Sample records for facultative human pathogen

  1. Control of Wilt and Rot Pathogens of Tomato by Antagonistic Pink Pigmented Facultative Methylotrophic Delftia lacustris and Bacillus spp.

    PubMed

    Janahiraman, Veeranan; Anandham, Rangasamy; Kwon, Soon W; Sundaram, Subbiah; Karthik Pandi, Veeranan; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Samaddar, Sandipan; Sa, Tongmin

    2016-01-01

    The studies on the biocontrol potential of pink pigmented facultative methylotrophic (PPFM) bacteria other than the genus Methylobacterium are scarce. In the present study, we report three facultative methylotrophic isolates; PPO-1, PPT-1, and PPB-1, respectively, identified as Delftia lacustris, Bacillus subtilis , and Bacillus cereus by 16S rRNA gene sequence analysis. Hemolytic activity was tested to investigate the potential pathogenicity of isolates to plants and humans, the results indicates that the isolates PPO-1, PPT-1, and PPB-1 are not pathogenic strains. Under in vitro conditions, D. lacustris PPO-1, B . subtilis PPT-1, and B . cereus PPB-1 showed direct antagonistic effect by inhibiting the mycelial growth of fungal pathogens; Fusarium oxysporum f. sp. lycopersici (2.15, 2.05, and 1.95 cm), Sclerotium rolfsii (2.14, 2.04, and 1.94 cm), Pythium ultimum (2.12, 2.02, and 1.92 cm), and Rhizoctonia solani (2.18, 2.08, and 1.98 cm) and also produced volatile inhibitory compounds. Under plant growth chamber condition methylotrophic bacterial isolates; D . lacustris PPO-1, B . subtilis PPT-1, and B. cereus PPB-1 significantly reduced the disease incidence of tomato. Under greenhouse condition, D . lacustris PPO-1, B . subtilis PPT-1, and B . cereus PPB-1 inoculated tomato plants, when challenged with F . oxysporum f. sp. lycopersici, S . rolfsii, P . ultimum , and R . solani , increased the pathogenesis related proteins (β-1,3-glucanase and chitinase) and defense enzymes (phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, and catalase) on day 5 after inoculation. In the current study, we first report the facultative methylotrophy in pink pigmented D. lacustris, B . subtilis , and B . cereus and their antagonistic potential against fungal pathogens. Direct antagonistic and ISR effects of these isolates against fungal pathogens of tomato evidenced their possible use as a biocontrol agent.

  2. Control of Wilt and Rot Pathogens of Tomato by Antagonistic Pink Pigmented Facultative Methylotrophic Delftia lacustris and Bacillus spp.

    PubMed Central

    Janahiraman, Veeranan; Anandham, Rangasamy; Kwon, Soon W.; Sundaram, Subbiah; Karthik Pandi, Veeranan; Krishnamoorthy, Ramasamy; Kim, Kiyoon; Samaddar, Sandipan; Sa, Tongmin

    2016-01-01

    The studies on the biocontrol potential of pink pigmented facultative methylotrophic (PPFM) bacteria other than the genus Methylobacterium are scarce. In the present study, we report three facultative methylotrophic isolates; PPO-1, PPT-1, and PPB-1, respectively, identified as Delftia lacustris, Bacillus subtilis, and Bacillus cereus by 16S rRNA gene sequence analysis. Hemolytic activity was tested to investigate the potential pathogenicity of isolates to plants and humans, the results indicates that the isolates PPO-1, PPT-1, and PPB-1 are not pathogenic strains. Under in vitro conditions, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 showed direct antagonistic effect by inhibiting the mycelial growth of fungal pathogens; Fusarium oxysporum f. sp. lycopersici (2.15, 2.05, and 1.95 cm), Sclerotium rolfsii (2.14, 2.04, and 1.94 cm), Pythium ultimum (2.12, 2.02, and 1.92 cm), and Rhizoctonia solani (2.18, 2.08, and 1.98 cm) and also produced volatile inhibitory compounds. Under plant growth chamber condition methylotrophic bacterial isolates; D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 significantly reduced the disease incidence of tomato. Under greenhouse condition, D. lacustris PPO-1, B. subtilis PPT-1, and B. cereus PPB-1 inoculated tomato plants, when challenged with F. oxysporum f. sp. lycopersici, S. rolfsii, P. ultimum, and R. solani, increased the pathogenesis related proteins (β-1,3-glucanase and chitinase) and defense enzymes (phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, and catalase) on day 5 after inoculation. In the current study, we first report the facultative methylotrophy in pink pigmented D. lacustris, B. subtilis, and B. cereus and their antagonistic potential against fungal pathogens. Direct antagonistic and ISR effects of these isolates against fungal pathogens of tomato evidenced their possible use as a biocontrol agent. PMID:27872630

  3. Human susceptibility to legionnaires' disease.

    PubMed

    Berrington, William R; Hawn, Thomas R

    2013-01-01

    Legionella pneumophila is a facultative intracellular pathogen that is an important cause of pneumonia. Although host factors that may predispose to acquisition of Legionnaire's Disease (LD) include comorbid illnesses (e.g., diabetes, chronic lung disease), age, male sex, and smoking, many individuals have no identifiable risk factors. Some studies suggest that genetic factors may enhance susceptibility to LD. In this chapter we discuss current techniques and scientific methods to identify genetic susceptibility factors. These genetic studies provide insight into the human immune response to intracellular pathogens and may improve strategies for treatment and vaccine development.

  4. Identification of oviposition attractants of the secondary screwworm, Cochliomyia macellaria (F.) released from rotten chicken liver

    USDA-ARS?s Scientific Manuscript database

    The secondary screwworm, Cochliomyia macellaria (F.), is an important blowfly species affecting both livestock and humans. It can transmit pathogenic disease agents mechanically and is an agent of facultative myiasis, which leads to economic losses. The adult flies are attracted to decomposing carca...

  5. Unrelated facultative endosymbionts protect aphids against a fungal pathogen.

    PubMed

    Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J

    2013-02-01

    The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. © 2012 Blackwell Publishing Ltd/CNRS.

  6. The genome sequence of the facultative intracellular pathogen Brucella melitensis.

    PubMed

    DelVecchio, Vito G; Kapatral, Vinayak; Redkar, Rajendra J; Patra, Guy; Mujer, Cesar; Los, Tamara; Ivanova, Natalia; Anderson, Iain; Bhattacharyya, Anamitra; Lykidis, Athanasios; Reznik, Gary; Jablonski, Lynn; Larsen, Niels; D'Souza, Mark; Bernal, Axel; Mazur, Mikhail; Goltsman, Eugene; Selkov, Eugene; Elzer, Philip H; Hagius, Sue; O'Callaghan, David; Letesson, Jean-Jacques; Haselkorn, Robert; Kyrpides, Nikos; Overbeek, Ross

    2002-01-08

    Brucella melitensis is a facultative intracellular bacterial pathogen that causes abortion in goats and sheep and Malta fever in humans. The genome of B. melitensis strain 16M was sequenced and found to contain 3,294,935 bp distributed over two circular chromosomes of 2,117,144 bp and 1,177,787 bp encoding 3,197 ORFs. By using the bioinformatics suite ERGO, 2,487 (78%) ORFs were assigned functions. The origins of replication of the two chromosomes are similar to those of other alpha-proteobacteria. Housekeeping genes, including those involved in DNA replication, transcription, translation, core metabolism, and cell wall biosynthesis, are distributed on both chromosomes. Type I, II, and III secretion systems are absent, but genes encoding sec-dependent, sec-independent, and flagella-specific type III, type IV, and type V secretion systems as well as adhesins, invasins, and hemolysins were identified. Several features of the B. melitensis genome are similar to those of the symbiotic Sinorhizobium meliloti.

  7. The genome sequence of the facultative intracellular pathogen Brucella melitensis

    PubMed Central

    DelVecchio, Vito G.; Kapatral, Vinayak; Redkar, Rajendra J.; Patra, Guy; Mujer, Cesar; Los, Tamara; Ivanova, Natalia; Anderson, Iain; Bhattacharyya, Anamitra; Lykidis, Athanasios; Reznik, Gary; Jablonski, Lynn; Larsen, Niels; D'Souza, Mark; Bernal, Axel; Mazur, Mikhail; Goltsman, Eugene; Selkov, Eugene; Elzer, Philip H.; Hagius, Sue; O'Callaghan, David; Letesson, Jean-Jacques; Haselkorn, Robert; Kyrpides, Nikos; Overbeek, Ross

    2002-01-01

    Brucella melitensis is a facultative intracellular bacterial pathogen that causes abortion in goats and sheep and Malta fever in humans. The genome of B. melitensis strain 16M was sequenced and found to contain 3,294,935 bp distributed over two circular chromosomes of 2,117,144 bp and 1,177,787 bp encoding 3,197 ORFs. By using the bioinformatics suite ERGO, 2,487 (78%) ORFs were assigned functions. The origins of replication of the two chromosomes are similar to those of other α-proteobacteria. Housekeeping genes, including those involved in DNA replication, transcription, translation, core metabolism, and cell wall biosynthesis, are distributed on both chromosomes. Type I, II, and III secretion systems are absent, but genes encoding sec-dependent, sec-independent, and flagella-specific type III, type IV, and type V secretion systems as well as adhesins, invasins, and hemolysins were identified. Several features of the B. melitensis genome are similar to those of the symbiotic Sinorhizobium meliloti. PMID:11756688

  8. Metabolic traits of pathogenic streptococci.

    PubMed

    Willenborg, Jörg; Goethe, Ralph

    2016-11-01

    Invasive and noninvasive diseases caused by facultative pathogenic streptococci depend on their equipment with virulence factors and on their ability to sense and adapt to changing nutrients in different host environments. The knowledge of the principal metabolic mechanisms which allow these bacteria to recognize and utilize nutrients in host habitats is a prerequisite for our understanding of streptococcal pathogenicity and the development of novel control strategies. This review aims to summarize and compare the central carbohydrate metabolic and amino acid biosynthetic pathways of a selected group of streptococcal species, all belonging to the naso-oropharyngeal microbiome in humans and/or animals. We also discuss the urgent need of comprehensive metabolomics approaches for a better understanding of the streptococcal metabolism during host-pathogen interaction. © 2016 Federation of European Biochemical Societies.

  9. Understanding Virulence in the Brucellae and Francisellae: Towards Efficacious Treatments for Two Potential Biothreat Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasley, A; Parsons, D A; El-Etr, S

    2009-12-30

    Francisella tularensis, Yersinia pestis and Brucellae species are highly infectious pathogens classified as select agents by the Centers for Disease Control and Prevention (CDC) with the potential for use in bioterrorism attacks. These organisms are known to be facultative intracellular pathogens that preferentially infect human monocytes. As such, understanding how the host responds to infection with these organisms is paramount in detecting and combating human disease. We have compared the ability of fully virulent strains of each pathogen and their non-pathogenic near neighbors to enter and survive inside the human monocytic cell line THP-1 and have quantified the cellular responsemore » to infection with the goal of identifying both unique and common host response patterns. We expanded the scope of these studies to include experiments with pathogenic and non-pathogenic strains of Y. pestis, the causative agent of plague. Nonpathogenic strains of each organism were impaired in their ability to survive intracellularly compared with their pathogenic counterparts. Furthermore, infection of THP-1 cells with pathogenic strains of Y. pestis and F. tularensis resulted in marked increases in the secretion of the inflammatory chemokines IL-8, RANTES, and MIP-1{beta}. In contrast, B. melitensis infection failed to elicit any significant increases in a panel of cytokines tested. These differences may underscore distinct strategies in pathogenic mechanisms employed by these pathogens.« less

  10. The Facultative Symbiont Rickettsia Protects an Invasive Whitefly against Entomopathogenic Pseudomonas syringae Strains

    PubMed Central

    Hunter, Martha S.; Baltrus, David A.

    2014-01-01

    Facultative endosymbionts can benefit insect hosts in a variety of ways, including context-dependent roles, such as providing defense against pathogens. The role of some symbionts in defense may be overlooked, however, when pathogen infection is transient, sporadic, or asymptomatic. The facultative endosymbiont Rickettsia increases the fitness of the sweet potato whitefly (Bemisia tabaci) in some populations through mechanisms that are not yet understood. In this study, we investigated the role of Rickettsia in mediating the interaction between the sweet potato whitefly and Pseudomonas syringae, a common environmental bacterium, some strains of which are pathogenic to aphids. Our results show that P. syringae multiplies within whiteflies, leading to host death, and that whiteflies infected with Rickettsia show a decreased rate of death due to P. syringae. Experiments using plants coated with P. syringae confirmed that whiteflies can acquire the bacteria at a low rate while feeding, leading to increased mortality, particularly when the whiteflies are not infected with Rickettsia. These results suggest that P. syringae may affect whitefly populations in nature and that Rickettsia can ameliorate this effect. This study highlights the possible importance of interactions among opportunistic environmental pathogens and endosymbionts of insects. PMID:25217020

  11. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  12. LOW PATHOGENIC POTENTIAL IN HETEROTROPHIC BACTERIA FROM POTABLE WATER

    EPA Science Inventory

    Forty-five isolates of HPC bacteria, most of which express virulence-related characteristics are being tested for pathogenicity in immunocompromised mice. All forty-five were negative for facultative intracellular pathogenicity. All twenty-three isolates tested thus far were a...

  13. [Evasion of anti-infectious immunity by Brucella - A review].

    PubMed

    Quan, Wurong; Yang, Yongjie

    2016-05-04

    Brucellosis, caused by Brucella species, is a worldwide zoonosis. As facultative intracellular pathogens, Brucella possess non-classical virulence factor, but its virulence is very powerful and can elicit chronic infections of both animals and humans. Evasion of host anti-infectious immunity is a prerequisite for chronic infections, this ability appears increasingly crucial for Brucella virulence. As successful pathogens, Brucella can escape or suppress innate immunity and modulate adaptive immunity to establish long lasting infections in host cells. In this review, we address the molecular mechanisms of Brucella to evade anti-infectious immunity. This will shed new insights on Brucella virulence and will, potentially, open new prophylactic avenues.

  14. The Facultative Symbiont Rickettsia Protects an Invasive Whitefly against Entomopathogenic Pseudomonas syringae Strains.

    PubMed

    Hendry, Tory A; Hunter, Martha S; Baltrus, David A

    2014-12-01

    Facultative endosymbionts can benefit insect hosts in a variety of ways, including context-dependent roles, such as providing defense against pathogens. The role of some symbionts in defense may be overlooked, however, when pathogen infection is transient, sporadic, or asymptomatic. The facultative endosymbiont Rickettsia increases the fitness of the sweet potato whitefly (Bemisia tabaci) in some populations through mechanisms that are not yet understood. In this study, we investigated the role of Rickettsia in mediating the interaction between the sweet potato whitefly and Pseudomonas syringae, a common environmental bacterium, some strains of which are pathogenic to aphids. Our results show that P. syringae multiplies within whiteflies, leading to host death, and that whiteflies infected with Rickettsia show a decreased rate of death due to P. syringae. Experiments using plants coated with P. syringae confirmed that whiteflies can acquire the bacteria at a low rate while feeding, leading to increased mortality, particularly when the whiteflies are not infected with Rickettsia. These results suggest that P. syringae may affect whitefly populations in nature and that Rickettsia can ameliorate this effect. This study highlights the possible importance of interactions among opportunistic environmental pathogens and endosymbionts of insects. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Cryptococcus interactions with macrophages: evasion and manipulation of the phagosome by a fungal pathogen.

    PubMed

    Johnston, Simon A; May, Robin C

    2013-03-01

    Cryptococcus is a potentially fatal fungal pathogen and a leading cause of death in immunocompromised patients. As an opportunistic and facultative intracellular pathogen of humans, Cryptococcus exhibits a complex set of interactions with the host immune system in general, and macrophages in particular. Cryptococcus is resistant to phagocytosis but is also able to survive and proliferate within the mature phagolysosome. It can cause the lysis of host cells, can be transferred between macrophages or exit non-lytically via vomocytosis. Efficient phagocytosis is reliant on opsonization and Cryptococcus has a number of anti-phagocytic strategies including formation of titan cells and a thick polysaccharide capsule. Following uptake, phagosome maturation appears to occur normally, but the internalized pathogen is able to survive and replicate. Here we review the interactions and host manipulation processes that occur within cryptococcal-infected macrophages and highlight areas for future research. © 2012 Blackwell Publishing Ltd.

  16. Tick-borne infections in human and animal population worldwide

    PubMed Central

    Brites-Neto, José; Duarte, Keila Maria Roncato; Martins, Thiago Fernandes

    2015-01-01

    The abundance and activity of ectoparasites and its hosts are affected by various abiotic factors, such as climate and other organisms (predators, pathogens and competitors) presenting thus multiples forms of association (obligate to facultative, permanent to intermittent and superficial to subcutaneous) developed during long co-evolving processes. Ticks are ectoparasites widespread globally and its eco epidemiology are closely related to the environmental conditions. They are obligatory hematophagous ectoparasites and responsible as vectors or reservoirs at the transmission of pathogenic fungi, protozoa, viruses, rickettsia and others bacteria during their feeding process on the hosts. Ticks constitute the second vector group that transmit the major number of pathogens to humans and play a role primary for animals in the process of diseases transmission. Many studies on bioecology of ticks, considering the information related to their population dynamics, to the host and the environment, comes possible the application and efficiency of tick control measures in the prevention programs of vector-borne diseases. In this review were considered some taxonomic, morphological, epidemiological and clinical fundamental aspects related to the tick-borne infections that affect human and animal populations. PMID:27047089

  17. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    PubMed Central

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  18. Pathogenicity of facultative and obligate anaerobic bacteria in monoculture and combined with either Prevotella intermedia or Prevotella nigrescens.

    PubMed

    Siqueira, J F; Magalhães, F A; Lima, K C; de Uzeda, M

    1998-12-01

    The pathogenicity of obligate and facultative anaerobic bacteria commonly found in endodontic infections was tested using a mouse model. The capacity of inducing abscesses was evaluated seven days after subcutaneous injection of the bacteria in pure culture and in combinations with either Prevotella intermedia or Prevotella nigrescens. Nine of the fifteen bacterial strains tested were pathogenic in pure culture. No statistically significant differences were detected between these strains in pure culture and in mixtures with either P. intermedia or P. nigrescens. Synergism between the bacterial strains was only apparent when associating Porphyromonas endodontalis with P. intermedia or P. nigrescens. Histopathological examination of tissue sections from induced abscesses revealed an acute inflammatory reaction, dominated by polymorphonuclear leukocytes. Sections from the control group using sterile medium showed no evidence of inflammatory reaction.

  19. Escherichia coli and other Enterobacteriaceae: Food poisoning and health effects

    USDA-ARS?s Scientific Manuscript database

    The family Enterobactericeae consists of rod-shaped, Gram-negative, facultatively anaerobic, non-spore forming bacteria and also includes the food-borne pathogens, Cronobacter spp., Escherichia coli, Salmonella enterica, Shigella spp., and Yersinia spp. Illness caused by these pathogens is acquired...

  20. Fungi treated with small chemicals exhibit increased antimicrobial activity against facultative bacterial and yeast pathogens.

    PubMed

    Zutz, Christoph; Bandian, Dragana; Neumayer, Bernhard; Speringer, Franz; Gorfer, Markus; Wagner, Martin; Strauss, Joseph; Rychli, Kathrin

    2014-01-01

    For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown "cryptic" secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3-4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances.

  1. Fungi Treated with Small Chemicals Exhibit Increased Antimicrobial Activity against Facultative Bacterial and Yeast Pathogens

    PubMed Central

    Zutz, Christoph; Bandian, Dragana; Neumayer, Bernhard; Speringer, Franz; Wagner, Martin; Strauss, Joseph

    2014-01-01

    For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown “cryptic” secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3–4.3). For instance, the pellet of Penicillium restrictum grown in the presence of butyrate revealed significant higher antimicrobial activity against Staphylococcus (S.) aureus and multiresistant S. aureus strains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances. PMID:25121102

  2. Microbial minimalism: genome reduction in bacterial pathogens.

    PubMed

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  3. New insights into the in vitro development and virulence of Culicinomyces spp. as fungal pathogens of Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Culicinomyces spp. (Hypocreales: Cordycipitaceae) are facultative fungal pathogens affecting the larval stages from a range of mosquito species and are especially notable in their ability to infect hosts through the digestive tract after conidial ingestion. While Culicinomyces spp. were studied main...

  4. Global analysis of Brucella melitensis proteomes.

    PubMed

    Mujer, Cesar V; Wagner, Mary Ann; Eschenbrenner, Michel; Horn, Troy; Kraycer, Jo Ann; Redkar, Rajendra; Hagius, Sue; Elzer, Philip; Delvecchio, Vito G

    2002-10-01

    Brucella melitensis is a facultative, intracellular, gram-negative cocco-bacillus that causes Malta fever in humans and brucellosis in animals. There are at least six species in the genus, and the disease is classified as zoonotic because several species infect humans. Using 2-D gel electrophoresis and mass spectrometry, we have initiated (i) a comprehensive mapping and identification of all the expressed proteins of B. melitensis virulent strain 16M, and (ii) a comparative study of its proteome with the attentuated vaccinal strain Rev 1. Comprehensive proteome maps of all six Brucella species will be generated in order to obtain vital information for vaccine development, identification of pathogenicity islands, and establishment of host specificity and evolutionary relatedness.

  5. Community ecology of fungal pathogens on Bromus tectorum [Chapter 7

    Treesearch

    Susan E. Meyer; Julie Beckstead; JanaLynn Pearce

    2016-01-01

    Bromus tectorum L. (cheatgrass or downy brome) presents a rich resource for soil microorganisms because of its abundant production of biomass, seeds, and surface litter. Many of these organisms are opportunistic saprophytes, but several fungal species regularly found in B. tectorum stands function as facultative or obligate pathogens. These organisms interact...

  6. Antimicrobial activity of four root canal sealers against endodontic pathogens.

    PubMed

    Lai, C C; Huang, F M; Yang, H W; Chan, Y; Huang, M S; Chou, M Y; Chang, Y C

    2001-12-01

    The antibacterial effects of various types of widely used endodontic sealers have not been compared systematically on facultative or obligate anaerobic endodontic pathogens. The aim of this study was to evaluate the antimicrobial properties of four commonly used endodontic sealers: two epoxy-resin-based sealers (AH26, AH plus), one zinc-oxide eugenol-based sealer (N2), and one calcium hydroxide-based sealer (Sealapex). The testing microbes were four facultative anaerobic species (Streptococcus mutans, Streptococcus sanguis, Escherichia coli, and Staphylococcus aureus) and four obligate anaerobic species (Porphyromonas gingivalis, Porphyromonas endodontalis, Fusobacterium nucleatum, and Prevotella intermedia). The freshly mixed sealers were placed into the prepared wells of agar plates inoculated with the test microorganisms. After varying periods of incubation (2 days for facultative anaerobic species and 7 days for obligate anaerobic species), the zones of growth inhibition were observed and measured. All the sealers were distinctly different from each other in their antimicrobial activity. The sealers showed different inhibitory effects depending on the types and bacterial strains. N2 containing formaldehyde and eugenol proved to be the most effective against the microorganisms. The extreme antimicrobial potency of this root canal sealer must be weighted against its pronounced tissue toxic effect.

  7. Establishment of Chronic Infection: Brucella's Stealth Strategy

    PubMed Central

    Ahmed, Waqas; Zheng, Ke; Liu, Zheng-Fei

    2016-01-01

    Brucella is a facultative intracellular pathogen that causes zoonotic infection known as brucellosis which results in abortion and infertility in natural host. Humans, especially in low income countries, can acquire infection by direct contact with infected animal or by consumption of animal products and show high morbidity, severe economic losses and public health problems. However for survival, host cells develop complex immune mechanisms to defeat and battle against attacking pathogens and maintain a balance between host resistance and Brucella virulence. On the other hand as a successful intracellular pathogen, Brucella has evolved multiple strategies to evade immune response mechanisms to establish persistent infection and replication within host. In this review, we mainly summarize the “Stealth” strategies employed by Brucella to modulate innate and the adaptive immune systems, autophagy, apoptosis and possible role of small noncoding RNA in the establishment of chronic infection. The purpose of this review is to give an overview for recent understanding how this pathogen evades immune response mechanisms of host, which will facilitate to understanding the pathogenesis of brucellosis and the development of novel, more effective therapeutic approaches to treat brucellosis. PMID:27014640

  8. Characteristics of invasion-reduced hilA gene mutant of Salmonella Enteritidis in vitro and in vivo.

    PubMed

    Lv, Shuang; Si, Wei; Yu, Shenye; Li, Zhaoli; Wang, Xiumei; Chen, Liping; Zhang, Wanjiang; Liu, Siguo

    2015-08-01

    Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) is a facultative intracellular pathogen that causes huge losses in poultry industry and also food poisoning in humans due to its being a food-borne pathogen. Functions of Invasion-related genes need to be explored, as invasion is a key step for Salmonella infection. In this study, a transposon mutant library of Salmonella Enteritidis isolate SM6 was constructed and screened for the invasion-related genes via incubation with Caco-2 cells. Three stably attenuated mutants were identified for significantly reduced invasion with insertions all in hilA (hyperinvasive locus A) gene. We constructed and evaluated the hilA deletion mutant in vivo and in vitro. SM6△hilA showed significantly reduced ability to invade Caco-2 cells and decreased pathogenicity in chicks. However, the bacterial load and pathological damage in the cecum were significantly higher than those in the SM6 in vivo. Present results provide new evidences for pathogenicity research on Salmonella Enteritidis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Rhodococcus equi: the many facets of a pathogenic actinomycete.

    PubMed

    Vázquez-Boland, José A; Giguère, Steeve; Hapeshi, Alexia; MacArthur, Iain; Anastasi, Elisa; Valero-Rello, Ana

    2013-11-29

    Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α

    PubMed Central

    Crane, Deborah D.; Ireland, Robin; Alinger, Joshua B.; Small, Pamela

    2013-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses. PMID:23925884

  11. Legionella: virulence factors and host response.

    PubMed

    Misch, Elizabeth Ann

    2016-06-01

    Legionella pneumophila is a facultative intracellular pathogen and an important cause of community-acquired and nosocomial pneumonia. This review focuses on the latest literature examining Legionella's virulence strategies and the mammalian host response. Recent studies identify novel virulence strategies used by L. pneumophila and new aspects of the host immune response to this pathogen. Legionella prevents acidification of the phagosome by recruiting Rab1, a host protein. Legionella also blocks a conserved endoplasmic reticulum stress response. To access iron from host stores, L. pneumophila upregulates more regions allowing vacuolar colocalization N. In response to Legionella, the host cell may activate caspase-1, caspase-11 (mice) or caspase-4 (humans). Caspase-3 and apoptosis are activated by a secreted, bacterial effector. Infected cells send signals to their uninfected neighbors, allowing the elaboration of inflammatory cytokines in trans. Antibody subclasses provide robust protection against Legionella. L. pneumophila is a significant human pathogen that lives in amoebae in the environment but may opportunistically infect the alveolar macrophage. To maintain its intracellular lifestyle, Legionella extracts essential iron from the cell, blocks inflammatory responses and manipulates trafficking to avoid fusion with the lysosome. The mammalian host has counter strategies, which include the release of proinflammatory cytokines, the activation of caspases and antibody-mediated immunity.

  12. Genes Activated by Vibrio cholerae upon Exposure to Caenorhabditis elegans Reveal the Mannose-Sensitive Hemagglutinin To Be Essential for Colonization.

    PubMed

    List, Cornelia; Grutsch, Andreas; Radler, Claudia; Cakar, Fatih; Zingl, Franz G; Schild-Prüfert, Kristina; Schild, Stefan

    2018-01-01

    During its life cycle, the facultative human pathogen Vibrio cholerae , which is the causative agent of the diarrheal disease cholera, needs to adapt to a variety of different conditions, such as the human host or the aquatic environment. Importantly, cholera infections originate from the aquatic reservoir where V. cholerae persists between the outbreaks. In the aquatic environment, bacteria are constantly threatened by predatory protozoa and nematodes, but our knowledge of the response pathways and adaptation strategies of V. cholerae to such stressors is limited. Using a temporally controlled reporter system of transcription, we identified more than 100 genes of V. cholerae induced upon exposure to the nematode Caenorhabditis elegans , which emerged recently as a valuable model for environmental predation during the aquatic lifestyle of V. cholerae Besides others, we identified and validated the genes encoding the mannose-sensitive hemagglutinin (MSHA) type IV pilus to be significantly induced upon exposure to the nematode. Subsequent analyses demonstrated that the mannose-sensitive hemagglutinin is crucial for attachment of V. cholerae in the pharynx of the worm and initiation of colonization, which results in growth retardation and developmental delay of C. elegans Thus, the surface adhesion factor MSHA could be linked to a fitness advantage of V. cholerae upon contact with bacterium-grazing nematodes. IMPORTANCE The waterborne diarrheal disease cholera is caused by the bacterium Vibrio cholerae The facultative human pathogen persists as a natural inhabitant in the aquatic ecosystem between outbreaks. In contrast to the human host, V. cholerae requires a different set of genes to survive in this hostile environment. For example, predatory micrograzers are commonly found in the aquatic environment and use bacteria as a nutrient source, but knowledge of the interaction between bacterivorous grazers and V. cholerae is limited. In this study, we successfully adapted a genetic reporter technology and identified more than 100 genes activated by V. cholerae upon exposure to the bacterium-grazing nematode Caenorhabditis elegans This screen provides a first glimpse into responses and adaptational strategies of the bacterial pathogen against such natural predators. Subsequent phenotypic characterization revealed the mannose-sensitive hemagglutinin to be crucial for colonization of the worm, which causes developmental delay and growth retardation. Copyright © 2018 List et al.

  13. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII) and macrophages.

    PubMed

    Lu, Richard; Popov, Vsevolod; Patel, Jignesh; Eaves-Pyles, Tonyia

    2012-01-01

    Alveolar type II pneumocytes (ATII) and alveolar macrophages (AM) play a crucial role in the lung's innate immune response. Burkholderia pseudomallei (BP) and Burkholderia mallei (BM) are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM). We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP-induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8) and macrophages (IL-6, TNFα) at 6 h post-infection compared to BM (p < 0.05). Interestingly, BM-induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6 h post-infection, with delayed induction of inflammatory cytokines at 24 h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR) 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens.

  14. Apoptotic death of Listeria monocytogenes-infected human macrophages induced by lactoferricin B, a bovine lactoferrin-derived peptide.

    PubMed

    Longhi, C; Conte, M P; Ranaldi, S; Penta, M; Valenti, P; Tinari, A; Superti, F; Seganti, L

    2005-01-01

    Listeria monocytogenes, an intracellular facultative food-borne pathogen, was reported to induce apoptosis in vitro and in vivo in a variety of cell types with the exception of murine macrophages. These cells represent the predominant compartment of bacterial multiplication and die as a result of necrosis. In this study we showed that human non-activated and IFN-gamma-activated macrophagic-like (THP-1) cells infected with L. monocytogenes, mainly die by necrosis rather than by an apoptotic process. Two natural products derived from bovine milk, lactoferrin and its derivative peptide lactoferricin B, are capable of regulating the fate of infected human macrophages. Bovine lactoferrin treatment of macrophages protects them from L. monocytogenes-induced death whereas lactoferricin B, its derivative peptide, determines a shifting of the equilibrium from necrosis to apoptosis.

  15. Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei.

    PubMed

    Abdelbaqi, Suha; Deslouches, Berthony; Steckbeck, Jonathan; Montelaro, Ronald; Reed, Douglas S

    2016-02-01

    Broad-spectrum antimicrobials are needed to effectively treat patients infected in the event of a pandemic or intentional release of a pathogen prior to confirmation of the pathogen's identity. Engineered cationic antimicrobial peptides (eCAPs) display activity against a number of bacterial pathogens including multi-drug-resistant strains. Two lead eCAPs, WLBU2 and WR12, were compared with human cathelicidin (LL-37) against three highly pathogenic bacteria: Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Both WLBU2 and WR12 demonstrated bactericidal activity greater than that of LL-37, particularly against F. tularensis and Y. pestis. Only WLBU2 had bactericidal activity against B. pseudomallei. WLBU2, WR12 and LL-37 were all able to inhibit the growth of the three bacteria in vitro. Because these bacteria can be facultative intracellular pathogens, preferentially infecting macrophages and dendritic cells, we evaluated the activity of WLBU2 against F. tularensis in an ex vivo infection model with J774 cells, a mouse macrophage cell line. In that model WLBU2 was able to achieve greater than 50% killing of F. tularensis at a concentration of 12.5 μM. These data show the therapeutic potential of eCAPs, particularly WLBU2, as a broad-spectrum antimicrobial for treating highly pathogenic bacterial infections.

  16. Melioidosis and glanders modulation of the innate immune system: barriers to current and future vaccine approaches.

    PubMed

    Aschenbroich, Sophie A; Lafontaine, Eric R; Hogan, Robert J

    2016-09-01

    Burkholderia pseudomallei and Burkholderia mallei are pathogenic bacteria causing fatal infections in animals and humans. Both organisms are classified as Tier 1 Select Agents owing to their highly fatal nature, potential/prior use as bioweapons, severity of disease via respiratory exposure, intrinsic resistance to antibiotics, and lack of a current vaccine. Disease manifestations range from acute septicemia to chronic infection, wherein the facultative intracellular lifestyle of these organisms promotes persistence within a broad range of hosts. This ability to thrive intracellularly is thought to be related to exploitation of host immune response signaling pathways. There are currently considerable gaps in our understanding of the molecular strategies employed by these pathogens to modulate these pathways and evade intracellular killing. A better understanding of the specific molecular basis for dysregulation of host immune responses by these organisms will provide a stronger platform to identify novel vaccine targets and develop effective countermeasures.

  17. Lower genital tract infections in infertile Nigerian women compared with controls.

    PubMed

    Okonofua, F E; Ako-Nai, K A; Dighitoghi, M D

    1995-06-01

    To investigate the possibility that infertile Nigerian women have a higher rate of cervical colonisation with pathogenic and facultative organisms than fertile controls. The prevalence of common microorganisms in the vagina and endocervical canals of infertile women was compared with that of pregnant controls. The Obafemi Awolowo University Hospital Maternity Centre. 92 infertile women were compared with 86 pregnant controls. rates of isolation of Neisseria gonorrhoeae, Candida albicans, Trichomonas vaginalis and other facultative organisms in cases and controls. The rate of isolation of Neisseria gonorrheae was 17.4% among infertile women compared with 10.5% in the group of pregnant women (p > 0.05). There was no significant difference between the groups in the rate of isolation of Candida albicans, Trichomonas vaginalis and other facultative organisms. High rates of isolation of microorganisms were observed in both groups. However, women with secondary infertility had higher rate of carriage of Neisseria gonorrheae, Candida albicans and Staphylococcus aureus as compared with women with primary infertility. Nearly 15% of infertile women had previous episodes of pelvic inflammatory disease and 26% had had induced abortions. A positive history of vaginal discharge was a poor predictor of vagina and endocervical carriage of microorganisms. High rates of pathogenic organisms exist in the lower genital tract of infertile women and controls. Women with secondary infertility are more likely to have pathogenic organisms than women with primary infertility. A policy of routinely screening women for lower genital tract infections should be pursued in this population because of the high rate of infection.

  18. Progress in Brucella vaccine development

    PubMed Central

    YANG, Xinghong; SKYBERG, Jerod A.; CAO, Ling; CLAPP, Beata; THORNBURG, Theresa; PASCUAL, David W.

    2012-01-01

    Brucella spp. are zoonotic, facultative intracellular pathogens, which cause animal and human disease. Animal disease results in abortion of fetuses; in humans, it manifests flu-like symptoms with an undulant fever, with osteoarthritis as a common complication of infection. Antibiotic regimens for human brucellosis patients may last several months and are not always completely effective. While there are no vaccines for humans, several licensed live Brucella vaccines are available for use in livestock. The performance of these animal vaccines is dependent upon the host species, dose, and route of immunization. Newly engineered live vaccines, lacking well-defined virulence factors, retain low residual virulence, are highly protective, and may someday replace currently used animal vaccines. These also have possible human applications. Moreover, due to their enhanced safety and efficacy in animal models, subunit vaccines for brucellosis show great promise for their application in livestock and humans. This review summarizes the progress of brucellosis vaccine development and presents an overview of candidate vaccines. PMID:23730309

  19. Mycoplasma genitalium: An Overlooked Sexually Transmitted Pathogen in Women?

    PubMed Central

    Ona, Samsiya; Molina, Rose L.; Diouf, Khady

    2016-01-01

    Mycoplasma genitalium is a facultative anaerobic organism and a recognized cause of nongonococcal urethritis in men. In women, M. genitalium has been associated with cervicitis, endometritis, pelvic inflammatory disease (PID), infertility, susceptibility to human immunodeficiency virus (HIV), and adverse birth outcomes, indicating a consistent relationship with female genital tract pathology. The global prevalence of M. genitalium among symptomatic and asymptomatic sexually active women ranges between 1 and 6.4%. M. genitalium may play a role in pathogenesis as an independent sexually transmitted pathogen or by facilitating coinfection with another pathogen. The long-term reproductive consequences of M. genitalium infection in asymptomatic individuals need to be investigated further. Though screening for this pathogen is not currently recommended, it should be considered in high-risk populations. Recent guidelines from the Centers for Disease Control regarding first-line treatment for PID do not cover M. genitalium but recommend considering treatment in patients without improvement on standard PID regimens. Prospective studies on the prevalence, pathophysiology, and long-term reproductive consequences of M. genitalium infection in the general population are needed to determine if screening protocols are necessary. New treatment regimens need to be investigated due to increasing drug resistance. PMID:27212873

  20. Use of OmpU porins for attachment and invasion of Crassostrea gigas immune cells by the oyster pathogen Vibrio splendidus

    PubMed Central

    Duperthuy, Marylise; Schmitt, Paulina; Garzón, Edwin; Caro, Audrey; Rosa, Rafael D.; Le Roux, Frédérique; Lautrédou-Audouy, Nicole; Got, Patrice; Romestand, Bernard; de Lorgeril, Julien; Kieffer-Jaquinod, Sylvie; Bachère, Evelyne; Destoumieux-Garzón, Delphine

    2011-01-01

    OmpU porins are increasingly recognized as key determinants of pathogenic host Vibrio interactions. Although mechanisms remain incompletely understood, various species, including the human pathogen Vibrio cholera, require OmpU for host colonization and virulence. We have shown previously that OmpU is essential for virulence in the oyster pathogen Vibrio splendidus LGP32. Here, we showed that V. splendidus LGP32 invades the oyster immune cells, the hemocytes, through subversion of host-cell actin cytoskeleton. In this process, OmpU serves as an adhesin/invasin required for β-integrin recognition and host cell invasion. Furthermore, the major protein of oyster plasma, the extracellular superoxide dismutase Cg-EcSOD, is used as an opsonin mediating the OmpU-promoted phagocytosis through its RGD sequence. Finally, the endocytosed bacteria were found to survive intracellularly, evading the host defense by preventing acidic vacuole formation and limiting reactive oxygen species production. We conclude that (i) V. splendidus is a facultative intracellular pathogen that manipulates host defense mechanisms to enter and survive in host immune cells, and (ii) that OmpU is a major determinant of host cell invasion in Vibrio species, used by V. splendidus LGP32 to attach and invade oyster hemocytes through opsonisation by the oyster plasma Cg-EcSOD. PMID:21282662

  1. Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja karachiensis) in Southern Pakistan

    PubMed Central

    Iqbal, Junaid; Sagheer, Mehwish; Tabassum, Nazneen; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2014-01-01

    Using morphological analysis and biochemical testing, here for the first time, we determined the culturable gut bacterial flora (aerobes and facultative anaerobes) in the venomous Black Cobra (Naja naja karachiensis) from South Asia. The findings revealed that these snakes inhabit potentially pathogenic bacteria including Serratia marcescens, Pseudomonas aeruginosa, Shewanella putrefaciens, Aeromonas hydrophila, Salmonella sp., Moraxella sp., Bacillus sp., Ochrobactrum anthropi, and Providencia rettgeri. These findings are of concern, as injury from snake bite can result in wound infections and tissue necrosis leading to sepsis/necrotizing fasciitis and/or expose consumers of snake meat/medicine in the community to infections. PMID:25002979

  2. Listeria monocytogenes Infection in a Sugar Glider (Petaurus breviceps) - New Mexico, 2011.

    PubMed

    Nichols, M; Takacs, N; Ragsdale, J; Levenson, D; Marquez, C; Roache, K; Tarr, C L

    2015-06-01

    Listeria monocytogenes is a Gram-positive, facultative anaerobic, rod-shaped bacterium that can infect and cause disease in many species. In this case report, we describe a case of L. monocytogenes infection causing sepsis in a sugar glider (Petaurus breviceps). The sugar glider consumed a varied diet consisting of human food items, including cantaloupe. A nationwide outbreak of L. monocytogenes foodborne illness associated with cantaloupes occurred simultaneously with this incident case. In this case, the bacterial strains from the outbreak and glider were genetically distinct. Although rare, veterinarians should be aware of the emergence of foodborne pathogens' ability to infect exotic animals residing in domestic environments. © 2014 Blackwell Verlag GmbH.

  3. The Genomic Basis of Parasitism in the Strongyloides Clade of Nematodes

    PubMed Central

    Hunt, Vicky L.; Tsai, Isheng J.; Coghlan, Avril; Reid, Adam J.; Holroyd, Nancy; Foth, Bernardo J.; Tracey, Alan; Cotton, James A.; Stanley, Eleanor J.; Beasley, Helen; Bennett, Hayley M.; Brooks, Karen; Harsha, Bhavana; Kajitani, Rei; Kulkarni, Arpita; Harbecke, Dorothee; Nagayasu, Eiji; Nichol, Sarah; Ogura, Yoshitoshi; Quail, Michael A.; Randle, Nadine; Xia, Dong; Brattig, Norbert W.; Soblik, Hanns; Ribeiro, Diogo M.; Sanchez-Flores, Alejandro; Hayashi, Tetsuya; Itoh, Takehiko; Denver, Dee R.; Grant, Warwick; Stoltzfus, Jonathan D.; Lok, James B.; Murayama, Haruhiko; Wastling, Jonathan; Streit, Adrian; Kikuchi, Taisei; Viney, Mark; Berriman, Matthew

    2016-01-01

    Soil transmitted nematodes, including Strongyloides, cause one of the most prevalent Neglected Tropical Diseases. Here we compare the genomes of four Strongyloides spp., including the human pathogen S. stercoralis, and their close relatives that are facultatively parasitic (Parastrongyloides trichosuri) and free-living (Rhabditophanes sp). A significant paralogous expansion of key gene families – astacin-like and SCP/TAPS coding gene families – is associated with the evolution of parasitism in this clade. Exploiting the unique Strongyloides life cycle we compare the transcriptome of its parasitic and free-living stages and find that these same genes are upregulated in the parasitic stages, underscoring their role in nematode parasitism. PMID:26829753

  4. Temperature dependent virulence of obligate and facultative fungal pathogens of honeybee brood

    USDA-ARS?s Scientific Manuscript database

    Chalkbrood (Ascosphaera apis) and stonebrood (Aspergillus flavus) are well known fungal brood diseases of honeybees (Apis mellifera), but they have hardly been systematically studied because the difficulty of rearing larvae in vitro has precluded controlled experimentation. Chalkbrood is a chronic h...

  5. Deciphering drought-induced metabolic responses and regulation in developing maize kernels

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus is a facultative pathogen of crops such as maize and peanut which produces carcinogenic aflatoxins during infection, particularly in drought stressed host plants. Reactive oxygen species (ROS) have been shown to both accumulate in host plant tissues during drought and to stimulate...

  6. Bacterial endosymbionts of the psyllid Cacopsylla pyricola in the Pacific Northwestern United States (Hemiptera: Psyllidae)

    USDA-ARS?s Scientific Manuscript database

    Insects often have facultative associations with bacterial endosymbionts, which can alter the insects' susceptibility to parasitism, pathogens, plant defenses, and certain classes of insecticides. We collected pear psylla, Cacopsylla pyricola (Förster) (Hemiptera: Psyllidae), from pear orchards in W...

  7. Non-oral gram-negative facultative rods in chronic periodontitis microbiota.

    PubMed

    van Winkelhoff, Arie J; Rurenga, Patrick; Wekema-Mulder, Gepke J; Singadji, Zadrach M; Rams, Thomas E

    2016-05-01

    The subgingival prevalence of gram-negative facultative rods not usually inhabiting or indigenous to the oral cavity (non-oral GNFR), as well as selected periodontal bacterial pathogens, were evaluated by culture in untreated and treated chronic periodontitis patients. Subgingival biofilm specimens from 102 untreated and 101 recently treated adults with chronic periodontitis in the Netherlands were plated onto MacConkey III and Dentaid selective media with air-5% CO2 incubation for isolation of non-oral GNFR, and onto enriched Oxoid blood agar with anaerobic incubation for recovery of selected periodontal bacterial pathogens. Suspected non-oral GNFR clinical isolates were identified to a species level with the VITEK 2 automated system. A total of 87 (42.9%) out of 203 patients yielded subgingival non-oral GNFR. Patients recently treated with periodontal mechanical debridement therapy demonstrated a greater prevalence of non-oral GNFR (57.4% vs 28.4%, P < 0.0001), and a greater number of different non-oral GNFR species (23 vs 14 different species), than untreated patients. Sphingomonas paucimobilis was the most frequently isolated subgingival non-oral GNFR species. Several GNFR species normally found in animals and human zoonotic infections, and not previously detected in human subgingival biofilms, were recovered from some patients, including Bordetella bronchispetica, Pasteurella canis, Pasteurella pneumotropica and Neisseria zoodegmatis. Porphyromonas gingivalis and Tannerella forsythia were significantly associated with the presence of subgingival non-oral GNFR. A surprisingly high proportion of Dutch chronic periodontitis patients yielded cultivable non-oral GNFR in periodontal pockets, particularly among those recently treated with periodontal mechanical debridement therapy. Since non-oral GNFR species may resist mechanical debridement from periodontal pockets, and are often not susceptible to many antibiotics frequently used in periodontal practice, their subgingival presence may complicate periodontal treatment in species-positive patients and increase risk of potentially dangerous GNFR infections developing at other body sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Endodontic cellulitis 'flare-up'. Case report.

    PubMed

    Matusow, R J

    1995-02-01

    Endodontic cellulitis involves facial swelling which can vary from mild to severe and can occur as a primary case or a flare-up following initial treatment of asymptomatic teeth with periapical lesions. The microbial spectrum in primary cases involves a significant mixture of anaerobic and facultative aerobic microbes, chiefly streptococci. In a previous study, cultures from flare-up cases, utilizing the same anaerobic techniques as in primary cases, revealed an absence of obligate anaerobes and an 80 per cent incidence of facultative aerobic streptococci. These cases also revealed a significant time lapse from onset of symptoms to the cellulitis phase. No sex or age factors were noted in the primary or flare-up cases. The purpose of this case report is to restate a traditional theory, namely, the alteration of the oxidation/reduction potential (Eh), as a major factor for endodontic cellulitis flare-ups; to confirm the pathogenic potential of oral facultative streptococci; and that asymptomatic endodontic lesions tend to exist with mixed aerobic/anaerobic microbial flora.

  9. Finalizing host range determination of a weed biological control pathogen with BLUPs and damage assessment

    USDA-ARS?s Scientific Manuscript database

    Colletotrichum gloeosporioides f. sp. salsolae (Penz.) Penz. & Sacc. in Penz. (CGS) is a facultative parasitic fungus being evaluated as a classical biological control agent of Russian thistle or tumbleweed (Salsola tragus L.). In initial host range determination tests, Henderson’s mixed model equat...

  10. Intruders below the Radar: Molecular Pathogenesis of Bartonella spp.

    PubMed Central

    Harms, Alexander

    2012-01-01

    Summary: Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease. PMID:22232371

  11. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance.

    PubMed

    Balczun, Carsten; Scheid, Patrick L

    2017-04-01

    Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses.

  12. An overview of Brucellosis.

    PubMed

    Haque, N; Bari, M S; Hossain, M A; Muhammad, N; Ahmed, S; Rahman, A; Hoque, S M; Islam, A

    2011-10-01

    Brucellosis is the most important zoonotic disease caused by Brucella species comprising Gram negative, facultative, intracellular pathogens. The true incidence of human brucellosis is unknown for most countries of the world including Bangladesh. But brucellosis is not uncommon in our country. Due to its increasing incidence in many countries of the world it is an important issue now days. Domestic animals such as cattle, goats, sheep, pigs, camel, buffalo and dogs serve as a reservoir hosts. Transmission of brucellosis to humans occurs through the consumption of infected, unpasteurized animal milk and milk products, through direct contact with infected animal parts, through ruptures of skin and mucous membranes and through the inhalation of infected aerosolized particles. Due to variability of clinical features and limited availability of laboratory facilities, the disease remains largely under-reported. Early and specific diagnosis is important to ensure a favourable outcome regarding this zoonotic disease.

  13. Free-Living Amoebae as Hosts for and Vectors of Intracellular Microorganisms with Public Health Significance

    PubMed Central

    Balczun, Carsten; Scheid, Patrick L.

    2017-01-01

    Free-living amoebae (FLA) are parasites within both humans and animals causing a wide range of symptoms and act as hosts of, and vehicles for phylogenetically diverse microorganisms, called endocytobionts. The interaction of the FLA with sympatric microorganisms leads to an exceptional diversity within FLA. Some of these bacteria, viruses, and even eukaryotes, can live and replicate intracellularly within the FLA. This relationship provides protection to the microorganisms from external interventions and a dispersal mechanism across various habitats. Among those intracellularly-replicating or -residing organisms there are obligate and facultative pathogenic microorganisms affecting the health of humans or animals and are therefore of interest to Public Health Authorities. Mimiviruses, Pandoraviruses, and Pithoviruses are examples for interesting viral endocytobionts within FLA. Future research is expected to reveal further endocytobionts within free-living amoebae and other protozoa through co-cultivation studies, genomic, transcriptomic, and proteomic analyses. PMID:28368313

  14. Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens

    PubMed Central

    McGrann, Graham R. D.; Steed, , Andrew; Burt, Christopher; Nicholson, Paul; Brown, James K. M.

    2015-01-01

    Lesion mimic mutants display spontaneous necrotic spots and chlorotic leaves as a result of mis-regulated cell death programmes. Typically these mutants have increased resistance to biotrophic pathogens but their response to facultative fungi that cause necrotrophic diseases is less well studied. The effect of altered cell death regulation on the development of disease caused by Ramularia collo-cygni, Fusarium culmorum and Oculimacula yallundae was explored using a collection of barley necrotic (nec) lesion mimic mutants. nec8 mutants displayed lower levels of all three diseases compared to nec9 mutants, which had increased R. collo-cygni but decreased F. culmorum disease symptoms. nec1 mutants reduced disease development caused by both R. collo-cygni and F. culmorum. The severity of the nec1-induced lesion mimic phenotype and F. culmorum symptom development was reduced by mutation of the negative cell death regulator MLO. The significant reduction in R. collo-cygni symptoms caused by nec1 was completely abolished in the presence of the mlo-5 allele and both symptoms and fungal biomass were greater than in the wild-type. These results indicate that physiological pathways involved in regulation of cell death interact with one another in their effects on different fungal pathogens. PMID:25873675

  15. Members of a new subgroup of Streptococcus anginosus harbor virulence related genes previously observed in Streptococcus pyogenes.

    PubMed

    Babbar, Anshu; Kumar, Venkatesan Naveen; Bergmann, René; Barrantes, Israel; Pieper, Dietmar H; Itzek, Andreas; Nitsche-Schmitz, D Patric

    2017-04-01

    Conventionally categorized as commensals, the Streptococci of the species S. anginosus are facultative human pathogens that are difficult to diagnose and often overlooked. Furthermore, detailed investigation and diagnosis of S. anginosus infections is hampered by unexplored taxonomy and widely elusive molecular pathogenesis. To explore their pathogenic potential, S. anginosus isolates collected from patients of two geographical locations (Vellore, India and Leipzig, Germany) were subjected to multi-locus sequence analysis (MLSA). This analysis revealed the potential presence of a new distinct clade of the species S. anginosus, tentatively termed here as genomosubspecies vellorensis. A complementary PCR-based screening for S. pyogenes virulence factor as well as antibiotic resistance genes revealed not only the presence of superantigen- and extracellular DNase coding genes identical to corresponding genes of S. pyogenes, but also of erythromycin and tetracycline resistance genes in the genomes of the analyzed S. anginosus isolates, thus posing a matter of significant health concern. Identification of new pathogenic S. anginosus strains capable of causing difficult to treat infections may pose additional challenges to the diagnosis and treatment of Streptococcus based infections. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daligault, H. E.; Johnson, Shannon L.; Davenport, K. W.

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Though glanders have been eradicated from many parts of the world, the threat ofB. malleibeing used as a weapon is very real. We, then, present draft genome assemblies of 8Burkholderia malleistrains that were isolated in Turkey.

  17. Efficacy of florfenicol for control of mortality with Francisella noatunensis subsp. orientalis in Nile tilapia, oreochromis niloticus (L.)

    USDA-ARS?s Scientific Manuscript database

    Francisella noatunensis subsp. orientalis (Fno) (syn. F. asiatica) is an emergent Gram-negative facultative intracellular bacterium. Although it is considered one of the most pathogenic bacteria in fish, there are no commercially available treatments of vaccines. The objective of this project was ...

  18. Draft Genomes for Eight Burkholderia mallei Isolates from Turkey

    DOE PAGES

    Daligault, H. E.; Johnson, Shannon L.; Davenport, K. W.; ...

    2016-01-07

    Burkholderia mallei, the etiologic agent of glanders, is a Gram-negative, nonmotile, facultative intracellular pathogen. Though glanders have been eradicated from many parts of the world, the threat ofB. malleibeing used as a weapon is very real. We, then, present draft genome assemblies of 8Burkholderia malleistrains that were isolated in Turkey.

  19. Rapid changes in the serum total protein and globulin levels in complications caused by facultatively pathogenic Gram-negative bacteria.

    PubMed

    Petrás, G; Kiss, S; Juraszek, J; Merétey, K

    1978-01-01

    The changes in the levels of total protein and four globulin fractions were followed up throughout the entire course of complications caused by Gram-negative facultative pathogens in 37 acute cases of respiratory insufficiency accompanying different underlying illnesses and in 9 chronic, bedridden patients given artificial ventilation. At the onset of the infectious complications, in the first place in septic shock, the levels of various globulin fractions showed a decrease corresponding to a half-life of 2 to 4 days. Neither the increased catabolism, nor the protein losses by the urine and tracheal secretions offer a sufficient explanation for the escape of globulins of this extent from the plasma. It seems that this is a consequence of the increase in capillary permeability due to the effect of antigen-antibody reactions and that of endotoxin. As a result, in the critical phase of the infectious complications, at the point of culmination, e.g. in septic shock, diminished amount of different globulins is transported to the site of utilization, that is, to the inflammatory area.

  20. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.

    PubMed

    Uddin, Reaz; Sufian, Muhammad

    2016-01-01

    Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins of the unique metabolic pathways of the pathogens and mining the proteomic data of all completely sequenced strains of the pathogen, thus improving the quality and application of the results. We believe that the sharing of the knowledge from this study would eventually lead to bring about novel and unique therapeutic regimens against the infections caused by the S. enterica.

  1. Experimental infection of chicken embryos with recently described Brucella microti: Pathogenicity and pathological findings.

    PubMed

    Wareth, Gamal; Böttcher, Denny; Melzer, Falk; Shehata, Awad Ali; Roesler, Uwe; Neubauer, Heinrich; Schoon, Heinz-Adolf

    2015-08-01

    Brucellae are facultative intracellular pathogens causing disease in a wide range of domestic and wild animals as well as in humans. Brucella (B.) microti is a recently recognized species and was isolated from common voles (Microtus arvalis), red foxes and soil in Austria and the Czech Republic. Its pathogenicity for livestock and its zoonotic potential has not been confirmed yet. In the present study 25 SPF chicken embryos were inoculated at day 11 of age with 1.6×10(3) and 1.6×10(5)B. microti by yolk sac and allantoic sac routes. Re-isolation of B. microti indicated rapid multiplication of bacteria (up to 1.7×10(12)CFU). B. microti provoked marked gross lesions, i.e. hemorrhages and necroses. All inoculated embryos were dead (100% mortality) in between 2nd and 4th day post inoculation. The predominant histopathological lesion was necroses in liver, kidneys, lungs, spleen, gastrointestinal tract, spinal meninges, yolk sac and chorioallantoic membrane. Immunohistochemical examination showed the presence of Brucella antigen in nearly all of these organs, with infection being mainly restricted to non-epithelial cells or tissues. This study provides the first results on the multiplication and pathogenicity of the mouse pathogenic B. microti in chicken embryos. These data suggest that, even though chicken are not mammals, they could provide a useful tool for understanding the pathogenesis of B. microti associated disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni

    PubMed Central

    Hofreuter, Dirk

    2014-01-01

    During the last decade Campylobacter jejuni has been recognized as the leading cause of bacterial gastroenteritis worldwide. This facultative intracellular pathogen is a member of the Epsilonproteobacteria and requires microaerobic atmosphere and nutrient rich media for efficient proliferation in vitro. Its catabolic capacity is highly restricted in contrast to Salmonella Typhimurium and other enteropathogenic bacteria because several common pathways for carbohydrate utilization are either missing or incomplete. Despite these metabolic limitations, C. jejuni efficiently colonizes various animal hosts as a commensal intestinal inhabitant. Moreover, C. jejuni is tremendously successful in competing with the human intestinal microbiota; an infectious dose of few hundreds bacteria is sufficient to overcome the colonization resistance of humans and can lead to campylobacteriosis. Besides the importance and clear clinical manifestation of this disease, the pathogenesis mechanisms of C. jejuni infections are still poorly understood. In recent years comparative genome sequence, transcriptome and metabolome analyses as well as mutagenesis studies combined with animal infection models have provided a new understanding of how the specific metabolic capacity of C. jejuni drives its persistence in the intestinal habitat of various hosts. Furthermore, new insights into the metabolic requirements that support the intracellular survival of C. jejuni were obtained. Because C. jejuni harbors distinct properties in establishing an infection in comparison to pathogenic Enterobacteriaceae, it represents an excellent organism for elucidating new aspects of the dynamic interaction and metabolic cross talk between a bacterial pathogen, the microbiota and the host. PMID:25325018

  3. Cell biology and immunology lessons taught by Legionella pneumophila.

    PubMed

    Zhu, Wenhan; Luo, Zhao-Qing

    2016-01-01

    Legionella pneumophila is a facultative intracellular pathogen capable of replicating within a broad range of hosts. One unique feature of this pathogen is the cohort of ca. 300 virulence factors (effectors) delivered into host cells via its Dot/Icm type IV secretion system. Study of these proteins has produced novel insights into the mechanisms of host function modulation by pathogens, the regulation of essential processes of eukaryotic cells and of immunosurveillance. In this review, we will briefly discuss the roles of some of these effectors in the creation of a niche permissive for bacterial replication in phagocytes and recent advancements in the dissection of the innate immune detection mechanisms by challenging immune cells with L. pneumophila.

  4. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    PubMed Central

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  5. Dendritic cells coordinate innate immunity via MyD88 signaling to control Listeria monocytogenes infection.

