Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K
2011-09-01
This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. Copyright © 2011 Elsevier Inc. All rights reserved.
Andreu, Vanesa; Lagunas, Beatriz; Collados, Raquel; Picorel, Rafael; Alfonso, Miguel
2010-07-01
The FAD7 gene encodes a omega3 fatty acid desaturase which catalyses the production of trienoic fatty acids (TAs) in plant chloroplasts. A novel GmFAD7 gene (named GmFAD7-2) has been identified in soybean, with high homology to the previously annotated GmFAD7 gene. Genomic sequencing analysis together with searches at the soybean genome database further confirmed that both GmFAD7 genes were located in two different loci within the soybean genome, suggesting that the soybean omega3 plastidial desaturase FAD7 is encoded by two different paralogous genes. Both GmFAD7-1 and GmFAD7-2 genes were expressed in all soybean tissues examined, displaying their highest mRNA accumulation in leaves. This expression profile contrasted with GmFAD3A and GmFAD3B mRNA accumulation, which was very low in this tissue. These results suggested a concerted control of plastidial and reticular omega3 desaturase gene expression in soybean mature leaves. Analysis of GmFAD7 protein distribution in different soybean tissues showed that, in mature leaves, two bands were detected, coincident with the higher expression level of both GmFAD7 genes and the highest 18:3 fatty acid accumulation. By contrast, in seeds, where FAD7 activity is low, specific GmFAD7 protein conformations were observed. These GmFAD7 protein conformations were affected in vitro by changes in the redox conditions of thiol groups and iron availability. These results suggest the existence of tissue-specific post-translational regulatory mechanisms affecting the distribution and conformation of the FAD7 enzymes related with the control of its activity.
Wang, Shuqi; Chen, Junliang; Jiang, Danli; Zhang, Qinghao; You, Cuihong; Tocher, Douglas R; Monroig, Óscar; Dong, Yewei; Li, Yuanyou
2018-06-01
Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is an important metabolic pathway in vertebrates, especially fish, considering they are the major source of n-3 LC-PUFA in the human diet. However, most fish have only limited capability for biosynthesis of LC-PUFA. The rabbitfish (Siganus canaliculatus) is able to synthesize LC-PUFA as it has all the key enzyme activities required including Δ6Δ5 Fads2, Δ4 Fads2, Elovl5, and Elovl4. We previously reported a direct interaction between the transcription factor Hnf4α and the promoter regions of Δ4 and Δ6Δ5 Fads2, which suggested that Hnf4α was involved in the transcriptional regulation of fads2 in rabbitfish. For functionally investigating it further, a full-length cDNA of 1736-bp-encoding rabbitfish Hnf4α with 454 amino acids was cloned, which was highly expressed in intestine, followed by liver and eyes. Similar to the expression characteristics of its target genes Δ4 and Δ6Δ5 fads2, levels of hnf4α mRNA in liver and eyes were higher in fish reared at low salinity than those reared in high salinity. After the rabbitfish primary hepatocytes were, respectively, incubated with alverine, benfluorex or BI6015, which were anticipated agonists or antagonist for Hnf4α, the mRNA level of Δ6Δ5 and Δ4 fads2 displayed a similar change tendency with that of hnf4α mRNA. Furthermore, when the mRNA level of hhf4α was knocked down using siRNA, the expression of Δ6Δ5 and Δ4 fads2 also decreased. Together, these data suggest that Hnf4α is involved in the transcriptional regulation of LC-PUFA biosynthesis, specifically, by targeting Δ4 and Δ6Δ5 fads2 in rabbitfish.
