone therapy-based regimens was approximately €1900 to €2500 per month. Chemotherapy-based regimens were associated with increased resource utilization (managing side effects; concomitant targeted therapy use; and increased frequencies of hospitalizations, provider visits, and monitoring tests). The proportion of patients taking sick leave doubled after switching from hormone therapy to chemotherapy. These results suggest chemotherapy is associated with increased direct costs and potentially with increased indirect costs (lower productivity of working patients) versus hormone therapy in HR+, HER2- advanced breast cancer.

  13. How Early Hormones Shape Gender Development

    PubMed Central

    Berenbaum, Sheri A.; Beltz, Adriene M.

    2015-01-01

    Many important psychological characteristics show sex differences, and are influenced by sex hormones at different developmental periods. We focus on the role of sex hormones in early development, particularly the differential effects of prenatal androgens on aspects of gender development. Increasing evidence confirms that prenatal androgens have facilitative effects on male-typed activity interests and engagement (including child toy preferences and adult careers), and spatial abilities, but relatively minimal effects on gender identity. Recent emphasis has been directed to the psychological mechanisms underlying these effects (including sex differences in propulsive movement, and androgen effects on interest in people versus things), and neural substrates of androgen effects (including regional brain volumes, and neural responses to mental rotation, sexually arousing stimuli, emotion, and reward). Ongoing and planned work is focused on understanding the ways in which hormones act jointly with the social environment across time to produce varying trajectories of gender development, and clarifying mechanisms by which androgens affect behaviors. Such work will be facilitated by applying lessons from other species, and by expanding methodology. Understanding hormonal influences on gender development enhances knowledge of psychological development generally, and has important implications for basic and applied questions, including sex differences in psychopathology, women’s underrepresentation in science and math, and clinical care of individuals with variations in gender expression. PMID:26688827

  14. Race and Sex Differences in Small-Molecule Metabolites and Metabolic Hormones in Overweight and Obese Adults

    PubMed Central

    Patel, Mahesh J.; Batch, Bryan C.; Svetkey, Laura P.; Bain, James R.; Turer, Christy Boling; Haynes, Carol; Muehlbauer, Michael J.; Stevens, Robert D.; Newgard, Christopher B.

    2013-01-01

    Abstract In overweight/obese individuals, cardiometabolic risk factors differ by race and sex categories. Small-molecule metabolites and metabolic hormone levels might also differ across these categories and contribute to risk factor heterogeneity. To explore this possibility, we performed a cross-sectional analysis of fasting plasma levels of 69 small-molecule metabolites and 13 metabolic hormones in 500 overweight/obese adults who participated in the Weight Loss Maintenance trial. Principal-components analysis (PCA) was used for reduction of metabolite data. Race and sex-stratified comparisons of metabolite factors and metabolic hormones were performed. African Americans represented 37.4% of the study participants, and females 63.0%. Of thirteen metabolite factors identified, three differed by race and sex: levels of factor 3 (branched-chain amino acids and related metabolites, p<0.0001), factor 6 (long-chain acylcarnitines, p<0.01), and factor 2 (medium-chain dicarboxylated acylcarnitines, p<0.0001) were higher in males vs. females; factor 6 levels were higher in Caucasians vs. African Americans (p<0.0001). Significant differences were also observed in hormones regulating body weight homeostasis. Among overweight/obese adults, there are significant race and sex differences in small-molecule metabolites and metabolic hormones; these differences may contribute to risk factor heterogeneity across race and sex subgroups and should be considered in future investigations with circulating metabolites and metabolic hormones. PMID:24117402

  15. Race and sex differences in small-molecule metabolites and metabolic hormones in overweight and obese adults.

    PubMed

    Patel, Mahesh J; Batch, Bryan C; Svetkey, Laura P; Bain, James R; Turer, Christy Boling; Haynes, Carol; Muehlbauer, Michael J; Stevens, Robert D; Newgard, Christopher B; Shah, Svati H

    2013-12-01

    In overweight/obese individuals, cardiometabolic risk factors differ by race and sex categories. Small-molecule metabolites and metabolic hormone levels might also differ across these categories and contribute to risk factor heterogeneity. To explore this possibility, we performed a cross-sectional analysis of fasting plasma levels of 69 small-molecule metabolites and 13 metabolic hormones in 500 overweight/obese adults who participated in the Weight Loss Maintenance trial. Principal-components analysis (PCA) was used for reduction of metabolite data. Race and sex-stratified comparisons of metabolite factors and metabolic hormones were performed. African Americans represented 37.4% of the study participants, and females 63.0%. Of thirteen metabolite factors identified, three differed by race and sex: levels of factor 3 (branched-chain amino acids and related metabolites, p<0.0001), factor 6 (long-chain acylcarnitines, p<0.01), and factor 2 (medium-chain dicarboxylated acylcarnitines, p<0.0001) were higher in males vs. females; factor 6 levels were higher in Caucasians vs. African Americans (p<0.0001). Significant differences were also observed in hormones regulating body weight homeostasis. Among overweight/obese adults, there are significant race and sex differences in small-molecule metabolites and metabolic hormones; these differences may contribute to risk factor heterogeneity across race and sex subgroups and should be considered in future investigations with circulating metabolites and metabolic hormones.

  16. The relationship between sex hormones, sex hormone binding globulin and peripheral artery disease in older persons.

    PubMed

    Maggio, M; Cattabiani, C; Lauretani, F; Artoni, A; Bandinelli, S; Schiavi, G; Vignali, A; Volpi, R; Ceresini, G; Lippi, G; Aloe, R; De Vita, F; Giallauria, F; McDermott, M M; Ferrucci, L; Ceda, G P

    2012-12-01

    The prevalence of peripheral artery disease (PAD) increases with aging and is higher in persons with metabolic syndrome and diabetes. PAD is associated with adverse outcomes, including frailty and disability. The protective effect of testosterone and sex hormone binding globulin (SHBG) for diabetes in men suggests that the biological activity of sex hormones may affect PAD, especially in older populations. Nine hundred and twenty-one elderly subjects with data on SHBG, testosterone (T), estradiol (E2) were selected from InCHIANTI study. PAD was defined as an Ankle-Brachial Index (ABI) < 0.90. Logistic regression models adjusted for age (Model 1), age, BMI, insulin, interleukin-6, physical activity, smoking, chronic diseases including metabolic syndrome (Model 2), and a final model including also sex hormones (Model 3) were performed to test the relationship between SHBG, sex hormones and PAD. The mean age (±SD) of the 419 men and 502 women was 75.0 ± 6.8 years. Sixty two participants (41 men, 21 women) had ABI < 0.90. Men with PAD had SHBG levels lower than men without PAD (p = 0.03). SHBG was negatively and independently associated with PAD in men (p = 0.028) but not in women. The relationship was however attenuated after adjusting for sex hormones (p = 0.07). The E2 was not significantly associated with PAD in both men and women. In women, but not in men, T was positively associated with PAD, even after adjusting for multiple confounders, including E2 (p = 0.01). Low SHBG and high T levels are significantly and independently associated with the presence of PAD in older men and women, respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    The ability of ovine growth hormone (oGH), recombinant bovine insulin- like growth factor I (rbIGF-I), recombinant human insulin-like growth factor II (rhIGF-II), and bovine insulin to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity, 320 mOsm/kg H2O) were injected with a single dose of hormone and transferred to seawater (SW, 35 ppt salinity, 1120 mOsm/kg H2O) 2 days later. Fish were sampled 24 h after transfer and plasma osmolality, plasma glucose, and gill Na+,K+-ATPase activity were examined. Transfer from BW to SW increased plasma osmolality and gill Na+,K+-ATPase activity. Transfer from BW to BW had no effect on these parameters. rbIGF-I (0.05, 0.1, and 0.2 ??g/g) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity in a dose-dependent manner. oGH (0.5, 1, and 2 ??g/g) also increased hypoosmoregulatory ability but only the higher doses (2 ??g/g) significantly increased gill Na+,K+-ATPase activity. oGH (1 ??g/g) and rbIGF-I (0.1 ??g/g) had a significantly greater effect on plasma osmolality and gill Na+,K+-ATPase activity than either hormone alone. rhIGF-II (0.05, 0.1, and 0.2 ??g/g) and bovine insulin (0.01 and 0.05 ??g/g) were without effect. The results suggest a role of GH and insulin-like growth factor I (IGF-I) in seawater acclimation of E heteroclitus. Based on these findings and previous studies, it is concluded that the capacity of the GH/IGF-I axis to increase hypoosmoregulatory ability may be a common feature of euryhalinity in teleosts.

  18. Perioperative indicators of hypocalcemia in total thyroidectomy: the role of vitamin D and parathyroid hormone.

    PubMed

    Salinger, Eric M; Moore, John T

    2013-12-01

    Hypocalcemia is a common complication of thyroidectomy. The aim of this study was to identify risk factors for this problem. This prospective analysis included 111 patients undergoing total or completion thyroidectomy. Preoperative vitamin D levels and postoperative day 1 parathyroid hormone levels were analyzed for their predictive effects on postoperative hypocalcemia. Patients with ionized calcium <4.4 mg/dL had significantly lower mean parathyroid hormone levels than normocalcemic patients (13.0 vs 28.4 pg/mL, P < .001). Parathyroid hormone levels were also significantly lower in symptomatic patients (11.0 vs 28.4 pg/mL, P < .001). Preoperative vitamin D level, body mass index, gender, and pathologic findings were not associated with low calcium levels or symptoms of hypocalcemia. Younger age and low postoperative parathyroid hormone levels are predictive of symptomatic hypocalcemia. A parathyroid hormone level outside of the reference range may indicate a need for more aggressive postoperative calcium supplementation and treatment with activated vitamin D. Older patients with normal postoperative parathyroid hormone levels may be safely discharged with appropriate calcium supplementation. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Interactions between Age, Sex, and Hormones in Experimental Ischemic Stroke

    PubMed Central

    Liu, Fudong; McCullough, Louise D.

    2012-01-01

    Age, sex, and gonadal hormones have profound effects on ischemic stroke outcomes, although how these factors impact basic stroke pathophysiology remains unclear. There is a plethora of inconsistent data reported throughout the literature, primarily due to differences in the species examined, the timing and methods used to evaluate injury, the models used, and confusion regarding differences in stroke incidence as seen in clinical populations versus effects on acute neuroprotection or neurorepair in experimental stroke models. Sex and gonadal hormone exposure have considerable independent impact on stroke outcome, but these factors also interact with each other, and the contribution of each differs throughout the lifespan. The contribution of sex and hormones to experimental stroke will be the focus of this review. Recent advances and our current understanding of age, sex, and hormone interactions in ischemic stroke with a focus on inflammation will be discussed. PMID:23068990

  20. Racial/Ethnic Differences in the Associations of Overall and Central Body Fatness with Circulating Hormones and Metabolic Factors in US Men.

    PubMed

    Lopez, David S; Rohrmann, Sabine; Peskoe, Sarah B; Joshu, Corinne E; Tsilidis, Konstantinos K; Selvin, Elizabeth; Dobs, Adrian S; Kanarek, Norma; Canfield, Steven; Nelson, William G; Platz, Elizabeth A

    2017-04-01

    Racial/ethnic disparities in the associations of body fatness with hormones and metabolic factors remain poorly understood. Therefore, we evaluated whether the associations of overall and central body fatness with circulating sex steroid hormones and metabolic factors differ by race/ethnicity. Data from 1,243 non-Hispanic white (NHW), non-Hispanic black (NHB) and Mexican-American (MA) adult men in the third national health and nutrition examination survey (NHANES III) were analyzed. Waist circumference (central body fatness) was measured during the physical examination. Percent body fat (overall body fatness) was calculated from bioelectrical impedance. Associations were estimated by using weighted linear regression models to adjust the two measures of body fatness for each other. Waist circumference, but not percent body fat was inversely associated with total testosterone and SHBG in all three racial/ethnic groups after their mutual adjustment (all P < 0.0001). Percent body fat (P = 0.02), but not waist circumference was positively associated with total estradiol in NHB men; no association was present in NHW and MA men (P-interaction = 0.04). Waist circumference, but not body fat was strongly positively associated with fasting insulin (all P < 0.0001) and inversely associated with HDL cholesterol (all P ≤ 0.003) in all three racial/ethnic groups. Both percent body fat and waist circumference were positively associated with leptin (all P < 0.0001) in all three racial/ethnic groups. There was no strong evidence in the associations of sex hormones and metabolic factors with body fatness in different racial/ethnic groups. These findings should be further explored in prospective studies to determine their relevance in racial/ethnic disparities of chronic diseases.

  1. Hormones and sexuality in postmenopausal women: a psychophysiological study.

    PubMed

    Laan, E; van Lunsen, R H

    1997-06-01

    Sexual function, including vaginal atrophy, and hormonal status, were studied in 42 naturally postmenopausal women. Vaginal pulse amplitude and subjective sexual responses during self-induced erotic fantasy and during erotic films were compared with responses of a small number of premenopausal women. As predicted, vaginal atrophy was related to estrogens but not to complaints of vaginal dryness and dyspareunia. No significant relationship was found between hormones and sexual function. Unexpectedly, most of the few correlations that did reach significance involved prolactin. The fact that prolactin was negatively associated with sexual desire, sexual arousal and vaginal lubrication during sexual activity, suggests that psychosocial factors are more important than hormone levels in postmenopausal sexual function. Comparisons with a number of premenopausal women revealed that although postmenopausal women displayed lower vaginal pulse amplitude responses prior to erotic stimulation than the premenopausal women, this difference disappeared during subsequent erotic stimulation. We argued that this finding can be interpreted as being supportive of the notion that complaints of vaginal dryness and dyspareunia should not be attributed to vaginal atrophy associated with menopause. Rather, vaginal dryness and dyspareunia seem to reflect sexual arousal problems.

  2. Effect of growth hormone deficiency on brain structure, motor function and cognition.

    PubMed

    Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Chong, Wui K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone <6.7 µg/l) and idiopathic short stature (peak growth hormone >10 µg/l) underwent cognitive assessment, diffusion tensor imaging and volumetric magnetic resonance imaging prior to commencing growth hormone treatment. Total brain, corpus callosal, hippocampal, thalamic and basal ganglia volumes were determined using Freesurfer. Fractional anisotropy (a marker of white matter structural integrity) images were aligned and tract-based spatial statistics performed. Fifteen children (mean 8.8 years of age) with isolated growth hormone deficiency [peak growth hormone <6.7 µg/l (mean 3.5 µg/l)] and 14 controls (mean 8.4 years of age) with idiopathic short stature [peak growth hormone >10 µg/l (mean 15 µg/l) and normal growth rate] were recruited. Compared with controls, children with isolated growth hormone deficiency had lower Full-Scale IQ (P < 0.01), Verbal Comprehension Index (P < 0.01), Processing Speed Index (P < 0.05) and Movement-Assessment Battery for Children (P < 0.008) scores. Verbal Comprehension Index scores correlated significantly with insulin-like growth factor-1 (P < 0.03) and insulin-like growth factor binding protein-3 (P < 0.02) standard deviation scores in isolated growth hormone deficiency. The splenium of the corpus callosum, left globus pallidum, thalamus and hippocampus (P < 0.01) were significantly smaller; and corticospinal tract (bilaterally; P < 0.045, P < 0.05) and corpus callosum (P < 0.05) fractional anisotropy were significantly lower in the isolated growth hormone deficiency group. Basal ganglia volumes and bilateral corticospinal tract fractional anisotropy correlated significantly with Movement-Assessment Battery for Children scores, and

  3. Reproductive factors, menopausal hormone therapies and primary liver cancer risk: a systematic review and dose-response meta-analysis of observational studies.

    PubMed

    Zhong, Guo-Chao; Liu, Yan; Chen, Nan; Hao, Fa-Bao; Wang, Kang; Cheng, Jia-Hao; Gong, Jian-Ping; Ding, Xiong

    2016-12-01

    A striking gender disparity in the incidence and outcome of primary liver cancer (PLC) has been well recognized. Mounting evidence from basic research suggests that hormonal factors may be involved in the gender disparity of PLC. Whether hormonal exposures in human subjects are associated with PLC risk is largely unknown. Whether reproductive factors and use of menopausal hormone therapies (MHTs) in women are associated with PLC risk remains controversial. We conducted this study to clarify this issue. PubMed and EMBASE were searched to July, 2016 for studies published in English or Chinese. Observational studies (cohort, nested case-control and case-control) that provided risk estimates of reproductive factors, MHTs and PLC risk were eligible. The quality of included studies was determined based on the Newcastle-Ottawa quality assessment scale. Summary risk ratios (RRs) were calculated using a random-effects model. Dose-response analysis was conducted where possible. Fifteen peer-reviewed studies, involving 1795 PLC cases and 2 256 686 women, were included. Overall meta-analyses on parity and PLC risk did not find any significant associations; however, when restricting to studies with PLC cases ≥100, increasing parity was found to be significantly associated with a decreased risk of PLC [RR for the highest versus lowest parity 0.67, 95% CI 0.52, 0.88; RR for parous versus nulliparous 0.71, 95% CI 0.53, 0.94; RR per one live birth increase 0.93, 95% CI 0.88, 0.99]. A J-shaped relationship between parity and PLC risk was identified (P non-linearity  < 0.01). Compared with never users, the pooled RRs of PLC were 0.60 (95% CI 0.37, 0.96) for ever users of MHT, 0.73 (95% CI 0.46, 1.17) for ever users of estrogen-only therapy (ET) and 0.67 (95% CI 0.45, 1.02) for ever users of estrogen-progestin therapy (EPT). The pooled RR of PLC for the oldest versus youngest category of menarcheal age was 0.50 (95% CI 0.32, 0.79). Oophorectomy was significantly associated with an

  4. Thyroid Hormone in the Clinic and Breast Cancer.

    PubMed

    Hercbergs, Aleck; Mousa, Shaker A; Leinung, Matthew; Lin, Hung-Yun; Davis, Paul J

    2018-06-01

    There is preclinical and recent epidemiological evidence that thyroid hormone supports breast cancer. These observations raise the issue of whether management of breast cancer in certain settings should include consideration of reducing the possible contribution of thyroid hormone to the advancement of the disease. In a preliminary experience, elimination of the clinical action of endogenous L-thyroxine (T 4 ) in patients with advanced solid tumors, including breast cancer, has favorably affected the course of the cancer, particularly when coupled with administration of exogenous 3,5,3'-triiodo-L-thyronine (T 3 ) (euthyroid hypothyroxinemia). We discuss in the current brief review the possible clinical settings in which to consider whether endogenous thyroid hormone-or exogenous thyroid hormone in the patient with hypothyroidism and coincident breast cancer-is significantly contributing to breast cancer outcome.

  5. The behavior of renal-regulating hormones during hypogravic stress

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    The regulation of fluid and electrolyte behavior during space flight is believed to be under control, in large part, of a group of hormones which have their major effects on renal excretion. The hormones studied include renin-angitensin, aldosterone, and antidiuretic hormone (ADH). The regulatory systems of these renal-regulating hormones as they act individually and in concert with each other are analyzed. The analysis is based on simulations of the mathematical model of Guyton. A generalized theory is described which accounts for both short-term and long-term behavior of this set of hormones.

  6. Growth hormone-releasing hormone stimulates and somatostatin inhibits the release of a novel protein by cultured rat pituitary cells.

    PubMed

    Tachibana, K; Marquardt, H; Yokoya, S; Friesen, H G

    1988-10-01

    We have reported that the secretion of at least 17 distinct peptides [including rat (rGH)] GH by cultured rat pituitary cells was stimulated by GH-releasing hormone and inhibited by somatostatin, when analyzed by two-dimensional polyacrylamide gel electrophoresis. Three of these peptides (no. 23, 24, and 25) were not rGH immunoreactive. In order to determine whether these three peptides are fragments, degradation products or posttranscriptionally modified forms of rGH, rGH and peptide no. 23 were characterized structurally. From partial peptide maps of rGH and peptide no. 23 by V8 protease or chymotrypsin, it appeared that these peptides were not related to each other. By N-terminal microsequencing of two-dimensional polyacrylamide gel electrophoresis purified peptide, we have obtained the sequence of 24 N-terminal amino acid residues of peptide no. 23. This sequence has no significant homology with rGH or any other reported protein sequence. Antiserum was generated against a synthetic oligopeptide corresponding to amino acid residues 3-24 of peptide no. 23. The antiserum cross-reacted with peptides no. 23, 24, and 25 upon Western blot analysis. These results indicate that peptide no. 23 has a novel structure unrelated to other pituitary hormones. Since its secretion is influenced by GH-releasing hormone and somatostatin, peptide no. 23 may represent a previously unrecognized structurally unique growth factor.

  7. Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD).

    PubMed

    Alatzoglou, Kyriaki S; Dattani, Mehul T

    2012-01-01

    Isolated growth hormone deficiency (IGHD) may be congenital, often due to genetic mutations, or acquired as a result of other factors such as cranial irradiation. The commonest genes implicated in its genetic etiology are those encoding growth hormone (GH1) and the receptor for GH-releasing hormone (GHRHR). Rarely, IGHD may be caused by mutations in transcription factors (HESX1, SOX3, OTX2) or be the first presentation before the development of other pituitary hormone deficiencies. IGHD has been classified in four genetic forms (type IA, IB, II and III). Despite the increasing number of genes implicated in the etiology of IGHD, mutations in known genes account only for a small percentage of cases; therefore, other as yet unidentified factors may be implicated in its etiology. Although there is no strict genotype/phenotype correlation in patients with IGHD, there are some emerging patterns that may guide us towards a genetic diagnosis of the condition. There is increasing understanding that the phenotype of patients with IGHD is highly variable and sometimes even evolving, dictating the need for long term follow-up in these cases.

  8. Gastrointestinal hormones regulating appetite

    PubMed Central

    Chaudhri, Owais; Small, Caroline; Bloom, Steve

    2006-01-01

    The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal motility and secretion have been well characterized. By altering the rate at which nutrients are delivered to compartments of the alimentary canal, the control of food intake arguably constitutes another point at which intervention may promote efficient digestion and nutrient uptake. In recent decades, gut hormones have come to occupy a central place in the complex neuroendocrine interactions that underlie the regulation of energy balance. Many gut peptides have been shown to influence energy intake. The most well studied in this regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1 (GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the subject of ongoing investigation. Local effects such as the inhibition of gastric emptying might contribute to the decrease in energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and area postrema are characterized by a deficiency of the blood–brain barrier. Some investigators argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating factors. Extensive reciprocal connections exist between these areas and the hypothalamic paraventricular nucleus and other energy-regulating centres of the

  9. Exogenous hormone use, reproductive history and risk of adult myeloid leukaemia.

    PubMed

    Poynter, J N; Fonstad, R; Blair, C K; Roesler, M; Cerhan, J R; Hirsch, B; Nguyen, P; Ross, J A

    2013-10-01

    A hormonal aetiology is one explanation for the lower incidence of myeloid leukaemia in women compared with men. In this population-based case-control study, we evaluated associations between exogenous hormone use and reproductive history and myeloid leukaemia, overall and by disease subtype. We observed a suggestive association between oral contraceptive use and acute myeloid leukaemia (odds ratio=0.55, 95% confidence interval=0.32-0.96). Hormone replacement therapy and reproductive factors were not associated with risk. Despite the biological plausibility for a role of oestrogen in leukaemogenesis, other aetiologic factors are likely to explain the differing incidence rates in males and females.

  10. Impact of Reproductive History and Exogenous Hormone Use on Cognitive Function in Midlife and Late Life

    PubMed Central

    Karim, Roksana; Dang, Ha; Henderson, Victor W.; Hodis, Howard N.; St John, Jan; Brinton, Roberta D.; Mack, Wendy J.

    2016-01-01

    Background/objectives Given the potent role of sex hormones on brain chemistry and function, we investigated the association of reproductive history indicators of hormonal exposures, including reproductive period, pregnancy, and use of hormonal contraceptives, on mid- and late-life cognition in postmenopausal women. Design Analysis of baseline data from two randomized clinical trials, the Women’s Isoflavone Soy Health (WISH) and the Early vs Late Intervention Trial of Estradiol (ELITE). Setting University academic research center Participants 830 naturally menopausal women Measurements Participants were uniformly evaluated with a cognitive battery and a structured reproductive history. Outcomes were composite scores for verbal episodic memory, executive functions, and global cognition. Reproductive variables included ages at pregnancies, menarche, and menopause, reproductive period, number of pregnancies, and use of hormones for contraception and menopausal symptoms. Multivariable linear regression evaluated associations between cognitive scores (dependent variable) and reproductive factors (independent variables), adjusting for age, race/ethnicity, income and education. Results On multivariable modeling, age at menarche ≥ 13 years of age was inversely associated with global cognition (p= 0.05). Last pregnancy after age 35 was positively associated with verbal memory (p=0.03). Use of hormonal contraceptives was positively associated with global cognition (p trend=0.04), and verbal memory (p trend=0.007). The association between hormonal contraceptive use and verbal memory and executive functions was strongest for more than 10 years of use. Reproductive period was positively associated with global cognition (p=0.04) and executive functions (p=0.04). Conclusion In this sample of healthy postmenopausal women, reproductive life events related to sex hormones, including earlier age at menarche, later age at last pregnancy, length of reproductive period, and use of

  11. Do deficiencies in growth hormone and insulin-like growth factor-1 (IGF-1) shorten or prolong longevity?

    PubMed

    Laron, Zvi

    2005-02-01

    Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.

  12. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth?

    PubMed Central

    Devesa, Jesús; Almengló, Cristina; Devesa, Pablo

    2016-01-01

    In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown. PMID:27773998

  13. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  14. Sex hormones and the genesis of autoimmunity.

    PubMed

    Ackerman, Lindsay S

    2006-03-01

    The sexually dimorphic prevalence of autoimmune disease remains one of the most intriguing clinical observations among this group of disorders. While sex hormones have long been recognized for their roles in reproductive functions, within the past 2 decades scientists have found that sex hormones are integral signaling modulators of the mammalian immune system. Sex hormones have definitive roles in lymphocyte maturation, activation, and synthesis of antibodies and cytokines. Sex hormone expression is altered among patients with autoimmune disease, and this variation of expression contributes to immune dysregulation. English-language literature from the last 10 years was reviewed to examine the relationship between sex hormones and the function of the mammalian immune system. Approximately 50 publications were included in this review, and the majority were controlled trials with investigator blinding that compared both male and female diseased and normal subjects. The review provided basic knowledge regarding the broad impact of sex hormones on the immune system and how abnormal sex hormone expression contributes to the development and maintenance of autoimmune phenomena, with a focus on systemic lupus erythematosus, as models of "lupus-prone" mice are readily available. Sex hormones affect the function of the mammalian immune system, and sex hormone expression is different in patients with systemic lupus erythematosus than in healthy subjects. Sex hormones play a role in the genesis of autoimmunity. Future research may provide a therapeutic approach that is capable of altering disease pathogenesis, rather than targeting disease sequelae.

  15. The common molecular players in plant hormone crosstalk and signaling.

    PubMed

    Ohri, Puja; Bhardwaj, Renu; Bali, Shagun; Kaur, Ravinderjit; Jasrotia, Shivam; Khajuria, Anjali; Parihar, Ripu D

    2015-01-01

    Plant growth and development is under the control of mutual interactions among plant hormones. The five classical categories of plant hormones include auxins, cytokinins, gibberellins, abscisic acid and ethylene. Additionally, newer classes of plant hormones have been recognized like brassinosteroids, jasmonic acid, salicylic acid and polyamines. These hormones play significant roles in regulating the plant growth and development. Various receptors and key signaling components of these hormones have been studied and identified. At genetic level, crosstalk among the various plant hormones is found to be antagonistic or synergistic. In addition, components of signaling pathway of one plant hormone interact with the signaling components of other hormone. Thus, an attempt has been made to review the literature regarding the role of plant hormones in plant physiology and the common molecular players in their signaling and crosstalk.

  16. The POU Factor Ventral Veins Lacking/Drifter Directs the Timing of Metamorphosis through Ecdysteroid and Juvenile Hormone Signaling

    PubMed Central

    Chaieb, Leila; Koyama, Takashi; Sarwar, Prioty; Mirth, Christen K.; Smith, Wendy A.; Suzuki, Yuichiro

    2014-01-01

    Although endocrine changes are known to modulate the timing of major developmental transitions, the genetic mechanisms underlying these changes remain poorly understood. In insects, two developmental hormones, juvenile hormone (JH) and ecdysteroids, are coordinated with each other to induce developmental changes associated with metamorphosis. However, the regulation underlying the coordination of JH and ecdysteroid synthesis remains elusive. Here, we examined the function of a homolog of the vertebrate POU domain protein, Ventral veins lacking (Vvl)/Drifter, in regulating both of these hormonal pathways in the red flour beetle, Tribolium castaneum (Tenebrionidae). RNA interference-mediated silencing of vvl expression led to both precocious metamorphosis and inhibition of molting in the larva. Ectopic application of a JH analog on vvl knockdown larvae delayed the onset of metamorphosis and led to a prolonged larval stage, indicating that Vvl acts upstream of JH signaling. Accordingly, vvl knockdown also reduced the expression of a JH biosynthesis gene, JH acid methyltransferase 3 (jhamt3). In addition, ecdysone titer and the expression of the ecdysone response gene, hormone receptor 3 (HR3), were reduced in vvl knockdown larvae. The expression of the ecdysone biosynthesis gene phantom (phm) and spook (spo) were reduced in vvl knockdown larvae in the anterior and posterior halves, respectively, indicating that Vvl might influence ecdysone biosynthesis in both the prothoracic gland and additional endocrine sources. Injection of 20-hydroxyecdysone (20E) into vvl knockdown larvae could restore the expression of HR3 although molting was never restored. These findings suggest that Vvl coordinates both JH and ecdysteroid biosynthesis as well as molting behavior to influence molting and the timing of metamorphosis. Thus, in both vertebrates and insects, POU factors modulate the production of major neuroendocrine regulators during sexual maturation. PMID:24945490

  17. Growth Hormone and Insulin-Like Growth Factor-I in the Transition from Normal Mammary Development to Preneoplastic Mammary Lesions

    PubMed Central

    Kleinberg, David L.; Wood, Teresa L.; Furth, Priscilla A.; Lee, Adrian V.

    2009-01-01

    Adult female mammary development starts at puberty and is controlled by tightly regulated cross-talk between a group of hormones and growth factors. Although estrogen is the initial driving force and is joined by luteal phase progesterone, both of these hormones require GH-induced IGF-I in the mammary gland in order to act. The same group of hormones, when experimentally perturbed, can lead to development of hyperplastic lesions and increase the chances, or be precursors, of mammary carcinoma. For example, systemic administration of GH or IGF-I causes mammary hyperplasia, and overproduction of IGF-I in transgenic animals can cause the development of usual or atypical hyperplasias and sometimes carcinoma. Although studies have clearly demonstrated the transforming potential of both GH and IGF-I receptor in cell culture and in animals, debate remains as to whether their main role is actually instructive or permissive in progression to cancer in vivo. Genetic imprinting has been shown to occur in precursor lesions as early as atypical hyperplasia in women. Thus, the concept of progression from normal development to cancer through precursor lesions sensitive to hormones and growth factors discussed above is gaining support in humans as well as in animal models. Indeed, elevation of estrogen receptor, GH, IGF-I, and IGF-I receptor during progression suggests a role for these pathways in this process. New agents targeting the GH/IGF-I axis may provide a novel means to block formation and progression of precursor lesions to overt carcinoma. A novel somatostatin analog has recently been shown to prevent mammary development in rats via targeted IGF-I action inhibition at the mammary gland. Similarly, pegvisomant, a GH antagonist, and other IGF-I antagonists such as IGF binding proteins 1 and 5 also block mammary gland development. It is, therefore, possible that inhibition of IGF-I action, or perhaps GH, in the mammary gland may eventually play a role in breast cancer

  18. Hormones and Human and Nonhuman Primate Growth.

    PubMed

    Bernstein, Robin Miriam

    2017-01-01

    The aim of this paper was to review information pertaining to the hormonal regulation of nonhuman primate growth, with specific focus on the growth hormone (GH)-insulin-like growth factor (IGF) axis and adrenal androgens. Hormones of the GH-IGF axis are consistently associated with measures of growth - linear, weight, or both - during the growth period; in adulthood, concentrations of IGF-I, IGF-binding protein-3, and GH-binding protein are not associated with any measures of size. Comparing patterns of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) may be especially relevant for understanding whether the childhood stage of growth and development is unique to humans and perhaps other apes. Genetic, hormonal, and morphological data on adrenarche in other nonhuman primate species suggest that this endocrine transition is delayed in humans, chimpanzees, and possibly gorillas, while present very early in postnatal life in macaques. This suggests that although perhaps permitted by an extension of the pre-adolescent growth period, childhood builds upon existing developmental substrates rather than having been inserted de novo into an ancestral growth trajectory. Hormones can provide insight regarding the evolution of the human growth trajectory. © 2017 S. Karger AG, Basel.

  19. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, R.; Fiorotto, M. L.; Hill, L. A.; Malone, P. B.; Deaver, D. R.; Schwartz, R. J.

    1999-01-01

    Ectopic expression of a new serum protease-resistant porcine growth hormone-releasing hormone, directed by an injectable muscle-specific synthetic promoter plasmid vector (pSP-HV-GHRH), elicits growth in pigs. A single 10 mg intramuscular injection of pSP-HV-GHRH DNA followed by electroporation in three-week-old piglets elevated serum GHRH levels by twofold to fourfold, enhanced growth hormone secretion, and increased serum insulin-like growth factor-I by threefold to sixfold over control pigs. After 65 days the average body weight of the pigs injected with pSP-HV-GHRH was approximately 37% greater than the placebo-injected controls and resulted in a significant reduction in serum urea concentration, indicating a decrease in amino acid catabolism. Evaluation of body composition indicated a uniform increase in mass, with no organomegaly or associated pathology.

  20. Hormonal changes in humans during spaceflight.

    PubMed

    Strollo, F

    1999-01-01

    Readers of this review may feel that there is much more that we do not know about space endocrinology than what we know. Several reasons for this state of affairs have been given: 1. the complexity of the field of endocrinology with its still increasing number of known hormones, releasing factors and precursors, and of the interactions between them through various feedback mechanisms 2. the difficulty in separating the microgravity effects from the effects of stress from launch, isolation and confinement during flight, reentry, and postflight re-adaptation 3. the experimental limitations during flight, such as limited number of subjects, limited number of samples, impossibility of collecting triple samples for pulsatile hormones like growth hormone 4. the disturbing effects of countermeasures used by astronauts 5. the inadequacy of postflight samples for conclusions about inflight values 6. limitations of conclusions from animal experiments and space simulation studies The endocrinology field is divided in to nine systems or axes, which are successively reviewed: 1. Rapid bone demineralization in the early phase of spaceflight that, when unopposed, leads to catastrophic effects after three months but that slows down later. The endocrine mechanism, apart from the effect of exercise as a countermeasure, is not yet understood. 2. The hypothalamic-pituitary-adrenal axis is involved in stress reactions, which complicate our understanding and makes postflight analysis dubious. 3. In the hypothalamic-pituitary-gonadal axis, pulsatility poses a problem for obtaining representative values (e.g., for luteinizing hormone). Reproduction of rats in space is possible, but much more needs to be known about this aspect, particularly in women, before the advent of space colonies, but also in males because some evidence for reversible testicular dysfunction in space has been found. 4. The hypothalamic-pituitary-somato-mammotrophic axis involves prolactin and growth hormone. The

  1. Interactions between hormones and epilepsy.

    PubMed

    Taubøll, Erik; Sveberg, Line; Svalheim, Sigrid

    2015-05-01

    There is a complex, bidirectional interdependence between sex steroid hormones and epilepsy; hormones affect seizures, while seizures affect hormones thereby disturbing reproductive endocrine function. Both female and male sex steroid hormones influence brain excitability. For the female sex steroid hormones, progesterone and its metabolites are anticonvulsant, while estrogens are mainly proconvulsant. The monthly fluctuations in hormone levels of estrogen and progesterone are the basis for catamenial epilepsy described elsewhere in this issue. Androgens are mainly anticonvulsant, but the effects are more varied, probably because of its metabolism to, among others, estradiol. The mechanisms for the effects of sex steroid hormones on brain excitability are related to both classical, intracellularly mediated effects, and non-classical membrane effects due to binding to membrane receptors. The latter are considered the most important in relation to epilepsy. The different sex steroids can also be further metabolized within the brain to different neurosteroids, which are even more potent with regard to their effect on excitability. Estrogens potentiate glutamate responses, primarily by potentiating NMDA receptor activity, but also by affecting GABA-ergic mechanisms and altering brain morphology by increasing dendritic spine density. Progesterone and its main metabolite 5α-pregnan-3α-ol-20-one (3α-5α-THP) act mainly to enhance postsynaptic GABA-ergic activity, while androgens enhance GABA-activated currents. Seizures and epileptic discharges also affect sex steroid hormones. There are close anatomical connections between the temporolimbic system and the hypothalamus controlling the endocrine system. Several studies have shown that epileptic activity, especially mediated through the amygdala, alters reproductive function, including reduced ovarian cyclicity in females and altered sex steroid hormone levels in both genders. Furthermore, there is an asymmetric

  2. Therapeutic effect of exogenous ghrelin in the healing of gingival ulcers is mediated by the release of endogenous growth hormone and insulin-like growth factor-1.