    PubMed

    Arnold-Schrauf, Catharina; Dudek, Markus; Dielmann, Anastasia; Pace, Luigia; Swallow, Maxine; Kruse, Friederike; Kühl, Anja A; Holzmann, Bernhard; Berod, Luciana; Sparwasser, Tim

    2014-02-27

    Listeria monocytogenes (LM), a facultative intracellular Gram-positive pathogen, can cause life-threatening infections in humans. In mice, the signaling cascade downstream of the myeloid differentiation factor 88 (MyD88) is essential for proper innate immune activation against LM, as MyD88-deficient mice succumb early to infection. Here, we show that MyD88 signaling in dendritic cells (DCs) is sufficient to mediate the protective innate response, including the production of proinflammatory cytokines, neutrophil infiltration, bacterial clearance, and full protection from lethal infection. We also demonstrate that MyD88 signaling by DCs controls the infection rates of CD8α(+) cDCs and thus limits the spread of LM to the T cell areas. Furthermore, in mice expressing MyD88 in DCs, inflammatory monocytes, which are required for bacterial clearance, are activated independently of intrinsic MyD88 signaling. In conclusion, CD11c(+) conventional DCs critically integrate pathogen-derived signals via MyD88 signaling during early infection with LM in vivo. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Relationship between the Antifungal Susceptibility Profile and the Production of Virulence-Related Hydrolytic Enzymes in Brazilian Clinical Strains of Candida glabrata

    PubMed Central

    de Oliveira, Jean Carlos Almeida

    2017-01-01

    Candida glabrata is a facultative intracellular opportunistic fungal pathogen in human infections. Several virulence-associated attributes are involved in its pathogenesis, host-pathogen interactions, modulation of host immune defenses, and regulation of antifungal drug resistance. This study evaluated the in vitro antifungal susceptibility profile to five antifungal agents, the production of seven hydrolytic enzymes related to virulence, and the relationship between these phenotypes in 91 clinical strains of C. glabrata. All C. glabrata strains were susceptible to flucytosine. However, some of these strains showed resistance to amphotericin B (9.9%), fluconazole (15.4%), itraconazole (5.5%), or micafungin (15.4%). Overall, C. glabrata strains were good producers of catalase, aspartic protease, esterase, phytase, and hemolysin. However, caseinase and phospholipase in vitro activities were not detected. Statistically significant correlations were identified between micafungin minimum inhibitory concentration (MIC) and esterase production, between fluconazole and micafungin MIC and hemolytic activity, and between amphotericin B MIC and phytase production. These results contribute to clarify some of the C. glabrata mechanisms of pathogenicity. Moreover, the association between some virulence attributes and the regulation of antifungal resistance encourage the development of new therapeutic strategies involving virulence mechanisms as potential targets for effective antifungal drug development for the treatment of C. glabrata infections. PMID:28814823

  7. Long-term effects of stump removal to control root rot on forest soil bulk density, soil carbon and nitrogen content.

    Treesearch

    D. Zabowski; D. Chambrear; N. Rotramel; W.G. Thies

    2008-01-01

    Phellinus weirii (Mum.) Gilb is a native pathogen in the forests of the Northwestern United States causing laminated root rot and mortality in Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and other susceptible conifer species. This facultative saprophyte is a natural part of the ecosystem, present in most Douglas-fir...

  8. Leptotrichia species in human infections II

    PubMed Central

    Eribe, Emenike R. K.; Olsen, Ingar

    2017-01-01

    ABSTRACT Leptotrichia species are non-motile facultative anaerobic/anaerobic bacteria that are found mostly in the oral cavity and some other parts of the human body, in animals, and even in ocean sediments. Valid species include L. buccalis, L. goodfellowii, L. hofstadii, L. honkongensis, L. shahii, L. trevisanii, and L. wadei. Some species require serum or blood for growth. All species ferment carbohydrates and produce lactic acid that may be involved with tooth decay. Acting as opportunistic pathogens, they are involved in a variety of diseases, and have been isolated from immunocompromised but also immunocompetent individuals. Mucositis, oral lesions, wounds, and abscesses may predispose to Leptotrichia septicemia. Because identification of Leptotrichia species by phenotypic features occasionally lead to misidentification, genetic techniques such as 16S rRNA gene sequencing is recommended. Early diagnosis and treatment of leptotrichia infections is important for positive outcomes. Over the last years, Leptotrichia species have been associated with several changes in taxonomy and new associations with clinical diseases. Such changes are reported in this updated review. PMID:29081911

  9. The genomic signatures of Shigella evolution, adaptation and geographical spread.

    PubMed

    The, Hao Chung; Thanh, Duy Pham; Holt, Kathryn E; Thomson, Nicholas R; Baker, Stephen

    2016-04-01

    Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp.

  10. Temperature-Dependent Gentamicin Resistance of Francisella tularensis is Mediated by Uptake Modulation

    PubMed Central

    Loughman, Kathleen; Hall, Jesse; Knowlton, Samantha; Sindeldecker, Devin; Gilson, Tricia; Schmitt, Deanna M.; Birch, James W.-M.; Gajtka, Tara; Kobe, Brianna N.; Florjanczyk, Aleksandr; Ingram, Jenna; Bakshi, Chandra S.; Horzempa, Joseph

    2016-01-01

    Gentamicin (Gm) is an aminoglycoside commonly used to treat bacterial infections such as tularemia – the disease caused by Francisella tularensis. In addition to being pathogenic, F. tularensis is found in environmental niches such as soil where this bacterium likely encounters Gm producers (Micromonospora sp.). Here we show that F. tularensis exhibits increased resistance to Gm at ambient temperature (26°C) compared to mammalian body temperature (37°C). To evaluate whether F. tularensis was less permeable to Gm at 26°C, a fluorescent marker [Texas Red (Tr)] was conjugated with Gm, yielding Tr-Gm. Bacteria incubated at 26°C showed reduced fluorescence compared to those at 37°C when exposed to Tr-Gm suggesting that uptake of Gm was reduced at 26°C. Unconjugated Gm competitively inhibited uptake of Tr-Gm, demonstrating that this fluorescent compound was taken up similarly to unconjugated Gm. Lysates of F. tularensis bacteria incubated with Gm at 37°C inhibited the growth of Escherichia coli significantly more than lysates from bacteria incubated at 26°C, further indicating reduced uptake at this lower temperature. Other facultative pathogens (Listeria monocytogenes and Klebsiella pneumoniae) exhibited increased resistance to Gm at 26°C suggesting that the results generated using F. tularensis may be generalizable to diverse bacteria. Regulation of the uptake of antibiotics provides a mechanism by which facultative pathogens survive alongside antibiotic-producing microbes in nature. PMID:26858709

  11. Temperature-Dependent Gentamicin Resistance of Francisella tularensis is Mediated by Uptake Modulation.

    PubMed

    Loughman, Kathleen; Hall, Jesse; Knowlton, Samantha; Sindeldecker, Devin; Gilson, Tricia; Schmitt, Deanna M; Birch, James W-M; Gajtka, Tara; Kobe, Brianna N; Florjanczyk, Aleksandr; Ingram, Jenna; Bakshi, Chandra S; Horzempa, Joseph

    2016-01-01

    Gentamicin (Gm) is an aminoglycoside commonly used to treat bacterial infections such as tularemia - the disease caused by Francisella tularensis. In addition to being pathogenic, F. tularensis is found in environmental niches such as soil where this bacterium likely encounters Gm producers (Micromonospora sp.). Here we show that F. tularensis exhibits increased resistance to Gm at ambient temperature (26°C) compared to mammalian body temperature (37°C). To evaluate whether F. tularensis was less permeable to Gm at 26°C, a fluorescent marker [Texas Red (Tr)] was conjugated with Gm, yielding Tr-Gm. Bacteria incubated at 26°C showed reduced fluorescence compared to those at 37°C when exposed to Tr-Gm suggesting that uptake of Gm was reduced at 26°C. Unconjugated Gm competitively inhibited uptake of Tr-Gm, demonstrating that this fluorescent compound was taken up similarly to unconjugated Gm. Lysates of F. tularensis bacteria incubated with Gm at 37°C inhibited the growth of Escherichia coli significantly more than lysates from bacteria incubated at 26°C, further indicating reduced uptake at this lower temperature. Other facultative pathogens (Listeria monocytogenes and Klebsiella pneumoniae) exhibited increased resistance to Gm at 26°C suggesting that the results generated using F. tularensis may be generalizable to diverse bacteria. Regulation of the uptake of antibiotics provides a mechanism by which facultative pathogens survive alongside antibiotic-producing microbes in nature.

  12. Metabolism in Fungal Pathogenesis

    PubMed Central

    Ene, Iuliana V.; Brunke, Sascha; Brown, Alistair J.P.; Hube, Bernhard

    2014-01-01

    Fungal pathogens must assimilate local nutrients to establish an infection in their mammalian host. We focus on carbon, nitrogen, and micronutrient assimilation mechanisms, discussing how these influence host–fungus interactions during infection. We highlight several emerging trends based on the available data. First, the perturbation of carbon, nitrogen, or micronutrient assimilation attenuates fungal pathogenicity. Second, the contrasting evolutionary pressures exerted on facultative versus obligatory pathogens have led to contemporary pathogenic fungal species that display differing degrees of metabolic flexibility. The evolutionarily ancient metabolic pathways are conserved in most fungal pathogen, but interesting gaps exist in some species (e.g., Candida glabrata). Third, metabolic flexibility is generally essential for fungal pathogenicity, and in particular, for the adaptation to contrasting host microenvironments such as the gastrointestinal tract, mucosal surfaces, bloodstream, and internal organs. Fourth, this metabolic flexibility relies on complex regulatory networks, some of which are conserved across lineages, whereas others have undergone significant evolutionary rewiring. Fifth, metabolic adaptation affects fungal susceptibility to antifungal drugs and also presents exciting opportunities for the development of novel therapies. PMID:25190251

  13. Francisella tularensis Molecular Typing Using Differential Insertion Sequence Amplification

    DTIC Science & Technology

    2011-08-01

    16 May 2011 Tularemia is a potentially fatal disease that is caused by the highly infectious and zoonotic pathogen Francisella tularensis. Despite...and characterizations of tularemia source outbreaks. Francisella tularensis is a facultative intracellular bacterium and the causative agent of the...zoonotic disease tularemia ( 10). This Gram-negative microbe is highly infectious, with as few as 10 organisms being capable of causing disease in

  14. Removal of micropollutants, facultative pathogenic and antibiotic resistant bacteria in a full-scale retention soil filter receiving combined sewer overflow.

    PubMed

    Scheurer, Marco; Heß, Stefanie; Lüddeke, Frauke; Sacher, Frank; Güde, Hans; Löffler, Herbert; Gallert, Claudia

    2015-01-01

    Combined sewer systems collect surface runoff as well as wastewater of industrial and domestic origin. During periods of heavy rainfall the capacity of the sewer system is exceeded and the overflow is discharged into receiving waters without any treatment. Consequently, combined sewer overflow (CSO) is considered as a major source of water pollution. This study investigates the effectiveness of a retention soil filter (RSF) for the removal of micropollutants as well as facultative pathogenic and antibiotic resistant bacteria from CSO. The removal of organic group parameters like total organic carbon was excellent and the removal efficiency for micropollutants of the RSF and the wastewater treatment plant (WWTP), which treats wastewater of the same origin during dry and normal weather conditions, was comparable. Compounds of high environmental concern like estrogens or certain pharmaceuticals, e.g. diclofenac, were completely eliminated or removed to a high degree during RSF passage. RSF treatment also reduced the number of E. coli, enterococci and staphylococci by 2.7, 2.2 and 2.4 log-units (median values), respectively. Obviously, some Staphylococcus species can better adapt to the conditions of the RSF than others as a shift of the abundance of the different species was observed when comparing the diversity of staphylococci obtained from the RSF influent and effluent. RSF treatment also decreased the absolute number of antibiotic resistant bacteria. The percentage of antibiotic resistant E. coli and staphylococci isolates also decreased during passage of the RSF, whereas the percentage of resistant enterococci did not change. For E. coli ampicillin and for enterococci and staphylococci erythromycin determined the antibiotic resistance level. The results demonstrate that RSFs can be considered as an adequate treatment option for CSO. The performance for the removal of micropollutants is comparable with a medium sized WWTP with conventional activated sludge treatment. The number of facultative pathogenic and antibiotic resistant bacteria was considerably decreased during RSF passage. However, as RSF effluents still contained antibiotic resistance genes and traces of micropollutants; receiving waters may still be at risk from negative environmental impacts.

  15. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    PubMed Central

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment suggested that during first days in anaerobic conditions the susceptibility changes with time. The results demonstrate that assessing effects of antimicrobial treatments on resistance in the host’s enteric bacteria that are Gram negative facultative Anaerobe Bacilli requires data on the bacterial antimicrobial susceptibility in the conditions resembling those in the intestine. PMID:27191612

  16. Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies.

    PubMed

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-11-01

    Characterization of naturally mummified human gut remains could potentially provide insights into the preservation and evolution of commensal and pathogenic microorganisms, and metabolic profiles. We characterized the gut microbiome of two pre-Columbian Andean mummies dating to the 10-15th centuries using 16S rRNA gene high-throughput sequencing and metagenomics, and compared them to a previously characterized gut microbiome of an 11th century AD pre-Columbian Andean mummy. Our previous study showed that the Clostridiales represented the majority of the bacterial communities in the mummified gut remains, but that other microbial communities were also preserved during the process of natural mummification, as shown with the metagenomics analyses. The gut microbiome of the other two mummies were mainly comprised by Clostridiales or Bacillales, as demonstrated with 16S rRNA gene amplicon sequencing, many of which are facultative anaerobes, possibly consistent with the process of natural mummification requiring low oxygen levels. Metagenome analyses showed the presence of other microbial groups that were positively or negatively correlated with specific metabolic profiles. The presence of sequences similar to both Trypanosoma cruzi and Leishmania donovani could suggest that these pathogens were prevalent in pre-Columbian individuals. Taxonomic and functional profiling of mummified human gut remains will aid in the understanding of the microbial ecology of the process of natural mummification. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Molecular and antimicrobial susceptibility characterization of Globicatella sulfidifaciens isolated from sow's urinary tract infection.

    PubMed

    Matajira, Carlos E C; Moreno, Luisa Z; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Amigo, Cristina R; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2017-12-01

    The Globicatella genus comprises Gram-positive, facultative anaerobic, α-hemolytic and catalase negative cocci morphologically and phenotypically very similar to Streptococcus and Aerococcus genus which can lead to misidentification and underestimation of this pathogen. Globicatella species have already been isolated from human and animals with heart and brain disorders. Their clinical relevance in animals, and its zoonotic potential, remains unknown due to the difficulty in their identification. To present the isolation, phenotypic and molecular characterization of G. sulfidifaciens from urinary tract infection in sows. Urine samples from 140 sows of two swine herds located in São Paulo State (Brazil) yielded the isolation of three presumptive G. sulfidifaciens strains. Identification and species confirmation were done by MALDI-TOF MS and 16S rRNA sequencing. Strains were further characterized by single enzyme amplified fragments length polymorphism (SE-AFLP) and broth microdilution techniques. All three isolates were confirmed as G. sulfidifaciens. The SE-AFLP genotyping resulted in distinct fingerprint patterns for each strain. All isolates presented high MIC values to tetracycline, sulphonamides, aminoglycosides and tylosin tartrate, which present high usage in human and animal medicine. Globicatella sulfidifaciens could be related to sporadic urinary tract infections in swine and appear to present alarming antimicrobial susceptibility profile. It is necessary to differentiate Streptococcus-like microorganisms in routine laboratory diagnostics for the correct identification of underestimated species potentially pathogenic to animals.

  18. Mobile contingency locus controlling Escherichia coli K1 polysialic acid capsule acetylation.

    PubMed

    Vimr, Eric R; Steenbergen, Susan M

    2006-05-01

    Escherichia coli K1 is part of a reservoir of adherent, invasive facultative pathogens responsible for a wide range of human and animal disease including sepsis, meningitis, urinary tract infection and inflammatory bowel syndrome. A prominent virulence factor in these diseases is the polysialic acid capsular polysaccharide (K1 antigen), which is encoded by the kps/neu accretion domain inserted near pheV at 67 map units. Some E. coli K1 strains undergo form (phase) variation involving loss or gain of O-acetyl esters at carbon positions 7 or 9 of the individual sialic acid residues of the polysialic acid chains. Acetylation is catalysed by the receptor-modifying acetyl coenzyme-A-dependent O-acetyltransferase encoded by neuO, a phase variable locus mapping near the integrase gene of the K1-specific prophage, CUS-3, which is inserted in argW at 53.1 map units. As the first E. coli contingency locus shown to operate by a translational switch, further investigation of neuO should provide a better understanding of the invasive K1 pathotype. Minimal estimates of morbidity and economic costs associated with human infections caused by extraintestinal pathogenic E. coli strains such as K1 indicate at least 6.5 million cases with attendant medical costs exceeding 2.5 billion US dollars annually in the United States alone.

  19. Bacterial Sphingomyelinases and Phospholipases as Virulence Factors

    PubMed Central

    Flores-Díaz, Marietta; Monturiol-Gross, Laura; Naylor, Claire

    2016-01-01

    SUMMARY Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases. PMID:27307578

  20. Fatal Chromobacterium violaceum septicaemia in northern Laos, a modified oxidase test and post-mortem forensic family G6PD analysis.

    PubMed

    Slesak, Günther; Douangdala, Phouvieng; Inthalad, Saythong; Silisouk, Joy; Vongsouvath, Manivanh; Sengduangphachanh, Amphonesavanh; Moore, Catrin E; Mayxay, Mayfong; Matsuoka, Hiroyuki; Newton, Paul N

    2009-07-29

    Chromobacterium violaceum is a Gram negative facultative anaerobic bacillus, found in soil and stagnant water, that usually has a violet pigmented appearance on agar culture. It is rarely described as a human pathogen, mostly from tropical and subtropical areas. A 53 year-old farmer died with Chromobacterium violaceum septicemia in Laos. A modified oxidase method was used to demonstrate that this violacious organism was oxidase positive. Forensic analysis of the glucose-6-phosphate dehydrogenase genotypes of his family suggest that the deceased patient did not have this possible predisposing condition. C. violaceum infection should be included in the differential diagnosis in patients presenting with community-acquired septicaemia in tropical and subtropical areas. The apparently neglected but simple modified oxidase test may be useful in the oxidase assessment of other violet-pigmented organisms or of those growing on violet coloured agar.

  1. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells.

    PubMed

    Li, Sen; Li, Yixuan; Chen, Guowei; Zhang, Jingchen; Xu, Fei; Wu, Man

    2017-07-01

    Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.

  2. POTENTIAL FOR GREAT EGRETS (ARDEA ALBA) TO TRANSMIT A VIRULENT STRAIN OF AEROMONAS HYDROPHILA AMONG CHANNEL CATFISH (ICTALURUS PUNCTATUS) CULTURE PONDS.

    PubMed

    Jubirt, Madison M; Hanson, Larry A; Hanson-Dorr, Katie C; Ford, Lorelei; Lemmons, Scott; Fioranelli, Paul; Cunningham, Fred L

    2015-07-01

    Aeromonas hydrophila is a gram-negative, rod-shaped, facultative, anaerobic bacterium that is ubiquitous in freshwater and slightly brackish aquatic environments and infects fish, humans, reptiles, and birds. Recent severe outbreaks of disease in commercial channel catfish (Ictalurus punctatus) aquaculture ponds have been associated with a highly virulent A. hydrophila strain (VAH), which is genetically distinct from less-virulent strains. The epidemiology of this disease has not been determined. Given that A. hydrophila infects birds, we hypothesized that fish-eating birds may serve as a reservoir for VAH and spread the pathogen by flying to uninfected ponds. Great Egrets (Ardea alba) were used in this transmission model because these wading birds frequently prey on farmed catfish. Great Egrets that were fed VAH-infected catfish shed VAH in feces demonstrating their potential to spread VAH.

  3. Mechanisms for parasites removal in a waste stabilisation pond.

    PubMed

    Reinoso, Roberto; Blanco, Saúl; Torres-Villamizar, Linda A; Bécares, Eloy

    2011-04-01

    A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m(-2) day(-1), respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.

  4. Horizontal transfer of facultative endosymbionts is limited by host relatedness.

    PubMed

    Łukasik, Piotr; Guo, Huifang; van Asch, Margriet; Henry, Lee M; Godfray, H Charles J; Ferrari, Julia

    2015-10-01

    Heritable microbial symbionts can have important effects on many aspects of their hosts' biology. Acquisition of a novel symbiont strain can provide fitness benefits to the host, with significant ecological and evolutionary consequences. We measured barriers to horizontal transmission by artificially transferring facultative symbionts from the grain aphid, Sitobion avenae, and five other aphid species into two clonal genotypes of S. avenae. We found the symbiont Hamiltonella defensa establishes infections more easily following a transfer from the same host species and that such infections are more stable. Infection success was also higher when the introduced symbiont strain was more closely related to the strain that was originally present in the host (but which had previously been removed). There were no differences among successfully established symbiont strains in their effect on aphid fecundity. Hamiltonella defensa did not confer protection against parasitoids in our S. avenae clones, although it often does in other aphid hosts. However, strains of the symbiont Regiella insecticola originating from two host species protected grain aphids against the pathogenic fungus Pandora neoaphidis. This study helps describe the extent to which facultative symbionts can act as a pool of adaptations that can be sampled by their eukaryote hosts. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  5. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process.

    PubMed

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid.

  6. Infection Dynamic of Symbiotic Bacteria in the Pea Aphid Acyrthosiphon pisum Gut and Host Immune Response at the Early Steps in the Infection Process

    PubMed Central

    Renoz, François; Noël, Christine; Errachid, Abdelmounaim; Foray, Vincent; Hance, Thierry

    2015-01-01

    In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum can harbor several facultative bacterial symbionts which can be mutualistic in the context of various ecological interactions. Belonging to a genus where many members have been described as pathogen in invertebrates, Serratia symbiotica is one of the most common facultative partners found in aphids. The recent discovery of strains able to grow outside their host allowed us to simulate environmental acquisition of symbiotic bacteria by aphids. Here, we performed an experiment to characterize the A. pisum response to the ingestion of the free-living S. symbiotica CWBI-2.3T in comparison to the ingestion of the pathogenic Serratia marcescens Db11 at the early steps in the infection process. We found that, while S. marcescens Db11 killed the aphids within a few days, S. symbiotica CWBI-2.3T did not affect host survival and colonized the whole digestive tract within a few days. Gene expression analysis of immune genes suggests that S. symbiotica CWBI-2.3T did not trigger an immune reaction, while S. marcescens Db11 did, and supports the hypothesis of a fine-tuning of the host immune response set-up for fighting pathogens while maintaining mutualistic partners. Our results also suggest that the lysosomal system and the JNK pathway are possibly involved in the regulation of invasive bacteria in aphids and that the activation of the JNK pathway is IMD-independent in the pea aphid. PMID:25811863

  7. The Impact of Oxygen on Bacterial Enteric Pathogens.

    PubMed

    Wallace, N; Zani, A; Abrams, E; Sun, Y

    2016-01-01

    Bacterial enteric pathogens are responsible for a tremendous amount of foodborne illnesses every year through the consumption of contaminated food products. During their transit from contaminated food sources to the host gastrointestinal tract, these pathogens are exposed and must adapt to fluctuating oxygen levels to successfully colonize the host and cause diseases. However, the majority of enteric infection research has been conducted under aerobic conditions. To raise awareness of the importance in understanding the impact of oxygen, or lack of oxygen, on enteric pathogenesis, we describe in this review the metabolic and physiological responses of nine bacterial enteric pathogens exposed to environments with different oxygen levels. We further discuss the effects of oxygen levels on virulence regulation to establish potential connections between metabolic adaptations and bacterial pathogenesis. While not providing an exhaustive list of all bacterial pathogens, we highlight key differences and similarities among nine facultative anaerobic and microaerobic pathogens in this review to argue for a more in-depth understanding of the diverse impact oxygen levels have on enteric pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [Yersinia pestis and plague - an update].

    PubMed

    Stock, Ingo

    2014-12-01

    The plague of man is a severe, systemic bacterial infectious disease. Without antibacterial therapy, the disease is associated with a high case fatality rate, ranging from 40% (bubonic plague) to nearly 100% (septicemic and pneumonic plague). The disease is caused by Yersinia pestis, a non-motile, gram-negative, facultative anaerobic bacterium belonging to the family of Enterobacteriaceae. In nature, Y. pestis has been found in several rodent species and some other small animals such as shrews. Within its reservoir host, Y. pestis circulates via flea bites. Transmission of Y. pestis to humans occurs by the bite of rat fleas, other flea vectors or by non vectorial routes, e. g., handling infected animals or consumption of contaminated food. Human-to-human transmission of the pathogen occurs primarily through aerosol droplets. Compared to the days when plague was a pandemic scourge, the disease is now relatively rare and limited to some rural areas of Africa. During the last ten years, however, plague outbreaks have been registered repea- tedly in some African regions. For treatment of plague, streptomycin is still considered the drug of choice. Chloramphenicol, doxycycline, gentamicin and ciprofloxacin are also promising drugs. Recombinant vaccines against plague are in clinical development.

  9. Microbiota and innate immunity in intestinal inflammation and neoplasia.

    PubMed

    Cario, Elke

    2013-01-01

    This review focuses on recent advances and novel insights into the mechanistic events that may link commensal microbiota and host innate immunity in the pathophysiology of intestinal inflammation and neoplasia. Unanswered questions are discussed and future perspectives in the field are highlighted. Commensal microbiota, host innate immunity, and genetics form a multidimensional network that controls homeostasis of the mucosal barrier in the intestine. Large-scale sequencing projects have begun to catalog the healthy human microbiome. Converging evidence suggests that alterations in the regulation of the complex host environment [e.g., dysbiosis and overgrowth of select commensal bacterial species, dietary factors, copresence of facultative pathogens (including viruses), and changes in mucus characteristics] may trigger aberrant innate immune signaling, thereby contributing to the development of intestinal inflammation and associated colon cancer in the susceptible individual. Genetically determined innate immune malfunction may create an inflammatory environment that promotes tumor progression (such as the TLR4-D299G mutation). The next challenging steps to be taken are to decipher changes in the human microbiome (and virome) during well defined diseased states, and relate them to intestinal mucosal immune functions and host genotypes.

  10. Identification of 18S ribosomal DNA genotype of Acanthamoeba from hot spring recreation areas in the central range, Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Bing-Mu; Ma, Po-Hua; Liou, Tai-Sheng; Chen, Jung-Sheng; Shih, Feng-Cheng

    2009-04-01

    SummaryAcanthamoeba is a free-living amoebae ubiquitous to aquatic environments. Within the genus a few species are recognized as opportunistic potential human pathogens, which cause granulomatous amoebic encephalitis (GAE) and keratitis. Infections of keratitis are frequently reported through wearing lens while swimming in the non-disinfected aquatic environment. Contaminations in hot tubs, spas and public baths are also possible. As a result, in this study, we identified Acanthamoeba based on the PCR amplification with a genus-specific primer pair and investigated the distribution of Acanthamoeba at five hot spring recreation areas in central range, Taiwan. We gathered data on factors potentially associated with the pathogen's distribution, including various sampling sites, aquatic environment, physical and microbiological water quality parameters. Spring water was collected from 55 sites and Acanthamoeba was detected in 9 (16.4%). The most frequently detected was Acanthamoeba griffini, followed by Acanthamoeba jacobsi. Legionella were detected in 18 (32.7%) of the sites sampled in this study. The species of Legionella identified included Legionella pneumophila serotype 6, serotype 1, and Legionella erythra. Overall, 9.1% of the samples contained both Acanthamoeba and Legionella. The prevalence of Acanthamoeba was contrary to the levels of microbiological indicators recommended by Taiwan CDC, and no significant differences (Mann-Whitney U test, P < 0.05) were observed between the presence/absence of Acanthamoeba and water quality parameters. Results of this survey confirm the existence of Acanthamoeba in Taiwan spring recreation areas. Acanthamoeba, the organism responsible for the majority of Acanthamoeba keratitis and can serve as vehicles for facultative pathogens, should be considered a potential threat for health associated with human activities in spring recreation areas of Taiwan.

  11. Prototheca species and Pithomyces chartarum as Causative Agents of Rhinitis and/or Sinusitis in Horses.

    PubMed

    Schöniger, S; Roschanski, N; Rösler, U; Vidovic, A; Nowak, M; Dietz, O; Wittenbrink, M M; Schoon, H-A

    2016-01-01

    Pyogranulomatous rhinitis associated with an algal infection was diagnosed in a 25-year-old gelding and a 23-year-old mare had necrotizing sinusitis with intralesional algae and pigmented fungi. Algae were identified immunohistochemically in both cases as Prototheca spp. In the gelding, further characterization by polymerase chain reaction and sequencing revealed that the organism was Prototheca zopfii genotype 2. Fungi from the mare were identified as Pithomyces chartarum by molecular analysis. Prototheca species are achlorophyllous algae and P. chartarum represents a dematiaceous fungus; they are saprophytes and facultative pathogens. Prototheca spp. and P. chartarum should be considered as rare respiratory pathogens of horses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Genomic organization of the human mi-er1 gene and characterization of alternatively spliced isoforms: regulated use of a facultative intron determines subcellular localization.

    PubMed

    Paterno, Gary D; Ding, Zhihu; Lew, Yuan-Y; Nash, Gord W; Mercer, F Corinne; Gillespie, Laura L

    2002-07-24

    mi-er1 (previously called er1) is a fibroblast growth factor-inducible early response gene activated during mesoderm induction in Xenopus embryos and encoding a nuclear protein that functions as a transcriptional activator. The human orthologue of mi-er1 was shown to be upregulated in breast carcinoma cell lines and breast tumours when compared to normal breast cells. In this report, we investigate the structure of the human mi-er1 (hmi-er1) gene and characterize the alternatively spliced transcripts and protein isoforms. hmi-er1 is a single copy gene located at 1p31.2 and spanning 63 kb. It contains 17 exons and includes one skipped exon, a facultative intron and three polyadenylation signals to produce 12 transcripts encoding six distinct proteins. hmi-er1 transcripts were expressed at very low levels in most human adult tissues and the mRNA isoform pattern varied with the tissue. The 12 transcripts encode proteins containing a common internal sequence with variable N- and C-termini. Three distinct N- and two distinct C-termini were identified, giving rise to six protein isoforms. The two C-termini differ significantly in size and sequence and arise from alternate use of a facultative intron to produce hMI-ER1alpha and hMI-ER1beta. In all tissues except testis, transcripts encoding the beta isoform were predominant. hMI-ER1alpha lacks the predicted nuclear localization signal and transfection assays revealed that, unlike hMI-ER1beta, it is not a nuclear protein, but remains in the cytoplasm. Our results demonstrate that alternate use of a facultative intron regulates the subcellular localization of hMI-ER1 proteins and this may have important implications for hMI-ER1 function.

  13. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California

    PubMed Central

    Straub, Mary H.; Kelly, Terra R.; Rideout, Bruce A.; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K.

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  14. Microbiological quality of a waste stabilization pond effluent used for restricted irrigation in Valle Del Cauca, Colombia.

    PubMed

    Madera, C A; Peña, M R; Mara, D D

    2002-01-01

    This paper discusses the applicability of effluent reuse in agriculture after treatment in a series of anaerobic, facultative and maturation ponds. The WSP system is located in Ginebra municipality, a small town in southwest Colombia. The total HRT is 12 days. Several samples of the final effluent were taken over a 55 day period and were analysed for E. coli, Streptococcus spp. and helminth eggs. Some additional grab samples were taken to determine the presence of pathogenic bacteria such as Salmonella spp. and Shigella spp. The results showed that the system was able to remove 4 log units of E. coli, 1 log unit of Streptococcus spp. and 100% of helminth eggs. Meanwhile, Salmonella spp. were detected in the effluent of the facultative pond whilst Shigella spp. were not detected in any sample. The main species of helminth eggs encountered were Taenia spp., Ascaris spp., Trichuris spp., Hymenolepis nana, H. diminuta and Enterobius vermicularis. Removal efficiencies were satisfactory despite the relatively short HRT. Nevertheless, WHO guidelines were slightly surpassed in the case of E. coli for unrestricted irrigation. The helminth egg value was always below the maximum WHO limit. Hence, this effluent can be safely used for restricted irrigation provided that field workers are protected from direct contact with wastewater given the presence of Salmonella spp. in the facultative pond effluent.

  15. Global analysis of the Brucella melitensis proteome: Identification of proteins expressed in laboratory-grown culture.

    PubMed

    Wagner, Mary Ann; Eschenbrenner, Michel; Horn, Troy A; Kraycer, Jo Ann; Mujer, Cesar V; Hagius, Sue; Elzer, Philip; DelVecchio, Vito G

    2002-08-01

    Brucella melitensis is a facultative intracellular bacterial pathogen that causes brucellosis, a zoonotic disease primarily infecting sheep and goats, characterized by undulant fever, arthritic pain and other neurological disorders in humans. A comprehensive proteomic study of strain 16M was conducted to identify and characterize the proteins expressed in laboratory-grown culture. Using overlapping narrow range immobilized pH gradient strips for two-dimensional gel electrophoresis, 883 protein spots were detected between pH 3.5 and 11. The average isoelectric point and molecular weight values of the detected spots were 5.22 and 46.5 kDa, respectively. Of the 883 observed protein spots, 440 have been identified by matrix-assisted laser desorption/ionization-mass spectrometry. These proteins represent 187 discrete open reading frames (ORFs) or 6% of the predicted 3197 ORFs contained in the genome. The corresponding ORFs of the identified proteins are distributed evenly between each of the two circular B. melitensis chromosomes, indicating that both replicons are functionally active. The presented proteome map lists those protein spots identified to date in this study. This map may serve as a baseline reference for future proteomic studies aimed at the definition of biochemical pathways associated with stress responses, host specificity, pathogenicity and virulence. It will also assist in characterization of global proteomic effects in gene-knockout mutants. Ultimately, it may aid in our overall understanding of the cell biology of B. melitensis, an important bacterial pathogen.

  16. Nasal, oral and rectal microbiota of Black lion tamarins (Leontopithecus chrysopygus)

    PubMed Central

    Carvalho, Vania M.; Vanstreels, Ralph E.T.; Paula, Cátia D.; Kolesnikovas, Cristiane K.M.; Ramos, Maria Christina C.; Coutinho, Selene D.; Martins, Cristiana S.; Pissinatti, Alcides; Catão-Dias, José L.

    2014-01-01

    Black lion tamarins (Leontopithecus chrysopygus) are endangered callithrichids. Their conservation may require future translocations or reintroductions; however these approaches involve risks of pathogen introduction in the environment and stress-related opportunistic infections in these animals. In order to screen for opportunistic and potential pathogenic bacterial and fungal microbiota, ten free-ranging and ten captive Black lion tamarins were studied and the results compared. Nasal, oral and rectal swabs were collected and cultured for aerobic and facultative anaerobic bacteria and fungi, and a total 203 bacterial and 84 fungal isolates were obtained. Overall, the most frequent organisms were Staphylococcus spp., Bacillus spp., Candida spp. and Aspergillus spp. Microbiota of free-ranging and captive animals were similar in composition. A number of potentially pathogenic organisms were identified, emphasizing the importance of microbiological screening in future translocation or reintroduction conservation management programs. PMID:25763064

  17. The microbiome of a striped dolphin (Stenella coeruleoalba) stranded in Portugal.

    PubMed

    Godoy-Vitorino, Filipa; Rodriguez-Hilario, Arnold; Alves, Ana Luísa; Gonçalves, Filipa; Cabrera-Colon, Beatriz; Mesquita, Cristina Sousa; Soares-Castro, Pedro; Ferreira, Marisa; Marçalo, Ana; Vingada, José; Eira, Catarina; Santos, Pedro Miguel

    2017-01-01

    Infectious diseases with epizootic consequences have not been fully studied in marine mammals. Presently, the unprecedented depth of sequencing, made available by high-throughput approaches, allows detailed comparisons of the microbiome in health and disease. This is the first report of the striped dolphin microbiome in different body sites. Samples from one striped female edematous dolphin were acquired from a variety of body niches, including the blowhole, oral cavity, oral mucosa, tongue, stomach, intestines and genital mucosa. Detailed 16S rRNA analysis of over half a million sequences identified 235 OTUs. Beta diversity analyses indicated that microbial communities vary in structure and cluster by sample origin. Pathogenic, Gram-negative, facultative and obligate anaerobic taxa were significantly detected, including Cetobacterium, Fusobacterium and Ureaplasma. Phocoenobacter and Arcobacter dominated the oral-type samples, while Cardiobacteriaceae and Vibrio were associated with the blowhole and Photobacterium were abundant in the gut. We report for the first time the association of Epulopiscium with a marine mammal gut. The striped dolphin microbiota shows variation in structure and diversity according to the organ type. The high dominance of Gram-negative anaerobic pathogens evidences a cetacean microbiome affected by human-related bacteria. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. L-glutamine Induces Expression of Listeria monocytogenes Virulence Genes

    PubMed Central

    Lobel, Lior; Burg-Golani, Tamar; Sigal, Nadejda; Rose, Jessica; Livnat-Levanon, Nurit; Lewinson, Oded; Herskovits, Anat A.

    2017-01-01

    The high environmental adaptability of bacteria is contingent upon their ability to sense changes in their surroundings. Bacterial pathogen entry into host poses an abrupt and dramatic environmental change, during which successful pathogens gauge multiple parameters that signal host localization. The facultative human pathogen Listeria monocytogenes flourishes in soil, water and food, and in ~50 different animals, and serves as a model for intracellular infection. L. monocytogenes identifies host entry by sensing both physical (e.g., temperature) and chemical (e.g., metabolite concentrations) factors. We report here that L-glutamine, an abundant nitrogen source in host serum and cells, serves as an environmental indicator and inducer of virulence gene expression. In contrast, ammonia, which is the most abundant nitrogen source in soil and water, fully supports growth, but fails to activate virulence gene transcription. We demonstrate that induction of virulence genes only occurs when the Listerial intracellular concentration of L-glutamine crosses a certain threshold, acting as an on/off switch: off when L-glutamine concentrations are below the threshold, and fully on when the threshold is crossed. To turn on the switch, L-glutamine must be present, and the L-glutamine high affinity ABC transporter, GlnPQ, must be active. Inactivation of GlnPQ led to complete arrest of L-glutamine uptake, reduced type I interferon response in infected macrophages, dramatic reduction in expression of virulence genes, and attenuated virulence in a mouse infection model. These results may explain observations made with other pathogens correlating nitrogen metabolism and virulence, and suggest that gauging of L-glutamine as a means of ascertaining host localization may be a general mechanism. PMID:28114430

  19. Molecular investigation of virulence factors of Brucella melitensis and Brucella abortus strains isolated from clinical and non-clinical samples.

    PubMed

    Mirnejad, Reza; Jazi, Faramarz Masjedian; Mostafaei, Shayan; Sedighi, Mansour

    2017-08-01

    Brucella is zoonotic pathogen that induces abortion and sterility in domestic mammals and chronic infections in humans called Malta fever. It is a facultative intracellular potential pathogen with high infectivity. The virulence of Brucella is dependent upon its potential virulence factors such as enzymes and cell envelope associated virulence genes. The aim of this study was to investigate the Brucella virulence factors among strains isolated from humans and animals in different parts of Iran. Seventy eight strains of Brucella species isolated from suspected human and animal cases from several provinces of Iran during 2015-2016 and identified by phenotypic and molecular methods. The multiplex-PCR (M-PCR) assay was performed in order to detect the ure, wbkA, omp19, mviN, manA and perA genes by using gene specific primers. Out of 78 isolates of Brucella spp., 57 (73%) and 21 (27%) isolates were detected as B. melitensis and B. abortus, respectively, by molecular method. The relative frequency of virulence genes ure, wbkA, omp19, mviN, manA and perA were 74.4%, 89.7%, 93.6%, 94.9%, 100% and 92.3%, respectively. Our results indicate that the most of Brucella strains isolated from this region possess high percent of virulence factor genes (ure, wbkA, omp19, mviN, manA and perA) in their genome. So, each step of infection can be mediated by a number of virulence factors and each strain may have a unique combination of these factors that affected the rate of bacterial pathogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Preface: Materiaux 2010

    NASA Astrophysics Data System (ADS)

    Cheikhrouhou, Abdelwaheb

    2012-02-01

    The national conference 'MATERIAUX 2010', which took place in Mahdia (Tunisia), from 4-7 November 2010 was organized by The 'Tunisian Materials Research Society: Tu-MRS' in collaboration with the Materials Physics Laboratory of Sfax 'LPM', Faculty of Sciences, Sfax University and the Research Unit ' Physique, Informatique et Mathématiques ', Faculty of Sciences, Gafsa University The First National Conference on Materials 'MATERIAUX 2006' was organized in Douz (Tunisia) in December 2006. This was followed by 'MATERIAUX 2007' held in Hammamet (Tunisia) in April 2007 and the National Conference 'MATERIAUX 2009' organized jointly with the Second 'Journées Internationales de la Physique des Matériaux et Applications: JIPMA 2009' in Gafsa (Tunisia) from 20-24 December 2009. 'MATERIAUX 2010' is intended to provide an excellent opportunity for National, Maghreb and International researchers to make their own work on materials known to a wider audience and to have discussions with other participants. This conference will also be an opportunity to exchange experiences, create and consolidate cooperation between different research structures in the Maghreb countries and also the countries around the Mediterranean. This conference will equally promote research development, contribution to collaboration between universities and the socio-economical milieu. More than 300 senior researchers, Professors, PhD and Masters students attended this conference from Tunisia, Algeria, Morocco, France, Spain and Canada. Several researchers, engineers and managers from industrial firms also attended. The conference consisted of plenary talks (8), oral contributions (40) and poster presentations (250). The topics of the Conference were: Nano-materials, nano-systems, thin films, surfaces and interfaces, applications Multifunctionnal materials, magnetic materials, dielectric materials, superconducting materials, applications,... Materials for electronics, informatics and communication Ceramics, glasses, polymers Natural materials (phosphates, clay,...) Metallic materials, alloys, metallurgy,... Others (materials and environment, materials and energy, biomaterials,...) I want to thank the scientific committee, the organizing committee, the local committee and everyone who contributed to the organization of this meeting for their invaluable efforts in order to guarantee the complete success of this conference. Abdelwaheb Cheikhrouhou President of 'Tu-MRS' Chairman of the Conference 'MATERIAUX 2010' Conference photograph Committies Organizing Committee Chairman CHEIKHROUHOU Abdelwaheb (Faculté des Sciences de Sfax) Members ALAYA Sahbi (Faculté des Sciences de Gabès) BENNACEUR Raouf (Faculté des Sciences de Tunis) BEN SALEM Mohamed (Faculté des Sciences de Bizerte) CHEIKHROUHOU-KOUBAA Wissem (Faculté des Sciences de Sfax) EL JANI Belgacem (Faculté des Sciences de Monastir) EZZAOUIA Hatem (Centre de Recherches et de Technologies de l'Energie, Technopole de Borj Cédria) LAMLOUMI Jilani (Ecole Supérieure des Sciences et Techniques de Tunis) REZIG Bahri (Ecole Nationale d'Ingénieurs de Tunis) Local Committee Chairman CHEIKHROUHOU Abdelwaheb (Faculté des Sciences de Sfax) Members CHEIKHROUHOU-KOUBAA Wissem (Faculté des Sciences de Sfax) KOUBAA Mohamed (Institut Supérieur de Biotechnologie de Sfax) NJEH Anwar (Institut Préparatoire aux Etudes d'Ingénieurs de Sfax) BEN SALAH Issam (Faculté des Sciences de Sfax) TAKKALI Férid (Faculté des Sciences de Sfax) REGAIEG Yassin (Faculté des Sciences de Sfax) OTHMANI Safa (Faculté des Sciences de Sfax) MNASSRI Rafik (Faculté des Sciences de Sfax) Secretariat BEN GHOZLEN Afifa (Faculté des Sciences de Sfax) BOUGHARIOU Sana (Faculté des Sciences de Sfax) Scientific Committee M. ADDOU, Faculté des Sciences de Kénitra (Morocco) N. AMDOUNI, Faculté des Sciences de Tunis (Tunisia) M. BACCOUCHE, Faculté des Sciences d'Annaba (Algeria) H. BATIS, Faculté des Sciences de Tunis (Tunisia) A. BELAFHAL, Faculté des Sciences d'El Jadida (Morocco) M.H. BEN GHOZLEN, Faculté des Sciences de Sfax (Tunisia) R. BENNACEUR, Faculté des Sciences de Tunis (Tunisia) B. BENYOUCEF, Université Abou Bakr Belkaid, Tlemcen (Algeria) M. BEN SALEM, Faculté des Sciences de Bizerte (Tunisia) B. BESSAIES, Centre de Recherches et Technologies de l'Energie (Tunisia) H. BOUCHRIHA, Faculté des Sciences de Tunis (Tunisia) W. BOUJELBEN, Faculté des Sciences de Sfax (Tunisia) A. CHEIKHROUHOU, Faculté des Sciences de Sfax (Tunisia) W. CHEIKHROUHOU-KOUBAA, Faculté des Sciences de Sfax (Tunisia) R. CHTOUROU, Centre de Recherches et Technologies de l'Energie (Tunisia) M. DEBBABI, Ecole Nationale d'Ingénieurs de Monastir (Tunisia) A. DAKHLAOUI, Faculté des Sciences de Bizerte (Tunisia) A. DINIA, Université de Strasbourg (France) B. ELJANI, Faculté des Sciences de Monastir (Tunisia) A. ELJAZOULI, Faculté des Sciences Ben Msik, Casablanca (Morocco) Z. FAKHFAKH, Faculté des Sciences de Sfax (Tunisia) A. GASMI, Faculté des Sciences d'Annaba (Algeria) A. GHARBI, Faculté des Sciences de Tunis (Tunisia) R. GHARBI, Faculté des Sciences de Sfax (Tunisia) K. GUIDARA, Faculté des Sciences de Sfax (Tunisia) H. GUERMAZI, Institut Préparatoire aux Etudes d'Ingénieurs de Sfax (Tunisia) S. GUERMAZI, Faculté des Sciences de Sfax (Tunisia) M. HADDAD, Faculté des Sciences de Meknès (Morocco) A. HAJ AMARA, Faculté des Sciences de Bizerte (Tunisia) D. HAMANA, Faculté des Sciences de Constantine (Algeria) N. KAMOUN, Faculté des Sciences de Tunis (Tunisia) S. KADDOUR-CHARFI, Faculté des Sciences de Tunis (Tunisia) M. KADDOUR, Faculté des Sciences de Sfax (Tunisia) M. KHITOUNI, Faculté des Sciences de Sfax (Tunisia) T. MHIRI, Faculté des Sciences de Sfax (Tunisia) Y. MLIK, Institut Préparatoire aux Etudes Scientifiques et Techniques (Tunisia) N. MLIKI, Faculté des Sciences de Tunis (Tunisia) A. NJAH, Faculté des Sciences de Gafsa (Tunisia) M. OUESLATI, Faculté des Sciences de Tunis (Tunisia) K. ZELLAMA, Faculté des Sciences d'Amiens (France) Invited Speakers AMMAR-MERIAH Souad, ITODYS, Université Paris Diderot (France) BEN SALEM Mohamed, Faculté des Sciences de Bizerte, Université du 7 Novembre á Carthage (Tunisia) CHEIKHROUHOU Abdelwaheb, Faculté des Sciences de Sfax, Université de Sfax (Tunisia) DAKHLAOUI Amel, Faculté des Sciences de Bizerte, Université du 7 Novembre á Carthage (Tunisia) DJABBAR Ahmed, Université des Sciences et des Technologies de Lille (France) DURASTANTI Félix, Centre d'Etudes et Recherche en Thermique, Environnement et Systèmes (C.E.R.T.E.S.), Université Paris Est- Créteil (France) FERY-FORGUES Suzanne, Université Paul Sabatier, Toulouse (France) GIRAUD Romain, Laboratoire de Photonique et de Nanostructures, CNRS/LPN, Marcoussis (France)

  1. Ortholog-based screening and identification of genes related to intracellular survival.

    PubMed

    Yang, Xiaowen; Wang, Jiawei; Bing, Guoxia; Bie, Pengfei; De, Yanyan; Lyu, Yanli; Wu, Qingmin

    2018-04-20

    Bioinformatics and comparative genomics analysis methods were used to predict unknown pathogen genes based on homology with identified or functionally clustered genes. In this study, the genes of common pathogens were analyzed to screen and identify genes associated with intracellular survival through sequence similarity, phylogenetic tree analysis and the λ-Red recombination system test method. The total 38,952 protein-coding genes of common pathogens were divided into 19,775 clusters. As demonstrated through a COG analysis, information storage and processing genes might play an important role intracellular survival. Only 19 clusters were present in facultative intracellular pathogens, and not all were present in extracellular pathogens. Construction of a phylogenetic tree selected 18 of these 19 clusters. Comparisons with the DEG database and previous research revealed that seven other clusters are considered essential gene clusters and that seven other clusters are associated with intracellular survival. Moreover, this study confirmed that clusters screened by orthologs with similar function could be replaced with an approved uvrY gene and its orthologs, and the results revealed that the usg gene is associated with intracellular survival. The study improves the current understanding of intracellular pathogens characteristics and allows further exploration of the intracellular survival-related gene modules in these pathogens. Copyright © 2018. Published by Elsevier B.V.

  2. Lysozyme activates Enterococcus faecium to induce necrotic cell death in macrophages.

    PubMed

    Gröbner, Sabine; Fritz, Evelyn; Schoch, Friederike; Schaller, Martin; Berger, Alexander C; Bitzer, Michael; Autenrieth, Ingo B

    2010-10-01

    Enterococci are commensal organisms in the alimentary tract. However, they can cause a variety of life-threatening infections, especially in nosocomial settings. We hypothesized that induction of cell death might enable these facultative pathogenic bacteria to evade the innate immune response and to cause infections of their host. We demonstrate that E. faecium when exposed to lysozyme induces cell death in macrophages in vitro and in vivo. Flow cytometric analyses of J774A.1 macrophages infected with E. faecium revealed loss of cell membrane integrity indicated by uptake of propidium iodide and decrease of the inner mitochondrial transmembrane potential DeltaPsi(m). Inhibition of caspases, treatment of macrophages with cytochalasin D, or rifampicin did not prevent cells from dying, suggesting cell death mechanisms that are independent of caspase activation, bacterial uptake, and intracellular bacterial replication. Characteristics of necrotic cell death were demonstrated by both lack of procaspase 3 activation and cell shrinkage, electron microscopy, and release of lactate dehydrogenase. Pretreatment of E. faecium with lysozyme and subsequently with broad spectrum protease considerably reduced cell death, suggesting that a bacterial surface protein is causative for cell death induction. Moreover, in a mouse peritonitis model we demonstrated that E. faecium induces cell death of peritoneal macrophages in vivo. Altogether, our results show that enterococci, under specific conditions such as exposure to lysozyme, induce necrotic cell death in macrophages, which might contribute to disseminated infections by these facultative pathogenic bacteria.

  3. Antimicrobial susceptibility of Gram-negative bacteria causing intra-abdominal infections in China: SMART China 2011.

    PubMed

    Zhang, Hui; Yang, Qiwen; Xiao, Meng; Chen, Minjun; Badal, Robert E; Xu, Yingchun

    2014-01-01

    The Study for Monitoring Antimicrobial Resistance Trends program monitors the activity of antibiotics against aerobic and facultative Gram-negative bacilli (GNBs) from intra-abdominal infections (IAIs) in patients worldwide. In 2011, 1 929 aerobic and facultative GNBs from 21 hospitals in 16 cities in China were collected. All isolates were tested using a panel of 12 antimicrobial agents, and susceptibility was determined following the Clinical Laboratory Standards Institute guidelines. Among the Gram-negative pathogens causing IAIs, Escherichia coli (47.3%) was the most commonly isolated, followed by Klebsiella pneumoniae (17.2%), Pseudomonas aeruginosa (10.1%), and Acinetobacter baumannii (8.3%). Enterobacteriaceae comprised 78.8% (1521/1929) of the total isolates. Among the antimicrobial agents tested, ertapenem and imipenem were the most active agents against Enterobacteriaceae, with susceptibility rates of 95.1% and 94.4%, followed by amikacin (93.9%) and piperacillin/tazobactam (87.7%). Susceptibility rates of ceftriaxone, cefotaxime, ceftazidime, and cefepime against Enterobacteriaceae were 38.3%, 38.3%, 61.1%, and 50.8%, respectively. The leastactive agent against Enterobacteriaceae was ampicillin/sulbactam (25.9%). The extended-spectrum β-lactamase (ESBL) rates among E. coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis were 68.8%, 38.1%, 41.2%, and 57.7%, respectively. Enterobacteriaceae were the major pathogens causing IAIs, and the most active agents against the study isolates (including those producing ESBLs) were ertapenem, imipenem, and amikacin. Including the carbapenems, most agents exhibited reduced susceptibility against ESBL-positive and multidrug-resistant isolates.

  4. Feces production as a form of social immunity in an insect with facultative maternal care.

    PubMed

    Diehl, Janina M C; Körner, Maximilian; Pietsch, Michael; Meunier, Joël

    2015-03-12

    Social animals have the unique capability of mounting social defenses against pathogens. Over the last decades, social immunity has been extensively studied in species with obligatory and permanent forms of social life. However, its occurrence in less derived social systems and thus its role in the early evolution of group-living remains unclear. Here, we investigated whether lining nests with feces is a form of social immunity against microbial growth in the European earwig Forficula auricularia, an insect with temporary family life and facultative maternal care. Using a total of 415 inhibition zone assays, we showed that earwig feces inhibit the growth of two GRAM+ bacteria, two fungi, but not of a GRAM- bacteria. These inhibitions did not result from the consumed food or the nesting environment. We then demonstrated that the antimicrobial activity against fungus was higher in offspring than maternal feces, but that this difference was absent against bacteria. Finally, we showed that family interactions inhibited the antibacterial activity of maternal feces against one of the two GRAM+ bacteria, whereas it had no effect on the one of nymphal feces. By contrast, antifungal activities of the feces were independent of mother-offspring interactions. These results demonstrate that social immunity occurs in a species with simple and facultative social life, and thus shed light on the general importance of this process in the evolution of group-living. These results also emphasize that defecation can be under selection for other life-history traits than simple waste disposal.

  5. Inhibitory effect of streptococci on the growth of M. catarrhalis strains and the diversity of putative bacteriocin-like gene loci in the genomes of S. pneumoniae and its relatives.

    PubMed

    Ikryannikova, L N; Malakhova, M V; Lominadze, G G; Karpova, I Yu; Kostryukova, E S; Mayansky, N A; Kruglov, A N; Klimova, E A; Lisitsina, E S; Ilina, E N; Govorun, V M

    2017-12-13

    S. pneumoniae is a facultative human pathogen causing a wide range of infections including the life-threatening pneumoniae or meningitis. It colonizes nasopharynx as well as its closest phylogenetic relatives S. pseudopneumoniae and S. mitis. Both the latter, despite the considerable morphological and phenotypic similarity with the pneumococcus, are considerably less pathogenic for humans and cause infections mainly in the immunocompromized hosts. In this work, we compared the inhibitory effect of S. pneumoniae and its relatives on the growth of Moraxella catarrhalis strains using the culture-based antagonistic test. We observed that the inhibitory effect of S. mitis strains is kept when a hydrogen peroxide produced by cells is inactivated by catalase, and even when the live cells are killed in chloroform vapors, in contrast to the pneumococcus whose inhibiting ability disappeared when the cells die. It was suggested that this effect may be due to the production of bacterial antimicrobial peptides by S. mitis, so we examined the genomes of our strains for the presence of bacteriocin-like peptides encoding genes. We observed that a set of bacteriocin-like genes in the genome of S. mitis is greatly poorer in comparison with S. pneumoniae one; moreover, in one S. mitis strain we found no bacteriocin-like genes. It could mean that there are probably some additional opportunities of S. mitis to inhibit the growth of competing neighbors which are still have to be discovered.

  6. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.

    PubMed

    Stecher, Bärbel

    2015-06-01

    The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota (1, 2). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition (3). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background (4). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics (5, 6), changes in diet (7, 8), application of probiotics and drugs (9), and a variety of diseases (3). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections (10). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae (E. coli, Yersinia spp., Salmonella spp., Shigella spp.), the Vibrionaceae (Vibrio cholerae) and the Campylobacteriaceae (Campylobacter spp.). In general, members of these families (be it commensals or pathogens) only constitute a minority of the intestinal microbiota. However, proteobacterial "blooms" are a characteristic trait of an abnormal microbiota such as in the course of antibiotic therapy, dietary changes or inflammation (11). It has become clear that the gut microbiota not only plays a major role in priming and regulating mucosal and systemic immunity, but that the immune system also contributes to host control over microbiota composition. These two ways of mutual communication between the microbiota and the immune system were coined as "outside-in" and "inside-out," respectively (12). The significance of those interactions for human health is particularly evident in Crohn's disease (CD) and Ulcerative Colitis (UC). The symptoms of these recurrent, chronic types of gut inflammation are caused by an excessive immune response against one's own commensal microbiota (13). It is assumed that deregulated immune responses can be caused by a genetic predisposition, leading to, for example, the impairment of intestinal barrier function or disruption of mucosal T-cell homeostasis. In CD or UC patients, an abnormally composed microbiota, referred to as "dysbiosis," is commonly observed (discussed later). This is often characterized by an increased relative abundance of facultative anaerobic bacteria (e.g., Enterobacteriaeceae, Bacilli) and, at the same time, depletion of obligate anaerobic bacteria of the classes Bacteroidia and Clostridia. So far, it is unclear whether dysbiosis is a cause or a consequence of inflammatory bowel disease (IBD). In fact, both scenarios are equally conceivable. Recent work suggests that inflammatory immune responses in the gut (both IBD and pathogen-induced) can alter the gut luminal milieu in a way that favors dysbiosis (14). In this chapter, I present a survey on our current state of understanding of the characteristics and mechanisms underlying gut inflammation-associated dysbiosis. The role of dysbiosis in enteric infections and human IBD is discussed. In addition, I will focus on competition of enteric pathogens and the gut microbiota in the inflamed gut and the role of dysbiotic microbiota alterations (e.g., "Enterobacterial blooms" (11)) for the evolution of pathogenicity.

  7. Fungal-Induced Cell Cycle Impairment, Chromosome Instability and Apoptosis via Differential Activation of NF-κB

    PubMed Central

    Ben-Abdallah, Mariem; Sturny-Leclère, Aude; Avé, Patrick; Louise, Anne; Moyrand, Frédérique; Weih, Falk; Janbon, Guilhem; Mémet, Sylvie

    2012-01-01

    Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis. PMID:22396644

  8. Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB.

    PubMed

    Ben-Abdallah, Mariem; Sturny-Leclère, Aude; Avé, Patrick; Louise, Anne; Moyrand, Frédérique; Weih, Falk; Janbon, Guilhem; Mémet, Sylvie

    2012-01-01

    Microbial pathogens have developed efficient strategies to compromise host immune responses. Cryptococcus neoformans is a facultative intracellular pathogen, recognised as the most common cause of systemic fungal infections leading to severe meningoencephalitis, mainly in immunocompromised patients. This yeast is characterized by a polysaccharide capsule, which inhibits its phagocytosis. Whereas phagocytosis escape and macrophage intracellular survival have been intensively studied, extracellular survival of this yeast and restraint of host innate immune response are still poorly understood. In this study, we have investigated whether C. neoformans affected macrophage cell viability and whether NF-κB (nuclear factor-κB), a key regulator of cell growth, apoptosis and inflammation, was involved. Using wild-type (WT) as well as mutant strains of C. neoformans for the pathogen side, and WT and mutant cell lines with altered NF-κB activity or signalling as well as primary macrophages for the host side, we show that C. neoformans manipulated NF-κB-mediated signalling in a unique way to regulate macrophage cell fate and viability. On the one hand, serotype A strains reduced macrophage proliferation in a capsule-independent fashion. This growth decrease, which required a critical dosage of NF-κB activity, was caused by cell cycle disruption and aneuploidy, relying on fungal-induced modification of expression of several cell cycle checkpoint regulators in S and G2/M phases. On the other hand, C. neoformans infection induced macrophage apoptosis in a capsule-dependent manner with a differential requirement of the classical and alternative NF-κB signalling pathways, the latter one being essential. Together, these findings shed new light on fungal strategies to subvert host response through uncoupling of NF-κB activity in pathogen-controlled apoptosis and impairment of cell cycle progression. They also provide the first demonstration of induction of aneuploidy by a fungal pathogen, which may have wider implications for human health as aneuploidy is proposed to promote tumourigenesis.