Ren, Hong-tao; Zhang, Guang-qin; Li, Jian-lin; Tang, Yong-kai; Li, Hong-xia; Yu, Ju-hua; Xu, Pao
2013-08-01
Δ6-Desaturase is the rate-limiting enzyme involved in highly unsaturated fatty acid (HUFA) biosynthesis. There is very little information on the evolution and functional characterization of Δ6Fad-a and Δ6Fad-b in common carp (Cyprinus carpio var. Jian). In the present study, the genomic sequences and structures of two putative Δ6-desaturase-like genes in common carp genome were obtained. We investigated the mRNA expression patterns of Δ6Fad-a and Δ6Fad-b in tissue, hatching carp embryos, larvae by temperature shock and juveniles under nutritional regulation. Our results showed that the two Δ6Fad genes had identical coding exon structures, being comprised of 12 coding exons, and with introns of distinct size and sequence composition. They were not allelic variants of a single gene. Both Δ6Fad genes were highly expressed in liver, intestine (pyloric caeca) and brain. The Δ6Fad-a and Δ6Fad-b mRNAs showed an increase in expression from newly hatched to 25 days after hatching. The expression levels of Δ6Fad-a were obviously regulated by temperature, whereas Δ6Fad-b was not affected by temperature. The regulation of Δ6Fad-a and Δ6Fad-b in response to dietary fatty acid composition was determined in liver, brain and intestine (pyloric caeca) of common carp fed with diets: diet1with fish oil (FO) rich in n-3 HUFA, diet2 with corn oil (CO, 18:2n-6) and diet3 with linseed oil (LO, 18:3n-3). The differential expression of Δ6Fad-a and Δ6Fad-b genes in liver, brain and intestine in common carps was fed with different oil sources, respectively. Further work is in progress to determine the mechanism of differential expression of the Δ6Fad-a and Δ6Fad-b genes in different tissues and the roles of transcription factors in regulating HUFA synthesis. Copyright © 2013 Elsevier B.V. All rights reserved.
Ponnampalam, Eric N; Lewandowski, Paul A; Fahri, Fahri T; Burnett, Viv F; Dunshea, Frank R; Plozza, Tim; Jacobs, Joe L
2015-11-01
The effects of supplementing diets with n-3 alpha-linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n-3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.
Liu, Qing; Cao, Shijiang; Zhou, Xue-Rong; Wood, Craig; Green, Allan; Singh, Surinder
2013-09-01
There are two types of safflower oil, high oleic (HO) with 70-75 % oleic acid and high linoleic (HL) with about 70 % linoleic acid. The original HO trait in safflower, found in an introduction from India, is controlled by a partially recessive allele ol at a single locus (Knowles and Bill 1964). In the lipid biosynthesis pathway of developing safflower seeds, microsomal oleoyl phosphatidylcholine desaturase (FAD2) is largely responsible for the conversion of oleic acid to linoleic acid. In vitro microsomal assays indicated drastically reduced FAD2 enzyme activity in the HO genotype compared to conventional HL safflower. A previous study indicated that a single-nucleotide deletion was found in the coding region of CtFAD2-1 that causes premature termination of translation in the HO genotypes, and the expression of the mutant CtFAD2-1Δ was attenuated in the HO genotypes compared to conventional HL safflower (Guan et al. 2012). In this study, we hypothesise that down-regulation of CtFAD2-1 expression in the HO genotype may be explained by nonsense-mediated RNA decay (NMD). NMD phenomenon, indicated by gene-specific RNA degradation of defective CtFAD2-1Δ, was subsequently confirmed in Arabidopsis thaliana seed as well as in the transient expression system in Nicotiana benthamiana leaves. We have developed a perfect molecular marker corresponding to the olol mutation that can facilitate a rapid screening and early detection of genotypes carrying the olol mutation for use in marker-assisted selection for the management of the HO trait in safflower breeding programmes.
Avila, Carlos A.; Arévalo-Soliz, Lirio M.; Jia, Lingling; Navarre, Duroy A.; Chen, Zhaorigetu; Howe, Gregg A.; Meng, Qing-Wei; Smith, Jonathon E.; Goggin, Fiona L.