    PubMed

    Cieszkowski, J; Warzecha, Z; Ceranowicz, P; Ceranowicz, D; Kusnierz-Cabala, B; Pedziwiatr, M; Dembinski, M; Ambrozy, T; Kaczmarzyk, T; Pihut, M; Wieckiewicz, M; Olszanecki, R; Dembinski, A

    2017-08-01

    Ghrelin, an acylated 28-amino acid polypeptide, was primary isolated from the stomach, and the stomach is a main source of circulating ghrelin. Ghrelin strongly and dose-dependently stimulates release of growth hormone from the anterior pituitary, as well as increases food intake and fat deposition. Previous studies showed that ghrelin exhibits protective and therapeutic effect in different parts of the gastrointestinal system, including the oral cavity. The aim of present study was to examine the role of growth hormone and insulin-like growth factor-1 (IGF-1) in the healing of gingival ulcers. Studies were performed on rats with the intact pituitary gland and hypophysectomized rats. In anesthetized rats, chronic ulcers of the gum were induced by acetic acid. Rats were treated intraperitoneally twice a day with saline or ghrelin (4, 8 or 16 nmol/kg/dose) for six days. In pituitary-intact rats, administration of ghrelin significantly increased serum concentration of growth hormone and IGF-1 and this effect was associated with a significant increase in the healing rate of gingival ulcers. Moreover, treatment with ghrelin increased mucosal blood flow and DNA synthesis in the gum, while a local inflammation was decreased what was observed as a reduction in mucosal concentration of pro-inflammatory interleukin-1β. Hypophysectomy decreased serum level of growth hormone below a detection limit; whereas serum concentration of IGF-1 was reduced by 90%. On the other hand, removal of the pituitary gland was without any significant effect on the healing rate of gingival ulcers or on the ulcer-induced increase in DNA synthesis and concentration of pro-inflammatory interleukin-1β in gingival mucosa. Administration of ghrelin failed to affect serum level of growth hormone and IGF-1 in hypophysectomized rats, and was without any effect on the healing rate of gingival ulcers, mucosal blood flow, DNA synthesis or concentration of interleukin-1β in gingival mucosa. Neither

  3. Hormone modeling in preterm neonates: establishment of pituitary and steroid hormone reference intervals.

    PubMed

    Greaves, Ronda F; Pitkin, Janne; Ho, Chung Shun; Baglin, James; Hunt, Rodney W; Zacharin, Margaret R

    2015-03-01

    Reports suggest significant differences in serum levels of hormones in extremely preterm compared with late preterm and full-term infants. The purpose of this study was to develop reference intervals (RIs) for 3 pituitary hormones and 5 steroid hormones in serum of preterm infants. Blood samples were collected from 248 (128 male and 120 female) preterm neonates born between 24 and 32 weeks' gestation. PARTICIPANTS were recruited from 3 neonatal intensive care wards in Melbourne, Australia. No infant in this cohort had ambiguous genitalia or other endocrine abnormalities. All infants included in the RI determination survived beyond the equivalent of term. Serum was analyzed for prolactin, FSH, and LH by automated electrochemiluminescence immunoassay (Roche Cobas 8000-e601). Liquid chromatography coupled with tandem mass spectrometry was used for analysis of 17-hydroxyprogesterone, androstenedione, cortisol, cortisone, and testosterone. The robust method was applied to define the central 95% RI, after each hormone measure was transformed using a Box-Cox transformation to correct for asymmetry. RIs were established for 8 hormones. Gender-specific intervals were developed for FSH, LH, and testosterone. Cortisone and 17- hydroxyprogesterone required division based on gestational age, with neonates born at <30 weeks' gestation demonstrating higher levels than their older counterparts. Androstenedione, cortisol, and prolactin did not require any division within this cohort for RI assignment. This report provides the first characterization of serum steroids measured by mass spectrometry in preterm neonates, with the additional characterization of 3 pituitary hormones in infants born at ≤32 weeks' gestation. Use of these data allows for correct interpretation of results for very preterm neonates and reduces the risk of incorrect diagnosis due to misinterpretation of data.

  4. Impact of Sex Hormone Metabolism on the Vascular Effects of Menopausal Hormone Therapy in Cardiovascular Disease

    PubMed Central

    Masood, Durr-e-Nayab; Roach, Emir C.; Beauregard, Katie G.; Khalil, Raouf A.

    2010-01-01

    Epidemiological studies have shown that cardiovascular disease (CVD) is less common in pre-menopausal women (Pre-MW) compared to men of the same age or post-menopausal women (Post-MW), suggesting cardiovascular benefits of estrogen. Estrogen receptors (ERs) have been identified in the vasculature, and experimental studies have demonstrated vasodilator effects of estrogen/ER on the endothelium, vascular smooth muscle (VSM) and extracellular matrix. Several natural and synthetic estrogenic preparations have been developed for relief of menopausal vasomotor symptoms. However, whether menopausal hormone therapy (MHT) is beneficial in postmenopausal CVD remains controversial. Despite reports of vascular benefits of MHT from observational and experimental studies, randomized clinical trials (RCTs), such as the Heart and Estrogen/progestin Replacement Study (HERS) and the Women’s Health Initiative (WHI), have suggested that, contrary to expectations, MHT may increase the risk of CVD. These discrepancies could be due to age-related changes in sex hormone synthesis and metabolism, which would influence the effective dose of MHT and the sex hormone environment in Post-MW. Age-related changes in the vascular ER subtype, structure, expression, distribution, and post-ER signaling pathways in the endothelium and VSM, along with factors related to the design of RCTs, preexisting CVD condition, and structural changes in the blood vessels architecture have also been suggested as possible causes of MHT failure in CVD. Careful examination of these factors should help in identifying the causes of the changes in the vascular effects of estrogen with age. The sex hormone metabolic pathways, the active versus inactive estrogen metabolites, and their effects on vascular function, the mitochondria, the inflammatory process and angiogenesis should be further examined. Also, the genomic and non-genomic effects of estrogenic compounds should be viewed as integrated rather than discrete

  5. Relation between sex hormones and hepatocellular carcinoma.

    PubMed

    El Mahdy Korah, T; Abd Elfatah Badr, E; Mohamed Emara, M; Ahmed Samy Kohla, M; Gamal Saad Michael, G

    2016-11-01

    Males have higher incidence of hepatocellular carcinoma (HCC) than females. Sex hormones may be a risk factor. The aim was to determine the levels of sex hormones in male and female patients with HCC and cirrhosis versus controls and its possible relationship with HCC. This study was conducted on 90 subjects divided into 40 patients with HCC, 30 patients with liver cirrhosis and 20 apparently healthy subjects complete blood picture, liver function tests. Determination of AFP levels and hormonal assay of oestrogen, progesterone, total testosterone, prolactin, FSH and LH were performed on all subjects. Total testosterone levels were significantly decreased in the two patients groups compared with controls. While oestrogen levels were significantly decreased in the HCC group in comparison with other two groups, prolactin levels were significantly decreased in the HCC group compared with the liver cirrhosis group and increased in the liver cirrhosis group when compared to controls. FSH and LH levels were significantly increased in the HCC group when compared to controls. There is no significant correlation between sex hormones assay and both the size of HCC and degree of cirrhosis in both patient groups. It is concluded that there is no strong relation between sex hormones and HCC when the study was carried out on the levels of sex hormones in patients with HCC. © 2016 Blackwell Verlag GmbH.

  6. Formation of sex hormone transients resulting from attack of free radicals.

    PubMed

    Getoff, Nikola; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2013-03-01

    Transients of the sex hormones testosterone (TES) and estrone (E1) exhibit an impact on the carcinogenesis of most prostate and breast cancer types. For elucidation of involved reaction mechanisms, in vitro, experiments using γ-ray for generation of attacking hormone transients and UV-light (λ=254 nm) for excitation of hormone molecules were applied. Materials and Methods. Experiments in vitro (Escherichia coli AB1157) incubated with TES and E1, individually as well as in mixture with vitamin C (electron donor), were performed under γ-irradiation in water-alcohol (40/60) medium for clarifying-up the reaction mechanism. The hormone degradation/regeneration processes were studied by high performance liquid chromatography analysis. Independently of hormone molecular structure, the determining factor for the biological properties, such as carcinogenity, were found to be based on the hormone transients. The biological ability of these, however, depends on the chemical properties of the species attacking the corresponding hormone. Hormone degradation can be, at least partly, converted into hormone regeneration by electron transfer from an electron donor (e.g. vitamin C), when available during the period of status nascendi of the hormone radicals.

  7. [Somatostatin analogs for the treatment of advanced, hormone-refractory prostate cancer: a possibility for secondary hormonal ablation?].

    PubMed

    Schilling, D; Küfer, R; Kruck, S; Stenzl, A; Kuczyk, M A; Merseburger, A S

    2008-10-01

    Almost all patients with hormone-refractory prostate cancer under primary androgen deprivation therapy will develop progression, frequently initially marked by an asymptomatic increase of prostate-specific antigen (PSA). Recent data showed that taxane-based chemotherapy offers significant survival benefit to patients with advanced prostate cancer; however, the toxic side effects frequently exert a significant negative impact on the quality of life. At the androgen-independent stage of the cancer, before becoming hormone refractory, progression might still be delayed by secondary manipulation of either androgen or confounding receptors and their signaling pathways. Secondary hormonal manipulations traditionally included antiandrogen withdrawal, second-line antiandrogens, direct adrenal androgen inhibitors, estrogens, and progestins.We discuss the mode of action and application of somatostatin analogs as an emerging secondary hormonal treatment concept in patients with advanced prostate cancer on the basis of the current literature.

  8. Thyroiditis de Quervain. Are there predictive factors for long-term hormone-replacement?

    PubMed

    Schenke, S; Klett, R; Braun, S; Zimny, M

    2013-01-01

    Subacute thyroiditis is a usually self-limiting disease of the thyroid. However, approximately 0.5-15% of the patients require permanent thyroxine substitution. Aim was to determine predictive factors for the necessity of long-term hormone-replacement (LTH). We retrospectively reviewed the records of 72 patients with subacute thyroiditis. Morphological and serological parameters as well as type of therapy were tested as predictive factors of consecutive hypothyroidism. Mean age was 49 ± 11 years, f/m-ratio was 4.5 : 1. Thyroid pain and signs of hyperthyroidism were leading symptoms. Initial subclinical or overt hyperthyroidism was found in 20% and 37%, respectively. Within six months after onset 15% and 1.3% of the patients developed subclinical or overt hypothyroidism, respectively. At latest follow-up 26% were classified as liable to LTH. At onset the thyroid was enlarged in 64%, and at latest follow-up in 8.3%, with a significant reduction of the thyroid volume after three months. At the endpoint the thyroid volume was less in patients in the LTH group compared with the non-LTH group (41.7% vs. 57.2% of sex-adjusted upper norm, p = 0.041). Characteristic ultrasonographic features occurred in 74% of the patients in both lobes. Serological and morphological parameters as well as type of therapy were not related with the need of LTH. In this study the proportion of patients who received LTH was 26%. At the endpoint these patients had a lower thyroid volume compared with euthyroid patients. No predictive factors for LTH were found.

  9. p35 Regulates the CRM1-Dependent Nucleocytoplasmic Shuttling of Nuclear Hormone Receptor Coregulator-Interacting Factor 1 (NIF-1)

    PubMed Central

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W. Y.; Li, Zhen; Fu, Amy K. Y.; Ip, Nancy Y.

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators. PMID:25329792

  10. p35 regulates the CRM1-dependent nucleocytoplasmic shuttling of nuclear hormone receptor coregulator-interacting factor 1 (NIF-1).

    PubMed

    Zhao, Xiao-Su; Fu, Wing-Yu; Chien, Winnie W Y; Li, Zhen; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase, which plays critical roles in a wide spectrum of neuronal functions including neuronal survival, neurite outgrowth, and synapse development and plasticity. Cdk5 activity is controlled by its specific activators: p35 or p39. While knockout studies reveal that Cdk5/p35 is critical for neuronal migration during early brain development, functions of Cdk5/p35 have been unraveled through the identification of the interacting proteins of p35, most of which are Cdk5/p35 substrates. However, it remains unclear whether p35 can regulate neuronal functions independent of Cdk5 activity. Here, we report that a nuclear protein, nuclear hormone receptor coregulator (NRC)-interacting factor 1 (NIF-1), is a new interacting partner of p35. Interestingly, p35 regulates the functions of NIF-1 independent of Cdk5 activity. NIF-1 was initially discovered as a transcriptional regulator that enhances the transcriptional activity of nuclear hormone receptors. Our results show that p35 interacts with NIF-1 and regulates its nucleocytoplasmic trafficking via the nuclear export pathway. Furthermore, we identified a nuclear export signal on p35; mutation of this site or blockade of the CRM1/exportin-dependent nuclear export pathway resulted in the nuclear accumulation of p35. Intriguingly, blocking the nuclear export of p35 attenuated the nuclear accumulation of NIF-1. These findings reveal a new p35-dependent mechanism in transcriptional regulation that involves the nucleocytoplasmic shuttling of transcription regulators.

  11. Bone regeneration in experimental animals using calcium phosphate cement combined with platelet growth factors and human growth hormone.

    PubMed

    Emilov-Velev, K; Clemente-de-Arriba, C; Alobera-García, M Á; Moreno-Sansalvador, E M; Campo-Loarte, J

    2015-01-01

    Many substances (growth factors and hormones) have osteoinduction properties and when added to some osteoconduction biomaterial they accelerate bone neoformation properties. The materials included 15 New Zealand rabbits, calcium phosphate cement (Calcibon(®)), human growth hormone (GH), and plasma rich in platelets (PRP). Each animal was operated on in both proximal tibias and a critical size bone defect of 6mm of diameter was made. The animals were separated into the following study groups: Control (regeneration only by Calcibon®), PRP (regeneration by Calcibon® and PRP), GH (regeneration by Calcibon® and GH). All the animals were sacrificed at 28 days. An evaluation was made of the appearance of the proximal extreme of rabbit tibiae in all the animals, and to check the filling of the critical size defect. A histological assessment was made of the tissue response, the presence of new bone formation, and the appearance of the biomaterial. Morphometry was performed using the MIP 45 image analyser. ANOVA statistical analysis was performed using the Statgraphics software application. The macroscopic appearance of the critical defect was better in the PRP and the GH group than in the control group. Histologically greater new bone formation was found in the PRP and GH groups. No statistically significant differences were detected in the morphometric study between bone formation observed in the PRP group and the control group. Significant differences in increased bone formation were found in the GH group (p=0.03) compared to the other two groups. GH facilitates bone regeneration in critical defects filled with calcium phosphate cement in the time period studied in New Zealand rabbits. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  12. The interrelationships of thyroid and growth hormones: effect of growth hormone releasing hormone in hypo- and hyperthyroid male rats.

    PubMed

    Root, A W; Shulman, D; Root, J; Diamond, F

    1986-01-01

    Growth hormone (GH) and the thyroid hormones interact in the hypothalamus, pituitary and peripheral tissues. Thyroid hormone exerts a permissive effect upon the anabolic and metabolic effects of GH, and increases pituitary synthesis of this protein hormone. GH depresses the secretion of thyrotropin and the thyroid hormones and increases the peripheral conversion of thyroxine to triiodothyronine. In the adult male rat experimental hypothyroidism produced by ingestion of propylthiouracil depresses the GH secretory response to GH-releasing hormone in vivo and in vitro, reflecting the lowered pituitary stores of GH in the hypothyroid state. Short term administration of large amounts of thyroxine with induction of the hyperthyroid state does not affect the in vivo GH secretory response to GH-releasing hormone in this animal.

  13. The effects of treatment combining an agonist of gonadotropin-releasing hormone with growth hormone in pubertal patients with isolated growth hormone deficiency.

    PubMed

    Toublanc, J E; Couprie, C; Garnier, P; Job, J C

    1989-06-01

    The final height of patients treated with growth hormone for isolated growth hormone deficiency has, up to now, been subnormal, with a mean below -2 SD in the series reported, an insufficient height at the onset of puberty and a more or less accelerated bone maturation during puberty being two important factors of the poor results. A long-acting analogue of gonadoliberin, Trp6-GnRH, has been given to GH-treated patients with isolated growth hormone deficiency at the time they reached pubertal stage 2, in combination with unchanged doses of GH, for one year in 11 and for two years in 7 of them. It resulted in an increase in the height age/bone age ratio and a reduction of the height insufficiency for bone age. The increase was slight but significant after one year, and fair after two years, in spite of reduced annual growth rate. Post-analogue follow-up in 5 patients with continued GH treatment showed a good development of growth and of puberty. It is concluded that combination of the long-acting Trp6-GnRH analogue and GH for 1-2 years in patients with isolated growth hormone deficiency whose puberty starts with a very insufficient height may be an appropriate way to improve their growth parameters. Studies with increased doses of GH or increased frequency of injections could help to optimize the results. Several years of follow-up are needed for demonstrating the results on final height.

  14. Growth hormone and the heart.

    PubMed

    Cittadini, A; Longobardi, S; Fazio, S; Saccà, L

    1999-01-01

    Until a few years ago, growth hormone (GH) and insulin-like growth factor-1 (IGF-1) were considered essential only to the control of linear growth, glucose homeostasis, and for the maintenance of skeletal muscle mass. A large body of evidence recently coming from animal and human studies has unequivocally proven that the heart is a target organ for the GH/IGF-1 axis. Specifically GH exerts both direct and indirect cardiovascular actions. Among the direct effects, the ability of GH to trigger cardiac tissue growth plays a pivotal role. Another direct effect is to augment cardiac contractility, independent of myocardial growth. Direct effects of GH also include the improvement of myocardial energetics and mechanical efficiency. Indirect effects of GH on the heart include decreased peripheral vascular resistance (PVR), expansion of blood volume, increased glomerular filtration rate, enhanced respiratory activity, increased skeletal muscle performance, and psychological well-being. Among them, the most consistently found is the decrease of PVR. GH may also raise preload through its sodium-retaining action and its interference with the hormonal system that regulates water and electrolyte metabolism. Particularly important is the effect of GH on skeletal muscle mass and performance. Taking into account that heart failure is characterized by left ventricular dilation, reduced cardiac contractility, and increase of wall stress and peripheral vascular resistance, GH may be beneficial for treatment of heart failure. Animal studies and preliminary human trials have confirmed the validity of the GH approach to the treatment of heart failure. Larger placebo-controlled human studies represent the main focus of future investigations.

  15. Seasonal response of ghrelin, growth hormone, and insulin-like growth factor I in the free-ranging Florida manatee (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Tighe, Rachel L; Bonde, Robert K.; Avery, Julie P.

    2016-01-01

    Seasonal changes in light, temperature, and food availability stimulate a physiological response in an animal. Seasonal adaptations are well studied in Arctic, Sub-Arctic, and hibernating mammals; however, limited studies have been conducted in sub-tropical species. The Florida manatee (Trichechus manatus latirostris), a sub-tropical marine mammal, forages less during colder temperatures and may rely on adipose stores for maintenance energy requirements. Metabolic hormones, growth hormone (GH), insulin-like growth factor (IGF)-I, and ghrelin influence growth rate, accretion of lean and adipose tissue. They have been shown to regulate seasonal changes in body composition. The objective of this research was to investigate manatee metabolic hormones in two seasons to determine if manatees exhibit seasonality and if these hormones are associated with seasonal changes in body composition. In addition, age related differences in these metabolic hormones were assessed in multiple age classes. Concentrations of GH, IGF-I, and ghrelin were quantified in adult manatee serum using heterologous radioimmunoassays. Samples were compared between short (winter) and long (summer) photoperiods (n = 22 male, 20 female) and by age class (adult, juvenile, and calf) in long photoperiods (n = 37). Short photoperiods tended to have reduced GH (p = 0.08), greater IGF-I (p = 0.01), and greater blubber depth (p = 0.03) compared with long photoperiods. No differences were observed in ghrelin (p = 0.66). Surprisingly, no age related differences were observed in IGF-I or ghrelin concentrations (p > 0.05). However, serum concentrations of GH tended (p = 0.07) to be greater in calves and juveniles compared with adults. Increased IGF-I, greater blubber thickness, and reduced GH during short photoperiod suggest a prioritization for adipose deposition. Whereas, increased GH, reduced blubber thickness, and decreased IGF-I in long photoperiod suggest prioritization of lean tissue

  16. Exercise associated hormonal signals as powerful determinants of an effective fat mass loss.

    PubMed

    Bajer, B; Vlcek, M; Galusova, A; Imrich, R; Penesova, A

    2015-07-01

    Obesity management for achieving an effective weight loss includes dietary modification and exercise [resistance (strength), endurance (cardiovascular) or intervals training (high-intensity intermittent exercise)]. Regular exercise acutely increases fat oxidation, which induces loss of fat mass and increases energy expenditure. Moreover, it has a positive effect on the physical (improved insulin sensitivity, lipid profile, etc.) and mental health (mood, cognition, memory, sleep, etc.). Endocrine responses to muscle actions are affected by many factors, including the exercise muscle groups (lower and upper body), load/volume, time-under tension, and rest-period intervals between sets, training status, gender, and age. The aim of this review is to summarize, evaluate, and clarify the literature data focusing on the endocrine responses to different types of exercise, including the frequency, intensity, and type of movement with regard to the fat loss strategies. Many studies have investigated anabolic [growth hormone, insulin-like growth factor-1 (IGF-1), testosterone] and gluco- and appetite- regulatory (insulin, cortisol, ghrelin) hormone responses and adaptations of skeletal muscles to exercise. Muscle tissue is a critical endocrine organ, playing important role in the regulation of several physiological and metabolic events. Moreover, we are also describing the response of some other substances to exercise, such as myokines [irisin, apelin, brain-derived neurotrophic factor (BDNF), myostatin, and fibroblast growth factor 21 (FGF21)]. It is proposed that reducing intra-abdominal fat mass and increasing cardiorespiratory fitness through improving nutritional quality, reducing sedentary behavior, and increase the participation in physical activity/exercise, might be associated with clinical benefits, sometimes even in the absence of weight loss.

  17. The influence of ovarian factors on the somatostatin-growth hormone system during the postnatal growth and sexual development in lambs.

    PubMed

    Wańkowska, Marta; Polkowska, Jolanta; Misztal, Tomasz; Romanowicz, Katarzyna

    2012-07-01

    The aim of the study was to elucidate the effects of ovarian hormones on somatostatin in the hypothalamic neurons and growth hormone (GH) secretion during the postnatal growth and development of sheep. The study was performed on 9-week-old (infantile) lambs that were ovary-intact (OVI) or ovariectomized (OVX) at 39 days of age, and on 16-week-old (juvenile) lambs that were OVI or OVX at 88 days of age. Hormones in neurons and somatotropic cells were assayed with immunohistochemistry and radioimmunoassay. Following ovariectomy, immunoreactive somatostatin was more abundant (p<0.05) in the hypothalamus of infantile lambs, whereas in juvenile lambs it was more abundant (p<0.05) in the periventricular nucleus but reduced (p<0.01) in the median eminence. In contrast to somatostatin in the hypothalamus, the content of immunoreactive GH in the hypophysis was less in OVX infantile lambs, but greater in OVX juvenile lambs (p<0.05). Basal blood serum concentrations of GH were greater (p<0.05) in OVX infantile lambs, whereas in OVX juvenile lambs, mean and basal concentrations of GH and amplitude of GH pulses were less than in OVI lambs (p<0.05). The postnatal increase in body weight was greatest in middle-late infancy (p<0.01). The body weight did not differ (p>0.05) between OVI and OVX lambs. In conclusion, ovarian factors may inhibit the GH secretion in infantile lambs but enhance the GH secretion in juvenile lambs. Transition to puberty, as related to the growth rate, appears to be due mainly to change in gonadal influence on the somatostatin neurosecretion. A stimulation of somatostatin output in the median eminence by gonadal factors in infancy is followed by a stimulation of somatostatin accumulation after infancy. Thus, ovarian factors modulate mechanisms within the somatotropic system of lambs to synchronize the somatic growth with sexual development. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. The Barrier Within: Endothelial Transport of Hormones

    PubMed Central

    Kolka, Cathryn M.; Bergman, Richard N.

    2015-01-01

    Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease. PMID:22875454

  19. The barrier within: endothelial transport of hormones.

    PubMed

    Kolka, Cathryn M; Bergman, Richard N

    2012-08-01

    Hormones are involved in a plethora of processes including development and growth, metabolism, mood, and immune responses. These essential functions are dependent on the ability of the hormone to access its target tissue. In the case of endocrine hormones that are transported through the blood, this often means that the endothelium must be crossed. Many studies have shown that the concentrations of hormones and nutrients in blood can be very different from those surrounding the cells on the tissue side of the blood vessel endothelium, suggesting that transport across this barrier can be rate limiting for hormone action. This transport can be regulated by altering the surface area of the blood vessel available for diffusion through to the underlying tissue or by the permeability of the endothelium. Many hormones are known to directly or indirectly affect the endothelial barrier, thus affecting their own distribution to their target tissues. Dysfunction of the endothelial barrier is found in many diseases, particularly those associated with the metabolic syndrome. The interrelatedness of hormones may help to explain why the cluster of diseases in the metabolic syndrome occur together so frequently and suggests that treating the endothelium may ameliorate defects in more than one disease. Here, we review the structure and function of the endothelium, its contribution to the function of hormones, and its involvement in disease.

  20. Hormones and the Resistance of Women to Paracoccidioidomycosis

    PubMed Central

    Shankar, Jata; Restrepo, Angela; Clemons, Karl V.; Stevens, David A.

    2011-01-01

    Summary: Paracoccidioidomycosis, one of the most important endemic and systemic mycoses in Latin America, presents several clinical pictures. Epidemiological studies indicate a striking rarity of disease (but not infection) in females, but only during the reproductive years. This suggested a hormonal interaction between female hormones and the etiologic dimorphic fungus Paracoccidioides brasiliensis. Many fungi have been shown to use hormonal (pheromonal) fungal molecules for intercellular communication, and there are increasing numbers of examples of interactions between mammalian hormones and fungi, including the specific binding of mammalian hormones by fungal proteins, and suggestions of mammalian hormonal modulation of fungal behavior. This suggests an evolutionary conservation of hormonal receptor systems. We recount studies showing the specific hormonal binding of mammalian estrogen to proteins in P. brasiliensis and an action of estrogen to specifically block the transition from the saprophytic form to the invasive form of the fungus in vitro. This block has been demonstrated to occur in vivo in animal studies. These unique observations are consistent with an estrogen-fungus receptor-mediated effect on pathogenesis. The fungal genes responsive to estrogen action are under study. PMID:21482727

  1. The effects of hormones and physical exercise on hippocampal structural plasticity.

    PubMed

    Triviño-Paredes, Juan; Patten, Anna R; Gil-Mohapel, Joana; Christie, Brian R

    2016-04-01

    The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.e., intrinsic modulators) and physical exercise (i.e., an extrinsic modulator) can differentially modulate hippocampal plasticity in general and adult hippocampal neurogenesis in particular. Specifically, we provide an overview of the effects of sex hormones, stress hormones, and metabolic hormones on hippocampal structural plasticity and adult hippocampal neurogenesis. In addition, we also discuss how physical exercise modulates these forms of hippocampal plasticity, giving particular emphasis on how this modulation can be affected by variables such as exercise regime, duration, and intensity. Understanding the neurobiological mechanisms underlying the modulation of hippocampal structural plasticity by intrinsic and extrinsic factors will impact the design of new therapeutic approaches aimed at restoring hippocampal plasticity following brain injury or neurodegeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cardioprotective effects of growth hormone-releasing hormone agonist after myocardial infarction

    PubMed Central

    Kanashiro-Takeuchi, Rosemeire M.; Tziomalos, Konstantinos; Takeuchi, Lauro M.; Treuer, Adriana V.; Lamirault, Guillaume; Dulce, Raul; Hurtado, Michael; Song, Yun; Block, Norman L.; Rick, Ferenc; Klukovits, Anna; Hu, Qinghua; Varga, Jozsef L.; Schally, Andrew V.; Hare, Joshua M.

    2010-01-01

    Whether the growth hormone (GH)/insulin-like growth factor 1(IGF-1) axis exerts cardioprotective effects remains controversial; and the underlying mechanism(s) for such actions are unclear. Here we tested the hypothesis that growth hormone-releasing hormone (GHRH) directly activates cellular reparative mechanisms within the injured heart, in a GH/IGF-1 independent fashion. After experimental myocardial infarction (MI), rats were randomly assigned to receive, during a 4-week period, either placebo (n = 14), rat recombinant GH (n = 8) or JI-38 (n = 8; 50 µg/kg per day), a potent GHRH agonist. JI-38 did not elevate serum levels of GH or IGF-1, but it markedly attenuated the degree of cardiac functional decline and remodeling after injury. In contrast, GH administration markedly elevated body weight, heart weight, and circulating GH and IGF-1, but it did not offset the decline in cardiac structure and function. Whereas both JI-38 and GH augmented levels of cardiac precursor cell proliferation, only JI-38 increased antiapoptotic gene expression. The receptor for GHRH was detectable on myocytes, supporting direct activation of cardiac signal transduction. Collectively, these findings demonstrate that within the heart, GHRH agonists can activate cardiac repair after MI, suggesting the existence of a potential signaling pathway based on GHRH in the heart. The phenotypic profile of the response to a potent GHRH agonist has therapeutic implications. PMID:20133784

  3. Environmental, dietary, and hormonal factors in the regulation of seasonal breeding in free-living female Indian rose-ringed parakeets (Psittacula krameri).

    PubMed

    Sailaja, R; Kotak, V C; Sharp, P J; Schmedemann, R; Haase, E

    1988-12-01

    The roles of environmental, dietary, and hormonal factors in the timing of seasonal breeding were assessed in free-living female Indian rose-ringed parakeets, Psittacula krameri, in northwest India (22 degrees 2'N, 73 degrees E). The ovaries and oviducts began to enlarge in January, were fully developed in February, and began to regress in March. During this time there was no significant change in the concentration of plasma luteinizing hormone (LH) or estradiol. The concentration of plasma LH decreased (P less than 0.01) at the end of the breeding season. Pair bond formation occurred between September and December and was associated with an increase in levels of plasma LH but no change in plasma estradiol. Concentrations of plasma testosterone (T) and 5 alpha-dihydrotestosterone (5 alpha-DHT) did not vary significantly during the year and were similar to those in males except for higher values of 5 alpha-DHT and lower values of T during the pre- and postbreeding periods, respectively. The similar levels of plasma androgens in both sexes may be related to the equal roles that both sexes play in the defence of their nest holes. An analysis of crop sac contents showed that the birds fed chiefly on pigeon peas (Cajanus cajan) during the breeding season and on cereal grains at other times of the year. It is suggested that pigeon peas provide the extra nutrients, including calcium, required for egg production. Since pigeon peas ripen between November and March, the production of the crop may play a role in the timing of seasonal breeding. A further factor appears to be competition for nest sites. By breeding in winter, the parakeet avoids competing with other species which nest in holes.

  4. Neuroendocrine factors affecting the glycogen metabolism of purified Mytilus edulis glycogen cells: partial characterization of the putative glycogen mobilization hormone--demonstration of a factor that stimulates glycogen synthesis.

    PubMed

    Robbins, I; Lenoir, F; Mathieu, M

    1991-04-01

    A putative glycogen mobilizing hormone (GMH) from the marine mussel Mytilus edulis L. has been partially characterized. GMH activity is present in the cerebral ganglia and the hemolymph serum and promotes the mobilization of glycogen in isolated glycogen cells. The cerebral GMH is trypsin sensitive and partially heat labile and has an apparent molecular mass of greater than 20 kDa. Following fractionation of cerebral extracts by molecular mass, a second factor, with a molecular mass of ca. 1.5 kDa, was discovered. This factor stimulates post-incubation incorporation of 14C into glycogen in isolated glycogen cells.

  5. Changes in ecdysteroid levels and expression patterns of ecdysteroid-responsive factors and neuropeptide hormones during the embryogenesis of the blue crab, Callinectes sapidus.

    PubMed

    Techa, Sirinart; Alvarez, Javier V; Sook Chung, J

    2015-04-01

    Embryogenesis requires the involvement and coordination of multiple networks of various genes, according to a timeline governing development. Crustacean embryogenesis usually includes the first molt, a process that is known to be positively controlled by ecdysteroids. We determined the amounts of ecdysteroids, as well as other related factors: the ecdysone receptor (CasEcR), the retinoid X receptor (CasRXR), the molt-inhibiting hormone (CasMIH), and crustacean hyperglycemic hormone (CasCHH) during the ovarian and embryonic developments of Callinectes sapidus. In summary, the ovaries at stages 1-4 have expression levels of maternal CasEcR and CasRXR 10-50 times higher than levels seen in embryos at the yolk stage. This large difference in the amount of the these factors in C. sapidus ovaries suggests that these maternal ecdysteroid-responsive factors may be utilized at the initiation of embryogenesis. During embryogenesis, the changes in total ecdysteroids and levels of CasEcR and CasRXR expression are similar to those observed in juvenile molts. The full-length cDNA sequence of the C. sapidus BTB domain protein (CasBTBDP) initially isolated from Y-organ cDNA, contains only Broad-Complex, Tramtrack, and Bric a brac (BTB) domains. The levels of CasBTBDP are kept constant throughout embryogenesis. The expression profiles of CasMIH and CasCHH are similar to the titers of ecdysteroids. However, the timing of their appearance is followed by increases in CasEcRs and CasRXRs, implying that the expressions of these neuropeptides may be influenced by ecdysteroids. Moreover, the ecdysteroid profile during embryogenesis may track directly with the timing of organogenesis of Y-organs and their activity. Our work reports, for first time, the observed expression and changes of ecdysteroid-responsive factors, along with CasCHH and CasMIH, during embryogenesis in the crustacean C. sapidus. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Neuroprotective Actions of Ghrelin and Growth Hormone Secretagogues

    PubMed Central

    Frago, Laura M.; Baquedano, Eva; Argente, Jesús; Chowen, Julie A.