  9. BACTERIAL PROFILE OF NECROTIC PULPS IN CHEETAH (ACINONYX JUBATUS) CANINE TEETH.

    PubMed

    Almansa Ruiz, José C; Bosman, Anna-Mari; Steenkamp, Gerhard

    2016-03-01

    The role of microbes and their antimicrobial susceptibilities in both acute and chronic infections of the dental pulp in humans has been well studied. Presently, no data are available on endodontic pathogens in cheetahs (Acinonyx jubatus). The aim of this study was to isolate and identify the bacteria found in the canine teeth of cheetahs, where the pulp was necrotic and exposed due to a complicated crown fracture. Thirty-six microbiologic samples were taken from root canals (RCs) of the canine teeth of 19 cheetahs: one pulp sample was taken from 10 cheetahs, four samples from 2 cheetahs, two samples from 3 cheetahs, and three samples from 4 cheetahs. Exposed pulps were cultured for aerobic and anaerobic bacteria; an additional screening with a 16S rRNA-specific polymerase chain reaction (PCR) was used for the last six samples. Antimicrobial susceptibility of isolates was determined by use of the Kirby-Bauer diffusion test. In total, 59 cultivable isolates belonging to 19 microbial species and 13 genera were recovered from the 36 RCs sampled. Only two samples yielded no cultivable bacteria. Thirty-two (54.49%) of the cultivable isolates were Gram positive and 27 (45.71%) were Gram negative. The maximum number of isolates cultivated from an individual RC was six. Facultative anaerobes (62.72%) were the most common bacteria of the RCs that yielded cultivable bacteria. Of the isolates, 28.81% were aerobic and 8.47% were strict anaerobes. The antimicrobials that showed the greatest efficacy in vitro against the different bacteria isolates were amikacin and gentamicin. The more common bacterial species isolated by PCR were anaerobes (60.8%), facultative anaerobes (30.2%), and aerobes (8.6%).

  10. Human outbreak of Salmonella Typhimurium associated with exposure to locally made chicken jerky pet treats, New Hampshire, 2013.

    PubMed

    Cavallo, Steffany J; Daly, Elizabeth R; Seiferth, John; Nadeau, Alisha M; Mahoney, Jennifer; Finnigan, Jayne; Wikoff, Peter; Kiebler, Craig A; Simmons, Latoya

    2015-05-01

    Pet treats and pet food can be contaminated with Salmonella and other pathogens, though they are infrequently implicated as the source of human outbreaks. In 2013, the New Hampshire Department of Health and Human Services investigated a cluster of Salmonella Typhimurium infections associated with contaminated locally made pet treats. Case-patients were interviewed with standardized questionnaires to assess food, animal, and social histories. Laboratory and environmental investigations were conducted, including testing of clinical specimens, implicated product, and environmental swabs. Between June and October 2013, a total of 43 ill persons were identified. Sixteen patients (37%) were hospitalized. Among 43 case-patients interviewed, the proportion exposed to dogs (95%) and pet treats (69%) in the 7 days prior to illness was statistically higher than among participants in a U.S. population-based telephone survey (61%, p<0.0001 and 16%, p<0.0001, respectively). On further interview, 38 (88%) reported exposure to Brand X Chicken Jerky, the maker of Brand X chicken jerky, or the facility in which it was made. Product testing isolated the outbreak strain from four of four Brand X Chicken Jerky samples, including an unopened package purchased at retail, opened packages collected from patient households, and unpackaged jerky obtained from the jerky maker. A site visit revealed inadequate processing of the chicken jerky, bare-hand contact with the finished product prior to packaging, and use of vacuum-sealed packaging, which may have enabled facultative anaerobic bacteria to proliferate. Seven (78%) of nine environmental swabs taken during the site visit also yielded the outbreak strain. Brand X Chicken Jerky was voluntarily recalled on September 9, 2013. Consumers should be made aware of the potential for locally made products to be exempt from regulation and for animals and animal food to carry pathogens that cause human illness, and be educated to perform hand hygiene after handling pet food or treats.

  11. Nanosulfur: A Potent Fungicide Against Food Pathogen, Aspergillus niger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Samrat Roy; Goswami, Arunava; Nair, Kishore K.

    2010-10-04

    Elemental sulfur (S{sup 0}), man's oldest eco-friendly fungicide for curing fungal infections in plants and animals, is registered in India as a non-systemic and contact fungicide. However due to its high volume requirement, Indian agrochemical industry and farmers could not effectively use this product till date. We hypothesize that intelligent nanoscience applications might increase the visibility of nanosulfur in Indian agriculture as a potent and eco-safe fungicide. Sulfur nanoparticles (NPs) were synthesized bottom-up via a liquid synthesis method with average particle size in the range of 50-80 nm and the shapes of the NPs were spherical. A comparative study ofmore » elemental and nano-sulfur produced has been tested against facultative fungal food pathogen, Aspergillus niger. Results showed that nanosulfur is more efficacious than its elemental form.« less

  12. The Role of Lipid Competition for Endosymbiont-Mediated Protection against Parasitoid Wasps in Drosophila.

    PubMed

    Paredes, Juan C; Herren, Jeremy K; Schüpfer, Fanny; Lemaitre, Bruno

    2016-07-12

    Insects commonly harbor facultative bacterial endosymbionts, such as Wolbachia and Spiroplasma species, that are vertically transmitted from mothers to their offspring. These endosymbiontic bacteria increase their propagation by manipulating host reproduction or by protecting their hosts against natural enemies. While an increasing number of studies have reported endosymbiont-mediated protection, little is known about the mechanisms underlying this protection. Here, we analyze the mechanisms underlying protection from parasitoid wasps in Drosophila melanogaster mediated by its facultative endosymbiont Spiroplasma poulsonii Our results indicate that S. poulsonii exerts protection against two distantly related wasp species, Leptopilina boulardi and Asobara tabida S. poulsonii-mediated protection against parasitoid wasps takes place at the pupal stage and is not associated with an increased cellular immune response. In this work, we provide three important observations that support the notion that S. poulsonii bacteria and wasp larvae compete for host lipids and that this competition underlies symbiont-mediated protection. First, lipid quantification shows that both S. poulsonii and parasitoid wasps deplete D. melanogaster hemolymph lipids. Second, the depletion of hemolymphatic lipids using the Lpp RNA interference (Lpp RNAi) construct reduces wasp success in larvae that are not infected with S. poulsonii and blocks S. poulsonii growth. Third, we show that the growth of S. poulsonii bacteria is not affected by the presence of the wasps, indicating that when S. poulsonii is present, larval wasps will develop in a lipid-depleted environment. We propose that competition for host lipids may be relevant to endosymbiont-mediated protection in other systems and could explain the broad spectrum of protection provided. Virtually all insects, including crop pests and disease vectors, harbor facultative bacterial endosymbionts. They are vertically transmitted from mothers to their offspring, and some protect their host against pathogens. Here, we studied the mechanism of protection against parasitoid wasps mediated by the Drosophila melanogaster endosymbiont Spiroplasma poulsonii Using genetic manipulation of the host, we provide strong evidence supporting the hypothesis that competition for host lipids underlies S. poulsonii-mediated protection against parasitoid wasps. We propose that lipid competition-based protection may not be restricted to Spiroplasma bacteria but could also apply other endosymbionts, notably Wolbachia bacteria, which can suppress human disease-causing viruses in insect hosts. Copyright © 2016 Paredes et al.

  13. Effect of oxygen on the growth and biofilm formation of Xylella fastidiosa in liquid media.

    PubMed

    Shriner, Anthony D; Andersen, Peter C

    2014-12-01

    Xylella fastidiosa is a xylem-limited bacterial pathogen, and is the causative agent of Pierce's disease of grapevines and scorch diseases of many other plant species. The disease symptoms are putatively due to blocking of the transpiration stream by bacterial-induced biofilm formation and/or by the formation of plant-generated tylosis. Xylella fastidiosa has been classified as an obligate aerobe, which appears unusual given that dissolved O2 levels in the xylem during the growing season are often hypoxic (20-60 μmol L(-1)). We examined the growth and biofilm formation of three strains of X. fastidiosa under variable O2 conditions (21, 2.1, 0.21 and 0 % O2), in comparison to that of Pseudomonas syringae (obligate aerobe) and Erwinia carotovora (facultative anaerobe) under similar conditions. The growth of X. fastidiosa more closely resembled that of the facultative anaerobe, and not the obligate aerobe. Xanthomonas campestris, the closest genetic relative of X. fastidiosa, exhibited no growth in an N2 environment, whereas X. fastidiosa was capable of growing in an N2 environment in PW(+), CHARDS, and XDM2-PR media. The magnitude of growth and biofilm formation in the N2 (0 % O2) treatment was dependent on the specific medium. Additional studies involving the metabolism of X. fastidiosa in response to low O2 are warranted. Whether X. fastidiosa is classified as an obligate aerobe or a facultative anaerobe should be confirmed by gene activation and/or the quantification of the metabolic profiles under hypoxic conditions.

  14. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from MARAD's...

  15. Survival of O157:H7 and non-o157 serogroups of Escherichia coli in bovine rumen fluid and bile salts

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli are gram negative, facultative anaerobic bacteria that colonize within the intestines of animals and humans. Enterohemorragic strains of E. coli (EHEC) pose a serious health risk to humans yet reside asymptomatically within ruminants. In particular, bovine serve as the major reser...

  16. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  17. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  18. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  19. 46 CFR 308.544 - Facultative binder, Form MA-315.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.544 Facultative binder, Form MA-315. The standard form of War Risk Facultative Cargo Binder, which may be obtained from the American War...

  20. Salmonella

    USDA-ARS?s Scientific Manuscript database

    Salmonella are facultative anaerobic Gram-negative non-spore forming rods belonging to the family Enterobacteriaceae. Salmonellosis is a zoonotic and foodborne illness that is usually transmitted by the fecal-oral route estimated to be responsible for 1.4 million cases of human infections in 2009 in...

  1. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  2. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  3. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  4. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  5. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance § 308.545 Facultative cargo policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained from...

  6. Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine as Exemplified by the Swine Pathogen Streptococcus suis.

    PubMed

    Seitz, Maren; Valentin-Weigand, Peter; Willenborg, Jörg

    2016-01-01

    Use of antimicrobial agents in veterinary medicine is essential to control infectious diseases, thereby keeping animals healthy and animal products safe for the consumer. On the other hand, development and spread of antimicrobial resistance is of major concern for public health. Streptococcus (S.) suis reflects a typical bacterial pathogen in modern swine production due to its facultative pathogenic nature and wide spread in the pig population. Thus, in the present review we focus on certain current aspects and problems related to antimicrobial use and resistance in S. suis as a paradigm for a bacterial pathogen affecting swine husbandry worldwide. The review includes (i) general aspects of antimicrobial use and resistance in veterinary medicine with emphasis on swine, (ii) genetic resistance mechanisms of S. suis known to contribute to bacterial survival under antibiotic selection pressure, and (iii) possible other factors which may contribute to problems in antimicrobial therapy of S. suis infections, such as bacterial persister cell formation, biofilm production, and co-infections. The latter shows that we hardly understand the complexity of factors affecting the success of antimicrobial treatment of (porcine) infectious diseases and underlines the need for further research in this field.

  7. Antimicrobial resistance problems in typhoid fever

    NASA Astrophysics Data System (ADS)

    Saragih, R. H.; Purba, G. C. F.

    2018-03-01

    Typhoid fever (enteric fever) remains a burden in developing countries and a major health problem in Southern and Southeastern Asia. Salmonella typhi (S. typhi), the causative agent of typhoid fever, is a gram-negative, motile, rod-shaped, facultative anaerobe and solely a human pathogen with no animal reservoir. Infection of S. typhi can cause fever, abdominal pain and many worsenonspecific symptoms, including gastrointestinal symptoms suchas nausea, vomiting, constipation, and diarrhea. Chloramphenicol, ampicillin,and cotrimoxazole were the first-recommended antibiotics in treating typhoid fever. In the last two decades though, these three traditional drugs started to show resistance and developed multidrug resistance (MDR) S. typhi strains. In many parts of the world, the changing modes ofpresentation and the development of MDR have made typhoid fever increasingly difficult to treat.The use of first-line antimicrobials had been recommended to be fluoroquinolone as a replacement. However, this wassoonfollowedbyreportsof isolates ofS. typhi showing resistancetofluoroquinolones as well. These antimicrobial resistance problems in typhoid fever have been an alarming situation ever since and need to be taken seriously or else typhoid fever will no longer be taken care completely by administering antibiotics.

  8. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  9. A Legionella pneumophila collagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells.

    PubMed

    Vandersmissen, Liesbeth; De Buck, Emmy; Saels, Veerle; Coil, David A; Anné, Jozef

    2010-05-01

    Legionella pneumophila is a Gram-negative, facultative intracellular pathogen and the causative agent of Legionnaires' disease, a severe pneumonia in humans. Analysis of the Legionella sequenced genomes revealed a gene with a variable number of tandem repeats (VNTRs), whose number varies between strains. We examined the strain distribution of this gene among a collection of 108 clinical, environmental and hot spring serotype I strains. Twelve variants were identified, but no correlation was observed between the number of repeat units and clinical and environmental strains. The encoded protein contains the C-terminal consensus motif of outer membrane proteins and has a large region of collagen-like repeats that is encoded by the VNTR region. We have therefore annotated this protein Lcl for Legionella collagen-like protein. Lcl was shown to contribute to the adherence and invasion of host cells and it was demonstrated that the number of repeat units present in lcl had an influence on these adhesion characteristics.

  10. Legionella phosphatase hydrolyzes phosphatidylinositol 4,5-bisphosphate and inosital triphosphate in human neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowling, J.N.; Saha, A.K.; Glew, R.H.

    1987-05-01

    Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP3) was explored. When neutrophil phosphoinositides were labeled with TSP, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP2) over 2 h. Treatment of (TH)inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP2. Following fMLPmore » stimulation, the fractional reduction in PIP2 and the fractional increase in IP3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP3 was reduced by ACP pre-treatment. The reduction in IP3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP2 available for hydrolysis. However, some loss of IP3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP2, the prognitor of IP3, and by hydrolyzing IP3 itself.« less

  11. Nocardia species: host-parasite relationships.

    PubMed Central

    Beaman, B L; Beaman, L

    1994-01-01

    The nocardiae are bacteria belonging to the aerobic actinomycetes. They are an important part of the normal soil microflora worldwide. The type species, Nocardia asteroides, and N. brasiliensis, N. farcinica, N. otitidiscaviarum, N. nova, and N. transvalensis cause a variety of diseases in both normal and immunocompromised humans and animals. The mechanisms of pathogenesis are complex, not fully understood, and include the capacity to evade or neutralize the myriad microbicidal activities of the host. The relative virulence of N. asteroides correlates with the ability to inhibit phagosome-lysosome fusion in phagocytes; to neutralize phagosomal acidification; to detoxify the microbicidal products of oxidative metabolism; to modify phagocyte function; to grow within phagocytic cells; and to attach to, penetrate, and grow within host cells. Both activated macrophages and immunologically specific T lymphocytes constitute the major mechanisms for host resistance to nocardial infection, whereas B lymphocytes and humoral immunity do not appear to be as important in protecting the host. Thus, the nocardiae are facultative intracellular pathogens that can persist within the host, probably in a cryptic form (L-form), for life. Silent invasion of brain cells by some Nocardia strains can induce neurodegeneration in experimental animals; however, the role of nocardiae in neurodegenerative diseases in humans needs to be investigated. Images PMID:8055469

  12. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and discuss the potential implications for alternative energy sources.

  13. [Biodiversity and enzymes of culturable facultative-alkaliphilic actinobacteria in saline-alkaline soil in Fukang, Xinjiang].

    PubMed

    Zhang, Yongguang; Liu, Qing; Wang, Hongfei; Zhang, Daofeng; Chen, Jiyue; Zhang, Yuanming; Li, Wenjun

    2014-02-04

    In order to analyze the biodiversity of cultivable facultative-alkaliphilic actinobacteria and the enzymes they produced. Total 10 soil samples were collected from saline-alkaline environments of Fukang, Xinjiang province. Facultative-alkaliphilic actinobacteria strains were isolated and identified by 16S rRNA gene sequence analysis. Enzymes including amylase, proteinase, xylanase, and cellulase were detected. Total 116 facultative-alkaliphilic actinobacterial strains and 4 alkali-tolerant actinobacterial strains were isolated from the samples, and those strains were distributed within 22 genera in 13 families and 8 orders of actinobacteria based on their 16S rRNA gene sequence analysis. The ratio of non-predominant Streptomyces and Nocardiopsis strains were 53.3%. The positive rates of amylase, proteinase, xylanase and cellulase were 35.8, 37.6, 28.3 and 17.5%, respectively. Diverse facultative-alkaliphilic actinobacteria were discovered from saline-alkaline environments of Fukang. Facultative-alkaliphilic actinobacteria are a potential source for enzymes. The study would facilitate the knowledge of the diversity of facultative-alkaliphilic actinobacteria, and provide the technical basis for exploration of facultative-alkaliphilic actinobacteria resources.

  14. A Spontaneous Mutation in kdsD, a Biosynthesis Gene for 3-Deoxy-D-manno-Octulosonic Acid, Occurred in a Ciprofloxacin Resistant Strain of Francisella tularensis and Causes a High Level of Attenuation in Murine Models of Tularemia

    DTIC Science & Technology

    2016-08-30

    tularemia. As a facultative intracellular pathogen, its ability to replicate 72 within various host cells , such as macrophages, dendritic cells ...neutrophils, and epithelial cells is 73 well documented and essential for virulence (1-11). F. tularensis is able to infect a wide range 74 of animal...contrast, 94 lipid A moieties from other gram-negative bacteria are able to interact with the Toll-like-receptor 95 4, activating the innate immune

  15. Human furuncular myiasis caused by Hermetia illucens (Diptera: Stratiomyidae).

    PubMed

    Adler, A I; Brancato, F P

    1995-09-01

    Cutaneous myiasis caused by Hermetia illucens (L.) has not been reported previously. We present a case of facultative furuncular myiasis characterized by infestation with a single larva in a woman from Seattle, WA, who had traveled to East Africa.

  16. Antibiotic resistance and growth of the emergent pathogen Escherichia albertii on raw ground beef stored under refrigeration, abuse, and physiological temperature.

    PubMed

    Perez, Keila L; Alam, M Jahangir; Castillo, Alejandro; Taylor, T Matthew

    2013-01-01

    Escherichia albertii is an emerging gram-negative facultative rod that has been implicated in multiple cases of human diarrheal disease, particularly in young children. When biochemical and other typing methods have been used, this organism has often been misidentified due to similarities with other members of the family Enterobacteriaceae. Isolates have been reported to be capable of producing attachment and effacement lesions via the synthesis of intimin, cytolethal distending toxin, and a variant form of Shiga toxin. The purposes of this study were to characterize the antibiotic resistance characteristics and the growth of individual strains of E. albertii on raw ground beef at different storage temperatures. Nalidixic acid-resistant strains of E. albertii were inoculated onto raw ground beef to a target of 4.0 log CFU/g, and samples were then aerobically incubated at 5, 22, or 35°C for various time periods prior to microbiological enumeration of the pathogen on lactose-free MacConkey agar containing 50 mg of nalidixic acid per liter and 0.5% L-rhamnose. Antibiotic resistance was determined using a broth microdilution assay. E. albertii did not grow at 5°C, with populations declining slowly over 14 days of refrigerated storage. Strains of the organism grew well under abusive storage, increasing by 2.5 to 3.1 log CFU/g and 4.1 to 4.3 log CFU/g after 24 h at 22 and 35°C, respectively. All strains were resistant to tetracycline but were sensitive to tested cephalosporins and chloramphenicol. Resistance to penicillin was observed, but susceptibility to other members of the b -lactam group, including ampicillin, amoxicillin, and clavulanic acid, was recorded. E. albertii represents an emerging pathogen with a probable foodborne transmission route. Future research should focus on verifying food process measures able to inactivate the pathogen.

  17. Wide distribution of virulence genes among Enterococcus faecium and Enterococcus faecalis clinical isolates.

    PubMed

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang

    2014-01-01

    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5(°)C and 65(°)C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.

  18. Wide Distribution of Virulence Genes among Enterococcus faecium and Enterococcus faecalis Clinical Isolates

    PubMed Central

    Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang

    2014-01-01

    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5°C and 65°C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species. PMID:25147855

  19. The genes and enzymes for the catabolism of galactitol, D-tagatose, and related carbohydrates in Klebsiella oxytoca M5a1 and other enteric bacteria display convergent evolution.

    PubMed

    Shakeri-Garakani, A; Brinkkötter, A; Schmid, K; Turgut, S; Lengeler, J W

    2004-07-01

    Enteric bacteria (Enteriobacteriaceae) carry on their single chromosome about 4000 genes that all strains have in common (referred to here as "obligatory genes"), and up to 1300 "facultative" genes that vary from strain to strain and from species to species. In closely related species, obligatory and facultative genes are orthologous genes that are found at similar loci. We have analyzed a set of facultative genes involved in the degradation of the carbohydrates galactitol, D-tagatose, D-galactosamine and N-acetyl-galactosamine in various pathogenic and non-pathogenic strains of these bacteria. The four carbohydrates are transported into the cell by phosphotransferase (PTS) uptake systems, and are metabolized by closely related or even identical catabolic enzymes via pathways that share several intermediates. In about 60% of Escherichia coli strains the genes for galactitol degradation map to a gat operon at 46.8 min. In strains of Salmonella enterica, Klebsiella pneumoniae and K. oxytoca, the corresponding gat genes, although orthologous to their E. coli counterparts, are found at 70.7 min, clustered in a regulon together with three tag genes for the degradation of D-tagatose, an isomer of D-fructose. In contrast, in all the E. coli strains tested, this chromosomal site was found to be occupied by an aga/kba gene cluster for the degradation of D-galactosamine and N-acetyl-galactosamine. The aga/kba and the tag genes were paralogous either to the gat cluster or to the fru genes for degradation of D-fructose. Finally, in more then 90% of strains of both Klebsiella species, and in about 5% of the E. coli strains, two operons were found at 46.8 min that comprise paralogous genes for catabolism of the isomers D-arabinitol (genes atl or dal) and ribitol (genes rtl or rbt). In these strains gat genes were invariably absent from this location, and they were totally absent in S. enterica. These results strongly indicate that these various gene clusters and metabolic pathways have been subject to convergent evolution among the Enterobacteriaceae. This apparently involved recent horizontal gene transfer and recombination events, as indicated by major chromosomal rearrangements found in their immediate vicinity.

  20. Oscheius microvilli n. sp. (Nematoda: Rhabditidae): A Facultatively Pathogenic Nematode from Chongming Island, China.

    PubMed

    Zhou, Guixin; Yang, Huan; Wang, Feng; Bao, Haoran; Wang, Guoxiang; Hou, Xianglong; Lin, Jian; Yedid, Gabriel; Zhang, Keyun

    2017-03-01

    A new species, Oscheius microvilli n. sp., was found on Chongming Island (Shanghai, China). The new species is morphologically similar to the type strain of Oscheius myriophilus , but can be distinguished from it and other species of Oscheius on the basis of unique morphological characteristics of the bursa as well as male papillae. In this new species, the male bursal papillar formula is 2, 1, 3, 3 with everted tips in the first, fifth, and seventh pairs. The bursal rim is jagged, joins together anterior to the spicules, and is partially extended and decorated with microvilli. The spicules are incompletely separated, and the tail does not extend beyond the bursa. Phylogenetic trees of 18S rDNA and internal transcribed spacer indicate that the new species belongs to the insectivora group of the genus Oscheius ; it is most closely related to O. myriophilus , and the two species can be distinguished on the basis of their different body length, morphological features of the bursa, and molecular data. The new species is facultatively associated with a bacterial strain of Serratia . The LC 50 of this novel nematode against Galleria mellonella was 69.1 dauer juveniles per milliliter after 48 hr of infection.

  1. Flow cytometry and conventional enumeration of microorganisms in ships' ballast water and marine samples.

    PubMed

    Joachimsthal, Eva L; Ivanov, Volodymyr; Tay, Joo-Hwa; Tay, Stephen T-L

    2003-03-01

    Conventional methods for bacteriological testing of water quality take long periods of time to complete. This makes them inappropriate for a shipping industry that is attempting to comply with the International Maritime Organization's anticipated regulations for ballast water discharge. Flow cytometry for the analysis of marine and ship's ballast water is a comparatively fast and accurate method. Compared to a 5% standard error for flow cytometry analysis the standard methods of culturing and epifluorescence analysis have errors of 2-58% and 10-30%, respectively. Also, unlike culturing methods, flow cytometry is capable of detecting both non-viable and viable but non-culturable microorganisms which can still pose health risks. The great variability in both cell concentrations and microbial content for the samples tested is an indication of the difficulties facing microbial monitoring programmes. The concentration of microorganisms in the ballast tank was generally lower than in local seawater. The proportion of aerobic, microaerophilic, and facultative anaerobic microorganisms present appeared to be influenced by conditions in the ballast tank. The gradual creation of anaerobic conditions in a ballast tank could lead to the accumulation of facultative anaerobic microorganisms, which might represent a potential source of pathogenic species.

  2. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection.

    PubMed

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M; Casadevall, Arturo; Flynn, JoAnne

    2014-12-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection

    PubMed Central

    Chan, John; Mehta, Simren; Bharrhan, Sushma; Chen, Yong; Achkar, Jacqueline M.; Casadevall, Arturo; Flynn, JoAnne

    2014-01-01

    Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis. PMID:25458990

  4. Facultative parthenogenesis in vertebrates: reproductive error or chance?

    PubMed

    Lampert, K P

    2008-01-01

    Parthenogenesis, the development of an embryo from a female gamete without any contribution of a male gamete, is very rare in vertebrates. Parthenogenetically reproducing species have, so far, only been found in the Squamate reptiles (lizards and snakes). Facultative parthenogenesis, switching between sexual and clonal reproduction, although quite common in invertebrates, e.g. Daphnia and aphids, seems to be even rarer in vertebrates. However, isolated cases of parthenogenetic development have been reported in all vertebrate groups. Facultative parthenogenesis in vertebrates has only been found in captive animals but might simply have been overlooked in natural populations. Even though its evolutionary impact is hard to determine and very likely varies depending on the ploidy restoration mechanisms and sex-determining mechanisms involved, facultative parthenogenesis is already discussed in conservation biology and medical research. To raise interest for facultative parthenogenesis especially in evolutionary biology, I summarize the current knowledge about facultative parthenogenesis in the different vertebrate groups, introduce mechanisms of diploid oocyte formation and discuss the genetic consequences and potential evolutionary impact of facultative parthenogenesis in vertebrates.

  5. MyD88 and STING Signaling Pathways Are Required for IRF3-Mediated IFN-β Induction in Response to Brucella abortus Infection

    PubMed Central

    de Almeida, Leonardo A.; Carvalho, Natalia B.; Oliveira, Fernanda S.; Lacerda, Thais L. S.; Vasconcelos, Anilton C.; Nogueira, Lucas; Bafica, Andre; Silva, Aristóbolo M.; Oliveira, Sergio C.

    2011-01-01

    Type I interferons (IFNs) are cytokines that orchestrate diverse immune responses to viral and bacterial infections. Although typically considered to be most important molecules in response to viruses, type I IFNs are also induced by most, if not all, bacterial pathogens. In this study, we addressed the role of type I IFN signaling during Brucella abortus infection, a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Herein, we have shown that B. abortus induced IFN-β in macrophages and splenocytes. Further, IFN-β induction by Brucella was mediated by IRF3 signaling pathway and activates IFN-stimulated genes via STAT1 phosphorylation. In addition, IFN-β expression induced by Brucella is independent of TLRs and TRIF signaling but MyD88-dependent, a pathway not yet described for Gram-negative bacteria. Furthermore, we have identified Brucella DNA as the major bacterial component to induce IFN-β and our study revealed that this molecule operates through a mechanism dependent on RNA polymerase III to be sensed probably by an unknown receptor via the adaptor molecule STING. Finally, we have demonstrated that IFN-αβR KO mice are more resistant to infection suggesting that type I IFN signaling is detrimental to host control of Brucella. This resistance phenotype is accompanied by increased IFN-γ and NO production by IFN-αβR KO spleen cells and reduced apoptosis. PMID:21829705

  6. Establishment of Three Francisella Infections in Zebrafish Embryos at Different Temperatures

    PubMed Central

    Brudal, Espen; Ulanova, Lilia S.; O. Lampe, Elisabeth; Rishovd, Anne-Lise; Winther-Larsen, Hanne C.

    2014-01-01

    Francisella spp. are facultative intracellular pathogens identified in increasingly diverse hosts, including mammals. F. noatunensis subsp. orientalis and F. noatunensis subsp. noatunensis infect fish inhabiting warm and cold waters, respectively, while F. tularensis subsp. novicida is highly infectious for mice and has been widely used as a model for the human pathogen F. tularensis. Here, we established zebrafish embryo infection models of fluorescently labeled F. noatunensis subsp. noatunensis, F. noatunensis subsp. orientalis, and F. tularensis subsp. novicida at 22, 28, and 32°C, respectively. All infections led to significant bacterial growth, as shown by reverse transcription-quantitative PCR (RT-qPCR), and to a robust proinflammatory immune response, dominated by increased transcription of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). F. noatunensis subsp. orientalis was the most virulent, F. noatunensis subsp. noatunensis caused chronic infection, and F. tularensis subsp. novicida showed moderate virulence and led to formation of relatively small granuloma-like structures. The use of transgenic zebrafish strains with enhanced green fluorescent protein (EGFP)-labeled immune cells revealed their detailed interactions with Francisella species. All three strains entered preferentially into macrophages, which eventually assembled into granuloma-like structures. Entry into neutrophils was also observed, though the efficiency of this event depended on the route of infection. The results demonstrate the usefulness of the zebrafish embryo model for studying infections caused by different Francisella species at a wide range of temperatures and highlight their interactions with immune cells. PMID:24614659

  7. The Madagascar hissing cockroach as a novel surrogate host for Burkholderia pseudomallei, B. mallei and B. thailandensis.

    PubMed

    Fisher, Nathan A; Ribot, Wilson J; Applefeld, Willard; DeShazer, David

    2012-06-22

    Burkholderia pseudomallei and Burkholderia mallei are gram-negative pathogens responsible for the diseases melioidosis and glanders, respectively. Both species cause disease in humans and animals and have been designated as category B select agents by the Centers for Disease Control and Prevention (CDC). Burkholderia thailandensis is a closely related bacterium that is generally considered avirulent for humans. While it can cause disease in rodents, the B. thailandensis 50% lethal dose (LD50) is typically ≥ 104-fold higher than the B. pseudomallei and B. mallei LD50 in mammalian models of infection. Here we describe an alternative to mammalian hosts in the study of virulence and host-pathogen interactions of these Burkholderia species. Madagascar hissing cockroaches (MH cockroaches) possess a number of qualities that make them desirable for use as a surrogate host, including ease of breeding, ease of handling, a competent innate immune system, and the ability to survive at 37°C. MH cockroaches were highly susceptible to infection with B. pseudomallei, B. mallei and B. thailandensis and the LD50 was <10 colony-forming units (cfu) for all three species. In comparison, the LD50 for Escherichia coli in MH cockroaches was >105 cfu. B. pseudomallei, B. mallei, and B. thailandensis cluster 1 type VI secretion system (T6SS-1) mutants were all attenuated in MH cockroaches, which is consistent with previous virulence studies conducted in rodents. B. pseudomallei mutants deficient in the other five T6SS gene clusters, T6SS-2 through T6SS-6, were virulent in both MH cockroaches and hamsters. Hemocytes obtained from MH cockroaches infected with B. pseudomallei harbored numerous intracellular bacteria, suggesting that this facultative intracellular pathogen can survive and replicate inside of MH cockroach phagocytic cells. The hemolymph extracted from these MH cockroaches also contained multinuclear giant cells (MNGCs) with intracellular B. pseudomallei, which indicates that infected hemocytes can fuse while flowing through the insect's open circulatory system in vivo. The results demonstrate that MH cockroaches are an attractive alternative to mammals to study host-pathogen interactions and may allow the identification of new Burkholderia virulence determinants. The importance of T6SS-1 as a virulence factor in MH cockroaches and rodents suggests that the primary role of this secretion system is to target evasion of the innate immune system.

  8. Complete genome sequence of Edwardsiella tarda (isolate FL95-01)recovered from channel catfish

    USDA-ARS?s Scientific Manuscript database

    Edwardsiella tarda is a Gram-negative facultative anaerobe isolated from fish, reptiles, amphibians, and mammals, including humans. This is a report of the complete and annotated genome of E. tarda isolate FL95-01, recovered from channel catfish (Ictalurus punctatus)....

  9. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria

    PubMed Central

    Staehlin, Benjamin M.; Gibbons, John G.; Rokas, Antonis; O’Halloran, Thomas V.; Slot, Jason C.

    2016-01-01

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including the cus (copper sensing copper efflux system), and pco (plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative of Enterobacter cloacae as the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the original pco module was replaced by a divergent pco homolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens. PMID:26893455

  10. [Protagonists of innate immunity during in Salmonella infections].

    PubMed

    Salez, Laurent; Malo, Danielle

    2004-12-01

    Salmonella are facultative intracellular Gram-negative bacteria that are found ubiquitously in nature and have the ability to infect a wide range of hosts including humans, domesticated, wild mammals, and birds. The principal clinical manifestations associated with Salmonella infection in humans are enteric fever (typhoid and paratyphoid) and a self-limiting gastroenteritis (salmonellosis). Additionally, silent carriage of this bacterium is frequent and contributes to disease dissemination. Typhoid fever still represents a major public health problem in many developing countries. On the other hand, industrialized countries experience an increased incidence of nontyphoidal Salmonella infections with most cases tracing back to food contamination. Studies using mouse model of infection with a highly virulent Salmonella typhimurium serotype have provided important insight into the complexity of the innate immune response to infection. The players are numerous but emphasis was placed on the genes that were discovered using genetic approaches and in vivo assay with live pathogen and include positional cloning of mouse mutations and manipulation of genes in the context of whole animal either by transgenesis or knockout technologies. Some of the critical genes include those known to play a role in the detection of the bacteria (Cd14, Lbp, Tlr4 and Tlr5) and in microbicidal activity (Slc11a1, Nos2, NADPH oxidase and cryptdins). These discoveries have already initiated the search for the contribution of particular genetic pathways in the innate immune response of humans to infection with Salmonella and other intracellular microorganisms.

  11. You are what your mother eats: evidence for maternal preconception diet influencing foetal sex in humans.

    PubMed

    Mathews, Fiona; Johnson, Paul J; Neil, Andrew

    2008-07-22

    Facultative adjustment of sex ratios by mothers occurs in some animals, and has been linked to resource availability. In mammals, the search for consistent patterns is complicated by variations in mating systems, social hierarchies and litter sizes. Humans have low fecundity, high maternal investment and a potentially high differential between the numbers of offspring produced by sons and daughters: these conditions should favour the evolution of facultative sex ratio variation. Yet little is known of natural mechanisms of sex allocation in humans. Here, using data from 740 British women who were unaware of their foetus's gender, we show that foetal sex is associated with maternal diet at conception. Fifty six per cent of women in the highest third of preconceptional energy intake bore boys, compared with 45% in the lowest third. Intakes during pregnancy were not associated with sex, suggesting that the foetus does not manipulate maternal diet. Our results support hypotheses predicting investment in costly male offspring when resources are plentiful. Dietary changes may therefore explain the falling proportion of male births in industrialized countries. The results are relevant to the current debate about the artificial selection of offspring sex in fertility treatment and commercial 'gender clinics'.

  12. Differential levels of cecal colonization by Salmonella Enteritidis in chickens triggers distinct immune kinome profiles

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Enteritidis are facultative intracellular bacteria that cause disease in numerous species. Salmonella-related infections originating from poultry and/or poultry products are a major cause of human foodborne illness, and S. Enteritidis is the leading cause worldwide. Des...

  13. 46 CFR 308.540 - Premiums.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance § 308.540 Premiums. (a) Rates. Rate Schedules for war risk facultative... without notice. If no rate is published for a voyage on which war risk facultative cargo insurance is...

  14. Oscheius microvilli n. sp. (Nematoda: Rhabditidae): A Facultatively Pathogenic Nematode from Chongming Island, China

    PubMed Central

    Zhou, Guixin; Yang, Huan; Wang, Feng; Bao, Haoran; Wang, Guoxiang; Hou, Xianglong; Lin, Jian; Yedid, Gabriel; Zhang, Keyun

    2017-01-01

    A new species, Oscheius microvilli n. sp., was found on Chongming Island (Shanghai, China). The new species is morphologically similar to the type strain of Oscheius myriophilus, but can be distinguished from it and other species of Oscheius on the basis of unique morphological characteristics of the bursa as well as male papillae. In this new species, the male bursal papillar formula is 2, 1, 3, 3 with everted tips in the first, fifth, and seventh pairs. The bursal rim is jagged, joins together anterior to the spicules, and is partially extended and decorated with microvilli. The spicules are incompletely separated, and the tail does not extend beyond the bursa. Phylogenetic trees of 18S rDNA and internal transcribed spacer indicate that the new species belongs to the insectivora group of the genus Oscheius; it is most closely related to O. myriophilus, and the two species can be distinguished on the basis of their different body length, morphological features of the bursa, and molecular data. The new species is facultatively associated with a bacterial strain of Serratia. The LC50 of this novel nematode against Galleria mellonella was 69.1 dauer juveniles per milliliter after 48 hr of infection. PMID:28512376

  15. Resource competition between two fungal parasites in subterranean termites

    NASA Astrophysics Data System (ADS)

    Chouvenc, Thomas; Efstathion, Caroline A.; Elliott, Monica L.; Su, Nan-Yao

    2012-11-01

    Subterranean termites live in large groups in underground nests where the pathogenic pressure of the soil environment has led to the evolution of a complex interaction among individual and social immune mechanisms in the colonies. However, groups of termites under stress can show increased susceptibility to opportunistic parasites. In this study, an isolate of Aspergillus nomius Kurtzman, Horn & Hessltine was obtained from a collapsed termite laboratory colony. We determined that it was primarily a saprophyte and, secondarily, a facultative parasite if the termite immunity is undergoing a form of stress. This was determined by stressing individuals of the Formosan subterranean termite Coptotermes formosanus Shiraki via a co-exposure to the virulent fungal parasite Metarhizium anisopliae (Metch.) Sorokin. We also examined the dynamics of a mixed infection of A. nomius and M. anisopliae in a single termite host. The virulent parasite M. anisopliae debilitated the termite immune system, but the facultative, fast growing parasite A. nomius dominated the mixed infection process. The resource utilization strategy of A. nomius during the infection resulted in successful conidia production, while the chance for M. anisopliae to complete its life cycle was reduced. Our results also suggest that the occurrence of opportunistic parasites such as A. nomius in collapsing termite laboratory colonies is the consequence of a previous stress, not the cause of the stress.

  16. Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target

    PubMed Central

    Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.

    2014-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784

  17. 46 CFR 308.540 - Premiums.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.540 Premiums. (a) Rates. Rate Schedules for war risk facultative... without notice. If no rate is published for a voyage on which war risk facultative cargo insurance is...

  18. 46 CFR 308.540 - Premiums.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.540 Premiums. (a) Rates. Rate Schedules for war risk facultative... without notice. If no rate is published for a voyage on which war risk facultative cargo insurance is...

  19. 46 CFR 308.540 - Premiums.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.540 Premiums. (a) Rates. Rate Schedules for war risk facultative... without notice. If no rate is published for a voyage on which war risk facultative cargo insurance is...

  20. 46 CFR 308.540 - Premiums.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.540 Premiums. (a) Rates. Rate Schedules for war risk facultative... without notice. If no rate is published for a voyage on which war risk facultative cargo insurance is...

  1. Legionnaires disease: historical perspective.

    PubMed Central

    Winn, W C

    1988-01-01

    In the summer of 1976, a mysterious epidemic of fatal respiratory disease in Philadelphia launched an intensive investigation that resulted in the definition of a new family of pathogenic bacteria, the Legionellaceae. In retrospect, members of the family had been isolated from clinical specimens as early as 1943. Unsolved epidemics of acute respiratory disease dating to the 1950s were subsequently attributed to the newly described pathogens. In the intervening years, the Legionellaceae have been firmly established as important causes of sporadic and epidemic respiratory disease. The sources of the infecting bacteria are environmental, and geographic variation in the frequency of infection has been documented. Airborne dissemination of bacteria from cooling towers and evaporative condensers has been responsible for some epidemics, but potable water systems are perhaps more important sources. The mode of transmission from drinking water is unclear. The Legionellaceae are gram-negative, facultative, intracellular pathogens. The resident alveolar macrophage, usually an effective antibacterial defense, is the primary site of growth. Cell-mediated immunity appears to be the most important immunological defense; the role of humoral immunity is less clear. Erythromycin remains the antibiotic of choice for therapy of infected patients, but identification and eradication of environmental sources are also essential for the control of infection. Images PMID:3060246

  2. Innate immune response to Burkholderia mallei.

    PubMed

    Saikh, Kamal U; Mott, Tiffany M

    2017-06-01

    Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.

  3. Spiroplasma and host immunity: activation of humoral immune responses increases endosymbiont load and susceptibility to certain Gram-negative bacterial pathogens in Drosophila melanogaster.

    PubMed

    Herren, Jeremy K; Lemaitre, Bruno

    2011-09-01

    Spiroplasma poulsonii and its relatives are facultative, vertically transmitted endosymbionts harboured by several Drosophila species. Their long-term survival requires not only evasion of host immunity, but also that Spiroplasma does not have a net detrimental effect on host fitness. These requirements provide the central framework for interactions between host and endosymbiont. We use Drosophila melaogaster as a model to unravel aspects of the mechanistic basis of endosymbiont-host immune interactions. Here we show that Spiroplasma does not activate an immune response in Drosophila and is not susceptible to either the cellular or humoral arms of the Drosophila immune system. We gain unexpected insight into host factors that can promote Spiroplasma growth by showing that activation of Toll and Imd immune pathways actually increases Sprioplasma titre. Spiroplasma-mediated protection is not observed for variety of fungal and bacterial pathogens and Spiroplasma actually increases susceptibility of Drosophila to certain Gram-negative pathogens. Finally, we show that the growth of endosymbiotic Spiroplasma is apparently self-regulated, as suggested by the unhindered proliferation of non-endosymbiotic Spiroplasma citri in fly haemolymph. © 2011 Blackwell Publishing Ltd.

  4. Disease in marine aquaculture

    NASA Astrophysics Data System (ADS)

    Sindermann, C. J.

    1984-03-01

    It has become almost a truism that success in intensive production of animals must be based in part on development of methods for disease diagnosis and control. Excellent progress has been made in methods of diagnosis for major pathogens of cultivated fish, crustacean and molluscan species. In many instances these have proved to be facultative pathogens, able to exert severe effects in populations of animals under other stresses (marginal physical or chemical conditions; overcrowding). The concept of stress management as a critical prophylactic measure is not new, but its significance is being demonstrated repeatedly. The particular relationship of water quality and facultative pathogens such as Vibrio, Pseudomonas and Aeromonas species has been especially apparent. Virus diseases of marine vertebrates and invertebrates — little known two decades ago — are now recognized to be of significance to aquaculture. Virus infections of oysters, clams, shrimps and crabs have been described, and mortalities have been attributed to them. Several virus diseases of fish have also been recognized as potential or actual problems in culture. In some instances, the pathogens seem to be latent in natural populations, and may be provoked into patency by stresses of artificial environments. One of the most promising approaches to disease prophylaxis is through immunization. Fish respond well to various vaccination procedures, and new non-stressing methods have been developed. Vibriosis — probably the most severe disease of ocean-reared salmon — has been controlled to a great extent through use of a polyvalent bacterin, which can be modified as new pathogenic strains are isolated. Prophylactic immunization for other bacterial diseases of cultivated fish has been attempted, especially in Japan, with some success. There is also some evidence that the larger crustaceans may be immunologically responsive, and that at least short-term protection may be afforded to cultured populations. Some progress has been made in marine disease control through chemical treatment in intensive culture systems, principally through application and modification of methods developed for freshwater aquaculture. Major constraints to use of chemicals are restrictions due to public health concerns about food contamination, and the negative effects of some chemicals on biological filters and on algal food production. There is a continuing need, however, for development of specific treatments for acute disease episodes — such as the nitrofurans, developed in Japan, which are effective for some bacterial diseases. The history of aquaculture — freshwater as well as marine — has been characterized by transfers and introductions of species to waters beyond their present ranges. The process continues, and carries with it the possibility of transfers of pathogens to native species and to the recipient culture environments. International groups are attempting to define codes of practice to govern such mass movements, but examples of introductions of real or potential pathogens already exist. The most recent and the most dramatic is the world wide transfer of a virus pathogen of penaeid shrimps. Earlier examples include the introduction of a protozoan pathogen of salmonids to the western hemisphere, and the introduction of a parasitic copepod from the Far East to the west coast of North America and to France. The conclusion is inevitable — diseases are substantial deterrents to aquaculture production. Diagnostic and control procedures are and will be important components of emerging aquaculture technology.

  5. Bacteriological findings in patients with bone marrow transplantation (Karl Marx University Leipzig, 1985-1987).

    PubMed

    Wonitzki, C; Hoffmann, F A

    1989-01-01

    The results of the bacteriological surveillance cultures for 26 patients with bone marrow transplantation (Karl Marx University Leipzig, G.D.R., 1985-1987) are presented. 5.9% of all surveillance cultures contained facultatively pathogenic germs (with Pseudomonas aeruginosa as the most frequent representative, which was the reason of a sepsis in two patients). Coagulasenegative Staphylococci and other germs with an obscure pathogenicity were isolated upon a large scale, especially from the mucous membrane regions. There are hints, that above all special strains of coagulasenegative Staphylococci "colonize" the patient's body (also for longer periods) and turn into the blood too. During the total decontamination intestinal anaerobic flora is absent. After closing of total decontamination Clostridium perfringens is the first detectable anaerobic species. During the selective decontamination systemic applications of antibiotics are able to obliterate anaerobic findings for certain periods. Recommendations for an effective arrangement of the surveillance cultures of bone marrow transplantation patients are given.

  6. Novel Rickettsiella Bacterium in the Leafhopper Orosius albicinctus (Hemiptera: Cicadellidae)

    PubMed Central

    Iasur-Kruh, Lilach; Weintraub, Phyllis G.; Mozes-Daube, Netta; Robinson, Wyatt E.; Perlman, Steve J.

    2013-01-01

    Bacteria in the genus Rickettsiella (Coxiellaceae), which are mainly known as arthropod pathogens, are emerging as excellent models to study transitions between mutualism and pathogenicity. The current report characterizes a novel Rickettsiella found in the leafhopper Orosius albicinctus (Hemiptera: Cicadellidae), a major vector of phytoplasma diseases in Europe and Asia. Denaturing gradient gel electrophoresis (DGGE) and pyrosequencing were used to survey the main symbionts of O. albicinctus, revealing the obligate symbionts Sulcia and Nasuia, and the facultative symbionts Arsenophonus and Wolbachia, in addition to Rickettsiella. The leafhopper Rickettsiella is allied with bacteria found in ticks. Screening O. albicinctus from the field showed that Rickettsiella is highly prevalent, with over 60% of individuals infected. A stable Rickettsiella infection was maintained in a leafhopper laboratory colony for at least 10 generations, and fluorescence microscopy localized bacteria to accessory glands of the female reproductive tract, suggesting that the bacterium is vertically transmitted. Future studies will be needed to examine how Rickettsiella affects host fitess and its ability to vector phytopathogens. PMID:23645190

  7. Essential oils against foodborne pathogens and spoilage bacteria in minced meat.

    PubMed

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella; Fernandes, Ary

    2009-01-01

    The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC(90%) values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC(90%) values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC(90%) assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms.

  8. Essential Oils Against Foodborne Pathogens and Spoilage Bacteria in Minced Meat

    PubMed Central

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella

    2009-01-01

    Abstract The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC90% values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC90% values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC90% assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms. PMID:19580445

  9. Multilocus Genetic Characterization of Lactobacillus fermentum Isolated from Ready-to-Eat Canned Food.

    PubMed

    Sulaiman, Irshad M; Jacobs, Emily; Simpson, Steven; Kerdahi, Khalil

    2017-06-01

    The primary mission of the U.S. Food and Drug Administration is to enforce the Food, Drug, and Cosmetic Act and regulate food, drug, and cosmetic products. Thus, this agency monitors the presence of pathogenic microorganisms in these products, including canned foods, as one of the regulatory action criteria and also ensures that these products are safe for human consumption. This study was carried out to investigate the effectiveness of pathogen control and integrity of ready-to-eat canned food containing Black Bean Corn Poblano Salsa. A total of nine unopened and recalled canned glass jars from the same lot were examined initially by conventional microbiologic protocols that involved a two-step enrichment, followed by streaking on selective agar plates, for the presence of gram-positive and gram-negative bacteria. Of the eight subsamples examined for each sample, all subsamples of one of the containers were found positive for the presence of slow-growing rod-shaped, gram-positive, facultative anaerobic bacteria. The recovered isolates were subsequently sequenced at rRNA and gyrB loci. Afterward, multilocus sequence typing (MLST) was performed characterizing 11 additional known MLST loci (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). Analyses of the nucleotide sequences of rRNA, gyrB, and 11 MLST loci confirmed these gram-positive bacteria recovered from canned food to be Lactobacillus fermentum . Thus, the DNA sequencing of housekeeping MLST genes can provide species identification of L. fermentum and can be used in the canned food monitoring program of public health importance.

  10. The Equine Antimicrobial Peptide eCATH1 Is Effective against the Facultative Intracellular Pathogen Rhodococcus equi in Mice

    PubMed Central

    Schlusselhuber, Margot; Torelli, Riccardo; Martini, Cecilia; Leippe, Matthias; Cattoir, Vincent; Leclercq, Roland; Laugier, Claire; Grötzinger, Joachim; Sanguinetti, Maurizio

    2013-01-01

    Rhodococcus equi, the causal agent of rhodococcosis, is a major pathogen of foals and is also responsible for severe infections in immunocompromised humans. Of great concern, strains resistant to currently used antibiotics have emerged. As the number of drugs that are efficient in vivo is limited because of the intracellular localization of the bacterium inside macrophages, new active but cell-permeant drugs will be needed in the near future. In the present study, we evaluated, by in vitro and ex vivo experiments, the ability of the alpha-helical equine antimicrobial peptide eCATH1 to kill intracellular bacterial cells. Moreover, the therapeutic potential of the peptide was assessed in experimental rhodococcosis induced in mice, while the in vivo toxicity was evaluated by behavioral and histopathological analysis. The study revealed that eCATH1 significantly reduced the number of bacteria inside macrophages. Furthermore, the bactericidal potential of the peptide was maintained in vivo at doses that appeared to have no visible deleterious effects for the mice even after 7 days of treatment. Indeed, daily subcutaneous injections of 1 mg/kg body weight of eCATH1 led to a significant reduction of the bacterial load in organs comparable to that obtained after treatment with 10 mg/kg body weight of rifampin. Interestingly, the combination of the peptide with rifampin showed a synergistic interaction in both ex vivo and in vivo experiments. These results emphasize the therapeutic potential that eCATH1 represents in the treatment of rhodococcosis. PMID:23817377

  11. Yersinia pestis Requires Host Rab1b for Survival in Macrophages

    PubMed Central

    Connor, Michael G.; Pulsifer, Amanda R.; Price, Christopher T.; Abu Kwaik, Yousef; Lawrenz, Matthew B.

    2015-01-01

    Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV) and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH. PMID:26495854

  12. Diapause and maintenance of facultative sexual reproductive strategies

    PubMed Central

    Lehtonen, Jussi

    2016-01-01

    Facultative sex combines sexual and asexual reproduction in the same individual (or clone) and allows for a large diversity of life-history patterns regarding the timing, frequency and intensity of sexual episodes. In addition, other life-history traits such as a diapause stage may become linked to sex. Here, we develop a matrix modelling framework for addressing the cost of sex in facultative sexuals, in constant, periodic and stochastically fluctuating environments. The model is parametrized using life-history data from Brachionus calyciflorus, a facultative sexual rotifer in which sex and diapause are linked. Sexual propensity was an important driver of costs in constant environments, in which high costs (always > onefold, and sometimes > twofold) indicated that asexuals should outcompete facultative sexuals. By contrast, stochastic environments with high temporal autocorrelation favoured facultative sex over obligate asex, in particular, if the penalty to fecundity in ‘bad’ environments was large. In such environments, obligate asexuals were constrained by their life cycle length (i.e. time from birth to last reproductive adult age class), which determined an upper limit to the number of consecutive bad periods they could tolerate. Nevertheless, when facultative asexuals with different sexual propensities competed simultaneously against each other and asex, the lowest sex propensity was the most successful in stochastic environments with positive autocorrelation. Our results suggest that a highly specific mechanism (i.e. diapause linked to sex) can alone stabilize facultative sex in these animals, and protect it from invasion of both asexual and pure sexual strategies. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619700

  13. Age, pathogen exposure, but not maternal care shape offspring immunity in an insect with facultative family life.

    PubMed

    Vogelweith, Fanny; Körner, Maximilian; Foitzik, Susanne; Meunier, Joël

    2017-03-07

    To optimize their resistance against pathogen infection, individuals are expected to find the right balance between investing into the immune system and other life history traits. In vertebrates, several factors were shown to critically affect the direction of this balance, such as the developmental stage of an individual, its current risk of infection and/or its access to external help such as parental care. However, the independent and/or interactive effects of these factors on immunity remain poorly studied in insects. Here, we manipulated maternal presence and pathogen exposure in families of the European earwig Forficula auricularia to measure whether and how the survival rate and investment into two key immune parameters changed during offspring development. The pathogen was the entomopathogenic fungus Metarhizium brunneum and the immune parameters were hemocyte concentration and phenol/pro-phenoloxidase enzyme activity (total-PO). Our results surprisingly showed that maternal presence had no effect on offspring immunity, but reduced offspring survival. Pathogen exposure also lowered the survival of offspring during their early development. The concentration of hemocytes and the total-PO activity increased during development, to be eventually higher in adult females compared to adult males. Finally, pathogen exposure overall increased the concentration of hemocytes-but not the total-PO activity-in adults, while it had no effect on these measures in offspring. Our results show that, independent of their infection risk and developmental stage, maternal presence does not shape immune defense in young earwigs. This reveals that pathogen pressure is not a universal evolutionary driver of the emergence and maintenance of post-hatching maternal care in insects.

  14. Numerical Solution of a 3-D Advection-Dispersion Model for Dissolved Oxygen Distribution in Facultative Ponds

    NASA Astrophysics Data System (ADS)

    Sunarsih; Sasongko, Dwi P.; Sutrisno

    2018-02-01

    This paper describes a mathematical model for the dissolved oxygen distribution in the plane of a facultative pond with a certain depth. The purpose of this paper is to determine the variation of dissolved oxygen concentration in facultative ponds. The 3-dimensional advection-diffusion equation is solved using the finite difference method Forward Time Central Space (FTCS). Numerical results show that the aerator greatly affects the occurrence of oxygen concentration variations in the facultative pond in the certain depth. The concentration of dissolved oxygen decreases as the depth of the pond increases.

  15. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.

    PubMed

    Winter, Klaus; Holtum, Joseph A M

    2014-07-01

    Facultative crassulacean acid metabolism (CAM) describes the optional use of CAM photosynthesis, typically under conditions of drought stress, in plants that otherwise employ C3 or C4 photosynthesis. In its cleanest form, the upregulation of CAM is fully reversible upon removal of stress. Reversibility distinguishes facultative CAM from ontogenetically programmed unidirectional C3-to-CAM shifts inherent in constitutive CAM plants. Using mainly measurements of 24h CO2 exchange, defining features of facultative CAM are highlighted in five terrestrial species, Clusia pratensis, Calandrinia polyandra, Mesembryanthemum crystallinum, Portulaca oleracea and Talinum triangulare. For these, we provide detailed chronologies of the shifts between photosynthetic modes and comment on their usefulness as experimental systems. Photosynthetic flexibility is also reviewed in an aquatic CAM plant, Isoetes howellii. Through comparisons of C3 and CAM states in facultative CAM species, many fundamental biochemical principles of the CAM pathway have been uncovered. Facultative CAM species will be of even greater relevance now that new sequencing technologies facilitate the mapping of genomes and tracking of the expression patterns of multiple genes. These technologies and facultative CAM systems, when joined, are expected to contribute in a major way towards our goal of understanding the essence of CAM. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. You are what your mother eats: evidence for maternal preconception diet influencing foetal sex in humans

    PubMed Central

    Mathews, Fiona; Johnson, Paul J; Neil, Andrew

    2008-01-01

    Facultative adjustment of sex ratios by mothers occurs in some animals, and has been linked to resource availability. In mammals, the search for consistent patterns is complicated by variations in mating systems, social hierarchies and litter sizes. Humans have low fecundity, high maternal investment and a potentially high differential between the numbers of offspring produced by sons and daughters: these conditions should favour the evolution of facultative sex ratio variation. Yet little is known of natural mechanisms of sex allocation in humans. Here, using data from 740 British women who were unaware of their foetus's gender, we show that foetal sex is associated with maternal diet at conception. Fifty six per cent of women in the highest third of preconceptional energy intake bore boys, compared with 45% in the lowest third. Intakes during pregnancy were not associated with sex, suggesting that the foetus does not manipulate maternal diet. Our results support hypotheses predicting investment in costly male offspring when resources are plentiful. Dietary changes may therefore explain the falling proportion of male births in industrialized countries. The results are relevant to the current debate about the artificial selection of offspring sex in fertility treatment and commercial ‘gender clinics’. PMID:18430648

  17. Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics

    PubMed Central

    He, Yongqun

    2011-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning. PMID:22919594

  18. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics.

    PubMed

    He, Yongqun

    2012-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  19. Dentine bond strength and antimicrobial activity evaluation of adhesive systems.

    PubMed

    André, Carolina Bosso; Gomes, Brenda Paula Figueiredo Almeida; Duque, Thais Mageste; Stipp, Rafael Nobrega; Chan, Daniel Chi Ngai; Ambrosano, Glaucia Maria Bovi; Giannini, Marcelo

    2015-04-01

    This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30 min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10 min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Surveillance of antimicrobial susceptibility of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in China: the 2002-2009 Study for Monitoring Antimicrobial Resistance Trends (SMART).