2012-01-01
We report here that disruption of function of the ω-3 FATTY ACID DESATURASE7 (FAD7) enhances plant defenses against aphids. The suppressor of prosystemin-mediated responses2 (spr2) mutation in tomato (Solanum lycopersicum), which eliminates the function of FAD7, reduces the settling behavior, survival, and fecundity of the potato aphid (Macrosiphum euphorbiae). Likewise, the antisense suppression of LeFAD7 expression in wild-type tomato plants reduces aphid infestations. Aphid resistance in the spr2 mutant is associated with enhanced levels of salicylic acid (SA) and mRNA encoding the pathogenesis-related protein P4. Introduction of the Naphthalene/salicylate hydroxylase transgene, which suppresses SA accumulation, restores wild-type levels of aphid susceptibility to spr2. Resistance in spr2 is also lost when we utilize virus-induced gene silencing to suppress the expression of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1), a positive regulator of many SA-dependent defenses. These results indicate that FAD7 suppresses defenses against aphids that are mediated through SA and NPR1. Although loss of function of FAD7 also inhibits the synthesis of jasmonate (JA), the effects of this desaturase on aphid resistance are not dependent on JA; other mutants impaired in JA synthesis (acx1) or perception (jai1-1) show wild-type levels of aphid susceptibility, and spr2 retains aphid resistance when treated with methyl jasmonate. Thus, FAD7 may influence JA-dependent defenses against chewing insects and SA-dependent defenses against aphids through independent effects on JA synthesis and SA signaling. The Arabidopsis (Arabidopsis thaliana) mutants Atfad7-2 and Atfad7-1fad8 also show enhanced resistance to the green peach aphid (Myzus persicae) compared with wild-type controls, indicating that FAD7 influences plant-aphid interactions in at least two plant families. PMID:22291202
Tissue-specific impact of FADS cluster variants on FADS1 and FADS2 gene expression.
Reynolds, Lindsay M; Howard, Timothy D; Ruczinski, Ingo; Kanchan, Kanika; Seeds, Michael C; Mathias, Rasika A; Chilton, Floyd H
2018-01-01
Omega-6 (n-6) and omega-3 (n-3) long (≥ 20 carbon) chain polyunsaturated fatty acids (LC-PUFAs) play a critical role in human health and disease. Biosynthesis of LC-PUFAs from dietary 18 carbon PUFAs in tissues such as the liver is highly associated with genetic variation within the fatty acid desaturase (FADS) gene cluster, containing FADS1 and FADS2 that encode the rate-limiting desaturation enzymes in the LC-PUFA biosynthesis pathway. However, the molecular mechanisms by which FADS genetic variants affect LC-PUFA biosynthesis, and in which tissues, are unclear. The current study examined associations between common single nucleotide polymorphisms (SNPs) within the FADS gene cluster and FADS1 and FADS2 gene expression in 44 different human tissues (sample sizes ranging 70-361) from the Genotype-Tissue Expression (GTEx) Project. FADS1 and FADS2 expression were detected in all 44 tissues. Significant cis-eQTLs (within 1 megabase of each gene, False Discovery Rate, FDR<0.05, as defined by GTEx) were identified in 12 tissues for FADS1 gene expression and 23 tissues for FADS2 gene expression. Six tissues had significant (FDR< 0.05) eQTLs associated with both FADS1 and FADS2 (including artery, esophagus, heart, muscle, nerve, and thyroid). Interestingly, the identified eQTLs were consistently found to be associated in opposite directions for FADS1 and FADS2 expression. Taken together, findings from this study suggest common SNPs within the FADS gene cluster impact the transcription of FADS1 and FADS2 in numerous tissues and raise important questions about how the inverse expression of these two genes impact intermediate molecular (such a LC-PUFA and LC-PUFA-containing glycerolipid levels) and ultimately clinical phenotypes associated with inflammatory diseases and brain health.