    2011-01-01

    The brain incorporates and coordinates information based on the hormonal environment, receiving information from peripheral tissues through the circulation. Although it was initially thought that hormones only acted on the hypothalamus to perform endocrine functions, it is now known that they in fact exert diverse actions on many different brain regions including the hypothalamus. Ghrelin is a gastric hormone that stimulates growth hormone secretion and food intake to regulate energy homeostasis and body weight by binding to its receptor, growth hormone secretagogues–GH secretagogue-receptor, which is most highly expressed in the pituitary and hypothalamus. In addition, ghrelin has effects on learning and memory, reward and motivation, anxiety, and depression, and could be a potential therapeutic agent in neurodegenerative disorders where excitotoxic neuronal cell death and inflammatory processes are involved. PMID:21994488

  7. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.

    PubMed

    Mahmoud, Rand; Wainwright, Steven R; Galea, Liisa A M

    2016-04-01

    Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A cost-effectiveness analysis of hormone replacement therapy in the menopause.

    PubMed

    Cheung, A P; Wren, B G

    1992-03-02

    To evaluate the cost-effectiveness of hormone replacement therapy in the menopause with particular reference to osteoporotic fracture and myocardial infarction. The multiple-decrement form of the life table was the mathematical model used to follow women of age 50 through their lifetime under the "no hormone replacement" and "hormone replacement" assumptions. Standard demographic and health economic techniques were used to calculate the corresponding lifetime differences in direct health care costs (net costs in dollars) and health effects ("net effectiveness" in terms of life expectancy and quality, in "quality-adjusted life-years"). This was then expressed as a cost-effectiveness ratio or the cost ($) per quality-adjusted life-year (QALY) for each of the chosen hormone replacement regimens. All women of age 50 in New South Wales, Australia (n = 27,021). The analysis showed that the lifetime net increments in direct medical care costs were largely contributed by hormone drug and consultation costs. Hormone replacement was associated with increased quality-adjusted life expectancy, a large percentage of which was attributed to a relief of menopausal symptoms. Cost-effectiveness ratios ranged from under 10,000 to over a million dollars per QALY. Factors associated with improved cost-effectiveness were prolonged treatment duration, the presence of menopausal symptoms, minimum progestogen side effects (in the case of oestrogen with progestogen regimens), oestrogen use after hysterectomy and the inclusion of cardiac benefits in addition to fracture prevention. Hormone replacement therapy for symptomatic women is cost-effective when factors that enhance its efficiency are considered. Short-term treatment of asymptomatic women for prevention of osteoporotic fractures and myocardial infarction is an inefficient use of health resources. Cost-effectiveness of hormone replacement in asymptomatic women is dependent on the magnitude of cardiac benefits associated with hormone

  9. Selenium and the control of thyroid hormone metabolism.

    PubMed

    Köhrle, Josef

    2005-08-01

    Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

  10. Steroid Hormones and Uterine Vascular Adaptation to Pregnancy

    PubMed Central

    Chang, Katherine; Zhang, Lubo

    2008-01-01

    Pregnancy is a physiological state that involves a significant decrease in uterine vascular tone and an increase in uterine blood flow, which is mediated in part by steroid hormones, including estrogen, progesterone, and cortisol. Previous studies have demonstrated the involvement of these hormones in the regulation of uterine artery contractility through signaling pathways specific to the endothelium and the vascular smooth muscle. Alterations in endothelial nitric oxide synthase expression and activity, nitric oxide production, and expression of enzymes involved in PGI2 production contribute to the uterine artery endothelium-specific responses. Steroid hormones also have an effect on calcium-activated potassium channel activity, PKC signaling pathway and myogenic tone, and alterations in pharmacomechanical coupling in the uterine artery smooth muscle. This review addresses current understanding of the molecular mechanisms by which steroid hormones including estrogen, progesterone, and cortisol modulate uterine artery contractility to alter uterine blood flow during pregnancy with an emphasis on the pregnant ewe model. PMID:18497342

  11. Diagnosis of growth hormone deficiency in the paediatric and transitional age.

    PubMed

    Chinoy, A; Murray, P G

    2016-12-01

    Growth hormone deficiency is a rare cause of childhood short stature, but one for which treatment exists in the form of recombinant human growth hormone. A diagnosis of growth hormone deficiency is made based on auxology, biochemistry and imaging. Although no diagnostic gold standard exists, growth hormone provocation tests are considered the mainstay of diagnostic investigations. However, these must be interpreted with caution in view of issues with variability and reproducibility, as well as the limited evidence-base for cut-off values used to distinguish growth hormone deficient and non-growth hormone deficient subjects. In addition, nutritional and pubertal status can affect results, with no consensus on the role of priming with sex steroid hormones. Difficulties with assays exist both for growth hormone as well as insulin-like growth factor-1. Pituitary magnetic resonance imaging is a useful diagnostic, and possibly prognostic, aid. Although genetic testing is not routine, the discovery of more relevant mutations makes it an increasingly important investigation. Children with growth hormone deficiency are retested biochemically on completion of growth, to assess whether they remain so into adulthood. Copyright © 2016. Published by Elsevier Ltd.

  12. Sex hormones, aging, and Alzheimer’s disease

    PubMed Central

    Barron, Anna M.; Pike, Christian J.

    2012-01-01

    A promising strategy to delay and perhaps prevent Alzheimer’s disease (AD) is to identify the age-related changes that put the brain at risk for the disease. A significant normal age change known to result in tissue-specific dysfunction is the depletion of sex hormones. In women, menopause results in a relatively rapid loss of estradiol and progesterone. In men, aging is associated with a comparatively gradual yet significant decrease in testosterone. We review a broad literature that indicates age-related losses of estrogens in women and testosterone in men are risk factors for AD. Both estrogens and androgens exert a wide range of protective actions that improve multiple aspects of neural health, suggesting that hormone therapies have the potential to combat AD pathogenesis. However, translation of experimental findings into effective therapies has proven challenging. One emerging treatment option is the development of novel hormone mimetics termed selective estrogen and androgen receptor modulators. Continued research of sex hormones and their roles in the aging brain is expected to yield valuable approaches to reducing the risk of AD. PMID:22201929

  13. Physical Fitness and Hormonal Profile During an 11-Week Paratroop Training Period.

    PubMed

    Vaara, Jani P; Kalliomaa, Riikka; Hynninen, Petri; Kyröläinen, Heikki

    2015-11-01

    Physical fitness and serum hormone concentrations have been shown to change during military training. The purpose was to examine these chronic changes in paratroopers (n = 52 male conscripts) during an 11-week training period, including acute changes induced by strenuous 5-day military field training. Hormonal profiles, body mass, maximal strength, muscle endurance, and 12-minute running test were assessed at several time points during paratrooper training. In the latter part of the training period, conscripts were involved in strenuous military field training (5 days). At week 7, during specialized military training period, aerobic performance decreased (3,146 ± 163 m) but recovered back to a baseline level (3,226 ± 190 m) at the end of the study period (p < 0.001). Standing long jump decreased at week 7 (242 ± 13 cm) (p < 0.001) from the baseline value (248 ± 13 cm), whereas push-up (52 ± 11, 60 ± 13 repetitions per minute) and sit-up (54 ± 6, 56 ± 7 repetitions per minute) performances increased (p < 0.001). No changes were observed in maximal strength and body composition, neither mostly in hormone concentrations, although cortisol decreased but increased back to baseline value at the end of the study period (p ≤ 0.05). Acute responses after the 5-day military field training included decreased maximal strength of the lower extremities and body mass, as well as changes in androgen hormone concentrations ([INCREMENT]testosterone: -46%, [INCREMENT]insulin-like growth factor-1: -28%, [INCREMENT]sex hormone-binding globulin: +25%) compared with all other measurements (p ≤ 0.05). The first 4 weeks of parachute military training decreased maximal aerobic capacity and neuromuscular performance of the lower body, whereas muscular endurance increased. Moreover, 5-day military field training resulted in dramatic changes in hormone concentrations. These findings highlight the importance of periodizing paratrooper training and underline the need for sufficient

  14. Early Serum Gut Hormone Concentrations Associated with Time to Full Enteral Feedings in Preterm Infants.

    PubMed

    Shanahan, Kristen H; Yu, Xinting; Miller, Laura G; Freedman, Steven D; Martin, Camilia R

    2018-04-03

    The primary objective of this study was to evaluate early postnatal serum gut hormone concentrations in preterm infants as predictors of time to full enteral feedings. The secondary objective was to identify infant characteristics and nutritional factors that modulate serum gut hormone concentrations and time to full enteral feedings. Sixty-four preterm infants less than 30 weeks of gestation were included in this retrospective cohort study. Serum gut hormone concentrations at postnatal days 0 and 7 were measured using enzyme-linked immunosorbent assays. Linear regression and mediation analyses were performed. Median (IQR) serum concentrations of glucose-dependent insulinotropic peptide (GIP) and peptide YY (PYY) on postnatal day 7 were 31.3 pg/mL (18.2, 52.3) and 1181.7 pg/mL (859.0, 1650.2), respectively. GIP and PYY concentrations on day 7 were associated with days to full enteral feedings after adjustment for confounders (β = -1.1, p = 0.03; and β = -0.002, p = 0.02, respectively). Nutritional intake was correlated with serum concentrations of GIP and PYY on postnatal day 7 and time to full enteral feedings. Mediation analysis revealed that the effect of serum gut hormone concentrations on time to full enteral feedings was not fully explained by nutritional intake. Intrauterine growth restriction (IUGR), mechanical ventilation on postnatal day 7, and patent ductus arteriosus (PDA) treated with indomethacin were associated with longer time to full enteral feedings. Serum concentrations of GIP and PYY on postnatal 7 are independently associated with time to full enteral feedings. The link between serum gut hormone concentrations and time to full enteral feedings is not fully mediated by nutritional factors, suggesting an independent mechanism underlying the influence of gut hormones on feeding tolerance and time to full enteral feedings.

  15. Genome-wide association study of sex hormones, gonadotropins and sex hormone-binding protein in Chinese men.

    PubMed

    Chen, Zhuo; Tao, Sha; Gao, Yong; Zhang, Ju; Hu, Yanling; Mo, Linjian; Kim, Seong-Tae; Yang, Xiaobo; Tan, Aihua; Zhang, Haiying; Qin, Xue; Li, Li; Wu, Yongming; Zhang, Shijun; Zheng, S Lilly; Xu, Jianfeng; Mo, Zengnan; Sun, Jielin

    2013-12-01

    Sex hormones and gonadotropins exert a wide variety of effects in physiological and pathological processes. Accumulated evidence shows a strong heritable component of circulating concentrations of these hormones. Recently, several genome-wide association studies (GWASs) conducted in Caucasians have identified multiple loci that influence serum levels of sex hormones. However, the genetic determinants remain unknown in Chinese populations. In this study, we aimed to identify genetic variants associated with major sex hormones, gonadotropins, including testosterone, oestradiol, follicle-stimulating hormone (FSH), luteinising hormone (LH) and sex hormone binding globulin (SHBG) in a Chinese population. A two-stage GWAS was conducted in a total of 3495 healthy Chinese men (1999 subjects in the GWAS discovery stage and 1496 in the confirmation stage). We identified a novel genetic region at 15q21.2 (rs2414095 in CYP19A1), which was significantly associated with oestradiol and FSH in the Chinese population at a genome-wide significant level (p=6.54×10(-31) and 1.59×10(-16), respectively). Another single nucleotide polymorphism in CYP19A1 gene was significantly associated with oestradiol level (rs2445762, p=7.75×10(-28)). In addition, we confirmed the previous GWAS-identified locus at 17p13.1 for testosterone (rs2075230, p=1.13×10(-8)) and SHBG level (rs2075230, p=4.75×10(-19)) in the Chinese population. This study is the first GWAS investigation of genetic determinants of FSH and LH. The identification of novel susceptibility loci may provide more biological implications for the synthesis and metabolism of these hormones. More importantly, the confirmation of the genetic loci for testosterone and SHBG suggests common genetic components shared among different ethnicities.

  16. Altered Sex Hormone Concentrations and Gonadal mRNA Expression Levels of Activin Signaling Factors in Hatchling Alligators From a Contaminated Florida Lake

    PubMed Central

    MOORE, BRANDON C.; KOHNO, SATOMI; COOK, ROBERT W.; ALVERS, ASHLEY L.; HAMLIN, HEATHER J.; WOODRUFF, TERESA K.; GUILLETTE, LOUIS J.

    2014-01-01

    Activins and estrogens participate in regulating the breakdown of ovarian germ cell nests and follicle assembly in mammals. In 1994, our group reported elevated frequencies of abnormal, multioocytic ovarian follicles in 6 month old, environmental contaminant-exposed female alligators after gonadotropin challenge. Here, we investigated if maternal contribution of endocrine disrupting contaminants to the egg subsequently alters estrogen/inhibin/activin signaling in hatchling female offspring, putatively predisposing an increased frequency of multioocytic follicle formation. We quantified basal and exogenous gonadotropin-stimulated concentrations of circulating plasma steroid hormones and ovarian activin signaling factor mRNA abundance in hatchling alligators from the same contaminated (Lake Apopka) and reference (Lake Woodruff) Florida lakes, as examined in 1994. Basal circulating plasma estradiol and testosterone concentrations were greater in alligators from the contaminated environment, whereas activin/inhibin βA subunit and follistatin mRNA abundances were lower than values measured in ovaries from reference lake animals. Challenged, contaminant-exposed animals showed a more robust increase in plasma estradiol concentration following an acute follicle stimulating hormone (FSH) challenge compared with reference site alligators. Aromatase and follistatin mRNA levels increased in response to an extended FSH challenge in the reference site animals, but not in the contaminant-exposed animals. In hatchling alligators, ovarian follicles have not yet formed; therefore, these endocrine differences are likely to affect subsequent ovarian development, including ovarian follicle assembly. PMID:20166196

  17. Differential effects of intermittent and continuous administration of parathyroid hormone on bone histomorphometry and gene expression

    NASA Technical Reports Server (NTRS)

    Lotinun, Sutada; Sibonga, Jean D.; Turner, Russell T.

    2002-01-01

    A mechanism explaining the differential skeletal effects of intermittent and continuous elevation of serum parathyroid hormone (PTH) remains elusive. Intermittent PTH increases bone formation and bone mass and is being investigated as a therapy for osteoporosis. By contrast, chronic hyperparathyroidism results in the metabolic bone disease osteitis fibrosa characterized by osteomalacia, focal bone resorption, and peritrabecular bone marrow fibrosis. Intermittent and continuous PTH have similar effects on the number of osteoblasts and bone-forming activity. Many of the beneficial as well as detrimental effects of the hormone appear to be mediated by osteoblast-derived growth factors. This hypothesis was tested using cDNA microgene arrays to compare gene expression in tibia of rats treated with continuous and pulsatile administration of PTH. These treatments result in differential expression of many genes, including growth factors. One of the genes whose steady-state mRNA levels was increased by continuous but not pulsatile administration was platelet-derived growth factor-A (PDGF-A). Administration of a PDGF-A antagonist greatly reduced bone resorption, osteomalacia, and bone marrow fibrosis in a rat model for hyperparathyroidism, suggesting that PDGF-A is a causative agent for this disease. These findings suggest that profiling changes in gene expression can help identify the metabolic pathways responsible for the skeletal responses to the hormone.

  18. The influence of hormonal and neuronal factors on rat heart adrenoceptors

    PubMed Central

    Kunos, George; Mucci, Lucia; O'Regan, Seana

    1980-01-01

    1 The influence of hormonal and neuronal factors on adrenoceptors mediating increased cardiac force and rate of contraction were studied in rat isolated atria. The pharmacological properties of these receptors were deduced from the relative potencies of agonists and from the effects of selective α- and β-adrenoceptor antagonists. The numbers and affinities of α- and β-adrenoceptors were also determined by radioligand binding to ventricular membrane fragments. 2 Hypophysectomy reduced the inotropic potency of isoprenaline and increased the potency of phenylephrine and methoxamine in left atria. The effect of phenylephrine was inhibited by propranolol less effectively and by phentolamine or phenoxybenzamine more effectively in hypophysectomized than in control rats. The difference in block was smaller at low than at high antagonist concentrations. Similar but smaller changes were observed for chronotropic responses of right atria. 3 The decreased β- and increased α-receptor response after hypophysectomy was similar to that observed earlier in thyroidectomized rats (Kunos, 1977). These changes developed slowly after hypophysectomy (>2 weeks), they were both reversed within 2 days of thyroxine treatment (0.2 mg/kg daily), but were not affected by cortisone treatment (50 mg/kg every 12 h for 4 days). 4 Treatment of hypophysectomized rats for 2 days with thyroxine increased the density of [3H]-dihydroalprenolol ([3H]-DHA) binding sites from 27.5 ± 2.7 to 45.5 ± 5.7 fmol/mg protein and decreased the density of [3H]-WB-4101 binding sites from 38.7 ± 3.1 to 18.7 ± 2.5 fmol/mg protein. The affinity of either type of binding site for agonists or antagonist was not significantly altered by thyroxine treatment and the sum total of α1- and β-receptors remained the same. 5 Sympathetic denervation of thyroidectomized rats by 6-hydroxydopamine increased the inotropic potency of isoprenaline and noradrenaline and the blocking effect of propranolol, and decreased the

  19. Steroid hormone receptors: long- and short-term integrators of the internal milieu and the external environment.

    PubMed

    Blaustein, J D

    2012-07-01

    Many of the influences of estrogens and progestins on the brain and behavior are mediated by estrogen receptors and progestin receptors, acting as transcriptional regulators. The homologous and heterologous regulation of the concentrations of these receptors by cognate hormones is well established. However, although they were discovered and characterized based on their binding to cognate hormone and their role in transcriptional regulation, steroid hormone receptors have a more complex role and serve many more functions than originally suspected. First, besides being regulated by steroid hormones, the intracellular concentrations of brain steroid hormone receptors are regulated by neurotransmitters, a pathway by which stimuli from the environment, including from conspecific animals, can modulate the concentration of particular steroid hormone receptors in subsets of cells. Further, besides being activated by cognate steroid hormones, the receptors can be activated by a variety of neurotransmitters and phosphorylation pathways, providing a route through which environmental stimulation can activate steroid-receptor-dependent functions in specific cells. In addition, the transcription factor, estrogen receptor-α, produced from the estrogen receptor-α gene, can be modified to be targeted to membranes, where it can signal via kinase pathways. Finally, developmental experiences, such as particular stressors during the pubertal period, can permanently remodel the brain's response to ovarian hormones, most likely by long-term changes in regulation of the receptors mediating those responses. In addition to their function in responding to cognate ligand, it is now more appropriate to think of steroid hormone receptors as integrators of a wide variety of signaling pathways. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments.

    PubMed

    Yang, Bo; Jiang, Yuanqing; Rahman, Muhammad H; Deyholos, Michael K; Kav, Nat N V

    2009-06-03

    Members of plant WRKY transcription factor families are widely implicated in defense responses and various other physiological processes. For canola (Brassica napus L.), no WRKY genes have been described in detail. Because of the economic importance of this crop, and its evolutionary relationship to Arabidopsis thaliana, we sought to characterize a subset of canola WRKY genes in the context of pathogen and hormone responses. In this study, we identified 46 WRKY genes from canola by mining the expressed sequence tag (EST) database and cloned cDNA sequences of 38 BnWRKYs. A phylogenetic tree was constructed using the conserved WRKY domain amino acid sequences, which demonstrated that BnWRKYs can be divided into three major groups. We further compared BnWRKYs to the 72 WRKY genes from Arabidopsis and 91 WRKY from rice, and we identified 46 presumptive orthologs of AtWRKY genes. We examined the subcellular localization of four BnWRKY proteins using green fluorescent protein (GFP) and we observed the fluorescent green signals in the nucleus only.The responses of 16 selected BnWRKY genes to two fungal pathogens, Sclerotinia sclerotiorum and Alternaria brassicae, were analyzed by quantitative real time-PCR (qRT-PCR). Transcript abundance of 13 BnWRKY genes changed significantly following pathogen challenge: transcripts of 10 WRKYs increased in abundance, two WRKY transcripts decreased after infection, and one decreased at 12 h post-infection but increased later on (72 h). We also observed that transcript abundance of 13/16 BnWRKY genes was responsive to one or more hormones, including abscisic acid (ABA), and cytokinin (6-benzylaminopurine, BAP) and the defense signaling molecules jasmonic acid (JA), salicylic acid (SA), and ethylene (ET). We compared these transcript expression patterns to those previously described for presumptive orthologs of these genes in Arabidopsis and rice, and observed both similarities and differences in expression patterns. We identified a set

  1. Genetics of Isolated Growth Hormone Deficiency

    PubMed Central

    2010-01-01

    When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required, and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency (GHD). Because Insulin−like Growth Factor−I (IGF−I) plays a pivotal role, GHD could also be considered as a form of IGF−I deficiency (IGFD). Although IGFD can develop at any level of the GH−releasing hormone (GHRH)−GH−IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency, they may present initially as GHD. Conflict of interest:None declared. PMID:21274339

  2. Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes.

    PubMed

    Yang, Yong; Wu, Zhihong; Zhao, Taimao; Wang, Hai; Zhao, Dong; Zhang, Jianguo; Wang, Yipeng; Ding, Yaozhong; Qiu, Guixing

    2009-06-01

    The etiology of adolescent idiopathic scoliosis is undetermined despite years of research. A number of hypotheses have been postulated to explain its development, including growth abnormalities. The irregular expression of growth hormone and insulin-like growth factor-1 (IGF-1) may disturb hormone metabolism, result in a gross asymmetry, and promote the progress of adolescent idiopathic scoliosis. Initial association studies in complex diseases have demonstrated the power of candidate gene association. Prior to our study, 1 study in this field had a negative result. A replicable study is vital for reliability. To determine the relationship of growth hormone receptor and IGF-1 genes with adolescent idiopathic scoliosis, a population-based association study was performed. Single nucleotide polymorphisms with potential function were selected from candidate genes and a distribution analysis was performed. A conclusion was made confirming the insufficiency of an association between adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes in Han Chinese.

  3. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2013-09-30

    establishment of homeostasis. While the HPA axis and physiological processes driven by the GCs are essential for an individual’s ability to respond and...relying upon methods which include capture-release health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid...in the Ashepoo, Combahee and Edisto (ACE) Basin, also in South Carolina. Laboratory Analyses Hormone concentrations (cortisol, aldosterone

  4. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormones Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2014-09-30

    While the HPA axis and physiological processes driven by the GCs are essential for an individual’s ability to respond and adapt to stress, prolonged...relying upon methods which include capture-release health assessments. Stress and reproductive hormones (cortisol, aldosterone , thyroid, testosterone...the Ashepoo, Combahee and Edisto (ACE) Basin, also in South Carolina. Laboratory Analyses Hormone concentrations (cortisol, aldosterone

  5. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling.

    PubMed

    Dietz, Karl-Josef; Vogel, Marc Oliver; Viehhauser, Andrea

    2010-09-01

    To optimize acclimation responses to environmental growth conditions, plants integrate and weigh a diversity of input signals. Signal integration within the signalling networks occurs at different sites including the level of transcription factor activation. Accumulating evidence assigns a major and diversified role in environmental signal integration to the family of APETALA 2/ethylene response element binding protein (AP2/EREBP) transcription factors. Presently, the Plant Transcription Factor Database 3.0 assigns 147 gene loci to this family in Arabidopsis thaliana, 200 in Populus trichocarpa and 163 in Oryza sativa subsp. japonica as compared to 13 to 14 in unicellular algae ( http://plntfdb.bio.uni-potsdam.de/v3.0/ ). AP2/EREBP transcription factors have been implicated in hormone, sugar and redox signalling in context of abiotic stresses such as cold and drought. This review exemplarily addresses present-day knowledge of selected AP2/EREBP with focus on a function in stress signal integration and retrograde signalling and defines AP2/EREBP-linked gene networks from transcriptional profiling-based graphical Gaussian models. The latter approach suggests highly interlinked functions of AP2/EREBPs in retrograde and stress signalling.

  6. Effect of rejuvenation hormones on spermatogenesis.

    PubMed

    Moss, Jared L; Crosnoe, Lindsey E; Kim, Edward D

    2013-06-01

    To review the current literature for the effect of hormones used in rejuvenation clinics on the maintenance of spermatogenesis. Review of published literature. Not applicable. Men who have undergone exogenous testosterone (T) and/or anabolic androgenic steroid (AAS) therapies. None. Semen analysis, pregnancy outcomes, and time to recovery of spermatogenesis. Exogenous testosterone and anabolic androgenic steroids suppress intratesticular testosterone production, which may lead to azoospermia or severe oligozoospermia. Therapies that protect spermatogenesis involve human chorionic gonadotropin (hCG) therapy and selective estrogen receptor modulators (SERMs). The studies examining the effect of human growth hormone (HGH) on infertile men are uncontrolled and unconvincing, but they do not appear to negatively impact spermatogenesis. At present, routine use of aromatase inhibitors is not recommended based on a lack of long-term data. The use of hormones for rejuvenation is increasing with the aging of the Baby Boomer population. Men desiring children at a later age may be unaware of the side-effect profile of hormones used at rejuvenation centers. Testosterone and anabolic androgenic steroids have well-established detrimental effects on spermatogenesis, but recovery may be possible with cessation. Clomiphene citrate, human growth hormone (HGH)/insulin-like growth factor-1 (IGF-1), human chorionic gonadotropin (hCG), and aromatase inhibitors do not appear to have significant negative effects on sperm production, but quality data are lacking. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway.

    PubMed

    Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus

    2009-10-01

    Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.

  8. Growth Hormone (GH) and Cardiovascular System

    PubMed Central

    Díaz, Oscar; Devesa, Pablo

    2018-01-01

    This review describes the positive effects of growth hormone (GH) on the cardiovascular system. We analyze why the vascular endothelium is a real internal secretion gland, whose inflammation is the first step for developing atherosclerosis, as well as the mechanisms by which GH acts on vessels improving oxidative stress imbalance and endothelial dysfunction. We also report how GH acts on coronary arterial disease and heart failure, and on peripheral arterial disease, inducing a neovascularization process that finally increases flow in ischemic tissues. We include some preliminary data from a trial in which GH or placebo is given to elderly people suffering from critical limb ischemia, showing some of the benefits of the hormone on plasma markers of inflammation, and the safety of GH administration during short periods of time, even in diabetic patients. We also analyze how Klotho is strongly related to GH, inducing, after being released from the damaged vascular endothelium, the pituitary secretion of GH, most likely to repair the injury in the ischemic tissues. We also show how GH can help during wound healing by increasing the blood flow and some neurotrophic and growth factors. In summary, we postulate that short-term GH administration could be useful to treat cardiovascular diseases. PMID:29346331

  9. The Role of Thyroid Hormones as Inductors of Oxidative Stress and Neurodegeneration

    PubMed Central

    Villanueva, I.; Alva-Sánchez, C.; Pacheco-Rosado, J.

    2013-01-01

    Reactive oxygen species (ROS) are oxidizing agents amply implicated in tissue damage. ROS production is inevitably linked to ATP synthesis in most cells, and the rate of production is related to the rate of cell respiration. Multiple antioxidant mechanisms limit ROS dispersion and interaction with cell components, but, when the balance between ROS production and scavenging is lost, oxidative damage develops. Many traits of aging are related to oxidative damage by ROS, including neurodegenerative diseases. Thyroid hormones (THs) are a major factor controlling metabolic and respiratory rates in virtually all cell types in mammals. The general metabolic effect of THs is a relative acceleration of the basal metabolism that includes an increase of the rate of both catabolic and anabolic reactions. THs are related to oxidative stress not only by their stimulation of metabolism but also by their effects on antioxidant mechanisms. Thyroid dysfunction increases with age, so changes in THs levels in the elderly could be a factor affecting the development of neurodegenerative diseases. However, the relationship is not always clear. In this review, we analyze the participation of thyroid hormones on ROS production and oxidative stress, and the way the changes in thyroid status in aging are involved in neurodegenerative diseases. PMID:24386502

  10. Genetic evidence that thyroid hormone is indispensable for prepubertal insulin-like growth factor-I expression and bone acquisition in mice.

    PubMed

    Xing, Weirong; Govoni, Kristen E; Donahue, Leah Rae; Kesavan, Chandrasekhar; Wergedal, Jon; Long, Carlin; Bassett, J H Duncan; Gogakos, Apostolos; Wojcicka, Anna; Williams, Graham R; Mohan, Subburaman

    2012-05-01

    Understanding how bone growth is regulated by hormonal and mechanical factors during early growth periods is important for optimizing the attainment of peak bone mass to prevent or postpone the occurrence of fragility fractures later in life. Using genetic mouse models that are deficient in thyroid hormone (TH) (Tshr(-/-) and Duox2(-/-)), growth hormone (GH) (Ghrhr(lit/lit)), or both (Tshr(-/-); Ghrhr(lit/lit)), we demonstrate that there is an important period prior to puberty when the effects of GH are surprisingly small and TH plays a critical role in the regulation of skeletal growth. Daily administration of T3/T4 during days 5 to 14, the time when serum levels of T3 increase rapidly in mice, rescued the skeletal deficit in TH-deficient mice but not in mice lacking both TH and GH. However, treatment of double-mutant mice with both GH and T3/T4 rescued the bone density deficit. Increased body fat in the TH-deficient as well as TH/GH double-mutant mice was rescued by T3/T4 treatment during days 5 to 14. In vitro studies in osteoblasts revealed that T3 in the presence of TH receptor (TR) α1 bound to a TH response element in intron 1 of the IGF-I gene to stimulate transcription. In vivo studies using TRα and TRβ knockout mice revealed evidence for differential regulation of insulin-like growth factor (IGF)-I expression by the two receptors. Furthermore, blockade of IGF-I action partially inhibited the biological effects of TH, thus suggesting that both IGF-I-dependent and IGF-I-independent mechanisms contribute to TH effects on prepubertal bone acquisition. Copyright © 2012 American Society for Bone and Mineral Research.

  11. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Interactions between inflammation, sex steroids, and Alzheimer’s disease risk factors

    PubMed Central

    Uchoa, Mariana F.; Moser, V. Alexandra; Pike, Christian J.

    2016-01-01

    Alzheimer’s disease (AD) is an age-related neurodegenerative disorder for which there are no effective strategies to prevent or slow its progression. Because AD is multifactorial, recent research has focused on understanding interactions among the numerous risk factors and mechanisms underlying the disease. One mechanism through which several risk factors may be acting is inflammation. AD is characterized by chronic inflammation that is observed before clinical onset of dementia. Several genetic and environmental risk factors for AD increase inflammation, including apolipoprotein E4, obesity, and air pollution. Additionally, sex steroid hormones appear to contribute to AD risk, with age-related losses of estrogens in women and androgens in men associated with increased risk. Importantly, sex steroid hormones have anti-inflammatory actions and can interact with several other AD risk factors. This review examines the individual and interactive roles of inflammation and sex steroid hormones in AD, as well as their relationships with the AD risk factors apolipoprotein E4, obesity, and air pollution. PMID:27651175

  13. Bioidentical Hormones and Menopause

    MedlinePlus

    ... Endocrinologist Search Featured Resource Menopause Map™ View Bioidentical Hormones January 2012 Download PDFs English Espanol Editors Howard ... take HT for symptom relief. What are bioidentical hormones? Bioidentical hormones are identical to the hormones that ...

  14. Induction of metamorphosis in the sand dollar Peronella japonica by thyroid hormones.

    PubMed

    Saito, M; Seki, M; Amemiya, S; Yamasu, K; Suyemitsu, T; Ishihara, K

    1998-06-01

    The larva of the sand dollar Peronella japonica lacks a mouth and gut, and undergoes metamorphosis into a juvenile sand dollar without feeding. In the present study, it was found that thyroid hormones accelerate the metamorphosis of P. japonica larvae. The contents of thyroid hormones in larvae increased gradually during development. Thiourea and potassium perchlorate, inhibitors of thyroid hormone synthesis, delayed larval metamorphosis and simultaneously repressed an increase in the content of thyroxine in the larval body. These results suggest that the P. japonica larva has a system for synthesis of thyroid hormones that act as factors for inducing metamorphosis.

  15. Cerebrospinal fluid levels of corticotropin-releasing hormone in women with functional hypothalamic amenorrhea.

    PubMed

    Berga, S L; Loucks-Daniels, T L; Adler, L J; Chrousos, G P; Cameron, J L; Matthews, K A; Marcus, M D

    2000-04-01

    Women with functional hypothalamic amenorrhea are anovulatory because of reduced gonadotropin-releasing hormone drive. Several studies have documented hypercortisolemia, which suggests that functional hypothalamic amenorrhea is stress-induced. Further, with recovery (resumption of ovulation), cortisol decreased and gonadotropin-releasing hormone drive increased. Corticotropin-releasing hormone can increase cortisol and decrease gonadotropin-releasing hormone. To determine its role in functional hypothalamic amenorrhea, we measured corticotropin-releasing hormone in cerebrospinal fluid along with arginine vasopressin, another potent adrenocorticotropic hormone secretagog, and beta-endorphin, which is released by corticotropin-releasing hormone and can inhibit gonadotropin-releasing hormone. Corticotropin-releasing hormone, vasopressin, and beta-endorphin levels were measured in cerebrospinal fluid from 14 women with eumenorrhea and 15 women with functional hypothalamic amenorrhea. Levels of corticotropin-releasing hormone in cerebrospinal fluid and of vasopressin were comparable and beta-endorphin levels were lower in women with functional hypothalamic amenorrhea. In women with established functional hypothalamic amenorrhea, increased cortisol and reduced gonadotropin-releasing hormone are not sustained by elevated cerebrospinal-fluid corticotropin-releasing hormone, vasopressin, or beta-endorphin. These data do not exclude a role for these factors in the initiation of functional hypothalamic amenorrhea.

  16. Epidemiology of Endometrial Carcinoma: Etiologic Importance of Hormonal and Metabolic Influences.

    PubMed

    Felix, Ashley S; Yang, Hannah P; Bell, Daphne W; Sherman, Mark E

    2017-01-01

    Endometrial carcinoma is the most common gynecologic cancer in developed nations, and the annual incidence is projected to increase, secondary to the high prevalence of obesity, a strong endometrial carcinoma risk factor. Although endometrial carcinomas are etiologically, biologically, and clinically diverse, hormonal and metabolic mechanisms are particularly strongly implicated in the pathogenesis of endometrioid carcinoma, the numerically predominant subtype. The centrality of hormonal and metabolic disturbances in the pathogenesis of endometrial carcinoma, combined with its slow development from well-characterized precursors in most cases, offers a substantial opportunity to reduce endometrial carcinoma mortality through early detection, lifestyle modification, and chemoprevention. In this chapter, we review the epidemiology of endometrial carcinoma, emphasizing theories that link risk factors for these tumors to hormonal and metabolic mechanisms. Future translational research opportunities related to prevention are discussed.

  17. Novel neural pathways for metabolic effects of thyroid hormone.

    PubMed

    Fliers, Eric; Klieverik, Lars P; Kalsbeek, Andries

    2010-04-01

    The relation between thyrotoxicosis, the clinical syndrome resulting from exposure to excessive thyroid hormone concentrations, and the sympathetic nervous system remains enigmatic. Nevertheless, beta-adrenergic blockers are widely used to manage severe thyrotoxicosis. Recent experiments show that the effects of thyrotoxicosis on hepatic glucose production and insulin sensitivity can be modulated by selective hepatic sympathetic and parasympathetic denervation. Indeed, thyroid hormone stimulates hepatic glucose production via a sympathetic pathway, a novel central pathway for thyroid hormone action. Rodent studies suggest that similar neural routes exist for thyroid hormone analogues (e.g. thyronamines). Further elucidation of central effects of thyroid hormone on autonomic outflow to metabolic organs, including the thyroid and brown adipose tissue, will add to our understanding of hyperthyroidism. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Pubertal Development: Correspondence between Hormonal and Physical Development

    ERIC Educational Resources Information Center

    Shirtcliff, Elizabeth A.; Dahl, Ronald E.; Pollak, Seth D.