    PubMed

    Yang, Qiwen; Wang, Hui; Chen, Minjun; Ni, Yuxing; Yu, Yunsong; Hu, Bijie; Sun, Ziyong; Huang, Wenxiang; Hu, Yunjian; Ye, Huifen; Badal, Robert E; Xu, Yingchun

    2010-12-01

    The objective of this study was to investigate the distribution and susceptibility of aerobic and facultative Gram-negative bacilli (GNB) isolated from patients with intra-abdominal infections (IAIs) in China. From 2002 to 2009, minimum inhibitory concentrations of 14 antibiotics for 3420 aerobic and facultative GNB from up to eight hospitals in six cities were determined by the broth microdilution method. Enterobacteriaceae comprised 82.9% (2834/3420) of the total isolates, with Escherichia coli (49.2%) being the most commonly isolated species followed by Klebsiella pneumoniae (17.0%), Enterobacter cloacae (5.8%) and Citrobacter freundii (2.3%). Amongst the antimicrobial agents tested, the three carbapenems (ertapenem, imipenem and meropenem) were the most active agents against Enterobacteriaceae, with susceptibility rates of 96.1-99.6% (2002-2009), 98.2-100% (2002-2009) and 99.6-100% (2002-2004), respectively, followed by amikacin (86.8-95.1%) and piperacillin/tazobactam (84.5-94.3%). Susceptibility rates of all tested third- and fourth-generation cephalosporins against Enterobacteriaceae declined by nearly 30%, with susceptibility rates of 40.2%, 39.1%, 56.3% and 51.8% in 2009 for ceftriaxone, cefotaxime, ceftazidime and cefepime, respectively. The occurrence of extended-spectrum β-lactamases increased rapidly, especially for E. coli (from 20.8% in 2002 to 64.9% in 2009). Susceptibility of E. coli to ciprofloxacin decreased from 57.6% in 2002 to 24.2% in 2009. The least active agent against Enterobacteriaceae was ampicillin/sulbactam (SAM) (25.3-44.3%). In conclusion, Enterobacteriaceae were the major pathogens causing IAIs, and carbapenems retained the highest susceptibility rates over the 8-year study period. Third- and fourth-generation cephalosporins, fluoroquinolones and SAM may not be ideal choices for empirical therapy of IAIs in China. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Infectious endocarditis caused by Helcococcus kunzii in a vascular patient: a case report and literature review.

    PubMed

    Lotte, Romain; Lotte, Laurène; Degand, Nicolas; Gaudart, Alice; Gabriel, Sylvie; Ben H'dech, Mouna; Blois, Mathilde; Rinaldi, Jean-Paul; Ruimy, Raymond

    2015-06-23

    Helcococcus kunzii is a facultative anaerobic bacterium that was first described by Collins et al. in 1993, and was initially considered as a commensal of the human skin, in particular of lower extremities. Human infections caused by H. kunzii remain rare with only a few cases published in the pubmed database. Nevertheless recent reports indicate that this microorganism has to be considered as an opportunistic pathogen that can be involved in severe infections in human. To the best of our knowledge, we describe here the first known case of infectious endocarditis caused by H. kunzii. A 79 year-old man reporting severe polyvascular medical history attended the emergency ward for rapid deterioration of his general state of health. After physical examination and paraclinical investigations, the diagnosis of infectious endocarditis on native mitral valve caused by Helcococcus kunzii was established based on Dukes criteria. MALDI-TOF mass spectrometry and 16S rDNA sequencing allowed an accurate identification to the species level of Helcococcus kunzii. The patient was successfully treated by a medico-surgical approach. The treatment consisted in intravenous amoxicillin during four weeks and mitral valve replacement with a bioprosthestic valve. After an in depth review of patient's medical file, the origin of infection remained unknown. However, a cutaneous portal of entry cannot be excluded as the patient and his General Practitioner reported chronic ulcerations of both feet. We describe here the first case of endocarditis caused by H. kunzii in an elderly patient with polyvascular disease. This report along with previous data found in the literature emphasizes the invasive potential of this bacterial species as an opportunistic pathogen, in particular for patient with polyvascular diseases. MALDI-TOF mass spectrometry and 16S rDNA sequencing are reliable tools for H. kunzii identification. We also sequenced in this work H.kunzii type strain 103932T CIP and deposited in the Genbank under accession number KM403387. We noticed a 14 base difference between our sequence and the original sequence deposited by Collins et al. under Genbank accession number X69837. Hopefully, the spread of next generation sequencing tools would lead to a more accurate classification of clinical strains.

  2. Nutrient Limitation Governs Staphylococcus aureus Metabolism and Niche Adaptation in the Human Nose

    PubMed Central

    Krismer, Bernhard; Liebeke, Manuel; Janek, Daniela; Nega, Mulugeta; Rautenberg, Maren; Hornig, Gabriele; Unger, Clemens; Weidenmaier, Christopher; Lalk, Michael; Peschel, Andreas

    2014-01-01

    Colonization of the human nose by Staphylococcus aureus in one-third of the population represents a major risk factor for invasive infections. The basis for adaptation of S. aureus to this specific habitat and reasons for the human predisposition to become colonized have remained largely unknown. Human nasal secretions were analyzed by metabolomics and found to contain potential nutrients in rather low amounts. No significant differences were found between S. aureus carriers and non-carriers, indicating that carriage is not associated with individual differences in nutrient supply. A synthetic nasal medium (SNM3) was composed based on the metabolomics data that permits consistent growth of S. aureus isolates. Key genes were expressed in SNM3 in a similar way as in the human nose, indicating that SNM3 represents a suitable surrogate environment for in vitro simulation studies. While the majority of S. aureus strains grew well in SNM3, most of the tested coagulase-negative staphylococci (CoNS) had major problems to multiply in SNM3 supporting the notion that CoNS are less well adapted to the nose and colonize preferentially the human skin. Global gene expression analysis revealed that, during growth in SNM3, S. aureus depends heavily on de novo synthesis of methionine. Accordingly, the methionine-biosynthesis enzyme cysteine-γ-synthase (MetI) was indispensable for growth in SNM3, and the MetI inhibitor DL-propargylglycine inhibited S. aureus growth in SNM3 but not in the presence of methionine. Of note, metI was strongly up-regulated by S. aureus in human noses, and metI mutants were strongly abrogated in their capacity to colonize the noses of cotton rats. These findings indicate that the methionine biosynthetic pathway may include promising antimicrobial targets that have previously remained unrecognized. Hence, exploring the environmental conditions facultative pathogens are exposed to during colonization can be useful for understanding niche adaptation and identifying targets for new antimicrobial strategies. PMID:24453967

  3. Chromobacterium Violaceum Sepsis: Rethinking Conventional Therapy to Improve Outcome.

    PubMed

    Richard, Kathleen R; Lovvorn, Joshua J; Oliver, Sara E; Ross, Shannon A; Benner, Kim W; Kong, Michele Y F

    2015-10-19

    Chromobacterium violaceum (C. violaceum) is a facultative anaerobic gram-negative bacterium found in soil and water, especially in tropical and subtropical areas. Although infection in humans is rare, it is associated with significant morbidity. The bacterium is known for its resistance to multiple antimicrobials, and the possibility of relapse and reinfection. Presence of bacteremia, disseminated infection, and ineffective antimicrobial agents are predictors of mortality. We report the case of a previously healthy 11-year-old male with C. violaceum sepsis who was exposed to stagnant water. He presented with severe septic shock and developed multi-organ system failure. Initial presumptive diagnosis was staphylococcal infection secondary to presence of skin abscesses resulting in antibiotic coverage with vancomycin, clindamycin, nafcillin and ceftriaxone. He also had multiple lung and liver abscesses. Once C. violaceum was identified, he received meropenem and ciprofloxacin, and was later discharged on ertapenem and trimethoprim-sulfamethoxazole (TMP-SMX) to complete a total of six months of antibiotics. He was diagnosed with chronic granulomatous disease (CGD) and is currently on prophylactic TMP-SMX and itraconazole. He has not had any relapses since his initial presentation. This case highlights the importance of considering C. violaceum as a relevant human pathogen, and considering it early in temperate regions, particularly in cases of fulminant sepsis associated with multi-organ abscesses. Once C. violaceum is identified, appropriate antimicrobial therapy should be started promptly, and sufficient duration of treatment is necessary for successful therapy.

  4. Detection of human antibodies binding with smooth and rough LPSs from Proteus mirabilis O3 strains S1959, R110, R45.

    PubMed

    Gleńska-Olender, J; Durlik, K; Konieczna, I; Kowalska, P; Gawęda, J; Kaca, W

    2017-11-01

    Bacteria of the genus Proteus of the family Enterobacteriaceae are facultative human pathogens responsible mainly for urinary tract and wound infections, bacteremia and the development of rheumatoid arthritis (RA). We have analyzed and compared by ELISA the titer of antibodies in plasmas of healthy individuals and in sera of rheumatoid arthritis patients recognizing a potential host cross-reactive epitope (lysine-galacturonic acid epitopes) present in Proteus lipopolysaccharide (LPS). In our experiments LPSs isolated from two mutants of smooth Proteus mirabilis 1959 (O3), i.e. strains R110 and R45, were used. R110 (Ra type mutant) is lacking the O-specific polysaccharide, but possesses a complete core oligosaccharide, while R45 (Re type) has a reduced core oligosaccharide and contains two 3-deoxy-D-manno-oct-2-ulosonic acid residues and one of 4-amino-4-deoxy-L-arabinopyranose residues. Titer of P. mirabilis S1959 LPS-specific-antibodies increased with the age of blood donors. RA and blood donors' sera contained antibodies against S and Ra and Re type of P. mirabilis O3 LPSs. Antibodies recognizing lysine-galacturonic acid epitopes of O3 LPS were detected by ELISA in some plasmas of healthy individuals and sera of rheumatoid arthritis patients. RA patients antibodies reacting with P. mirabilis S1959 S and R LPSs may indicate a potential role of anti-LPS antibodies in molecular mimicry in RA diseases.

  5. A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates.

    PubMed

    Baker, Sarah M; Davitt, Christopher J H; Motyka, Natalya; Kikendall, Nicole L; Russell-Lodrigue, Kasi; Roy, Chad J; Morici, Lisa A

    2017-12-09

    Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immunization with multivalent outer membrane vesicles (OMV) derived from B. pseudomallei provide significant protection against pneumonic melioidosis. Given that many virulence determinants are highly conserved between the two species, we sought to determine if the B. pseudomallei OMV vaccine could cross-protect against B. mallei . We immunized C57Bl/6 mice and rhesus macaques with B. pseudomallei OMVs and subsequently challenged animals with aerosolized B. mallei . Immunization with B. pseudomallei OMVs significantly protected mice against B. mallei and the protection observed was comparable to that achieved with a live attenuated vaccine. OMV immunization induced the production of B.mallei- specific serum IgG and a mixed Th1/Th17 CD4 and CD8 T cell response in mice. Additionally, immunization of rhesus macaques with B. pseudomallei OMVs provided protection against glanders and induced B.mallei -specific serum IgG in non-human primates. These results demonstrate the ability of the multivalent OMV vaccine platform to elicit cross-protection against closely-related intracellular pathogens and to induce robust humoral and cellular immune responses against shared protective antigens.

  6. A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates

    PubMed Central

    Davitt, Christopher J. H.; Motyka, Natalya; Kikendall, Nicole L.; Roy, Chad J.

    2017-01-01

    Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immunization with multivalent outer membrane vesicles (OMV) derived from B. pseudomallei provide significant protection against pneumonic melioidosis. Given that many virulence determinants are highly conserved between the two species, we sought to determine if the B. pseudomallei OMV vaccine could cross-protect against B. mallei. We immunized C57Bl/6 mice and rhesus macaques with B. pseudomallei OMVs and subsequently challenged animals with aerosolized B. mallei. Immunization with B. pseudomallei OMVs significantly protected mice against B. mallei and the protection observed was comparable to that achieved with a live attenuated vaccine. OMV immunization induced the production of B.mallei-specific serum IgG and a mixed Th1/Th17 CD4 and CD8 T cell response in mice. Additionally, immunization of rhesus macaques with B. pseudomallei OMVs provided protection against glanders and induced B.mallei-specific serum IgG in non-human primates. These results demonstrate the ability of the multivalent OMV vaccine platform to elicit cross-protection against closely-related intracellular pathogens and to induce robust humoral and cellular immune responses against shared protective antigens. PMID:29232837

  7. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length

    PubMed Central

    Sydor, Tobias; Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-01-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. PMID:23078612

  8. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    PubMed

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. © 2012 Blackwell Publishing Ltd.

  9. [Non-viral sexually transmitted infections - Epidemiology, clinical manifestations, diagnostics and therapy : Part 2: Chlamydia and mycoplasma].

    PubMed

    Nenoff, P; Manos, A; Ehrhard, I; Krüger, C; Paasch, U; Helmbold, P; Handrick, W

    2017-01-01

    Chlamydia trachomatis is the most common pathogen of sexually transmitted bacterial infections worldwide. Every year in Germany approximately 300,000 new infections are to be expected. Chlamydia infections occur nearly exclusively in the postpubertal period. The peak age group is 15-25 years. The infection usually runs an asymptomatic course and the diagnosis is made by nucleic acid amplification techniques (NAAT) often after chlamydial screening or if complications occur. For treatment of chlamydial infections oral doxycycline 100 mg twice daily over 7 days is initially used or alternatively oral azithromycin 1.5 g as a single dose is recommended. The sexual partner should also be investigated and treated. Genital Mycoplasma infections are caused by Ureaplasma urealyticum (pathogen of urethritis and vaginitis), Ureaplasma parvum (mostly saprophytic and rarely a cause of urethritis) and Mycoplasma hominis (facultative pathogenic). Mycoplasma genitalium represents a relatively new sexually transmitted Mycoplasma species. Doxycycline is effective in Ureaplasma infections or alternatively clarithromycin and azithromycin. Doxycycline can be ineffective in Mycoplasma hominis infections and an alternative is clindamycin. Non-gonococcal and non-chlamydial urethritis due to Mycoplasma genitalium can now be diagnosed by molecular biological techniques using PCR and should be treated by azithromycin.

  10. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence.

    PubMed

    Choi, Jeongjoon; Groisman, Eduardo A

    2016-09-01

    pH regulates gene expression, biochemical activities and cellular behaviors. A mildly acidic pH activates the master virulence regulatory system PhoP/PhoQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. The sensor PhoQ harbors an extracytoplasmic domain implicated in signal sensing, and a cytoplasmic domain controlling activation of the regulator PhoP. We now report that, surprisingly, a decrease in Salmonella's own cytoplasmic pH induces transcription of PhoP-activated genes even when the extracytoplasmic pH remains neutral. Amino acid substitutions in PhoQ's cytoplasmic domain hindered activation by acidic pH and attenuated virulence in mice, but did not abolish activation by low Mg(2+) or the antimicrobial peptide C18G. Conversely, removal of PhoQ's extracytoplasmic domains prevented the response to the latter PhoQ-activating signals but not to acidic pH. PhoP-dependent genes were minimally induced by acidic pH in the non-pathogenic species Salmonella bongori but were activated by low Mg(2+) and C18G as in pathogenic S. enterica. Our findings indicate that the sensor PhoQ enables S. enterica to respond to both host- and bacterial-derived signals that alter its cytoplasmic pH. © 2016 John Wiley & Sons Ltd.

  11. Innate immune response to Burkholderia mallei

    PubMed Central

    Saikh, Kamal U.; Mott, Tiffany M.

    2017-01-01

    Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Summary Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei. PMID:28177960

  12. Tornadic storm avoidance behavior in breeding songbirds

    USGS Publications Warehouse

    Streby, Henry M.; Kramer, Gunnar R.; Peterson, Sean M.; Lehman, Justin A.; Buehler, David A.; Andersen, David E.

    2015-01-01

    Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research.

  13. Mouse infection by Legionella, a model to analyze autophagy

    PubMed Central

    Dubuisson, Jean-François; Swanson, Michele S.

    2006-01-01

    Summary Autophagy is a conserved membrane traffic pathway that equips eukaryotic cells to capture cytoplasmic components within a double-membrane vacuole, or autophagosome, for delivery to lysosomes. Although best known as a mechanism to survive starvation, autophagy is now recognized to combat infection by a variety of microbes.1–3 Not surprisingly, to establish a replication niche in host cells, some intracellular pathogens have acquired mechanisms either to evade or subvert the autophagic pathway. Because they are amenable to genetic manipulation, these microbes can be exploited as experimental tools to investigate the contribution of autophagy to immunity. Here we discuss the mouse macrophage response to L. pneumophila, the facultative intracellular bacterium responsible for an acute form of pneumonia, Legionnaire’s disease. PMID:16874080

  14. Biological macromolecules based targeted nanodrug delivery systems for the treatment of intracellular infections.

    PubMed

    Aparna, V; Shiva, M; Biswas, Raja; Jayakumar, R

    2018-04-15

    Intracellular infections are tricky to treat, the reason being the poor penetration of antibiotics/antimycotics into the microbial niche (host cell). Macrophages are primary targets of facultative and obligate intracellular bacteria/fungi to be abused as host cells. The need for drugs with better intracellular penetration led to the development of endocytosable drug carriers, which can cross the cell membrane of the host cells (macrophages) by imitating the entry path of the pathogens. Therefore, the drugs can be targeted to macrophages ensuring enhanced therapeutic effect. This review discusses the exploitation of various nanocarriers for targeted delivery of drugs to the macrophages in the last two decades. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Facultative thermogenesis during brooding is not the norm among pythons.

    PubMed

    Brashears, Jake; DeNardo, Dale F

    2015-08-01

    Facultative thermogenesis is often attributed to pythons in general despite limited comparative data available for the family. While all species within Pythonidae brood their eggs, only two species are known to produce heat to enhance embryonic thermal regulation. By contrast, a few python species have been reported to have insignificant thermogenic capabilities. To provide insight into potential phylogenetic, morphological, and ecological factors influencing thermogenic capability among pythons, we measured metabolic rates and clutch-environment temperature differentials at two environmental temperatures-python preferred brooding temperature (31.5 °C) and a sub-optimal temperature (25.5 °C)-in six species of pythons, including members of two major phylogenetic branches currently devoid of data on the subject. We found no evidence of facultative thermogenesis in five species: Aspidites melanocephalus, A. ramsayi, Morelia viridis, M. spilota cheynei, and Python regius. However, we found that Bothrochilus boa had a thermal metabolic sensitivity indicative of facultative thermogenesis (i.e., a higher metabolic rate at the lower temperature). However, its metabolic rate was quite low and technical challenges prevented us from measuring temperature differential to make conclusions about facultative endothermy in this species. Regardless, our data combined with existing literature demonstrate that facultative thermogenesis is not as widespread among pythons as previously thought.

  16. Acanthamoeba castellanii interactions with Streptococcus pneumoniae and Streptococcus pyogenes.

    PubMed

    Siddiqui, Ruqaiyyah; Yee Ong, Timothy Yu; Jung, Suk Yul; Khan, Naveed Ahmed

    2017-12-01

    Among the genus Streptococcus, S. pyogenes and S. pneumoniae are the major causes of pharyngitis, impetigo, pneumonia and meningitis in humans. Streptococcus spp. are facultative anaerobes that are nutritionally fastidious, yet survive in the environment and target the predisposed population. Antibacterial disinfectants have been partially effective only, indicating the need for novel preventative measures and to understand mechanisms of bacterial resistance. Acanthamoeba is a free-living protist that is known to harbour microbial pathogens, provide shelter, and assist in their transmission to susceptible population. The overall aim of this study was to determine whether S. pyogenes and S. pneumoniae can interact with A. castellanii by associating, invading, and surviving inside trophozoites and cysts. It was observed that both S. pyogenes and S. pneumoniae were able to associate as well as invade and/or taken up by the phagocytic A. castellanii trophozoite. Notably, S. pyogenes and S. pneumoniae survived the encystation process, avoided phagocytosis, multiplied, and exhibited higher recovery from the mature cysts, compared with the trophozoite stage (approximately 2 bacteria per amoebae ratio for cyst stage versus 0.02 bacteria per amoeba ration for trophozoite stage). As Acanthamoeba cysts are resilient and can disperse through the air, A. castellanii can act as a vector in providing shelter, facilitating growth and possibly genetic exchanges. In addition, these interactions may contribute to S. pyogenes and S. pneumoniae survival in harsh environments, and transmission to susceptible population and possibly affecting their virulence. Future studies will determine the molecular mechanisms associated with Acanthamoeba interactions with Streptococcus and the evolution of pathogenic bacteria and in turn expedite the discovery of novel therapeutic and/or preventative measures. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. In vitro and in vivo antifungal efficacy of plant based lawsone against Fusarium oxysporum species complex.

    PubMed

    Dananjaya, S H S; Udayangani, R M C; Shin, Sang Yeop; Edussuriya, M; Nikapitiya, Chamilani; Lee, Jehee; De Zoysa, Mahanama

    2017-08-01

    Fusarium oxysporum is an ascomycete facultative fungus which generally affects to plants. However, it is recently known as a serious emerging opportunistic pathogen of human and other animals. F. oxysporum shows broad resistance to commonly used antifungal agents and therefore development of alternative therapeutic agents is required. In this study, we investigated the antifungal efficacy of plant based natural lawsone against pathogenic F. oxysporum. Antifungal susceptibility test determined the concentration dependent growth inhibition of lawsone against F. oxysporum with minimum inhibitory concentration (MIC) at 100μg/mL. Ultra-structural analysis indicates the prominent damage on cell wall of the mycelium after lawsone treatment, and suggests that it could increase the membrane permeability and disintegration of cells leading to cellular death. Propidium iodide (PI) uptake assay results showed the higher level of cell death in lawsone treated F. oxysporum which further confirms the loss of plasma membrane integrity. Also, detection of reactive oxygen species (ROS) using DCFH-DA has clearly indicated that lawsone (100μg/mL) can induce the ROS level in the filaments of F. oxysporum. MTT assay results showed the loss of viability and germination capacity of F. oxysporum spores by lawsone in concentration dependent manner. Moreover, lawsone treatment induced the mRNA expression of two autophagy related genes (ATG1 and ATG8) indicating that lawsone may activate the autophagy related pathways in F. oxysporum due to the oxidative stress generated by ROS. F. oxysporum infected zebrafish has recovered after lawsone therapy as a topical treatment suggesting that lawsone is a potential natural antifusariosis agent. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. [Cutaneous Malassezia infections and Malassezia associated dermatoses: An update].

    PubMed

    Nenoff, P; Krüger, C; Mayser, P

    2015-06-01

    The lipophilic yeast fungus Malassezia (M.) spp. is the only fungal genus or species which is part of the physiological human microbiome. Today, at least 14 different Malassezia species are known; most of them can only be identified using molecular biological techniques. As a facultative pathogenic microorganism, Malassezia represents the causative agent both of superficial cutaneous infections and of blood stream infections. Pityriasis versicolor is the probably most frequent infection caused by Malassezia. Less common, Malassezia folliculitis occurs. There is only an episodic report on Malassezia-induced onychomycosis. Seborrhoeic dermatitis represents a Malassezia-associated inflammatory dermatosis. In addition, Malassezia allergenes should be considered as the trigger of "Head-Neck"-type atopic dermatitis. Ketoconazole possesses the strongest in vitro activity against Malassezia, and represents the treatment of choice for topical therapy of pityriasis versicolor. Alternatives include other azole antifungals but also the allylamine terbinafine and the hydroxypyridone antifungal agent ciclopirox olamine. "Antiseborrhoeic" agents, e.g. zinc pyrithione, selenium disulfide, and salicylic acid, are also effective in pityriasis versicolor. The drug of choice for oral treatment of pityriasis versicolor is itraconazole; an effective alternative represents fluconazole. Seborrhoeic dermatitis is best treated with topical medication, including topical corticosteroids and antifungal agents like ketoconazole or sertaconazole. Calcineurin inhibitors, e.g. pimecrolimus and tacrolimus, are reliable in seborrhoeic dermatitis, however are used off-label.

  19. Phase Variable O Antigen Biosynthetic Genes Control Expression of the Major Protective Antigen and Bacteriophage Receptor in Vibrio cholerae O1

    PubMed Central

    Seed, Kimberley D.; Faruque, Shah M.; Mekalanos, John J.; Calderwood, Stephen B.; Qadri, Firdausi; Camilli, Andrew

    2012-01-01

    The Vibrio cholerae lipopolysaccharide O1 antigen is a major target of bacteriophages and the human immune system and is of critical importance for vaccine design. We used an O1-specific lytic bacteriophage as a tool to probe the capacity of V. cholerae to alter its O1 antigen and identified a novel mechanism by which this organism can modulate O antigen expression and exhibit intra-strain heterogeneity. We identified two phase variable genes required for O1 antigen biosynthesis, manA and wbeL. manA resides outside of the previously recognized O1 antigen biosynthetic locus, and encodes for a phosphomannose isomerase critical for the initial step in O1 antigen biosynthesis. We determined that manA and wbeL phase variants are attenuated for virulence, providing functional evidence to further support the critical role of the O1 antigen for infectivity. We provide the first report of phase variation modulating O1 antigen expression in V. cholerae, and show that the maintenance of these phase variable loci is an important means by which this facultative pathogen can generate the diverse subpopulations of cells needed for infecting the host intestinal tract and for escaping predation by an O1-specific phage. PMID:23028317

  20. Acanthamoeba and other free-living amoebae in bat guano, an extreme habitat.

    PubMed

    Mulec, Janez; Dietersdorfer, Elisabeth; Üstüntürk-Onan, Miray; Walochnik, Julia

    2016-04-01

    Several representatives of the so-called free-living amoebae (FLA) are of medical relevance, not only as facultative pathogens but also as vehicles for pathogenic bacteria. Some FLA can survive and even grow under extreme environmental conditions. Bat guano is an exceptional habitat, the conditions becoming gradually more extreme with aging. In the current study, samples of bat guano of different ages from five caves in Slovenia were screened for the presence of FLA. FLA were isolated from almost all guano samples, including guano with a pH of 3.5. Only the two samples that had been drawn from >20-year-old guano were negative for FLA. Generally, FLA diversity correlated to high concentrations of cultivable bacteria (∼10(8) CFU/g) and fungi (∼10(5) CFU/g). Interestingly, the absence of FLA in seasoned guanos was mirrored by the presence of dictyostelid slime moulds. The isolated amoebae were identified as belonging to the genera Acanthamoeba, Copromyxa, Naegleria, Sappinia, Tetramitus, Thecamoeba, Vahlkampfia, Vannella and Vermamoeba. To the best of our knowledge, this is the first study on the diversity of FLA in guano.

  1. Horizontal Acquisition and Transcriptional Integration of Novel Genes in Mosquito-Associated Spiroplasma.

    PubMed

    Lo, Wen-Sui; Kuo, Chih-Horng

    2017-12-01

    Genetic differentiation among symbiotic bacteria is important in shaping biodiversity. The genus Spiroplasma contains species occupying diverse niches and is a model system for symbiont evolution. Previous studies have established that two mosquito-associated species have diverged extensively in their carbohydrate metabolism genes despite having a close phylogenetic relationship. Notably, although the commensal Spiroplasma diminutum lacks identifiable pathogenicity factors, the pathogenic Spiroplasma taiwanense was found to have acquired a virulence factor glpO and its associated genes through horizontal transfer. However, it is unclear if these acquired genes have been integrated into the regulatory network. In this study, we inferred the gene content evolution in these bacteria, as well as examined their transcriptomes in response to glucose availability. The results indicated that both species have many more gene acquisitions from the Mycoides-Entomoplasmataceae clade, which contains several important pathogens of ruminants, than previously thought. Moreover, several acquired genes have higher expression levels than the vertically inherited homologs, indicating possible functional replacement. Finally, the virulence factor and its functionally linked genes in S. taiwanense were up-regulated in response to glucose starvation, suggesting that these acquired genes are under expression regulation and the pathogenicity may be a stress response. In summary, although differential gene losses are a major process for symbiont divergence, gene gains are critical in counteracting genome degradation and driving diversification among facultative symbionts. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Metabolism of the Aliphatic Nitramine 4-Nitro-2,4-Diazabutanal by Methylobacterium sp. Strain JS178

    DTIC Science & Technology

    2005-08-01

    soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink - pigmented facultative methylotroph affiliated with the...colonization by pink - pigmented facultative methylotrophic bacteria (PPFMs). FEMS Micro- bioi. Ecol. 47:319-326. 17. Schubert, K. R., and M. J. Boland... pink - pigmented , facultatively methylotrophic, bacterium isolated from pop- lar trees (Populus deltoides X nigra DN34). J. Syst. Evol. MicrobiaL 54

  3. Facultative symbiont infections affect aphid reproduction.

    PubMed

    Simon, Jean-Christophe; Boutin, Sébastien; Tsuchida, Tsutomu; Koga, Ryuichi; Le Gallic, Jean-François; Frantz, Adrien; Outreman, Yannick; Fukatsu, Takema

    2011-01-01

    Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  4. Evaluation of UV-C mutagenized Scheffersomyces stipitis strains for ethanol production.

    PubMed

    Geiger, Melanie; Gibbons, Jaimie; West, Thomas; Hughes, Stephen R; Gibbons, William

    2012-12-01

    We evaluated fermentation capabilities of five strains of Scheffersomyces stipitis (WT-2-1, WT-1-11, 14-2-6, 22-1-1, and 22-1-12) that had been produced by UV-C mutagenesis and selection for improved xylose fermentation to ethanol using an integrated automated robotic work cell. They were incubated under both facultative and anaerobic conditions to evaluate ethanol production on glucose, xylose, cellobiose, and a combination of all three sugars. The medium contained 50 g/L total sugar and 5 g/L yeast extract. The strains performed significantly better under facultative compared with anaerobic conditions. As expected, glucose was the most readily fermented sugar with ~100% fermentation efficiency (FE) under facultative conditions but only 5% to 16% FE anaerobically. Xylose utilization was 20% to 40% FE under facultative conditions but 9% to 25% FE anaerobically. Cellobiose was the least fermented sugar, at 18% to 27% FE facultatively and 8% to 11% anaerobically. Similar trends occurred in the sugar mixture. Under facultative conditions, strain 22-1-12 produced 19.6 g/L ethanol on glucose, but strain 14-2-6 performed best on xylose (4.5 g/L ethanol) and the sugar combination (8.0 g/L ethanol). Ethanol titers from glucose under anaerobic conditions were again highest with strain 22-1-12, but none of the strains produced ethanol from xylose. Future trials will evaluate nutrient addition to boost microaerophilic xylose fermentation.

  5. Coalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity

    PubMed Central

    Hartfield, Matthew; Wright, Stephen I.; Agrawal, Aneil F.

    2016-01-01

    Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. PMID:26584902

  6. Coalescent Times and Patterns of Genetic Diversity in Species with Facultative Sex: Effects of Gene Conversion, Population Structure, and Heterogeneity.

    PubMed

    Hartfield, Matthew; Wright, Stephen I; Agrawal, Aneil F

    2016-01-01

    Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. Copyright © 2016 by the Genetics Society of America.

  7. [SINEs in mammalian genomes can serve as additional signals in formation of facultative heterochromatin].

    PubMed

    Usmanova, N M; Kazakov, V I; Tomilin, N V

    2008-01-01

    Using computer-based methods we determined the global distribution of short interspersed nuclear elements (SINEs) in the human and mouse X chromosomes. It has been shown that this distributions is similar to the distributions of CpG islands and genes but is different from the distribution of LINE1 elements. Since SINEs (human Alu and mouse B2) may have binding sites for Polycomb protein YY1, we suggest that these repeats can serve as additional signals ("boosters") in Polycomb-dependent silencing of gene rich segments during X inactivation.

  8. [Prenatal diagnosis of thanatophoric dwarfism with a cloverleaf skull--ultrasonographic findings, humane genetic aspects].

    PubMed

    Weiss, H; Rosseck, U; Zerres, K; Wisskirchen, I; Paulussen, F

    1984-08-01

    The ultrasonographic criteria for the prenatal diagnosis of thanatophore dwarfism with clover leaf skull are described. Facultative morbid anatomical peculiarities are described. Because of the prenatal findings the pregnancy was terminated by Caesarean Section at 30 weeks gestation in our case. Following the death of the infant the diagnosis was confirmed by radiological investigations and by autopsy. The ultrasonographic differential diagnosis from other types of dwarfism is discussed. The human genetic aspects are discussed with emphasis on the counselling regarding further pregnancies.

  9. A dangerous hobby? Erysipelothrix rhusiopathiae bacteremia most probably acquired from freshwater aquarium fish handling.

    PubMed

    Asimaki, E; Nolte, O; Overesch, G; Strahm, C

    2017-08-01

    Erysipelothrix rhusiopathiae is a facultative anaerobic Gram-positive rod that occurs widely in nature and is best known in veterinary medicine for causing swine erysipelas. In humans, infections are rare and mainly considered as occupationally acquired zoonosis. A case of E. rhusiopathiae bacteremia most likely associated with home freshwater aquarium handling is reported. The route of transmission was probably a cut with the dorsal fin of a dead pet fish. A short review of clinical presentations, therapeutic considerations and pitfalls of E. rhusiopathiae infections in humans is presented.

  10. Tornadic storm avoidance behavior in breeding songbirds.

    PubMed

    Streby, Henry M; Kramer, Gunnar R; Peterson, Sean M; Lehman, Justin A; Buehler, David A; Andersen, David E

    2015-01-05

    Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Anaerobic biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a facultative anaerobe Pseudomonas sp. JP1.

    PubMed

    Liang, Lei; Song, Xiaohui; Kong, Jing; Shen, Chenghui; Huang, Tongwang; Hu, Zhong

    2014-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.

  12. Microbial profile of root canals of primary teeth with pulp necrosis and periradicular lesion.

    PubMed

    Triches, Thaisa Cezária; de Figueiredo, Luciene Cristina; Feres, Magda; de Freitas, Sérgio Fernando Torres; Zimmermann, Gláucia Santos; Cordeiro, Mabel Mariela Rodríguez

    2014-01-01

    The purpose of this study was to assess the microbial content of root canals of human primary teeth with pulp necrosis and periradicular lesion. Microbial samples were collected from 24 canals of children treated at a pediatric dentistry clinic. Microbiological identification was performed using checker-board DNA-DNA hybridization for 40 different bacteria. Data were analyzed per canal based on the mean count and frequency of each bacterial species. Detectable levels of bacterial species were observed for 35 probes (88%). The most frequent bacteria were Fusobacterium nucleatum sp. nucleatum, Fusobacterium periodonticum, Prevotella melaninogenica, Prevotella nigrescens, and Prevotella intermedia. Facultative species were identified in 20 root canals (83%), anaerobic species were identified in 24 root canals (100%), and aerobic species in 18 root canals (75%). Black-pigmented bacilli were found in 23 samples (96%). The number of different bacterial species detected per canal ranged from five to 33. Endodontic infection in primary teeth with pulp necrosis and periradicular lesion is multimicrobial, including aerobic, facultative, and anaerobic micro-organisms.

  13. Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi.

    PubMed

    Hong, Yang; Hondalus, Mary K

    2008-10-01

    Streptomyces PhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.

  14. [Protease activity of microflora in the oral cavity of patients with periodontitis].

    PubMed

    Voropaeva, E A; Baĭrakova, A L; Bichucher, A M; D'iakov, V L; Kozlov, L V

    2008-01-01

    Microbial spectrum and non-specific as well as specific IgA1 protease activity of isolated microorganisms were investigated in gingival liquid of patients with periodontitis. Microorganisms from the gingival liqud of these patients belonged to conditional-pathogenic obligate and facultatively anaerobic bacteria. 24 strains of microorganisms have been identified. Nonspecific proteolytic activity was found in the following microorganisms: Actinomyces israelii, Actinomyces naeslundii, Aerococcus viridans, Bifidobacterium longum, Neisseria subflave, Streptococcus parvulus, Eubacterium alactolyticum, Lactobaccilus catenoforme, Bacillus spp. Specific IgA1-protease activity and lack of proteolytic activity towards IgG was found in Streptococcus acidominimus, Streptococcus hansenii, Streptococcus salivarius, Leptotrychia buccalis, Staphylococcus haemolyticus and Neisseria sicca. No proteolytic activity was found in cultivation medium of Eubacterium alactolyticum (1 strain), Prevotella buccalis, Aerococcus viridans and Streptococcus sanguis.

  15. The Abundance of Pink-Pigmented Facultative Methylotrophs in the Root Zone of Plant Species in Invaded Coastal Sage Scrub Habitat

    PubMed Central

    Irvine, Irina C.; Brigham, Christy A.; Suding, Katharine N.; Martiny, Jennifer B. H.

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 102 to 105 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems. PMID:22383990

  16. The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat.

    PubMed

    Irvine, Irina C; Brigham, Christy A; Suding, Katharine N; Martiny, Jennifer B H

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1) compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2) to 10(5) CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.

  17. Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?

    PubMed Central

    Herrera, Ana

    2009-01-01

    Background In obligate Crassulacean acid metabolism (CAM), up to 99 % of CO2 assimilation occurs during the night, therefore supporting the hypothesis that CAM is adaptive because it allows CO2 fixation during the part of the day with lower evaporative demand, making life in water-limited environments possible. By comparison, in facultative CAM (inducible CAM, C3-CAM) and CAM-cycling plants drought-induced dark CO2 fixation may only be, with few exceptions, a small proportion of C3 CO2 assimilation in watered plants and occur during a few days. From the viewpoint of survival the adaptive advantages, i.e. increased fitness, of facultative CAM and CAM-cycling are not obvious. Therefore, it is hypothesized that, if it is to increase fitness, CAM must aid in reproduction. Scope An examination of published reports of 23 facultative CAM and CAM-cycling species finds that, in 19 species, drought-induced dark CO2 fixation represents on average 11 % of C3 CO2 assimilation of watered plants. Evidence is discussed on the impact of the operation of CAM in facultative and CAM-cycling plants on their survival – carbon balance, water conservation, water absorption, photo-protection of the photosynthetic apparatus – and reproductive effort. It is concluded that in some species, but not all, facultative and cycling CAM contribute, rather than to increase carbon balance, to increase water-use efficiency, water absorption, prevention of photoinhibition and reproductive output. PMID:18708641

  18. Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for?

    PubMed

    Herrera, Ana

    2009-02-01

    In obligate Crassulacean acid metabolism (CAM), up to 99 % of CO(2) assimilation occurs during the night, therefore supporting the hypothesis that CAM is adaptive because it allows CO(2) fixation during the part of the day with lower evaporative demand, making life in water-limited environments possible. By comparison, in facultative CAM (inducible CAM, C(3)-CAM) and CAM-cycling plants drought-induced dark CO(2) fixation may only be, with few exceptions, a small proportion of C(3) CO(2) assimilation in watered plants and occur during a few days. From the viewpoint of survival the adaptive advantages, i.e. increased fitness, of facultative CAM and CAM-cycling are not obvious. Therefore, it is hypothesized that, if it is to increase fitness, CAM must aid in reproduction. Scope An examination of published reports of 23 facultative CAM and CAM-cycling species finds that, in 19 species, drought-induced dark CO(2) fixation represents on average 11 % of C(3) CO(2) assimilation of watered plants. Evidence is discussed on the impact of the operation of CAM in facultative and CAM-cycling plants on their survival--carbon balance, water conservation, water absorption, photo-protection of the photosynthetic apparatus--and reproductive effort. It is concluded that in some species, but not all, facultative and cycling CAM contribute, rather than to increase carbon balance, to increase water-use efficiency, water absorption, prevention of photoinhibition and reproductive output.

  19. Antimicrobial activity of ceftaroline and other anti-infective agents against microbial pathogens recovered from the surgical intensive care patient population: a prevalence analysis.

    PubMed

    Edmiston, Charles E; Krepel, Candace J; Leaper, David; Ledeboer, Nathan A; Mackey, Tami-Lea; Graham, Mary Beth; Lee, Cheong; Rossi, Peter J; Brown, Kellie R; Lewis, Brian D; Seabrook, Gary R

    2014-12-01

    Ceftaroline is a new parenteral cephalosporin agent with excellent activity against methicillin-sensitive (MSSA) and resistant strains of Staphylococcus aureus (MRSA). Critically ill surgical patients are susceptible to infection, often by multi-drug-resistant pathogens. The activity of ceftaroline against such pathogens has not been described. Three hundred thirty-five consecutive microbial isolates were collected from surgical wounds or abscesses, respiratory, urine, and blood cultures from patients in the surgical intensive care unit (SICU) of a major tertiary medical center. Using Clinical and Laboratory Standards Institute (CLSI) standard methodology and published breakpoints, all aerobic, facultative anaerobic isolates were tested against ceftaroline and selected comparative antimicrobial agents. All staphylococcal isolates were susceptible to ceftaroline at a breakpoint of ≤1.0 mcg/mL. In addition, ceftaroline exhibited excellent activity against all streptococcal clinical isolates and non-ESBL-producing strains of Enterobacteriaceae (93.5%) recovered from SICU patients. Ceftaroline was inactive against ESBL-producing Enterobacteriaceae, Pseudomonas aeruginosa, vancomycin-resistant enterococci, and selective gram-negative anaerobic bacteria. At present, ceftaroline is the only cephalosporin agent that is active against community and healthcare-associated MRSA. Further studies are needed to validate the benefit of this novel broad-spectrum anti-infective agent for the treatment of susceptible serious infections in the SICU patient population.

  20. MET-activating Residues in the B-repeat of the Listeria monocytogenes Invasion Protein InlB*

    PubMed Central

    Bleymüller, Willem M.; Lämmermann, Nina; Ebbes, Maria; Maynard, Daniel; Geerds, Christina; Niemann, Hartmut H.

    2016-01-01

    The facultative intracellular pathogen Listeria monocytogenes causes listeriosis, a rare but life-threatening disease. Host cell entry begins with activation of the human receptor tyrosine kinase MET through the bacterial invasion protein InlB, which contains an internalin domain, a B-repeat, and three GW domains. The internalin domain is known to bind MET, but no interaction partner is known for the B-repeat. Adding the B-repeat to the internalin domain potentiates MET activation and is required to stimulate Madin-Darby canine kidney (MDCK) cell scatter. Therefore, it has been hypothesized that the B-repeat may bind a co-receptor on host cells. To test this hypothesis, we mutated residues that might be important for binding an interaction partner. We identified two adjacent residues in strand β2 of the β-grasp fold whose mutation abrogated induction of MDCK cell scatter. Biophysical analysis indicated that these mutations do not alter protein structure. We then tested these mutants in human HT-29 cells that, in contrast to the MDCK cells, were responsive to the internalin domain alone. These assays revealed a dominant negative effect, reducing the activity of a construct of the internalin domain and mutated B-repeat below that of the individual internalin domain. Phosphorylation assays of MET and its downstream targets AKT and ERK confirmed the dominant negative effect. Attempts to identify a host cell receptor for the B-repeat were not successful. We conclude that there is limited support for a co-receptor hypothesis and instead suggest that the B-repeat contributes to MET activation through low affinity homodimerization. PMID:27789707

  1. Strong social relationships are associated with decreased longevity in a facultatively social mammal.

    PubMed

    Blumstein, Daniel T; Williams, Dana M; Lim, Alexandra N; Kroeger, Svenja; Martin, Julien G A

    2018-01-31

    Humans in strong social relationships are more likely to live longer because social relationships may buffer stressors and thus have protective effects. However, a shortcoming of human studies is that they often rely on self-reporting of these relationships. By contrast, observational studies of non-human animals permit detailed analyses of the specific nature of social relationships. Thus, discoveries that some social animals live longer and healthier lives if they are involved in social grooming, forage together or have more affiliative associates emphasizes the potential importance of social relationships on health and longevity. Previous studies have focused on the impact of social metrics on longevity in obligately social species. However, if sociality indeed has a key role in longevity, we might expect that affiliative relationships should also influence longevity in less social species. We focused on socially flexible yellow-bellied marmots ( Marmota flaviventer ) and asked whether female longevity covaries with the specific nature of social relationships. We quantified social relationships with social network statistics that were based on affiliative interactions, and then estimated the correlation between longevity and sociality using bivariate models. We found a significant negative phenotypic correlation between affiliative social relationship strength and longevity; marmots with greater degree, closeness and those with a greater negative average shortest path length died at younger ages. We conclude that sociality plays an important role in longevity, but how it does so may depend on whether a species is obligately or facultatively social. © 2018 The Author(s).

  2. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M

    PubMed Central

    Pradeepkiran, Jangampalli Adi; Kumar, Konidala Kranthi; Kumar, Yellapu Nanda; Bhaskar, Matcha

    2015-01-01

    The zoonotic disease brucellosis, a chronic condition in humans affecting renal and cardiac systems and causing osteoarthritis, is caused by Brucella, a genus of Gram-negative, facultative, intracellular pathogens. The mode of transmission and the virulence of the pathogens are still enigmatic. Transcription regulatory elements, such as rho proteins, play an important role in the termination of transcription and/or the selection of genes in Brucella. Adverse effects of the transcription inhibitors play a key role in the non-successive transcription challenges faced by the pathogens. In the investigation presented here, we computationally predicted the transcription termination factor rho (TtFRho) inhibitors against Brucella melitensis 16M via a structure-based method. In view the unknown nature of its crystal structure, we constructed a robust three-dimensional homology model of TtFRho’s structure by comparative modeling with the crystal structure of the Escherichia coli TtFRho (Protein Data Bank ID: 1PVO) as a template in MODELLER (v 9.10). The modeled structure was optimized by applying a molecular dynamics simulation for 2 ns with the CHARMM (Chemistry at HARvard Macromolecular Mechanics) 27 force field in NAMD (NAnoscale Molecular Dynamics program; v 2.9) and then evaluated by calculating the stereochemical quality of the protein. The flexible docking for the interaction phenomenon of the template consists of ligand-related inhibitor molecules from the ZINC (ZINC Is Not Commercial) database using a structure-based virtual screening strategy against minimized TtFRho. Docking simulations revealed two inhibitors compounds – ZINC24934545 and ZINC72319544 – that showed high binding affinity among 2,829 drug analogs that bind with key active-site residues; these residues are considered for protein-ligand binding and unbinding pathways via steered molecular dynamics simulations. Arg215 in the model plays an important role in the stability of the protein-ligand complex via a hydrogen bonding interaction by aromatic-π contacts, and the ADMET (absorption, distribution, metabolism, and excretion) analysis of best leads indicate nontoxic in nature with good potential for drug development. PMID:25848225

  3. Effects of vulture exclusion on carrion consumption by facultative scavengers.

    PubMed

    Hill, Jacob E; DeVault, Travis L; Beasley, James C; Rhodes, Olin E; Belant, Jerrold L

    2018-03-01

    Vultures provide an essential ecosystem service through removal of carrion, but globally, many populations are collapsing and several species are threatened with extinction. Widespread declines in vulture populations could increase the availability of carrion to other organisms, but the ways facultative scavengers might respond to this increase have not been thoroughly explored. We aimed to determine whether facultative scavengers increase carrion consumption in the absence of vulture competition and whether they are capable of functionally replacing vultures in the removal of carrion biomass from the landscape. We experimentally excluded 65 rabbit carcasses from vultures during daylight hours and placed an additional 65 carcasses that were accessible to vultures in forested habitat in South Carolina, USA during summer (June-August). We used motion-activated cameras to compare carrion use by facultative scavenging species between the experimental and control carcasses. Scavenging by facultative scavengers did not increase in the absence of competition with vultures. We found no difference in scavenger presence between control carcasses and those from which vultures were excluded. Eighty percent of carcasses from which vultures were excluded were not scavenged by vertebrates, compared to 5% of carcasses that were accessible to vultures. At the end of the 7-day trials, there was a 10.1-fold increase in the number of experimental carcasses that were not fully scavenged compared to controls. Facultative scavengers did not functionally replace vultures during summer in our study. This finding may have been influenced by the time of the year in which the study took place, the duration of the trials, and the spacing of carcass sites. Our results suggest that under the warm and humid conditions of our study, facultative scavengers would not compensate for loss of vultures. Carcasses would persist longer in the environment and consumption of carrion would likely shift from vertebrates to decomposers. Such changes could have substantial implications for disease transmission, nutrient cycling, and ecosystem functioning.

  4. Studies on occurrence, characterisation and decontamination of emerging pathogenic Escherichia coli (STEC, ETEC and EIEC) in table eggs.

    PubMed

    Vinayananda, C O; Fairoze, Nadeem; Madhavaprasad, C B; Byregowda, S M; Nagaraj, C S; Bagalkot, Prashanth; Karabasanavar, Nagappa

    2017-12-01

    1. Escherichia coli is one of the most common facultative anaerobic species present in the gastrointestinal tract of animals and human beings. Usually they occur as commensals, but some serotypes can cause significant illnesses in humans as well as mammals and birds. 2. The occurrence of E. coli in different categories of table eggs collected from markets was evaluated. Isolates were analysed for the presence of virulence genes, antibiotic susceptibility pattern and efficacy of peracetic acid and chlorine for the purpose of decontaminating table eggs. 3. Significant differences were observed in the occurrence of E. coli between different groups viz. processed (cleaned, washed, sanitised and packed eggs), unprocessed (un-cleaned, un-sanitised and loose eggs) and free range (eggs obtained from backyard poultry) table eggs. Overall, E. coli occurred in table eggs at 28.6% with 22.9, 29.2 and 50.0% occurrence in processed, unprocessed and free-range table eggs, respectively. 4. A total of 24 isolates of E. coli were obtained and screened for virulence genes viz. STH, SLT1/2 and INVE genes. Of the 24 isolates recovered, 10 typeable isolates belonged to O141, O119, O9, O120 and O101 serotypes, while the remaining 14 were untypeable. Antibiograms of the isolates showed multiple antimicrobial resistance (MAR) index in the range of 0.13-0.40. 5. Peracetic acid (PAA) and chlorine (CL) were studied for their sanitisation efficacy; concentrations of 100 mg/kg of PAA and 200 mg/kg of CL completely inactivated E. coli over the egg surface and also resulted in 2.58 and 2.38 log reduction in total viable counts (TVC), respectively. 6. The presence of virulence-associated shiga-like toxin (SLT1/2) and invasion E (INVE) genes and antimicrobial resistance among the emerging serotypes of pathogenic E. coli isolated from table eggs has public health implications. It underscores the need to implement better management practices across the production systems and marketing channels to produce E. coli-free wholesome eggs for consumers.

  5. Unusual Methylobacterium fujisawaense Infection in a Patient with Acute Leukaemia Undergoing Hematopoietic Stem Cell Transplantation: First Case Report

    PubMed Central

    Fanci, Rosa; Corti, Giampaolo; Bartoloni, Alessandro; Tortoli, Enrico; Mariottini, Alessandro; Pecile, Patrizia

    2010-01-01

    Microorganisms of the genus Methylobacterium are facultative methylotrophic, gram-negative rods that are ubiquitous in nature and rarely cause human disease, mostly in subjects with preexisting causes of immune depression. Methylobacterium fujisawaense, first proposed as a new species in 1988, has never been reported as a bacterial agent of human infections so far. Here we describe a case of M. fujisawaense infection in a relapsed acute leukaemia undergoing unrelated allogeneic hematopoietic stem cell transplantation. Molecular identification of an M. fujisawaense strain was obtained from multiple mycobacterial blood cultures. PMID:20396386

  6. Insight into the role of facultative bacteria stimulated by micro-aeration in continuous bioreactors converting LCFA to methane.

    PubMed

    Duarte, Maria Salomé; Silva, Sérgio A; Salvador, Andreia F; Cavaleiro, Ana Júlia; Stams, Alfons J M; Alves, Maria Madalena; Pereira, Maria Alcina

    2018-05-15

    Conversion of unsaturated long chain fatty acids (LCFA) to methane in continuous bioreactors is not fully understood. Palmitate (C16:0) often accumulates during oleate (C18:1) biodegradation in methanogenic bioreactors, and the reason why this happens and which microorganisms catalyze this reaction remains unknown. Facultative anaerobic bacteria are frequently found in continuous reactors operated at high LCFA loads, but their function is unclear. To get more insight on the role of these bacteria, LCFA conversion was studied under microaerophilic conditions. For that, we compared bioreactors treating oleate-based wastewater (organic loading rates of 1 and 3 kg COD m-3 d-1), operated under different redox conditions (strictly anaerobic-AnR, -350 mV; microaerophilic-MaR, -250 mV). At the higher load, palmitate accumulated 7 times more in the MaR, where facultative anaerobes were more abundant, and only the biomass from this reactor could recover the methanogenic activity after a transient inhibition. In a second experiment, the abundance of facultative anaerobic bacteria, particularly Pseudomonas spp. (from which two strains were isolated), was strongly correlated (p<0.05) with palmitate-to-total LCFA percentage in the biofilm formed in a continuous plug flow reactor fed with very high loads of oleate. This work strongly suggests that micro-aeration stimulates the development of facultative bacteria that are critical for achieving LCFA conversion to methane in continuous bioreactors. Microbial networks and interactions of facultative and strict anaerobes in microbial communities should be considered in future studies.

  7. Constructed wetlands and waste stabilization ponds for small rural communities in the United Kingdom: a comparison of land area requirements, performance and costs.

    PubMed

    Mara, D D

    2006-07-01

    Land area requirements for secondary subsurface horizontal-flow constructed wetlands (CW) and primary and secondary facultative ponds with either unaerated or aerated rock filters were determined for three levels of effluent quality: that specified in the Urban Waste Water Treatment Directive (UWWTD) (< or = 25 mg filtered BOD l(-1) and < or = 150 mg SS l(-1) for waste stabilization ponds (WSP) effluents, and < or = 25 mg unfiltered BOD l(-1) for CW effluents (mean values); and two common requirements of the Environment Agency: < or = 40 mg BOD l(-1) and < or = 60 mg SS l(-1), and < or = 10 mg BOD l(-1), < or = 15 mg SS l(-1) and < or = 5 mg ammonia-N l(-1) (95-percentile values). A secondary CW requires 60 percent more land than a secondary facultative pond to produce an UWWTD-quality effluent, 38 percent more land than a secondary facultative pond and an unaerated rock filter to produce a 40/60 effluent and, were it to be used to produce a 10/15/5 effluent, it would require approximately 480 percent more land than a secondary facultative pond and an aerated rock filter. Its estimated 2005 cost is pound 1100-2600 p.e.(-1), whereas that of a primary facultative pond and rock filter is approximately pound 400 p.e.(-1). On the basis of land area requirements, performance and cost, facultative ponds and unaerated or aerated rock filters are to be preferred to secondary subsurface horizontal-flow constructed wetlands.

  8. Consumption of Camembert cheese stimulates commensal enterococci in healthy human intestinal microbiota.

    PubMed

    Firmesse, Olivier; Rabot, Sylvie; Bermúdez-Humarán, Luis G; Corthier, Gérard; Furet, Jean-Pierre

    2007-11-01

    Enterococci are natural inhabitants of the human gastrointestinal tract and the main Gram-positive and facultative anaerobic cocci recovered in human faeces. They are also present in a variety of fermented dairy and meat products, and some rare isolates are responsible for severe infections such as endocarditis and meningitis. The aim of the present study was to evaluate the effect of Camembert cheese consumption by healthy human volunteers on the faecal enterococcal population. A highly specific real-time quantitative PCR approach was designed and used to type enterococcal species in human faeces. Two species were found, Enterococcus faecalis and Enterococcus faecium, and only the Enterococcus faecalis population was significantly enhanced after Camembert cheese consumption, whereas Escherichia coli population and the dominant microbiota remained unaffected throughout the trial.

  9. The evolutionary logic of sepsis.

    PubMed

    Rózsa, Lajos; Apari, Péter; Sulyok, Mihály; Tappe, Dennis; Bodó, Imre; Hardi, Richárd; Müller, Viktor

    2017-11-01

    The recently proposed Microbiome Mutiny Hypothesis posits that members of the human microbiome obtain information about the host individuals' health status and, when host survival is compromised, switch to an intensive exploitation strategy to maximize residual transmission. In animals and humans, sepsis is an acute systemic reaction to microbes invading the normally sterile body compartments. When induced by formerly mutualistic or neutral microbes, possibly in response to declining host health, sepsis appears to fit the 'microbiome mutiny' scenario except for its apparent failure to enhance transmission of the causative organisms. We propose that the ability of certain species of the microbiome to induce sepsis is not a fortuitous side effect of within-host replication, but rather it might, in some cases, be the result of their adaptive evolution. Whenever host health declines, inducing sepsis can be adaptive for those members of the healthy human microbiome that are capable of colonizing the future cadaver and spread by cadaver-borne transmission. We hypothesize that such microbes might exhibit switches along the 'mutualist - lethal pathogen - decomposer - mutualist again' scenario, implicating a previously unsuspected, surprising level of phenotypic plasticity. This hypothesis predicts that those species of the healthy microbiome that are recurring causative agents of sepsis can participate in the decomposition of cadavers, and can be transmitted as soil-borne or water-borne infections. Furthermore, in individual sepsis cases, the same microbial clones that dominate the systemic infection that precipitates sepsis, should also be present in high concentration during decomposition following death: this prediction is testable by molecular fingerprinting in experimentally induced animal models. Sepsis is a leading cause of human death worldwide. If further research confirms that some cases of sepsis indeed involve the 'mutiny' (facultative phenotypic switching) of normal members of the microbiome, then new strategies could be devised to prevent or treat sepsis by interfering with this process. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Surveillance of parasitic Legionella in surface waters by using immunomagnetic separation and amoebae enrichment

    PubMed Central

    Hsu, Tsui-Kang; Wu, Shu-Fen; Hsu, Bing-Mu; Kao, Po-Min; Tao, Chi-Wei; Shen, Shu-Min; Ji, Wen-Tsai; Huang, Wen-Chien; Fan, Cheng-Wei

    2015-01-01

    Free-living amoebae (FLA) are potential reservoirs of Legionella in aquatic environments. However, the parasitic relationship between various Legionella and amoebae remains unclear. In this study, surface water samples were gathered from two rivers for evaluating parasitic Legionella. Warmer water temperature is critical to the existence of Legionella. This result suggests that amoebae may be helpful in maintaining Legionella in natural environments because warmer temperatures could enhance parasitisation of Legionella in amoebae. We next used immunomagnetic separation (IMS) to identify extracellular Legionella and remove most free Legionella before detecting the parasitic ones in selectively enriched amoebae. Legionella pneumophila was detected in all the approaches, confirming that the pathogen is a facultative amoebae parasite. By contrast, two obligate amoebae parasites, Legionella-like amoebal pathogens (LLAPs) 8 and 9, were detected only in enriched amoebae. However, several uncultured Legionella were detected only in the extracellular samples. Because the presence of potential hosts, namely Vermamoeba vermiformis, Acanthamoeba spp. and Naegleria gruberi, was confirmed in the samples that contained intracellular Legionella, uncultured Legionella may survive independently of amoebae. Immunomagnetic separation and amoebae enrichment may have referential value for detecting parasitic Legionella in surface waters. PMID:26373823

  11. Surveillance of parasitic Legionella in surface waters by using immunomagnetic separation and amoebae enrichment.

    PubMed

    Hsu, Tsui-Kang; Wu, Shu-Fen; Hsu, Bing-Mu; Kao, Po-Min; Tao, Chi-Wei; Shen, Shu-Min; Ji, Wen-Tsai; Huang, Wen-Chien; Fan, Cheng-Wei

    2015-01-01

    Free-living amoebae (FLA) are potential reservoirs of Legionella in aquatic environments. However, the parasitic relationship between various Legionella and amoebae remains unclear. In this study, surface water samples were gathered from two rivers for evaluating parasitic Legionella. Warmer water temperature is critical to the existence of Legionella. This result suggests that amoebae may be helpful in maintaining Legionella in natural environments because warmer temperatures could enhance parasitisation of Legionella in amoebae. We next used immunomagnetic separation (IMS) to identify extracellular Legionella and remove most free Legionella before detecting the parasitic ones in selectively enriched amoebae. Legionella pneumophila was detected in all the approaches, confirming that the pathogen is a facultative amoebae parasite. By contrast, two obligate amoebae parasites, Legionella-like amoebal pathogens (LLAPs) 8 and 9, were detected only in enriched amoebae. However, several uncultured Legionella were detected only in the extracellular samples. Because the presence of potential hosts, namely Vermamoeba vermiformis, Acanthamoeba spp. and Naegleria gruberi, was confirmed in the samples that contained intracellular Legionella, uncultured Legionella may survive independently of amoebae. Immunomagnetic separation and amoebae enrichment may have referential value for detecting parasitic Legionella in surface waters.