Banik, Mitali; Duguid, Scott; Cloutier, Sylvie
2011-06-01
Three genes encoding fatty acid desaturase 3 (fad3a, fad3b, and a novel fad3c) were cloned from four flax genotypes varying in linolenic acid content. Real-time PCR was used to quantify expression levels of the three fad3 genes during seed development. High amounts of both fad3a and fad3b transcripts were observed and reached their peak levels at 20 days after anthesis, except for fad3a from SP2047 where only low level expression was observed throughout seed development. Transcript accumulation of the novel fad3c gene was at similar background levels. The fatty acid composition was analysed for all genotypes and stages of development and compared with the fad3 gene expression patterns. α-Linolenic acid gradually accumulated during seed development, while linoleic acid was transient and decreased in M5791, UGG5-5, and AC McDuff. In contrast, the linolenic acid present in the early stages of development nearly completely disappeared in SP2047, while linoleic acid steadily accumulated. fad3a of the low linolenic acid line SP2047 encoded a truncated protein caused by a premature stop codon resulting from a single point mutation, and the low level of transcript accumulation in this genotype is likely due to nonsense-mediated mRNA decay caused by the premature termination of translation as a result of this early stop codon. Although substantial amounts of transcript accumulation occurred with fad3b of SP2047 genotype, cloning of the gene revealed a mutation in the first histidine box causing an amino acid change. Heterologous expression in yeast of the SP2047 and UGG5-5 fad3b genes showed that the mutation in the histidine box in SP2047 caused the enzyme inactivity. Taken together, these results showed that fad3a and fad3b are responsible for linolenic acid accumulation in flax seeds but did not support a major role for the novel fad3c. These observations were further supported by phenotypic and genotypic assessment of a doubled haploid population. Expression patterns of fad3a and fad3b were highly correlated with linolenic acid accumulation during seed development, with the exception of fad3b in SP2047 whose lack of activity was caused by the histidine box mutation despite its transcript accumulation being similar to that of the fad3b of the other genotypes.
Salsalate and adiponectin ameliorate hepatic steatosis by inhibition of the hepatokine fetuin-A.
Jung, Tae Woo; Youn, Byung-Soo; Choi, Hae Yoon; Lee, So Young; Hong, Ho Cheol; Yang, Sae Jeong; Yoo, Hye Jin; Kim, Baek-Hui; Baik, Sei Hyun; Choi, Kyung Mook
2013-10-01
Fetuin-A was recently identified as a novel hepatokine which is associated with obesity, insulin resistance and non-alcoholic fatty liver disease. Salsalate, a prodrug of salicylate with an anti-inflammatory effect and lower side effect profile, significantly lowers glucose and triglyceride levels, and increased adiponectin concentrations in randomized clinical trials. In this study, we examined the effects and regulatory mechanisms of salsalate and full length-adiponectin (fAd) on fetuin-A expression, steatosis and lipid metabolism in palmitate-treated HepG2 cells. Incubation of hepatocytes with palmitate significantly increased fetuin-A and SREBP-1c expression which lead to steatosis and knock-down of fetuin-A by siRNA restored these changes. Salsalate significantly down-regulated palmitate-induced fetuin-A mRNA expression and secretion in a dose- and time-dependent manner. Inhibition of palmitate-induced fetuin-A by salsalate was mediated by AMPK-mediated reduction of NFκB activity, which was blocked by AMPK siRNA or an inhibitor of AMPK. Salsalate attenuated the excessive steatosis by palmitate through SREBP-1c regulation in hepatocytes. Furthermore, fAd also showed suppression of palmitate-induced fetuin-A through the AMPK pathway and improvement of steatosis accompanied by restoration of SREBP-1c, PAPR-α and CD36. In preliminary in vivo experiments, salsalate treatment inhibited high fat diet (HFD)-induced steatosis as well as fetuin-A mRNA and protein expression in SD rats. In conclusion, salsalate and fAd improved palmitate-induced steatosis and impairment of lipid metabolism in hepatocytes via fetuin-A inhibition through the AMPK-NFκB pathway. Copyright © 2013 Elsevier Inc. All rights reserved.