    2009-01-01

    Puberty is advanced by sex hormones, yet it is not clear how it is best measured. The interrelation of multiple indices of puberty was examined, including the Pubertal Development Scale (PDS), a picture-based interview about puberty (PBIP), and a physical exam. These physical pubertal measures were then associated with basal hormones responsible…

  19. Analysis of iodine-131-induced early thyroid hormone variations in Graves' disease.

    PubMed

    Xu, Feng; Gu, Aichun; Pan, Yifan; Yang, Liwen; Ma, Yubo

    2016-11-01

    This prospective study aimed to assess iodine-131 (I)-induced early thyroid hormone variations in Graves' disease (GD) and determine the associated factors. One hundred and seventy-one GD patients treated with I were evaluated (47 men, 124 women). I was administered at 9.0±4.9 mCi on average. Serum free triiodothyronine and free thyroxin were measured within 24 h before treatment and 8 (3-14) days after treatment. Patients were divided into increase, no change, and decrease groups, respectively, on the basis of hormone variations after treatment. χ-Test, analysis of variance, and the Kruskal-Wallis test were used to compare groups in terms of sex, age, course of disease, thyroid stimulating hormone receptor antibodies, antithyroid drug (ATD) pretreatment time, time of ATD discontinuation before I treatment, 24 h thyroid I uptake, thyroid weight, I activity, and I activity/thyroid weight (μCi/g). The Spearman method was used for correlation analyses. Twenty-seven, 20, and 124 cases were assigned to increase, no change, and decrease groups, respectively. Significant differences were found among groups in the time of ATD discontinuation before I treatment [the median duration for methimazole was 11 (5-26), 16 (10-30), and 21 (1-30) days, P=0.000, the median duration for propylthiouracil was 12.5 (5-24), 22 (11-26), and 26 (21-30) days, P=0.000], thyroid weight (93.5±33.6, 90.3±48.8, and 74.1±26.0 g, P=0.003), and μCi/g (84.8±11.8, 100.4±24.9, and 121.1±44.0 μCi/g, P=0.000). Interestingly, μCi/g was negatively and positively correlated to the possibility of hormone increase and decrease, respectively. No significant differences were found in the other parameters assessed. At the early stage of I treatment for GD, few patients showed increased thyroid hormone levels. Key factors may include time of ATD discontinuation before I treatment and μCi/g. High μCi/g might decrease thyroid hormone levels in early treatment, making it safe.

  20. Cardiovascular risk factors and carotid intima media thickness in young adults born small for gestational age after cessation of growth hormone treatment: a 5-year longitudinal study.

    PubMed

    van der Steen, Manouk; Kerkhof, Gerthe F; Smeets, Carolina C J; Hokken-Koelega, Anita C S

    2017-12-01

    Growth hormone treatment reduces blood pressure and lipid concentrations. We assessed long-term changes in blood pressure, lipid concentrations, and carotid intima media thickness over a 5-year period after cessation of growth hormone treatment in adults born small for gestational age. We did a longitudinal observational study at a medical centre in the Netherlands between April 1, 2004, and April 1, 2016. We included adults born small for gestational age who were treated with growth hormone (1 mg/m 2 per day); treatment started during childhood until adult height. Participants were evaluated at cessation of treatment, and 6 months, 2 years, and 5 years later. We compared cardiovascular risk factors with untreated controls from the PROGRAM study. We included 199 participants born small for gestational age and treated with growth hormone along with 285 controls: 51 untreated short adults born small for gestational age, 92 untreated adults born small for gestational age with spontaneous catch-up growth, and 142 adults born appropriate for gestational age. In the 6 months after treatment cessation, systolic blood pressure increased temporarily from 113·00 mm Hg (95% CI 111·18-114·82) to 116·92 mm Hg (115·07 to 118·77; p<0·001) and diastolic blood pressure increased temporarily from 62·19 mm Hg (60·99-63·38) to 66·51 mm Hg (65·14-67·89; p<0·001). At 5 years after treatment cessation, mean systolic blood pressure was 109·2 mm Hg (105·5-113·0) and mean diastolic blood pressure was 63·4 mm Hg (60·9-65·9), similar to the values at cessation. Lipid concentrations were non-significantly higher 5 years after treatment cessation (p values 0·09-0·21) than at treatment cessation. Cessation of growth hormone had no effect on carotid intima media thickness. At 5 years after cessation, total cholesterol was lower in adults treated with growth hormone (mean 4·21 mmol/L, 95% CI 4·04-4·38) than in untreated short adults born small for gestational age (4·66

  1. [Direct and indirect costs of luteinising hormone-releasing hormone analogues in the treatment of locally advanced or metastatic prostate cancer in Italy].

    PubMed

    Fadda, Valeria; Maratea, Dario

    2015-12-01

    When analyzing the use of luteinizing hormone-releasing hormone (LHRH) analogues for different clinical indications, current available evidence does not support a presumed drug class effect among the various LHRH in the treatment of prostate cancer. The following search key words were entered in the PubMed database and the NICE and FDA websites: “LHRH agonist AND prostatic cancer”, “androgen deprivation therapy”, “androgen suppression”, “buserelin”, “leuprorelin”, “goserelin”,“triptorelin”, “degarelix”. The direct costs included the following items: follow-up visits, diagnostic exams (e.g. prostate-specific antigen PSA) and drug costs. The indirect costs included working days lost by the patient. With intermittent therapy as a reference, leuprorelin injectable solution of 22,25 mg was associated with the lowest cost and degarelix with the highest cost. However, given the mandatory presence of a nurse for drug injection, the buserelin depot formulation was associated with the lowest cost. If the costs for hospital visits were added to drug costs, differences between the various therapeutic strategies were less remarkable. Our study showed how various factors (e.g. route of administration, frequency of administration, presence of a nurse for drug reconstitution and injection) should be taken into account by decision makers in addition to the price of drugs.

  2. Developmental programming: the role of growth hormone.

    PubMed

    Oberbauer, Anita M

    2015-01-01

    Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function.

  3. TSH (Thyroid-stimulating hormone) test

    MedlinePlus

    ... your blood ( hyperthyroidism ), or too little thyroid hormone ( hypothyroidism ). Symptoms of hyperthyroidism, also known as overactive thyroid, ... Bulging of the eyes Difficulty sleeping Symptoms of hypothyroidism, also known as underactive thyroid, include: Weight gain ...

  4. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    PubMed

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings

  5. Pregnancy hormone concentrations across ethnic groups: implications for later cancer risk.

    PubMed

    Potischman, Nancy; Troisi, Rebecca; Thadhani, Ravi; Hoover, Robert N; Dodd, Kevin; Davis, William W; Sluss, Patrick M; Hsieh, Chung-Cheng; Ballard-Barbash, Rachel

    2005-06-01

    A variety of in utero factors have been associated with risk of adult cancers, particularly birth weight, toxemia, and gestational age. These factors are thought to reflect hormonal exposures during pregnancy. We hypothesized that the prenatal hormonal milieu may explain part of the variation in cancer rates across ethnic groups, for example, the higher incidence of breast cancer in the Caucasian compared with Hispanic women and the higher incidence of prostate and lower incidence of testicular cancers among African-Americans compared with Caucasians. We measured hormones in early pregnancy blood samples from three ethnic groups in a health care plan in Boston, MA. Mean levels of androstenedione, testosterone, estrone, and prolactin were significantly lower in Caucasian women compared with Hispanic women. Although not statistically significant, estradiol levels were lower in Caucasian compared with Hispanic or African-American women. Concentrations of androstenedione, testosterone, and progesterone were notably higher in African-American compared with Caucasian or Hispanic women. These data are consistent with hypotheses that in utero hormonal exposures may explain some of the ethnic group differences in cancer risk.

  6. New approaches to thyroid hormones and purinergic signaling.

    PubMed

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.

  7. New Approaches to Thyroid Hormones and Purinergic Signaling

    PubMed Central

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925

  8. Parathyroid Hormone Levels and Cognition

    NASA Technical Reports Server (NTRS)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, p<.01). There was no significant group difference in ionized calcium levels. Overall, PTH was correlated with the MMSE (r=-.323, p=.001). Individual regression analyses revealed a statistically significant correlation between PTH and MMSE in the self-neglect group (r=-.298, p=.024) and this remained significant after controlling for ionized calcium levels in the regression. No significant associations were revealed in the control group or among any of the other cognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  9. Chemical regulators of plant hormones and their applications in basic research and agriculture.

    PubMed

    Jiang, Kai; Asami, Tadao

    2018-04-20

    Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.

  10. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  11. Response to Growth Hormone Treatment in a Patient with Insulin-Like Growth Factor 1 Receptor Deletion

    PubMed Central

    Mahmoud, Ranim; Naidu, Ajanta; Risheg, Hiba; Kimonis, Virginia

    2017-01-01

    We report a six-year-old boy who presented with short stature, microcephaly, dysmorphic features, and developmental delay and who was identified with a terminal deletion of 15q26.2q26.3 containing the insulin-like growth factor receptor (IGF1R) gene in addition to a terminal duplication of the 4q35.1q35.2 region. We compare our case with other reports of deletions and mutations affecting the IGF1R gene associated with pre-and postnatal growth restriction. We report the dramatic response to growth hormone therapy in this patient which highlights the importance of identifying patients with IGF1R deletion and treating them early. PMID:28720553

  12. Response to Growth Hormone Treatment in a Patient with Insulin-Like Growth Factor 1 Receptor Deletion.

    PubMed

    Mahmoud, Ranim; Naidu, Ajanta; Risheg, Hiba; Kimonis, Virginia

    2017-12-15

    We report a six-year-old boy who presented with short stature, microcephaly, dysmorphic features, and developmental delay and who was identified with a terminal deletion of 15q26.2q26.3 containing the insulin-like growth factor receptor (IGF1R) gene in addition to a terminal duplication of the 4q35.1q35.2 region. We compare our case with other reports of deletions and mutations affecting the IGF1R gene associated with pre-and postnatal growth restriction. We report the dramatic response to growth hormone therapy in this patient which highlights the importance of identifying patients with IGF1R deletion and treating them early.

  13. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals.

    PubMed

    Davière, Jean-Michel; Achard, Patrick

    2016-01-04

    Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  14. Biomathematical modeling of pulsatile hormone secretion: a historical perspective.

    PubMed

    Evans, William S; Farhy, Leon S; Johnson, Michael L

    2009-01-01

    Shortly after the recognition of the profound physiological significance of the pulsatile nature of hormone secretion, computer-based modeling techniques were introduced for the identification and characterization of such pulses. Whereas these earlier approaches defined perturbations in hormone concentration-time series, deconvolution procedures were subsequently employed to separate such pulses into their secretion event and clearance components. Stochastic differential equation modeling was also used to define basal and pulsatile hormone secretion. To assess the regulation of individual components within a hormone network, a method that quantitated approximate entropy within hormone concentration-times series was described. To define relationships within coupled hormone systems, methods including cross-correlation and cross-approximate entropy were utilized. To address some of the inherent limitations of these methods, modeling techniques with which to appraise the strength of feedback signaling between and among hormone-secreting components of a network have been developed. Techniques such as dynamic modeling have been utilized to reconstruct dose-response interactions between hormones within coupled systems. A logical extension of these advances will require the development of mathematical methods with which to approximate endocrine networks exhibiting multiple feedback interactions and subsequently reconstruct their parameters based on experimental data for the purpose of testing regulatory hypotheses and estimating alterations in hormone release control mechanisms.

  15. Predicting the probability of abnormal stimulated growth hormone response in children after radiotherapy for brain tumors.

    PubMed

    Hua, Chiaho; Wu, Shengjie; Chemaitilly, Wassim; Lukose, Renin C; Merchant, Thomas E

    2012-11-15

    To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n=72), low-grade glioma (n=28) or craniopharyngioma (n=6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test≥7 ng/mL. Independent predictor variables identified by multivariate logistic regression with high statistical significance (p<0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. [LED LIGHTING AS A FACTOR FOR THE STIMULATION OF THE HORMONE SYSTEM].

    PubMed

    Deynego, V N; Kaptsov, V A

    2015-01-01

    There are considered questions of non-visual effects of blue LED light sources on hormonal systems (cortisol, glucose, insulin) providing the high human performance. In modern conditions hygiene strategy for child and adolescent health strategy was shown to be replaced by a strategy of light stimulation of the hormonal profile. There was performed a systematic analysis of the axis "light stimulus-hypothalamus-pituitary-adrenals-cortisol-glucose-insulin". The elevation of the content of cortisol leads to the increase of the glucose level in the blood and the stimulation of the production of insulin, which can, like excessive consumption of food, give rise to irreversible decline in the number of insulin receptors on the cell surface, and thus--to a steady reduction in the ability of cells to utilize glucose, i.e. to type 2 diabetes or its aggravation.

  17. Using Hormones to Manage Dairy Cow Fertility: The Clinical and Ethical Beliefs of Veterinary Practitioners

    PubMed Central

    Higgins, Helen M.; Ferguson, Eamonn; Smith, Robert F.; Green, Martin J.

    2013-01-01

    In the face of a steady decline in dairy cow fertility over several decades, using hormones to assist reproduction has become common. In the European Union, hormones are prescription-only medicines, giving veterinary practitioners a central role in their deployment. This study explored the clinical and ethical beliefs of practitioners, and provides data on their current prescribing practices. During 2011, 93 practitioners working in England completed a questionnaire (95% response rate). Of the 714 non-organic farms they attended, only 4 farms (0.6%) never used hormones to assist the insemination of lactating dairy cows. Practitioners agreed (>80%) that hormones improve fertility and farm businesses profitability. They also agreed (>80%) that if farmers are able to tackle management issues contributing to poor oestrus expression, then over a five year period these outcomes would both improve, relative to using hormones instead. If management issues are addressed instead of prescribing hormones, practitioners envisaged a less favourable outcome for veterinary practices profitability (p<0.01), but an improvement in genetic selection for fertility (p<0.01) and overall cow welfare (p<0.01). On farms making no efforts to address underlying management problems, long-term routine use at the start of breeding for timing artificial insemination or inducing oestrus was judged “unacceptable” by 69% and 48% of practitioners, respectively. In contrast, practitioners agreed (≥90%) that both these types of use are acceptable, provided a period of time has been allowed to elapse during which the cow is observed for natural oestrus. Issues discussed include: weighing quality versus length of cow life, fiscal factors, legal obligations, and balancing the interests of all stakeholders, including the increasing societal demand for food. This research fosters debate and critical appraisal, contributes to veterinary ethics, and encourages the pro-active development of professional

  18. Using hormones to manage dairy cow fertility: the clinical and ethical beliefs of veterinary practitioners.

    PubMed

    Higgins, Helen M; Ferguson, Eamonn; Smith, Robert F; Green, Martin J

    2013-01-01

    In the face of a steady decline in dairy cow fertility over several decades, using hormones to assist reproduction has become common. In the European Union, hormones are prescription-only medicines, giving veterinary practitioners a central role in their deployment. This study explored the clinical and ethical beliefs of practitioners, and provides data on their current prescribing practices. During 2011, 93 practitioners working in England completed a questionnaire (95% response rate). Of the 714 non-organic farms they attended, only 4 farms (0.6%) never used hormones to assist the insemination of lactating dairy cows. Practitioners agreed (>80%) that hormones improve fertility and farm businesses profitability. They also agreed (>80%) that if farmers are able to tackle management issues contributing to poor oestrus expression, then over a five year period these outcomes would both improve, relative to using hormones instead. If management issues are addressed instead of prescribing hormones, practitioners envisaged a less favourable outcome for veterinary practices profitability (p<0.01), but an improvement in genetic selection for fertility (p<0.01) and overall cow welfare (p<0.01). On farms making no efforts to address underlying management problems, long-term routine use at the start of breeding for timing artificial insemination or inducing oestrus was judged "unacceptable" by 69% and 48% of practitioners, respectively. In contrast, practitioners agreed (≥ 90%) that both these types of use are acceptable, provided a period of time has been allowed to elapse during which the cow is observed for natural oestrus. Issues discussed include: weighing quality versus length of cow life, fiscal factors, legal obligations, and balancing the interests of all stakeholders, including the increasing societal demand for food. This research fosters debate and critical appraisal, contributes to veterinary ethics, and encourages the pro-active development of professional

  19. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.

    PubMed

    Hsu, Peter; Nanan, Ralph

    2014-10-01

    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Rheumatoid Factor

    MedlinePlus

    ... Cancer Therapy Glucose Tests Gonorrhea Testing Gram Stain Growth Hormone Haptoglobin hCG Pregnancy hCG Tumor Marker HDL Cholesterol ... Immunoreactive Trypsinogen (IRT) Influenza Tests Insulin Insulin-like Growth Factor-1 ... Hormone (LH) Lyme Disease Tests Magnesium Maternal Serum Screening, ...

  1. Enzyme action in the regulation of plant hormone responses.

    PubMed

    Westfall, Corey S; Muehler, Ashley M; Jez, Joseph M

    2013-07-05

    Plants synthesize a chemically diverse range of hormones that regulate growth, development, and responses to environmental stresses. The major classes of plant hormones are specialized metabolites with exquisitely tailored perception and signaling systems, but equally important are the enzymes that control the dose and exposure to the bioactive forms of these molecules. Here, we review new insights into the role of enzyme families, including the SABATH methyltransferases, the methylesterases, the GH3 acyl acid-amido synthetases, and the hormone peptidyl hydrolases, in controlling the biosynthesis and modifications of plant hormones and how these enzymes contribute to the network of chemical signals responsible for plant growth, development, and environmental adaptation.

  2. Does menopausal hormone therapy reduce myocardial infarction risk if initiated early after menopause? A population-based case-control study.

    PubMed

    Carrasquilla, Germán D; Berglund, Anita; Gigante, Bruna; Landgren, Britt-Marie; de Faire, Ulf; Hallqvist, Johan; Leander, Karin

    2015-06-01

    This study aims to assess whether the timing of menopausal hormone therapy initiation in relation to onset of menopause and hormone therapy duration is associated with myocardial infarction risk. This study was based on the Stockholm Heart Epidemiology Program, a population-based case-control study including 347 postmenopausal women who had experienced a nonfatal myocardial infarction and 499 female control individuals matched for age and residential area. Odds ratios (with 95% CIs) for myocardial infarction were calculated using logistic regression. Early initiation of hormone therapy (within 10 y of onset of menopause or before age 60 y), compared with never use, was associated with an odds ratio of 0.87 (95% CI, 0.58-1.30) after adjustments for lifestyle factors, body mass index, and socioeconomic status. For late initiation of hormone therapy, the corresponding odds ratio was 0.97 (95% CI, 0.53-1.76). For hormone therapy duration of 5 years or more, compared with never use, the adjusted odds ratio was 0.64 (95% CI, 0.35-1.18). For hormone therapy duration of less than 5 years, the odds ratio was 0.97 (95% CI, 0.63-1.48). Neither the timing of hormone therapy initiation nor the duration of therapy is significantly associated with myocardial infarction risk.

  3. Evidence for a synchronization of hormonal states between humans and dogs during competition.

    PubMed

    Buttner, Alicia Phillips; Thompson, Breanna; Strasser, Rosemary; Santo, Jonathan

    2015-08-01

    Social interactions with humans have been shown to influence hormonal processes in dogs, but it is unclear how the hormonal states of humans factor into this relationship. In this study, we explored the associations between changes in the cortisol levels of dogs with humans' hormonal changes, behavior, and perceptions of their performance at an agility competition. A total of 58 dogs and their handlers (44 women, 14 men) provided saliva samples before and after competing. Dogs' saliva samples were later assayed for cortisol and humans' samples for cortisol and testosterone. Following the competition, handler-dog interactions were observed for affiliative and punitive behavior towards their dogs, and handlers completed questionnaires that included personal ratings of their performance. Structural equation modeling revealed that elevations in handlers' cortisol levels were associated with increases in their dogs' cortisol levels. Handlers' affiliative and punitive behaviors towards their dogs following competition were associated with their ratings of their performance, but these variables were unrelated to changes in their own cortisol levels and their dogs', implying their behavior did not mediate the relationship. These findings suggest that changes in the hormonal states were reflected between humans and their dogs, and this relationship was not due to handlers' perceptions of their performance or the behaviors we observed during post-competition social interactions. This study is one of the first to provide evidence for a synchronization of hormonal changes between species. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here wemore » studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.« less

  5. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone

    PubMed Central

    Melia, Tisha; Hao, Pengying; Yilmaz, Feyza

    2015-01-01

    Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as key chromatin regulators, yet few studies have characterized lincRNAs in a single tissue under diverse conditions. Here, we analyzed 45 mouse liver RNA sequencing (RNA-Seq) data sets collected under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of them novel, with regard to gene structures, species conservation, chromatin accessibility, transcription factor binding, and epigenetic states. To investigate the potential for functionality, we focused on the responses of the liver lincRNAs to growth hormone stimulation, which imparts clinically relevant sex differences to hepatic metabolism and liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with many being nuclear RNA enriched and regulated by growth hormone. The sex-biased lincRNA genes are enriched for nearby and correspondingly sex-biased accessible chromatin regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional activators (STAT5, hepatocyte nuclear factor 6 [HNF6], FOXA1, and FOXA2) and transcriptional repressors (CUX2 and BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-specific lincRNAs in female liver, was associated with enrichment of H3K27me3-associated inactive states and poised (bivalent) enhancer states. Strikingly, we found that liver-specific lincRNA gene promoters are more highly species conserved and have a significantly higher frequency of proximal binding by liver transcription factors than liver-specific protein-coding gene promoters. Orthologs for many liver lincRNAs were identified in one or more supraprimates, including two rat lincRNAs showing the same growth hormone-regulated, sex-biased expression as their mouse counterparts. This integrative analysis of liver lincRNA chromatin states, transcription factor occupancy, and growth hormone regulation provides novel insights into the

  6. Growth hormone secretion in Turner's syndrome and influence of oxandrolone and ethinyl oestradiol.

    PubMed

    Massarano, A A; Brook, C G; Hindmarsh, P C; Pringle, P J; Teale, J D; Stanhope, R; Preece, M A

    1989-04-01

    We investigated 24 hour growth hormone secretion by intermittent 20 minute blood sampling in 34 prepubertal patients with Turner's syndrome, aged 4.3-12.4 years. Growth hormone profiles were analysed by the PULSAR programme and results expressed as the sum of growth hormone pulse amplitudes. Six patients had abnormal growth hormone pulse frequencies. In the remaining 28, growth hormone pulse amplitudes declined significantly with increasing age, but there was no correlation between growth hormone pulse amplitudes and growth rates. Concentrations of insulin like growth factor-1 (IGF-1) rose with age but did not correlate with either growth rates or growth hormone secretion. Fifteen patients were given oxandrolone and 11 low dose ethinyl oestradiol. Both agents increased height velocity without increasing growth hormone secretion. We conclude that the relation between growth hormone secretion and growth in Turner's syndrome is less certain than in normal children. End organ resistance is probably due to a skeletal dysplasia. Both oxandrolone and low dose ethinyl oestradiol improve the growth of girls with Turner's syndrome, but their mechanism of action remains uncertain.

  7. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  8. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1992-01-01

    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  9. Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action.

    PubMed

    Ansar Ahmed, S; Penhale, W J; Talal, N

    1985-12-01

    Immune reactivity is greater in females than in males. In both experimental animals and in man there is a greater preponderance of autoimmune diseases in females, compared with males. Studies in many experimental models have established that the underlying basis for this sex-related susceptibility is the marked effects of sex hormones. Sex hormones influence the onset and severity of immune-mediated pathologic conditions by modulating lymphocytes at all stages of life, prenatal, prepubertal, and postpubertal. However, despite extensive studies, the mechanisms of sex hormone action are not precisely understood. Earlier evidence suggested that the sex hormones acted via the thymus gland. In recent years it has become apparent that sex hormones can also influence the immune system by acting on several nonclassic target sites such as the immune system itself (nonthymic lymphoid organs), the central nervous system, the macrophage-macrocyte system, and the skeletal system. Immunoregulatory T cells appear to be most sensitive to sex hormone action among lymphoid cells. Several mechanisms of action of sex hormones are discussed in this review. The possibility of using sex hormone modulation of immune responses for the treatment of autoimmune disorders is a promising area for future investigation.

  10. Metabolic, hormonal and immunological associations with global DNA methylation among postmenopausal women.

    PubMed

    Ulrich, Cornelia M; Toriola, Adetunji T; Koepl, Lisel M; Sandifer, Tracy; Poole, Elizabeth M; Duggan, Catherine; McTiernan, Anne; Issa, Jean-Pierre J

    2012-09-01

    DNA methylation is an epigenetic modification essential for the regulation of gene expression that has been implicated in many diseases, including cancer. Few studies have investigated the wide range of potential predictors of global DNA methylation, including biomarkers. Here, we investigated associations between DNA methylation and dietary factors, sex-steroid hormones, metabolic, lipid, inflammation, immune and one-carbon biomarkers. Data and baseline biomarker measurements were obtained from 173 overweight/obese postmenopausal women. Global DNA methylation in lymphocyte DNA was measured using the pyrosequencing assay for LINE-1 repeats. We used correlations and linear regression analyses to investigate associations between continuous data and DNA methylation, while t-tests were used for categorical data. Secondary analyses stratified by serum folate levels and multivitamin use were also conducted. There was little variability in LINE-1 methylation (66.3-79.5%). Mean LINE-1 methylation was significantly higher among women with elevated glucose levels. Mean LINE-1 methylation was also higher among women with high CD4+/CD8+ ratio, and lower among women with elevated vitamin B6, but neither reached statistical significance. In analyses stratified by folate status, DNA methylation was negatively associated with sex hormone concentrations (estrone, estradiol, testosterone and sex hormone binding globulin) among women with low serum folate levels (n = 53). Conversely, among women with high serum folate levels (n = 53), DNA methylation was positively associated with several immune markers (CD4/CD8 ratio, NK1656/lymphocytes and IgA). Results from this screening suggest that global DNA methylation is generally stable, with differential associations for sex hormones and immune markers depending on one-carbon status.

  11. Multiplex Immunoassay Profiling of Hormones Involved in Metabolic Regulation.

    PubMed

    Stephen, Laurie; Guest, Paul C

    2018-01-01

    Multiplex immunoassays are used for rapid profiling of biomarker proteins and small molecules in biological fluids. The advantages over single immunoassays include lower sample consumption, cost, and labor. This chapter details a protocol to develop a 5-plex assay for glucagon-like peptide 1, growth hormone, insulin, leptin, and thyroid-stimulating hormone on the Luminex ® platform. The results of the analysis of insulin in normal control subjects are given due to the important role of this hormone in nutritional programming diseases.

  12. Luteinising hormone releasing hormone for incomplete descent of the testis.

    PubMed Central

    Klidjian, A M; Swift, P G; Johnstone, J M

    1985-01-01

    Forty boys with 54 incompletely descended testes took part in a double blind, controlled trial of intranasal luteinising hormone releasing hormone. In the control (placebo) group of 18 boys there was no significant change in testicular descent and all required orchidopexy; in the 22 treated boys, however, 12 of 29 testes (42%) were found in a lower position. This study supports the idea that a trial of intranasal luteinising hormone releasing hormone (1200 micrograms/day for 28 days) will help clarify the need for orchidopexy in at least 30% of boys with incomplete descent of the testis, particularly those in whom the testes have emerged from the inguinal canal. PMID:2861791

  13. Luteinising hormone releasing hormone for incomplete descent of the testis.

    PubMed

    Klidjian, A M; Swift, P G; Johnstone, J M

    1985-06-01

    Forty boys with 54 incompletely descended testes took part in a double blind, controlled trial of intranasal luteinising hormone releasing hormone. In the control (placebo) group of 18 boys there was no significant change in testicular descent and all required orchidopexy; in the 22 treated boys, however, 12 of 29 testes (42%) were found in a lower position. This study supports the idea that a trial of intranasal luteinising hormone releasing hormone (1200 micrograms/day for 28 days) will help clarify the need for orchidopexy in at least 30% of boys with incomplete descent of the testis, particularly those in whom the testes have emerged from the inguinal canal.

  14. CELLULAR BIOAVAILABILITY OF NATURAL HORMONES AND ENVIRONMENTAL CONTAMINANTS AS A FUNCTION OF SERUM AND CYTOSOLIC BINDING FACTORS

    EPA Science Inventory

    Environmental contaminants have been reported to function as hormone mimics in various wildlife species. To investigate a potential mechanism for the interaction of contaminants with the endocrine system, we evaluated the cellular bioavailability of numerous chemicals. Hormone bi...

  15. A Structural Magnetic Resonance Imaging Study in Transgender Persons on Cross-Sex Hormone Therapy.

    PubMed

    Mueller, Sven C; Landré, Lionel; Wierckx, Katrien; T'Sjoen, Guy

    2017-01-01

    To date, research findings are inconsistent about whether the neuroanatomy in transgender persons resembles that of their natal sex or their gender identity. Moreover, few studies have examined the effects of long-term cross-sex hormonal treatment on neuroanatomy in this cohort. The purpose of the present study was to examine neuroanatomical differences in transgender persons after prolonged cross-sex hormone therapy. Eighteen transgender men (female-to-male), 17 transgender women (male-to-female), 30 nontransgender men (natal men), and 27 nontransgender women (natal women) completed a high-resolution structural magnetic resonance imaging scan at 3 T. Eligibility criteria for transgender persons were gender-affirming surgery and at least 2 years of cross-sex hormone therapy. Exclusion criteria for nontransgender persons were presence of psychiatric or neurological disorders. The mean neuroanatomical volume for the amygdala, putamen, and corpus callosum differed between transgender women and natal women but not between transgender women and natal men. Differences between transgender men and natal men were found in several brain structures, including the medial temporal lobe structures and cerebellum. Differences between transgender men and natal women were found in the medial temporal lobe, nucleus accumbens, and 3rd ventricle. Sexual dimorphism between nontransgender men and women included larger cerebellar volumes and a smaller anterior corpus callosum in natal men than in natal women. The results remained stable after correcting for additional factors including age, total intracranial volume, anxiety, and depressive symptoms. Neuroanatomical differences were region specific between transgender persons and their natal sex as well as their gender identity, raising the possibility of a localized influence of sex hormones on neuroanatomy. © 2016 S. Karger AG, Basel.

  16. Gastroenteropancreatic hormones and metabolism in fish.

    PubMed

    Nelson, Laura E; Sheridan, Mark A

    2006-09-01

    Metabolism of vertebrates integrates a vast array of systems and processes, including the pursuit and capture of food, feeding and digestion of ingested food, absorption and transport of nutrients, assimilation, partitioning and utilization of energy, and the processing and elimination of wastes. Fish, which are the most diverse group of vertebrates and occupy a wide range of habitats and display numerous life history patterns, have proven to be important models for the study of the structure, biosynthesis, evolution, and function of gastroenteropancreatic (GEP) hormones. Food intake is promoted by galanin, neuropeptide Y, and pancreatic polypeptide (PP), while cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) inhibit food intake. Digestion of ingested food is facilitated by CCK, PP, and secretin by coordinating gastrointestinal tract motility and regulation of exocrine secretion. Somatostatins (SS), on the other hand, generally inhibit exocrine secretions. Insulin facilitates assimilation by promoting the uptake of nutrient molecules (e.g., glucose, amino acids, and fatty acids) into cells. Insulin also is generally anabolic and stimulates the synthesis and deposition of energy reserves (e.g., glycogen, triacylglycerol) as well as of proteins, thereby facilitating organismal growth. Insulin-like growth factors (e.g., IGF-1) also promote cell proliferation and organismal growth. Breakdown and mobilization of stored energy reserves is stimulated by glucagon, GLP-1, and SS. Somatostatins also affect metabolism and reproduction via their effects on the thyroid axis as well as growth via effects on growth hormone (GH) release and perhaps directly via modulation of GH sensitivity. Studies in fish have revealed that GEP hormones play an important role in coordinating the various aspects of metabolism with each other and with the physiological and developmental status of the animal as well as with the environment.

  17. Growth hormone treatment for growth hormone deficiency and idiopathic short stature: new guidelines shaped by the presence and absence of evidence.

    PubMed

    Grimberg, Adda; Allen, David B

    2017-08-01

    The Pediatric Endocrine Society recently published new guidelines for the use of human growth hormone (hGH) and human insulin-like growth factor-I (hIGF-I) treatment for growth hormone deficiency, idiopathic short stature, and primary IGF-I deficiency in children and adolescents. This review places the new guidelines in historical contexts of the life cycle of hGH and the evolution of US health care, and highlights their future implications. The new hGH guidelines, the first to be created by the Grading of Recommendations Assessment, Development and Evaluation approach, are more conservative than their predecessors. They follow an extended period of hGH therapeutic expansion at a time when US health care is pivoting toward value-based practice. There are strong supporting evidence and general agreement regarding the restoration of hormonal normalcy in children with severe deficiency of growth hormone or hIGF-I. More complex are issues related to hGH treatment to increase growth rates and heights of otherwise healthy short children with either idiopathic short stature or 'partial' isolated idiopathic growth hormone deficiency. The guidelines-developing process revealed fundamental questions about hGH treatment that still need evidence-based answers. Unless and until such research is performed, a more restrained hGH-prescribing approach is appropriate.

  18. Plurihormonal pituitary adenoma immunoreactive for thyroid-stimulating hormone, growth hormone, follicle-stimulating hormone, and prolactin.

    PubMed

    Luk, Cynthia T; Kovacs, Kalman; Rotondo, Fabio; Horvath, Eva; Cusimano, Michael; Booth, Gillian L

    2012-01-01

    To describe the case of a patient with an unusual plurihormonal pituitary adenoma with immunoreactivity for thyroid-stimulating hormone (TSH), growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. We report the clinical, laboratory, imaging, and pathology findings of a patient symptomatic from a plurihormonal pituitary adenoma and describe her outcome after surgical treatment. A 60-year-old woman presented to the emergency department with headaches, blurry vision, fatigue, palpitations, sweaty hands, and weight loss. Her medical history was notable for hyperthyroidism, treated intermittently with methimazole. Magnetic resonance imaging disclosed a pituitary macroadenoma (2.3 by 2.2 by 2.0 cm), and preoperative blood studies revealed elevated levels of TSH at 6.11 mIU/L, free thyroxine at 3.6 ng/dL, and free triiodothyronine at 6.0 pg/mL. She underwent an uncomplicated transsphenoidal resection of the pituitary adenoma. Immunostaining of tumor tissue demonstrated positivity for not only TSH but also growth hormone, follicle-stimulating hormone, prolactin, and α-subunit. The Ki-67 index of the tumor was estimated at 2% to 5%, and DNA repair enzyme O6-methylguanine-DNA methyltransferase immunostaining was mostly negative. Electron microscopy showed the ultrastructural phenotype of a glycoprotein-producing adenoma. Postoperatively, her symptoms and hyperthyroidism resolved. Thyrotropin-secreting pituitary adenomas are rare. Furthermore, recent reports suggest that 31% to 36% of adenomas may show evidence of secretion of multiple pituitary hormones. This case emphasizes the importance of considering pituitary causes of thyrotoxicosis and summarizes the clinical and pathology findings in a patient with a plurihormonal pituitary adenoma.

  19. Update on medical and regulatory issues pertaining to compounded and FDA-approved drugs, including hormone therapy

    PubMed Central

    Pinkerton, JoAnn V.; Pickar, James H.