  12. In Vitro Anti-Malassezia Activity of Castanea crenata Shell and Oil-Soluble Glycyrrhiza Extracts.

    PubMed

    Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Jung, Won Hee; Park, Minji; Kim, Jeong Hwan; Shin, Hong Ju; Choe, Yong Beom; Ahn, Kyu Joong; Lee, Yang Won

    2017-06-01

    A new shampoo with anti- Malassezia properties obtained from various plants is required to provide seborrheic dermatitis patients with a wider range of treatment options. The aim of this study was to obtain in vitro susceptibility profiles of Malassezia restricta and M. globosa , the most important pathogenic organisms in the development of seborrheic dermatitis, to the plant extracts used in commercial anti-dandruff shampoos. Minimal inhibitory concentrations (MICs) were determined for eight candidate plant extracts and two plant-derived natural products diluted with Leeming and Notman medium to final concentrations of 0.016 to 1 mg/ml. Castanea crenata shell, Camellia sinensis leaf, and oil-soluble Glycyrrhiza extracts presented relatively low MIC values (≤0.5 mg/ml) against both strains. The C. crenata shell and oil-soluble Glycyrrhiza extracts demonstrated especially high anti-Malassezia activity, suggesting their potential use in the treatment of seborrheic dermatitis. The extracts also showed fungistatic activity against other common facultative pathogenic yeasts, Cryptococcus and Candida . C. crenata shell and oil-soluble Glycyrrhiza extracts could potentially be used as active ingredients in anti-seborrheic and anti-dandruff shampoo formulations. They could be helpful for repeated treatments and regular prophylaxis of scalp seborrheic dermatitis.

  13. The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes.

    PubMed

    Lemon, Katherine P; Freitag, Nancy E; Kolter, Roberto

    2010-08-01

    Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.

  14. Plant growth-promoting Methylobacterium induces defense responses in groundnut (Arachis hypogaea L.) compared with rot pathogens.

    PubMed

    Madhaiyan, M; Suresh Reddy, B V; Anandham, R; Senthilkumar, M; Poonguzhali, S; Sundaram, S P; Sa, Tongmin

    2006-10-01

    This study, framed in two different phases, studied the plant-growth promotion and the induction of systemic resistance in groundnut by Methylobacterium. Seed imbibition with Methylobacterium sp. increased germination by 19.5% compared with controls. Combined inoculation of Methylobacterium sp. with Rhizobium sp. also significantly increased plant growth, nodulation, and yield attributes in groundnut compared with individual inoculation of Rhizobium sp. Methylobacterium sp. challenge-inoculated with Aspergillus niger/Sclerotium rolfsii in groundnut significantly enhanced germination percentage and seedling vigour and showed increased phenylalanine ammonia lyase (PAL), beta-1,3-glucanase, and peroxidase (PO) activities. Under pot-culture conditions, in Methylobacterium sp. seed-treated groundnut plants challenge-inoculated with A. niger/S. rolfsii through foliar sprays on day 30, the activities of enzymes PO, PAL, and beta-1,3-glucanase increased constantly from 24 to 72 hours, after which decreased activity was noted. Five isozymes of polyphenol oxidase and PO could be detected in Methylobacterium-treated plants challenged with A. niger/S. rolfsii. Induced systemic resistance activity in groundnut against rot pathogens in response to methylotrophic bacteria suggests the possibility that pink-pigmented facultative methylotrophic bacteria might be used as a means of biologic disease control.

  15. Statins and Voriconazole Induce Programmed Cell Death in Acanthamoeba castellanii

    PubMed Central

    López-Arencibia, Atteneri; Sifaoui, Ines; Reyes-Batlle, María; Valladares, Basilio; Martínez-Carretero, Enrique; Piñero, José E.; Maciver, Sutherland K.; Lorenzo-Morales, Jacob

    2015-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a life-threatening encephalitis. In order to treat those infections properly, it is necessary to target the treatment not only to the trophozoite but also to the cyst. Furthermore, it may be advantageous to avoid parasite killing by necrosis, which may induce local inflammation. We must also avoid toxicity of host tissue. Many drugs which target eukaryotes are known to induce programmed cell death (PCD), but this process is poorly characterized in Acanthamoeba. Here, we study the processes of programmed cell death in Acanthamoeba, induced by several drugs, such as statins and voriconazole. We tested atorvastatin, fluvastatin, simvastatin, and voriconazole at the 50% inhibitory concentrations (IC50s) and IC90s that we have previously established. In order to evaluate this phenomenon, we investigated the DNA fragmentation, one of the main characteristics of PCD, with quantitative and qualitative techniques. Also, the changes related to phosphatidylserine exposure on the external cell membrane and cell permeability were studied. Finally, because caspases are key to PCD pathways, caspase activity was evaluated in Acanthamoeba. All the drugs assayed in this study induced PCD in Acanthamoeba. To the best of our knowledge, this is the first study where PCD induced by drugs is described quantitatively and qualitatively in Acanthamoeba. PMID:25733513

  16. Drifter, a novel, low copy hAT-like transposon in Fusarium oxysporum is activated during starvation.

    PubMed

    Rep, Martijn; van der Does, H Charlotte; Cornelissen, Ben J C

    2005-06-01

    The facultative pathogenic fungus Fusarium oxysporum is known to harbour many different transposable and/or repetitive elements. We have identified Drifter, a novel DNA transposon of the hAT family in F. oxysporum. It was found adjoining SIX1-H, a truncated homolog of the SIX1 avirulence gene in F. oxysporum f. sp. lycopersici. Absence of a target site duplication as well as the 5' part of SIX1-H suggests that transposition of Drifter into the ancestor of SIX1-H was followed by loss of a chromosomal segment through recombination between Drifters. F. oxysporum isolates belonging to various formae speciales harbour between 0 and 5 full-length copies of Drifter and/or one or more copies with an internal deletion. Transcription of Drifter is activated during starvation for carbon or nitrogen.

  17. [Chances and Potential of a Modern Surgical Skills Lab as Substantial Practical Part of the Study of Human Medicine - "The Magdeburg Model"].

    PubMed

    Piatek, S; Altmann, S; Haß, H-J; Werwick, K; Winkler-Stuck, K; Zardo, P; von Daake, S; Baumann, B; Rahmanzadeh, A; Chiapponi, C; Reschke, K; Meyer, F

    2017-02-01

    Introduction: Surgical education of medical students within "skills labs" have not been standardised throughout Germany as yet; there is a substantial impact of available aspects such as personal and space at the various medical schools. Aim: The aim of this contribution is to illustrate the concept of a surgical skills lab in detail, including curricular teaching and integrated facultative courses at the Medical School, University of Magdeburg ("The Magdeburg Model") in the context of a new and reconstructed area for the skills lab at the Magdeburg's apprenticeship center for medical basic abilities (MAMBA). Method: We present an overview on the spectrum of curricular and facultative teaching activities within the surgical part of the skills lab. Student evaluation of this teaching concept is implemented using the programme "EvaSys" and evaluation forms adapted to the single courses. Results: By establishing MAMBA, the options for a practice-related surgical education have been substantially improved. Student evaluations of former courses presented within the skills lab and the chance of moving the skills lab into a more generous and reconstructed area led to a reorganisation of seminars and courses. New additional facultative courses held by student tutors have been introduced and have shown to be of great effect, in particular, because of their interdisciplinary character. Conclusion: Practice-related surgical education within a skills lab may have the potential to effectively prepare medical students for their professional life. In addition, it allows one to present and teach the most important basic skills in surgery, which need to be pursued by every student. An enthusiastic engagement of the Office for Student Affairs can be considered the crucial and indispensable link between clinical work and curricular as well as facultative teaching with regard to organisation and student evaluation. The practice-related teaching parts and contents at the surgical section of a skills lab should be integrated into the National Competence-based Catalogue of Teaching Aims in Medicine ("NKLM"). Georg Thieme Verlag KG Stuttgart · New York.

  18. Systematic detection of positive selection in the human-pathogen interactome and lasting effects on infectious disease susceptibility.

    PubMed

    Corona, Erik; Wang, Liuyang; Ko, Dennis; Patel, Chirag J

    2018-01-01

    Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS) to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV) 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS), providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.

  19. Factors limiting the spread of the protective symbiont HAMILTONELLA DEFENSA in the aphid APHIS CRACCIVORA

    USDA-ARS?s Scientific Manuscript database

    Many insects are associated with heritable facultative symbionts that mediate important ecological interactions, including host protection against natural enemies. Despite such benefits, facultative symbionts are commonly found at intermediate frequencies in surveyed populations. The cowpea aphid,...

  20. The effect of nitrogen availability and water conditions on competition between a facultative CAM plant and an invasive grass.

    PubMed

    Yu, Kailiang; D'Odorico, Paolo; Carr, David E; Personius, Ashden; Collins, Scott L

    2017-10-01

    Plants with crassulacean acid metabolism (CAM) are increasing their abundance in drylands worldwide. The drivers and mechanisms underlying the increased dominance of CAM plants and CAM expression (i.e., nocturnal carboxylation) in facultative CAM plants, however, remain poorly understood. We investigated how nutrient and water availability affected competition between Mesembryanthemum crystallinum (a model facultative CAM species) and the invasive C 3 grass Bromus mollis that co-occur in California's coastal grasslands. Specifically we investigated the extent to which water stress, nutrients, and competition affect nocturnal carboxylation in M. crystallinum . High nutrient and low water conditions favored M. crystallinum over B. mollis , in contrast to high water conditions. While low water conditions induced nocturnal carboxylation in 9-week-old individuals of M. crystallinum , in these low water treatments, a 66% reduction in nutrient applied over the entire experiment did not further enhance nocturnal carboxylation. In high water conditions M. crystallinum both alone and in association with B. mollis did not perform nocturnal carboxylation, regardless of the nutrient levels. Thus, nocturnal carboxylation in M. crystallinum was restricted by strong competition with B. mollis in high water conditions. This study provides empirical evidence of the competitive advantage of facultative CAM plants over grasses in drought conditions and of the restricted ability of M. crystallinum to use their photosynthetic plasticity (i.e., ability to switch to CAM behavior) to compete with grasses in well-watered conditions. We suggest that a high drought tolerance could explain the increased dominance of facultative CAM plants in a future environment with increased drought and nitrogen deposition, while the potential of facultative CAM plants such as M. crystallinum to expand to wet environments is expected to be limited.

  1. 46 CFR 308.538 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.538 General. The Maritime Administrator is prepared to provide facultative war risk insurance policies covering any cargoes described in § 308.501 which are designated by an...

  2. 46 CFR 308.538 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.538 General. The Maritime Administrator is prepared to provide facultative war risk insurance policies covering any cargoes described in § 308.501 which are designated by an...

  3. 46 CFR 308.543 - Cancellation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Cancellation. 308.543 Section 308.543 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance § 308.543 Cancellation. Facultative war risk insurance is not subject to...

  4. 46 CFR 308.538 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Facultative War Risk Cargo Insurance § 308.538 General. The Maritime Administrator is prepared to provide facultative war risk insurance policies covering any cargoes described in § 308.501 which are designated by an...

  5. 46 CFR 308.538 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.538 General. The Maritime Administrator is prepared to provide facultative war risk insurance policies covering any cargoes described in § 308.501 which are designated by an...

  6. 46 CFR 308.538 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.538 General. The Maritime Administrator is prepared to provide facultative war risk insurance policies covering any cargoes described in § 308.501 which are designated by an...

  7. Treatment of smuggled cigarette tobacco by composting process in facultative reactors.

    PubMed

    Zittel, Rosimara; Pinto da Silva, Cleber; Domingues, Cinthia Eloise; de Oliveira Stremel, Tatiana Roselena; de Almeida, Thiago Eduardo; Vieira Damiani, Gislaine; Xavier de Campos, Sandro

    2018-01-01

    This paper presents a study on the degradation of smuggled cigarette tobacco combined with domestic organic waste and sawdust or wood chips, using facultative reactor. Four reactors with different amounts of residue were assembled. For the study of the quality of the compost obtained, physicochemical, phytotoxicity and microbiological analyses were carried out. The mixture with wood chips presented the best temperature conditions and pH variation optimizing the degradation. The final germination index (GI) values of all treatments were above the recommended GI value (50%) and the final C/N ratio between 8 and 13 indicated a mature compost. The concentration of metals under study was below the limit allowed for the commercialization. The composting carried out in all facultative reactors provided ideal conditions for the total sterilization of the final compost. Therefore, the treatment of smuggled cigarettes through facultative reactors was efficient to produce stable and mature compost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Facultative Control of Matrix Production Optimizes Competitive Fitness in Pseudomonas aeruginosa PA14 Biofilm Models

    PubMed Central

    Madsen, Jonas S.; Lin, Yu-Cheng; Squyres, Georgia R.; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C.; Sørensen, Søren J.

    2015-01-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities. PMID:26431965

  9. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.

    PubMed

    Madsen, Jonas S; Lin, Yu-Cheng; Squyres, Georgia R; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C; Sørensen, Søren J; Xavier, Joao B; Dietrich, Lars E P

    2015-12-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Bacteriological evaluation of tonsillar microbial flora according to age and tonsillar size in recurrent tonsillitis.

    PubMed

    Develioglu, Omer Necati; Ipek, Havva Duru; Bahar, Hrisi; Can, Gunay; Kulekci, Mehmet; Aygun, Gokhan

    2014-06-01

    Although numerous studies based on the bacteriology of the tonsil have been carried out, none of them analyzed the variation of tonsillar flora with respect to both age and tonsillar size. The purpose of this study was to isolate the facultative and obligate anaerobes both from the surface and the core of tonsils in recurrent tonsillitis as well as to analyze the variation of isolated bacterial strains according to age and tonsillar size. A prospective study was performed on 111 patients who underwent tonsillectomy. We analyzed the differences between the bacterial pathogens in recurrent tonsillitis and semi-growth estimates with regard to age and tonsillar grade. Among 111 cases, 604 bacterial strains of 21 different from the tonsil superficial and core were isolated. The most common facultative anaerobic species isolated from the surface and core were Coagulase-negative staphylococci, Alpha-hemolytic streptococci and Diphtheroid bacilli in all subgroups except patients below 8 years old. The most commonly obligate anaerobic species isolated from the core were Propionibacterium acnes, Prevotella melaninogenica and Peptostreptococcus anaerobius. We found no significant difference in the cultured bacteria with respect to age and tonsillar size. The study subgroups did not differ in the occurrence of semiquantitative growth estimates of 3-4+. Our study demonstrates that there is polymicrobial aerobic and anaerobic flora in tonsils with regardless of patient's age and tonsillar size. This polymicrobial spectrum of bacteria may contribute to recurrence and to the failure of conservative treatment of these cases and therefore leads to surgical therapy.

  11. A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe

    PubMed Central

    McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew

    2014-01-01

    Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810

  12. The use of fatty acid methyl esters as biomarkers to determine aerobic, facultatively aerobic and anaerobic communities in wastewater treatment systems.

    PubMed

    Quezada, Maribel; Buitrón, Germán; Moreno-Andrade, Iván; Moreno, Gloria; López-Marín, Luz M

    2007-01-01

    The use of fatty acid methyl esters (FAME) as biomarkers to identify groups of microorganisms was studied. A database was constructed using previously published results that identify FAME biomarkers for aerobic, anaerobic and facultatively aerobic bacteria. FAME profiles obtained from pure cultures were utilized to confirm the predicted presence of biomarkers. Principal component analysis demonstrated that the FAME profiles can be used to determine the incidence of these bacterial groups. The presence of aerobic, anaerobic and facultatively aerobic bacteria in the communities, in four bioreactors being used to treat different wastewaters, was investigated by applying FAME biomarkers.

  13. Facultative Lagoons. Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    This instructor's guide contains materials needed to teach a two-lesson unit on the structure and components of facultative lagoons, the biological theory of their operation, and factors affecting their operation. Control testing recommendations, maintenance guidelines, and troubleshooting hints are also provided. These materials include: (1) an…

  14. 46 CFR 308.543 - Cancellation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Cancellation. 308.543 Section 308.543 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.543 Cancellation. Facultative war risk insurance is not subject to...

  15. 46 CFR 308.543 - Cancellation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Cancellation. 308.543 Section 308.543 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.543 Cancellation. Facultative war risk insurance is not subject to...

  16. 46 CFR 308.543 - Cancellation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Cancellation. 308.543 Section 308.543 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.543 Cancellation. Facultative war risk insurance is not subject to...

  17. 46 CFR 308.543 - Cancellation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Cancellation. 308.543 Section 308.543 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Cargo Insurance Iii-Facultative War Risk Cargo Insurance § 308.543 Cancellation. Facultative war risk insurance is not subject to...

  18. A Redox-Responsive Transcription Factor Is Critical for Pathogenesis and Aerobic Growth of Listeria monocytogenes.

    PubMed

    Whiteley, Aaron T; Ruhland, Brittany R; Edrozo, Mauna B; Reniere, Michelle L

    2017-05-01

    Bacterial pathogens have evolved sophisticated mechanisms to sense and adapt to redox stress in nature and within the host. However, deciphering the redox environment encountered by intracellular pathogens in the mammalian cytosol is challenging, and that environment remains poorly understood. In this study, we assessed the contributions of the two redox-responsive, Spx-family transcriptional regulators to the virulence of Listeria monocytogenes , a Gram-positive facultative intracellular pathogen. Spx-family proteins are highly conserved in Firmicutes , and the L. monocytogenes genome contains two paralogues, spxA1 and spxA2 Here, we demonstrate that spxA1 , but not spxA2 , is required for the oxidative stress response and pathogenesis. SpxA1 function appeared to be conserved with the Bacillus subtilis homologue, and resistance to oxidative stress required the canonical CXXC redox-sensing motif. Remarkably, spxA1 was essential for aerobic growth, demonstrating that L. monocytogenes SpxA1 likely regulates a distinct set of genes. Although the Δ spxA1 mutant did not grow in the presence of oxygen in the laboratory, it was able to replicate in macrophages and colonize the spleens, but not the livers, of infected mice. These data suggest that the redox state of bacteria during infection differs significantly from that of bacteria growing in vitro Further, the host cell cytosol may resemble an anaerobic environment, with tissue-specific variations in redox stress and oxygen concentration. Copyright © 2017 Whiteley et al.

  19. Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics

    PubMed Central

    Schwarz, Ryan S; Teixeira, Érica Weinstein; Tauber, James P; Birke, Juliane M; Martins, Marta Fonseca; Fonseca, Isabela; Evans, Jay D

    2014-01-01

    Two species of Spiroplasma (Mollicutes) bacteria were isolated from and described as pathogens of the European honey bee, Apis mellifera, ∼30 years ago but recent information on them is lacking despite global concern to understand bee population declines. Here we provide a comprehensive survey for the prevalence of these two Spiroplasma species in current populations of honey bees using improved molecular diagnostic techniques to assay multiyear colony samples from North America (U.S.A.) and South America (Brazil). Significant annual and seasonal fluctuations of Spiroplasma apis and Spiroplasma melliferum prevalence in colonies from the U.S.A. (n = 616) and Brazil (n = 139) occurred during surveys from 2011 through 2013. Overall, 33% of U.S.A. colonies and 54% of Brazil colonies were infected by Spiroplasma spp., where S. melliferum predominated over S. apis in both countries (25% vs. 14% and 44% vs. 38% frequency, respectively). Colonies were co-infected by both species more frequently than expected in both countries and at a much higher rate in Brazil (52%) compared to the U.S.A. (16.5%). U.S.A. samples showed that both species were prevalent not only during spring, as expected from prior research, but also during other seasons. These findings demonstrate that the model of honey bee spiroplasmas as springtime-restricted pathogens needs to be broadened and their role as occasional pathogens considered in current contexts. PMID:24771723

  20. Identification of Genome-Wide Mutations in Ciprofloxacin-Resistant F. tularensis LVS Using Whole Genome Tiling Arrays and Next Generation Sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaing, Crystal J.; McLoughlin, Kevin S.; Thissen, James B.

    Francisella tularensis is classified as a Class A bioterrorism agent by the U.S. government due to its high virulence and the ease with which it can be spread as an aerosol. It is a facultative intracellular pathogen and the causative agent of tularemia. Ciprofloxacin (Cipro) is a broad spectrum antibiotic effective against Gram-positive and Gram-negative bacteria. Increased Cipro resistance in pathogenic microbes is of serious concern when considering options for medical treatment of bacterial infections. Identification of genes and loci that are associated with Ciprofloxacin resistance will help advance the understanding of resistance mechanisms and may, in the future, providemore » better treatment options for patients. It may also provide information for development of assays that can rapidly identify Cipro-resistant isolates of this pathogen. In this study, we then selected a large number of F. tularensis live vaccine strain (LVS) isolates that survived in progressively higher Ciprofloxacin concentrations, screened the isolates using a whole genome F. tularensis LVS tiling microarray and Illumina sequencing, and identified both known and novel mutations associated with resistance. For genes containing mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthase, a sugar transamine/perosamine synthetase and others. Finally, structural modeling performed on these proteins provides insights into the potential function of these proteins and how they might contribute to Cipro resistance mechanisms.« less

  1. Identification of Genome-Wide Mutations in Ciprofloxacin-Resistant F. tularensis LVS Using Whole Genome Tiling Arrays and Next Generation Sequencing

    DOE PAGES

    Jaing, Crystal J.; McLoughlin, Kevin S.; Thissen, James B.; ...

    2016-09-26

    Francisella tularensis is classified as a Class A bioterrorism agent by the U.S. government due to its high virulence and the ease with which it can be spread as an aerosol. It is a facultative intracellular pathogen and the causative agent of tularemia. Ciprofloxacin (Cipro) is a broad spectrum antibiotic effective against Gram-positive and Gram-negative bacteria. Increased Cipro resistance in pathogenic microbes is of serious concern when considering options for medical treatment of bacterial infections. Identification of genes and loci that are associated with Ciprofloxacin resistance will help advance the understanding of resistance mechanisms and may, in the future, providemore » better treatment options for patients. It may also provide information for development of assays that can rapidly identify Cipro-resistant isolates of this pathogen. In this study, we then selected a large number of F. tularensis live vaccine strain (LVS) isolates that survived in progressively higher Ciprofloxacin concentrations, screened the isolates using a whole genome F. tularensis LVS tiling microarray and Illumina sequencing, and identified both known and novel mutations associated with resistance. For genes containing mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthase, a sugar transamine/perosamine synthetase and others. Finally, structural modeling performed on these proteins provides insights into the potential function of these proteins and how they might contribute to Cipro resistance mechanisms.« less

  2. The mutagenesis of a type IV secretion system locus of Piscirickettsia salmonis leads to the attenuation of the pathogen in Atlantic salmon, Salmo salar.

    PubMed

    Mancilla, M; Saavedra, J; Grandón, M; Tapia, E; Navas, E; Grothusen, H; Bustos, P

    2018-04-01

    Piscirickettsiosis is a threatening infectious disease for the salmon industry, due to it being responsible for significant economic losses. The control of outbreaks also poses considerable environmental challenges. Despite Piscirickettsia salmonis having been discovered as the aetiological agent of the disease more than 25 years ago, its pathogenicity remains poorly understood. Among virulence factors identified so far, type four secretion systems (T4SS) seem to play a key role during the infection caused by the bacterium. We report here the genetic manipulation of P. salmonis by means of the transference of plasmid DNA in mating assays. An insertion cassette was engineered for targeting the icmB gene, which encodes a putative T4SS-ATPase and is carried by one of the chromosomal T4SS clusters found within the genome of P. salmonis PM15972A1, a virulent representative of the EM-90-like strain. The molecular characterization of the resulting mutant strain demonstrated that the insertion interrupted the target gene. Further in vitro testing of the icmB mutant showed a dramatic drop in infectivity as tested in CHSE-214 cells, which is in agreement with its attenuated behaviour observed in vivo. Altogether, our results demonstrate that, similar to other facultative intracellular pathogens, P. salmonis' virulence relies on an intact T4SS. © 2017 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  3. Detection of Sulphate-Reducing Bacteria and Others Cultivable Facultative Bacteria in Dental Tissues

    PubMed Central

    Gonçalves, Lúcio de Souza; Dias, Eliane Pedra; Heggendorn, Christiane; Lutterbach, Márcia T. S.

    2014-01-01

    Aim To detect for the presence of sulphate-reducing bacteria (SRB) and evaluate the possible association between SRB and cultivable facultative bacterial of oral sites with different periodontal conditions. Methods The study was carried out on 9 samples from different oral sites in 8 patients (two samples were collected from the same patient). Material was collected using modified Postgate E culture medium, indicated for the growth and isolation of SRB. In addition, a reducing solution for anaerobic bacteria was used as a transport solution for facultative bacteria and identified by polymerase chain reaction amplification (PCR) and sequencing of the 16S rRNA gene. Results SRB was found in 3 patient samples: the first in a root fragment, the second in a root fragment and a healthy tooth with vertical bone loss and a mobility degree of 3; and the third in a healthy tooth extracted for orthodontic treatment. In the final patient, the cultivable facultative species Lactobacillus casei was identified. Other facultative bacterial species were identified in patient 5 (Kurthia Gibsonii) and patient 7 (Pseudomonas aeruginosa). Conclusions The detection of SRB in different dental tissues with distinct periodontal features demonstrated that new studies need to be developed in order to determine the true role of SRB in the oral microbiota. In addition, it was possible to verify the presence of Lactobacillus casei together with SRB in one sample. PMID:27688355

  4. Transcriptome Reprogramming by Plasmid-Encoded Transcriptional Regulators Is Required for Host Niche Adaption of a Macrophage Pathogen

    PubMed Central

    Coulson, Garry B.; Miranda-CasoLuengo, Aleksandra A.; Miranda-CasoLuengo, Raúl; Wang, Xiaoguang; Oliver, Jenna; Willingham-Lane, Jennifer M.

    2015-01-01

    Rhodococcus equi is a facultative intracellular pathogen of macrophages, relying on the presence of a conjugative virulence plasmid harboring a 21-kb pathogenicity island (PAI) for growth in host macrophages. The PAI encodes a family of 6 virulence-associated proteins (Vaps) in addition to 20 other proteins. The contribution of these to virulence has remained unclear. We show that the presence of only 3 virulence plasmid genes (of 73 in total) is required and sufficient for intracellular growth. These include a single vap family member, vapA, and two PAI-located transcriptional regulators, virR and virS. Both transcriptional regulators are essential for wild-type-level expression of vapA, yet vapA expression alone is not sufficient to allow intracellular growth. A whole-genome microarray analysis revealed that VirR and VirS substantially integrate themselves into the chromosomal regulatory network, significantly altering the transcription of 18% of all chromosomal genes. This pathoadaptation involved significant enrichment of select gene ontologies, in particular, enrichment of genes involved in transport processes, energy production, and cellular metabolism, suggesting a major change in cell physiology allowing the bacterium to grow in the hostile environment of the host cell. The results suggest that following the acquisition of the virulence plasmid by an avirulent ancestor of R. equi, coevolution between the plasmid and the chromosome took place, allowing VirR and VirS to regulate the transcription of chromosomal genes in a process that ultimately promoted intracellular growth. Our findings suggest a mechanism for cooption of existing chromosomal traits during the evolution of a pathogenic bacterium from an avirulent saprophyte. PMID:26015480

  5. The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

    PubMed Central

    Letek, Michal; González, Patricia; MacArthur, Iain; Rodríguez, Héctor; Freeman, Tom C.; Valero-Rello, Ana; Blanco, Mónica; Buckley, Tom; Cherevach, Inna; Fahey, Ruth; Hapeshi, Alexia; Holdstock, Jolyon; Leadon, Desmond; Navas, Jesús; Ocampo, Alain; Quail, Michael A.; Sanders, Mandy; Scortti, Mariela M.; Prescott, John F.; Fogarty, Ursula; Meijer, Wim G.; Parkhill, Julian; Bentley, Stephen D.; Vázquez-Boland, José A.

    2010-01-01

    We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi. PMID:20941392

  6. Spontaneous listeriosis in grey mouse lemurs (Microcebus murinus), but not in Goodman's mouse lemurs (Microcebus lehilahytsara) of the same colony.

    PubMed

    Hülskötter, Kirsten; Schmidtke, Daniel; Dubicanac, Marko; Siesenop, Ute; Zimmermann, Elke; Gerhauser, Ingo; Baumgärtner, Wolfgang; Herder, Vanessa

    2017-09-01

    Listeriosis is a zoonotic infection with the gram positive, facultative intracellular bacterium Listeria (L.) monocytogenes. Infections mainly occur in ruminants, but also in other species, including humans. Case fatality rate usually is high. The incidence of listeriosis in captive non-human primates is very low. We report the first spontaneous, fatal, and likely food-born outbreak of listeriosis in a population of captive grey mouse lemurs (Microcebus murinus). Conspicuously, none of the closely related Goodman's mouse lemurs (Microcebus lehilahytsara) in the same facility were affected. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Intraspecific variation in facultative symbiont infection among native and exotic pest populations: potential implications for biological control

    USDA-ARS?s Scientific Manuscript database

    Facultative bacterial symbionts can provide their host insects with protection from natural enemies. These symbionts are often found at low to intermediate frequencies in their native host populations, suggesting that symbiont diversity (and the corresponding suite of defensive properties) may be lo...

  8. Facultative Lagoons. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Andersen, Lorri

    The textual material for a unit on facultative lagoons is presented in this student manual. Topic areas discussed include: (1) loading; (2) microbial theory; (3) structure and design; (4) process control; (5) lagoon start-up; (6) data handling and analysis; (7) lagoon maintenance (considering visual observations, pond structure, safety, odor,…

  9. Chromobacterium Violaceum Sepsis: Rethinking Conventional Therapy to Improve Outcome

    PubMed Central

    Richard, Kathleen R.; Lovvorn, Joshua J.; Oliver, Sara E.; Ross, Shannon A.; Benner, Kim W.; Kong, Michele Y.F.

    2015-01-01

    Patient: Male, 11 Final Diagnosis: Chromobacterium violaceum infection Symptoms: Abscess • fever • rash Medication: — Clinical Procedure: ECMO Specialty: Critical Care Medicine Objective: Rare disease Background: Chromobacterium violaceum (C. violaceum) is a facultative anaerobic gram-negative bacterium found in soil and water, especially in tropical and subtropical areas. Although infection in humans is rare, it is associated with significant morbidity. The bacterium is known for its resistance to multiple antimicrobials, and the possibility of relapse and reinfection. Presence of bacteremia, disseminated infection, and ineffective antimicrobial agents are predictors of mortality. Case Report: We report the case of a previously healthy 11-year-old male with C. violaceum sepsis who was exposed to stagnant water. He presented with severe septic shock and developed multi-organ system failure. Initial presumptive diagnosis was staphylococcal infection secondary to presence of skin abscesses resulting in antibiotic coverage with vancomycin, clindamycin, nafcillin and ceftriaxone. He also had multiple lung and liver abscesses. Once C. violaceum was identified, he received meropenem and ciprofloxacin, and was later discharged on ertapenem and trimethoprim-sulfamethoxazole (TMP-SMX) to complete a total of six months of antibiotics. He was diagnosed with chronic granulomatous disease (CGD) and is currently on prophylactic TMP-SMX and itraconazole. He has not had any relapses since his initial presentation. Conclusions: This case highlights the importance of considering C. violaceum as a relevant human pathogen, and considering it early in temperate regions, particularly in cases of fulminant sepsis associated with multi-organ abscesses. Once C. violaceum is identified, appropriate antimicrobial therapy should be started promptly, and sufficient duration of treatment is necessary for successful therapy. PMID:26477750

  10. Sequential changes in luminal microflora and mucosal cytokine expression during developing of colitis in HLA-B27/beta2-microglobulin transgenic rats.

    PubMed

    Hata, K; Andoh, A; Sato, H; Araki, Y; Tanaka, M; Tsujikawa, T; Fujiyama, Y; Bamba, T

    2001-11-01

    Transgenic rats expressing HLA-B27 and human beta2-microglobulin (HLA-B27 rats) spontaneously develop chronic colitis resembling human inflammatory bowel disease. We investigated the sequential changes in the luminal bacterial flora and mucosal cytokine mRNA expression in this model. HLA-B27 rats were maintained in a specific pathogen-free environment, and luminal microflora was evaluated by standard bacterial culture technique. The expression of mucosal cytokine mRNA was analysed by RT-PCR methods. Clinical symptoms of colitis appeared at 8 weeks of age. The total number of obligate anaerobes was higher than those of facultative anaerobes during the experimental period. At 6 weeks of age, the colonization of Bacteroides spp., Bifidobacterium spp. and Lactobacillus spp. was already detectable at high concentrations, whereas Clostridium spp. and Eubacterium spp. were not detected. The expression of proinflammatory cytokines (IL-Ibeta, IL-8 and TNF-alpha) appeared at 8 weeks of age, and these were detectable until 17 weeks. A similar pattern was observed in the expression of Th1 cytokines (IL-2, IL-12 and IFN-gamma). On the other hand, the expression of Th2 cytokines (IL-4, IL-10 and TGF-beta) was weak. IL-4 mRNA expression was weakly detectable only at 6 and 8 weeks of age. The expression of IL-10 and TGF-beta mRNA was scarcely detectable throughout the experimental period. The development of colitis may be mediated by both the predominant expression of Th1 cytokines and the weakness of Th2 cytokine expression in the mucosa. The colonization of anaerobic bacteria, especially Bacteroides spp., may be initiating and promoting these cytokine responses.

  11. Evolutionary Divergence of Aggregatibacter actinomycetemcomitans

    PubMed Central

    Kittichotirat, W.; Bumgarner, R.E.; Chen, C.

    2016-01-01

    Gram-negative facultative Aggregatibacter actinomycetemcomitans is an oral pathogen associated with periodontitis. The genetic heterogeneity among A. actinomycetemcomitans strains has been long recognized. This study provides a comprehensive genomic analysis of A. actinomycetemcomitans and the closely related nonpathogenic Aggregatibacter aphrophilus. Whole genome sequencing by Illumina MiSeq platform was performed for 31 A. actinomycetemcomitans and 2 A. aphrophilus strains. Sequence similarity analysis shows a total of 3,220 unique genes across the 2 species, where 1,550 are core genes present in all genomes and 1,670 are variable genes (accessory genes) missing in at least 1 genome. Phylogenetic analysis based on 397 concatenated core genes distinguished A. aphrophilus and A. actinomycetemcomitans. The latter was in turn divided into 5 clades: clade b (serotype b), clade c (serotype c), clade e/f (serotypes e and f), clade a/d (serotypes a and d), and clade e′ (serotype e strains). Accessory genes accounted for 14.1% to 23.2% of the A. actinomycetemcomitans genomes, with a majority belonging to the category of poorly characterized by Cluster of Orthologous Groups classification. These accessory genes were often organized into genomic islands (n = 387) with base composition biases, suggesting their acquisitions via horizontal gene transfer. There was a greater degree of similarity in gene content and genomic islands among strains within clades than between clades. Strains of clade e′ isolated from human were found to be missing the genomic island that carries genes encoding cytolethal distending toxins. Taken together, the results suggest a pattern of sequential divergence, starting from the separation of A. aphrophilus and A. actinomycetemcomitans through gain and loss of genes and ending with the divergence of the latter species into distinct clades and serotypes. With differing constellations of genes, the A. actinomycetemcomitans clades may have evolved distinct adaptation strategies to the human oral cavity. PMID:26420795

  12. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice.

    PubMed

    Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves; Letesson, Jean-Jacques; Muraille, Eric

    2012-12-01

    Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4(+) T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8(+) T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.

  13. CYLD Enhances Severe Listeriosis by Impairing IL-6/STAT3-Dependent Fibrin Production

    PubMed Central

    Nishanth, Gopala; Deckert, Martina; Wex, Katharina; Massoumi, Ramin; Schweitzer, Katrin; Naumann, Michael; Schlüter, Dirk

    2013-01-01

    The facultative intracellular bacterium Listeria monocytogenes (Lm) may cause severe infection in humans and livestock. Control of acute listeriosis is primarily dependent on innate immune responses, which are strongly regulated by NF-κB, and tissue protective factors including fibrin. However, molecular pathways connecting NF-κB and fibrin production are poorly described. Here, we investigated whether the deubiquitinating enzyme CYLD, which is an inhibitor of NF-κB-dependent immune responses, regulated these protective host responses in murine listeriosis. Upon high dose systemic infection, all C57BL/6 Cyld−/− mice survived, whereas 100% of wildtype mice succumbed due to severe liver pathology with impaired pathogen control and hemorrhage within 6 days. Upon in vitro infection with Lm, CYLD reduced NF-κB-dependent production of reactive oxygen species, interleukin (IL)-6 secretion, and control of bacteria in macrophages. Furthermore, Western blot analyses showed that CYLD impaired STAT3-dependent fibrin production in cultivated hepatocytes. Immunoprecipitation experiments revealed that CYLD interacted with STAT3 in the cytoplasm and strongly reduced K63-ubiquitination of STAT3 in IL-6 stimulated hepatocytes. In addition, CYLD diminished IL-6-induced STAT3 activity by reducing nuclear accumulation of phosphorylated STAT3. In vivo, CYLD also reduced hepatic STAT3 K63-ubiquitination and activation, NF-κB activation, IL-6 and NOX2 mRNA production as well as fibrin production in murine listeriosis. In vivo neutralization of IL-6 by anti-IL-6 antibody, STAT3 by siRNA, and fibrin by warfarin treatment, respectively, demonstrated that IL-6-induced, STAT3-mediated fibrin production significantly contributed to protection in Cyld−/− mice. In addition, in vivo Cyld siRNA treatment increased STAT3 phosphorylation, fibrin production, pathogen control and survival of Lm-infected WT mice illustrating that therapeutic inhibition of CYLD augments the protective NF-κB/IL-6/STAT3 pathway and fibrin production. PMID:23825949

  14. CYLD enhances severe listeriosis by impairing IL-6/STAT3-dependent fibrin production.

    PubMed

    Nishanth, Gopala; Deckert, Martina; Wex, Katharina; Massoumi, Ramin; Schweitzer, Katrin; Naumann, Michael; Schlüter, Dirk

    2013-01-01

    The facultative intracellular bacterium Listeria monocytogenes (Lm) may cause severe infection in humans and livestock. Control of acute listeriosis is primarily dependent on innate immune responses, which are strongly regulated by NF-κB, and tissue protective factors including fibrin. However, molecular pathways connecting NF-κB and fibrin production are poorly described. Here, we investigated whether the deubiquitinating enzyme CYLD, which is an inhibitor of NF-κB-dependent immune responses, regulated these protective host responses in murine listeriosis. Upon high dose systemic infection, all C57BL/6 Cyld(-/-) mice survived, whereas 100% of wildtype mice succumbed due to severe liver pathology with impaired pathogen control and hemorrhage within 6 days. Upon in vitro infection with Lm, CYLD reduced NF-κB-dependent production of reactive oxygen species, interleukin (IL)-6 secretion, and control of bacteria in macrophages. Furthermore, Western blot analyses showed that CYLD impaired STAT3-dependent fibrin production in cultivated hepatocytes. Immunoprecipitation experiments revealed that CYLD interacted with STAT3 in the cytoplasm and strongly reduced K63-ubiquitination of STAT3 in IL-6 stimulated hepatocytes. In addition, CYLD diminished IL-6-induced STAT3 activity by reducing nuclear accumulation of phosphorylated STAT3. In vivo, CYLD also reduced hepatic STAT3 K63-ubiquitination and activation, NF-κB activation, IL-6 and NOX2 mRNA production as well as fibrin production in murine listeriosis. In vivo neutralization of IL-6 by anti-IL-6 antibody, STAT3 by siRNA, and fibrin by warfarin treatment, respectively, demonstrated that IL-6-induced, STAT3-mediated fibrin production significantly contributed to protection in Cyld(-/-) mice. In addition, in vivo Cyld siRNA treatment increased STAT3 phosphorylation, fibrin production, pathogen control and survival of Lm-infected WT mice illustrating that therapeutic inhibition of CYLD augments the protective NF-κB/IL-6/STAT3 pathway and fibrin production.

  15. Computational prediction of secretion systems and secretomes of Brucella: identification of novel type IV effectors and their interaction with the host.

    PubMed

    Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Dinakaran, Vasudevan; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-01-01

    Brucella spp. are facultative intracellular pathogens that cause brucellosis in various mammals including humans. Brucella survive inside the host cells by forming vacuoles and subverting host defence systems. This study was aimed to predict the secretion systems and the secretomes of Brucella spp. from 39 complete genome sequences available in the databases. Furthermore, an attempt was made to identify the type IV secretion effectors and their interactions with host proteins. We predicted the secretion systems of Brucella by the KEGG pathway and SecReT4. Brucella secretomes and type IV effectors (T4SEs) were predicted through genome-wide screening using JVirGel and S4TE, respectively. Protein-protein interactions of Brucella T4SEs with their hosts were analyzed by HPIDB 2.0. Genes coding for Sec and Tat pathways of secretion and type I (T1SS), type IV (T4SS) and type V (T5SS) secretion systems were identified and they are conserved in all the species of Brucella. In addition to the well-known VirB operon coding for the type IV secretion system (T4SS), we have identified the presence of additional genes showing homology with T4SS of other organisms. On the whole, 10.26 to 14.94% of total proteomes were found to be either secreted (secretome) or membrane associated (membrane proteome). Approximately, 1.7 to 3.0% of total proteomes were identified as type IV secretion effectors (T4SEs). Prediction of protein-protein interactions showed 29 and 36 host-pathogen specific interactions between Bos taurus (cattle)-B. abortus and Ovis aries (sheep)-B. melitensis, respectively. Functional characterization of the predicted T4SEs and their interactions with their respective hosts may reveal the secrets of host specificity of Brucella.

  16. Host Cell Responses to Persistent Mycoplasmas - Different Stages in Infection of HeLa Cells with Mycoplasma hominis

    PubMed Central

    Hopfe, Miriam; Deenen, René; Degrandi, Daniel; Köhrer, Karl; Henrich, Birgit

    2013-01-01

    Mycoplasma hominis is a facultative human pathogen primarily associated with bacterial vaginosis and pelvic inflammatory disease, but it is also able to spread to other sites, leading to arthritis or, in neonates, meningitis. With a minimal set of 537 annotated genes, M. hominis is the second smallest self-replicating mycoplasma and thus an ideal model organism for studying the effects of an infectious agent on its host more closely. M. hominis adherence, colonisation and invasion of HeLa cells were characterised in a time-course study using scanning electron microscopy, confocal microscopy and microarray-based analysis of the HeLa cell transcriptome. At 4 h post infection, cytoadherence of M. hominis to the HeLa cell surface was accompanied by differential regulation of 723 host genes (>2 fold change in expression). Genes associated with immune responses and signal transduction pathways were mainly affected and components involved in cell-cycle regulation, growth and death were highly upregulated. At 48 h post infection, when mycoplasma invasion started, 1588 host genes were differentially expressed and expression of genes for lysosome-specific proteins associated with bacterial lysis was detected. In a chronically infected HeLa cell line (2 weeks), the proportion of intracellular mycoplasmas reached a maximum of 10% and M. hominis-filled protrusions of the host cell membrane were seen by confocal microscopy, suggesting exocytotic dissemination. Of the 1972 regulated host genes, components of the ECM-receptor interaction pathway and phagosome-related integrins were markedly increased. The immune response was quite different to that at the beginning of infection, with a prominent induction of IL1B gene expression, affecting pathways of MAPK signalling, and genes connected with cytokine-cytokine interactions and apoptosis. These data show for the first time the complex, time-dependent reaction of the host directed at mycoplasmal clearance and the counter measures of this pestering pathogen. PMID:23326599

  17. Burkholderia mallei and Burkholderia pseudomallei Cluster 1 Type VI Secretion System Gene Expression Is Negatively Regulated by Iron and Zinc

    PubMed Central

    Burtnick, Mary N.; Brett, Paul J.

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc. PMID:24146925

  18. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc.

    PubMed

    Burtnick, Mary N; Brett, Paul J

    2013-01-01

    Burkholderia mallei is a facultative intracellular pathogen that causes glanders in humans and animals. Previous studies have demonstrated that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for virulence in hamsters and is positively regulated by the VirAG two-component system. Recently, we have shown that T6SS-1 gene expression is up-regulated following internalization of this pathogen into phagocytic cells and that this system promotes multinucleated giant cell formation in infected tissue culture monolayers. In the present study, we further investigated the complex regulation of this important virulence factor. To assess T6SS-1 expression, B. mallei strains were cultured in various media conditions and Hcp1 production was analyzed by Western immunoblotting. Transcript levels of several VirAG-regulated genes (bimA, tssA, hcp1 and tssM) were also determined using quantitative real time PCR. Consistent with previous observations, T6SS-1 was not expressed during growth of B. mallei in rich media. Curiously, growth of the organism in minimal media (M9G) or minimal media plus casamino acids (M9CG) facilitated robust expression of T6SS-1 genes whereas growth in minimal media plus tryptone (M9TG) did not. Investigation of this phenomenon confirmed a regulatory role for VirAG in this process. Additionally, T6SS-1 gene expression was significantly down-regulated by the addition of iron and zinc to M9CG. Other genes under the control of VirAG did not appear to be as tightly regulated by these divalent metals. Similar results were observed for B. pseudomallei, but not for B. thailandensis. Collectively, our findings indicate that in addition to being positively regulated by VirAG, B. mallei and B. pseudomallei T6SS-1 gene expression is negatively regulated by iron and zinc.

  19. The Evolution of Facultative Conformity Based on Similarity.

    PubMed

    Efferson, Charles; Lalive, Rafael; Cacault, Maria Paula; Kistler, Deborah

    2016-01-01

    Conformist social learning can have a pronounced impact on the cultural evolution of human societies, and it can shape both the genetic and cultural evolution of human social behavior more broadly. Conformist social learning is beneficial when the social learner and the demonstrators from whom she learns are similar in the sense that the same behavior is optimal for both. Otherwise, the social learner's optimum is likely to be rare among demonstrators, and conformity is costly. The trade-off between these two situations has figured prominently in the longstanding debate about the evolution of conformity, but the importance of the trade-off can depend critically on the flexibility of one's social learning strategy. We developed a gene-culture coevolutionary model that allows cognition to encode and process information about the similarity between naive learners and experienced demonstrators. Facultative social learning strategies that condition on perceived similarity evolve under certain circumstances. When this happens, facultative adjustments are often asymmetric. Asymmetric adjustments mean that the tendency to follow the majority when learners perceive demonstrators as similar is stronger than the tendency to follow the minority when learners perceive demonstrators as different. In an associated incentivized experiment, we found that social learners adjusted how they used social information based on perceived similarity, but adjustments were symmetric. The symmetry of adjustments completely eliminated the commonly assumed trade-off between cases in which learners and demonstrators share an optimum versus cases in which they do not. In a second experiment that maximized the potential for social learners to follow their preferred strategies, a few social learners exhibited an inclination to follow the majority. Most, however, did not respond systematically to social information. Additionally, in the complete absence of information about their similarity to demonstrators, social learners were unwilling to make assumptions about whether they shared an optimum with demonstrators. Instead, social learners simply ignored social information even though this was the only information available. Our results suggest that social cognition equips people to use conformity in a discriminating fashion that moderates the evolutionary trade-offs that would occur if conformist social learning was rigidly applied.

  20. The Evolution of Facultative Conformity Based on Similarity

    PubMed Central

    Efferson, Charles; Lalive, Rafael; Cacault, Maria Paula; Kistler, Deborah

    2016-01-01

    Conformist social learning can have a pronounced impact on the cultural evolution of human societies, and it can shape both the genetic and cultural evolution of human social behavior more broadly. Conformist social learning is beneficial when the social learner and the demonstrators from whom she learns are similar in the sense that the same behavior is optimal for both. Otherwise, the social learner’s optimum is likely to be rare among demonstrators, and conformity is costly. The trade-off between these two situations has figured prominently in the longstanding debate about the evolution of conformity, but the importance of the trade-off can depend critically on the flexibility of one’s social learning strategy. We developed a gene-culture coevolutionary model that allows cognition to encode and process information about the similarity between naive learners and experienced demonstrators. Facultative social learning strategies that condition on perceived similarity evolve under certain circumstances. When this happens, facultative adjustments are often asymmetric. Asymmetric adjustments mean that the tendency to follow the majority when learners perceive demonstrators as similar is stronger than the tendency to follow the minority when learners perceive demonstrators as different. In an associated incentivized experiment, we found that social learners adjusted how they used social information based on perceived similarity, but adjustments were symmetric. The symmetry of adjustments completely eliminated the commonly assumed trade-off between cases in which learners and demonstrators share an optimum versus cases in which they do not. In a second experiment that maximized the potential for social learners to follow their preferred strategies, a few social learners exhibited an inclination to follow the majority. Most, however, did not respond systematically to social information. Additionally, in the complete absence of information about their similarity to demonstrators, social learners were unwilling to make assumptions about whether they shared an optimum with demonstrators. Instead, social learners simply ignored social information even though this was the only information available. Our results suggest that social cognition equips people to use conformity in a discriminating fashion that moderates the evolutionary trade-offs that would occur if conformist social learning was rigidly applied. PMID:28002461

  1. Tinidazole inhibitory and cidal activity against anaerobic periodontal pathogens.

    PubMed

    Alou, L; Giménez, M J; Manso, F; Sevillano, D; Torrico, M; González, N; Granizo, J J; Bascones, A; Prieto, J; Maestre, J R; Aguilar, L

    2009-05-01

    The in vitro activity of tinidazole against anaerobic periodontal pathogens (25 Prevotella buccae, 18 Prevotella denticola, 10 Prevotella intermedia, 6 Prevotella melaninogenica, 5 Prevotella oralis, 10 Fusobacterium nucleatum and 8 Veillonella spp.) was determined by agar dilution. MIC(90) values (minimum inhibitory concentration for 90% of the organisms) were 8 microg/mL for Veillonella spp., 4 microg/mL for P. intermedia, 2 microg/mL for P. buccae, 1 microg/mL for Fusobacterium spp. and 0.5 microg/mL for other Prevotella spp. Cidal activity was studied by killing curves with tinidazole and amoxicillin (alone and in combination) at concentrations similar to those achieved in crevicular fluid (41.2 microg/mL tinidazole and 14.05 microg/mL amoxicillin) against an inoculum of ca. 10(7)colony-forming units/mL of four bacterial groups, each one composed of four different strains of the following periodontal isolates: Prevotella spp., Fusobacterium spp. and Veillonella spp. (anaerobes) and one amoxicillin-susceptible Streptococcus spp. (facultative) in a proportion of 1:1:1:1. When only beta-lactamase-negative Prevotella or Fusobacterium strains were tested, significantly higher reductions were found with amoxicillin (>4 log reduction at 48 h) versus controls. The presence of beta-lactamase-positive Prevotella spp. or F. nucleatum strains rendered amoxicillin inactive (no reductions at 48 h), with no differences from controls. Amoxicillin+tinidazole produced >3 log reduction at 24h and >4 log reduction at 48 h regardless of the presence or not of beta-lactamase-positive strains. The presence in crevicular fluid of beta-lactamases produced by beta-lactamase-positive periodontal pathogens may have ecological and therapeutic consequences since it may protect beta-lactamase-negative periodontal pathogens from amoxicillin treatment. In vitro, tinidazole offered high antianaerobic activity against beta-lactamase-positive and -negative periodontal pathogens, avoiding amoxicillin inactivation.

  2. Testing Whether Defective Chromatin Assembly in S-Phase Contributes to Breast Cancer

    DTIC Science & Technology

    2005-10-01

    subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...that defects in chromatin assembly trigger DNA damage, a potent source of genome instability and cause of human cancers. Although we failed to make a ...studies might reveal such. a link. Second, we showed that the bistone chaperones HIRA and ASF I a drive formation of specialized domains of facultative

  3. The potential role of lung epithelial cells and beta-defensins in experimental latent tuberculosis.

    PubMed

    Rivas-Santiago, B; Contreras, J C L; Sada, E; Hernández-Pando, R

    2008-05-01

    Mycobacterium tuberculosis is a facultative intracellular pathogen capable of producing both progressive disease and latent infection. Latent infection is clinically asymptomatic and is manifested only by a positive tuberculin test or a chest radiograph that shows scars or calcified nodules indicative of resolved primary tuberculosis infection. In this study, we used a well-characterized model of latent tuberculosis infection in B6D2F1 mice to compare the production of beta-defensin-3 by infected bronchial epithelial cells and macrophages. We demonstrated by immunolectronmicroscopy that M. tuberculosis can actually infect epithelial cells and induce significant higher production of beta-defensin-3 associated to mycobacteria than infected macrophages. These results demonstrate that lung epithelium harbour mycobacteria during experimental chronic infection; being a possible reservoir of latent mycobacteria in vivo, beta-defensins might participate in bacilli killing or dormancy induction.

  4. Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland

    PubMed Central

    Belkhelfa, Sophia; Labadie, Karine; Cruaud, Corinne; Aury, Jean-Marc; Roche, David; Bouzon, Madeleine; Salanoubat, Marcel

    2018-01-01

    ABSTRACT Methylobacterium extorquens TK 0001 (DSM 1337, ATCC 43645) is an aerobic pink-pigmented facultative methylotrophic alphaproteobacterium isolated from soil in Poland. Here, we report the whole-genome sequence and annotation of this organism, which consists of a single 5.71-Mb chromosome. PMID:29472323

  5. Biogeography of Human Infectious Diseases: A Global Historical Analysis

    PubMed Central

    Cashdan, Elizabeth

    2014-01-01

    Objectives Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Methods Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Results Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare. PMID:25271730

  6. Biogeography of human infectious diseases: a global historical analysis.

    PubMed

    Cashdan, Elizabeth

    2014-01-01

    Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare.

  7. Pathogen Transmission from Humans to Great Apes is a Growing Threat to Primate Conservation.

    PubMed

    Dunay, Emily; Apakupakul, Kathleen; Leard, Stephen; Palmer, Jamie L; Deem, Sharon L

    2018-01-23

    All six great ape species are listed as endangered or critically endangered by the IUCN and experiencing decreasing population trends. One of the threats to these non-human primates is the transmission of pathogens from humans. We conducted a literature review on occurrences of pathogen transmission from humans to great apes to highlight this often underappreciated issue. In total, we found 33 individual occurrences of probable or confirmed pathogen transmission from humans to great apes: 23 involved both pathogen and disease transmission, 7 pathogen transmission only, 2 positive antibody titers to zoonotic pathogens, and 1 pathogen transmission with probable disease. Great ape populations were categorized into captive, semi-free-living, and free-living conditions. The majority of occurrences involved chimpanzees (Pan troglodytes) (n = 23) or mountain gorillas (Gorilla beringei beringei) (n = 8). These findings have implications for conservation efforts and management of endangered great ape populations. Future efforts should focus on monitoring and addressing zoonotic pathogen and disease transmission between humans, great ape species, and other taxa to ensure the health of humans, wild and domestic animals, and the ecosystems we share.

  8. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    PubMed

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  9. Differential expression of microRNAs in Francisella tularensis-infected human macrophages: miR-155-dependent downregulation of MyD88 inhibits the inflammatory response.

    PubMed

    Bandyopadhyay, Sarmistha; Long, Matthew E; Allen, Lee-Ann H

    2014-01-01

    Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5'-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12-18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18-24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.

  10. In Vitro Anti-Malassezia Activity of Castanea crenata Shell and Oil-Soluble Glycyrrhiza Extracts

    PubMed Central

    Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Jung, Won Hee; Park, Minji; Kim, Jeong Hwan; Shin, Hong Ju; Choe, Yong Beom; Ahn, Kyu Joong

    2017-01-01

    Background A new shampoo with anti-Malassezia properties obtained from various plants is required to provide seborrheic dermatitis patients with a wider range of treatment options. Objective The aim of this study was to obtain in vitro susceptibility profiles of Malassezia restricta and M. globosa, the most important pathogenic organisms in the development of seborrheic dermatitis, to the plant extracts used in commercial anti-dandruff shampoos. Methods Minimal inhibitory concentrations (MICs) were determined for eight candidate plant extracts and two plant-derived natural products diluted with Leeming and Notman medium to final concentrations of 0.016 to 1 mg/ml. Results Castanea crenata shell, Camellia sinensis leaf, and oil-soluble Glycyrrhiza extracts presented relatively low MIC values (≤0.5 mg/ml) against both strains. The C. crenata shell and oil-soluble Glycyrrhiza extracts demonstrated especially high anti-Malassezia activity, suggesting their potential use in the treatment of seborrheic dermatitis. The extracts also showed fungistatic activity against other common facultative pathogenic yeasts, Cryptococcus and Candida. Conclusion C. crenata shell and oil-soluble Glycyrrhiza extracts could potentially be used as active ingredients in anti-seborrheic and anti-dandruff shampoo formulations. They could be helpful for repeated treatments and regular prophylaxis of scalp seborrheic dermatitis. PMID:28566909

  11. Development of the normal gastrointestinal microflora of specific pathogen-free chickens.

    PubMed

    Coloe, P J; Bagust, T J; Ireland, L

    1984-02-01

    The development of the normal intestinal microflora of the small intestine, caecum and large intestine of specific pathogen-free (SPF) chickens, was studied in the period from hatching to 84 days of age. No bacteria were detected in any of the sites at hatchery (day 1), but by day 3 significant levels of faecal streptococci and coliforms were isolated from all sites. The flora of the small intestine was limited to faecal streptococci and coliforms for the first 40 days and then lactobacilli became established and dominated the flora. A large variety of facultative and strictly anaerobic organisms colonized the caecum. Many of these species were transient and were only present for a limited period; after 40 days the flora stabilized to consist predominantly of faecal streptococci, Escherichia coli, Bacteroides spp. and Lactobacillus sp. The flora of the large intestine was composed of organisms also present in the small intestine or the caecum. These findings differ from previously published studies on conventionally reared chickens in that the number of species isolated and the population levels of organisms are much lower. This probably reflects the absence of continuous environmental challenge to the chickens because of the housing and feeding facilities in which the chickens were maintained.

  12. Complete Genome Sequence of the Facultative Methylotroph Methylobacterium extorquens TK 0001 Isolated from Soil in Poland.

    PubMed

    Belkhelfa, Sophia; Labadie, Karine; Cruaud, Corinne; Aury, Jean-Marc; Roche, David; Bouzon, Madeleine; Salanoubat, Marcel; Döring, Volker

    2018-02-22

    Methylobacterium extorquens TK 0001 (DSM 1337, ATCC 43645) is an aerobic pink-pigmented facultative methylotrophic alphaproteobacterium isolated from soil in Poland. Here, we report the whole-genome sequence and annotation of this organism, which consists of a single 5.71-Mb chromosome. Copyright © 2018 Belkhelfa et al.

  13. Identification of the facultative heterochromatic X chromosome in females of 25 rodent species.

    PubMed

    Kanda, N; Yosida, T H

    1979-01-01

    Treatment of the chromosomes of 25 rodent species with a 50 degrees C hypotonic solution and Giemsa staining permitted identification of the heterochromatic X chromosome in 24 species. With this technique, the facultative of the heterochromatic X chromosome or the facultative portion of large, composite-type X chromosoms is stained darker than the other chromosomes, allowing it to be distinguished from the homologous euchromatic X chromosome in female metaphase cells. Intense staining of the single X chromosome was not observed in male metaphase cells. It is suggested that this differential staining of one of the two X chromosomes might be due to qualitative differences in chromosomal proteins rather than to differences in the degree of chromosomal condensation or in DNA base sequence.

  14. Risks Posed by Reston, the Forgotten Ebolavirus

    PubMed Central

    Cantoni, Diego; Hamlet, Arran; Michaelis, Martin; Wass, Mark N.

    2016-01-01

    ABSTRACT Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs. PMID:28066813

  15. Fish mucus metabolome reveals fish life-history traits

    NASA Astrophysics Data System (ADS)

    Reverter, M.; Sasal, P.; Banaigs, B.; Lecchini, D.; Lecellier, G.; Tapissier-Bontemps, N.