Wijendran, Vasuki; Downs, Ian; Srigley, Cynthia Tyburczy; Kothapalli, Kumar S D; Park, Woo Jung; Blank, Bryant S; Zimmer, J Paul; Butt, C M; Salem, Norman; Brenna, J Thomas
2013-10-01
Molecular regulation of fatty acid desaturase (Fads) gene expression by dietary arachidonic acid (ARA) and docosahexaenoic acid (DHA) during early post-natal period, when the demand for long chain polyunsaturated fatty acids (LC-PUFA) is very high, has not been well defined. The objective of the current study was to determine regulation of liver Fads1, Fads2 and Fads3 classical (CS) and alternative transcripts (AT) expression by dietary ARA and DHA, within the physiological range present in human breast milk, in suckling piglets. Piglets were fed one of six milk replacer formula diets (formula-reared groups, FR) with varying ARA and DHA content from days 3-28 of age. The ARA/DHA levels of the six formula diets were as follows (% total fatty acid, FA/FA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3-D3) 0.69/1.0; (A4) 1.1/1.0; (D2) 0.67/0.62; and (D1) 0.66/0.33. The control maternal-reared (MR) group remained with the dam. Fads1 expression was not significantly different between FR and MR groups. Fads2 expression was down-regulated significantly in diets with 1:1 ratio of ARA:DHA, compared to MR. Fads2 AT1 expression was highly correlated to Fads2 expression. Fads3 AT7 was the only Fads3 transcript sensitive to dietary LC-PUFA intake and was up-regulated in the formula diets with lowest ARA and DHA contents compared to MR. Thus, the present study provides evidence that the proportion of dietary ARA:DHA is a significant determinant of Fads2 expression and LC-PUFA metabolism during the early postnatal period. Further, the data suggest that Fads3 AT7 may have functional significance when dietary supply of ARA and DHA are low during early development. © 2013 Elsevier Ltd. All rights reserved.
Osman, Rashid H; Liu, Long; Xia, Lili; Zhao, Xing; Wang, Qianqian; Sun, Xiaoxian; Zhang, Yihui; Yang, Biao; Zheng, Yun; Gong, Daoqing; Geng, Tuoyu
2016-07-01
Global prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes a threat to human health. Goose is a unique model of NAFLD for discovering therapeutic targets as its liver can develop severe steatosis without overt injury. Fatty acid desaturase (Fads) is a potential therapeutic target as Fads expression and mutations are associated with liver fat. Here, we hypothesized that Fads was promoted to provide a protection for goose fatty liver. To test this, goose Fads1 and Fads2 were sequenced. Fads1/2/6 expression was determined in goose liver and primary hepatocytes by quantitative PCR. Liver fatty acid composition was also analyzed by gas chromatography. Data indicated that hepatic Fads1/2/6 expression was gradually increased with the time of overfeeding. In contrast, trans-C18:1n9 fatty acid (Fads inhibitor) was reduced. However, enhanced Fads capacity for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis was not sufficient to compensate for the depleted LC-PUFAs in goose fatty liver. Moreover, cell studies showed that Fads1/2/6 expression was regulated by fatty liver-associated factors. Together, these findings suggest Fads1/2 as protective components are promoted to meet instant need for LC-PUFAs in goose fatty liver, and we propose this is required for severe hepatic steatosis without liver injury.