    2016-01-01

    Abstract Objective: We review the historical regulation of drug compounding, concerns about widespread use of non-Food and Drug Admiistration (FDA)-approved compounded bioidentical hormone therapies (CBHTs), which do not have proper labeling and warnings, and anticipated impact of the 2013 Drug Quality and Security Act (DQSA) on compounding. Methods: US government websites were searched for documents concerning drug compounding regulation and oversight from 1938 (passage of Federal Food, Drug, and Cosmetic Act [FDCA]) through 2014, including chronologies, Congressional testimony, FDA guidelines and enforcements, and reports. The FDCA and DQSA were reviewed. PubMed and Google were searched for articles on compounded drugs, including CBHT. Results: Congress explicitly granted the FDA limited oversight of compounded drugs in a 1997 amendment to the FDCA, but the FDA has encountered obstacles in exercising that authority. After 64 patient deaths and 750 adversely affected patients from the 2012 meningitis outbreak due to contaminated compounded steroid injections, Congress passed the DQSA, authorizing the FDA to create a voluntary registration for facilities that manufacture and distribute sterile compounded drugs in bulk and reinforcing FDCA regulations for traditional compounding. Given history and current environment, concerns remain about CBHT product regulation and their lack of safety and efficacy data. Conclusions: The DQSA and its reinforcement of §503A of the FDCA solidifies FDA authority to enforce FDCA provisions against compounders of CBHT. The new law may improve compliance and accreditation by the compounding industry; support state and FDA oversight; and prevent the distribution of misbranded, adulterated, or inconsistently compounded medications, and false and misleading claims, thus reducing public health risk. PMID:26418479

  20. Follicular fluid levels of anti-Müllerian hormone, insulin-like growth factor 1 and leptin in women with fertility disorders.

    PubMed

    Kucera, Radek; Babuska, Vaclav; Ulcova-Gallova, Zdenka; Kulda, Vlastimil; Topolcan, Ondrej

    2018-06-01

    Anti-Müllerian hormone (AMH), insulin-like growth factor 1 (IGF1) and leptin are produced in the granulosa cells of follicles and play an important role in the growth and maturation of follicles. The aim of our study was to monitor AMH, IGF1 and leptin levels in a group of healthy women and compare them to a group of women with fertility disorders. The second aim was the evaluation of biomarker levels in relation to the identified cause of infertility. Totally, 146 females were enrolled into our study. Seventy-two healthy controls and seventy-four females with fertility disorders were divided into four subgroups: anovulation, endometriosis, fallopian tube damage, unknown reason. IGF1 was the only biomarker with significantly lower levels throughout the entire group with fertility disorders. We did not identify any statistically significant differences for AMH and leptin. Regarding subgroups, significant differences were only observed in the group of anovulatory women. AMH and leptin showed higher levels while IGF1 showed lower levels. In conclusion, levels of AMH, IGF1 and leptin found in follicular fluid are sensitive markers for anovulatory fertility disorders. AMH, IGF1 and leptin levels in follicular fluid have no relation to the fertility disorders caused by endometriosis, fallopian tube damage or disorders with unknown etiology. AMH: anti-Müllerian hormone; IGF1: insulin-like growth factor 1; PCOS: polycystic ovary syndrome.

  1. The Bottlenose Dolphin (Tursiops truncatus) as a Model to Understand Variation in Stress and Reproductive Hormone Measures in Relation to Sampling Matrix, Demographics, and Environmental Factors

    DTIC Science & Technology

    2012-09-30

    and free- ranging individuals support the existence of these same stress response pathways in marine mammals. While the HPA axis and physiological ... aldosterone , thyroid and reproductive hormones) have been routinely measured in blood as part of the health assessment which also includes a complete...was developed during the workshop held in late-August. For all stress-related hormones (cortisol, aldosterone , T3, T4, and Free T4), correlational

  2. Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone-independent loading of transcription factors in vivo.

    PubMed Central

    Mymryk, J S; Berard, D; Hager, G L; Archer, T K

    1995-01-01

    We have stably introduced a reporter gene under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) into human T47D breast cancer cells to study the action of the progesterone receptor (PR) on transcription from a chromatin template. Unexpectedly, the chromatin organization of the MMTV LTR in these human breast cancer cells differed markedly from what we have observed previously. The region adjacent to the transcription start site (-221 to -75) was found to be constitutively hypersensitive to restriction enzyme cleavage in the absence of hormone. This region is normally encompassed within the second nucleosome of a phased array of six nucleosomes that is assembled when the MMTV LTR is stably maintained in mouse cells. Characteristically, in these rodent cells, the identical DNA sequences show increased restriction enzyme cleavage only in the presence of glucocorticoid. The increased access of restriction enzymes observed in the human PR+ cells was not observed in adjacent nucleosomes and was unaffected by treatment with the progesterone antagonist RU486. In addition, exonuclease III-dependent stops corresponding to the binding sites for nuclear factor 1 and the PR were observed before and after hormone treatment. These results indicate that MMTV chromatin replicated in these cells is organized into a constitutively open architecture and that this open chromatin state is accompanied by hormone-independent loading of a transcription factor complex that is normally excluded from uninduced chromatin. PMID:7799933

  3. Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone-independent loading of transcription factors in vivo.

    PubMed

    Mymryk, J S; Berard, D; Hager, G L; Archer, T K

    1995-01-01

    We have stably introduced a reporter gene under the control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) into human T47D breast cancer cells to study the action of the progesterone receptor (PR) on transcription from a chromatin template. Unexpectedly, the chromatin organization of the MMTV LTR in these human breast cancer cells differed markedly from what we have observed previously. The region adjacent to the transcription start site (-221 to -75) was found to be constitutively hypersensitive to restriction enzyme cleavage in the absence of hormone. This region is normally encompassed within the second nucleosome of a phased array of six nucleosomes that is assembled when the MMTV LTR is stably maintained in mouse cells. Characteristically, in these rodent cells, the identical DNA sequences show increased restriction enzyme cleavage only in the presence of glucocorticoid. The increased access of restriction enzymes observed in the human PR+ cells was not observed in adjacent nucleosomes and was unaffected by treatment with the progesterone antagonist RU486. In addition, exonuclease III-dependent stops corresponding to the binding sites for nuclear factor 1 and the PR were observed before and after hormone treatment. These results indicate that MMTV chromatin replicated in these cells is organized into a constitutively open architecture and that this open chromatin state is accompanied by hormone-independent loading of a transcription factor complex that is normally excluded from uninduced chromatin.

  4. Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action.

    PubMed Central

    Ansar Ahmed, S.; Penhale, W. J.; Talal, N.

    1985-01-01

    Immune reactivity is greater in females than in males. In both experimental animals and in man there is a greater preponderance of autoimmune diseases in females, compared with males. Studies in many experimental models have established that the underlying basis for this sex-related susceptibility is the marked effects of sex hormones. Sex hormones influence the onset and severity of immune-mediated pathologic conditions by modulating lymphocytes at all stages of life, prenatal, prepubertal, and postpubertal. However, despite extensive studies, the mechanisms of sex hormone action are not precisely understood. Earlier evidence suggested that the sex hormones acted via the thymus gland. In recent years it has become apparent that sex hormones can also influence the immune system by acting on several nonclassic target sites such as the immune system itself (nonthymic lymphoid organs), the central nervous system, the macrophage-macrocyte system, and the skeletal system. Immunoregulatory T cells appear to be most sensitive to sex hormone action among lymphoid cells. Several mechanisms of action of sex hormones are discussed in this review. The possibility of using sex hormone modulation of immune responses for the treatment of autoimmune disorders is a promising area for future investigation. Images Figure 1 PMID:3907369

  5. Micronuclei in cord blood lymphocytes and associations with biomarkers of exposure to carcinogens and hormonally active factors, gene polymorphisms, and gene expression: the NewGeneris cohort.

    PubMed

    Merlo, Domenico Franco; Agramunt, Silvia; Anna, Lívia; Besselink, Harrie; Botsivali, Maria; Brady, Nigel J; Ceppi, Marcello; Chatzi, Leda; Chen, Bowang; Decordier, Ilse; Farmer, Peter B; Fleming, Sarah; Fontana, Vincenzo; Försti, Asta; Fthenou, Eleni; Gallo, Fabio; Georgiadis, Panagiotis; Gmuender, Hans; Godschalk, Roger W; Granum, Berit; Hardie, Laura J; Hemminki, Kari; Hochstenbach, Kevin; Knudsen, Lisbeth E; Kogevinas, Manolis; Kovács, Katalin; Kyrtopoulos, Soterios A; Løvik, Martinus; Nielsen, Jeanette K; Nygaard, Unni Cecilie; Pedersen, Marie; Rydberg, Per; Schoket, Bernadette; Segerbäck, Dan; Singh, Rajinder; Sunyer, Jordi; Törnqvist, Margareta; van Loveren, Henk; van Schooten, Frederik J; Vande Loock, Kim; von Stedingk, Hans; Wright, John; Kleinjans, Jos C; Kirsch-Volders, Micheline; van Delft, Joost H M

    2014-02-01

    Leukemia incidence has increased in recent decades among European children, suggesting that early-life environmental exposures play an important role in disease development. We investigated the hypothesis that childhood susceptibility may increase as a result of in utero exposure to carcinogens and hormonally acting factors. Using cord blood samples from the NewGeneris cohort, we examined associations between a range of biomarkers of carcinogen exposure and hormonally acting factors with micronuclei (MN) frequency as a proxy measure of cancer risk. Associations with gene expression and genotype were also explored. DNA and protein adducts, gene expression profiles, circulating hormonally acting factors, and GWAS (genome-wide association study) data were investigated in relation to genomic damage measured by MN frequency in lymphocytes from 623 newborns enrolled between 2006 and 2010 across Europe. Malondialdehyde DNA adducts (M1dG) were associated with increased MN frequency in binucleated lymphocytes (MNBN), and exposure to androgenic, estrogenic, and dioxin-like compounds was associated with MN frequency in mononucleated lymphocytes (MNMONO), although no monotonic exposure-outcome relationship was observed. Lower frequencies of MNBN were associated with a 1-unit increase expression of PDCD11, LATS2, TRIM13, CD28, SMC1A, IL7R, and NIPBL genes. Gene expression was significantly higher in association with the highest versus lowest category of bulky and M1dG-DNA adducts for five and six genes, respectively. Gene expression levels were significantly lower for 11 genes in association with the highest versus lowest category of plasma AR CALUX® (chemically activated luciferase expression for androgens) (8 genes), ERα CALUX® (for estrogens) (2 genes), and DR CALUX® (for dioxins). Several SNPs (single-nucleotide polymorphisms) on chromosome 11 near FOLH1 significantly modified associations between androgen activity and MNBN frequency. Polymorphisms in EPHX1/2 and CYP2E1

  6. Pituitary gene mutations and the growth hormone pathway.

    PubMed

    Moseley, C T; Phillips, J A

    2000-01-01

    Hereditary forms of pituitary insufficiency not associated with anatomic defects of the central nervous system, hypothalamus, or pituitary are a heterogeneous group of disorders that result from interruptions at different points in the hypothalamic-pituitary-somatomedin-peripheral tissue axis. These different types of pituitary dwarfism can be classified on the level of the defect; mode of inheritance; whether the phenotype is isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD); whether the hormone is absent, deficient, or abnormal; and, in patients with GH resistance, whether insulin-like growth factor 1 (IGF1) is deficient due to GH receptor or IGF1 defects. Information on each disorder is summarized. More detailed information can be obtained through the electronic database Online Mendelian Inheritance in Man which is available at http://www3.ncbi.nlm.nih.gov/Omim/.

  7. Sex hormones and breast cancer risk in premenopausal women: collaborative reanalysis of seven prospective studies

    PubMed Central

    2014-01-01

    Background The relationships of circulating concentrations of oestrogens, progesterone and androgens with breast cancer and related risk factors in premenopausal women are not well understood. Methods Individual data on prediagnostic sex hormone and sex hormone binding globulin (SHBG) concentrations were contributed by 7 prospective studies. Analyses were restricted to women who were premenopausal and under age 50 at blood collection, and to breast cancer cases diagnosed before age 50. The odds ratios (ORs) with 95% confidence intervals (95% CIs) for breast cancer associated with hormone concentrations were estimated by conditional logistic regression in up to 767 cases and 1699 controls matched for age, date of blood collection, and day of cycle, with stratification by study and further adjustment for cycle phase. The associations of hormones with risk factors for breast cancer in control women were examined by comparing geometric mean hormone concentrations in categories of these risk factors, adjusted for study, age, phase of menstrual cycle and body mass index (BMI). All statistical tests were two-sided. Findings ORs for breast cancer associated with a doubling in hormone concentration were 1.19 (95% CI 1.06–1.35) for oestradiol, 1.17 (1.03–1.33) for calculated free oestradiol, 1.27 (1.05–1.54) for oestrone, 1.30 (1.10–1.55) for androstenedione, 1.17 (1.04–1.32) for dehydroepiandrosterone sulphate, 1.18 (1.03–1.35) for testosterone and 1.08 (0.97–1.21) for calculated free testosterone. Breast cancer risk was not associated with luteal phase progesterone (for a doubling in concentration OR=1.00 (0.92–1.09)), and adjustment for other factors had little effect on any of these ORs. The cross-sectional analyses in control women showed several associations of sex hormones with breast cancer risk factors. Interpretation Circulating oestrogens and androgens are positively associated with the risk for breast cancer in premenopausal women. PMID:23890780

  8. Sex hormones in gender-specific risk for head and neck cancer: A review.

    PubMed

    Nainani, Purshotam; Paliwal, Aparna; Nagpal, Neelu; Agrawal, Mayank

    2014-11-01

    Despite the fact that numerous researches have been carried out to prevent head and neck cancer (HNC) and treat those patients, there is no reduction in morbidity rate because the underlying molecular pathogenesis is still poorly understood. Endocrine microenvironment is another vital factor besides other traditional risk factors like tobacco smoking, infections, and alcohol. It has been proven that sex hormone receptors are also expressed in larynx and lungs, in addition to sex organs. Sex hormones play a vital role in gene expression involved in the plethora of biological and neoplastic processes. The role of sex hormones in HNC is still divisive and very few researches have been conducted to describe their role. So, this article is an effort to attract the attention of researchers, endocrinologists, pathologists, and clinicians toward the impending role of sex hormones, with special emphasis on progesterone, estrogen, and prolactin in HNC onset and progression, along with their therapeutic role.

  9. A guide for measurement of circulating metabolic hormones in rodents: Pitfalls during the pre-analytical phase

    PubMed Central

    Bielohuby, Maximilian; Popp, Sarah; Bidlingmaier, Martin

    2012-01-01

    Researchers analyse hormones to draw conclusions from changes in hormone concentrations observed under specific physiological conditions and to elucidate mechanisms underlying their biological variability. It is, however, frequently overlooked that also circumstances occurring after collection of biological samples can significantly affect the hormone concentrations measured, owing to analytical and pre-analytical variability. Whereas the awareness for such potential confounders is increasing in human laboratory medicine, there is sometimes limited consensus about the control of these factors in rodent studies. In this guide, we demonstrate how such factors can affect reliability and consequent interpretation of the data from immunoassay measurements of circulating metabolic hormones in rodent studies. We also compare the knowledge about such factors in rodent studies to recent recommendations established for biomarker studies in humans and give specific practical recommendations for the control of pre-analytical conditions in metabolic studies in rodents. PMID:24024118

  10. A patient with thyrotropinoma cosecreting growth hormone and follicle-stimulating hormone with low alpha-glycoprotein: a new subentity?

    PubMed

    Elhadd, Tarik A; Ghosh, Sujoy; Teoh, Wei Leng; Trevethick, Katy Ann; Hanzely, Zoltan; Dunn, Laurence T; Malik, Iqbal A; Collier, Andrew

    2009-08-01

    Thyrotropinomas are rare pituitary tumors. In 25 percent of cases there is autonomous secretion of a second pituitary hormone, adding to the clinical complexity. We report a patient with thyrotropin (TSH)-dependant hyperthyroidism along with growth hormone (GH) and follicle-stimulating hormone (FSH) hypersecretion but low alpha-glycoprotein (alpha-subunit) concentrations, a hitherto unique constellation of findings. A 67-year-old Scottish lady presented with longstanding ankle edema, paroxysmal atrial fibrillation, uncontrolled hypertension, fine tremors, warm peripheries, and agitation. Initial findings were a small goiter, elevated serum TSH of 7.37 mU/L (normal range, 0.30-6.0 mU/L), a free-thyroxine concentration of 34.9 pmol/L (normal range, 9.0-24.0 pmol/L), a flat TSH response to TSH-releasing hormone, and serum alpha-subunit of 3.1 IU/L (normal, <3.0 IU/L). There was no evidence of an abnormal thyroid hormone beta receptor by genotyping. Serum FSH was 56.8 U/L, but the luteinizing hormone (LH) was 23.6 U/L (postmenopausal FSH and LH reference ranges both >30 U/L) Basal insulin-like growth factor I was elevated to 487 microg/L with the concomitant serum GH being 14.1 mU/L, and subsequent serum GH values 30 minutes after 75 g oral glucose being 19.1 mU/L and 150 minutes later being 13.7 mU/L. An magnetic resonance imaging pituitary revealed a macroadenoma. Pituitary adenomectomy was performed with the histology confirming a pituitary adenoma, and the immunohistochemistry staining showed positive reactivity for FSH with scattered cells staining for GH and TSH. Staining for other anterior pituitary hormones was negative. After pituitary surgery she became clinically and biochemically euthyroid, the serum IFG-1 became normal, but the pattern of serum FSH and LH did not change. This case of plurihormonal thyrotropinoma is unique in having hypersecretion of TSH, GH, and FSH with low alpha-subunit. Such a combination may represent a new subentity of TSHomas.

  11. Stimulation of growth hormone secretion from seabream pituitary cells in primary culture by growth hormone secretagogues is independent of growth hormone transcription.

    PubMed

    Chan, C B; Fung, C K; Fung, Wendy; Tse, Margaret C L; Cheng, Christopher H K

    2004-10-01

    The action of a number of growth hormone secretagogues (GHS) on growth hormone (GH) secretion and gene expression was studied in a primary culture of pituitary cells isolated from the black seabream Acanthopagrus schlegeli. The peptide GHS employed included growth hormone-releasing peptide (GHRP)-2, ipamorelin, and human ghrelin. The nonpeptide GHS employed included the benzolactam GHS L692,585 and the spiropiperidine GHS L163,540. Secreted GH was measured in the culture medium by an enzyme-linked immunosorbent assay (ELISA) method using a specific antibody against seabream GH. The GH mRNA content in the incubated cells was assessed by reverse transcription polymerase chain reaction (RT-PCR) using a pair of gene-specific primers designed from the cloned black seabream GH cDNA sequence. A dose-dependent stimulation of GH release was demonstrated by all the GHS tested, except human ghrelin, with EC(50) values in the nanomolar range. Simultaneous measurement of GH mRNA levels in the incubated seabream pituitary cells indicated that the GHS-stimulated increase in GH secretion was not paralleled by corresponding changes in GH gene expression. In contrast to the situation previously reported in the rat, no change in GH gene expression was noticed in the seabream pituitary cells even though the time of stimulation by GHS was increased up to 48 h, confirming that the GHS-stimulated GH secretion in seabream is independent of GH gene transcription.

  12. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene.

    PubMed

    Baumann, G; Maheshwari, H

    1997-11-01

    We report the discovery of a cluster of severe familial dwarfism in two villages in the Province of Sindh in Pakistan. Dwarfism is proportionate and occurs in members of a kindred with a high degree of consanguinity. Only the last generation is affected, with the oldest dwarf being 28 years old. The mode of inheritance is autosomal recessive. Phenotype analysis and endocrine testing revealed isolated growth hormone deficiency (GHD) as the reason for growth failure. Linkage analysis for the loci of several candidate genes yielded a high lod score for the growth hormone-releasing hormone receptor (GHRH-R) locus on chromosome 7. Amplification and sequencing of the GHRH-R gene in affected subjects demonstrated an amber nonsense mutation (GAG-->TAG; Glu50-->Stop) in exon 3. The mutation, in its homozygous form, segregated 100% with the dwarf phenotype. It predicts a truncation of the GHRH-R in its extracellular domain, which is likely to result in a severely disabled or non-existent receptor protein. Subjects who are heterozygous for the mutation show mild biochemical abnormalities in the growth hormone-releasing hormone (GHRH)--growth hormone--insulin-like growth factor axis, but have only minimal or no growth retardation. The occurrence of an offspring of two dwarfed parents indicates that the GHRH-R is not necessary for fertility in either sex. We conclude that Sindh dwarfism is caused by an inactivating mutation in the GHRH-R gene, resulting in the inability to transmit a GHRH signal and consequent severe isolated GHD.

  13. Genetic polymorphisms, hormone levels, and hot flashes in midlife women.

    PubMed

    Schilling, Chrissy; Gallicchio, Lisa; Miller, Susan R; Langenberg, Patricia; Zacur, Howard; Flaws, Jodi A

    2007-06-20

    Hot flashes disrupt the lives of millions of women each year. Although hot flashes are a public health concern, little is known about risk factors that predispose women to hot flashes. Thus, the objective of this study was to examine whether sex steroid hormone levels and genetic polymorphisms in hormone biosynthesis and degradation enzymes are associated with the risk of hot flashes. In a cross-sectional study design, midlife women aged 45-54 years (n=639) were recruited from Baltimore and its surrounding counties. Participants completed a questionnaire and donated a blood sample for steroid hormone analysis and genotyping. The associations between genetic polymorphisms and hormone levels, as well as the associations between genetic polymorphisms, hormone levels, and hot flashes were examined using statistical models. A polymorphism in CYP1B1 was associated with lower dehydroepiandrosterone-sulfate (DHEA-S) and progesterone levels, while a polymorphism in CYP19 (aromatase) was associated with higher testosterone and DHEA-S levels. Lower progesterone and sex hormone binding globulin levels, lower free estradiol index, and a higher ratio of total androgens to total estrogens were associated with the experiencing of hot flashes. A polymorphism in CYP1B1 and a polymorphism in 3betaHSD were both associated with hot flashes. Some genetic polymorphisms may be associated with altered levels of hormones in midlife women. Further, selected genetic polymorphisms and altered hormone levels may be associated with the risk of hot flashes in midlife women.

  14. Strigolactones: new plant hormones in action.

    PubMed

    Zwanenburg, Binne; Pospíšil, Tomáš; Ćavar Zeljković, Sanja

    2016-06-01

    The key step in the mode of action of strigolactones is the enzymatic detachment of the D-ring. The thus formed hydroxy butenolide induces conformational changes of the receptor pocket which trigger a cascade of reactions in the signal transduction. Strigolactones (SLs) constitute a new class of plant hormones which are of increasing importance in plant science. For the last 60 years, they have been known as germination stimulants for parasitic plants. Recently, several new bio-properties of SLs have been discovered such as the branching factor for arbuscular mycorrhizal fungi, regulation of plant architecture (inhibition of bud outgrowth and of shoot branching) and the response to abiotic factors, etc. To broaden horizons and encourage new ideas for identifying and synthesising new and structurally simple SLs, this review is focused on molecular aspects of this new class of plant hormones. Special attention has been given to structural features, the mode of action of these phytohormones in various biological actions, the design of SL analogs and their applications.

  15. Uncoupling of Secretion From Growth in Some Hormone Secretory Tissues

    PubMed Central

    2014-01-01

    Context: Most syndromes with benign primary excess of a hormone show positive coupling of hormone secretion to size or proliferation in the affected hormone secretory tissue. Syndromes that lack this coupling seem rare and have not been examined for unifying features among each other. Evidence Acquisition: Selected clinical and basic features were analyzed from original reports and reviews. We examined indices of excess secretion of a hormone and indices of size of secretory tissue within the following three syndromes, each suggestive of uncoupling between these two indices: familial hypocalciuric hypercalcemia, congenital diazoxide-resistant hyperinsulinism, and congenital primary hyperaldosteronism type III (with G151E mutation of the KCNJ5 gene). Evidence Synthesis: Some unifying features among the three syndromes were different from features present among common tumors secreting the same hormone. The unifying and distinguishing features included: 1) expression of hormone excess as early as the first days of life; 2) normal size of tissue that oversecretes a hormone; 3) diffuse histologic expression in the hormonal tissue; 4) resistance to treatment by subtotal ablation of the hormone-secreting tissue; 5) causation by a germline mutation; 6) low potential of the same mutation to cause a tumor by somatic mutation; and 7) expression of the mutated molecule in a pathway between sensing of a serum metabolite and secretion of hormone regulating that metabolite. Conclusion: Some shared clinical and basic features of uncoupling of secretion from size in a hormonal tissue characterize three uncommon states of hormone excess. These features differ importantly from features of common hormonal neoplasm of that tissue. PMID:25004249

  16. Sex hormones and the female voice.

    PubMed

    Abitbol, J; Abitbol, P; Abitbol, B

    1999-09-01

    In the following, the authors examine the relationship between hormonal climate and the female voice through discussion of hormonal biochemistry and physiology and informal reporting on a study of 197 women with either premenstrual or menopausal voice syndrome. These facts are placed in a larger historical and cultural context, which is inextricably bound to the understanding of the female voice. The female voice evolves from childhood to menopause, under the varied influences of estrogens, progesterone, and testosterone. These hormones are the dominant factor in determining voice changes throughout life. For example, a woman's voice always develops masculine characteristics after an injection of testosterone. Such a change is irreversible. Conversely, male castrati had feminine voices because they lacked the physiologic changes associated with testosterone. The vocal instrument is comprised of the vibratory body, the respiratory power source and the oropharyngeal resonating chambers. Voice is characterized by its intensity, frequency, and harmonics. The harmonics are hormonally dependent. This is illustrated by the changes that occur during male and female puberty: In the female, the impact of estrogens at puberty, in concert with progesterone, produces the characteristics of the female voice, with a fundamental frequency one third lower than that of a child. In the male, androgens released at puberty are responsible for the male vocal frequency, an octave lower than that of a child. Premenstrual vocal syndrome is characterized by vocal fatigue, decreased range, a loss of power and loss of certain harmonics. The syndrome usually starts some 4-5 days before menstruation in some 33% of women. Vocal professionals are particularly affected. Dynamic vocal exploration by televideoendoscopy shows congestion, microvarices, edema of the posterior third of the vocal folds and a loss of its vibratory amplitude. The authors studied 97 premenstrual women who were prescribed a

  17. Levels of hormones and cytokines associated with growth in Honamlı and native hair goats.

    PubMed

    Devrim, A K; Elmaz, O; Mamak, N; Sudagidan, M

    2015-01-01

    This study was designed to assess alterations of hormone and cytokine levels associated with growth period during puberty in Honamlı goats which were identified as a new goat breed and had one of the highest meat production potential among the other goat breeds in Turkey. Honamlı goats are originated from native hair goats, so parallel studies of sampling and analyzing were conducted also in native hair goats which have moderate meat production. Blood serum samples of Honamlı (n=90) and native hair goats (n=90) were obtained from the pure herds in Korkuteli and Ka districts of Anatolia. Concentrations of growth hormone (GH), myostatin (MSTN), insulin-like growth factor (IGF), growth hormone releasing hormone (GHRH), growth hormone releasing peptide (GHRP), leptin, transforming growth factor-betal (TGF-β1) and vascular endothelial cell growth factor (VEGF) levels were measured by ELISA in each breed in the age groups of 4, 8 and 12 months. The present results indicate interesting correlations among the age groups and all the examined hormone and cytokine parameters exhibited significant (P<0.05 and P<0.001) differences. The parameters investigated were usually begun to increase after 4 months of age in the both breeds and sexes. Therefore, this paper supported the view that the beginning of hormonal alterations of goats could occur at 4th month of age. The results reported here emphasize the primary role played by GH, MSTN, IGF-1, leptin, GHRH, GHRP, TGF-βi and VEGF in the first year growth period of goats.

  18. Hormones and endometrial carcinogenesis.

    PubMed

    Kamal, Areege; Tempest, Nicola; Parkes, Christina; Alnafakh, Rafah; Makrydima, Sofia; Adishesh, Meera; Hapangama, Dharani K

    2016-02-01

    Endometrial cancer (EC) is the commonest gynaecological cancer in the Western World with an alarmingly increasing incidence related to longevity and obesity. Ovarian hormones regulate normal human endometrial cell proliferation, regeneration and function therefore are implicated in endometrial carcinogenesis directly or via influencing other hormones and metabolic pathways. Although the role of unopposed oestrogen in the pathogenesis of EC has received considerable attention, the emerging role of other hormones in this process, such as androgens and gonadotropin-releasing hormones (GnRH) is less well recognised. This review aims to consolidate the current knowledge of the involvement of the three main endogenous ovarian hormones (oestrogens, progesterone and androgens) as well as the other hormones in endometrial carcinogenesis, to identify important avenues for future research.

  19. Growth Hormone Deficiency in the Transition Age.

    PubMed

    Loche, Sandro; Di Iorgi, Natascia; Patti, Giuseppa; Noli, Serena; Giaccardi, Marta; Olivieri, Irene; Ibba, Anastasia; Maghnie, Mohamad

    2018-01-01

    Growth hormone (GH) is essential not only for normal growth during childhood, but also for the acquisition of bone mass and muscle strength in both sexes. This process is completed after the achievement of adult height in the phase of transition from adolescence to adulthood. Adolescents with childhood onset GH deficiency (GHD) show reduction of bone mineral density, decrease in lean body mass, increase in fat mass, and deterioration of the lipid profile. For this reason, continuation of GH replacement therapy in the transition age is recommended in all patients with a confirmed diagnosis of GHD. To confirm the diagnosis of GHD, GH treatment should be discontinued for at least 1 month after the attainment of adult height, and the patient should be re-evaluated for GH secretion. Current guidelines indicate that retesting is not required for those with a transcription factor mutation, more than 3 pituitary hormone deficits, or isolated GHD associated with an identified mutation. The key predictors of persistent GHD are its severity, the presence of additional pituitary hormone deficits, low insulin-like growth factor I (IGF-I) concentration, and the presence of structural hypothalamic-pituitary abnormalities Treatment should be initiated with a low dose (0.2-0.5 mg/day s.c.) and then adjusted according to IGF-I concentrations. © 2018 S. Karger AG, Basel.

  20. Development of additional pituitary hormone deficiencies in pediatric patients originally diagnosed with isolated growth hormone deficiency due to organic causes.

    PubMed

    Child, Christopher J; Blum, Werner F; Deal, Cheri; Zimmermann, Alan G; Quigley, Charmian A; Drop, Stenvert L S; Cutler, Gordon B; Rosenfeld, Ron G

    2016-05-01

    To determine characteristics of children initially diagnosed with isolated growth hormone deficiency (IGHD) of organic aetiology, who later developed multiple pituitary hormone deficiencies (MPHD). Data were analysed for 716 growth hormone-treated children with organic IGHD, who were growth hormone-naïve at baseline in the multinational, observational Genetics and Neuroendocrinology of Short Stature International Study. Development of MPHD was ascertained from investigator-provided diagnoses, adverse events and concomitant medications. Analyses were performed for all patients and separately for those who developed MPHD within 4.5 years or had >3.5 years follow-up and continued to have IGHD (4-year cohort). MPHD developed in 71/716 (9.9%) children overall, and in 60/290 (20.7%) in the 4-year cohort. The most frequent additional deficiencies were thyroid-stimulating hormone (47 patients) and gonadotropins (23 patients). Compared with those who remained with IGHD, children who developed MPHD had more severe GHD at study entry, significantly lower baseline insulin-like growth factor1, peak stimulated growth hormone, and more frequent diagnosis of intracranial tumour or mutation of gene(s) controlling hypothalamic-pituitary development and/or function. Multivariate logistic regression analyses identified female gender, longer follow-up, higher baseline age and lower peak stimulated growth hormone as predictors of MPHD development. MPHD is more likely to develop in patients with severe organic IGHD, especially those with history of intracranial tumour or mutation of gene(s) controlling hypothalamic-pituitary development and/or function. Older baseline age, female gender and longer follow-up duration were also associated with higher incidence of MPHD. Long-term monitoring of pituitary function is recommended, irrespective of the aetiology of GHD. © 2016 European Society of Endocrinology.

  1. Association of hormonal dysregulation with metabolic syndrome in older women: data from the InCHIANTI study

    PubMed Central

    Maggio, Marcello; Lauretani, Fulvio; Ceda, Gian Paolo; Bandinelli, Stefania; Basaria, Shehzad; Paolisso, Giuseppe; Ble, Alessandro; Egan, Josephine M.; Metter, E. Jeffrey; Abbatecola, Angela M.; Zuliani, Giovanni; Ruggiero, Carmelinda; Valenti, Giorgio; Guralnik, Jack M.; Ferrucci, Luigi

    2009-01-01

    Metabolic syndrome (MetS) is a strong risk factor for type 2 diabetes and cardiovascular disease. Conditions associated with hyperandrogenism are often associated with glucose intolerance and other features of MetS in young women. As the prevalence of MetS increases with age and is probably multifactorial, it is reasonable to hypothesize that age-related changes in androgens and other hormones might contribute to the development of MetS in older persons. However, this hypothesis has never been tested in older women. We hypothesized that high levels of testosterone, dehydroepiandrosterone sulfate (DHEA-S), and cortisol and low levels of sex hormone-binding globulin (SHBG) and IGF-I would be associated with MetS in a representative cohort of older Italian women independently of confounders (including inflammatory markers). After exclusion of participants on hormone replacement therapy and those with a history of bilateral oophorectomy, 512 women (≥65 yr) had complete data on testosterone, cortisol, DHEA-S, SHBG, fasting insulin, total and free IGF-I, IL-6, and C-reactive protein (CRP). MetS was defined according to ATP-III criteria. Insulin resistance was calculated according to HOMA. MetS was found in 145 women (28.3%). Participants with vs. those without MetS had higher age-adjusted levels of bioavailable testosterone (P < 0.001), IL-6 (P < 0.001), CRP (P < 0.001), and HOMA (P < 0.001) and lower levels of SHBG (P < 0.001). After adjustment for potential confounders, participants with decreased SHBG had an increased risk of MetS (P < 0.0001) vs. those with low SHBG. In a further model including all hormones and confounders, log SHBG was the only independent factor associated with MetS (OR: 0.44, 95% CI 0.21–0.91, P = 0.027). In older women, SHBG is negatively associated with MetS independently of confounders, including inflammatory markers and insulin resistance. Further studies are needed to support the notion that raising SHBG is a potential therapeutic target

  2. Association of hormonal dysregulation with metabolic syndrome in older women: data from the InCHIANTI study.

    PubMed

    Maggio, Marcello; Lauretani, Fulvio; Ceda, Gian Paolo; Bandinelli, Stefania; Basaria, Shehzad; Paolisso, Giuseppe; Ble, Alessandro; Egan, Josephine M; Metter, E Jeffrey; Abbatecola, Angela M; Zuliani, Giovanni; Ruggiero, Carmelinda; Valenti, Giorgio; Guralnik, Jack M; Ferrucci, Luigi

    2007-01-01

    Metabolic syndrome (MetS) is a strong risk factor for type 2 diabetes and cardiovascular disease. Conditions associated with hyperandrogenism are often associated with glucose intolerance and other features of MetS in young women. As the prevalence of MetS increases with age and is probably multifactorial, it is reasonable to hypothesize that age-related changes in androgens and other hormones might contribute to the development of MetS in older persons. However, this hypothesis has never been tested in older women. We hypothesized that high levels of testosterone, dehydroepiandrosterone sulfate (DHEA-S), and cortisol and low levels of sex hormone-binding globulin (SHBG) and IGF-I would be associated with MetS in a representative cohort of older Italian women independently of confounders (including inflammatory markers). After exclusion of participants on hormone replacement therapy and those with a history of bilateral oophorectomy, 512 women (>/=65 yr) had complete data on testosterone, cortisol, DHEA-S, SHBG, fasting insulin, total and free IGF-I, IL-6, and C-reactive protein (CRP). MetS was defined according to ATP-III criteria. Insulin resistance was calculated according to HOMA. MetS was found in 145 women (28.3%). Participants with vs. those without MetS had higher age-adjusted levels of bioavailable testosterone (P < 0.001), IL-6 (P < 0.001), CRP (P < 0.001), and HOMA (P < 0.001) and lower levels of SHBG (P < 0.001). After adjustment for potential confounders, participants with decreased SHBG had an increased risk of MetS (P < 0.0001) vs. those with low SHBG. In a further model including all hormones and confounders, log SHBG was the only independent factor associated with MetS (OR: 0.44, 95% CI 0.21-0.91, P = 0.027). In older women, SHBG is negatively associated with MetS independently of confounders, including inflammatory markers and insulin resistance. Further studies are needed to support the notion that raising SHBG is a potential therapeutic target

  3. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org; Wu Shengjie; Chemaitilly, Wassim

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6),more » who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.« less

  4. Reproductive hormones and menstrual changes with exercise in female athletes.

    PubMed

    Arena, B; Maffulli, N; Maffulli, F; Morleo, M A

    1995-04-01

    The endocrine equilibrium which regulates reproductive function in women can be affected by physical and psychological factors. Blood levels of hormones depend on a balance between production, metabolism and clearance rates. Intensive physical exercise may affect this balance via different mechanisms, such as stress associated with competition, dieting, reduction of body fat and body weight, production of heat or hypoxia. Women who engage in regular high intensity exercise may be at risk, as a consequence of these hormonal changes, of developing menstrual disturbances such as oligomenorrhoea, delayed menarche and amenorrhoea. Impaired production of gonadotrophins, which leads to luteal phase deficiency and anovulation, is a common hormonal finding with exercise-induced menstrual disturbances, but several other hormones may show significant alterations. In this article we have reviewed the recent literature on the effects of intensive physical exercise on the menstrual cycle, on some important physical parameters such as bone mineral density and bodyweight, and on those hormones (gonadotrophins, prolactin, melatonin, opioid peptides and steroids) which regulate, directly or indirectly, the reproductive function in women.