    2017-06-01

    Fish mucus has important biological and ecological roles such as defense against fish pathogens and chemical mediation among several species. A non-targeted liquid chromatography-mass spectrometry metabolomic approach was developed to study gill mucus of eight butterflyfish species in Moorea (French Polynesia), and the influence of several fish traits (geographic site and reef habitat, species taxonomy, phylogeny, diet and parasitism levels) on the metabolic variability was investigated. A biphasic extraction yielding two fractions (polar and apolar) was used. Fish diet (obligate corallivorous, facultative corallivorous or omnivorous) arose as the main driver of the metabolic differences in the gill mucus in both fractions, accounting for 23% of the observed metabolic variability in the apolar fraction and 13% in the polar fraction. A partial least squares discriminant analysis allowed us to identify the metabolites (variable important in projection, VIP) driving the differences between fish with different diets (obligate corallivores, facultative corallivores and omnivorous). Using accurate mass data and fragmentation data, we identified some of these VIP as glycerophosphocholines, ceramides and fatty acids. Level of monogenean gill parasites was the second most important factor shaping the gill mucus metabolome, and it explained 10% of the metabolic variability in the polar fraction and 5% in the apolar fraction. A multiple regression tree revealed that the metabolic variability due to parasitism in the polar fraction was mainly due to differences between non-parasitized and parasitized fish. Phylogeny and butterflyfish species were factors contributing significantly to the metabolic variability of the apolar fraction (10 and 3%, respectively) but had a less pronounced effect in the polar fraction. Finally, geographic site and reef habitat of butterflyfish species did not influence the gill mucus metabolome of butterflyfishes.

  16. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    PubMed

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  17. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    PubMed Central

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and challenge pathogen strain) change. It is suggestive that it is difficult to protect against aerosol challenge. Somewhat counter-intuitively, our results indicate that intraperitoneal and subcutaneous vaccinations are much more effective to protect against aerosol Brucella challenge than intranasal vaccination. Conclusions Literature meta-analysis identified variables that significantly contribute to Brucella vaccine protection efficacy. The results obtained provide critical information for rational vaccine study design. Literature meta-analysis is generic and can be applied to analyze variables critical for vaccine protection against other infectious diseases. PMID:23735014

  18. Selfish mothers indeed! Resource-dependent conflict over extended parental care in free-ranging dogs

    PubMed Central

    2015-01-01

    Parent–offspring conflict (POC) theory provides an interesting premise for understanding social dynamics in facultatively social species. In free-ranging dogs, mothers increase conflict over extended parental care with their pups beyond the weaning stage. In this study, we investigated whether resource quality affects POC in the dogs that typically live in a highly competitive environment as scavengers. We built a theoretical model to predict the alternative options available to the mother in the context of food sharing with her pups when protein-rich food (meat) is provided, as compared to carbohydrate-rich food (biscuits). We fit the mothers’ response from experimental data to the model and show that the mothers choose a selfish strategy, which can in turn ensure higher lifetime reproductive success, while depriving the current litter access to better resources. These results have interesting implications for understanding the social dynamics of the dogs, and the emergence of facultative sociality in a species that evolved from strongly social ancestors. We speculate that the tendency of increased conflict in resource-rich conditions might have driven the process of domestication in the ancestors of dogs which defected from their groups in favour of richer resources around human settlements. PMID:27019741

  19. Comparative Genomics of Facultative Bacterial Symbionts Isolated from European Orius Species Reveals an Ancestral Symbiotic Association

    PubMed Central

    Chen, Xiaorui; Hitchings, Matthew D.; Mendoza, José E.; Balanza, Virginia; Facey, Paul D.; Dyson, Paul J.; Bielza, Pablo; Del Sol, Ricardo

    2017-01-01

    Pest control in agriculture employs diverse strategies, among which the use of predatory insects has steadily increased. The use of several species within the genus Orius in pest control is widely spread, particularly in Mediterranean Europe. Commercial mass rearing of predatory insects is costly, and research efforts have concentrated on diet manipulation and selective breeding to reduce costs and improve efficacy. The characterisation and contribution of microbial symbionts to Orius sp. fitness, behaviour, and potential impact on human health has been neglected. This paper provides the first genome sequence level description of the predominant culturable facultative bacterial symbionts associated with five Orius species (O. laevigatus, O. niger, O. pallidicornis, O. majusculus, and O. albidipennis) from several geographical locations. Two types of symbionts were broadly classified as members of the genera Serratia and Leucobacter, while a third constitutes a new genus within the Erwiniaceae. These symbionts were found to colonise all the insect specimens tested, which evidenced an ancestral symbiotic association between these bacteria and the genus Orius. Pangenome analyses of the Serratia sp. isolates offered clues linking Type VI secretion system effector–immunity proteins from the Tai4 sub-family to the symbiotic lifestyle. PMID:29067021

  20. Divergent opinions on surface disinfection: myths or prevention? A review of the literature

    PubMed Central

    Exner, Martin

    2007-01-01

    Virtually no prevention strategy in hospital hygiene has been the focus of such frequent controversial discussions as the role of surface disinfection. Set against that background, the Commission for Hospital Hygiene and Infection Prevention at the Robert Koch Institute founded a working group comprising members with divergent views of risk evaluation as regards the role of disinfection. This working group produced a most carefully drafted guideline on how to deal with various risk areas and also incorporated a new provision into the guideline, stating that: “Cleaning and disinfection procedures must be organized and implemented such that there is no increase in the microbial load or spread of facultatively pathogenic or pathogenic microorganisms on surfaces.” Numerous studies have come to the conclusion that surface disinfection constitutes a basic infection control measure with which the spread of pathogens can be controlled. Conversely, when using only detergents such a form of control is not possible, something that must be taken into account in future when engaging in risk evaluation and formulating infection control measures. In view of the burgeoning trend in, for example, norovirus outbreaks, also in hospitals and nursing homes, such insights are of paramount importance and attest to the need for disinfection of surfaces and of areas with frequent hand and skin contacts. This discussion about the need for surface disinfection has, in addition to causing confusion among users, led to a decline in the willingness to accept hygienic practices, thus increasing the risk of occurrence of nosocomial infections as well as of antibiotic-resistant microorganisms. PMID:20200680

  1. Divergent opinions on surface disinfection: myths or prevention? A review of the literature.

    PubMed

    Exner, Martin

    2007-09-13

    Virtually no prevention strategy in hospital hygiene has been the focus of such frequent controversial discussions as the role of surface disinfection. Set against that background, the Commission for Hospital Hygiene and Infection Prevention at the Robert Koch Institute founded a working group comprising members with divergent views of risk evaluation as regards the role of disinfection. This working group produced a most carefully drafted guideline on how to deal with various risk areas and also incorporated a new provision into the guideline, stating that: "Cleaning and disinfection procedures must be organized and implemented such that there is no increase in the microbial load or spread of facultatively pathogenic or pathogenic microorganisms on surfaces."Numerous studies have come to the conclusion that surface disinfection constitutes a basic infection control measure with which the spread of pathogens can be controlled. Conversely, when using only detergents such a form of control is not possible, something that must be taken into account in future when engaging in risk evaluation and formulating infection control measures. In view of the burgeoning trend in, for example, norovirus outbreaks, also in hospitals and nursing homes, such insights are of paramount importance and attest to the need for disinfection of surfaces and of areas with frequent hand and skin contacts. This discussion about the need for surface disinfection has, in addition to causing confusion among users, led to a decline in the willingness to accept hygienic practices, thus increasing the risk of occurrence of nosocomial infections as well as of antibiotic-resistant microorganisms.

  2. The Endosymbiont Arsenophonus Is Widespread in Soybean Aphid, Aphis glycines, but Does Not Provide Protection from Parasitoids or a Fungal Pathogen

    PubMed Central

    Wulff, Jason A.; Buckman, Karrie A.; Wu, Kongming; Heimpel, George E.; White, Jennifer A.

    2013-01-01

    Aphids commonly harbor bacterial facultative symbionts that have a variety of effects upon their aphid hosts, including defense against hymenopteran parasitoids and fungal pathogens. The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is infected with the symbiont Arsenophonus sp., which has an unknown role in its aphid host. Our research goals were to document the infection frequency and diversity of the symbiont in field-collected soybean aphids, and to determine whether Arsenophonus is defending soybean aphid against natural enemies. We performed diagnostic PCR and sequenced four Arsenophonus genes in soybean aphids from their native and introduced range to estimate infection frequency and genetic diversity, and found that Arsenophonus infection is highly prevalent and genetically uniform. To evaluate the defensive role of Arsenophonus, we cured two aphid genotypes of their natural Arsenophonus infection through ampicillin microinjection, resulting in infected and uninfected isolines within the same genetic background. These isolines were subjected to parasitoid assays using a recently introduced biological control agent, Binodoxys communis [Braconidae], a naturally recruited parasitoid, Aphelinus certus [Aphelinidae], and a commercially available biological control agent, Aphidius colemani [Braconidae]. We also assayed the effect of the common aphid fungal pathogen, Pandora neoaphidis (Remaudiere & Hennebert) Humber (Entomophthorales: Entomophthoraceae), on the same aphid isolines. We did not find differences in successful parasitism for any of the parasitoid species, nor did we find differences in P. neoaphidis infection between our treatments. Our conclusion is that Arsenophonus does not defend its soybean aphid host against these major parasitoid and fungal natural enemies. PMID:23614027

  3. Contamination of produce with human pathogens: sources and solutions

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of foodborne illnesses associated with the presence of human pathogens have led to increased concern about the prevalence of pathogens in the environment and the vulnerability of fresh produce to contamination by these pathogens. As the FDA strives to mandate treatments to reduce pathogen...

  4. Facultative anadromy in salmonids: linking habitat, individual life history decisions, and population-level consequences

    Treesearch

    Steven F. Railsback; Bret C. Harvey; Jason L. White

    2014-01-01

    Modeling and management of facultative anadromous salmonids is complicated by their ability to select anadromous or resident life histories. Conventional theory for this behavior assumes individuals select the strategy offering highest expected reproductive success but does not predict how population-level consequences such as a stream’s smolt production emerge from...

  5. High Incidence of Pathogenic Streptococcus agalactiae ST485 Strain in Pregnant/Puerperal Women and Isolation of Hyper-Virulent Human CC67 Strain

    PubMed Central

    Li, Liping; Wang, Rui; Huang, Yan; Huang, Ting; Luo, Fuguang; Huang, Weiyi; Yang, Xiuying; Lei, Aiying; Chen, Ming; Gan, Xi

    2018-01-01

    Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia. PMID:29467722

  6. Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.

    PubMed

    Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J

    2012-11-01

    We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I - Epidemiology.

    PubMed

    Dutkiewicz, Jacek; Sroka, Jacek; Zając, Violetta; Wasiński, Bernard; Cisak, Ewa; Sawczyn, Anna; Kloc, Anna; Wójcik-Fatla, Angelina

    2017-12-23

    Streptococcus suis (ex Elliot 1966, Kilpper-Bälz & Schleifer 1987) is a facultatively anaerobic Gram-positive ovoid or coccal bacterium surrounded by a polysaccharide capsule. Based on the antigenic diversity of the capsule, S. suis strains are classified serologically into 35 serotypes. Streptococcus suis is a commensal of pigs, commonly colonizing their tonsils and nasal cavities, mostly in weaning piglets between 4-10 weeks of age. This species occurs also in cattle and other mammals, in birds and in humans. Some strains, mostly those belonging to serotype 2, are also pathogenic for pigs, as well as for other animals and humans. Meningitis is the primary disease syndrome caused by S. suis, both in pigs and in humans. It is estimated that meningitis accounted for 68.0% of all cases of human disease reported until the end of 2012, followed by septicaemia (including life-threatening condition described as 'streptococcal toxic shock-like syndrome' - STSLS), arthritis, endocarditis, and endophthalmitis. Hearing loss and/or ves tibular dysfunction are the most common sequelae after recovery from meningitis caused by S. suis, occurring in more than 50% of patients. In the last two decades, the number of reported human cases due to S. suis has dramatically increased, mostly due to epidemics recorded in China in 1998 and 2005, and the fulminant increase in morbidity in the countries of south-eastern Asia, mostly Vietnam and Thailand. Out of 1,642 cases of S. suis infections identified between 2002-2013 worldwide in humans, 90.2% occurred in Asia, 8.5% in Europe and 1.3% in other parts of the globe. The human disease has mostly a zoonotic and occupational origin and occurs in pig breeders, abattoir workers, butchers and workers of meat processing facilities, veterinarians and meat inspectors. Bacteria are transmitted to workers by close contact with pigs or pig products, usually through contamination of minor cuts or abrasions on skin of hands and/or arms, or by pig bite. A different epidemiologic situation occurs in the Southeast Asian countries where most people become infected by habitual consumption of raw or undercooked pork, blood and offal products in the form of traditional dishes. Prevention of S. suis infections in pigs includes vaccination, improvement in pig-raising conditions, disinfection and/or fumigation of animal houses, and isolation of sick animals at the outbreak of disease. Prevention of human infections comprises: protection of skin from pig bite or injury with sharp tools by people occupationally exposed to pigs and pig products, prompt disinfection and dressing of wounds and abrasions at work, protection of the respiratory tract by wearing appropriate masks or repirators, consulting a doctor in the case of febrile illness after exposure to pigs or pork meat, avoidance of occupations associated with exposure to pigs and pork by immunocompomised people, avoidance of consumption of raw pork or pig blood, adequate cooking of pork, and health education.

  8. Environmental Transport of Emerging Human-Pathogenic Cryptosporidium Species and Subtypes through Combined Sewer Overflow and Wastewater

    PubMed Central

    Huang, Chengchen; Hu, Yue; Wang, Lin; Wang, Yuanfei; Li, Na; Guo, Yaqiong; Xiao, Lihua

    2017-01-01

    ABSTRACT The environmental transport of Cryptosporidium spp. through combined sewer overflow (CSO) and the occurrence of several emerging human-pathogenic Cryptosporidium species in developing countries remain unclear. In this study, we collected 40 CSO samples and 40 raw wastewater samples from Shanghai, China, and examined them by PCR and DNA sequencing for Cryptosporidium species (targeting the small subunit rRNA gene) and Giardia duodenalis (targeting the triosephosphate isomerase, β-giardin, and glutamate dehydrogenase genes) and Enterocytozoon bieneusi (targeting the ribosomal internal transcribed spacer) genotypes. Human-pathogenic Cryptosporidium species were further subtyped by sequence analysis of the 60-kDa glycoprotein gene, with additional multilocus sequence typing on the emerging zoonotic pathogen Cryptosporidium ubiquitum. Cryptosporidium spp., G. duodenalis, and E. bieneusi were detected in 12 and 15, 33 and 32, and 37 and 40 CSO and wastewater samples, respectively, including 10 Cryptosporidium species, 3 G. duodenalis assemblages, and 8 E. bieneusi genotypes. In addition to Cryptosporidium hominis and Cryptosporidium parvum, two new pathogens identified in industrialized nations, C. ubiquitum and Cryptosporidium viatorum, were frequently detected. The two novel C. ubiquitum subtype families identified appeared to be genetic recombinants of known subtype families. Similarly, the dominant group 1 E. bieneusi genotypes and G. duodenalis subassemblage AII are known human pathogens. The similar distribution of human-pathogenic Cryptosporidium species and E. bieneusi and G. duodenalis genotypes between wastewater and CSO samples reaffirms that storm overflow is potentially a significant contamination source of pathogens in surface water. The frequent identification of C. ubiquitum and C. viatorum in urban wastewater suggests that these newly identified human pathogens may be endemic in China. IMPORTANCE Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are major waterborne pathogens. Their transport into surface water through combined sewer overflow, which remains largely untreated in developing countries, has not been examined. In addition, the identification of these pathogens to genotypes and subtypes in urban storm overflow and wastewater is necessary for rapid and accurate assessment of pathogen transmission in humans and transport in the environment. Data from this study suggest that, like untreated urban wastewater, combined sewer overflow is commonly contaminated with human-pathogenic Cryptosporidium, G. duodenalis, and E. bieneusi genotypes and subtypes, and urban storm overflow potentially plays a significant role in the contamination of drinking source water and recreational water with human pathogens. They also indicate that Cryptosporidium ubiquitum and Cryptosporidium viatorum, two newly identified human pathogens, may be common in China, and genetic recombination can lead to the emergence of novel C. ubiquitum subtype families. PMID:28600310

  9. Best linear unbiased prediction of host range of the facultative parasite Colletotrichum gloeosporioides f. sp. salsolae, a potential biological control agent of Russian thistle

    USDA-ARS?s Scientific Manuscript database

    Tumbleweed or Russian thistle (Salsola tragus L.) is an introduced invasive weed in N. America. It is widely distributed in the U.S. and is a target of biological control efforts. The facultative parasitic fungus Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. in Penz. f. sp. salsolae is a po...

  10. Facultative nest patch shifts in response to nest predation risk in the Brewer's sparrow: a "win-stay, lose-switch" strategy?

    Treesearch

    Anna D. Chalfoun; Thomas E. Martin

    2010-01-01

    Facultative shifts in nesting habitat selection in response to perceived predation risk may allow animals to increase the survival probability of sessile offspring. Previous studies on this behavioral strategy have primarily focused on single attributes, such as the distance moved or changes in nesting substrate. However, nest site choice often encompasses multiple...

  11. Genetic and metabolic diversity of pink-pigmented facultative methylotrophs in phyllosphere of tropical plants

    PubMed Central

    Balachandar, D.; Raja, P.; Sundaram, SP.

    2008-01-01

    Diversity of Pink-Pigmented Facultative Methylotrophs (PPFMs) in phyllosphere of cotton, maize and sunflower was determined based on differential carbon-substrate utilization profile and Random Amplified Polymorphic DNA data. Results indicate that six diversified groups of PPFMs are found in these crops. Sunflower and maize phyllosphere harbor four different groups of methylobacteria while cotton has only two groups. PMID:24031182

  12. Genetic and metabolic diversity of pink-pigmented facultative methylotrophs in phyllosphere of tropical plants.

    PubMed

    Balachandar, D; Raja, P; Sundaram, Sp

    2008-01-01

    Diversity of Pink-Pigmented Facultative Methylotrophs (PPFMs) in phyllosphere of cotton, maize and sunflower was determined based on differential carbon-substrate utilization profile and Random Amplified Polymorphic DNA data. Results indicate that six diversified groups of PPFMs are found in these crops. Sunflower and maize phyllosphere harbor four different groups of methylobacteria while cotton has only two groups.

  13. DNA:DNA hybridization studies on the pink-pigmented facultative methylotrophs.

    PubMed

    Hood, D W; Dow, C S; Green, P N

    1987-03-01

    The genomic relatedness among 36 strains of pink-pigmented facultatively methylotrophic bacteria (PPFMs) was estimated by determination of DNA base composition and by DNA:DNA hybridization studies. A reproducible hybridization system was developed for the rapid analysis of multiple DNA samples. Results indicated that the PPFMs comprise four major and several minor homology groups, and that they should remain grouped in a single genus, Methylobacterium.

  14. 76 FR 30176 - Expedited Review for New Animal Drug Applications for Human Pathogen Reduction Claims; Withdrawal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2001-D-0066] (Formerly Docket No. 2001D-0107) Expedited Review for New Animal Drug Applications for Human Pathogen... Review for New Animal Drug Applications for Human Pathogen Reduction Claims.'' The guidance predates the...

  15. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin.

    PubMed

    Lekshmi, Manjusha; Ammini, Parvathi; Kumar, Sanath; Varela, Manuel F

    2017-03-14

    Food-borne pathogens are a serious human health concern worldwide, and the emergence of antibiotic-resistant food pathogens has further confounded this problem. Once-highly-efficacious antibiotics are gradually becoming ineffective against many important pathogens, resulting in severe treatment crises. Among several reasons for the development and spread of antimicrobial resistance, their overuse in animal food production systems for purposes other than treatment of infections is prominent. Many pathogens of animals are zoonotic, and therefore any development of resistance in pathogens associated with food animals can spread to humans through the food chain. Human infections by antibiotic-resistant pathogens such as Campylobacter spp., Salmonella spp., Escherichia coli and Staphylococcus aureus are increasing. Considering the human health risk due to emerging antibiotic resistance in food animal-associated bacteria, many countries have banned the use of antibiotic growth promoters and the application in animals of antibiotics critically important in human medicine. Concerted global efforts are necessary to minimize the use of antimicrobials in food animals in order to control the development of antibiotic resistance in these systems and their spread to humans via food and water.

  16. A Review of the Current Status of Relevant Zoonotic Pathogens in Wild Swine (Sus scrofa) Populations: Changes Modulating the Risk of Transmission to Humans.

    PubMed

    Ruiz-Fons, F

    2017-02-01

    Many wild swine populations in different parts of the World have experienced an unprecedented demographic explosion that may result in increased exposure of humans to wild swine zoonotic pathogens. Interactions between humans and wild swine leading to pathogen transmission could come from different ways, being hunters and game professionals the most exposed to acquiring infections from wild swine. However, increasing human settlements in semi-natural areas, outdoor activities, socio-economic changes and food habits may increase the rate of exposure to wild swine zoonotic pathogens and to potentially emerging pathogens from wild swine. Frequent and increasing contact rate between humans and wild swine points to an increasing chance of zoonotic pathogens arising from wild swine to be transmitted to humans. Whether this frequent contact could lead to new zoonotic pathogens emerging from wild swine to cause human epidemics or emerging disease outbreaks is difficult to predict, and assessment should be based on thorough epidemiologic surveillance. Additionally, several gaps in knowledge on wild swine global population dynamics trends and wild swine-zoonotic pathogen interactions should be addressed to correctly assess the potential role of wild swine in the emergence of diseases in humans. In this work, viruses such as hepatitis E virus, Japanese encephalitis virus, Influenza virus and Nipah virus, and bacteria such as Salmonella spp., Shiga toxin-producing Escherichia coli, Campylobacter spp. and Leptospira spp. have been identified as the most prone to be transmitted from wild swine to humans on the basis of geographic spread in wild swine populations worldwide, pathogen circulation rates in wild swine populations, wild swine population trends in endemic areas, susceptibility of humans to infection, transmissibility from wild swine to humans and existing evidence of wild swine-human transmission events. © 2015 Blackwell Verlag GmbH.

  17. Biofilms in Water, Its role and impact in human disease transmission

    DTIC Science & Technology

    2008-01-01

    increasing realization of the importance of the world’s oceans as a source of potentially pathogenic microorganisms. Human bacterial pathogens...colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett Appl Microbiol 2008, 46:249-254. A new microplate model for...Polz M: Diversity, sources, and detection of human bacterial pathogens in the marine environment. In Oceans and Health: Pathogens in the Marine

  18. Oral and intestinal microflora in 5-fluorouracil treated rats, translocation to cervical and mesenteric lymph nodes and effects of probiotic bacteria.

    PubMed

    Von Bültzingslöwen, I; Adlerberth, I; Wold, A E; Dahlén, G; Jontell, M

    2003-10-01

    Serious systemic infections may occur during cancer chemotherapy due to disturbances in the oropharyngeal and gastrointestinal microflora, impaired mucosal barrier functions and immunosuppression. Bacteria may spread from the gastrointestinal tract to the regional lymph nodes. The routes for bacterial spread from the oral cavity are less well known. In the present study we investigated changes in the oral and intestinal microfloras in rats given 50 mg/kg 5-fluorouracil (5-FU) i.v. for 6 days. Bacterial dissemination to the lymph nodes draining the oral cavity and the lymph nodes draining the gastrointestinal tract was examined. Effects of adding the probiotic strain Lactobacillus plantarum 299v in the drinking water to the rats were measured. 5-FU treatment caused an increase in the number of facultative and strictly anaerobic bacteria in biopsies from the oral cavity and an increase in the number of facultative anaerobes in the large intestine. The proportion of facultative gram-negative rods increased in both the oral cavity and intestine. Bacteria translocated to both the cervical and mesenteric lymph nodes in untreated animals and increased in numbers after 5-FU treatment due to an increase in the number of facultative gram-negative rods. Treatment with L. plantarum 299v improved food intake and body weight in 5-FU-treated rats. It also reduced the 5-FU-induced raise in the total numbers of facultative anaerobes in the intestine, but did not reduce translocation and did not prevent diarrhea. This study reinforces the oral cavity, along with the gastrointestinal tract, as a source for bacterial dissemination. The use of probiotic bacteria may reduce some side effects of 5-FU treatment.

  19. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells.

    PubMed

    Gründling, Angelika; Gonzalez, Mark D; Higgins, Darren E

    2003-11-01

    In this study, we investigated the requirement of the Listeria monocytogenes broad-range phospholipase C (PC-PLC) during infection of human epithelial cells. L. monocytogenes is a facultative intracellular bacterial pathogen of humans and a variety of animal species. After entering a host cell, L. monocytogenes is initially surrounded by a membrane-bound vacuole. Bacteria promote their escape from this vacuole, grow within the host cell cytosol, and spread from cell to cell via actin-based motility. Most infection studies with L. monocytogenes have been performed with mouse cells or an in vivo mouse model of infection. In all mouse-derived cells tested, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for lysis of primary vacuoles formed during host cell entry. However, L. monocytogenes can escape from primary vacuoles in the absence of LLO during infection of human epithelial cell lines Henle 407, HEp-2, and HeLa. Previous studies have shown that the broad-range phospholipase C, PC-PLC, promotes lysis of Henle 407 cell primary vacuoles in the absence of LLO. Here, we have shown that PC-PLC is also required for lysis of HEp-2 and HeLa cell primary vacuoles in the absence of LLO expression. Furthermore, our results indicated that the amount of PC-PLC activity is critical for the efficiency of vacuolar lysis. In an LLO-negative derivative of L. monocytogenes strain 10403S, expression of PC-PLC has to increase before or upon entry into human epithelial cells, compared to expression in broth culture, to allow bacterial escape from primary vacuoles. Using a system for inducible PC-PLC expression in L. monocytogenes, we provide evidence that phospholipase activity can be increased by elevated expression of PC-PLC or Mpl, the enzyme required for proteolytic activation of PC-PLC. Lastly, by using the inducible PC-PLC expression system, we demonstrate that, in the absence of LLO, PC-PLC activity is not only required for lysis of primary vacuoles in human epithelial cells but is also necessary for efficient cell-to-cell spread. We speculate that the additional requirement for PC-PLC activity is for lysis of secondary double-membrane vacuoles formed during cell-to-cell spread.

  20. Mathematical Analysis for the Optimization of Wastewater Treatment Systems in Facultative Pond Indicator Organic Matter

    NASA Astrophysics Data System (ADS)

    Sunarsih; Widowati; Kartono; Sutrisno

    2018-02-01

    Stabilization ponds are easy to operate and their maintenance is simple. Treatment is carried out naturally and they are recommended in developing countries. The main disadvantage of these systems is large land area they occupy. The aim of this study was to perform an optimization of the wastewater treatment systems in a facultative pond, considering a mathematical analysis of the methodology to determine the model constrains organic matter. Matlab optimization toolbox was used for non linear programming. A facultative pond with the method was designed and then the optimization system was applied. The analyse meet the treated water quality requirements for the discharge to the water bodies. The results show a reduction of hydraulic retention time by 4.83 days, and the efficiency of of wastewater treatment of 84.16 percent.

  1. Scavenging efficiency and red fox abundance in Mediterranean mountains with and without vultures

    NASA Astrophysics Data System (ADS)

    Morales-Reyes, Zebensui; Sánchez-Zapata, José A.; Sebastián-González, Esther; Botella, Francisco; Carrete, Martina; Moleón, Marcos

    2017-02-01

    Vertebrate scavenging assemblages include two major functional groups: obligate scavengers (i.e., vultures), which depend totally on carrion and are undergoing severe declines around the globe, and facultative scavengers, which exploit carrion opportunistically and are generally ubiquitous. Our goal was to investigate the hypothesis that vultures can indirectly regulate the abundance of mesopredators (i.e., facultative scavengers) through modulating their access to carrion resources. We studied scavenging efficiency and red fox (Vulpes vulpes) abundance in two neighbouring areas of South-eastern Spain where vultures (mainly griffon vultures Gyps fulvus) are present (Cazorla) and absent (Espuña). To do so, we monitored ungulate carcasses consumption during winter and summer, and counted red fox scats along walking transects as a proxy of fox density. Our results confirmed that scavenging efficiency was higher in Cazorla and in carcasses visited by vultures. This resulted in increasing scavenging opportunities for facultative scavengers where vultures were absent. Accordingly, mean red fox abundance was higher in Espuña. These results suggest the existence of a vulture-mediated mesopredator release (i.e., an increase of mesopredator numbers following vulture loss), which could trigger important indirect ecological effects. Also, our study demonstrates that facultative scavengers are hardly able to functionally replace vultures, mainly because the former exploit carrion on a slower time scale.

  2. Nature, nomenclature and taxonomy of obligate methanol utilizing strains.

    PubMed

    Cercel, M

    1999-01-01

    In a screening program, a number of different bacterial strains with the ability to utilize methanol as a sole carbon and energy source were isolated and described. They are well known methanol utilizing genera Pseudomonas, Klebsiella, Micrococcus, Methylomonas or, on the contrary, the new, unknown genera and species of methylotrophic bacteria. In the last category, Acinetobacter and Alcaligenes are the new reported genera of organisms able to use methanol as a sole carbon and energy source. The present paper reports the very complex physiological and biochemical modifications when very versatile bacteria such as Pseudomonas aeruginosa and Acinetobacter calcoaceticus are cultured on methanol and when the obligate methylotrophic state is compared with the facultative methylotrophic state of the same bacterial strain. Based on experiments and comparisons with literature data, it seems that Methylomonas methanica is the obligate methylotrophic state of Pseudomonas aeruginosa and that Acinetobacter calcoaceticus is the facultative methylotrophic state of Methylococcus capsulatus, an obligate methylotroph. The relationship of the obligate to the facultative and of the facultative to the obligate methylotrophy were established. These new methylotrophic genera and species, the profound physiological and biochemical modifications as well as the new data concerning nature, nomenclature and taxonomy of methanol utilizing bateria were reported for the first time in 1983.

  3. Pathogen inactivation of human serum facilitates its clinical use for islet cell culture and subsequent transplantation.

    PubMed

    Ståhle, Magnus U; Brandhorst, Daniel; Korsgren, Olle; Knutson, Folke

    2011-01-01

    Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.

  4. Airborne pathogens from dairy manure aerial irrigation and the human health risk

    USGS Publications Warehouse

    Borchardt, Mark A.; Burch, Tucker R

    2016-01-01

    Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.

  5. Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens

    PubMed Central

    Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric

    2015-01-01

    Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336

  6. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA.

    PubMed

    Lee, Eun-Jin; Groisman, Eduardo A

    2012-06-13

    The facultative intracellular pathogen Salmonella enterica resides within a membrane-bound compartment inside macrophages. This compartment must be acidified for Salmonella to survive within macrophages, possibly because acidic pH promotes expression of Salmonella virulence proteins. We reasoned that Salmonella might sense its surroundings have turned acidic not only upon protonation of the extracytoplasmic domain of a protein sensor but also by an increase in cytosolic ATP levels, because conditions that enhance the proton gradient across the bacterial inner membrane stimulate ATP synthesis. Here we report that an increase in cytosolic ATP promotes transcription of the coding region for the virulence gene mgtC, which is the most highly induced horizontally acquired gene when Salmonella is inside macrophages. This transcript is induced both upon media acidification and by physiological conditions that increase ATP levels independently of acidification. ATP is sensed by the coupling/uncoupling of transcription of the unusually long mgtC leader messenger RNA and translation of a short open reading frame located in this region. A mutation in the mgtC leader messenger RNA that eliminates the response to ATP hinders mgtC expression inside macrophages and attenuates Salmonella virulence in mice. Our results define a singular example of an ATP-sensing leader messenger RNA. Moreover, they indicate that pathogens can interpret extracellular cues by the impact they have on cellular metabolites.

  7. Bacillus cereus and related species.

    PubMed

    Drobniewski, F A

    1993-10-01

    Bacillus cereus is a gram-positive aerobic or facultatively anaerobic spore-forming rod. It is a cause of food poisoning, which is frequently associated with the consumption of rice-based dishes. The organism produces an emetic or diarrheal syndrome induced by an emetic toxin and enterotoxin, respectively. Other toxins are produced during growth, including phospholipases, proteases, and hemolysins, one of which, cereolysin, is a thiol-activated hemolysin. These toxins may contribute to the pathogenicity of B. cereus in nongastrointestinal disease. B. cereus isolated from clinical material other than feces or vomitus was commonly dismissed as a contaminant, but increasingly it is being recognized as a species with pathogenic potential. It is now recognized as an infrequent cause of serious nongastrointestinal infection, particularly in drug addicts, the immunosuppressed, neonates, and postsurgical patients, especially when prosthetic implants such as ventricular shunts are inserted. Ocular infections are the commonest types of severe infection, including endophthalmitis, panophthalmitis, and keratitis, usually with the characteristic formation of corneal ring abscesses. Even with prompt surgical and antimicrobial agent treatment, enucleation of the eye and blindness are common sequelae. Septicemia, meningitis, endocarditis, osteomyelitis, and surgical and traumatic wound infections are other manifestations of severe disease. B. cereus produces beta-lactamases, unlike Bacillus anthracis, and so is resistant to beta-lactam antibiotics; it is usually susceptible to treatment with clindamycin, vancomycin, gentamicin, chloramphenicol, and erythromycin. Simultaneous therapy via multiple routes may be required.

  8. Adrenergic antagonists restrict replication of Legionella.

    PubMed

    Harrison, Christopher F; Kicka, Sébastien; Kranjc, Agata; Finsel, Ivo; Chiriano, Gianpaolo; Ouertatani-Sakouhi, Hajer; Soldati, Thierry; Scapozza, Leonardo; Hilbi, Hubert

    2015-07-01

    Legionella pneumophila is a facultative intracellular bacterium, which upon inhalation can cause a potentially fatal pneumonia termed Legionnaires' disease. The opportunistic pathogen grows in environmental amoebae and mammalian macrophages within a unique membrane-bound compartment, the 'Legionella-containing vacuole'. Bacteria are exposed to many environmental cues including small signalling molecules from eukaryotic cells. A number of pathogenic bacteria sense and respond to catecholamine hormones, such as adrenalin and noradrenalin, a process mediated via the QseBC two-component system in some bacteria. In this study, we examined the effect of adrenergic compounds on L. pneumophila, and discovered that the adrenergic receptor antagonists benoxathian, naftopidil, propranolol and labetalol, as well as the QseC sensor kinase inhibitor LED209, reduced the growth of L. pneumophila in broth or amoebae, while replication in macrophages was enhanced. Growth restriction was common to members of the genus Legionella and Mycobacterium, and was observed for L. pneumophila in the replicative but not stationary phase of the biphasic life cycle. Deletion of the L. pneumophila qseBC genes indicated that growth inhibition by adrenergics or LED209 is mediated only to a minor extent by this two-component system, implying the presence of other adrenergic sensing systems. This study identifies adrenergic molecules as novel inhibitors of extra- and intracellular growth of Legionella and reveals LED209 as a potential lead compound to combat infections with Legionella or Mycobacterium spp.

  9. Genome-Wide Identification of Chromatin Transitional Regions Reveals Diverse Mechanisms Defining the Boundary of Facultative Heterochromatin

    PubMed Central

    Li, Guangyao; Zhou, Lei

    2013-01-01

    Due to the self-propagating nature of the heterochromatic modification H3K27me3, chromatin barrier activities are required to demarcate the boundary and prevent it from encroaching into euchromatic regions. Studies in Drosophila and vertebrate systems have revealed several important chromatin barrier elements and their respective binding factors. However, epigenomic data indicate that the binding of these factors are not exclusive to chromatin boundaries. To gain a comprehensive understanding of facultative heterochromatin boundaries, we developed a two-tiered method to identify the Chromatin Transitional Region (CTR), i.e. the nucleosomal region that shows the greatest transition rate of the H3K27me3 modification as revealed by ChIP-Seq. This approach was applied to identify CTRs in Drosophila S2 cells and human HeLa cells. Although many insulator proteins have been characterized in Drosophila, less than half of the CTRs in S2 cells are associated with known insulator proteins, indicating unknown mechanisms remain to be characterized. Our analysis also revealed that the peak binding of insulator proteins are usually 1–2 nucleosomes away from the CTR. Comparison of CTR-associated insulator protein binding sites vs. those in heterochromatic region revealed that boundary-associated binding sites are distinctively flanked by nucleosome destabilizing sequences, which correlates with significant decreased nucleosome density and increased binding intensities of co-factors. Interestingly, several subgroups of boundaries have enhanced H3.3 incorporation but reduced nucleosome turnover rate. Our genome-wide study reveals that diverse mechanisms are employed to define the boundaries of facultative heterochromatin. In both Drosophila and mammalian systems, only a small fraction of insulator protein binding sites co-localize with H3K27me3 boundaries. However, boundary-associated insulator binding sites are distinctively flanked by nucleosome destabilizing sequences, which correlates with significantly decreased nucleosome density and increased binding of co-factors. PMID:23840609

  10. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  11. Pathogen survival trajectories: an eco-environmental approach to the modeling of human campylobacteriosis ecology.

    PubMed Central

    Skelly, Chris; Weinstein, Phil

    2003-01-01

    Campylobacteriosis, like many human diseases, has its own ecology in which the propagation of human infection and disease depends on pathogen survival and finding new hosts in order to replicate and sustain the pathogen population. The complexity of this process, a process common to other enteric pathogens, has hampered control efforts. Many unknowns remain, resulting in a poorly understood disease ecology. To provide structure to these unknowns and help direct further research and intervention, we propose an eco-environmental modeling approach for campylobacteriosis. This modeling approach follows the pathogen population as it moves through the environments that define the physical structure of its ecology. In this paper, we term the ecologic processes and environments through which these populations move "pathogen survival trajectories." Although such a modeling approach could have veterinary applications, our emphasis is on human campylobacteriosis and focuses on human exposures to Campylobacter through feces, food, and aquatic environments. The pathogen survival trajectories that lead to human exposure include ecologic filters that limit population size, e.g., cooking food to kill Campylobacter. Environmental factors that influence the size of the pathogen reservoirs include temperature, nutrient availability, and moisture availability during the period of time the pathogen population is moving through the environment between infected and susceptible hosts. We anticipate that the modeling approach proposed here will work symbiotically with traditional epidemiologic and microbiologic research to help guide and evaluate the acquisition of new knowledge about the ecology, eventual intervention, and control of campylobacteriosis. PMID:12515674

  12. Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria.

    PubMed

    Doronina, Nina V; Trotsenko, Yuri A; Kuznetsov, Boris B; Tourova, Tatjana P; Salkinoja-Salonen, Mirja S

    2002-05-01

    Two aerobic, pink-pigmented, facultatively methylotrophic bacteria, strains F20T and RXM(T), are described taxonomically. On the basis of their phenotypic and genotypic properties, the isolates are proposed as novel species of the genus Methylobacterium, Methylobacterium suomiense sp. nov. (type strain F20T = VKM B-2238T = NCIMB 13778T) and Methylobacterium lusitanum sp. nov. (type strain RXMT = VKM B-2239T = NCIMB 13779T).

  13. [History of the Faculté libre de médecine de Lille, from its origins to the present day].

    PubMed

    Liefooghe, J

    1997-01-01

    The catholic University of Lille and its five Faculties, including the "Faculté de médecine et de pharmacie", were grounded by catholic people of the northern France as opposed to scientism, materialism and aggressive atheism of that epoch. Philibert Vrau and his brother in law Camille Feron-Vrau, M.D. names are linked to the founding. From 1876 to 1910, that medical school passed through very difficult years due to a strong anticlerical opposition. World War I diminished the tense atmosphere and the medical school serenely expanded up to 1957. Then, hospital and university administrative reforms gave new disturbances on account of french laws unsuitability for "free" medical structures. The 1971 law opened a new era establishing an official agreement with the State University. Thus the "Faculté libre de médecine" became able to improve its peculiar activity.

  14. Aerobic and anaerobic cellulase production by Cellulomonas uda.

    PubMed

    Poulsen, Henrik Vestergaard; Willink, Fillip Wolfgang; Ingvorsen, Kjeld

    2016-10-01

    Cellulomonas uda (DSM 20108/ATCC 21399) is one of the few described cellulolytic facultative anaerobes. Based on these characteristics, we initiated a physiological study of C. uda with the aim to exploit it for cellulase production in simple bioreactors with no or sporadic aeration. Growth, cellulase activity and fermentation product formation were evaluated in different media under both aerobic and anaerobic conditions and in experiments where C. uda was exposed to alternating aerobic/anaerobic growth conditions. Here we show that C. uda behaves as a true facultative anaerobe when cultivated on soluble substrates such as glucose and cellobiose, but for reasons unknown cellulase activity is only induced under aerobic conditions on insoluble cellulosic substrates and not under anaerobic conditions. These findings enhance knowledge on the limited number of described facultative cellulolytic anaerobes, and in addition it greatly limits the utility of C. uda as an 'easy to handle' cellulase producer with low aeration demands.

  15. Aerobic growth of Anoxybacillus pushchinoensis K1(T): emended descriptions of A. pushchinoensis and the genus Anoxybacillus

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Cleland, David; Tang, Jane

    2003-01-01

    In this work, corrections are made to the descriptions of the species Anoxybacillus pushchinoensis corrig. and the genus ANOXYBACILLUS: Experiments to determine the relationship of A. pushchinoensis K1(T) to oxygen showed that it was capable of aerobic growth, but preferred to grow anaerobically. During aerobic growth, the redox indicator resazurin was reduced as a result of hydrogen gas production. The facultatively anaerobic nature of K1(T) was ascertained by cultivation in aerobic liquid medium, where growth began at the bottom of the tube. The anaerobic nature of K1(T) was also indicated by a negative catalase reaction. This work is submitted to correct the description of the species A. pushchinoensis from obligate anaerobe to aerotolerant anaerobe and to emend the description of the genus Anoxybacillus from obligate anaerobes or facultative anaerobes to aerotolerant anaerobes or facultative anaerobes.

  16. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella.

    PubMed

    Bigot, Renaud; Bertaux, Joanne; Frere, Jacques; Berjeaud, Jean-Marc

    2013-01-01

    Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent.

  17. Intra-Amoeba Multiplication Induces Chemotaxis and Biofilm Colonization and Formation for Legionella

    PubMed Central

    Bigot, Renaud; Bertaux, Joanne; Frere, Jacques; Berjeaud, Jean-Marc

    2013-01-01

    Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent. PMID:24205008

  18. [Necrotizing fasciitis of the upper and lower extremities].

    PubMed

    Kückelhaus, M; Hirsch, T; Lehnhardt, M; Daigeler, A

    2017-04-01

    Necrotizing fasciitis is a potentially fatal soft tissue infection that may affect the upper and lower extremities, scrotum, perineum and abdominal wall. Typically, the infection demonstrates rapid spreading along the fascial planes leading to sepsis with mortality rates of 15-46%. Without adequate treatment, the mortality rate increases to close to 100%. There are four groups of pathogens that can lead to necrotizing fasciitis, namely beta-hemolytic group A streptococci, mixed infections with obligate and facultative anaerobes, clostridium species and fungal infections. Clinical signs may include erythema, edema and pain out of proportion in the early stages and soft tissue necrosis with bullae during the subsequent course. In some cases, only a deterioration of the general condition is evident and the aforementioned clinical symptoms are initially missing. The decision for treatment is based on the clinical diagnosis and surgical debridement is the cornerstone of treatment, accompanied by broad spectrum i.v. antibiotic treatment, e. g. with penicillin, ciprofloxacin and clindamycin.

  19. Selection and validation of reliable housekeeping genes to evaluate Piscirickettsia salmonis gene expression.

    PubMed

    Flores-Herrera, Patricio; Arredondo-Zelada, Oscar; Marshall, Sergio H; Gómez, Fernando A

    2018-06-01

    Piscirickettsia salmonis is a highly aggressive facultative intracellular bacterium that challenges the sustainability of Chilean salmon production. Due to the limited knowledge of its biology, there is a need to identify key molecular markers that could help define the pathogenic potential of this bacterium. We think a model system should be implemented that efficiently evaluates the expression of putative bacterial markers by using validated, stable, and highly specific housekeeping genes to properly select target genes, which could lead to identifying those responsible for infection and disease induction in naturally infected fish. Here, we selected a set of validated reference or housekeeping genes for RT-qPCR expression analyses of P. salmonis under different growth and stress conditions, including an in vitro infection kinetic. After a thorough screening, we selected sdhA as the most reliable housekeeping gene able to represent stable and highly specific host reference genes for RT-qPCR-driven P. salmonis analysis. Copyright © 2018. Published by Elsevier B.V.

  20. Acyl-homoserine lactones produced by Pantoea sp. isolated from the "maize white spot" foliar disease.

    PubMed

    Pomini, Armando M; Paccola-Meirelles, Luzia D; Marsaioli, Anita J

    2007-02-21

    The "maize white spot" foliar disease is a problem of increasing importance to Brazilian maize crops. A bacterium isolated from water-soaked lesions from infected maize leaves was pathogenic in biological assays in vivo. It was identified as a Gram-negative, nonsporulating, facultative anaerobic bacterium, belonging to the genus Pantoea. Chemical study of the extracts from bacterial cultivation media allowed the identification of (S)-(-)-N-butanoyl-homoserine lactone and trace amounts of N-hexanoyl-homoserine lactone, widely recognized quorum-sensing signaling substances employed in cell-to-cell communication systems. The absolute configuration of natural (S)-(-)-N-butanoyl-homoserine lactone was determined by gas chromatography-flame ionization detection with a chiral stationary phase and by comparison of circular dichroism spectroscopic data with enantiopure synthetic substances. Biological evaluations with reporter Agrobacterium tumefaciens NTL4(pZLR4) were carried out with synthetic and natural products and also with extracts from maize leaves contaminated with the isolated bacterium, as well as from healthy leaves.

  1. [Hygiene in otorhinolaryngology: Requirements and reality].

    PubMed

    Jager, E; Heudorf, U

    2015-12-01

    Considering the physiological contamination of skin and mucous membranes in the ear, nose, and throat region by facultative pathogen microorganisms, as well as the increase in multidrug resistant organisms (MDRO), it is mandatory that hygienic procedures be observed in ENT institutions, in order to prevent transmission of bacteria and infections in patients. General guidelines for hygiene in otorhinolaryngology are presented based on the recommendations published by the German Commission on Hospital Hygiene and Infection Prevention (KRINKO). These encompass hand hygiene, surface disinfection, and reprocessing of medical devices. The correct reprocessing of the various components of ENT treatment units (including endoscopes, water bearing systems) is reported. Although law requires and KRINKO recommends that manufacturers of medical devices publish instructions for reprocessing their products, these reprocessing recommendations are often insufficient. Manufacturers should thus be called upon to improve their recommendations. In this paper, the requirements for handling of ENT treatment units are compared with the observations made by the Public Health Department in 7 ENT clinics and 32 ENT practices in Frankfurt/Main, Germany, in 2014.

  2. Host Immune Response to Histophilus somni.

    PubMed

    Corbeil, Lynette B

    2016-01-01

    Histophilus somni is known to cause several overlapping syndromes or to be found in genital or upper respiratory carrier states in ruminants. Vaccines have been used for decades, yet efficacy is controversial and mechanisms of protective immunity are not well understood. Since H. somni survives phagocytosis, it has sometimes been considered to be a facultative intercellular parasite, implying that cell-mediated immunity would be critical in protection. However, H. somni not only inhibits phagocyte function, but also is cytotoxic for macrophages. Therefore, it does not live for long periods in healthy phagocytes. Protection of calves against H. somni pneumonia by passive immunization is also evidence that H. somni is more like an extracellular pathogen than an intracellular pathogen. Several studies showed that bovine IgG2 antibodies are more protective than IgG1 antibodies. Even the IgG2 allotypes tend to vary in protection. Of course, antigenic specificity also determines protection. So far, there is most evidence for protection by a 40 K outer membrane protein and by Immunoglobulin binding protein A fibrils. Serology and immunohistochemistry have both been used for immunodiagnosis. Many evasive mechanisms by H. somni have been defined, including decreased phagocyte function, antibodies bound by shed antigens, decreased immune stimulation, and antigenic variation. Interaction of H. somni with other bovine respiratory disease organisms is another layer of pathogenesis. Studies of bovine respiratory syncytial virus (BRSV) and H. somni in calfhood pneumonia revealed an increase in IgE antibodies to H. somni, which were associated with more severe disease of longer duration than with either agent alone. Innate immune mechanisms at the epithelial cell level are also affected by dual infection by BRSV and H. somni as compared to either pathogen alone. Although much more work needs to be done, the complex mechanisms of H. somni immunity are becoming clearer.

  3. Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania.

    PubMed

    Andersson, Martin O; Marga, Georgeta; Banu, Teofilia; Dobler, Gerhard; Chitimia-Dobler, Lidia

    2018-05-01

    Romania has a highly diverse tick fauna. Consequently, a high diversity of tick-transmitted pathogens might be a potential threat to humans. However, only a limited number of tick species regularly infest humans, and pathogens present in such species are therefore of particular interest from a medical perspective. In this study, 297 ticks were collected from humans during 2013 and 2014. Ixodes ricinus was the predominant tick species, accounting for 272 specimens or 91.6% of the ticks in the study. Nevertheless, other tick species were also found to infest humans: Dermacentor marginatus constituted 7% of the ticks found on humans (21/297), Haemaphysalis punctata 1% (3/297), and Haemaphysalis concinna 0.3% (1/297). Ticks were tested by PCR for a wide range of tick-borne pathogens. In total, 11.8% of the ticks carried human pathogenic bacteria, while no viral or protozoan pathogens were detected. The most frequently detected pathogen was Rickettsia spp., occurring in 5.4% of the ticks (16/297) and comprising three species: Rickettsia (R.) raoultii, R. monacensis, and R. helvetica. Borrelia s.l. occurred in 3% (9/297) of the ticks. "Candidatus Neoehrlichia mikurensis" occurred in 1.7% (5/297) and Anaplasma phagocytophilum in 1.3% (4/297). Anaplasma bovis was detected in an H. punctata and Borrelia miyamotoi in an I. ricinus. These results point to the need for further studies on the medical importance of tick-borne pathogens in Romania.

  4. 76 FR 30705 - Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9311-4] Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids'' EPA/600/R-08/035F...

  5. Migrating microbes: what pathogens can tell us about population movements and human evolution.

    PubMed

    Houldcroft, Charlotte J; Ramond, Jean-Baptiste; Rifkin, Riaan F; Underdown, Simon J

    2017-08-01

    The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.

  6. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts

    PubMed Central

    Lu, Qing‐Yi; Summanen, Paula H.; Lee, Ru‐Po; Huang, Jianjun; Henning, Susanne M.; Heber, David; Finegold, Sydney M.

    2017-01-01

    Abstract The objective of this study was to investigate prebiotic potential, chemical composition, and antioxidant capacity of spice extracts. Seven culinary spices including black pepper, cayenne pepper, cinnamon, ginger, Mediterranean oregano, rosemary, and turmeric were extracted with boiling water. Major chemical constituents were characterized by RP‐HPLC‐DAD method and antioxidant capacity was determined by measuring colorimetrically the extent to scavenge ABTS radical cations. Effects of spice extracts on the viability of 88 anaerobic and facultative isolates from intestinal microbiota were determined by using Brucella agar plates containing serial dilutions of extracts. A total of 14 phenolic compounds, a piperine, cinnamic acid, and cinnamaldehyde were identified and quantitated. Spice extracts exhibited high antioxidant capacity that correlated with the total amount of major chemicals. All spice extracts, with the exception of turmeric, enhanced the growth of Bifidobacterium spp. and Lactobacillus spp. All spices exhibited inhibitory activity against selected Ruminococcus species. Cinnamon, oregano, and rosemary were active against selected Fusobacterium strains and cinnamon, rosemary, and turmeric were active against selected Clostridium spp. Some spices displayed prebiotic‐like activity by promoting the growth of beneficial bacteria and suppressing the growth of pathogenic bacteria, suggesting their potential role in the regulation of intestinal microbiota and the enhancement of gastrointestinal health. The identification and quantification of spice‐specific phytochemicals provided insight into the potential influence of these chemicals on the gut microbial communities and activities. Future research on the connections between spice‐induced changes in gut microbiota and host metabolism and disease preventive effect in animal models and humans is needed. PMID:28678344

  7. The Bacteriome of Bat Flies (Nycteribiidae) from the Malagasy Region: a Community Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector Specificity.

    PubMed

    Wilkinson, David A; Duron, Olivier; Cordonin, Colette; Gomard, Yann; Ramasindrazana, Beza; Mavingui, Patrick; Goodman, Steven M; Tortosa, Pablo

    2016-01-08

    The Nycteribiidae are obligate blood-sucking Diptera (Hippoboscoidea) flies that parasitize bats. Depending on species, these wingless flies exhibit either high specialism or generalism toward their hosts, which may in turn have important consequences in terms of their associated microbial community structure. Bats have been hypothesized to be reservoirs of numerous infectious agents, some of which have recently emerged in human populations. Thus, bat flies may be important in the epidemiology and transmission of some of these bat-borne infectious diseases, acting either directly as arthropod vectors or indirectly by shaping pathogen communities among bat populations. In addition, bat flies commonly have associations with heritable bacterial endosymbionts that inhabit insect cells and depend on maternal transmission through egg cytoplasm to ensure their transmission. Some of these heritable bacteria are likely obligate mutualists required to support bat fly development, but others are facultative symbionts with unknown effects. Here, we present bacterial community profiles that were obtained from seven bat fly species, representing five genera, parasitizing bats from the Malagasy region. The observed bacterial diversity includes Rickettsia, Wolbachia, and several Arsenophonus-like organisms, as well as other members of the Enterobacteriales and a widespread association of Bartonella bacteria from bat flies of all five genera. Using the well-described host specificity of these flies and data on community structure from selected bacterial taxa with either vertical or horizontal transmission, we show that host/vector specificity and transmission mode are important drivers of bacterial community structure. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. The Bacteriome of Bat Flies (Nycteribiidae) from the Malagasy Region: a Community Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector Specificity

    PubMed Central

    Duron, Olivier; Cordonin, Colette; Gomard, Yann; Ramasindrazana, Beza; Mavingui, Patrick; Goodman, Steven M.; Tortosa, Pablo

    2016-01-01

    The Nycteribiidae are obligate blood-sucking Diptera (Hippoboscoidea) flies that parasitize bats. Depending on species, these wingless flies exhibit either high specialism or generalism toward their hosts, which may in turn have important consequences in terms of their associated microbial community structure. Bats have been hypothesized to be reservoirs of numerous infectious agents, some of which have recently emerged in human populations. Thus, bat flies may be important in the epidemiology and transmission of some of these bat-borne infectious diseases, acting either directly as arthropod vectors or indirectly by shaping pathogen communities among bat populations. In addition, bat flies commonly have associations with heritable bacterial endosymbionts that inhabit insect cells and depend on maternal transmission through egg cytoplasm to ensure their transmission. Some of these heritable bacteria are likely obligate mutualists required to support bat fly development, but others are facultative symbionts with unknown effects. Here, we present bacterial community profiles that were obtained from seven bat fly species, representing five genera, parasitizing bats from the Malagasy region. The observed bacterial diversity includes Rickettsia, Wolbachia, and several Arsenophonus-like organisms, as well as other members of the Enterobacteriales and a widespread association of Bartonella bacteria from bat flies of all five genera. Using the well-described host specificity of these flies and data on community structure from selected bacterial taxa with either vertical or horizontal transmission, we show that host/vector specificity and transmission mode are important drivers of bacterial community structure. PMID:26746715

  9. [Characterization of the genetic variability of field strains of Brucella canis isolated in Antioquia].

    PubMed

    Vidal Arboleda, Juana L; Ortiz Roman, Luisa F; Olivera Angel, Martha

    2017-12-22

    Brucella canis is a facultative intracellular pathogen responsible for canine brucellosis, a zoonotic disease that affects canines, causing abortions and reproductive failure; and the production of non-specific symptoms in humans. In 2005 the presence of B. canis in Antioquia was demonstrated and the strains were identified as type 2. The sequencing of the genome of a field strain denoted Brucella canis str. Oliveri, showed species-specific indel events, which led us to investigate the genomic characteristics of the B. canis strain isolated and to establish the phylogenetic relationships and the divergence time of B. canis str. Oliveri. Conventional PCR sequencing was performed in 30 field strains identifying 5 indel events recognized in B. canis str. Oliveri. ADN from Brucella suis, Brucella melitensis and vaccine strains from Brucella abortus were used as control, and it was determined that all of the studied field strains shared 4 out of the 5 indels of the sequenced Oliveri strain, indicating the presence of more than one strain circulating in the region. Phylogenetic analysis was performed with 24 strains of Brucella using concatenated sequences of genetic markers for species differentiation. The molecular clock hypothesis and Tajima's relative rate test were tested, showing that the Oliveri strain, similarly to other canis species, diverged from B. suis. The molecular clock hypothesis between Brucella species was rejected and an evolution rate and a similar genetic distance between the B. canis were demonstrated. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Brucella Genetic Variability in Wildlife Marine Mammals Populations Relates to Host Preference and Ocean Distribution

    PubMed Central

    Suárez-Esquivel, Marcela; Baker, Kate S.; Ruiz-Villalobos, Nazareth; Hernández-Mora, Gabriela; Barquero-Calvo, Elías; González-Barrientos, Rocío; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Chacón-Díaz, Carlos; Cloeckaert, Axel; Chaves-Olarte, Esteban; Thomson, Nicholas R.; Moreno, Edgardo

    2017-01-01

    Abstract Intracellular bacterial pathogens probably arose when their ancestor adapted from a free-living environment to an intracellular one, leading to clonal bacteria with smaller genomes and less sources of genetic plasticity. Still, this plasticity is needed to respond to the challenges posed by the host. Members of the Brucella genus are facultative-extracellular intracellular bacteria responsible for causing brucellosis in a variety of mammals. The various species keep different host preferences, virulence, and zoonotic potential despite having 97–99% similarity at genome level. Here, we describe elements of genetic variation in Brucella ceti isolated from wildlife dolphins inhabiting the Pacific Ocean and the Mediterranean Sea. Comparison with isolates obtained from marine mammals from the Atlantic Ocean and the broader Brucella genus showed distinctive traits according to oceanic distribution and preferred host. Marine mammal isolates display genetic variability, represented by an important number of IS711 elements as well as specific IS711 and SNPs genomic distribution clustering patterns. Extensive pseudogenization was found among isolates from marine mammals as compared with terrestrial ones, causing degradation in pathways related to energy, transport of metabolites, and regulation/transcription. Brucella ceti isolates infecting particularly dolphin hosts, showed further degradation of metabolite transport pathways as well as pathways related to cell wall/membrane/envelope biogenesis and motility. Thus, gene loss through pseudogenization is a source of genetic variation in Brucella, which in turn, relates to adaptation to different hosts. This is relevant to understand the natural history of bacterial diseases, their zoonotic potential, and the impact of human interventions such as domestication. PMID:28854602

  11. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.

    PubMed

    Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J

    2009-04-01

    Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.

  12. Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen

    PubMed Central

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-01-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  13. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  14. Invasive pathogen threatens bird-pine mutualism: implications for sustaining a high-elevation ecosystem.

    PubMed

    McKinney, Shawn T; Fiedler, Carl E; Tomback, Diana F

    2009-04-01

    Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine (Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's Nutcracker (Nucifraga columbiana) for dispersal of its large, wingless seeds. Clark's Nutcracker, a facultative mutualist with whitebark pine, is sensitive to rates of energy gain, and emigrates from subalpine forests during periods of cone shortages. The invasive fungal pathogen Cronartium ribicola, which causes white pine blister rust, reduces whitebark pine cone production by killing cone-bearing branches and trees. Mortality from blister rust reaches 90% or higher in some whitebark pine forests in the Northern Rocky Mountains, USA, and the rust now occurs nearly rangewide in whitebark pine. Our objectives were to identify the minimum level of cone production necessary to elicit seed dispersal by nutcrackers and to determine how cone production is influenced by forest structure and health. We quantified forest conditions and ecological interactions between nutcrackers and whitebark pine in three Rocky Mountain ecosystems that differ in levels of rust infection and mortality. Both the frequency of nutcracker occurrence and probability of seed dispersal were strongly related to annual whitebark pine cone production, which had a positive linear association with live whitebark pine basal area, and negative linear association with whitebark pine tree mortality and rust infection. From our data, we estimated that a threshold level of approximately 1000 cones/ha is needed for a high likelihood of seed dispersal by nutcrackers (probability > or = 0.7), and that this level of cone production can be met by forests with live whitebark pine basal area > 5.0 m2/ha. The risk of mutualism disruption is greatest in northern most Montana (USA), where three-year mean cone production and live basal area fell below predicted threshold levels. There, nutcracker occurrence, seed dispersal, and whitebark pine regeneration were the lowest of the three ecosystems. Managers can use these threshold values to differentiate between restoration sites requiring planting of rust-resistant seedlings and sites where nutcracker seed dispersal can be expected.

  15. Facultative parthenogenesis validated by DNA analyses in the green anaconda (Eunectes murinus).

    PubMed

    Shibata, Hiroki; Sakata, Shuichi; Hirano, Yuzo; Nitasaka, Eiji; Sakabe, Ai

    2017-01-01

    In reptiles, the mode of reproduction is typically sexual. However, facultative parthenogenesis occurs in some Squamata, such as Komodo dragon (Varanus komodoensis) and Burmese python (Python bivittatus). Here, we report facultative parthenogenesis in the green anaconda (Eunectes murinus). We found two fully developed female neonates and 17 undeveloped eggs in the oviduct of a female anaconda isolated from other individuals for eight years and two months at Ueno Zoo, Japan. To clarify the zygosity of the neonates, we analyzed 18 microsatellite markers of which 16 were informative. We observed only maternal alleles and no paternal alleles for all 16 markers. To examine the possibility of the long-term sperm storage, we estimated allele frequencies in a putative parental stock by genotyping five unrelated founders. If all founders, including the mother, are originated from a single Mendelian population, then the probability that the neonates were produced by sexual reproduction with an unrelated male via long-term sperm storage was infinitesimally small (2.31E-32 per clutch). We also examined samples from two additional offspring that the mother delivered eight years before her death. We consistently observed paternal alleles in these elder offspring, indicating that the mother had switched from sexual reproduction to asexual reproduction during the eight years of isolation. This is the first case of parthenogenesis in Eunectes to be validated by DNA analysis, and suggests that facultative parthenogenesis is widespread in the Boidae.

  16. Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser

    PubMed Central

    Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel

    2014-01-01

    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037

  17. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    PubMed Central

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan MHAI; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Purpose Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific therapeutic agents against S. sanguinis. PMID:25473301

  18. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis.

    PubMed

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan Mhai; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim-sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein-protein interaction. In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific therapeutic agents against S. sanguinis.

  19. A multiple antibiotic and serum resistant oligotrophic strain, Klebsiella pneumoniae MB45 having novel dfrA30, is sensitive to ZnO QDs

    PubMed Central

    2011-01-01

    Background The aim of this study was to describe a novel trimethoprim resistance gene cassette, designated dfrA30, within a class 1 integron in a facultatively oligotrophic, multiple antibiotic and human serum resistant test strain, MB45, in a population of oligotrophic bacteria isolated from the river Mahananda; and to test the efficiency of surface bound acetate on zinc oxide quantum dots (ZnO QDs) as bactericidal agent on MB45. Methods Diluted Luria broth/Agar (10-3) media was used to cultivate the oligotrophic bacteria from water sample. Multiple antibiotic resistant bacteria were selected by employing replica plate method. A rapid assay was performed to determine the sensitivity/resistance of the test strain to human serum. Variable region of class 1 integron was cloned, sequenced and the expression of gene coding for antibiotic resistance was done in Escherichia coli JM 109. Identity of culture was determined by biochemical phenotyping and 16S rRNA gene sequence analyses. A phylogenetic tree was constructed based on representative trimethoprim resistance-mediating DfrA proteins retrieved from GenBank. Growth kinetic studies for the strain MB45 were performed in presence of varied concentrations of ZnO QDs. Results and conclusions The facultatively oligotrophic strain, MB45, resistant to human serum and ten antibiotics trimethoprim, cotrimoxazole, ampicillin, gentamycin, netilmicin, tobramycin, chloramphenicol, cefotaxime, kanamycin and streptomycin, has been identified as a new strain of Klebsiella pneumoniae. A novel dfr gene, designated as dfrA30, found integrated in class 1 integron was responsible for resistance to trimethoprim in Klebsiella pneumoniae strain MB45. The growth of wild strain MB45 was 100% arrested at 500 mg/L concentration of ZnO QDs. To our knowledge this is the first report on application of ZnO quantum dots to kill multiple antibiotics and serum resistant K. pneumoniae strain. PMID:21595893

  20. Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture

    PubMed Central

    Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.

    2009-01-01

    Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487

  1. Distinct Campylobacter fetus lineages adapted as livestock pathogens and human pathobionts in the intestinal microbiota.

    PubMed

    Iraola, Gregorio; Forster, Samuel C; Kumar, Nitin; Lehours, Philippe; Bekal, Sadjia; García-Peña, Francisco J; Paolicchi, Fernando; Morsella, Claudia; Hotzel, Helmut; Hsueh, Po-Ren; Vidal, Ana; Lévesque, Simon; Yamazaki, Wataru; Balzan, Claudia; Vargas, Agueda; Piccirillo, Alessandra; Chaban, Bonnie; Hill, Janet E; Betancor, Laura; Collado, Luis; Truyers, Isabelle; Midwinter, Anne C; Dagi, Hatice T; Mégraud, Francis; Calleros, Lucía; Pérez, Ruben; Naya, Hugo; Lawley, Trevor D

    2017-11-08

    Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathogen.

  2. Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F).

    PubMed

    Manilal, Aseer; Idhayadhulla, Akbar

    2014-01-01

    To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  3. Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F)

    PubMed Central

    Manilal, Aseer; Idhayadhulla, Akbar

    2014-01-01

    Objective To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. Methods In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. Results The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Conclusions Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. PMID:24144126

  4. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans

    PubMed Central

    Caza, Mélissa; Kronstad, James W.

    2013-01-01

    Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900

  5. Human and bovine viruses and bacteria at three Great Lakes beaches: Environmental variable associations and health risk

    USGS Publications Warehouse

    Corsi, Steven R.; Borchardt, Mark A.; Carvin, Rebecca B.; Burch, Tucker R; Spencer, Susan K.; Lutz, Michelle A.; McDermott, Colleen M.; Busse, Kimberly M.; Kleinheinz, Gregory; Feng, Xiaoping; Zhu, Jun

    2016-01-01

    Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65–87% for pathogenic bacteria, and 13–35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 3 × 10–5, 7 × 10–9, and 3 × 10–7 for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens.

  6. Characterization of 12 polymorphic microsatellite markers for a facultatively eusocial sweat bee (Megalopta genalis).

    PubMed

    Kapheim, Karen M; Pollinger, John P; Wcislo, William T; Wayne, Robert K

    2009-11-01

    We developed a library of twelve polymorphic di- and tri-nucleotide microsatellite markers for Megalopta genalis, a facultatively eusocial sweat bee. We tested each locus in a panel of 23 unrelated females and found 7-20 alleles per locus. Observed and expected heterozygosities ranged from 0.65 to 0.96 and from 0.69 to 0.95 respectively. None of the loci deviated from Hardy-Weinberg equilibrium proportions or was found to be in gametic disequilibrium. © 2009 Blackwell Publishing Ltd.

  7. Comparison of the h-Index Scores Among Pathogens Identified as Emerging Hazards in North America.

    PubMed

    Cox, R; McIntyre, K M; Sanchez, J; Setzkorn, C; Baylis, M; Revie, C W

    2016-02-01

    Disease surveillance must assess the relative importance of pathogen hazards. Here, we use the Hirsch index (h-index) as a novel method to identify and rank infectious pathogens that are likely to be a hazard to human health in the North American region. This bibliometric index was developed to quantify an individual's scientific research output and was recently used as a proxy measure for pathogen impact. Analysis of more than 3000 infectious organisms indicated that 651 were human pathogen species that had been recorded in the North American region. The h-index of these pathogens ranged from 0 to 584. The h-index of emerging pathogens was greater than non-emerging pathogens as was the h-index of frequently pathogenic pathogens when compared to non-pathogenic pathogens. As expected, the h-index of pathogens varied over time between 1960 and 2011. We discuss how the h-index can contribute to pathogen prioritization and as an indicator of pathogen emergence. © 2014 Blackwell Verlag GmbH.

  8. Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes

    PubMed Central

    Walter, Katharine S.; Pepin, Kim M.; Webb, Colleen T.; Gaff, Holly D.; Krause, Peter J.; Pitzer, Virginia E.; Diuk-Wasser, Maria A.

    2016-01-01

    Modelling the spatial spread of vector-borne zoonotic pathogens maintained in enzootic transmission cycles remains a major challenge. The best available spatio-temporal data on pathogen spread often take the form of human disease surveillance data. By applying a classic ecological approach—occupancy modelling—to an epidemiological question of disease spread, we used surveillance data to examine the latent ecological invasion of tick-borne pathogens. Over the last half-century, previously undescribed tick-borne pathogens including the agents of Lyme disease and human babesiosis have rapidly spread across the northeast United States. Despite their epidemiological importance, the mechanisms of tick-borne pathogen invasion and drivers underlying the distinct invasion trajectories of the co-vectored pathogens remain unresolved. Our approach allowed us to estimate the unobserved ecological processes underlying pathogen spread while accounting for imperfect detection of human cases. Our model predicts that tick-borne diseases spread in a diffusion-like manner with occasional long-distance dispersal and that babesiosis spread exhibits strong dependence on Lyme disease. PMID:27252022

  9. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism.

    PubMed

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-06-07

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies.

  10. Human soil-borne pathogens and risks associated with land use change

    NASA Astrophysics Data System (ADS)

    Pereg, Lily

    2017-04-01

    Soil is a source of pathogenic, neutral and beneficial microorganisms. Natural events and anthropogenic activity can affect soil biodiversity and influence the balance and distribution of soil-borne human pathogens. Important bacterial and fungal pathogens, such as Bacillus anthracis, Coxiella bernetii, Clostridium tetani, Escherichia coli 0157:H7, Listeria monocytogenes, Aspergillus fumigatus and Sporothrix schenckii will be discussed. This presentation will concentrate on soil pathogenic microorganisms and the effects of land use change on their prevalence and distribution. In particular, the potential of agricultural soil cultivation to enhance pathogen transmission to human through the release of soil microbes into the air attached to dust particles, contamination of waterways and infection of food plants and animal. Emerging solutions, such as biocontrol and probiotics, will be discussed.

  11. Prevalences of pathogenic and non-pathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean Coast

    PubMed Central

    Lopez-Joven, Carmen; de Blas, Ignacio; Furones, M. Dolores; Roque, Ana

    2015-01-01

    Vibrio parahaemolyticus is a well-recognized pathogen of humans. To better understand the ecology of the human-pathogenic variants of this bacterium in the environment, a study on the prevalence in bivalves of pathogenic variants (tlh+ and tdh+ and/or trh+) versus a non-pathogenic one (only tlh+ as species marker for V. parahaemolyticus), was performed in two bays in Catalonia, Spain. Environmental factors that might affect dynamics of both variants of V. parahaemolyticus were taken into account. The results showed that the global prevalence of total V. parahaemolyticus found in both bays was 14.2% (207/1459). It was, however, significantly dependent on sampling point, campaign (year) and bivalve species. Pathogenic variants of V. parahaemolyticus (tdh+ and/or trh+) were detected in 3.8% of the samples (56/1459), meaning that the proportion of bivalves who contained tlh gene were contaminated by pathogenic V. parahaemolyticus strains is 27.1% (56/207). Moreover, the presence of pathogenic V. parahaemolyticus (trh+) was significantly correlated with water salinity, thus the probability of finding pathogenic V. parahaemolyticus decreased 1.45 times with every salinity unit (ppt) increased. Additionally, data showed that V. parahaemolyticus could establish close associations with Ruditapes spp. (P-value < 0.001), which could enhance the transmission of illness to human by pathogenic variants, when clams were eaten raw or slightly cooked. This study provides information on the abundance, ecology and characteristics of total and human-pathogenic V. parahaemolyticus variants associated with bivalves cultured in the Spanish Mediterranean Coast. PMID:26284033

  12. Using open-access taxonomic and spatial information to create a comprehensive database for the study of mammalian and avian livestock and pet infections.

    PubMed

    McIntyre, K M; Setzkorn, C; Wardeh, M; Hepworth, P J; Radford, A D; Baylis, M

    2014-10-01

    What are all the species of pathogen that affect our livestock? As 6 out of every 10 human pathogens came from animals, with a good number from livestock and pets, it seems likely that the majority that emerge in the future, and which could threaten or devastate human health, will come from animals. Only 10 years ago, the first comprehensive pathogen list was compiled for humans; we still have no equivalent for animals. Here we describe the creation of a novel pathogen database, and present outputs from the database that demonstrate its value. The ENHanCEd Infectious Diseases database (EID2) is open-access and evidence-based, and it describes the pathogens of humans and animals, their host and vector species, and also their global occurrence. The EID2 systematically collates information on pathogens into a single resource using evidence from the NCBI Taxonomy database, the NCBI Nucleotide database, the NCBI MeSH (Medical Subject Headings) library and PubMed. Information about pathogens is assigned using data-mining of meta-data and semi-automated literature searches. Here we focus on 47 mammalian and avian hosts, including humans and animals commonly used in Europe as food or kept as pets. Currently, the EID2 evidence suggests that: • Within these host species, 793 (30.5%) pathogens were bacteria species, 395 (15.2%) fungi, 705 (27.1%) helminths, 372 (14.3%) protozoa and 332 (12.8%) viruses. • The odds of pathogens being emerging compared to not emerging differed by taxonomic division, and increased when pathogens had greater numbers of host species associated with them, and were zoonotic rather than non-zoonotic. • The odds of pathogens being zoonotic compared to non-zoonotic differed by taxonomic division and also increased when associated with greater host numbers. • The pathogens affecting the greatest number of hosts included: Escherichia coli, Giardia intestinalis, Toxoplasma gondii, Anaplasma phagocytophilum, Cryptosporidium parvum, Rabies virus, Staphylococcus aureus, Neospora caninum and Echinococcus granulosus. • The pathogens of humans and domestic animal hosts are characterised by 4223 interactions between pathogen and host species, with the greatest number found in: humans, sheep/goats, cattle, small mammals, pigs, dogs and equids. • The number of pathogen species varied by European country. The odds of a pathogen being found in Europe compared to the rest of the world differed by taxonomic division, and increased if they were emerging compared to not emerging, or had a larger number of host species associated with them. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Comparative Genomics of Serratia spp.: Two Paths towards Endosymbiotic Life

    PubMed Central

    Manzano-Marín, Alejandro; Lamelas, Araceli; Moya, Andrés; Latorre, Amparo

    2012-01-01

    Symbiosis is a widespread phenomenon in nature, in which insects show a great number of these associations. Buchnera aphidicola, the obligate endosymbiont of aphids, coexists in some species with another intracellular bacterium, Serratia symbiotica. Of particular interest is the case of the cedar aphid Cinara cedri, where B. aphidicola BCc and S. symbiotica SCc need each other to fulfil their symbiotic role with the insect. Moreover, various features seem to indicate that S. symbiotica SCc is closer to an obligate endosymbiont than to other facultative S. symbiotica, such as the one described for the aphid Acirthosyphon pisum (S. symbiotica SAp). This work is based on the comparative genomics of five strains of Serratia, three free-living and two endosymbiotic ones (one facultative and one obligate) which should allow us to dissect the genome reduction taking place in the adaptive process to an intracellular life-style. Using a pan-genome approach, we have identified shared and strain-specific genes from both endosymbiotic strains and gained insight into the different genetic reduction both S. symbiotica have undergone. We have identified both retained and reduced functional categories in S. symbiotica compared to the Free-Living Serratia (FLS) that seem to be related with its endosymbiotic role in their specific host-symbiont systems. By means of a phylogenomic reconstruction we have solved the position of both endosymbionts with confidence, established the probable insect-pathogen origin of the symbiotic clade as well as the high amino-acid substitution rate in S. symbiotica SCc. Finally, we were able to quantify the minimal number of rearrangements suffered in the endosymbiotic lineages and reconstruct a minimal rearrangement phylogeny. All these findings provide important evidence for the existence of at least two distinctive S. symbiotica lineages that are characterized by different rearrangements, gene content, genome size and branch lengths. PMID:23077583

  14. No facultative worker policing in the honey bee ( Apis mellifera L.)

    NASA Astrophysics Data System (ADS)

    Loope, Kevin J.; Seeley, Thomas D.; Mattila, Heather R.

    2013-05-01

    Kin selection theory predicts that in colonies of social Hymenoptera with multiply mated queens, workers should mutually inhibit ("police") worker reproduction, but that in colonies with singly mated queens, workers should favor rearing workers' sons instead of queens' sons. In line with these predictions, Mattila et al. (Curr Biol 22:2027-2031, 2012) documented increased ovary development among workers in colonies of honey bees with singly mated queens, suggesting that workers can detect and respond adaptively to queen mating frequency and raising the possibility that they facultative police. In a follow-up experiment, we test and reject the hypothesis that workers in single-patriline colonies prefer worker-derived males and are able to reproduce directly; we show that their eggs are policed as strongly as those of workers in colonies with multiply mated queens. Evidently, workers do not respond facultatively to a kin structure that favors relaxed policing and increased direct reproduction. These workers may instead be responding to a poor queen or preparing for possible queen loss.

  15. Facultative Stabilization Pond: Measuring Biological Oxygen Demand using Mathematical Approaches

    NASA Astrophysics Data System (ADS)

    Wira S, Ihsan; Sunarsih, Sunarsih

    2018-02-01

    Pollution is a man-made phenomenon. Some pollutants which discharged directly to the environment could create serious pollution problems. Untreated wastewater will cause contamination and even pollution on the water body. Biological Oxygen Demand (BOD) is the amount of oxygen required for the oxidation by bacteria. The higher the BOD concentration, the greater the organic matter would be. The purpose of this study was to predict the value of BOD contained in wastewater. Mathematical modeling methods were chosen in this study to depict and predict the BOD values contained in facultative wastewater stabilization ponds. Measurements of sampling data were carried out to validate the model. The results of this study indicated that a mathematical approach can be applied to predict the BOD contained in the facultative wastewater stabilization ponds. The model was validated using Absolute Means Error with 10% tolerance limit, and AME for model was 7.38% (< 10%), so the model is valid. Furthermore, a mathematical approach can also be applied to illustrate and predict the contents of wastewater.

  16. The vocal repertoire in a solitary foraging carnivore, Cynictis penicillata, may reflect facultative sociality.

    PubMed

    Le Roux, Aliza; Cherry, Michael I; Manser, Marta B

    2009-05-01

    We describe the vocal repertoire of a facultatively social carnivore, the yellow mongoose, Cynictis penicillata. Using a combination of close-range observations, recordings and experiments with simulated predators, we were able to obtain clear descriptions of call structure and function for a wide range of calls used by this herpestid. The vocal repertoire of the yellow mongooses comprised ten call types, half of which were used in appeasing or fearful contexts and half in aggressive interactions. Data from this study suggest that the yellow mongoose uses an urgency-based alarm calling system, indicating high and low urgency through two distinct call types. Compared to solitary mongooses, the yellow mongoose has a large proportion of 'friendly' vocalisations that enhance group cohesion, but its vocal repertoire is smaller and less context-specific than those of obligate social species. This study of the vocal repertoire of the yellow mongoose is, to our knowledge, the most complete to have been conducted on a facultatively social species in its natural habitat.

  17. The vocal repertoire in a solitary foraging carnivore, Cynictis penicillata, may reflect facultative sociality

    NASA Astrophysics Data System (ADS)

    Le Roux, Aliza; Cherry, Michael I.; Manser, Marta B.

    2009-05-01

    We describe the vocal repertoire of a facultatively social carnivore, the yellow mongoose, Cynictis penicillata. Using a combination of close-range observations, recordings and experiments with simulated predators, we were able to obtain clear descriptions of call structure and function for a wide range of calls used by this herpestid. The vocal repertoire of the yellow mongooses comprised ten call types, half of which were used in appeasing or fearful contexts and half in aggressive interactions. Data from this study suggest that the yellow mongoose uses an urgency-based alarm calling system, indicating high and low urgency through two distinct call types. Compared to solitary mongooses, the yellow mongoose has a large proportion of ‘friendly’ vocalisations that enhance group cohesion, but its vocal repertoire is smaller and less context-specific than those of obligate social species. This study of the vocal repertoire of the yellow mongoose is, to our knowledge, the most complete to have been conducted on a facultatively social species in its natural habitat.

  18. No facultative worker policing in the honey bee (Apis mellifera L.).

    PubMed

    Loope, Kevin J; Seeley, Thomas D; Mattila, Heather R

    2013-05-01

    Kin selection theory predicts that in colonies of social Hymenoptera with multiply mated queens, workers should mutually inhibit ("police") worker reproduction, but that in colonies with singly mated queens, workers should favor rearing workers' sons instead of queens' sons. In line with these predictions, Mattila et al. (Curr Biol 22:2027-2031, 2012) documented increased ovary development among workers in colonies of honey bees with singly mated queens, suggesting that workers can detect and respond adaptively to queen mating frequency and raising the possibility that they facultative police. In a follow-up experiment, we test and reject the hypothesis that workers in single-patriline colonies prefer worker-derived males and are able to reproduce directly; we show that their eggs are policed as strongly as those of workers in colonies with multiply mated queens. Evidently, workers do not respond facultatively to a kin structure that favors relaxed policing and increased direct reproduction. These workers may instead be responding to a poor queen or preparing for possible queen loss.

  19. Surface properties of Entamoeba: increased rates of human erythrocyte phagocytosis in pathogenic strains

    PubMed Central

    1978-01-01

    The assertion that ingestion of human erythrocytes is restricted to invasive strains of Entamoeba histolytica has not been evaluated previously by comparative studies. In this report we describe the in vitro ingestion of human erythrocytes by pathogenic and nonpathogenic Entamoeba. Microscopic evaluation of erythrophagocytosis by eight different Entamoeba grown in culture revealed that strains of E. histolytica isolated from cases of human dysentery show a much higher rate of erythrocyte ingestion than nonpathogenic strains. However, all strains are able to phagocytize erythrocytes. The extremely high rate of phagocytic activity shown by pathogenic E. histolytica could be one of the properties related to the pathogenicity of this parasitic protozoan. PMID:722237

  20. Pathogen Loading From Canada Geese Faeces in Freshwater: Potential Risks to Human Health Through Recreational Water Exposure.

    PubMed

    Gorham, T J; Lee, J

    2016-05-01

    Canada geese (Branta canadensis) faeces have been shown to contain pathogenic protozoa and bacteria in numerous studies over the past 15 years. Further, increases in both the Canada geese populations and their ideal habitat requirements in the United States (US) translate to a greater presence of these human pathogens in public areas, such as recreational freshwater beaches. Combining these factors, the potential health risk posed by Canada geese faeces at freshwater beaches presents an emerging public health issue that warrants further study. Here, literature concerning human pathogens in Canada geese faeces is reviewed and the potential impacts these pathogens may have on human health are discussed. Pathogens of potential concern include Campylobacter jejuni, Salmonella Typhimurium, Listeria monocytogenes, Helicobacter canadensis, Arcobacter spp., Enterohemorragic Escherichia coli pathogenic strains, Chlamydia psitacci, Cryptosporidium parvum and Giardia lamblia. Scenarios presenting potential exposure to pathogens eluted from faeces include bathers swimming in lakes, children playing with wet and dry sand impacted by geese droppings and other common recreational activities associated with public beaches. Recent recreational water-associated disease outbreaks in the US support the plausibility for some of these pathogens, including Cryptosporidium spp. and C. jejuni, to cause human illness in this setting. In view of these findings and the uncertainties associated with the real health risk posed by Canada geese faecal pathogens to users of freshwater lakes, it is recommended that beach managers use microbial source tracking and conduct a quantitative microbial risk assessment to analyse the local impact of Canada geese on microbial water quality during their decision-making process in beach and watershed management. © 2015 Blackwell Verlag GmbH.

  1. Mechanisms of action of Coxiella burnetii effectors inferred from host-pathogen protein interactions.

    PubMed

    Wallqvist, Anders; Wang, Hao; Zavaljevski, Nela; Memišević, Vesna; Kwon, Keehwan; Pieper, Rembert; Rajagopala, Seesandra V; Reifman, Jaques

    2017-01-01

    Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.

  2. Investigation of pathogen infiltration into produce using Xradia Bio MicroCT

    USDA-ARS?s Scientific Manuscript database

    The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...

  3. Facultative parthenogenesis validated by DNA analyses in the green anaconda (Eunectes murinus)

    PubMed Central

    Sakata, Shuichi; Hirano, Yuzo; Nitasaka, Eiji; Sakabe, Ai

    2017-01-01

    In reptiles, the mode of reproduction is typically sexual. However, facultative parthenogenesis occurs in some Squamata, such as Komodo dragon (Varanus komodoensis) and Burmese python (Python bivittatus). Here, we report facultative parthenogenesis in the green anaconda (Eunectes murinus). We found two fully developed female neonates and 17 undeveloped eggs in the oviduct of a female anaconda isolated from other individuals for eight years and two months at Ueno Zoo, Japan. To clarify the zygosity of the neonates, we analyzed 18 microsatellite markers of which 16 were informative. We observed only maternal alleles and no paternal alleles for all 16 markers. To examine the possibility of the long-term sperm storage, we estimated allele frequencies in a putative parental stock by genotyping five unrelated founders. If all founders, including the mother, are originated from a single Mendelian population, then the probability that the neonates were produced by sexual reproduction with an unrelated male via long-term sperm storage was infinitesimally small (2.31E-32 per clutch). We also examined samples from two additional offspring that the mother delivered eight years before her death. We consistently observed paternal alleles in these elder offspring, indicating that the mother had switched from sexual reproduction to asexual reproduction during the eight years of isolation. This is the first case of parthenogenesis in Eunectes to be validated by DNA analysis, and suggests that facultative parthenogenesis is widespread in the Boidae. PMID:29236745

  4. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates.

    PubMed

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae , or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain ( P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28-39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin-antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.

  5. Pathogenicity of Human ST23 Streptococcus agalactiae to Fish and Genomic Comparison of Pathogenic and Non-pathogenic Isolates

    PubMed Central

    Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi

    2017-01-01

    Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination. PMID:29056932

  6. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens.

    PubMed

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N

    2015-12-01

    The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.

  7. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens

    PubMed Central

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A.; Shlomai, Amir; Mota, Maria; Fleming, Heather E.; Khetani, Salman R.; Rice, Charles M.; Bhatia, Sangeeta N.

    2018-01-01

    Studying human hepatotropic pathogens such as hepatitis B and C viruses and malaria will be necessary for understanding host-pathogen interactions, and developing therapy and prophylaxis. Unfortunately, existing in vitro liver models typically employ either cell lines that exhibit aberrant physiology, or primary human hepatocytes in culture configurations wherein they rapidly lose their hepatic functional phenotype. Stable, robust, and reliable in vitro primary human hepatocyte models are needed as platforms for infectious disease applications. For this purpose, we describe the application of micropatterned co-cultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive cells. Using this system, we demonstrate how to recapitulate in vitro liver infection by the hepatitis B and C viruses and Plasmodium pathogens. In turn, the MPCC platform can be used to uncover aspects of host-pathogen interactions, and has the potential to be used for medium-throughput drug screening and vaccine development. PMID:26584444

  8. Looking at protists as a source of pathogenic viruses.

    PubMed

    La Scola, Bernard

    2014-12-01

    In the environment, protozoa are predators of bacteria and feed on them. The possibility that some protozoa could be a source of human pathogens is consistent with the discovery that free-living amoebae were the reservoir of Legionella pneumophila, the agent of Legionnaires' disease. Later, while searching for Legionella in the environment using amoeba co-culture, the first giant virus, Acanthamoeba polyphaga mimivirus, was discovered. Since then, many other giant viruses have been isolated, including Marseilleviridae, Pithovirus sibericum, Cafeteria roenbergensis virus and Pandoravirus spp. The methods used to isolate all of these viruses are herein reviewed. By analogy to Legionella, it was originally suspected that these viruses could be human pathogens. After showing by indirect evidence, such as sero-epidemiologic studies, that it was possible for these viruses to be human pathogens, the recent isolation of some of these viruses (belonging to the Mimiviridae and Marseilleviridae families) in humans in the context of pathologic conditions shows that they are opportunistic human pathogens in some instances. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Lectins in human pathogenic fungi.

    PubMed

    Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro

    2014-01-01

    Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  10. The Battle for Iron between Humans and Microbes.

    PubMed

    Carver, Peggy L

    2018-01-01

    Iron is an essential micronutrient for bacteria, fungi, and humans; as such, each has evolved specialized iron uptake systems to acquire iron from the extracellular environment. To describe complex 'tug of war' for iron that has evolved between human hosts and pathogenic microorganisms in the battle for this vital nutrient. A review of current literature was performed, to assess current approaches and controversies in iron therapy and chelation in humans. In humans, sequestration (hiding) of iron from invading pathogens is often successful; however, many pathogens have evolved mechanisms to circumvent this approach. Clinically, controversy continues whether iron overload or administration of iron results in an increased risk of infection. The administration of iron chelating agents and siderophore- conjugate drugs to infected hosts seems a biologically plausible approach as adjunctive therapy in the treatment of infections caused by pathogens dependent on host iron supply (e.g. tuberculosis, malaria, and many bacterial and fungal pathogens); however, thus far, studies in humans have proved unsuccessful. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus.

    PubMed

    Collado, M C; Meriluoto, J; Salminen, S

    2007-10-01

    The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.

  12. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: Implications for disease risk management in North America

    USGS Publications Warehouse

    Miller, Ryan S.; Sweeney, Steven J.; Slootmaker, Chris; Grear, Daniel A.; DiSalvo, Paul A.; Kiser, Deborah; Shwiff, Stephanie A.

    2017-01-01

    Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.

  13. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America.

    PubMed

    Miller, Ryan S; Sweeney, Steven J; Slootmaker, Chris; Grear, Daniel A; Di Salvo, Paul A; Kiser, Deborah; Shwiff, Stephanie A

    2017-08-10

    Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.

  14. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    PubMed

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  15. Propagation of Human Enteropathogens in Constructed Horizontal Wetlands Used for Tertiary Wastewater Treatment ▿

    PubMed Central

    Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Mashinski, Yessika; Broaders, Michael A.; Connolly, Michelle; Cheng, Hui-Wen A.

    2009-01-01

    Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, −84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this is the first report of C. meleagridis from Ireland. PMID:19411413

  16. Cold plasma inactivation of human pathogens on foods and regulatory status update

    USDA-ARS?s Scientific Manuscript database

    Contamination of foods with human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, norovirus, and other pathogens is an ongoing challenge for growers and processors. In recent years, cold plasma has emerged as a promising antimicrobial treatment for fresh and fresh-cut...

  17. Occurrence of human pathogenic Clostridium botulinum among healthy dairy animals: an emerging public health hazard.

    PubMed

    Abdel-Moein, Khaled A; Hamza, Dalia A

    2016-01-01

    The current study was conducted to investigate the occurrence of human pathogenic Clostridium botulinum in the feces of dairy animals. Fecal samples were collected from 203 apparently healthy dairy animals (50 cattle, 50 buffaloes, 52 sheep, 51 goats). Samples were cultured to recover C. botulinum while human pathogenic C. botulinum strains were identified after screening of all C. botulinum isolates for the presence of genes that encode toxins type A, B, E, F. The overall prevalence of C. botulinum was 18.7% whereas human pathogenic C. botulinum strains (only type A) were isolated from six animals at the rates of 2, 2, 5.8, and 2% for cattle, buffaloes, sheep, and goats, respectively. High fecal carriage rates of C. botulinum among apparently healthy dairy animals especially type A alarm both veterinary and public health communities for a potential role which may be played by dairy animals in the epidemiology of such pathogen.

  18. Pathogens and host immunity in the ancient human oral cavity

    PubMed Central

    Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188

  19. In vitro and intra-macrophage gene expression by Rhodococcus equi strain 103.

    PubMed

    Rahman, Md Tanvir; Parreira, Valeria; Prescott, John F

    2005-09-30

    Rhodococcus equi is a facultative intracellular respiratory pathogen of foals that persists and multiplies within macrophages. In foals, virulence is associated with 80-90 kb plasmids, which include a pathogenicity island (PI) containing the virulence-associated protein (vap) gene family, but detailed understanding of the basis of virulence is still poor. A 60 spot-based DNA microarray was developed containing eight PI genes and 42 chromosomal putative virulence or virulence-associated genes selected from a recent partial genome sequence in order to study transcription of these genes by R. equi grown inside macrophages and under in vitro conditions thought to simulate those of macrophages. In addition to seven PI genes, nine chromosomal genes involved in fatty acid and lipid metabolism (choD, fadD13, fbpB), heme biosynthesis (hemE), iron utilization (mbtF), heat shock resistance and genes encoding chaperones (clpB, groEL), a sigma factor (sigK), and a transcriptional regulator (moxR) were significantly induced in R. equi growing inside macrophages. The pattern of R. equi chromosomal genes significantly transcribed inside macrophages largely differed from those transcribed under in vitro conditions (37 degrees C, pH 5.0 or 50mM H2O2 for 30 min). This study has identified genes, other than those of the virulence plasmid, the transcription of which is enhanced within equine macrophages. These genes should be investigated further to improve understanding of how this organism survives intracellularly.

  20. Synthetic Promoters Functional in Francisella novicida and Escherichia coli

    PubMed Central

    McWhinnie, Ralph L.

    2014-01-01

    In this work, we describe the identification of synthetic, controllable promoters that function in the bacterial pathogen Francisella novicida, a model facultative intracellular pathogen. Synthetic DNA fragments consisting of the tetracycline operator (tetO) flanked by a random nucleotide sequence were inserted into a Francisella novicida shuttle plasmid upstream of a promoterless artificial operon containing the reporter genes cat and lacZ. Fragments able to promote transcription were selected for based on their ability to drive expression of the cat gene, conferring chloramphenicol resistance. Promoters of various strengths were found, many of which were repressed in the presence of the tetracycline repressor (TetR) and promoted transcription only in the presence of the TetR inducer anhydrotetracycline. A subset of both constitutive and inducible synthetic promoters were characterized to find their induction ratios and to identify their transcription start sites. In cases where tetO was located between or downstream of the −10 and −35 regions of the promoter, control by TetR was observed. If the tetO region was upstream of the −35 region by more than 9 bp, it did not confer TetR control. We found that three of three promoters isolated in F. novicida functioned at a comparable level in E. coli; however, none of the 10 promoters isolated in E. coli functioned at a significant level in F. novicida. Our results allowed us to isolate minimal F. novicida promoters of 47 and 48 bp in length. PMID:24141126

  1. The Ethanolamine Permease EutH Promotes Vacuole Adaptation of Salmonella enterica and Listeria monocytogenes during Macrophage Infection.

    PubMed

    Anderson, Christopher J; Satkovich, John; Köseoğlu, Volkan K; Agaisse, Hervé; Kendall, Melissa M

    2018-05-01

    Ethanolamine is a ubiquitous and essential molecule within a host. Significantly, bacterial pathogens exploit ethanolamine during infection to promote growth and regulate virulence. The ethanolamine permease EutH is dispensable for growth in vitro under standard conditions, whereas EutH is required for ethanolamine utilization at low pH. These findings suggested a model in which EutH facilitates diffusion of ethanolamine into the bacterial cell in acidic environments. To date, the ecological significance of this model has not been thoroughly investigated, and the importance of EutH to bacterial growth under physiologically relevant conditions is not known. During infection, immune cells internalize invading bacteria within an acidic, nutrient-depleted vacuole called the phagosome. Here, we investigated the hypothesis that EutH promotes bacterial survival following phagocytosis. Our findings indicate that EutH is important for survival and replication of the facultative intracellular pathogens Salmonella enterica serovar Typhimurium and Listeria monocytogenes during prolonged or transient exposure to the phagosome, respectively. Furthermore, in agreement with EutH being important in the acidic environment, neutralization of the vacuole abolished the requirement for EutH. Significantly, consistent with a role for EutH in promoting intramacrophage survival, EutH was not required during S Typhimurium local intestinal infection but specifically conferred an advantage upon dissemination to peripheral organs. These findings reveal a physiologically relevant and conserved role for EutH in spatiotemporal niche adaptation during infection. Copyright © 2018 American Society for Microbiology.

  2. Mining virulence genes using metagenomics.

    PubMed

    Belda-Ferre, Pedro; Cabrera-Rubio, Raúl; Moya, Andrés; Mira, Alex

    2011-01-01

    When a bacterial genome is compared to the metagenome of an environment it inhabits, most genes recruit at high sequence identity. In free-living bacteria (for instance marine bacteria compared against the ocean metagenome) certain genomic regions are totally absent in recruitment plots, representing therefore genes unique to individual bacterial isolates. We show that these Metagenomic Islands (MIs) are also visible in bacteria living in human hosts when their genomes are compared to sequences from the human microbiome, despite the compartmentalized structure of human-related environments such as the gut. From an applied point of view, MIs of human pathogens (e.g. those identified in enterohaemorragic Escherichia coli against the gut metagenome or in pathogenic Neisseria meningitidis against the oral metagenome) include virulence genes that appear to be absent in related strains or species present in the microbiome of healthy individuals. We propose that this strategy (i.e. recruitment analysis of pathogenic bacteria against the metagenome of healthy subjects) can be used to detect pathogenicity regions in species where the genes involved in virulence are poorly characterized. Using this approach, we detect well-known pathogenicity islands and identify new potential virulence genes in several human pathogens.

  3. Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism

    PubMed Central

    Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark

    2008-01-01

    Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies. PMID:18302996

  4. Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans.

    PubMed

    Mora, Azucena; Viso, Susana; López, Cecilia; Alonso, María Pilar; García-Garrote, Fernando; Dabhi, Ghizlane; Mamani, Rosalía; Herrera, Alexandra; Marzoa, Juan; Blanco, Miguel; Blanco, Jesús E; Moulin-Schouleur, Maryvonne; Schouler, Catherine; Blanco, Jorge

    2013-12-27

    Escherichia coli strains O45:K1:H7 are implicated in severe human infections such as meningitis. Since an increasing prevalence of serogroup O45 among avian pathogenic (APEC) and human extraintestinal pathogenic (ExPEC) E. coli strains isolated in Spain have been noticed, the aims of the present study were to investigate similarities between poultry and human O45 isolates, and to investigate the evolutionary relationship of ST95 types. The genetic relatedness and virulence gene profiles of 55 O45 APEC obtained from an avian colibacillosis collection (1991-2011) and 19 human O45 ExPEC from a human septicemic/uropathogenic (UPEC) E. coli collection (1989-2010) were determined by multilocus sequence typing (MLST), pulsed-field-gel-electrophoresis (PFGE), ECOR phylogrouping, and PCR-based genotyping. Two main clonal groups were established. The most prevalent and highly pathogenic O45:K1:H7-B2-ST95 shows a successful persistence since the 90s to the present, with parallel evolution both in human and poultry, on the basis of their PFGE and virulence gene profile similarities (9 human strains and 15 avian strains showed ≥85% PFGE identity). Comparison of this group with other ST95 closely related members (O1:K1:H7 and O18:K1:H7 isolates from our collections) shows pathogenic specialization through conserved virulence genotypes. The other prevalent O45 clonal group characterized in this study, the O45:HNM/H19-D-ST371/ST2676 was only detected in APEC strains suggesting host specificity. In conclusion, poultry could be acting as a reservoir of O45:K1:H7-B2-ST95 and other pathogenic ST95 serotypes in humans. Further studies would be necessary to clarify if pathogenic mechanisms used by ST95 strains are the same in avian and human hosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Genomic Evidence for the Evolution of Streptococcus equi: Host Restriction, Increased Virulence, and Genetic Exchange with Human Pathogens

    PubMed Central

    Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.

    2009-01-01

    The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880

  6. Amoeba provide insight into the origin of virulence in pathogenic fungi.

    PubMed

    Casadevall, Arturo

    2012-01-01

    Why are some fungi pathogenic while the majority poses no threat to humans or other hosts? Of the more than 1.5 million fungal species only about 150-300 are pathogenic for humans, and of these, only 10-15 are relatively common pathogens. In contrast, fungi are major pathogens for plants and insects. These facts pose several fundamental questions including the mechanisms responsible for the origin of virulence among the few pathogenic species and the high resistance of mammals to fungal diseases. This essay explores the origin of virulences among environmental fungi with no obvious requirement for animal association and proposes that selection pressures by amoeboid predators led to the emergence of traits that can also promote survival in mammalian hosts. In this regard, analysis of the interactions between the human pathogenic funges Cryptococcus neoformans and amoeba have shown a remarkable similarity with the interaction of this fungus with macrophages. Hence the virulence of environmental pathogenic fungi is proposed to originate from a combination of selection by amoeboid predators and perhaps other soil organism with thermal tolerance sufficient to allow survival in mammalian hosts.

  7. The Z Proteins of Pathogenic but Not Nonpathogenic Arenaviruses Inhibit RIG-i-Like Receptor-Dependent Interferon Production

    PubMed Central

    Xing, Junji; Ly, Hinh

    2014-01-01

    ABSTRACT Arenavirus pathogens cause a wide spectrum of diseases in humans ranging from central nervous system disease to lethal hemorrhagic fevers with few treatment options. The reason why some arenaviruses can cause severe human diseases while others cannot is unknown. We find that the Z proteins of all known pathogenic arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Lassa, Junin, Machupo, Sabia, Guanarito, Chapare, Dandenong, and Lujo viruses, can inhibit retinoic acid-inducible gene 1 (RIG-i) and Melanoma Differentiation-Associated protein 5 (MDA5), in sharp contrast to those of 14 other nonpathogenic arenaviruses. Inhibition of the RIG-i-like receptors (RLRs) by pathogenic Z proteins is mediated by the protein-protein interactions of Z and RLRs, which lead to the disruption of the interactions between RLRs and mitochondrial antiviral signaling (MAVS). The Z-RLR interactive interfaces are located within the N-terminal domain (NTD) of the Z protein and the N-terminal CARD domains of RLRs. Swapping of the LCMV Z NTD into the nonpathogenic Pichinde virus (PICV) genome does not affect virus growth in Vero cells but significantly inhibits the type I interferon (IFN) responses and increases viral replication in human primary macrophages. In summary, our results show for the first time an innate immune-system-suppressive mechanism shared by the diverse pathogenic arenaviruses and thus shed important light on the pathogenic mechanism of human arenavirus pathogens. IMPORTANCE We show that all known human-pathogenic arenaviruses share an innate immune suppression mechanism that is based on viral Z protein-mediated RLR inhibition. Our report offers important insights into the potential mechanism of arenavirus pathogenesis, provides a convenient way to evaluate the pathogenic potential of known and/or emerging arenaviruses, and reveals a novel target for the development of broad-spectrum therapies to treat this group of diverse pathogens. More broadly, our report provides a better understanding of the mechanisms of viral immune suppression and host-pathogen interactions. PMID:25552708

  8. Human Health Risk Implications of Multiple Sources of Faecal Indicator Bacteria in a Recreational Waterbody

    EPA Science Inventory

    We evaluate the influence of multiple sources of faecal indicator bacteria in recreational water bodies on potential human health risk by considering waters impacted by human and animal sources, human and non-pathogenic sources, and animal and non-pathogenic sources. We illustrat...

  9. Growth and enzymological characteristics of a pink-pigmented facultative methylotroph Methylobacterium sp. MB1.

    PubMed

    Baev, M V; Kuznetsov, E V; Skladnev, D A; Govorukhina, N I; Sterkin, V E; Tsygankov, Y D

    1992-01-01

    Growth characteristics of batch and continuous cultures of the pink facultative methylotroph Methylobacterium sp. MB1 were determined. The response of a chemostat culture to a pulse increase of methanol concentration was studied. Malate, succinate and oxaloacetate additions to the methanol-supplemented medium decreased batch culture growth inhibition by methanol. The carotenoid content in cells grown in a chemostat decreased with increasing growth rate. The key enzyme activities of C1-metabolism were measured in a chemostat culture at different dilution rates.

  10. Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata

    PubMed Central

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L.; Porter, James W.; Lipp, Erin K.

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival. PMID:21858132

  11. Dynamics of fecal indicator bacteria, bacterial pathogen genes, and organic wastewater contaminants in the Little Calumet River: Portage Burns Waterway, Indiana

    USGS Publications Warehouse

    Haack, Sheridan K.; Duris, Joseph W.

    2013-01-01

    Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.

  12. Detection of bacterial pathogens including potential new species in human head lice from Mali

    PubMed Central

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S.; Doumbo, Ogobara K.; Raoult, Didier

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice. PMID:28931077

  13. Detection of bacterial pathogens including potential new species in human head lice from Mali.

    PubMed

    Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S; Doumbo, Ogobara K; Raoult, Didier; Mediannikov, Oleg

    2017-01-01

    In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice.

  14. Evaluating the importance of faecal sources in human-impacted waters.

    PubMed

    Schoen, Mary E; Soller, Jeffrey A; Ashbolt, Nicholas J

    2011-04-01

    Quantitative microbial risk assessment (QMRA) was used to evaluate the relative contribution of faecal indicators and pathogens when a mixture of human sources impacts a recreational waterbody. The waterbody was assumed to be impacted with a mixture of secondary-treated disinfected municipal wastewater and untreated (or poorly treated) sewage, using Norovirus as the reference pathogen and enterococci as the reference faecal indicator. The contribution made by each source to the total waterbody volume, indicator density, pathogen density, and illness risk was estimated for a number of scenarios that accounted for pathogen and indicator inactivation based on the age of the effluent (source-to-receptor), possible sedimentation of microorganisms, and the addition of a non-pathogenic source of faecal indicators (such as old sediments or an animal population with low occurrence of human-infectious pathogens). The waterbody indicator density was held constant at 35 CFU 100 mL(-1) enterococci to compare results across scenarios. For the combinations evaluated, either the untreated sewage or the non-pathogenic source of faecal indicators dominated the recreational waterbody enterococci density assuming a culture method. In contrast, indicator density assayed by qPCR, pathogen density, and bather gastrointestinal illness risks were largely dominated by secondary disinfected municipal wastewater, with untreated sewage being increasingly less important as the faecal indicator load increased from a non-pathogenic source. The results support the use of a calibrated qPCR total enterococci indicator, compared to a culture-based assay, to index infectious human enteric viruses released in treated human wastewater, and illustrate that the source contributing the majority of risk in a mixture may be overlooked when only assessing faecal indicators by a culture-based method. Published by Elsevier Ltd.

  15. Pathogens transmitted in animal feces in low- and middle-income countries.

    PubMed

    Delahoy, Miranda J; Wodnik, Breanna; McAliley, Lydia; Penakalapati, Gauthami; Swarthout, Jenna; Freeman, Matthew C; Levy, Karen

    2018-05-01

    Animals found in close proximity to humans in low-and middle-income countries (LMICs) harbor many pathogens capable of infecting humans, transmissible via their feces. Contact with animal feces poses a currently unquantified-though likely substantial-risk to human health. In LMIC settings, human exposure to animal feces may explain some of the limited success of recent water, sanitation, and hygiene interventions that have focused on limiting exposure to human excreta, with less attention to containing animal feces. We conducted a review to identify pathogens that may substantially contribute to the global burden of disease in humans through their spread in animal feces in the domestic environment in LMICs. Of the 65 potentially pathogenic organisms considered, 15 were deemed relevant, based on burden of disease and potential for zoonotic transmission. Of these, five were considered of highest concern based on a substantial burden of disease for which transmission in animal feces is potentially important: Campylobacter, non-typhoidal Salmonella (NTS), Lassa virus, Cryptosporidium, and Toxoplasma gondii. Most of these have a wide range of animal hosts, except Lassa virus, which is spread through the feces of rats indigenous to sub-Saharan Africa. Combined, these five pathogens cause close to one million deaths annually. More than half of these deaths are attributed to invasive NTS. We do not estimate an overall burden of disease from improperly managed animal feces in LMICs, because it is unknown what proportion of illnesses caused by these pathogens can be attributed to contact with animal feces. Typical water quantity, water quality, and handwashing interventions promoted in public health and development address transmission routes for both human and animal feces; however, sanitation interventions typically focus on containing human waste, often neglecting the residual burden of disease from pathogens transmitted via animal feces. This review compiles evidence on which pathogens may contribute to the burden of disease through transmission in animal feces; these data will help prioritize intervention types and regions that could most benefit from interventions aimed at reducing human contact with animal feces. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  16. Hostile takeover: Manipulation of HIF-1 signaling in pathogen-associated cancers (Review).

    PubMed

    Zhu, Caixia; Zhu, Qing; Wang, Chong; Zhang, Liming; Wei, Fang; Cai, Qiliang

    2016-10-01

    Hypoxia-inducible factor (HIF)-1 is a central regulator in the adaptation process of cell response to hypoxia (low oxygen). Emerging evidence has demonstrated that HIF-1 plays an important role in the development and progression of many types of human diseases, including pathogen-associated cancers. In the present review, we summarize the recent understandings of how human pathogenic agents including viruses, bacteria and parasites deregulate cellular HIF-1 signaling pathway in their associated cancer cells, and highlight the common molecular mechanisms of HIF-1 signaling activated by these pathogenic infection, which could act as potential diagnostic markers and new therapeutic strategies against human infectious cancers.

  17. Hydrologic, land cover, and seasonal patterns of waterborne pathogens in Great Lakes tributaries

    USGS Publications Warehouse

    Lenaker, Peter L.; Corsi, Steven; Borchardt, Mark A.; Spencer, Susan K.; Baldwin, Austin K.; Lutz, Michelle A.

    2017-01-01

    Great Lakes tributaries are known to deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal patterns of waterborne pathogens (i.e. protozoa (2), pathogenic bacteria (4) human viruses, (8) and bovine viruses (8)) eight rivers were monitored in the Great Lakes Basin over 29 months from February 2011 to June 2013. Sampling locations represented a wide variety of land cover classes from urban to agriculture to forest. A custom automated pathogen sampler was deployed at eight sampling locations which provided unattended, flow-weighted, large-volume (120–1630 L) sampling. Human and bovine viruses and pathogenic bacteria were detected by real-time qPCR in 16%, 14%, and 1.4% of 290 samples collected while protozoa were never detected. The most frequently detected pathogens were: bovine polyomavirus (11%), and human adenovirus C, D, F (9%). Human and bovine viruses were present in 16.9% and 14.8% of runoff-event samples (n = 189) resulting from precipitation and snowmelt, and 13.9% and 12.9% of low-flow samples (n = 101), respectively, indicating multiple delivery mechanisms could be influential. Data indicated human and bovine virus prevalence was different depending on land cover within the watershed. Occurrence, concentration, and flux of human viruses were greatest in samples from the three sampling locations with greater than 25% urban influence than those with less than 25% urban influence. Similarly, occurrence, concentration, and flux of bovine viruses were greatest in samples from the two sampling locations with greater than 50 cattle/km2 than those with less than 50 cattle/km2. In seasonal analysis, human and bovine viruses occurred more frequently in spring and winter seasons than during the fall and summer. Concentration, occurrence, and flux in the context of hydrologic condition, seasonality, and land use must be considered for each watershed individually to develop effective watershed management strategies for pathogen reduction.

  18. Prebiotic Potential and Chemical Composition of Seven Culinary Spice Extracts.

    PubMed

    Lu, Qing-Yi; Summanen, Paula H; Lee, Ru-Po; Huang, Jianjun; Henning, Susanne M; Heber, David; Finegold, Sydney M; Li, Zhaoping

    2017-08-01

    The objective of this study was to investigate prebiotic potential, chemical composition, and antioxidant capacity of spice extracts. Seven culinary spices including black pepper, cayenne pepper, cinnamon, ginger, Mediterranean oregano, rosemary, and turmeric were extracted with boiling water. Major chemical constituents were characterized by RP-HPLC-DAD method and antioxidant capacity was determined by measuring colorimetrically the extent to scavenge ABTS radical cations. Effects of spice extracts on the viability of 88 anaerobic and facultative isolates from intestinal microbiota were determined by using Brucella agar plates containing serial dilutions of extracts. A total of 14 phenolic compounds, a piperine, cinnamic acid, and cinnamaldehyde were identified and quantitated. Spice extracts exhibited high antioxidant capacity that correlated with the total amount of major chemicals. All spice extracts, with the exception of turmeric, enhanced the growth of Bifidobacterium spp. and Lactobacillus spp. All spices exhibited inhibitory activity against selected Ruminococcus species. Cinnamon, oregano, and rosemary were active against selected Fusobacterium strains and cinnamon, rosemary, and turmeric were active against selected Clostridium spp. Some spices displayed prebiotic-like activity by promoting the growth of beneficial bacteria and suppressing the growth of pathogenic bacteria, suggesting their potential role in the regulation of intestinal microbiota and the enhancement of gastrointestinal health. The identification and quantification of spice-specific phytochemicals provided insight into the potential influence of these chemicals on the gut microbial communities and activities. Future research on the connections between spice-induced changes in gut microbiota and host metabolism and disease preventive effect in animal models and humans is needed. © 2017 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists.

  19. B-Cell Epitopes in GroEL of Francisella tularensis

    PubMed Central

    Lu, Zhaohua; Rynkiewicz, Michael J.; Madico, Guillermo; Li, Sheng; Yang, Chiou-Ying; Perkins, Hillary M.; Sompuram, Seshi R.; Kodela, Vani; Liu, Tong; Morris, Timothy; Wang, Daphne; Roche, Marly I.; Seaton, Barbara A.; Sharon, Jacqueline

    2014-01-01

    The chaperonin protein GroEL, also known as heat shock protein 60 (Hsp60), is a prominent antigen in the human and mouse antibody response to the facultative intracellular bacterium Francisella tularensis (Ft), the causative agent of tularemia. In addition to its presumed cytoplasmic location, FtGroEL has been reported to be a potential component of the bacterial surface and to be released from the bacteria. In the current study, 13 IgG2a and one IgG3 mouse monoclonal antibodies (mAbs) specific for FtGroEL were classified into eleven unique groups based on shared VH-VL germline genes, and seven crossblocking profiles revealing at least three non-overlapping epitope areas in competition ELISA. In a mouse model of respiratory tularemia with the highly pathogenic Ft type A strain SchuS4, the Ab64 and N200 IgG2a mAbs, which block each other’s binding to and are sensitive to the same two point mutations in FtGroEL, reduced bacterial burden indicating that they target protective GroEL B-cell epitopes. The Ab64 and N200 epitopes, as well as those of three other mAbs with different crossblocking profiles, Ab53, N3, and N30, were mapped by hydrogen/deuterium exchange–mass spectrometry (DXMS) and visualized on a homology model of FtGroEL. This model was further supported by its experimentally-validated computational docking to the X-ray crystal structures of Ab64 and Ab53 Fabs. The structural analysis and DXMS profiles of the Ab64 and N200 mAbs suggest that their protective effects may be due to induction or stabilization of a conformational change in FtGroEL. PMID:24968190

  20. A spontaneous mutation in kdsD, a biosynthesis gene for 3 Deoxy-D-manno-Octulosonic Acid, occurred in a ciprofloxacin resistant strain of Francisella tularensis and caused a high level of attenuation in murine models of tularemia

    PubMed Central

    Chance, Taylor; Toothman, Ronald G.; Nuss, Jonathan E.; Raymond, Jo Lynne; Biot, Fabrice V.; Demons, Samandra; Miller, Lynda; Halasohoris, Stephanie; Mou, Sherry; Koroleva, Galina; Lovett, Sean; Palacios, Gustavo; Vietri, Nicholas J.; Worsham, Patricia L.; Cote, Christopher K.; Kijek, Todd M.; Bozue, Joel A.

    2017-01-01

    Francisella tularensis, a gram–negative facultative intracellular bacterial pathogen, is the causative agent of tularemia and able to infect many mammalian species, including humans. Because of its ability to cause a lethal infection, low infectious dose, and aerosolizable nature, F. tularensis subspecies tularensis is considered a potential biowarfare agent. Due to its in vitro efficacy, ciprofloxacin is one of the antibiotics recommended for post-exposure prophylaxis of tularemia. In order to identify therapeutics that will be efficacious against infections caused by drug resistant select-agents and to better understand the threat, we sought to characterize an existing ciprofloxacin resistant (CipR) mutant in the Schu S4 strain of F. tularensis by determining its phenotypic characteristics and sequencing the chromosome to identify additional genetic alterations that may have occurred during the selection process. In addition to the previously described genetic alterations, the sequence of the CipR mutant strain revealed several additional mutations. Of particular interest was a frameshift mutation within kdsD which encodes for an enzyme necessary for the production of 3-Deoxy-D-manno-Octulosonic Acid (KDO), an integral component of the lipopolysaccharide (LPS). A kdsD mutant was constructed in the Schu S4 strain. Although it was not resistant to ciprofloxacin, the kdsD mutant shared many phenotypic characteristics with the CipR mutant, including growth defects under different conditions, sensitivity to hydrophobic agents, altered LPS profiles, and attenuation in multiple models of murine tularemia. This study demonstrates that the KdsD enzyme is essential for Francisella virulence and may be an attractive therapeutic target for developing novel medical countermeasures. PMID:28328947

  1. β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells.

    PubMed

    Badia, Roger; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz; Brufau, Joaquim

    2012-03-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.

  2. β-Galactomannan and Saccharomyces cerevisiae var. boulardii Modulate the Immune Response against Salmonella enterica Serovar Typhimurium in Porcine Intestinal Epithelial and Dendritic Cells

    PubMed Central

    Brufau, M. Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz

    2012-01-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated. PMID:22301691

  3. Brucella Genetic Variability in Wildlife Marine Mammals Populations Relates to Host Preference and Ocean Distribution.

    PubMed

    Suárez-Esquivel, Marcela; Baker, Kate S; Ruiz-Villalobos, Nazareth; Hernández-Mora, Gabriela; Barquero-Calvo, Elías; González-Barrientos, Rocío; Castillo-Zeledón, Amanda; Jiménez-Rojas, César; Chacón-Díaz, Carlos; Cloeckaert, Axel; Chaves-Olarte, Esteban; Thomson, Nicholas R; Moreno, Edgardo; Guzmán-Verri, Caterina

    2017-07-01

    Intracellular bacterial pathogens probably arose when their ancestor adapted from a free-living environment to an intracellular one, leading to clonal bacteria with smaller genomes and less sources of genetic plasticity. Still, this plasticity is needed to respond to the challenges posed by the host. Members of the Brucella genus are facultative-extracellular intracellular bacteria responsible for causing brucellosis in a variety of mammals. The various species keep different host preferences, virulence, and zoonotic potential despite having 97-99% similarity at genome level. Here, we describe elements of genetic variation in Brucella ceti isolated from wildlife dolphins inhabiting the Pacific Ocean and the Mediterranean Sea. Comparison with isolates obtained from marine mammals from the Atlantic Ocean and the broader Brucella genus showed distinctive traits according to oceanic distribution and preferred host. Marine mammal isolates display genetic variability, represented by an important number of IS711 elements as well as specific IS711 and SNPs genomic distribution clustering patterns. Extensive pseudogenization was found among isolates from marine mammals as compared with terrestrial ones, causing degradation in pathways related to energy, transport of metabolites, and regulation/transcription. Brucella ceti isolates infecting particularly dolphin hosts, showed further degradation of metabolite transport pathways as well as pathways related to cell wall/membrane/envelope biogenesis and motility. Thus, gene loss through pseudogenization is a source of genetic variation in Brucella, which in turn, relates to adaptation to different hosts. This is relevant to understand the natural history of bacterial diseases, their zoonotic potential, and the impact of human interventions such as domestication. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Contamination of soils with microbial pathogens originating from effluent water used for agricultural irrigation

    NASA Astrophysics Data System (ADS)

    Bernstein, N.