  5. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    PubMed

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.

  6. Future possibilities in the prevention of breast cancer: Luteinizing hormone-releasing hormone agonists

    PubMed Central

    Spicer, Darcy V; Pike, Malcolm C

    2000-01-01

    The cyclic production of estrogen and progesterone by the premenopausal ovary accounts for the steep rise in breast cancer risk in premenopausal women. These hormones are breast cell mitogens. By reducing exposure to these ovarian hormones, agonists of luteinizing hormone-releasing hormone (LHRH) given to suppress ovarian function may prove useful in cancer prevention. To prevent deleterious effects of hypoestrogenemia, the addition of low-dose hormone replacement to the LHRH agonist appears necessary. Pilot data with such an approach indicates it is feasible and reduces mammographic densities. PMID:11250719

  7. Growth hormone stimulation test

    MedlinePlus

    ... Philadelphia, PA: Elsevier Saunders; 2016:chap 23. Chernecky CC, Berger BJ. Growth hormone (somatotropin, GH) and growth hormone-releasing hormone (GHRH) - blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . ...

  8. Phthalate exposure and reproductive hormones and sex-hormone binding globulin before puberty - Phthalate contaminated-foodstuff episode in Taiwan.

    PubMed

    Wen, Hui-Ju; Chen, Chu-Chih; Wu, Ming-Tsang; Chen, Mei-Lien; Sun, Chien-Wen; Wu, Wen-Chiu; Huang, I-Wen; Huang, Po-Chin; Yu, Tzu-Yun; Hsiung, Chao A; Wang, Shu-Li

    2017-01-01

    In May 2011, a major incident involving phthalates-contaminated foodstuffs occurred in Taiwan. Di-(2-ethylhexyl) phthalate (DEHP) was added to foodstuffs, mainly juice, jelly, tea, sports drink, and dietary supplements. Concerns arose that normal pubertal development, especially reproductive hormone regulation in children, could be disrupted by DEHP exposure. To investigate the association between phthalate exposure and reproductive hormone levels among children following potential exposure to phthalate-tainted foodstuffs. A total of 239 children aged <12 years old were recruited from 3 hospitals in north, central, and south Taiwan after the episode. Structured questionnaires were used to collect the frequency and quantity of exposures to 5 categories of phthalate-contaminated foodstuffs to assess phthalate exposure in children. Urine samples were collected for the measurement of phthalate metabolites. The estimated daily intake of DEHP exposure at the time of the contamination incident occurred was calculated using both questionnaire data and urinary DEHP metabolite concentrations. Multiple regression analyses were applied to assess associations between phthalate exposure and reproductive hormone levels in children. After excluding children with missing data regarding exposure levels and hormone concentrations and girls with menstruation, 222 children were included in the statistical analyses. After adjustment for age and birth weight, girls with above median levels of urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, and sum of mono-(2-ethylhexyl) phthalate concentrations had higher odds of above median follicle-stimulating hormone concentrations. Girls with above median estimated average daily DEHP exposures following the contamination episode also had higher odds of sex hormone-binding globulin above median levels. Phthalate exposure was associated with alterations of reproductive hormone levels in girls.

  9. Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function.

    PubMed

    Bladowska, Joanna; Sokolska, Violetta; Sozański, Tomasz; Bednarek-Tupikowska, Grażyna; Sąsiadek, Marek

    2010-01-01

    Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change of anatomical conditions. It depends also on numerous other factors, including: size and expansion of a tumour before surgery, type of surgical access, quality and volume of filling material used and time of its resorption.The aim of the study was to compare MR image of the pituitary gland after surgery with clinical findings and to establish a correlation between MRI presentation of spared pituitary and its hormonal function. 124 patients after resection of pituitary adenomas - 409 MRI results in total - were studied. With a 1.5-T unit, T1-weighted sagittal and coronal, enhanced and unenhanced images were obtained. The pituitary gland seemed to be normal in MRI in 11 patients, 8 of them had completely regular pituitary function but in 3 of them we noticed a partial hypopituitarism. In 99 patients only a part of the pituitary gland was recognised, 53 of them had hypopituitarism but 46 of them were endocrinologically healthy. 14 patients seemed to have no persistent pituitary gland in MRI, in comparison to hormonal studies: there was panhypopituitarism in 6 and hypopituitarism in 8 cases. MRI presentation of post - surgical pituitary gland doesn't necessarily correlate with its hormonal function - there was a significant statistical difference. Some patients with partial pituitary seems normal hormonal function. In some cases the pituitary seem normal in MRI but these patients have hormonal disorders and need substitution therapy.

  10. Dynamic changes in the hypothalamic-pituitary-adrenal axis during growth hormone therapy in children with growth hormone deficiency: a multicenter retrospective study.

    PubMed

    Wang, Limin; Wang, Qian; Li, Guimei; Liu, Wendong

    2015-09-01

    The objective of this study was to investigate changes in the hypothalamic-pituitary-adrenal (HPA) axis after recombinant human growth hormone (rhGH) therapy. Subjects included children with growth hormone deficiency (GHD). We conducted a multicenter, retrospective study that assessed 72 GHD patients treated with rhGH during 6 months. Patients were classified into two groups: isolated GHD (IGHD; n=20) and multiple pituitary hormone deficiencies (MPHD; n=52). The HPA axis and other hormones were evaluated at baseline and every 3 months. In the MPHD group, 32 patients had adrenocorticotrophic hormone deficiency and received hydrocortisone before rhGH therapy. In the other 20/52 MPHD patients, the cortisol (COR) level was significantly reduced after rhGH therapy. Moreover, 10 patients showed low COR levels. In the IGHD group, COR levels also decreased, but remained within the normal range. During rhGH therapy, COR levels were reduced, particularly in patients with MPHD. HPA axis should be monitored during rhGH therapy.

  11. Patient communication in hormone therapy.

    PubMed

    Schnare, S M

    2001-01-01

    Common regimens of HRT therapy are reviewed, including common routes of hormone administration. Inconsistent patterns of HRT use are discussed, including the reasons women most often give for discontinuing hormone therapies. Specific issues related to misperceptions and fears regarding HRT are clarified, and specific, focused patient education formats are discussed to address women's common concerns about HRT. Obstacles to HRT use are elucidated, with suggestions for clinicians about how to communicate more effectively with women: clinicians must focus on emotional and physical aspects of HRT choices and tailor therapies to the individual patient. Discussing frankly the very serious concerns of women regarding the association between lobular breast cancer and endometrial cancer is important; discussing and preparing women for possible side effects helps patients cope better if and when side effects occur. Finally, offering a wide variety of HRT therapies provides women with a broader choice if an initial regimen is unsuccessful.

  12. Hormonal alterations in PCOS and its influence on bone metabolism.

    PubMed

    Krishnan, Abhaya; Muthusami, Sridhar

    2017-02-01

    According to the World Health Organization (WHO) polycystic ovary syndrome (PCOS) occurs in 4-8% of women worldwide. The prevalence of PCOS in Indian adolescents is 12.2% according to the Indian Council of Medical Research (ICMR). The National Institute of Health has documented that it affects approximately 5 million women of reproductive age in the United States. Hormonal imbalance is the characteristic of many women with polycystic ovarian syndrome (PCOS). The influence of various endocrine changes in PCOS women and their relevance to bone remains to be documented. Hormones, which include gonadotrophin-releasing hormone (GnRH), insulin, the leutinizing/follicle-stimulating hormone (LH/FSH) ratio, androgens, estrogens, growth hormones (GH), cortisol, parathyroid hormone (PTH) and calcitonin are disturbed in PCOS women. These hormones influence bone metabolism in human subjects directly as well as indirectly. The imbalance in these hormones results in increased prevalence of osteoporosis in PCOS women. Limited evidence suggests that the drugs taken during the treatment of PCOS increase the risk of bone fracture in PCOS patients through endocrine disruption. This review is aimed at the identification of the relationship between bone mineral density and hormonal changes in PCOS subjects and identifies potential areas to study bone-related disorders in PCOS women. © 2017 Society for Endocrinology.

  13. Expression of insulin-like growth factor-2 receptors on EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Farmer, John T; Weigent, Douglas A

    2007-01-01

    In the present study, we report the upregulation of functional IGF-2Rs in cells overexpressing growth hormone (GH). EL4 lymphoma cells stably transfected with an rGH cDNA overexpression vector (GHo) exhibited an increase in the binding of (125)I-IGF-2 with no change in the binding affinity compared to vector alone controls. An increase in the expression of the insulin-like growth factor-2 receptor (IGF-2R) in cells overexpressing GH was confirmed by Western blot analysis and IGF-2R promoter luciferase assays. EL4 cells produce insulin-like growth factor-2 (IGF-2) as detected by the reverse transcription-polymerase chain reaction (RT-PCR); however, no IGF-2 protein was detected by Western analysis. The increase in the expression of the IGF-2R resulted in greater levels of IGF-2 uptake in GHo cells compared to vector alone controls. The data suggest that one of the consequences of the overexpression of GH is an increase in the expression of the IGF-2R.

  14. Sex Hormones and the QT Interval: A Review

    PubMed Central

    Sedlak, Tara; Shufelt, Chrisandra; Iribarren, Carlos

    2012-01-01

    Abstract A prolonged QT interval is a marker for an increased risk of ventricular tachyarrhythmias. Both endogenous and exogenous sex hormones have been shown to affect the QT interval. Endogenous testosterone and progesterone shorten the action potential, and estrogen lengthens the QT interval. During a single menstrual cycle, progesterone levels, but not estrogen levels, have the dominant effect on ventricular repolarization in women. Studies of menopausal hormone therapy (MHT) in the form of estrogen-alone therapy (ET) and estrogen plus progesterone therapy (EPT) have suggested a counterbalancing effect of exogenous estrogen and progesterone on the QT. Specifically, ET lengthens the QT, whereas EPT has no effect. To date, there are no studies on oral contraception (OC) and the QT interval, and future research is needed. This review outlines the current literature on sex hormones and QT interval, including the endogenous effects of estrogen, progesterone, and testosterone and the exogenous effects of estrogen and progesterone therapy in the forms of MHT and hormone contraception. Further, we review the potential mechanisms and pathophysiology of sex hormones on the QT interval. PMID:22663191

  15. Menopausal Symptom Relief and Side Effects Experienced by Women Using Compounded Bioidentical Hormone Replacement Therapy and Synthetic Conjugated Equine Estrogen and/or Progestin Hormone Replacement Therapy, Part 2.

    PubMed

    Deleruyelle, Laura J

    2016-01-01

    The use of compounded bioidentical hormone replacement therapy by menopausal women has become a popular alternative to traditional synthetic conjugated equine estrogen and progestin hormone replacement therapy due to safety concerns raised by recent studies. However, due to the lack of randomized, large-scale trials to evaluate the efficacy and side-effect profile of compounded bioidentical hormone replacement therapy many healthcare providers are reluctant to prescribe such therapy. The purpose of this study was to compare women's menopausal symptom relief and side effects experienced when using compounded bioidentical hormone replacement therapy and traditional hormone replacement therapy. A descriptive comparative design was used. Inferential and descriptive statistical procedures including a paired difference t-test, two-sample t-test, and f-tests (percentage, mean, standard deviation, frequency) were run on the Statistical Package for the Social Sciences. The framework used to guide this study was Lenz and Pugh's Theory of Unpleasant Symptoms. Surveys were distributed once to a convenient sample of women aged 35 and older when they dropped off or picked up their prescriptions at a pharmacy. Of the 216 surveys distributed, 70 were returned from those women taking compounded bioidentical hormone replacement therapy and 53 from traditional hormone replacement therapy. The survey contained 15 questions pertaining to age, duration of hormone replacement therapy, type and formulation of hormone replacement therapy, reasons for initiating hormone replacement therapy, symptoms before and one month after hormone replacement therapy, and side effects related to hormone replacement therapy. Included in part 1 of this series of articles was the introduction to the study conducted and the results of the literature review that was conducted for the purpose of examining the current data related to the topic of hormone replacement therapy. Part 2 provides a brief discussion

  16. Menopausal Symptom Relief and Side Effects Experienced by Women Using Compounded Bioidentical Hormone Replacement Therapy and Synthetic Conjugated Equine Estrogen and/or Progestin Hormone Replacement Therapy, Part 3.

    PubMed

    Deleruyelle, Laura J

    2017-01-01

    The use of compounded bioidentical hormone replacement therapy by menopausal women has become a popular alternative to traditional synthetic conjugated equine estrogen and progestin hormone replacement therapy due to safety concerns raised by recent studies. However, due to the lack of randomized, large-scale trials to evaluate the efficacy and side-effect profile of compounded bioidentical hormone replacement therapy many healthcare providers are reluctant to prescribe such therapy. The purpose of this study was to compare women's menopausal symptom relief and side effects experienced when using compounded bioidentical hormone replacement therapy and traditional hormone replacement therapy. A descriptive comparative design was used. Inferential and descriptive statistical procedures including a paired difference t-test, two-sample t-test, and f-tests (percentage, mean, standard deviation, frequency) were run on the Statistical Package for the Social Sciences. The framework used to guide this study was Lenz and Pugh's Theory of Unpleasant Symptoms. Surveys were distributed once to a convenient sample of women aged 35 and older when they dropped off or picked up their prescriptions at a pharmacy. Of the 216 surveys distributed, 70 were returned from those women taking compounded bioidentical hormone replacement therapy and 53 from traditional hormone replacement therapy. The survey contained 15 questions pertaining to age, duration of hormone replacement therapy, type and formulation of hormone replacement therapy, reasons for initiating hormone replacement therapy, symptoms before and one month after hormone replacement therapy, and side effects related to hormone replacement therapy. Included in part 1 of this series of articles was the introduction to the study conducted and the results of the literature review that was conducted for the purpose of examining the current data related to the topic of hormone replacement therapy. Part 2 provided a brief discussion

  17. Menopausal Hormone Therapy and Cancer

    MedlinePlus

    ... FDA-approved hormone products, sometimes referred to as “bio-identical hormones,” are widely promoted and sold without ... about these products in Menopausal Hormone Therapy and “Bio-identical” Hormones . Where does evidence about risks and ...

  18. Growth hormone distribution kinetics are markedly reduced in adults with growth hormone deficiency.

    PubMed

    Catalina, Pablo F; Páramo, Concepción; Andrade, Maria Amalia; Mallo, Federico

    2007-03-01

    Growth hormone (GH) circulating levels are highly dependent not only on GH secretion rate from the pituitary, but also on the hormone distribution in the compartments of the body and elimination phenomena. In adult GH-deficient patients these factors become critical nowadays, especially when recombinant human GH (rhGH) is available for replacement therapy. In the present study, we assess the influence of both distribution and elimination phenomena on GH pharmacokinetics in adult GH-deficient patients. We used a four-step methodology following a compartmental approach after an intravenous bolus of recombinant GH in adult GH-deficient patients. We found that GH kinetics are clearly explained by a bi-exponential, two-compartmental model in GH-deficient patients, similarly than in normal or diabetic subjects, as previously shown. We have also observed a marked delay in the whole GH elimination process in GH-deficient patients compared to normal adult subjects, as revealed by metabolic clearance ratio (MCR), elimination constant from central compartment (k(10)), and mean resident time in the body (MRT). Interestingly, such a delay appear to be caused by deep changes in the distribution phase (Mtt(1)- mean transit time-1; T(1/2alpha)- GH half-life at distribution phase), while the elimination phenomenon remains unaltered. Our results emphasize the relevance of distribution phenomena in GH pharmacokinetics, and indicates that studies avoiding data from the GH distribution phase, such as those carried out in steady-state conditions, or those using noncompartmental models, could easily miss relevant information. Our data should be taken into consideration when establishing the appropriate dosage for GH replacement treatments in GH-deficient patients, and calculations should include GH distribution kinetics.

  19. The Fate and Transport of Reproductive Hormones and Their Conjugates in the Environment

    USDA-ARS?s Scientific Manuscript database

    Reproductive steroid hormones can disrupt the endocrine system of some species at ng/L concentrations. Sources of steroid hormones to the environment include human waste water effluents or manure produced at animal feeding operations (AFOs). Steroid hormones, such as 17ß-estradiol (E2) and estrone (...

  20. The cardiovascular system in growth hormone excess and growth hormone deficiency.

    PubMed

    Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R

    2012-12-01

    The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular

  1. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress

    PubMed Central

    De Smet, Stefanie; Cuypers, Ann; Vangronsveld, Jaco; Remans, Tony

    2015-01-01

    Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example. PMID:26287175

  2. Changes in body composition, blood lipid profile, and growth factor hormone in a patient with Prader-willi syndrome during 24 weeks of complex exercise: a single case study.

    PubMed

    Joung, Hee Joung; Lim, In Soo

    2018-03-30

    Prader-Willi syndrome (PWS) is a genetic disorder characterized by excessive appetite with progressive obesity and growth hormone (GH) deficiency. Excessive eating causes progressive obesity with increased risk of morbidities and mortality. Although GH treatment has beneficial effects on patients with PWS, adverse events have occurred during GH treatment. Exercise potentially has a positive effect on obesity management. The purpose of this research was to examine the effects of 24-week complex exercise program on changes in body composition, blood lipid profiles, and growth factor hormone levels in a patient with PWS. The case study participant was a 23-year-old man with PWS who also had type II diabetes mellitus because of extreme obesity. Complex exercises, including strength and aerobic exercises, were conducted 5 times one week for 60 minutes per session, over 24 weeks. Blood sampling was conducted five times: before and at 8, 16, 20, and 24 weeks after commencement of the exercise program. Weight, fat mass, triglycerides/high-density lipoprotein (TG/HDL) ratio, mean blood glucose, and GH decreased after training. Blood insulin and insulin-like growth factor (IGF-1) levels increased after training. At 15 and 20 weeks, insulin injection was discontinued. Insulin levels increased and average blood glucose decreased to normal levels; IGF-1 increased continuously during the 24-week exercise program. Conclusion] Twenty-four weeks of complex exercises had a positive effect on obesity and diabetes in the patient with PWS. Therefore, long-period complex exercises might be an effective intervention for improvement of metabolic factors in PWS patients. ©2018 The Korean Society for Exercise Nutrition.

  3. Cardiovascular Disease Among Transgender Adults Receiving Hormone Therapy: A Narrative Review.

    PubMed

    Streed, Carl G; Harfouch, Omar; Marvel, Francoise; Blumenthal, Roger S; Martin, Seth S; Mukherjee, Monica

    2017-08-15

    Recent reports estimate that 0.6% of adults in the United States, or approximately 1.4 million persons, identify as transgender. Despite gains in rights and media attention, the reality is that transgender persons experience health disparities, and a dearth of research and evidence-based guidelines remains regarding their specific health needs. The lack of research to characterize cardiovascular disease (CVD) and CVD risk factors in transgender populations receiving cross-sex hormone therapy (CSHT) limits appropriate primary and specialty care. As with hormone therapy in cisgender persons (that is, those whose sex assigned at birth aligns with their gender identity), existing research in transgender populations suggests that CVD risk factors are altered by CSHT. Currently, systemic hormone replacement for cisgender adults requires a nuanced discussion based on baseline risk factors and age of administration of exogenous hormones because of concern regarding an increased risk for myocardial infarction and stroke. For transgender adults, CSHT has been associated with the potential for worsening CVD risk factors (such as blood pressure elevation, insulin resistance, and lipid derangements), although these changes have not been associated with increases in morbidity or mortality in transgender men receiving CSHT. For transgender women, CSHT has known thromboembolic risk, and lower-dose transdermal estrogen formulations are preferred over high-dose oral formulations. In addition, many studies of transgender adults focus predominantly on younger persons, limiting the generalizability of CSHT in older transgender adults. The lack of randomized controlled trials comparing various routes and formulations of CSHT, as well as the paucity of prospective cohort studies, limits knowledge of any associations between CSHT and CVD.

  4. Effects of aerobic exercise training on serum sex hormone binding globulin, body fat index, and metabolic syndrome factors in obese postmenopausal women.

    PubMed

    Kim, Jong-Won; Kim, Do-Yeon

    2012-12-01

    The percentage of obese postmenopausal women with metabolic syndrome is rising, and physical factors associated with the metabolic syndrome prevalence or incidence are also rising, including high body mass index (BMI), visceral fat area (VFA), low plasma sex hormone-binding globulin (SHBG) levels, and low cardiorespiratory fitness. Therefore, we investigated the influence of aerobic exercise on SHBG, body fat index (BFI), and metabolic syndrome factors in obese postmenopausal Korean women. Thirty healthy postmenopausal, women aged 53.46 ± 2.4 years and with over 32% body fat, were randomly assigned to an aerobic exercise group (EX; n=15) or to a "nonexercise" control (Con; n=15) group. The primary outcome measurements were serum SHBG, lipid profiles, insulin levels, and metabolic syndrome factors. Secondary outcome measurements were body composition, VFA, blood pressure (BP), and homeostasis model assessment of insulin resistance (HOMA-IR). Posttraining body weight and BFI (P<0.05), total cholesterol, glucose, and insulin levels (P<0.01), BP, and HOMA-IR (P<0.001) decreased, whereas SHBG (P<0.001) and metabolic syndrome factors (P<0.01) improved in the exercise group but not in the control group. SHBG levels also showed a significant positive correlation with high-density lipoprotein cholesterol (HDL-C) and significant negative correlations withglucose, diastolic blood pressure, fat mass, BMI, and percent body fat (P<0.05). Our findings indicate that aerobic exercise improves body composition, SHBG, insulin levels, and metabolic syndrome factors. These findings suggest that in obesepostmenopausal Korean women, 16 weeks of aerobic exercise is effective for preventing the metabolic syndrome caused by obesity.

  5. Building a better hormone therapy?: How understanding the rapid effects of sex steroid hormones could lead to new therapeutics for age-related memory decline

    PubMed Central

    Frick, Karyn M.

    2012-01-01

    A wealth of data collected in recent decades has demonstrated that ovarian sex-steroid hormones, particularly 17β-estradiol (E2), are important trophic factors that regulate the function of cognitive regions of the brain such as the hippocampus. The loss of hormone cycling at menopause is associated with cognitive decline and dementia in women, and the onset of memory decline in animal models. However, hormone therapy is not currently recommended to prevent or treat cognitive decline, in part because of its detrimental side effects. In this article, it is proposed that investigations of the rapid effects of E2 on hippocampal function be used to further the design of new drugs that mimic the beneficial effects of E2 on memory without the side effects of current therapies. A conceptual model is presented for elucidating the molecular and biochemical mechanisms through which sex-steroid hormones modulate memory, and a specific hypothesis is proposed to account for the rapid memory-enhancing effects of E2. Empirical support for this hypothesis is discussed as a means of stimulating the consideration of new directions for the development of hormone-based therapies to preserve memory function in menopausal women. PMID:22289043

  6. Hormones in international meat production: biological, sociological and consumer issues.

    PubMed

    Galbraith, Hugh

    2002-12-01

    Beef and its products are an important source of nutrition in many human societies. Methods of production vary and include the use of hormonal compounds ('hormones') to increase growth and lean tissue with reduced fat deposition in cattle. The hormonal compounds are naturally occurring in animals or are synthetically produced xenobiotics and have oestrogenic (oestradiol-17beta and its esters; zeranol), androgenic (testosterone and esters; trenbolone acetate) or progestogenic (progesterone; melengestrol acetate) activity. The use of hormones as production aids is permitted in North American countries but is no longer allowed in the European Union (EU), which also prohibits the importation of beef and its products derived from hormone-treated cattle. These actions have resulted in a trade dispute between the two trading blocs. The major concern for EU authorities is the possibility of adverse effects on human consumers of residues of hormones and metabolites. Methods used to assess possible adverse effects are typical of those used by international agencies to assess acceptability of chemicals in human food. These include analysis of quantities present in the context of known biological activity and digestive, absorptive, post-absorptive and excretory processes. Particular considerations include the low quantities of hormonal compounds consumed in meat products and their relationships to endogenous production particularly in prepubertal children, enterohepatic inactivation, cellular receptor- and non-receptor-mediated effects and potential for interference with growth, development and physiological function in consumers. There is particular concern about the role of oestradiol-17beta as a carcinogen in certain tissues. Now subject to a 'permanent' EU ban, current evidence suggests that certain catechol metabolites may induce free-radical damage of DNA in cell and laboratory animal test systems. Classical oestrogen-receptor mediation is considered to stimulate

  7. Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone.

    PubMed

    Armario, A; Montero, J L; Jolin, T

    1987-01-01

    Adult male Sprague-Dawley rats were subjected to food restriction so that they ate 65% of food ingested by control rats. While control rats had free access to food over the 24-hour period, food-restricted rats were provided with food daily at 10 a.m. The experimental period lasted for 34 days. On day 35, rats from both experimental groups were killed at 08.00, 11.00, 14.00, 24.00 and 02.00 h. Food restriction modified the circadian rhythms of ACTH and corticosterone. In addition, total circulating corticosterone throughout the day was higher in food-restricted than in control rats. In contrast, food restriction resulted in depressed secretion of thyroid-stimulating hormone and growth hormone. The results indicate that time of food availability entrained circadian corticosterone rhythm but not thyroid-stimulating hormone and growth hormone rhythms.

  8. Growth hormone-insulin-like growth factor-1 and inflammatory response to a single exercise bout in children and adolescents.

    PubMed

    Nemet, Dan; Eliakim, Alon

    2010-01-01

    Physical activity plays an important role in tissue anabolism, growth and development, but the mechanisms that link patterns of exercise with tissue anabolism are not completely understood. The effectiveness of physical training depends on the training load and on the individual ability to tolerate it, and an imbalance between the two may lead to under or over-training. Therefore, many efforts have been made to find objective parameters to quantify the balance between training load and the athlete's tolerance. One of the unique features of exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise stimulates anabolic components of the growth hormone (GH) → IGF-1 (insulin-like growth factor-1) axis. On the other hand, exercise elevates catabolic pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-1 and tumor necrosis factor-α (TNF-α). This emphasizes probably the importance of optimal adaptation to exercise in particularly during adolescence. The very fine balance between the anabolic and inflammatory/catabolic response to exercise will determine the effectiveness of exercise training and the health consequences of exercise. If the anabolic response is stronger, exercise will probably lead ultimately to increased muscle mass and improved fitness. A greater catabolic response, in particularly if persists for long duration, may lead to overtraining. Therefore, changes in the anabolic-catabolic hormonal balance and in circulating inflammatory cytokines can be used by adolescent athletes and/or their coaches to gauge the training intensity in individual and team sports. Copyright © 2010 S. Karger AG, Basel.

  9. Temporal aspects of copper homeostasis and its crosstalk with hormones

    PubMed Central

    Peñarrubia, Lola; Romero, Paco; Carrió-Seguí, Angela; Andrés-Bordería, Amparo; Moreno, Joaquín; Sanz, Amparo

    2015-01-01

    To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalization, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signaling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signaling with developmental pathways to allow enhanced micronutrient acquisition efficiency. PMID:25941529

  10. Assembly of insect hormone enthusiasts at Nasu Highland, Japan: Report of the 3rd International Insect Hormone (21st Ecdysone) Workshop.

    PubMed

    Niwa, Ryusuke; Nishimura, Takashi

    2018-01-01

    The 3rd International Insect Hormone (21st Ecdysone) Workshop (IIHW2017) was held in July 2017 at Nasu Highland, Japan. In the 40 years of the workshop's history, this was the first to be held in an Asian country. A total of 109 insect hormone researchers from 18 countries (62 overseas and 47 domestic participants) attended IIHW2017. During the workshop, all participants stayed on-site at the venue's hotel; this was ideal for fostering communication between participants, in particular, interactions between principal investigators and young scientists. The workshop featured one keynote, 64 oral, and 35 poster presentations spanning molecular biology, cell biology, developmental biology, neurobiology, chemical biology, physiology, and ecology of insect hormones, including ecdysteroids, juvenile hormones, and a variety of neuropeptides. The workshop provided an ideal platform for discussing insect hormone biology using not only the typical genetic model insect, the fruit fly Drosophila, but also a diversity of interesting insects, such as the silkworm, the red flour beetle, the cricket, the dragonfly, the social ant, the bloodsucking tick, and so on. The participants succeeded in sharing the latest knowledge in a wide range of insect hormone research fields and in joining active and constructive scientific discussions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  11. Evolution of Hormone Signaling Networks in Plant Defense.

    PubMed

    Berens, Matthias L; Berry, Hannah M; Mine, Akira; Argueso, Cristiana T; Tsuda, Kenichi

    2017-08-04

    Studies with model plants such as Arabidopsis thaliana have revealed that phytohormones are central regulators of plant defense. The intricate network of phytohormone signaling pathways enables plants to activate appropriate and effective defense responses against pathogens as well as to balance defense and growth. The timing of the evolution of most phytohormone signaling pathways seems to coincide with the colonization of land, a likely requirement for plant adaptations to the more variable terrestrial environments, which included the presence of pathogens. In this review, we explore the evolution of defense hormone signaling networks by combining the model plant-based knowledge about molecular components mediating phytohormone signaling and cross talk with available genome information of other plant species. We highlight conserved hubs in hormone cross talk and discuss evolutionary advantages of defense hormone cross talk. Finally, we examine possibilities of engineering hormone cross talk for improvement of plant fitness and crop production.

  12. Micronuclei in Cord Blood Lymphocytes and Associations with Biomarkers of Exposure to Carcinogens and Hormonally Active Factors, Gene Polymorphisms, and Gene Expression: The NewGeneris Cohort

    PubMed Central

    Merlo, Domenico Franco; Agramunt, Silvia; Anna, Lívia; Besselink, Harrie; Botsivali, Maria; Brady, Nigel J.; Ceppi, Marcello; Chatzi, Leda; Chen, Bowang; Decordier, Ilse; Farmer, Peter B.; Fleming, Sarah; Fontana, Vincenzo; Försti, Asta; Fthenou, Eleni; Gallo, Fabio; Georgiadis, Panagiotis; Gmuender, Hans; Godschalk, Roger W.; Granum, Berit; Hardie, Laura J.; Hemminki, Kari; Hochstenbach, Kevin; Knudsen, Lisbeth E.; Kogevinas, Manolis; Kovács, Katalin; Kyrtopoulos, Soterios A.; Løvik, Martinus; Nielsen, Jeanette K; Nygaard, Unni Cecilie; Pedersen, Marie; Rydberg, Per; Schoket, Bernadette; Segerbäck, Dan; Singh, Rajinder; Sunyer, Jordi; Törnqvist, Margareta; van Loveren, Henk; van Schooten, Frederik J.; Vande Loock, Kim; von Stedingk, Hans; Wright, John; Kirsch-Volders, Micheline; van Delft, Joost H.M.

    2013-01-01

    Background: Leukemia incidence has increased in recent decades among European children, suggesting that early-life environmental exposures play an important role in disease development. Objectives: We investigated the hypothesis that childhood susceptibility may increase as a result of in utero exposure to carcinogens and hormonally acting factors. Using cord blood samples from the NewGeneris cohort, we examined associations between a range of biomarkers of carcinogen exposure and hormonally acting factors with micronuclei (MN) frequency as a proxy measure of cancer risk. Associations with gene expression and genotype were also explored. Methods: DNA and protein adducts, gene expression profiles, circulating hormonally acting factors, and GWAS (genome-wide association study) data were investigated in relation to genomic damage measured by MN frequency in lymphocytes from 623 newborns enrolled between 2006 and 2010 across Europe. Results: Malondialdehyde DNA adducts (M1dG) were associated with increased MN frequency in binucleated lymphocytes (MNBN), and exposure to androgenic, estrogenic, and dioxin-like compounds was associated with MN frequency in mononucleated lymphocytes (MNMONO), although no monotonic exposure–outcome relationship was observed. Lower frequencies of MNBN were associated with a 1-unit increase expression of PDCD11, LATS2, TRIM13, CD28, SMC1A, IL7R, and NIPBL genes. Gene expression was significantly higher in association with the highest versus lowest category of bulky and M1dG–DNA adducts for five and six genes, respectively. Gene expression levels were significantly lower for 11 genes in association with the highest versus lowest category of plasma AR CALUX® (chemically activated luciferase expression for androgens) (8 genes), ERα CALUX® (for estrogens) (2 genes), and DR CALUX® (for dioxins). Several SNPs (single-nucleotide polymorphisms) on chromosome 11 near FOLH1 significantly modified associations between androgen activity and MNBN

  13. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression

    PubMed Central

    Donepudi, Ajay C.; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J.

    2016-01-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor– and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport. PMID:26847773

  14. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression.

    PubMed

    Donepudi, Ajay C; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L

    2016-04-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor- and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Long-Term Outcomes, Genetics, and Pituitary Morphology in Patients with Isolated Growth Hormone Deficiency and Multiple Pituitary Hormone Deficiencies: A Single-Centre Experience of Four Decades of Growth Hormone Replacement.