    2009-04-01

    The use of wastewater for agricultural irrigation is steadily increasing world-wide and due to shortages of fresh water is common today in most arid regions of the world. The use of treated wastewater for agricultural irrigation may result in soil exposure to pathogens, creating potential public health problems. A variety of human pathogens are present in raw sewage water. Although their concentrations decrease during the wastewater reclamation process, the secondary treated effluents most commonly used for irrigation today still contain bacterial human pathogens. A range of bacterial pathogens, introduced through contaminated irrigation water or manure, are capable of surviving for long periods in soil and water where they have the potential to contaminate crops in the field. Therefore, there is a risk of direct contamination of crops by human pathogens from the treated effluents used for irrigation, as well as a risk of indirect contamination of the crops from contaminated soil at the agricultural site. Contradictory to previous notion, recent studies have demonstrated that human pathogens can enter plants through their roots and translocate and survive in edible, aerial plant tissues. The practical implications of these new findings for food safety are still not clear, but no doubt reflect the pathogenic microorganisms' ability to survive and multiply in the irrigated soil, water, and the harvested edible crop.

  5. Comparison of anti-pathogenic activities of the human and bovine milk N-glycome: Fucosylation is a key factor.

    PubMed

    Wang, Wen-Li; Wang, Wei; Du, Ya-Min; Wu, Hong; Yu, Xiao-Bo; Ye, Ke-Ping; Li, Chun-Bao; Jung, Yong-Sam; Qian, Ying-Juan; Voglmeir, Josef; Liu, Li

    2017-11-15

    Health differences between breast- and formula-fed infants have long been apparent despite great efforts in improving the function of baby formula by adjusting the levels of various milk nutritional components. However, the N-glycome, a type of oligosaccharide decorating a diverse range of proteins, has not been extensively studied in milk regarding its biological function. In this study, the anti-pathogenic function of the enzymatically released human and bovine milk N-glycome against 5 food-borne pathogens was investigated. The human milk N-glycome showed significantly higher activity than bovine milk. After enzymatic defucosylation of human and bovine N-glycan pool, UHPLC peak shifts were observed in both suggesting heavy fucosylation of samples. Furthermore, the anti-pathogenic activity of the defulosylated N-glycome decreased significantly, and the significance of functional difference between the two almost disappeared. This result indicates the essential role of fucosylation for the anti-pathogenic function of the milk N-glycome, especially in human milk. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Probiotic Potential of Lactobacillus Strains with Antimicrobial Activity against Some Human Pathogenic Strains

    PubMed Central

    Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan

    2014-01-01

    The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147

  7. Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses

    PubMed Central

    Pappalardo, Morena; Juliá, Miguel; Howard, Mark J.; Rossman, Jeremy S.; Michaelis, Martin; Wass, Mark N.

    2016-01-01

    Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission. PMID:27009368

  8. Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses.

    PubMed

    Pappalardo, Morena; Juliá, Miguel; Howard, Mark J; Rossman, Jeremy S; Michaelis, Martin; Wass, Mark N

    2016-03-24

    Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission.

  9. Taxonomy of oxalotrophic Methylobacterium strains

    NASA Astrophysics Data System (ADS)

    Sahin, Nurettin; Kato, Yuko; Yilmaz, Ferah

    2008-10-01

    Most of the oxalotrophic bacteria are facultative methylotrophs and play important ecological roles in soil fertility and cycling of elements. This study gives a detailed picture of the taxonomy and diversity of these bacteria and provides new information about the taxonomical variability within the genus Methylobacterium. Twelve mesophilic, pink-pigmented, and facultatively methylotrophic oxalate-oxidizing strains were included in this work that had been previously isolated from the soil and some plant tissues by the potassium oxalate enrichment method. The isolates were characterized using biochemical tests, cellular lipid profiles, spectral characteristics of carotenoid pigments, G+C content of the DNA, and 16S rDNA sequencing. The taxonomic similarities among the strains were analyzed using the simple matching ( S SM) and Jaccard ( S J) coefficients, and the UPGMA clustering algorithm. The phylogenetic position of the strains was inferred by the neighbor-joining method on the basis of the 16S rDNA sequences. All isolates were Gram-negative, facultatively methylotrophic, oxidase and catalase positive, and required no growth factors. Based on the results of numerical taxonomy, the strains formed four closely related clusters sharing ≥85% similarity. Analysis of the 16S rDNA sequences demonstrated that oxalotrophic, pink-pigmented, and facultatively methylotrophic strains could be identified as members of the genus Methylobacterium. Except for M. variabile and M. aquaticum, all of the Methylobacterium type strains tested had the ability of oxalate utilization. Our results indicate that the capability of oxalate utilization seems to be an uncommon trait and could be used as a valuable taxonomic criterion for differentiation of Methylobacterium species.

  10. Analysis of Facultative Lithotroph Distribution and Diversity on Volcanic Deposits by Use of the Large Subunit of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase†

    PubMed Central

    Nanba, K.; King, G. M.; Dunfield, K.

    2004-01-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass. PMID:15066819

  11. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase.

    PubMed

    Nanba, K; King, G M; Dunfield, K

    2004-04-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.

  12. Taxonomy of oxalotrophic Methylobacterium strains.

    PubMed

    Sahin, Nurettin; Kato, Yuko; Yilmaz, Ferah

    2008-10-01

    Most of the oxalotrophic bacteria are facultative methylotrophs and play important ecological roles in soil fertility and cycling of elements. This study gives a detailed picture of the taxonomy and diversity of these bacteria and provides new information about the taxonomical variability within the genus Methylobacterium. Twelve mesophilic, pink-pigmented, and facultatively methylotrophic oxalate-oxidizing strains were included in this work that had been previously isolated from the soil and some plant tissues by the potassium oxalate enrichment method. The isolates were characterized using biochemical tests, cellular lipid profiles, spectral characteristics of carotenoid pigments, G+C content of the DNA, and 16S rDNA sequencing. The taxonomic similarities among the strains were analyzed using the simple matching (S (SM)) and Jaccard (S (J)) coefficients, and the UPGMA clustering algorithm. The phylogenetic position of the strains was inferred by the neighbor-joining method on the basis of the 16S rDNA sequences. All isolates were Gram-negative, facultatively methylotrophic, oxidase and catalase positive, and required no growth factors. Based on the results of numerical taxonomy, the strains formed four closely related clusters sharing > or =85% similarity. Analysis of the 16S rDNA sequences demonstrated that oxalotrophic, pink-pigmented, and facultatively methylotrophic strains could be identified as members of the genus Methylobacterium. Except for M. variabile and M. aquaticum, all of the Methylobacterium type strains tested had the ability of oxalate utilization. Our results indicate that the capability of oxalate utilization seems to be an uncommon trait and could be used as a valuable taxonomic criterion for differentiation of Methylobacterium species.

  13. Aluminium detoxification in facultative (Passovia ovata (Pohl ex DC.) Kuijt and Struthanthus polyanthus Mart. - Loranthaceae) and dependent (Psittacanthus robustus (Mart.) Marloth - Loranthaceae) Al-accumulating mistletoe species from the Brazilian savanna.

    PubMed

    de Souza, Marcelo Claro; Scalon, Marina Corrêa; Poschenrieder, Charlotte; Tolrà, Roser; Venâncio, Tiago; Teixeira, Simone Pádua; Da Costa, Fernando Batista

    2018-06-04

    Mechanisms to detoxify aluminium (Al) is a hot topic for cultivated plants. However, little information is known about the mechanisms used by native plants to deal with Al-toxicity. In Cerrado, some generalist mistletoe species, such as Passovia ovata (Pohl ex DC.) Kuijt and Struthanthus polyanthus Mart. can parasitize Al-accumulating and Al-excluding plant species without any clear symptoms of toxicity and mineral deficiency, while Psittacanthus robustus (Mart.) Marloth, a more specialist mistletoe, seems to be an Al-dependent species, parasitizing only Al-accumulating hosts. Here we (i) characterized the forms and compartmentalization of Al in leaves of P. robustus; (ii) compared Ca and Al leaf concentration, and leaf concentration of organic acids and polyphenols between facultative Al-accumulating (P. ovata and S. polyanthus) and Al-dependent (P. robustus) mistletoe species infecting Miconia albicans (Sw.) Steud. (Al-accumulating species). P. robustus chelated Al 3+ with oxalate and stored it in the phloematic and epidermic leaf tissues. Leaf Ca and Al concentration did not differ among species. Leaf oxalate concentration was higher in the Al-dependent species. Concentrations of citrate and phenolic compounds were higher in the leaves of the facultative Al-accumulating species. These results show that facultative Al-accumulating and Al-dependent species use different mechanisms to detoxify Al. Moreover, this is the first report on a mistletoes species (P. robustus) with a potential calcifuge behaviour in Cerrado. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment

    PubMed Central

    Okoh, Anthony I.; Sibanda, Thulani; Gusha, Siyabulela S.

    2010-01-01

    Human enteric viruses are causative agents in both developed and developing countries of many non-bacterial gastrointestinal tract infections, respiratory tract infections, conjunctivitis, hepatitis and other more serious infections with high morbidity and mortality in immunocompromised individuals such as meningitis, encephalitis and paralysis. Human enteric viruses infect and replicate in the gastrointestinal tract of their hosts and are released in large quantities in the stools of infected individuals. The discharge of inadequately treated sewage effluents is the most common source of enteric viral pathogens in aquatic environments. Due to the lack of correlation between the inactivation rates of bacterial indicators and viral pathogens, human adenoviruses have been proposed as a suitable index for the effective indication of viral contaminants in aquatic environments. This paper reviews the major genera of pathogenic human enteric viruses, their pathogenicity and epidemiology, as well as the role of wastewater effluents in their transmission. PMID:20644692

  15. Drug-resistant human Staphylococcus aureus in sanctuary apes pose a threat to endangered wild ape populations.

    PubMed

    Schaumburg, Frieder; Mugisha, Lawrence; Peck, Bruce; Becker, Karsten; Gillespie, Thomas R; Peters, Georg; Leendertz, Fabian H

    2012-12-01

    Reintroduction of sanctuary apes to natural habitat is considered an important tool for conservation; however, reintroduction has the potential to endanger resident wild apes through the introduction of human pathogens. We found a high prevalence of drug-resistant, human-associated lineages of Staphylococcus aureus in sanctuary chimpanzees (Pan troglodytes) from Zambia and Uganda. This pathogen is associated with skin and soft tissue diseases and severe invasive infections (i.e. pneumonia and septicemia). Colonization by this bacterium is difficult to clear due to frequent recolonization. In addition to its pathogenic potential, human-related S. aureus can serve as an indicator organism for the transmission of other potential pathogens like pneumococci or mycobacteria. Plans to reintroduce sanctuary apes should be reevaluated in light of the high risk of introducing human-adapted S. aureus into wild ape populations where treatment is impossible. © 2012 Wiley Periodicals, Inc.

  16. Microbial (Pathogen)/Recreational Water Quality Criteria

    EPA Pesticide Factsheets

    Documents pertaining to Recreational Human Health Ambient Water Quality Criteria for Microbial Organisms (Pathogens). These documents include safe levels for cyanotoxins microcystin and cylindrospermopsin, and Coliphage to protect human health.

  17. Human Bacteroides and total coliforms as indicators of recent combined sewer overflows and rain events in urban creeks

    USGS Publications Warehouse

    McGinnis, Shannon; Spencer, Susan K.; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark A.; McCarthy, David; Murphy, Heather

    2018-01-01

    Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May–July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs.

  18. Human Bacteroides and total coliforms as indicators of recent combined sewer overflows and rain events in urban creeks.

    PubMed

    McGinnis, Shannon; Spencer, Susan; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark; McCarthy, David T; Murphy, Heather M

    2018-07-15

    Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May-July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Management of chronic osteomyelitis of the tibia with life-threatening complications under negative pressure wound therapy and isolation of Helcococcus kunzii.

    PubMed

    Stanger, Katrin M; Albert, Frauke; Kneser, Ulrich; Bogdan, Christian; Horch, Raymund E

    2015-08-01

    We report the case of an 86-year-old man with severe wound infection originating from a chronic crural ulcer of the lower limb, which under negative pressure wound therapy led to excessive tissue necrosis and perforation of the anterior tibial artery. A swab taken 10 and 7 days preoperatively was positive for Helcococcus kunzii. H. kunzii has been described as a potentially pathogenic organism. The questions whether the negative pressure wound therapy itself caused the bleeding or the negative pressure wound therapy, which generates an anaerobic atmosphere, has triggered the growth and invasion of the facultative anaerobic bacterium H. kunzii and owing to the infection the artery perforated or whether the bacteria has no influence at all remain currently unanswered. After surgical debridement the signs of infection were completely eliminated, and a free musculocutaneous flap led to rapid healing of the wound. Following which H. kunzii was no longer detectable. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  20. Mycobacteria, Metals, and the Macrophage

    PubMed Central

    Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier

    2015-01-01

    Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564

  1. Rocket and Two Dimensional Immunoelectrophoresis in Diagnosis of Caprine Brucellosis

    PubMed Central

    MEHRABANI, Davood; GHOLAMI, Zahra; KOHANTEB, Jamshid; SEPEHRIMANESH, Masood; HOSSEINI, Seyed Mohammad Hossein

    2015-01-01

    Background: Brucellosis is a major bacterial zoonosis of global importance with the causative organisms of Gram-negative facultative intracellular pathogens. The aims of this study were to standardize two immunoelectrophoretic techniques, rocket and cross immunoelectrophoresis, and compare their results with other conventional serodiagnostic tests. Methods: Sera from 15 sheep, without any history of brucellosis vaccination, infected with Brucella melitensis M16 subcutaneously, were employed in a comparison of culture, precipitating, and immunoelectrophoretic tests. A 125 days serologic follow-up was performed after the infection was started. As a reference, these tests also done in the five healthy sheep. Results: The results obtained with the rocket immunoelectrophoresis test correlated very well with those of the cross immunoelectrophoresis, whereas results of other tests such as culture, Rose Bengal, standard tube agglutination and 2-mercaptoethanol seruagglutination tests were inferior. Conclusion: As agglutination test shows cross reaction and a prozone phenomenon, and in blood culture, the bacteria is not always detectable, so they are time consuming rocket and cross immunoelectrophoresis are recommended because their results can be obtained in a shorter time. PMID:26587475

  2. Rocket and Two Dimensional Immunoelectrophoresis in Diagnosis of Caprine Brucellosis.

    PubMed

    Mehrabani, Davood; Gholami, Zahra; Kohanteb, Jamshid; Sepehrimanesh, Masood; Hosseini, Seyed Mohammad Hossein

    2015-08-01

    Brucellosis is a major bacterial zoonosis of global importance with the causative organisms of Gram-negative facultative intracellular pathogens. The aims of this study were to standardize two immunoelectrophoretic techniques, rocket and cross immunoelectrophoresis, and compare their results with other conventional serodiagnostic tests. Sera from 15 sheep, without any history of brucellosis vaccination, infected with Brucella melitensis M16 subcutaneously, were employed in a comparison of culture, precipitating, and immunoelectrophoretic tests. A 125 days serologic follow-up was performed after the infection was started. As a reference, these tests also done in the five healthy sheep. The results obtained with the rocket immunoelectrophoresis test correlated very well with those of the cross immunoelectrophoresis, whereas results of other tests such as culture, Rose Bengal, standard tube agglutination and 2-mercaptoethanol seruagglutination tests were inferior. As agglutination test shows cross reaction and a prozone phenomenon, and in blood culture, the bacteria is not always detectable, so they are time consuming rocket and cross immunoelectrophoresis are recommended because their results can be obtained in a shorter time.

  3. Methylobacteria isolated from bryophytes and the 2-fold description of the same microbial species

    PubMed Central

    Schauer, S.; Kutschera, U.

    2013-01-01

    On the surface of healthy land plants (embryophytes), numerous non-pathogenic bacteria have been discovered and described. Among these epiphytic microbes, pink-pigmented facultative methylotrophic microbes of the genus Methylobacterium are of special significance, because these microorganisms consume methanol emitted via the stomatal pores and secrete growth-promoting phytohormones. Methylobacterium funariae, Schauer and Kutschera 2011, a species isolated in our lab from the common cord moss, described as a nova species in this journal, was recently characterized for a second time as a “new taxon” under a different name, “M. bullatum.” Based on a phylogenetic analysis, we show that these taxa are identical. In addition, we provide novel information on the exact cell size, and describe the correct type locality of this bacterial species, which was classified as a phytosymbiont. Finally, we discuss the hypothesis that certain methylobacteria may preferentially colonize bryophytes. With reference to our recent discovery that thalli of ferns form, like liverworts and moss protonemata, associations with methylobacteria, we argue that the haploid phase of cryptogames are preferred host organisms of these pink-pigmented microbial phytosymbionts. PMID:23299423

  4. Methylobacteria isolated from bryophytes and the 2-fold description of the same microbial species.

    PubMed

    Schauer, S; Kutschera, U

    2013-02-01

    On the surface of healthy land plants (embryophytes), numerous non-pathogenic bacteria have been discovered and described. Among these epiphytic microbes, pink-pigmented facultative methylotrophic microbes of the genus Methylobacterium are of special significance, because these microorganisms consume methanol emitted via the stomatal pores and secrete growth-promoting phytohormones. Methylobacterium funariae, Schauer and Kutschera 2011, a species isolated in our lab from the common cord moss, described as a nova species in this journal, was recently characterized for a second time as a "new taxon" under a different name, "M. bullatum." Based on a phylogenetic analysis, we show that these taxa are identical. In addition, we provide novel information on the exact cell size, and describe the correct type locality of this bacterial species, which was classified as a phytosymbiont. Finally, we discuss the hypothesis that certain methylobacteria may preferentially colonize bryophytes. With reference to our recent discovery that thalli of ferns form, like liverworts and moss protonemata, associations with methylobacteria, we argue that the haploid phase of cryptogames are preferred host organisms of these pink-pigmented microbial phytosymbionts.

  5. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations inmore » S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.« less

  6. The airway microbiota in early cystic fibrosis lung disease.

    PubMed

    Frayman, Katherine B; Armstrong, David S; Grimwood, Keith; Ranganathan, Sarath C

    2017-11-01

    Infection plays a critical role in the pathogenesis of cystic fibrosis (CF) lung disease. Over the past two decades, the application of molecular and extended culture-based techniques to microbial analysis has changed our understanding of the lungs in both health and disease. CF lung disease is a polymicrobial disorder, with obligate and facultative anaerobes recovered alongside traditional pathogens in varying proportions, with some differences observed to correlate with disease stage. While healthy lungs are not sterile, differences between the lower airway microbiota of individuals with CF and disease-controls are already apparent in childhood. Understanding the evolution of the CF airway microbiota, and its relationship with clinical treatments and outcome at each disease stage, will improve our understanding of the pathogenesis of CF lung disease and potentially inform clinical management. This review summarizes current knowledge of the early development of the respiratory microbiota in healthy children and then discusses what is known about the airway microbiota in individuals with CF, including how it evolves over time and where future research priorities lie. © 2017 Wiley Periodicals, Inc.

  7. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools.

    PubMed

    Bittar, Fadi; Keita, Mamadou B; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-11-24

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence.

  8. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools

    PubMed Central

    Bittar, Fadi; Keita, Mamadou B.; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier

    2014-01-01

    Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence. PMID:25417711

  9. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms.

    PubMed

    Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik

    2013-01-01

    The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.

  10. Sex versus parthenogenesis; immune function in a facultatively parthenogenetic phasmatid (Extatosoma tiaratum).

    PubMed

    Alavi, Yasaman; Elgar, Mark Adrian; Jones, Therésa Melanie

    2017-07-01

    Facultative parthenogenetic species, in which females can alternate between sex and parthenogenesis, are useful models to investigate the costs and benefits of sex and parthenogenesis, an ongoing issue in biology. The necessary empirical studies comparing the outcomes of alternative reproductive modes on life history traits are rare and focus mainly on traits directly associated with reproductive fitness. Immune function determines the ability of individuals to defend themselves against injury and disease and is therefore likely to have a significant impact on fitness. Here, we used the facultatively parthenogenetic Australian phasmatid, Extatosoma tiaratum, to investigate the effect of both maternal and offspring mode of conception (sexual or parthenogenetic) on offspring immune function (haemocyte concentration, lytic activity and phenoloxidase activity). We show that when parthenogenesis persists beyond one generation, it has negative effects on immune response in terms of haemocyte concentration and lytic activity. Phenoloxidase activity positively correlates with the level of microsatellite heterozygosity. Moreover, immune response decreases across consecutive sampling weeks, suggesting there are physiological constraints with respect to mounting immune responses in close time intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Minimal Polymer Model Integrates an Inverted Nuclear Geometry with Conventional Hi-C Compartmentalization

    NASA Astrophysics Data System (ADS)

    Falk, Martin; Naumova, Natasha; Fudenberg, Geoffrey; Feodorova, Yana; Imakaev, Maxim; Dekker, Job; Solovei, Irina; Mirny, Leonid

    The organization of interphase nuclei differs dramatically across cell types in a functionally-relevant fashion. A striking example is found in the rod photoreceptors of nocturnal mammals, where the conventional nuclear organization is inverted. In particular, in murine rods, constitutive heterochromatin is packed into a single chromocenter in the nuclear center, which is encircled by a shell of facultative heterochromatin and then by an outermost shell of euchromatin. Surprisingly, Hi-C maps of conventional and inverted nuclei display remarkably similar compartmentalization between heterochromatin and euchromatin. Here, we simulate a de novo polymer model that is capable of replicating both conventional and inverted geometries while preserving the patterns of compartmentalization as observed by Hi-C. In this model, chromatin is a polymer composed of three classes of monomers arranged in blocks representing constitutive heterochromatin, facultative heterochromatin, and euchromatin. Different classes of monomers have different levels of attraction to each other and to the nuclear lamina. Our results indicate that preferential interactions between facultative heterochromatin and constitutive heterochromatin provide a possible mechanism to explain nuclear inversion when association with the lamina is lost.

  12. Microorganisms isolated from root canals presenting necrotic pulp and their drug susceptibility in vitro.

    PubMed

    Lana, M A; Ribeiro-Sobrinho, A P; Stehling, R; Garcia, G D; Silva, B K; Hamdan, J S; Nicoli, J R; Carvalho, M A; Farias, L de M

    2001-04-01

    The knowledge about causative agents involved in endodontic infections is increasing, especially due to the improvement of culture techniques for anaerobic bacteria, showing that these microorganisms are predominant in this pathology. In this study, 31 canals with pulp necrosis were microbiologically analyzed before and after manipulation. Obligate and facultative anaerobes, microaerophilic bacteria and yeasts were recovered from 24, 14, 5 and 2 clinical specimens, respectively. The most frequent genera were Prevotella, Fusobacterium, Lactobacillus, Streptococcus, Clostridium and Peptostreptococcus for bacteria and Candida and Saccharomyces for yeasts. Strong positive associations, using an odds ratio system, were found between Clostridium and Prevotella and between Peptostreptococcus and Fusobacterium. Even after the instrumentation and the use of Ca(OH)2, facultative anaerobes were detected in two root canals and yeasts in three. Microorganisms were isolated from seven canals at the end of the endodontic treatment: facultative anaerobes from five and yeasts from one. The microbiological evaluation of root canals with pulp necrosis suggests the presence of polymicrobial infections, mainly involving obligate anaerobes, and shows that the infection may persist after treatment.

  13. Growth of the Facultative Anaerobes from Antarctica, Alaska, and Patagonia at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    Psychotolerance, as an adaptation for surviving in extreme environments, is widespread among mesophilic microorganisms. Physico-chemical factors such as pressure, red-ox potential, pH and salinity could significantly alter the features of ecosystems by providing liquid water at subzero temperatures. Furthermore, organisms can respond to temperature changes by several known mechanisms, including changing the conformation capacities of constitutional proteins or by the synthesis of mucopolysaccharides around the cell wall and membrane. Such protective mechanisms make it possible for cells to not only passively survive low temperatures in a state of anabiosis, but also to be capable of actively metabolizing substrates and reproducing normally. The physiological and biochemical characteristics of the species, as well as genetics, could be remarkably changed due to adaptation and surviving in extreme environments. The cold shock genes of some of the studied strains of psychotolerant facultative anaerobes were reported previously. In this paper we present experimental data for psychotolerant, non spore-forming, facultative anaerobes isolated from geographically different cold regions of our planet. We show the growth response on changing from anaerobic conditions to aerobic with cultivation at low temperatures.

  14. Assessing the Biohazard Potential of Putative Martian Organisms for Exploration Class Human Space Missions

    NASA Technical Reports Server (NTRS)

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.

    2007-01-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, however, it is recommended that EVA suits be decontaminated when astronauts enter surface habitats when returning from field activity and that biosafety protocol approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human Mars mission and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning.

  15. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    PubMed

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed the molecular features and compared the relative characteristics of one H7N9 LPAIV and two H7N9 HPAIVs isolated from chickens and two human-origin H7N9 HPAIVs in chicken and mouse models. We found that all HPAIVs both are highly pathogenic and have valid transmissibility in chickens. Strikingly, the human-origin viruses were more highly pathogenic than the avian-origin viruses in mice, and dynamic mutations were confirmed by NGS and Sanger sequencing. Our findings offer important insight into the origin, adaptation, pathogenicity, and transmissibility of these viruses to both poultry and mammals. Copyright © 2018 American Society for Microbiology.

  16. Crossover fungal pathogens: the biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans.

    PubMed

    Gauthier, Gregory M; Keller, Nancy P

    2013-12-01

    The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Development of saliva-based exposure assays for detecting exposure to waterborne pathogens

    EPA Pesticide Factsheets

    Identifying which pathogens we are exposed to can be challenging because many types of pathogens can be found in water and many pathogens have similar symptoms. EPA scientists have developed a simple way to measure human exposure to waterborne pathogens.

  18. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano

    PubMed Central

    Banskar, Sunil; Bhute, Shrikant S.; Suryavanshi, Mangesh V.; Punekar, Sachin; Shouche, Yogesh S.

    2016-01-01

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals. PMID:27845426

  19. Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano.

    PubMed

    Banskar, Sunil; Bhute, Shrikant S; Suryavanshi, Mangesh V; Punekar, Sachin; Shouche, Yogesh S

    2016-11-15

    Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals.

  20. Sexual Reproduction of Human Fungal Pathogens

    PubMed Central

    Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.

    2014-01-01

    We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958

  1. Human quarantine: Toward reducing infectious pressure on chimpanzees at the Taï Chimpanzee Project, Côte d'Ivoire.

    PubMed

    Grützmacher, Kim; Keil, Verena; Leinert, Vera; Leguillon, Floraine; Henlin, Arthur; Couacy-Hymann, Emmanuel; Köndgen, Sophie; Lang, Alexander; Deschner, Tobias; Wittig, Roman M; Leendertz, Fabian H

    2018-01-01

    Due to their genetic relatedness, great apes are highly susceptible to common human respiratory pathogens. Although most respiratory pathogens, such as human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), rarely cause severe disease in healthy human adults, they are associated with considerable morbidity and mortality in wild great apes habituated to humans for research or tourism. To prevent pathogen transmission, most great ape projects have established a set of hygiene measures ranging from keeping a specific distance, to the use of surgical masks and establishment of quarantines. This study investigates the incidence of respiratory symptoms and human respiratory viruses in humans at a human-great ape interface, the Taï Chimpanzee Project (TCP) in Côte d'Ivoire, and consequently, the effectiveness of a 5-day quarantine designed to reduce the risk of potential exposure to human respiratory pathogens. To assess the impact of quarantine as a preventative measure, we monitored the quarantine process and tested 262 throat swabs for respiratory viruses, collected during quarantine over a period of 1 year. Although only 1 subject tested positive for a respiratory virus (HRSV), 17 subjects developed symptoms of infection while in quarantine and were subsequently kept from approaching the chimpanzees, preventing potential exposure in 18 cases. Our results suggest that quarantine-in combination with monitoring for symptoms-is effective in reducing the risk of potential pathogen exposure. This research contributes to our understanding of how endangered great apes can be protected from human-borne infectious disease. © 2017 Wiley Periodicals, Inc.

  2. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    PubMed Central

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  3. Fungi that Infect Humans.

    PubMed

    Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R

    2017-06-01

    Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.

  4. Inclusive fitness and differential productivity across the life course determine intergenerational transfers in a small-scale human society.

    PubMed

    Hooper, Paul L; Gurven, Michael; Winking, Jeffrey; Kaplan, Hillard S

    2015-03-22

    Transfers of resources between generations are an essential element in current models of human life-history evolution accounting for prolonged development, extended lifespan and menopause. Integrating these models with Hamilton's theory of inclusive fitness, we predict that the interaction of biological kinship with the age-schedule of resource production should be a key driver of intergenerational transfers. In the empirical case of Tsimane' forager-horticulturalists in Bolivian Amazonia, we provide a detailed characterization of net transfers of food according to age, sex, kinship and the net need of donors and recipients. We show that parents, grandparents and siblings provide significant net downward transfers of food across generations. We demonstrate that the extent of provisioning responds facultatively to variation in the productivity and demographic composition of families, as predicted by the theory. We hypothesize that the motivation to provide these critical transfers is a fundamental force that binds together human nuclear and extended families. The ubiquity of three-generational families in human societies may thus be a direct reflection of fundamental evolutionary constraints on an organism's life-history and social organization.

  5. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum*

    PubMed Central

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2012-01-01

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858

  6. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum.

    PubMed

    Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T

    2012-09-28

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.

  7. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets

    PubMed Central

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan

    2016-01-01

    ABSTRACT Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. PMID:27122581

  8. Simultaneous isolation of anaerobic bacteria from udder abscesses and mastitic milk in lactating dairy cows.

    PubMed

    Greeff, A S; du Preez, J H

    1985-12-01

    A variety of non-sporulating anaerobic bacterial species were isolated from udder abscesses in 10 lactating dairy cows. Fifty percent of the abscesses yielded multiple anaerobic species and the other 50% only 1 species. The anaerobic bacteria, however, were always accompanied by classical facultative anaerobic mastitogenic bacteria. In four of the five cows also afflicted with mastitis in the quarters with abscesses, the anaerobic and facultative anaerobic bacteria were identical. Peptococcus indolicus was the most commonly isolated organism followed by Eubacterium and Bacteroides spp. Bacteroides fragilis was resistant to penicillin, ampicillin and tetracycline.

  9. Characterization of two new facultative methoantrophs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, M.J.; Wopat, A.E.; O'Connor, M.L.

    Two new facultative methane-oxidizing bacteria have been isolated from lake water enrichments. The organisms have been characterized in terms of colony types, growth characteristics, the guanine plus cytosine content of their deoxyribonucleic acid, thin sections, oxidation rates, and carbon assimilation pathways. Methane-grown cells of both organisms contained intracytoplasmic membranes similar to those described as type II in other methanotrophic bacteria. Both organisms assimilated methane by way of the isocitrate lyase-negative serine pathway for formaldehyde incorporation. It is proposed that both organisms be classified in the genus Methylobacterium as two new species, Methylobacterium ethanolicum and Methylobacterium hypolimneticum.

  10. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    PubMed

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  11. Natural selection and infectious disease in human populations

    PubMed Central

    Karlsson, Elinor K.; Kwiatkowski, Dominic P.; Sabeti, Pardis C.

    2015-01-01

    The ancient biological 'arms race' between microbial pathogens and humans has shaped genetic variation in modern populations, and this has important implications for the growing field of medical genomics. As humans migrated throughout the world, populations encountered distinct pathogens, and natural selection increased the prevalence of alleles that are advantageous in the new ecosystems in both host and pathogens. This ancient history now influences human infectious disease susceptibility and microbiome homeostasis, and contributes to common diseases that show geographical disparities, such as autoimmune and metabolic disorders. Using new high-throughput technologies, analytical methods and expanding public data resources, the investigation of natural selection is leading to new insights into the function and dysfunction of human biology. PMID:24776769

  12. Role of India's wildlife in the emergence and re-emergence of zoonotic pathogens, risk factors and public health implications.

    PubMed

    Singh, B B; Gajadhar, A A

    2014-10-01

    Evolving land use practices have led to an increase in interactions at the human/wildlife interface. The presence and poor knowledge of zoonotic pathogens in India's wildlife and the occurrence of enormous human populations interfacing with, and critically linked to, forest ecosystems warrant attention. Factors such as diverse migratory bird populations, climate change, expanding human population and shrinking wildlife habitats play a significant role in the emergence and re-emergence of zoonotic pathogens from India's wildlife. The introduction of a novel Kyasanur forest disease virus (family flaviviridae) into human populations in 1957 and subsequent occurrence of seasonal outbreaks illustrate the key role that India's wild animals play in the emergence and reemergence of zoonotic pathogens. Other high priority zoonotic diseases of wildlife origin which could affect both livestock and humans include influenza, Nipah, Japanese encephalitis, rabies, plague, leptospirosis, anthrax and leishmaniasis. Continuous monitoring of India's extensively diverse and dispersed wildlife is challenging, but their use as indicators should facilitate efficient and rapid disease-outbreak response across the region and occasionally the globe. Defining and prioritizing research on zoonotic pathogens in wildlife are essential, particularly in a multidisciplinary one-world one-health approach which includes human and veterinary medical studies at the wildlife-livestock-human interfaces. This review indicates that wild animals play an important role in the emergence and re-emergence of zoonotic pathogens and provides brief summaries of the zoonotic diseases that have occurred in wild animals in India. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China.

    PubMed

    Ma, Ying; Feng, Youjun; Liu, Di; Gao, George F

    2009-09-27

    The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the 'well-known' reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China.

  14. Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells.

    PubMed

    Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf

    2015-12-14

    Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.

  15. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression.

    PubMed

    Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B

    2016-04-07

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.

  16. Cell-mediated and humoral immune responses induced by scarification vaccination of human volunteers with a new lot of the live vaccine strain of Francisella tularensis.

    PubMed Central

    Waag, D M; Galloway, A; Sandstrom, G; Bolt, C R; England, M J; Nelson, G O; Williams, J C

    1992-01-01

    Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. We evaluated a new lot of live F. tularensis vaccine for its immunogenicity in human volunteers. Scarification vaccination induced humoral and cell-mediated immune responses. Indications of a positive immune response after vaccination included an increase in specific antibody levels, which were measured by enzyme-linked immunosorbent and immunoblot assays, and the ability of peripheral blood lymphocytes to respond to whole F. tularensis bacteria as recall antigens. Vaccination caused a significant rise (P less than 0.05) in immunoglobulin A (IgA), IgG, and IgM titers. Lymphocyte stimulation indices were significantly increased (P less than 0.01) in vaccinees 14 days after vaccination. These data verify that this new lot of live F. tularensis vaccine is immunogenic. Images PMID:1400988

  17. Gastric acid reduction leads to an alteration in lower intestinal microflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Takayuki; Matsuki, Takahiro; Oka, Masashi

    2009-04-17

    To clarify the alterations in lower intestinal microflora induced by gastric acid reduction, the dynamics of 12 major genera or groups of bacteria comprising the microflora in feces and colonic contents were examined by quantitative real-time PCR in proton pump inhibitor-treated rats and in asymptomatic human subjects with hypochlorhydria. In both rat and human experiments, most genera or groups of intestinal microflora (facultative and obligate anaerobes) proliferated by gastric acid reduction, and marked and significant increases in the Lactobacilli group and Veillonella, oropharyngeal bacteria, were observed. In rats, potent gastric acid inhibition led to a marked and significant increase ofmore » intestinal bacteria, including the Bacteroidesfragilis group, while Bifidobacterium, a beneficial bacterial species, remained at a constant level. These results strongly indicate that the gastric acid barrier not only controls the colonization and growth of oropharyngeal bacteria, but also regulates the population and composition of lower intestinal microflora.« less

  18. No evidence for a bovine mastitis Escherichia coli pathotype.

    PubMed

    Leimbach, Andreas; Poehlein, Anja; Vollmers, John; Görlich, Dennis; Daniel, Rolf; Dobrindt, Ulrich

    2017-05-08

    Escherichia coli bovine mastitis is a disease of significant economic importance in the dairy industry. Molecular characterization of mastitis-associated E. coli (MAEC) did not result in the identification of common traits. Nevertheless, a mammary pathogenic E. coli (MPEC) pathotype has been proposed suggesting virulence traits that differentiate MAEC from commensal E. coli. The present study was designed to investigate the MPEC pathotype hypothesis by comparing the genomes of MAEC and commensal bovine E. coli. We sequenced the genomes of eight E. coli isolated from bovine mastitis cases and six fecal commensal isolates from udder-healthy cows. We analyzed the phylogenetic history of bovine E. coli genomes by supplementing this strain panel with eleven bovine-associated E. coli from public databases. The majority of the isolates originate from phylogroups A and B1, but neither MAEC nor commensal strains could be unambiguously distinguished by phylogenetic lineage. The gene content of both MAEC and commensal strains is highly diverse and dominated by their phylogenetic background. Although individual strains carry some typical E. coli virulence-associated genes, no traits important for pathogenicity could be specifically attributed to MAEC. Instead, both commensal strains and MAEC have very few gene families enriched in either pathotype. Only the aerobactin siderophore gene cluster was enriched in commensal E. coli within our strain panel. This is the first characterization of a phylogenetically diverse strain panel including several MAEC and commensal isolates. With our comparative genomics approach we could not confirm previous studies that argue for a positive selection of specific traits enabling MAEC to elicit bovine mastitis. Instead, MAEC are facultative and opportunistic pathogens recruited from the highly diverse bovine gastrointestinal microbiota. Virulence-associated genes implicated in mastitis are a by-product of commensalism with the primary function to enhance fitness in the bovine gastrointestinal tract. Therefore, we put the definition of the MPEC pathotype into question and suggest to designate corresponding isolates as MAEC.

  19. One Health in Practice: A Pilot Project for Integrated Care of Zoonotic Infections in Immunocompromised Children and Their Pets in Chile.

    PubMed

    Peña, A; Abarca, K; Weitzel, T; Gallegos, J; Cerda, J; García, P; López, J

    2016-08-01

    Although pets provide physiological and psychological benefits to their owners, they are a potential source of zoonotic infections, especially for vulnerable individuals such as immunocompromised patients. During 1 year, we therefore performed a pilot project, which included 32 immunocompromised Chilean children and their family pets (35 dogs and 9 cats) with the aim of detecting, treating and preventing zoonotic infections. Children were examined by Infectious Diseases paediatricians and demographical and clinical information related to zoonotic infections were recorded. Pets were examined and sampled by veterinarians, who also administered missing routine vaccines and anti-parasitics. During family visits, all members were informed and educated about zoonoses and a satisfaction survey was performed. Visits also included vector control and indoor residual spraying with pyrethroids. Children were re-examined and re-tested according to the findings of their pets, and all detected zoonotic infections were treated both in children and pets. Physical examination revealed abnormalities in 18 dogs (51.4%) and three cats (33.3%). Twenty-eight (63.6%) of the pets were diagnosed with a zoonotic pathogen, and seven (15.9%) with a facultative pathogen. Most zoonotic agents were isolated from the pet's external ear and intestine. Bacteria with the highest pathogenic potential were Campylobacter jejuni and Brucella canis. In two children and their respective pets, the same zoonotic diseases were diagnosed (toxocariasis and giardiasis). Arthropods serving as potential vectors of zoonotic infections were found in 49% of dogs and 44% of cats. The pilot project was positively evaluated by the participating families. Our pilot project confirmed that pets are reservoir for various zoonotic agents in Chile and that the implementation of an integrated multidisciplinary programme was a valuable tool to prevent, diagnose and treat such zoonotic infections in vulnerable patients such as immunocompromised children. © 2015 Blackwell Verlag GmbH.

  20. Foodborne pathogen detection using hyperspectral imaging

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogens can cause various diseases and even death when humans consume foods contaminated with microbial pathogens. Traditional culture-based direct plating methods are still the “gold standard” for presumptive-positive pathogen screening. Although considerable research has been devoted t...

  1. Biohazard potential of putative Martian organisms during missions to Mars.

    PubMed

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E; McKay, David S

    2007-04-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of the 1970s have been generally interpreted as inconclusive for surface organisms, and attributed to active but nonbiological chemistries, the possibility of native surface life has never been ruled out completely. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether future human landing sites harbor extant life forms. If native life were found to exist, it would be problematic to determine whether any of its species might present a medical danger to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to biohazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anti-contamination protocol and recommendations of the National Research Council's Space Studies Board regarding Mars were reviewed. Organisms can emerge in Nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are therefore theoretically possible on Mars. Although remote, the prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the probability of human pathogens on Mars, while low, is not zero. Still, since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, it is recommended that EVA (extravehicular activity) suits be decontaminated when astronauts enter surface habitats upon returning from field activity and that biosafety protocols approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human mission to Mars, and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning.

  2. Pathogenic features of heterotrophic plate count bacteria from drinking-water boreholes.

    PubMed

    Horn, Suranie; Pieters, Rialet; Bezuidenhout, Carlos

    2016-12-01

    Evidence suggests that heterotrophic plate count (HPC) bacteria may be hazardous to humans with weakened health. We investigated the pathogenic potential of HPC bacteria from untreated borehole water, consumed by humans, for: their haemolytic properties, the production of extracellular enzymes such as DNase, proteinase, lipase, lecithinase, hyaluronidase and chondroitinase, the effect simulated gastric fluid has on their survival, as well as the bacteria's antibiotic-susceptible profile. HuTu-80 cells acted as model for the human intestine and were exposed to the HPC isolates to determine their effects on the viability of the cells. Several HPC isolates were α- or β-haemolytic, produced two or more extracellular enzymes, survived the SGF treatment, and showed resistance against selected antibiotics. The isolates were also harmful to the human intestinal cells to varying degrees. A novel pathogen score was calculated for each isolate. Bacillus cereus had the highest pathogen index: the pathogenicity of the other bacteria declined as follows: Aeromonas taiwanensis > Aeromonas hydrophila > Bacillus thuringiensis > Alcaligenes faecalis > Pseudomonas sp. > Bacillus pumilus > Brevibacillus sp. > Bacillus subtilis > Bacillus sp. These results demonstrated that the prevailing standards for HPCs in drinking water may expose humans with compromised immune systems to undue risk.

  3. Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure.

    PubMed

    Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D

    2008-11-07

    Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.

  4. The ecology of emerging infectious diseases in migratory birds: an assessment of the role of climate change and priorities for future research.

    PubMed

    Fuller, Trevon; Bensch, Staffan; Müller, Inge; Novembre, John; Pérez-Tris, Javier; Ricklefs, Robert E; Smith, Thomas B; Waldenström, Jonas

    2012-03-01

    Pathogens that are maintained by wild birds occasionally jump to human hosts, causing considerable loss of life and disruption to global commerce. Preliminary evidence suggests that climate change and human movements and commerce may have played a role in recent range expansions of avian pathogens. Since the magnitude of climate change in the coming decades is predicted to exceed climatic changes in the recent past, there is an urgent need to determine the extent to which climate change may drive the spread of disease by avian migrants. In this review, we recommend actions intended to mitigate the impact of emergent pathogens of migratory birds on biodiversity and public health. Increased surveillance that builds upon existing bird banding networks is required to conclusively establish a link between climate and avian pathogens and to prevent pathogens with migratory bird reservoirs from spilling over to humans.

  5. Evolution of Bordetellae from Environmental Microbes to Human Respiratory Pathogens: Amoebae as a Missing Link.

    PubMed

    Taylor-Mulneix, Dawn L; Hamidou Soumana, Illiassou; Linz, Bodo; Harvill, Eric T

    2017-01-01

    The genus Bordetella comprises several bacterial species that colonize the respiratory tract of mammals. It includes B. pertussis , a human-restricted pathogen that is the causative agent of Whooping Cough. In contrast, the closely related species B. bronchiseptica colonizes a broad range of animals as well as immunocompromised humans. Recent metagenomic studies have identified known and novel bordetellae isolated from different environmental sources, providing a new perspective on their natural history. Using phylogenetic analysis, we have shown that human and animal pathogenic bordetellae have most likely evolved from ancestors that originated from soil and water. Our recent study found that B. bronchiseptica can evade amoebic predation and utilize Dictyostelium discoideum as an expansion and transmission vector, which suggests that the evolutionary pressure to evade the amoebic predator enabled the rise of bordetellae as respiratory pathogens. Interactions with amoeba may represent the starting point for bacterial adaptation to eukaryotic cells. However, as bacteria evolve and adapt to a novel host, they can become specialized and restricted to a specific host. B. pertussis is known to colonize and cause infection only in humans, and this specialization to a closed human-to-human lifecycle has involved genome reduction and the loss of ability to utilize amoeba as an environmental reservoir. The discoveries from studying the interaction of Bordetella species with amoeba will elicit a better understanding of the evolutionary history of these and other important human pathogens.

  6. The virulence of human pathogenic fungi: notes from the South of France.

    PubMed

    Reedy, Jennifer L; Bastidas, Robert J; Heitman, Joseph

    2007-08-16

    The Second FEBS Advanced Lecture Course on Human Fungal Pathogens: Molecular Mechanisms of Host-Pathogen Interactions and Virulence, organized by Christophe d'Enfert (Institut Pasteur, France), Anita Sil (UCSF, USA), and Steffen Rupp (Fraunhofer, IGB, Germany), occurred May 2007 in La Colle sur Loup, France. Here we review the advances presented and the current state of knowledge in key areas of fungal pathogenesis.

  7. Characteristics of global organic matrix in normal and pimpled chicken eggshells.

    PubMed

    Liu, Z; Song, L; Zhang, F; He, W; Linhardt, R J

    2017-10-01

    The organic matrix from normal and pimpled calcified chicken eggshells were dissociated into acid-insoluble, water-insoluble, and facultative-soluble (both acid- and water-soluble) components, to understand the influence of shell matrix on eggshell qualities. A linear correlation was shown among these 3 matrix components in normal eggshells but was not observed in pimpled eggshells. In pimpled eggshells, the percentage contents of all 4 groups of matrix (the total matrix, acid-insoluble matrix, water-insoluble matrix, and facultative-soluble matrix) were significantly higher than that in normal eggshells. The amounts of both total matrix and acid-insoluble matrix in individual pimpled calcified shells were high, even though their weight was much lower than a normal eggshell. In both normal and pimpled eggshells, the calcified eggshell weight and shell thickness significantly and positively correlated with the amounts of all 4 groups of matrix in an individual calcified shell. In normal eggshells, the calcified shell thickness and shell breaking strength showed no significant correlations with the percentage contents of all 4 groups of matrix. In normal eggshells, only the shell membrane weight significantly correlated with the constituent ratios of both acid-insoluble matrix and facultative-soluble matrix in the whole matrix. In pimpled eggshells, 3 variables (calcified shell weight, shell thickness, and breaking strength) were significantly correlated with the constituent proportions of both acid-insoluble matrix and facultative-matrix. This study suggests that mechanical properties of normal eggshells may not linearly depend on the organic matrix content in the calcified eggshells and that pimpled eggshells might result by the disequilibrium enrichment of some proteins with negative effects. © 2017 Poultry Science Association Inc.

  8. Comparative Genomic Analysis of Pathogenic and Probiotic Enterococcus faecalis Isolates, and Their Transcriptional Responses to Growth in Human Urine

    PubMed Central

    Snipen, Lars; Nes, Ingolf F.; Brede, Dag A.

    2010-01-01

    Urinary tract infection (UTI) is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits. PMID:20824220

  9. Growth rate, transmission mode and virulence in human pathogens.

    PubMed

    Leggett, Helen C; Cornwallis, Charlie K; Buckling, Angus; West, Stuart A

    2017-05-05

    The harm that pathogens cause to hosts during infection, termed virulence, varies across species from negligible to a high likelihood of rapid death. Classic theory for the evolution of virulence is based on a trade-off between pathogen growth, transmission and host survival, which predicts that higher within-host growth causes increased transmission and higher virulence. However, using data from 61 human pathogens, we found the opposite correlation to the expected positive correlation between pathogen growth rate and virulence. We found that (i) slower growing pathogens are significantly more virulent than faster growing pathogens, (ii) inhaled pathogens and pathogens that infect via skin wounds are significantly more virulent than pathogens that are ingested, but (iii) there is no correlation between symptoms of infection that aid transmission (such as diarrhoea and coughing) and virulence. Overall, our results emphasize how virulence can be influenced by mechanistic life-history details, especially transmission mode, that determine how parasites infect and exploit their hosts.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Authors.

  10. Alzheimer's Disease: APP, Gamma Secretase, APOE, CLU, CR1, PICALM, ABCA7, BIN1, CD2AP, CD33, EPHA1, and MS4A2, and Their Relationships with Herpes Simplex, C. Pneumoniae, Other Suspect Pathogens, and the Immune System

    PubMed Central

    Carter, Chris

    2011-01-01

    Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction. PMID:22254144

  11. Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses.

    PubMed

    Fedeli, Chiara; Moreno, Héctor; Kunz, Stefan

    2018-06-22

    Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review. Copyright © 2018. Published by Elsevier Ltd.

  12. Streptococcus dysgalactiae subsp. dysgalactiae isolated from milk of the bovine udder as emerging pathogens: In vitro and in vivo infection of human cells and zebrafish as biological models.

    PubMed

    Alves-Barroco, Cinthia; Roma-Rodrigues, Catarina; Raposo, Luís R; Brás, Catarina; Diniz, Mário; Caço, João; Costa, Pedro M; Santos-Sanches, Ilda; Fernandes, Alexandra R

    2018-03-25

    Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is a major cause of bovine mastitis and has been regarded as an animal-restricted pathogen, although rare infections have been described in humans. Previous studies revealed the presence of virulence genes encoded by phages of the human pathogen Group A Streptococcus pyogenes (GAS) in SDSD isolated from the milk of bovine udder with mastitis. The isolates SDSD VSD5 and VSD13 could adhere and internalize human primary keratinocyte cells, suggesting a possible human infection potential of bovine isolates. In this work, the in vitro and in vivo potential of SDSD to internalize/adhere human cells of the respiratory track and zebrafish as biological models was evaluated. Our results showed that, in vitro, bovine SDSD strains could interact and internalize human respiratory cell lines and that this internalization was dependent on an active transport mechanism and that, in vivo, SDSD are able to cause invasive infections producing zebrafish morbidity and mortality. The infectious potential of these isolates showed to be isolate-specific and appeared to be independent of the presence or absence of GAS phage-encoded virulence genes. Although the infection ability of the bovine SDSD strains was not as strong as the human pathogenic S. pyogenes in the zebrafish model, results suggested that these SDSD isolates are able to interact with human cells and infect zebrafish, a vertebrate infectious model, emerging as pathogens with zoonotic capability. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  13. Multifaceted Activity of Listeriolysin O, the Cholesterol-Dependent Cytolysin of Listeria monocytogenes

    PubMed Central

    2014-01-01

    The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that are produced by numerous Gram-positive bacterial pathogens. These toxins are released in the extracellular environment as water-soluble monomers or dimers that bind to cholesterol-rich membranes and assemble into large pore complexes. Depending upon their concentration, the nature of the host cell and membrane (cytoplasmic or intracellular) they target, the CDCs can elicit many different cellular responses. Among the CDCs, listeriolysin O (LLO), which is a major virulence factor of the facultative intracellular pathogen Listeria monocytogenes, is involved in several stages of the intracellular lifecycle of the bacterium and displays unique characteristics. It has long been known that following L. monocytogenes internalization into host cells, LLO disrupts the internalization vacuole, enabling the bacterium to replicate into the host cell cytosol. LLO is then used by cytosolic bacteria to spread from cell to cell, avoiding bacterial exposure to the extracellular environment. Although LLO is continuously produced during the intracellular lifecycle of L. monocytogenes, several processes limit its toxicity to ensure the survival of infected cells. It was previously thought that LLO activity was limited to mediating vacuolar escape during bacterial entry and cell to cell spreading. This concept has been challenged by compelling evidence suggesting that LLO secreted by extracellular L. monocytogenes perforates the host cell plasma membrane, triggering important host cell responses. This chapter provides an overview of the well-established intracellular activity of LLO and the multiple roles attributed to LLO secreted by extracellular L. monocytogenes. PMID:24798012

  14. Efficacies of garlic and L. sakei in wine-based marinades for controlling Listeria monocytogenes and Salmonella spp. in Chouriço de Vinho, a dry sausage made from wine-marinated pork.

    PubMed

    Linares, María Belén; Garrido, María Dolores; Martins, Conceição; Patarata, Luis

    2013-05-01

    Chouriço de vinho is made from roughly minced (10 to 30 mm) pork and fat, seasoned with a marinade made from wine, salt, garlic, and other facultative seasonings used according to the recipe of each producer. The batter is maintained at 4 to 7 ºC for 24 to 48 h. It is then stuffed into natural thin pork gut, cold smoked and matured at a low temperature for 1 to 4 wk. The effect of garlic used in wine-based marinade and a starter culture of indigenous Lactobacillus sakei on the behavior of Listeria monocytogenes and Salmonella spp. in the processing of chouriço was investigated. The garlic (as powder and fresh juice) was found to contribute (P < 0.05) to the control of both pathogens in broth. Garlic dose, as tested within the usual limits used for seasoning, did not impact the reduction of pathogens. Garlic-wine-based marinade and a starter culture of indigenous L. sakei contribute to controlling L. monocytogenes and Salmonella spp. in the processing of chouriço. Their presence was responsible for the loss of viability of L. monocytogenes and Salmonella spp. following 5 d of drying, even sooner than situations where no garlic was used. The results of the present work show that the use of a wine-based marinade with garlic has an important role in ensuring the safety of the product. © 2013 Institute of Food Technologists®

  15. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  16. The mechanoelectrical response of the cytoplasmic membrane of Vibrio cholerae.

    PubMed

    Rowe, Ian; Elahi, Merina; Huq, Anwar; Sukharev, Sergei

    2013-07-01

    Persistence of Vibrio cholerae in waters of fluctuating salinity relies on the capacity of this facultative enteric pathogen to adapt to varying osmotic conditions. In an event of osmotic downshift, osmolytes accumulated inside the bacterium can be quickly released through tension-activated channels. With the newly established procedure of giant spheroplast preparation from V. cholerae, we performed the first patch-clamp characterization of its cytoplasmic membrane and compared tension-activated currents with those in Esherichia coli. Saturating pressure ramps revealed two waves of activation belonging to the ∼1-nS mechanosensitive channel of small conductance (MscS)-like channels and ∼3-nS mechanosensitive channel of large conductance (MscL)-like channels, with a pressure midpoint ratio p0.5MscS/p0.5MscL of 0.48. We found that MscL-like channels in V. cholerae present at a density three times higher than in E. coli, and yet, these vibrios were less tolerant to large osmotic downshocks. The Vibrio MscS-like channels exhibit characteristic inward rectification and subconductive states at depolarizing voltages; they also adapt and inactivate at subsaturating tensions and recover within 2 s upon tension release, just like E. coli MscS. Trehalose, a compatible internal osmolyte accumulated under hypertonic conditions, significantly shifts activation curves of both MscL- and MscS-like channels toward higher tensions, yet does not freely partition into the channel pore. Direct electrophysiology of V. cholerae offers new avenues for the in situ analysis of membrane components critical for osmotic survival and electrogenic transport in this pathogen.

  17. The mechanoelectrical response of the cytoplasmic membrane of Vibrio cholerae

    PubMed Central

    Rowe, Ian; Elahi, Merina; Huq, Anwar

    2013-01-01

    Persistence of Vibrio cholerae in waters of fluctuating salinity relies on the capacity of this facultative enteric pathogen to adapt to varying osmotic conditions. In an event of osmotic downshift, osmolytes accumulated inside the bacterium can be quickly released through tension-activated channels. With the newly established procedure of giant spheroplast preparation from V. cholerae, we performed the first patch-clamp characterization of its cytoplasmic membrane and compared tension-activated currents with those in Esherichia coli. Saturating pressure ramps revealed two waves of activation belonging to the ∼1-nS mechanosensitive channel of small conductance (MscS)-like channels and ∼3-nS mechanosensitive channel of large conductance (MscL)-like channels, with a pressure midpoint ratio p0.5MscS/p0.5MscL of 0.48. We found that MscL-like channels in V. cholerae present at a density three times higher than in E. coli, and yet, these vibrios were less tolerant to large osmotic downshocks. The Vibrio MscS-like channels exhibit characteristic inward rectification and subconductive states at depolarizing voltages; they also adapt and inactivate at subsaturating tensions and recover within 2 s upon tension release, just like E. coli MscS. Trehalose, a compatible internal osmolyte accumulated under hypertonic conditions, significantly shifts activation curves of both MscL- and MscS-like channels toward higher tensions, yet does not freely partition into the channel pore. Direct electrophysiology of V. cholerae offers new avenues for the in situ analysis of membrane components critical for osmotic survival and electrogenic transport in this pathogen. PMID:23797422

  18. Comprehensive MALDI-TOF biotyping of the non-redundant Harvard Pseudomonas aeruginosa PA14 transposon insertion mutant library.

    PubMed

    Oumeraci, Tonio; Jensen, Vanessa; Talbot, Steven R; Hofmann, Winfried; Kostrzewa, Markus; Schlegelberger, Brigitte; von Neuhoff, Nils; Häussler, Susanne

    2015-01-01

    Pseudomonas aeruginosa is a gram-negative bacterium that is ubiquitously present in the aerobic biosphere. As an antibiotic-resistant facultative pathogen, it is a major cause of hospital-acquired infections. Its rapid and accurate identification is crucial in clinical and therapeutic environments. In a large-scale MALDI-TOF mass spectrometry-based screen of the Harvard transposon insertion mutant library of P. aeruginosa strain PA14, intact-cell proteome profile spectra of 5547 PA14 transposon mutants exhibiting a plethora of different phenotypes were acquired and analyzed. Of all P. aeruginosa PA14 mutant profiles 99.7% were correctly identified as P. aeruginosa with the Biotyper software on the species level. On the strain level, 99.99% of the profiles were mapped to five different individual P. aeruginosa Biotyper database entries. A principal component analysis-based approach was used to determine the most important discriminatory mass features between these Biotyper groups. Although technical replicas were consistently categorized to specific Biotyper groups in 94.2% of the mutant profiles, biological replicas were not, indicating that the distinct proteotypes are affected by growth conditions. The PA14 mutant profile collection presented here constitutes the largest coherent P. aeruginosa MALDI-TOF spectral dataset publicly available today. Transposon insertions in thousands of different P. aeruginosa genes did not affect species identification from MALDI-TOF mass spectra, clearly demonstrating the robustness of the approach. However, the assignment of the individual spectra to sub-groups proved to be non-consistent in biological replicas, indicating that the differentiation between biotyper groups in this nosocomial pathogen is unassured.

  19. Effect of Intermediate Hosts on Emerging Zoonoses.

    PubMed

    Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie

    2017-08-01

    Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.

  20. Immunoprevalence to Six Waterborne Pathogens in Beachgoers at Boquerón Beach, Puerto Rico: Application of a Microsphere-Based Salivary Antibody Multiplex Immunoassay

    PubMed Central

    Augustine, Swinburne A. J.; Simmons, Kaneatra J.; Eason, Tarsha N.; Curioso, Clarissa L.; Griffin, Shannon M.; Wade, Timothy J.; Dufour, Alfred; Fout, G. Shay; Grimm, Ann C.; Oshima, Kevin H.; Sams, Elizabeth A.; See, Mary Jean; Wymer, Larry J.

    2017-01-01

    Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations. PMID:28507984

Top