    PubMed

    Rohayem, Julia; Drechsel, Hendrik; Tittel, Bettina; Hahn, Gabriele; Pfaeffle, Roland; Huebner, Angela

    2016-01-01

    Growth hormone (GH) has been used to treat children with GH deficiency (GHD) since 1966. Using a combined retrospective and cross-sectional approach, we explored the long-term outcomes of patients with GHD, analysed factors influencing therapeutic response, determined persistence into adulthood, investigated pituitary morphology, and screened for mutations in causative genes. The files of 96 GH-deficient children were reviewed. In a subset of 50 patients, re-assessment in adulthood was performed, including GHRH-arginine testing, pituitary magnetic resonance imaging (MRI), and mutational screening for the growth hormone-1 gene (GH1) and the GHRH receptor gene (GHRHR) in isolated GHD (IGHD), and HESX1, PROP1, POU1F1, LHX3, LHX4, and GLI2 in multiple pituitary hormone deficiency (MPHD) patients. GH was started at a height SDS of -3.2 ± 1.4 in IGHD patients and of -4.1 ± 2.1 in MPHD patients. Relative height gain was 0.3 SDS/year, absolute gain 1.6 SDS, and 1.2/2.6 SDS in IGHD/MPHD, respectively. Mid-parental target height was reached in 77%. Initial height SDS, bone age retardation and duration of GH replacement were correlated with height SDS gain. GHD persisted into adulthood in 19 and 89% of subjects with IGHD and MPHD, respectively. In 1/42 IGHD patients a GH1 mutation was detected; PROP1 mutations were found in 3/7 MPHD subjects. Anterior pituitary hypoplasia, combined with posterior pituitary ectopy and pituitary stalk invisibility on MRI, was an exclusive finding in MPHD patients. GH replacement successfully corrects the growth deficit in children with GHD. While the genetic aetiology remains undefined in most cases of IGHD, PROP1 mutations constitute a major cause for MPHD. Persistence of GHD into adulthood is related to abnormal pituitary morphology. © 2016 S. Karger AG, Basel.

  16. Invited review of a workshop: anabolic hormones in bone: basic research and therapeutic potential.

    PubMed

    Margolis, R N; Canalis, E; Partridge, N C

    1996-03-01

    Age-, postmenopause-, and disease-related conditions that result in low bone mass represent important public health issues. Maintenance of bone mass is a balance between bone resorption and formation and is influenced by diet, body composition, activity level, and the interactions between and among a large number of hormones, growth factors, and cytokines. Recent research has emphasized establishing a more complete understanding of the hormonal regulation of bone and developing anabolic agents with therapeutic potential for the treatment of low bone mass. The NIDDK at the NIH recently sponsored a Workshop, entitled Anabolic Hormones in Bone: Basic Research and Therapeutic Potential, that attempted to define the current state of the art knowledge of hormones, growth factors, and cytokines that affect bone mass, with particular emphasis on those that could potentially have a role as anabolic agents in bone. This review presents a condensed proceedings of that workshop along with a summary of the optimal requisites for the development of anabolic agents with therapeutic potential in bone.

  17. Acute Serum Hormone Levels: Characterization and Prognosis after Severe Traumatic Brain Injury

    PubMed Central

    McCullough, Emily H.; Niyonkuru, Christian; Ozawa, Haishin; Loucks, Tammy L.; Dobos, Julie A.; Brett, Christopher A.; Santarsieri, Martina; Dixon, C. Edward; Berga, Sarah L.; Fabio, Anthony

    2011-01-01

    Abstract Experimental traumatic brain injury (TBI) studies report the neuroprotective effects of female sex steroids on multiple mechanisms of injury, with the clinical assumption that women have hormonally mediated neuroprotection because of the endogenous presence of these hormones. Other literature indicates that testosterone may exacerbate injury. Further, stress hormone abnormalities that accompany critical illness may both amplify or blunt sex steroid levels. To better understand the role of sex steroid exposure in mediating TBI, we 1) characterized temporal profiles of serum gonadal and stress hormones in a population with severe TBI during the acute phases of their injury; and 2) used a biological systems approach to evaluate these hormones as biomarkers predicting global outcome. The study population was 117 adults (28 women; 89 men) with severe TBI. Serum samples (n=536) were collected for 7 days post-TBI for cortisol, progesterone, testosterone, estradiol, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Hormone data were linked with clinical data, including acute care mortality and Glasgow Outcome Scale (GOS) scores at 6 months. Hormone levels after TBI were compared to those in healthy controls (n=14). Group based trajectory analysis (TRAJ) was used to develop temporal hormone profiles that delineate distinct subpopulations in the cohort. Structural equations models were used to determine inter-relationships between hormones and outcomes within a multivariate model. Compared to controls, acute serum hormone levels were significantly altered after severe TBI. Changes in the post-TBI adrenal response and peripheral aromatization influenced hormone TRAJ profiles and contributed to the abnormalities, including increased estradiol in men and increased testosterone in women. In addition to older age and greater injury severity, increased estradiol and testosterone levels over time were associated with increased mortality and worse global

  18. Hormones in the immune system and their possible role. A critical review.

    PubMed

    Csaba, György

    2014-09-01

    Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.

  19. Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination.

    PubMed

    Köhrle, Josef

    2007-06-01

    Thyroid hormone metabolism by the three deiodinase selenoproteins -- DIO1, DIO2, and DIO3 -- regulates the local availability of various iodothyronine metabolites and thus mediates their effects on gene expression, thermoregulation, energy metabolism, and many key reactions during the development and maintenance of an adult organism. Circulating serum levels of thyroid hormone and thyroid-stimulating hormone, used as a combined indicator of thyroid hormone status, reflect a composite picture of: thyroid secretion; tissue-specific production of T(3) by DIO1 and DIO2 activity, which both contribute to circulating levels of T(3); and degradation of the prohormone T4, of the thyromimetically active T(3), of the inactive rT(3), of other iodothyronines metabolites with a lower iodine content and of thyroid hormone conjugates. Degradation reactions are catalyzed by either DIO1 or DIO3. Aberrant expression of individual deiodinases in disease, single nucleotide polymorphisms in their genes, and novel regulators of DIO gene expression (such as bile acids) provide a more complex picture of the fine tuning and the adaptation of systemic and local bioavailability of thyroid hormones.

  20. Multifaceted Targeting of the Chromatin Mediates Gonadotropin-Releasing Hormone Effects on Gene Expression in the Gonadotrope.

    PubMed

    Melamed, Philippa; Haj, Majd; Yosefzon, Yahav; Rudnizky, Sergei; Wijeweera, Andrea; Pnueli, Lilach; Kaplan, Ariel

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility.

  1. Multifaceted Targeting of the Chromatin Mediates Gonadotropin-Releasing Hormone Effects on Gene Expression in the Gonadotrope

    PubMed Central

    Melamed, Philippa; Haj, Majd; Yosefzon, Yahav; Rudnizky, Sergei; Wijeweera, Andrea; Pnueli, Lilach; Kaplan, Ariel

    2018-01-01

    Gonadotropin-releasing hormone (GnRH) stimulates the expression of multiple genes in the pituitary gonadotropes, most notably to induce synthesis of the gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), but also to ensure the appropriate functioning of these cells at the center of the mammalian reproductive endocrine axis. Aside from the activation of gene-specific transcription factors, GnRH stimulates through its membrane-bound receptor, alterations in the chromatin that facilitate transcription of its target genes. These include changes in the histone and DNA modifications, nucleosome positioning, and chromatin packaging at the regulatory regions of each gene. The requirements for each of these events vary according to the DNA sequence which determines the basal chromatin packaging at the regulatory regions. Despite considerable progress in this field in recent years, we are only beginning to understand some of the complexities involved in the role and regulation of this chromatin structure, including new modifications, extensive cross talk, histone variants, and the actions of distal enhancers and non-coding RNAs. This short review aims to integrate the latest findings on GnRH-induced alterations in the chromatin of its target genes, which indicate multiple and diverse actions. Understanding these processes is illuminating not only in the context of the activation of these hormones during the reproductive life span but may also reveal how aberrant epigenetic regulation of these genes leads to sub-fertility. PMID:29535683

  2. Steroid hormones, stress and the adolescent brain: a comparative perspective.

    PubMed

    Brown, G R; Spencer, K A

    2013-09-26

    Steroid hormones, including those produced by the gonads and the adrenal glands, are known to influence brain development during sensitive periods of life. Until recently, most brain organisation was assumed to take place during early stages of development, with relatively little neurogenesis or brain re-organisation during later stages. However, an increasing body of research has shown that the developing brain is also sensitive to steroid hormone exposure during adolescence (broadly defined as the period from nutritional independence to sexual maturity). In this review, we examine how steroid hormones that are produced by the gonads and adrenal glands vary across the lifespan in a range of mammalian and bird species, and we summarise the evidence that steroid hormone exposure influences behavioural and brain development during early stages of life and during adolescence in these two taxonomic groups. Taking a cross-species, comparative perspective reveals that the effects of early exposure to steroid hormones depend upon the stage of development at birth or hatching, as measured along the altricial-precocial dimension. We then review the evidence that exposure to stress during adolescence impacts upon the developing neuroendocrine systems, the brain and behaviour. Current research suggests that the effects of adolescent stress vary depending upon the sex of the individual and type of stressor, and the effects of stress could involve several neural systems, including the serotonergic and dopaminergic systems. Experience of stressors during adolescence could also influence brain development via the close interactions between the stress hormone and gonadal hormone axes. While sensitivity of the brain to steroid hormones during early life and adolescence potentially leaves the developing organism vulnerable to external adversities, developmental plasticity also provides an opportunity for the developing organism to respond to current circumstances and for behavioural

  3. Serum androgenic hormones motivate sexual behavior in adolescent boys.

    PubMed

    Udry, J R; Billy, J O; Morris, N M; Groff, T R; Raj, M H

    1985-01-01

    In order to separate hormonal from social effects on adolescent male sexual behavior, serum hormone assays were performed and questionnaire data on sexual motivation and behavior were collected on a representative sample of 102 boys in grades 8, 9, and 10 of a public school system. Free testosterone was a strong predictor of sexual motivation and behavior, with no additional contribution of other hormones. Including measures of pubertal development and age (indexing the effects of social processes) indicated no additional effects. Free testosterone, therefore, appears to affect sexual motivation directly and does not work through the social interpretation of the accompanying pubertal development.

  4. Hormone Replacement Therapy and Physical Function in Healthy Older Men. Time to Talk Hormones?

    PubMed Central

    Giannoulis, Manthos G.; Martin, Finbarr C.; Nair, K. Sreekumaran; Umpleby, A. Margot

    2012-01-01

    Improving physical function and mobility in a continuously expanding elderly population emerges as a high priority of medicine today. Muscle mass, strength/power, and maximal exercise capacity are major determinants of physical function, and all decline with aging. This contributes to the incidence of frailty and disability observed in older men. Furthermore, it facilitates the accumulation of body fat and development of insulin resistance. Muscle adaptation to exercise is strongly influenced by anabolic endocrine hormones and local load-sensitive autocrine/paracrine growth factors. GH, IGF-I, and testosterone (T) are directly involved in muscle adaptation to exercise because they promote muscle protein synthesis, whereas T and locally expressed IGF-I have been reported to activate muscle stem cells. Although exercise programs improve physical function, in the long-term most older men fail to comply. The GH/IGF-I axis and T levels decline markedly with aging, whereas accumulating evidence supports their indispensable role in maintaining physical function integrity. Several studies have reported that the administration of T improves lean body mass and maximal voluntary strength in healthy older men. On the other hand, most studies have shown that administration of GH alone failed to improve muscle strength despite amelioration of the detrimental somatic changes of aging. Both GH and T are anabolic agents that promote muscle protein synthesis and hypertrophy but work through separate mechanisms, and the combined administration of GH and T, albeit in only a few studies, has resulted in greater efficacy than either hormone alone. Although it is clear that this combined approach is effective, this review concludes that further studies are needed to assess the long-term efficacy and safety of combined hormone replacement therapy in older men before the medical rationale of prescribing hormone replacement therapy for combating the sarcopenia of aging can be established

  5. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    PubMed Central

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  6. The role of central and peripheral hormones in sexual and violent recidivism in sex offenders.

    PubMed

    Kingston, Drew A; Seto, Michael C; Ahmed, Adekunle G; Fedoroff, Paul; Firestone, Philip; Bradford, John M

    2012-01-01

    Hormonal factors are important in multifactorial theories of sexual offending. The relationship between hormones and aggression in nonhumans is well established, but the putative effect in humans is more complex, and the direction of the effect is usually unclear. In this study, a large sample (N = 771) of adult male sex offenders was assessed between 1982 and 1996. Gonadotrophic (follicle-stimulating hormone and luteinizing hormone) and androgen hormone (total and free testosterone; T) levels were assessed at Time 1, along with indicators of sex drive and hostility. Individuals were observed up to 20 years in the community, with an average time at risk of 10.9 years (SD 4.6). Gonadotrophic hormones correlated positively with self-reported hostility and were better predictors of recidivism than was T (area under the curve (AUC), 0.58-0.63). Self-reported hostility emerged as a partial mediator of this relationship between gonadotrophic hormones and recidivism. These results point to a potentially new area of investigation for hormones and sexual aggression.

  7. Increased Procurement of Thoracic Donor Organs After Thyroid Hormone Therapy.

    PubMed

    Novitzky, Dimitri; Mi, Zhibao; Collins, Joseph F; Cooper, David K C

    2015-01-01

    Hormonal therapy to the brain-dead organ donor can include thyroid hormone (triiodothyronine [T3] or levothyroxine [T4]), antidiuretic hormone, corticosteroids, or insulin. There has been a controversy on whether thyroid hormone enables more organs to be procured. Data on 63,593 donors of hearts and lungs (2000-2009) were retrospectively reviewed. Documentation on T3/T4 was available in all donors (study 1), and in 40,124 details of all 4 hormones were recorded (study 2). In this cohort, group A (23,022) received T3/T4 and group B (17,102) no T3/T4. Univariate analyses and multiple regressions were performed. Posttransplant graft and recipient survival at 1 and 12 months were compared. In study 1, 30,962 donors received T3/T4, with 36.59% providing a heart and 20.05% providing 1 or both lungs. Of the 32,631 donors who did not receive T3/T4, only 29.62% provided a heart and 14.61% provided lungs, an increase of 6.97% hearts and 5.44% lungs from T3/T4-treated donors (both P < 0.0001). In study 2, 34.99% of group A provided a heart and 20.99% provided lungs. In group B only 25.76% provided a heart and 15.09% provided lungs, an increase of 9.23% (hearts) and 5.90% (lungs), respectively, in group A (both P < 0.0001). The results of multiple regression analyses indicated a beneficial effect of T3/T4 on heart (P < 0.0001) and lung (P < 0.0001) procurement independent of other factors. T3/T4 therapy to the donor was associated with either improved posttransplant graft and recipient survival or no difference in survival. T3/T4 therapy results in more transplantable hearts and lungs, with no detriment to posttransplant graft or recipient survival. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Growth hormone and insulin-like growth factor-1 concentrations in women with fibromyalgia.

    PubMed

    McCall-Hosenfeld, Jennifer S; Goldenberg, Don L; Hurwitz, Shelley; Adler, Gail K

    2003-04-01

    To determine activity of the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis in women with fibromyalgia (FM). Premenopausal women with FM (n = 24) and premenopausal healthy women (n = 27) were studied. IGF-1 was measured in 23 patients with FM and 25 controls. GH was measured during a stepped hypoglycemic hyperinsulinemic clamp procedure (blood glucose decreased from 90 to 40 mg/dl every 30 min in 10 mg/dl decrements) in 12 FM and 13 control subjects. IGF-1 concentrations were similar in the FM (200 +/- 71 ng/ml, mean +/- SD) and control (184 +/- 70 ng/ml) groups. By multiple variable analysis, IGF-1 was negatively associated with age (p = 0.0006), body mass index (BMI) (p = 0.006), and 24 h urinary free cortisol (p = 0.007) in healthy controls. Even after accounting for these factors, there was no association between FM and IGF-1. The average peak GH achieved during hypoglycemia was lower in patients with FM (range 5 to 58 ng/ml, median 13 ng/ml) versus controls (6 to 68 ng/ml, median 21 ng/ml) (p = 0.04). However, BMI was a significant predictor of average peak GH in FM (r = -0.62, p < 0.01) and control subjects (r = -0.40, p = 0.06). After considering BMI, there was no significant association between FM subjects and the average peak GH (p = 0.20). In this sample of premenopausal women with FM, the activity of the GH-IGF-1 axis was similar to that of healthy controls. Increases in age and obesity were both strongly associated with lower activity of this axis, suggesting that these factors must be considered when studying activity of the GH-IGF-1 axis in FM.

  9. Silent pituitary macroadenoma co-secreting growth hormone and thyroid stimulating hormone.

    PubMed

    Sen, Orhan; Ertorer, M Eda; Aydin, M Volkan; Erdogan, Bulent; Altinors, Nur; Zorludemir, Suzan; Guvener, Nilgun

    2005-04-01

    Silent pituitary adenomas are a group of tumors showing heterogenous morphological features with no hormonal function observed clinically. To date no explanation has been provided as to why these tumors remain "silent". We report a case of a silent macroadenoma with both growth hormone (GH) and thyroid stimulating hormone (TSH) staining and secretion but with no clinical manifestations, in particular, the absence of features of acromegaly or hyperthyroidism. The relevant literature is reviewed.

  10. [Growth hormone treatment update].

    PubMed

    2014-02-01

    Short stature in children is a common cause for referral to pediatric endocrinologists, corresponding most times to normal variants of growth. Initially growth hormone therapy was circumscribed to children presenting growth hormone deficiency. Since the production of recombinant human hormone its use had spread to other pathologies.

  11. Tissue-specific regulation of malic enzyme by thyroid hormone in the neonatal rat.

    PubMed

    Sood, A; Schwartz, H L; Oppenheimer, J H

    1996-05-15

    Two recent studies have claimed that thyroid hormone administration accelerates malic enzyme gene expression in the neonatal brain in contrast to the well-documented lack of effect of triiodothyronine on malic enzyme gene expression in the adult brain. Since these observations conflict with earlier observations in our laboratory, we reinvestigated the effect of thyroid hormone status on the ontogeny of malic enzyme gene expression in the neonatal rat. Neither hypothyroidism nor hyperthyroidism influenced the ontogenesis of malic enzyme activity in neonatal brain whereas the patterns of gene expression and enzyme activity in liver were markedly affected. Our results suggest that tissue-specific factors in brain block thyroid hormone-induced gene expression by thyroid hormone.

  12. The endocrine-brain-aging triad where many paths meet: female reproductive hormone changes at midlife and their influence on circuits important for learning and memory.

    PubMed

    Koebele, Stephanie V; Bimonte-Nelson, Heather A

    2017-08-01

    Female mammals undergo natural fluctuations in sex steroid hormone levels throughout life. These fluctuations span from early development, to cyclic changes associated with the menstrual or estrous cycle and pregnancy, to marked hormone flux during perimenopause, and a final decline at reproductive senescence. While the transition to reproductive senescence is not yet fully understood, the vast majority of mammals experience this spontaneous, natural phenomenon with age, which has broad implications for long-lived species. Indeed, this post-reproductive life stage, and its transition, involves significant and enduring physiological changes, including considerably altered sex steroid hormone and gonadotropin profiles that impact multiple body systems, including the brain. The endocrine-brain-aging triad is especially noteworthy, as many paths meet and interact. Many of the brain regions affected by aging are also sensitive to changes in ovarian hormone levels, and aging and reproductive senescence are both associated with changes in memory performance. This review explores how menopause is related to cognitive aging, and discusses some of the key neural systems and molecular factors altered with age and reproductive hormone level changes, with an emphasis on brain regions important for learning and memory. Copyright © 2017. Published by Elsevier Inc.

  13. Hormone-like peptides in the venoms of marine cone snails

    PubMed Central

    Robinson, Samuel D.; Li, Qing; Bandyopadhyay, Pradip K.; Gajewiak, Joanna; Yandell, Mark; Papenfuss, Anthony T.; Purcell, Anthony W.; Norton, Raymond S.; Safavi-Hemami, Helena

    2015-01-01

    The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey’s nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins. PMID:26301480

  14. Osteoporosis and its association with non-gonadal hormones involved in hypertension, adiposity and hyperglycaemia.

    PubMed

    Poudyal, Hemant; Brown, Lindsay

    2013-12-01

    Osteoporosis is a high-prevalence disease, particularly in developed countries, and results in high costs both to the individual and to society through associated fragility fractures. There is an urgent need for identification of novel drug targets and development of new anti-osteoporotic agents. Between 30 and 80% of osteoporotic fractures cannot be prevented despite current treatments achieving relative fracture risk reduction of up to 20%, 50%, and 70% for non-vertebral, hip and spine fractures, respectively. Traditionally, the decline in gonadal hormones has been studied as the sole hormonal determinant for the loss of bone mineral density in osteoporosis. However, recent studies have identified receptors for numerous non-gonadal hormones such as PTH, angiotensin II, leptin, adiponectin, insulin and insulin-like growth factor-1 on the osteoblast lineage cells that directly regulate bone turnover. These hormones are also involved in the pathogenesis of metabolic syndrome risk factors, particularly hypertension, type-II diabetes and obesity. By activating their respective receptors on osteoblastic lineage cells, these hormones appear to act through a common mechanism by down-regulating receptors for activation of nuclear factor kappa B ligand (RANKL) and up-regulating osteoprotegerin (OPG) with inverse responses for adiponectin. Receptors for amylin, gastric inhibitory polypeptide and ghrelin and have also been identified on the osteoblast lineage cells although the roles of these receptors in bone turnover are controversial or poorly studied. Moreover, bone turnover may be independently regulated by modulation of osteoclast-osteoblast function and bone marrow adiposity. Leptin appears to be the only hormone that is a known regulator of both bone mineralisation and bone adiposity.

  15. New Insights into Thyroid Hormone Action

    PubMed Central

    Mendoza, Arturo; Hollenberg, Anthony N.

    2017-01-01

    Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) concentrations in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling. PMID:28174093

  16. Low-dose effects of hormones and endocrine disruptors.

    PubMed

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately. © 2014 Elsevier Inc. All rights reserved.

  17. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children.

    PubMed

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-11-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene-environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene-environment interactions in children treated with r-hGH.

  18. Effect of summer daylight exposure and genetic background on growth in growth hormone-deficient children

    PubMed Central

    De Leonibus, C; Chatelain, P; Knight, C; Clayton, P; Stevens, A

    2016-01-01

    The response to growth hormone in humans is dependent on phenotypic, genetic and environmental factors. The present study in children with growth hormone deficiency (GHD) collected worldwide characterised gene–environment interactions on growth response to recombinant human growth hormone (r-hGH). Growth responses in children are linked to latitude, and we found that a correlate of latitude, summer daylight exposure (SDE), was a key environmental factor related to growth response to r-hGH. In turn growth response was determined by an interaction between both SDE and genes known to affect growth response to r-hGH. In addition, analysis of associated networks of gene expression implicated a role for circadian clock pathways and specifically the developmental transcription factor NANOG. This work provides the first observation of gene–environment interactions in children treated with r-hGH. PMID:26503811

  19. Aggregation of luteinizing hormone receptors in granulosa cells: a possible mechanism of desensitization to the hormone.

    PubMed Central

    Amsterdam, A; Berkowitz, A; Nimrod, A; Kohen, F

    1980-01-01

    The temporal relationship between redistribution of receptors to lutropin (luteinizing hormone)/human chorionic gonadotropin in cultured rat ovarian granulosa cells and the cellular response to hormonal challenge were studied. Visualization of receptor-bound human chorionic gonadotropin by indirect immunofluorescence, with hormone-specific antibodies after fixation with 2% formaldehyde, revealed the existence of small clusters around the entire cell circumference 5--20 min after exposure to the hormone at 37 degrees C. Such small receptor aggregates were also evident if hormone incubation was at 4 degrees C or if cells were fixed with 2% formaldehyde before incubation. Larger clusters were evident after prolonged incubation with the hormone (2--4 hr) at 37 degrees C. The later change coincided with diminished cyclic AMP accumulation in respose to challenge with fresh hormone. When the fixation step was omitted and antibodies to human chorionic gonadotropin were applied after hormonal binding, acceleration of both receptor clustering and the desensitization process was observed. This maneuver also induced capping of the hormone receptors. In contrast, monovalent Fab' fragments of the antibodies were without effect. Internalization of the bound hormone in lysosomes, and subsequent degradation, was evident 8 hr after hormonal application and was not accelerated by the antibodies. It is suggested that clustering of the luteinizing hormone receptors may play a role in cellular responsiveness to the hormone. Massive aggregation of the receptors may desensitize the cell by interferring with coupling to adenylate cyclase. Images PMID:6251459

  20. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor.

    PubMed

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-08-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone-related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.-Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone-related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. © FASEB.

  1. Noncontraceptive use of oral combined hormonal contraceptives in polycystic ovary syndrome-risks versus benefits.

    PubMed

    Dokras, Anuja

    2016-12-01

    The use of steroid sex hormones for noncontraceptive benefits has been endorsed by several medical societies. In women with polycystic ovary syndrome (PCOS), hormonal contraceptives are first-line therapy for concurrent treatment of menstrual irregularity, acne, and hirsutism. The association of PCOS with obesity, diabetes, and dyslipidemia frequently brings up the debate regarding risks versus benefits of hormonal contraceptives in this population. In women with PCOS, the lack of large-scale studies evaluating the risks with varying doses of ethinyl estradiol, types of progestins, and presence of confounding factors such as obesity, smoking, and other cardiometabolic comorbidities is a significant limitation in these deliberations. Although it is important to assess the absolute risk for major morbidities including cardiovascular events, currently, there are a paucity of long-term data for these outcomes in PCOS. Most of the current studies do not suggest an increase in risk of prediabetes/diabetes, clinically significant dyslipidemia, inflammatory changes, or depressive/anxiety symptoms with oral contraceptive pill use. Screening of women with PCOS for cardiometabolic and psychiatric comorbidities is routinely recommended. This information should be used by health care providers to individualize the choice of hormonal contraceptive treatment, adequately counsel patients regarding risks and benefits, and formulate an appropriate follow-up plan. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Thyroid-stimulating hormone pituitary adenomas.

    PubMed

    Clarke, Michelle J; Erickson, Dana; Castro, M Regina; Atkinson, John L D

    2008-07-01

    Thyroid-stimulating hormone (TSH)-secreting pituitary adenomas are rare, representing < 2% of all pituitary adenomas. The authors conducted a retrospective analysis of patients with TSH-secreting or clinically silent TSH-immunostaining pituitary tumors among all pituitary adenomas followed at their institution between 1987 and 2003. Patient records, including clinical, imaging, and pathological and surgical characteristics were reviewed. Twenty-one patients (6 women and 15 men; mean age 46 years, range 26-73 years) were identified. Of these, 10 patients had a history of clinical hyperthyroidism, of whom 7 had undergone ablative thyroid procedures (thyroid surgery/(131)I ablation) prior to the diagnosis of pituitary adenoma. Ten patients had elevated TSH preoperatively. Seven patients presented with headache, and 8 presented with visual field defects. All patients underwent imaging, of which 19 were available for imaging review. Sixteen patients had macroadenomas. Of the 21 patients, 18 underwent transsphenoidal surgery at the authors' institution, 2 patients underwent transsphenoidal surgery at another facility, and 1 was treated medically. Patients with TSH-secreting tumors were defined as in remission after surgery if they had no residual adenoma on imaging and had biochemical evidence of hypo-or euthyroidism. Patients with TSH-immunostaining tumors were considered in remission if they had no residual tumor. Of these 18 patients, 9 (50%) were in remission following surgery. Seven patients had residual tumor; 2 of these patients underwent further transsphenoidal resection, 1 underwent a craniotomy, and 4 underwent postoperative radiation therapy (2 conventional radiation therapy, 1 Gamma Knife surgery, and 1 had both types of radiation treatment). Two patients had persistently elevated TSH levels despite the lack of evidence of residual tumor. On pathological analysis and immunostaining of the surgical specimen, 17 patients had samples that stained positively for

  3. The formation and transformation of hormones in maternal, placental and fetal compartments: biological implications.

    PubMed

    Pasqualini, Jorge R; Chetrite, Gérard S

    2016-07-01

    The fetal endocrine system constitutes the earliest system developing in fetal life and operates during all the steps of gestation. Its regulation is in part dependent on the secretion of placental and/or maternal precursors emanating across the feto-maternal interface. Human fetal and placental compartments possess all the enzymatic systems necessary to produce steroid hormones. However, their activities are different and complementary: the fetus is very active in converting acetate into cholesterol, in transforming pregnanes to androstanes, various hydroxylases, sulfotransferases, while all these transformations are absent or very limited in the placenta. This compartment can transform cholesterol to C21-steroids, convert 5-ene to 4-ene steroids, and has a high capacity to aromatize C19 precursors and to hydrolyze sulfates. Steroid hormone receptors are present at an early stage of gestation and are functional for important physiological activities. The production rate of some steroids greatly increases with fetal evolution (e.g. estriol increases 500-1000 times in relation to non-pregnant women). Other hormones, such as glucocorticoids, in particular the stress hormone cortisol, adipokines (e.g. leptin, adiponectin), insulin-like growth factors, are also a key factor for regulating reproduction, metabolism, appetite and may be significant in programming the fetus and its growth. We can hypothesize that the fetal and placental factors controlling hormonal levels in the fetal compartment can be of capital importance in the normal development of extra-uterine life.

  4. Coordinate tropic hormone regulation of mRNAs for insulin-like growth factor II and the cholesterol side-chain-cleavage enzyme, P450scc [corrected], in human steroidogenic tissues.

    PubMed Central

    Voutilainen, R; Miller, W L

    1987-01-01

    Insulin-like growth factors (IGFs) are single-chain polypeptides important for cell proliferation and growth. IGFs are produced in several tissues, suggesting that they function in a paracrine or autocrine fashion as well as functioning as endocrine hormones. We studied the hormonal regulation of IGF-I and IGF-II mRNA in human steroidogenic tissues. In cultured human ovarian granulosa cells, follicle-stimulating hormone, human chorionic gonadotropin, and dibutyryl cAMP increased IGF-II mRNA, but corticotropin [adrenocorticotropic hormone (ACTH)], chorionic somatomammotropin, growth hormone, prolactin, dexamethasone, estradiol, and progesterone had no effect. In cultured human fetal adrenal cells, ACTH and dibutyryl cAMP increased IGF-II mRNA accumulation, but human chorionic gonadotropin and angiotensin II did not. The same five size species of IGF-II mRNA were detected in transfer blots of RNA from granulosa cells and fetal adrenal cells, and all of these increased after hormonal stimuli. Dibutyryl cAMP also increased IGF-II mRNA accumulation in cultured human placental cells. Accumulation of mRNA for the cholesterol side-chain-cleavage monooxygenase [P450scc [corrected]; cholesterol, reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving), EC 1.14.15.6] was regulated in parallel with IGF-II mRNA in all these steroidogenic tissues. IGF-I mRNA was not detected in transfer blots of these RNAs, and the minimal amounts detected in dot blots showed no detectable change after any of the hormonal stimuli studied. The data indicate that the IGF-II gene is expressed in human steroidogenic tissues and is regulated by cAMP. These data suggest that IGF-II may act in an autocrine or paracrine fashion to stimulate the adrenal and gonadal growth stimulated by ACTH and gonadotropins, respectively. Images PMID:3031644

  5. Menopause and Hormones

    MedlinePlus

    ... Consumer Information by Audience For Women Menopause and Hormones: Common Questions Share Tweet Linkedin Pin it More ... reproduction and distribution. Learn More about Menopause and Hormones Menopause--Medicines to Help You Links to other ...

  6. Severe acute malnutrition in childhood: hormonal and metabolic status at presentation, response to treatment, and predictors of mortality.

    PubMed

    Bartz, Sarah; Mody, Aaloke; Hornik, Christoph; Bain, James; Muehlbauer, Michael; Kiyimba, Tonny; Kiboneka, Elizabeth; Stevens, Robert; Bartlett, John; St Peter, John V; Newgard, Christopher B; Freemark, Michael

    2014-06-01

    Malnutrition is a major cause of childhood morbidity and mortality. To identify and target those at highest risk, there is a critical need to characterize biomarkers that predict complications prior to and during treatment. We used targeted and nontargeted metabolomic analysis to characterize changes in a broad array of hormones, cytokines, growth factors, and metabolites during treatment of severe childhood malnutrition. Children aged 6 months to 5 years were studied at presentation to Mulago Hospital and during inpatient therapy with milk-based formulas and outpatient supplementation with ready-to-use food. We assessed the relationship between baseline hormone and metabolite levels and subsequent mortality. Seventy-seven patients were enrolled in the study; a subset was followed up from inpatient treatment to the outpatient clinic. Inpatient and outpatient therapies increased weight/height z scores and induced striking changes in the levels of fatty acids, amino acids, acylcarnitines, inflammatory cytokines, and various hormones including leptin, insulin, GH, ghrelin, cortisol, IGF-I, glucagon-like peptide-1, and peptide YY. A total of 12.2% of the patients died during hospitalization; the major biochemical factor predicting mortality was a low level of leptin (P = .0002), a marker of adipose tissue reserve and a critical modulator of immune function. We have used metabolomic analysis to provide a comprehensive hormonal and metabolic profile of severely malnourished children at presentation and during nutritional rehabilitation. Our findings suggest that fatty acid metabolism plays a central role in the adaptation to acute malnutrition and that low levels of the adipose tissue hormone leptin associate with, and may predict, mortality prior to and during treatment.

  7. Severe Acute Malnutrition in Childhood: Hormonal and Metabolic Status at Presentation, Response to Treatment, and Predictors of Mortality

    PubMed Central

    Bartz, Sarah; Mody, Aaloke; Hornik, Christoph; Bain, James; Muehlbauer, Michael; Kiyimba, Tonny; Kiboneka, Elizabeth; Stevens, Robert; Bartlett, John; St Peter, John V.; Newgard, Christopher B.

    2014-01-01

    Objective: Malnutrition is a major cause of childhood morbidity and mortality. To identify and target those at highest risk, there is a critical need to characterize biomarkers that predict complications prior to and during treatment. Methods: We used targeted and nontargeted metabolomic analysis to characterize changes in a broad array of hormones, cytokines, growth factors, and metabolites during treatment of severe childhood malnutrition. Children aged 6 months to 5 years were studied at presentation to Mulago Hospital and during inpatient therapy with milk-based formulas and outpatient supplementation with ready-to-use food. We assessed the relationship between baseline hormone and metabolite levels and subsequent mortality. Results: Seventy-seven patients were enrolled in the study; a subset was followed up from inpatient treatment to the outpatient clinic. Inpatient and outpatient therapies increased weight/height z scores and induced striking changes in the levels of fatty acids, amino acids, acylcarnitines, inflammatory cytokines, and various hormones including leptin, insulin, GH, ghrelin, cortisol, IGF-I, glucagon-like peptide-1, and peptide YY. A total of 12.2% of the patients died during hospitalization; the major biochemical factor predicting mortality was a low level of leptin (P = .0002), a marker of adipose tissue reserve and a critical modulator of immune function. Conclusions: We have used metabolomic analysis to provide a comprehensive hormonal and metabolic profile of severely malnourished children at presentation and during nutritional rehabilitation. Our findings suggest that fatty acid metabolism plays a central role in the adaptation to acute malnutrition and that low levels of the adipose tissue hormone leptin associate with, and may predict, mortality prior to and during treatment. PMID:24606092

  8. Contraception and hormonal management in the perimenopause.

    PubMed

    Long, Margaret E; Faubion, Stephanie S; MacLaughlin, Kathy L; Pruthi, Sandhya; Casey, Petra M

    2015-01-01

    This literature review focuses on contraception in perimenopausal women. As women age, their fecundity decreases but does not disappear until menopause. After age 40, 75% of pregnancies are unplanned and may result in profound physical and emotional impact. Clinical evaluation must be relied on to diagnose menopause, since hormonal levels fluctuate widely. Until menopause is confirmed, some potential for pregnancy remains; at age 45, women's sterility rate is 55%. Older gravidas experience higher rates of diabetes, hypertension, and death. Many safe and effective contraceptive options are available to perimenopausal women. In addition to preventing an unplanned and higher-risk pregnancy, perimenopausal contraception may improve abnormal uterine bleeding, hot flashes, and menstrual migraines. Long-acting reversible contraceptives, including the levonorgestrel intrauterine system (LNG-IUS), the etonogestrel subdermal implant (ESI), and the copper intrauterine device (Cu-IUD), provide high efficacy without estrogen. LNG-IUS markedly decreases menorrhagia commonly seen in perimenopause. Both ESI and LNG-IUS provide endometrial protection for women using estrogen for vasomotor symptoms. Women without cardiovascular risk factors can safely use combined hormonal contraception. The CDC's Medical Eligibility Criteria for Contraceptive Use informs choices for women with comorbidities. No medical contraindications exist for levonorgestrel emergency-contraceptive pills, though obesity does decrease efficacy. In contrast, the Cu-IUD provides reliable emergency and ongoing contraception regardless of body mass index (BMI).

  9. Hormone- and light-regulated nucleocytoplasmic transport in plants: current status.

    PubMed

    Lee, Yew; Lee, Hak-Soo; Lee, June-Seung; Kim, Seong-Ki; Kim, Soo-Hwan

    2008-01-01

    The gene regulation mechanisms underlying hormone- and light-induced signal transduction in plants rely not only on post-translational modification and protein degradation, but also on selective inclusion and exclusion of proteins from the nucleus. For example, plant cells treated with light or hormones actively transport many signalling regulatory proteins, transcription factors, and even photoreceptors and hormone receptors into the nucleus, while actively excluding other proteins. The nuclear envelope (NE) is the physical and functional barrier that mediates this selective partitioning, and nuclear transport regulators transduce hormone- or light-initiated signalling pathways across the membrane to mediate nuclear activities. Recent reports revealed that mutating the proteins regulating nuclear transport through the pores, such as nucleoporins, alters the plant's response to a stimulus. In this review, recent works are introduced that have revealed the importance of regulated nucleocytoplasmic partitioning. These important findings deepen our understanding about how co-ordinated plant hormone and light signal transduction pathways facilitate communication between the cytoplasm and the nucleus. The roles of nucleoporin components within the nuclear pore complex (NPC) are also emphasized, as well as nuclear transport cargo, such as Ran/TC4 and its binding proteins (RanBPs), in this process. Recent findings concerning these proteins may provide a possible direction by which to characterize the regulatory potential of hormone- or light-triggered nuclear transport.

  10. Age, sex, and gonadal hormones differently influence anxiety- and depression-related behavior during puberty in mice.

    PubMed

    Boivin, Josiah R; Piekarski, David J; Wahlberg, Jessica K; Wilbrecht, Linda

    2017-11-01

    Anxiety and depression symptoms increase dramatically during adolescence, with girls showing a steeper increase than boys after puberty onset. The timing of the onset of this sex bias led us to hypothesize that ovarian hormones contribute to depression and anxiety during puberty. In humans, it is difficult to disentangle direct effects of gonadal hormones from social and environmental factors that interact with pubertal development to influence mental health. To test the role of gonadal hormones in anxiety- and depression-related behavior during puberty, we manipulated gonadal hormones in mice while controlling social and environmental factors. Similar to humans, we find that mice show an increase in depression-related behavior from pre-pubertal to late-pubertal ages, but this increase is not dependent on gonadal hormones and does not differ between sexes. Anxiety-related behavior, however, is more complex during puberty, with differences that depend on sex, age, behavioral test, and hormonal status. Briefly, males castrated before puberty show greater anxiety-related behavior during late puberty compared to intact males, while pubertal females are unaffected by ovariectomy or hormone injections in all assays except the marble burying test. Despite this sex-specific effect of pubertal hormones on anxiety-related behavior, we find no sex differences in intact young adults, suggesting that males and females use separate mechanisms to converge on a similar behavioral phenotype. Our results are consistent with anxiolytic effects of testicular hormones during puberty in males but are not consistent with a causal role for ovarian hormones in increasing anxiety- and depression-related behavior during puberty in females. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging

    PubMed Central

    Nelson, Peter T.; Katsumata, Yuriko; Nho, Kwangsik; Artiushin, Sergey C.; Jicha, Gregory A.; Wang, Wang-Xia; Abner, Erin L.; Saykin, Andrew J.; Kukull, Walter A.; Fardo, David W.

    2016-01-01

    We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were identified by separate research groups as risk alleles for non-Alzheimer’s neurodegeneration. We found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) pathology among people with the rs704180 risk genotype (National Alzheimer’s Coordinating Center/Alzheimer’s Disease Genetic Consortium data; n=2,113, including 241 autopsy-confirmed HS cases). Further, both rs704180 and rs73069071 risk genotypes were associated with widespread brain atrophy visualized by MRI (Alzheimer’s Disease Neuroimaging Initiative data; n=1,239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk genotypes were associated with variation in expression of ABCC9, a gene which encodes a metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain gene expression databases indicated that the chromosome 12p12 locus may regulate particular astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). This is informative biologically because the SLCO1C1 protein transports thyroid hormone into astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS pathology. Total T3 levels in CSF were elevated in HS cases (p<0.04 in two separately analyzed groups), but not in Alzheimer’s disease cases, relative to controls. No change was detected in the serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We conclude that brain thyroid hormone

  12. Role of hormones in cartilage and joint metabolism: understanding an unhealthy metabolic phenotype in osteoarthritis.

    PubMed

    Bay-Jensen, Anne C; Slagboom, Eline; Chen-An, Pingping; Alexandersen, Peter; Qvist, Per; Christiansen, Claus; Meulenbelt, Ingrid; Karsdal, Morten A

    2013-05-01

    Joint health is affected by local and systemic hormones. It is well accepted that systemic factors regulate the metabolism of joint tissues, and that substantial cross-talk between tissues actively contributes to homeostasis. In the current review, we try to define a subtype of osteoarthritis (OA), metabolic OA, which is dependent on an unhealthy phenotype. Peer-reviewed research articles and reviews were reviewed and summarized. Only literature readily available online, either by download or by purchase order, was included. OA is the most common joint disease and is more common in women after menopause. OA is a disease that affects the whole joint, including cartilage, subchondral bone, synovium, tendons, and muscles. The clinical endpoints of OA are pain and joint space narrowing, which is characterized by cartilage erosion and subchondral sclerosis, suggesting that cartilage is a central tissue of joint health. Thus, the joint, more specifically the cartilage, may be considered a target of endocrine function in addition to the well-described traditional risk factors of disease initiation and progression such as long-term loading of the joint due to obesity. Metabolic syndrome affects a range of tissues and may in part be molecularly described as a dysregulation of cytokines, adipokines, and hormones (e.g., estrogen and thyroid hormone). Consequently, metabolic imbalance may both directly and indirectly influence joint health and cartilage turnover, altering the progression of diseases such as OA. There is substantial evidence for a connection between metabolic health and development of OA. We propose that more focus be directed to understanding this connection to improve the management of menopausal health and associated comorbidities.

  13. Can Chemicals in the Environment That Affect Hormone Function Disrupt Development?

    EPA Science Inventory

    Hormones, including estrogens and androgens, regulate the expression of genes that play critical roles in guiding the development of organ systems in the embryo. Changes in either the amount or the timing of hormone exposure can lead to altered human development. For example, hum...

  14. Sex hormones and headache.

    PubMed

    Silberstein, S D

    2000-01-01

    The normal female life cycle is associated with a number of hormonal milestones: menarche, pregnancy, contraceptive use, menopause, and the use of replacement sex hormones. Menarche marks the onset of menses and cyclic changes in hormone levels. Pregnancy is associated with rising noncyclic levels of sex hormones, and menopause with declining noncyclic levels. Hormonal contraceptive use during the reproductive years and hormone replacement in menopause are therapeutic hormonal interventions that alter the levels and cycling of sex hormones. These events and interventions may cause a change in the prevalence or intensity of headache. The menstrual cycle is the result of a carefully orchestrated sequence of interactions between the hypothalamus, pituitary, ovary, and endometrium, with the sex hormones acting as modulators and effectors at each level. Estrogen and progestins have potent effects on central serotonergic and opioid neurons, modulating both neuronal activity and receptor density. The primary trigger of Menstrually-related migraine (MM) appears to be the withdrawal of estrogen rather than the maintenance of sustained high or low estrogen levels. However, changes in the sustained estrogen levels with pregnancy (increased) and menopause (decreased) appear to affect headaches. Headaches associated with OC use or menopausal hormonal replacement therapy may be related, in part, to periodic discontinuation of oral sex hormone preparations. The treatment of migraine associated with changes in sex hormone levels is frequently difficult and the patients are often refractory to therapy. Based on what is known of the pathophysiology of migraine, we have attempted to provide a logical approach to the treatment of headaches that are associated with menses, menopause, and OCs using abortive and preventive medications and hormonal manipulations. Considerable evidence suggests a link between estrogen and progesterone, the female sex hormones, and migraine. (Silberstein

  15. EMAS position statement: Non-hormonal management of menopausal vasomotor symptoms.

    PubMed

    Mintziori, Gesthimani; Lambrinoudaki, Irene; Goulis, Dimitrios G; Ceausu, Iuliana; Depypere, Herman; Erel, C Tamer; Pérez-López, Faustino R; Schenck-Gustafsson, Karin; Simoncini, Tommaso; Tremollieres, Florence; Rees, Margaret

    2015-07-01

    To review non-hormonal therapy options for menopausal vasomotor symptoms. The current EMAS position paper aims to provide to provide guidance for managing peri- and postmenopausal women who cannot or do not wish to take menopausal hormone therapy (MHT). Literature review and consensus of expert opinion. Non-hormonal management of menopausal symptoms includes lifestyle modifications, diet and food supplements, non-hormonal medications and application of behavioral and alternative medicine therapies. There is insufficient or conflicting evidence to suggest that exercise, supplements or a diet rich in phytoestrogens are effective for vasomotor menopausal symptoms. Selective serotonin-reuptake inhibitors (SSRIs), serotonin norepinephrine-reuptake inhibitors (SNRIs) and gabapentin could be proposed as alternatives to MHT for menopausal symptoms, mainly hot flushes. Behavioral therapies and alternative medicine interventions have been tried, but the available evidence is still limited. A number of interventions for non-hormonal management of menopausal vasomotor symptoms are now available. For women who cannot or do not wish to take estrogens, non-hormonal management is now a realistic option. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models.

    PubMed

    Liu, Ziyue; Cappola, Anne R; Crofford, Leslie J; Guo, Wensheng

    2014-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.

  17. Physiology and toxicology of hormone-disrupting chemicals in higher plants.

    PubMed

    Couée, Ivan; Serra, Anne-Antonella; Ramel, Fanny; Gouesbet, Gwenola; Sulmon, Cécile

    2013-06-01

    Higher plants are exposed to natural environmental organic chemicals, associated with plant-environment interactions, and xenobiotic environmental organic chemicals, associated with anthropogenic activities. The effects of these chemicals result not only from interaction with metabolic targets, but also from interaction with the complex regulatory networks of hormone signaling. Purpose-designed plant hormone analogues thus show extensive signaling effects on gene regulation and are as such important for understanding plant hormone mechanisms and for manipulating plant growth and development. Some natural environmental chemicals also act on plants through interference with the perception and transduction of endogenous hormone signals. In a number of cases, bioactive xenobiotics, including herbicides that have been designed to affect specific metabolic targets, show extensive gene regulation effects, which are more in accordance with signaling effects than with consequences of metabolic effects. Some of these effects could be due to structural analogies with plant hormones or to interference with hormone metabolism, thus resulting in situations of hormone disruption similar to animal cell endocrine disruption by xenobiotics. These hormone-disrupting effects can be superimposed on parallel metabolic effects, thus indicating that toxicological characterisation of xenobiotics must take into consideration the whole range of signaling and metabolic effects. Hormone-disruptive signaling effects probably predominate when xenobiotic concentrations are low, as occurs in situations of residual low-level pollutions. These hormone-disruptive effects in plants may thus be of importance for understanding cryptic effects of low-dosage xenobiotics, as well as the interactive effects of mixtures of xenobiotic pollutants.

  18. [Sex hormones and the metabolism of carbohydrates].

    PubMed

    Boukhris, R

    1987-12-01

    Sex hormones play an important role in the control of glucose metabolism and insulin. Decreased glucose tolerance observed at the end of pregnancy in most cases remains within normal limits. Pregnancy has an important effect on the islets of Langerhans and on the growth of beta cellules. At the end of pregnancy, assimilation of glucose and triglycerides by maternal tissues is slowed and transfer to the fetus is favored. Hyperinsulinism persists but insulin resistance at the level of maternal tissue becomes very strong and the number of receptors declines. This late pregnancy insulin resistance has not been satisfactorily explained. The declining number of receptors may be a mechanism, or the "antiinsulin" pregnancy hormones which includes estrogens and progesterone may play a major role. Although other mechanisms have been proposed to explain the antiinsulin effect, the role of sex hormones and especially of progesterone (and synthetic progestins used in contraception) appears crucial. The presence of estrogen and progesterone receptors in the beta cellules of the islets of Langerhans suggests a direct effect of these hormones on the cellules. Estrogens however work by other mechanisms than insulin secretion. Experimental evidence indicates that during pregnancy, progesterone increases insulin release while human placental lactogen stimulates hyperplasia of the islets. The progestins derived from progesterone used in contraception have a parallel action. A slight elevation of blood sugar and insulinemia have been observed in oral contraceptive (OC) users. Only 3-5% of OC users develop true hyperglycemia. The changes are usually transitory and disappear on termination of OC use except in the small number of women predisposed to diabetes. The decreased glucose tolerance of OC users differs from true diabetes. Combined OCs favor vascular accidents and myocardial infarct in insulin-dependent diabetics. The mechanisms involved include deteriorating control of diabetes

  19. Fetal Sex-Based Differences in Maternal Hormones, Angiogenic Factors, and Immune Mediators During Pregnancy and the Postpartum Period

    PubMed Central

    Enninga, Elizabeth Ann L; Nevala, Wendy K; Creedon, Douglas J; Markovic, Svetomir N; Holtan, Shernan G

    2015-01-01

    Problem Several pregnancy complications have disparities based on the sex of the fetus. It is unknown whether the sex of the fetus differentially alters the maternal immune milieu, potentially contributing to the observed differences. Method of study Using maternal plasma collected during 38 uncomplicated pregnancies (19 males, 19 females), we compared levels of cytokines, sex hormones, and angiogenic factors throughout gestation and postpartum. Results Male fetal sex was associated with higher levels of proinflammatory cytokines (G-CSF, IL-12p70, IL-21, and IL-33) and angiogenic factors (PlGF and VEGF-A) compared with female fetal sex at multiple timepoints. Female fetal sex was associated with higher levels of regulatory cytokines (IL-5, IL-9, IL-17, and IL-25). IL-27 increased throughout pregnancy regardless of fetal sex. There was no fetal sex-based difference in analyte concentrations at the postpartum measurement. Conclusion Women carrying a male fetus exhibit a more proinflammatory/proangiogenic immune milieu than women carrying a female fetus. PMID:25091957

  20. Sex Hormones Enhance Gingival Inflammation without Affecting IL-1β and TNF-α in Periodontally Healthy Women during Pregnancy

    PubMed Central

    Wu, Min; Chen, Shao-Wu; Su, Wei-Lan; Zhu, Hong-Ying; Ouyang, Shu-Yuan; Cao, Ya-Ting; Jiang, Shao-Yun

    2016-01-01

    Hormones (progesterone and estradiol) change greatly during pregnancy; however, the mechanism of hormonal changes on gingival inflammation is still unclear. This study is to evaluate the effects of hormonal changes during pregnancy on gingival inflammation and interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in gingival crevicular fluid (GCF). 30 periodontally healthy pregnant women were evaluated in the first, second, and third trimesters. 20 periodontally healthy nonpregnant women were evaluated twice (once per subsequent month). Clinical parameters including probing pocket depth (PPD), bleeding index (BI), gingival index (GI), clinical attachment level (CAL), and plaque index (PLI) were recorded. GCF levels of IL-1β and TNF-α and serum levels of progesterone and estradiol were measured. From the data, despite low PLI, BI and GI increased significantly during pregnancy; however, no significant changes in PLI, CAL, IL-1β, or TNF-α GCF levels were observed. Although IL-1β, not TNF-α, was higher in pregnant group than in nonpregnant group, they showed no correlation with serum hormone levels during pregnancy. GI and BI showed significant positive correlation with serum hormone levels during pregnancy. This study suggests that sex hormone increase during pregnancy might have an effect on inflammatory status of gingiva, independent of IL-1β and TNF-α in GCF. PMID:27034591

  1. Sex Hormones Enhance Gingival Inflammation without Affecting IL-1β and TNF-α in Periodontally Healthy Women during Pregnancy.

    PubMed

    Wu, Min; Chen, Shao-Wu; Su, Wei-Lan; Zhu, Hong-Ying; Ouyang, Shu-Yuan; Cao, Ya-Ting; Jiang, Shao-Yun

    2016-01-01

    Hormones (progesterone and estradiol) change greatly during pregnancy; however, the mechanism of hormonal changes on gingival inflammation is still unclear. This study is to evaluate the effects of hormonal changes during pregnancy on gingival inflammation and interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in gingival crevicular fluid (GCF). 30 periodontally healthy pregnant women were evaluated in the first, second, and third trimesters. 20 periodontally healthy nonpregnant women were evaluated twice (once per subsequent month). Clinical parameters including probing pocket depth (PPD), bleeding index (BI), gingival index (GI), clinical attachment level (CAL), and plaque index (PLI) were recorded. GCF levels of IL-1β and TNF-α and serum levels of progesterone and estradiol were measured. From the data, despite low PLI, BI and GI increased significantly during pregnancy; however, no significant changes in PLI, CAL, IL-1β, or TNF-α GCF levels were observed. Although IL-1β, not TNF-α, was higher in pregnant group than in nonpregnant group, they showed no correlation with serum hormone levels during pregnancy. GI and BI showed significant positive correlation with serum hormone levels during pregnancy. This study suggests that sex hormone increase during pregnancy might have an effect on inflammatory status of gingiva, independent of IL-1β and TNF-α in GCF.

  2. Decreased susceptibility to false memories from misinformation in hormonal contraception users.

    PubMed

    Petersen, Nicole; Patihis, Lawrence; Nielsen, Shawn E

    2015-01-01

    Sex hormones are increasingly implicated in memory formation. Recent literature has documented a relationship between hormones and emotional memory and sex differences, which are likely related to hormones, have long been demonstrated in a variety of mnemonic domains, including false memories. Hormonal contraception (HC), which alters sex hormones, has been associated with a bias towards gist memory and away from detailed memory in women who use it during an emotional memory task. Here, we investigated whether HC was associated with changes in susceptibility to false memories, which may be related to the formation of gist memories. We tested false memory susceptibility using two well-validated false memory paradigms: the Deese-Roediger-McDermott (DRM) task, and a story-based misinformation task. We found that hormonal contraceptive users were less susceptible to false memories compared to non-users in the misinformation task, and no differences were seen between groups on the DRM task. We hypothesise that the differences in false memories from the misinformation task may be related to hormonal contraceptive users' memory bias away from details, towards gist memory.

  3. Is hormonal therapy associated with better quality of life in transsexuals? A cross-sectional study.

    PubMed

    Gorin-Lazard, Audrey; Baumstarck, Karine; Boyer, Laurent; Maquigneau, Aurélie; Gebleux, Stéphanie; Penochet, Jean-Claude; Pringuey, Dominique; Albarel, Frédérique; Morange, Isabelle; Loundou, Anderson; Berbis, Julie; Auquier, Pascal; Lançon, Christophe; Bonierbale, Mireille

    2012-02-01

    Although the impact of sex reassignment surgery on the self-reported outcomes of transsexuals has been largely described, the data available regarding the impact of hormone therapy on the daily lives of these individuals are scarce. The objectives of this study were to assess the relationship between hormonal therapy and the self-reported quality of life (QoL) in transsexuals while taking into account the key confounding factors and to compare the QoL levels between transsexuals who have, vs. those who have not, undergone cross-sex hormone therapy as well as between transsexuals and the general population (French age- and sex-matched controls). This study incorporated a cross-sectional design that was conducted in three psychiatric departments of public university teaching hospitals in France. The inclusion criteria were as follows: 18 years or older, diagnosis of gender identity disorder (302.85) according to the Diagnostic and Statistical Manual, fourth edition text revision (DSM-IV TR), inclusion in a standardized sex reassignment procedure following the agreement of a multidisciplinary team, and pre-sex reassignment surgery. QoL was assessed using the Short Form 36 (SF-36). The mean age of the total sample was 34.7 years, and the sex ratio was 1:1. Forty-four (72.1%) of the participants received hormonal therapy. Hormonal therapy and depression were independent predictive factors of the SF-36 mental composite score. Hormonal therapy was significantly associated with a higher QoL, while depression was significantly associated with a lower QoL. Transsexuals' QoL, independently of hormonal status, did not differ from the French age- and sex-matched controls except for two subscales of the SF-36 questionnaire: role physical (lower scores in transsexuals) and general health (lower scores in controls). The present study suggests a positive effect of hormone therapy on transsexuals' QoL after accounting for confounding factors. These results will be useful for

  4. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    EPA Science Inventory

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  5. How hormones influence composition and physiological function of the brain-blood barrier.

    PubMed

    Hampl, R; Bičíková, M; Sosvorová, L

    2015-01-01

    Hormones exert many actions in the brain. Their access and effects in the brain are regulated by the blood-brain barrier (BBB). Hormones as other substances may enter the brain and vice versa either by paracellular way requiring breaching tight junctions stitching the endothelial cells composing the BBB, or by passage through the cells (transcellular way). Hormones influence both ways through their receptors, both membrane and intracellular, present on/in the BBB. In the review the main examples are outlined how hormones influence the expression and function of proteins forming the tight junctions, as well as how they regulate expression and function of major protein transporters mediating transport of various substances including hormone themselves.

  6. Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.

    PubMed

    Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf

    2017-04-28

    Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).

  7. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    PubMed

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep. © 2013 International Society for Neurochemistry.

  8. Mutations in PROP1 cause familial combined pituitary hormone deficiency.

    PubMed

    Wu, W; Cogan, J D; Pfäffle, R W; Dasen, J S; Frisch, H; O'Connell, S M; Flynn, S E; Brown, M R; Mullis, P E; Parks, J S; Phillips, J A; Rosenfeld, M G

    1998-02-01

    Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.

  9. Genetic causes of isolated and combined pituitary hormone deficiency.

    PubMed

    Giordano, Mara

    2016-12-01

    Research over the last 20 years has led to the elucidation of the genetic aetiologies of Isolated Growth Hormone Deficiency (IGHD) and Combined Pituitary Hormone Deficiency (CPHD). The pituitary plays a central role in growth regulation, coordinating the multitude of central and peripheral signals to maintain the body's internal balance. Naturally occurring mutation in humans and in mice have demonstrated a role for several factors in the aetiology of IGHD/CPHD. Mutations in the GH1 and GHRHR genes shed light on the phenotype and pathogenesis of IGHD whereas mutations in transcription factors such as HESX1, PROP1, POU1F1, LHX3, LHX4, GLI2 and SOX3 contributed to the understanding of CPHD. Depending upon the expression patterns of these molecules, the phenotype may consist of isolated hypopituitarism, or more complex disorders such as septo-optic dysplasia (SOD) and holoprosencephaly. Although numerous monogenic causes of growth disorders have been identified, most of the patients with IGHD/CPHD remain with an explained aetiology as shown by the relatively low mutation detection rate. The introduction of novel diagnostic approaches is now leading to the disclosure of novel genetic causes in disorders characterized by pituitary hormone defects. Copyright © 2016. Published by Elsevier Ltd.

  10. Structural study of human growth hormone-releasing factor fragment (1?29) by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Carmona, P.; Molina, M.; Lasagabaster, A.

    1995-05-01

    The conformational structure of fragment 1-29 of human growth hormone releasing factor, hGHRF (1-29), in aqueous solution and in the solid state is investigated by infrared and Raman spectroscopy. The polypeptide backbone is found to be unordered in the solid state. However, the spectra of the peptide prepared as 5% (w/w) aqueous solutions show that approximately 28% of the peptide is involved in intermolecular β-sheet aggregation. The remainder of the peptide exists largely as disordered and β-sheet conformations with a small portion of α-helices. Tyrosine residues are found to be exposed to the solvent. The secondary structures are quantitatively examined through infrared spectroscopy, the conformational percentages being near those obtained by HONDAet al. [ Biopolymers31, 869 (1991)] using circular dichroism. The fast hydrogen/deuterium exchange in peptide groups and the absence of any NMR sign indicative of ordered structure [ G. M. CLOREet al., J. Molec. Biol.191, 553 (1986)] support that the solution conformations of the non-aggregated peptide interconvert in dynamic equilibrium. Some physiological advantages that may derive from this conformational flexibility are also discussed

  11. Nasal embryonic LHRH factor plays a role in the developmental migration and projection of gonadotropin-releasing hormone 3 neurons in zebrafish.

    PubMed

    Palevitch, Ori; Abraham, Eytan; Borodovsky, Natalya; Levkowitz, Gil; Zohar, Yonathan; Gothilf, Yoav

    2009-01-01

    The initiation of puberty and the functioning of the reproductive system depend on proper development of the hypophysiotropic gonadotropin-releasing hormone (GnRH) system. One critical step in this process is the embryonic migration of GnRH neurons from the olfactory area to the hypothalamus. Using a transgenic zebrafish model, Tg(gnrh3:EGFP), in which GnRH3 neurons and axons are fluorescently labeled, we investigated whether zebrafish NELF is essential for the development of GnRH3 neurons. The zebrafish nelf cDNA was cloned and characterized. During embryonic development, nelf is expressed in GnRH3 neurons and in target sites of GnRH3 projections and perikarya, before the initiation of their migration. Nelf knockdown resulted in a disruption of the GnRH3 system which included absence or misguiding of GnRH3 axonal outgrowth and incorrect or arrested migration of GnRH3 perikarya. These results suggest that Nelf is an important factor in the developmental migration and projection of GnRH3 neurons in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.

  12. Ovarian hormones and binge eating: exploring associations in community samples

    PubMed Central

    Klump, K. L.; Keel, P. K.; Culbert, K. M.; Edler, C.

    2010-01-01

    Background Significant associations between changes in ovarian hormones and binge eating are present across the menstrual cycle in women with bulimia nervosa. However, no study has examined these relationships in a non-clinical sample, despite the need for these data for designing risk-factor studies. Method In study 1, we modified several continuous measures of binge eating and identified those that were most sensitive to menstrual-cycle fluctuations in a non-clinical sample of 10 women who completed measures for 35 days. In study 2, we explored associations between ovarian hormones and binge-eating scores in nine women who completed these same measures for 65 days and provided daily saliva samples for assays of estradiol and progesterone concentrations. Results In study 1, the Emotional Eating subscale of the Dutch Eating Behavior Questionnaire exhibited superior reliability and was most sensitive to predicted menstrual-cycle changes in binge eating (i.e. increased scores in the mid-luteal/premenstrual compared with follicular/ovulatory phases). In study 2, this scale showed predicted inverse associations with estradiol and positive associations with progesterone across the menstrual cycle that could not be accounted for by changes in negative affect. Conclusion Associations between ovarian hormones and binge eating are robust and present in clinical and non-clinical samples. Findings support the ability to examine the role of ovarian hormones as risk factors for binge eating in large-scale prospective studies and twin studies. PMID:18307829

  13. Thyroid hormones and female reproduction.

    PubMed

    Silva, Juneo F; Ocarino, Natália M; Serakides, Rogéria

    2018-05-14

    Thyroid hormones are vital for the proper functioning of the female reproductive system, since they modulate the metabolism and development of ovarian, uterine and placental tissues. Therefore, hypo- and hyperthyroidism may result in subfertility or infertility in both women and animals. Other well-documented sequelae of maternal thyroid dysfunctions include menstrual/estral irregularity, anovulation, abortion, preterm delivery, preeclampsia, intrauterine growth restriction, postpartum thyroiditis, and mental retardation in children. Several studies have been carried out involving prospective and retrospective studies of women with thyroid dysfunction, as well as in vivo and in vitro assays of hypo- and hyperthyroidism using experimental animal models and/or ovarian, uterine and placental cell culture. These studies have sought to elucidate the mechanisms by which thyroid hormones influence reproduction to better understand the physiology of the reproductive system and to provide better therapeutic tools for reproductive dysfunctions that originate from thyroid dysfunctions. Therefore, this review aims to summarize and update the available information related to the role of thyroid hormones in the morphophysiology of the ovary, uterus and placenta in women and animals and the effects of hypo- and hyperthyroidism on the female reproductive system.

  14. Regulation of fish growth hormone transcription.

    PubMed

    Farchi-Pisanty, O; Hackett, P B; Moav, B

    1995-09-01

    Regulation of endogenous fish growth hormone transcription was studied using carp pituitaries in vitro. It was demonstrated that thyroid hormone (T3) and 9-cis retinoic acid have increased the steady state levels of growth hormone messenger RNA in pituitary cells, as compared with beta-actin messenger RNA levels. In contrast, estrogen failed to increase growth hormone mRNA levels. The possible involvement of thyroid hormone receptor in pituitary gene expression was demonstrated by in situ localization of both growth hormone mRNA and thyroid hormone receptor mRNA in the pituitaries as early as 4 days after fertilization.

  15. Progesterone-induced Neuroprotection: Factors that may predict therapeutic efficacy

    PubMed Central

    Singh, Meharvan; Su, Chang

    2013-01-01

    Both progesterone and estradiol have well-described neuroprotective effects against numerous insults in a variety of cell culture models, animal models and in humans. However, the efficacy of these hormones may depend on a variety of factors, including the type of hormone used (ex. progesterone versus medroxyprogesterone acetate), the duration of the postmenopausal period prior to initiating the hormone intervention, and potentially, the age of the subject. The latter two factors relate to the proposed existence of a “window of therapeutic opportunity” for steroid hormones in the brain. While such a window of opportunity has been described for estrogen, there is a paucity of information to address whether such a window of opportunity exists for progesterone and its related progestins. Here, we review known cellular mechanisms likely to underlie the protective effects of progesterone and furthermore, describe key differences in the neurobiology of progesterone and the synthetic progestin, medroxyprogesterone acetate (MPA). Based on the latter, we offer a model that defines some of the key cellular and molecular players that predict the neuroprotective efficacy of progesterone. Accordingly, we suggest how changes in the expression or function of these cellular and molecular targets of progesterone with age or prolonged duration of hormone withdrawal (such as following surgical or natural menopause) may impact the efficacy of progesterone. PMID:23340161

  16. A nonpeptidyl growth hormone secretagogue.

    PubMed

    Smith, R G; Cheng, K; Schoen, W R; Pong, S S; Hickey, G; Jacks, T; Butler, B; Chan, W W; Chaung, L Y; Judith, F

    1993-06-11

    A nonpeptidyl secretagogue for growth hormone of the structure 3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5 -yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamid e (L-692,429) has been identified. L-692,429 synergizes with the natural growth hormone secretagogue growth hormone-releasing hormone and acts through an alternative signal transduction pathway. The mechanism of action of L-692,429 and studies with peptidyl and nonpeptidyl antagonists suggest that this molecule is a mimic of the growth hormone-releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP-6). L-692,429 is an example of a nonpeptidyl specific secretagogue for growth hormone.

  17. A brief review on microfluidic platforms for hormones detection.

    PubMed

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2017-01-01

    Lab-on-chip technology is attracting great interest due to its potential as miniaturized devices that can automate and integrate many sample-handling steps, minimize consumption of reagent and samples, have short processing time and enable multiplexed analysis. Microfluidic devices have demonstrated their potential for a broad range of applications in life sciences, including point-of-care diagnostics and personalized medicine, based on the routine diagnosis of levels of hormones, cancer markers, and various metabolic products in blood, serum, etc. Microfluidics offers an adaptable platform that can facilitate cell culture as well as monitor their activity and control the cellular environment. Signaling molecules released from cells such as neurotransmitters and hormones are important in assessing the health of cells and the effect of drugs on their functions. In this review, we provide an insight into the state-of-art applications of microfluidics for monitoring of hormones released by cells. In our works, we have demonstrated efficient detection methods for bovine growth hormones using nano and microphotonics integrated microfluidics devices. The bovine growth hormone can be used as a growth promoter in dairy farming to enhance the milk and meat production. In the recent years, a few attempts have been reported on developing very sensitive, fast and low-cost methods of detection of bovine growth hormone using micro devices. This paper reviews the current state-of-art of detection and analysis of hormone using integrated optical micro and nanofluidics systems. In addition, the paper also focuses on various lab-on-a-chip technologies reported recently, and their benefits for screening growth hormones in milk.

  18. Thyroid hormones and coronary artery calcification in euthyroid men and women.

    PubMed

    Zhang, Yiyi; Kim, Bo-Kyoung; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Rampal, Sanjay; Zhao, Di; Pastor-Barriuso, Roberto; Lima, Joao A; Shin, Hocheol; Guallar, Eliseo

    2014-09-01

    Overt and subclinical hypothyroidism are risk factors for atherosclerosis. It is unclear whether thyroid hormone levels within the normal range are also associated with atherosclerosis measured by coronary artery calcium (CAC). We conducted a cross-sectional study of 41 403 apparently healthy young and middle-aged men and women with normal thyroid hormone levels. Free thyroxin, free triiodothyronine, and thyroid-stimulating hormone levels were measured by electrochemiluminescent immunoassay. CAC score was measured by multidetector computed tomography. The multivariable adjusted CAC ratios comparing the highest versus the lowest quartile of thyroid hormones were 0.74 (95% confidence interval, 0.60-0.91; P for trend <0.001) for free thyroxin, 0.81 (0.66-1.00; P for trend=0.05) for free triiodothyronine, and 0.78 (0.64-0.95; P for trend=0.01) for thyroid-stimulating hormone. Similarly, the odds ratios for detectable CAC (CAC >0) comparing the highest versus the lowest quartiles of thyroid hormones were 0.87 (0.79-0.96; P for linear trend <0.001) for free thyroxin, 0.90 (0.82-0.99; P for linear trend=0.02) for free triiodothyronine, and 0.91 (0.83-1.00; P for linear trend=0.03) for thyroid-stimulating hormone. In a large cohort of apparently healthy young and middle-aged euthyroid men and women, low-normal free thyroxin and thyroid-stimulating hormone were associated with a higher prevalence of subclinical coronary artery disease and with a greater degree of coronary calcification. © 2014 American Heart Association, Inc.

  19. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    PubMed

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  20. Corticotropin-releasing hormone and pituitary-adrenal hormones in pregnancies complicated by chronic hypertension.

    PubMed

    Warren, W B; Gurewitsch, E D; Goland, R S

    1995-02-01

    We hypothesized that maternal plasma corticotropin-releasing hormone levels are elevated in chronic hypertension and that elevations modulate maternal and fetal pituitary-adrenal function. Venous blood samples and 24-hour urine specimens were obtained in normal and hypertensive pregnancies at 21 to 40 weeks of gestation. Corticotropin-releasing hormone, corticotropin, cortisol, dehydroepiandrosterone sulfate, and total estriol levels were measured by radioimmunoassay. Mean hormone levels were compared by unpaired t test or two-way analysis of variance. Plasma corticotropin-releasing hormone levels were elevated early in hypertensive pregnancies but did not increase after 36 weeks. Levels of pituitary and adrenal hormones were not different in normal and hypertensive women. However, maternal plasma estriol levels were lower in hypertensive pregnancies compared with normal pregnancies. Fetal 16-hydroxy dehydroepiandrosterone sulfate, the major precursor to placental estriol production, has been reported to be lower than normal in hypertensive pregnancies, possibly explaining the decreased plasma estriol levels reported here. Early stimulation of placental corticotropin-releasing hormone production or secretion may be related to accelerated maturation of placental endocrine function in pregnancies complicated by chronic hypertension.