Chisaguano, Aida Maribel; Montes, Rosa; Pérez-Berezo, Teresa; Castellote, Ana Isabel; Guerendiain, Marcela; Bustamante, Mariona; Morales, Eva; García-Esteban, Raquel; Sunyer, Jordi; Franch, Àngels; López-Sabater, M. Carmen
2013-01-01
Abstract Background It is unknown if changes in the gene expression of the desaturase and elongase enzymes are associated with abnormal n-6 long chain polyunsaturated fatty acid (LC-PUFA) levels in children with atopic eczema (AE). We analyzed whether mRNA-expression of genes encoding key enzymes of LC-PUFA synthesis (FADS1, FADS2 and ELOVL5) is associated with circulating LC-PUFA levels and risk of AE in 4-year-old children. Methods AE (n=20) and non-AE (n=104) children participating in the Sabadell cohort within the INfancia y Medio Ambiente (INMA) Project were included in the present study. RT-PCR with TaqMan Low-Density Array cards was used to measure the mRNA-expression of FADS1, FADS2 and ELOVL5. LC-PUFA levels were measured by fast gas chromatography in plasma phospholipids. The relationship of gene expression with LC-PUFA levels and enzyme activities was evaluated by Pearson’s rank correlation coefficient, and logistic regression models were used to study its association with risk of developing AE. Results Children with AE had lower levels of several n-6 PUFA members, dihomo-γ-linolenic (DGLA) and arachidonic (AA) acids. mRNA-expression levels of FADS1 and 2 strongly correlated with DGLA levels and with D6D activity. FADS2 and ELOVL5 mRNA-expression levels were significantly lower in AE than in non-AE children (-40.30% and -20.36%; respectively), but no differences were found for FADS1. Conclusions and Significance Changes in the mRNA-expression levels of FADS1 and 2 directly affect blood DGLA levels and D6D activity. This study suggests that lower mRNA-expressions of FADS2 and ELOVL5 are associated with higher risk of atopic eczema in young children. PMID:24167612
Chisaguano, Aida Maribel; Montes, Rosa; Pérez-Berezo, Teresa; Castellote, Ana Isabel; Guerendiain, Marcela; Bustamante, Mariona; Morales, Eva; García-Esteban, Raquel; Sunyer, Jordi; Franch, Angels; López-Sabater, M Carmen
2013-01-01
It is unknown if changes in the gene expression of the desaturase and elongase enzymes are associated with abnormal n-6 long chain polyunsaturated fatty acid (LC-PUFA) levels in children with atopic eczema (AE). We analyzed whether mRNA-expression of genes encoding key enzymes of LC-PUFA synthesis (FADS1, FADS2 and ELOVL5) is associated with circulating LC-PUFA levels and risk of AE in 4-year-old children. AE (n=20) and non-AE (n=104) children participating in the Sabadell cohort within the INfancia y Medio Ambiente (INMA) Project were included in the present study. RT-PCR with TaqMan Low-Density Array cards was used to measure the mRNA-expression of FADS1, FADS2 and ELOVL5. LC-PUFA levels were measured by fast gas chromatography in plasma phospholipids. The relationship of gene expression with LC-PUFA levels and enzyme activities was evaluated by Pearson's rank correlation coefficient, and logistic regression models were used to study its association with risk of developing AE. Children with AE had lower levels of several n-6 PUFA members, dihomo-γ-linolenic (DGLA) and arachidonic (AA) acids. mRNA-expression levels of FADS1 and 2 strongly correlated with DGLA levels and with D6D activity. FADS2 and ELOVL5 mRNA-expression levels were significantly lower in AE than in non-AE children (-40.30% and -20.36%; respectively), but no differences were found for FADS1. Changes in the mRNA-expression levels of FADS1 and 2 directly affect blood DGLA levels and D6D activity. This study suggests that lower mRNA-expressions of FADS2 and ELOVL5 are associated with higher risk of atopic eczema in young children.
Zhang, Qinghao; You, Cuihong; Liu, Fang; Zhu, Wendi; Wang, Shuqi; Xie, Dizhi; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou
2016-09-01
Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the ability to biosynthesize C20-22 long-chain polyunsaturated fatty acid (LC-PUFA) from C18 PUFA precursors, which is generally absent or low in marine teleosts. Thus, understanding the molecular basis of LC-PUFA biosynthesis in rabbitfish will contribute to efforts aimed at optimizing LC-PUFA biosynthesis in teleosts, especially marine species. In the present study, the importance of the transcription factors liver X receptor (Lxr) and sterol regulatory element-binding protein 1 (Srebp1) in regulation of LC-PUFA biosynthesis in rabbitfish was investigated. First, full-length cDNA of Lxr and Srebp1 were cloned and characterized. The Lxr mRNA displayed a ubiquitous tissue expression pattern while Srebp1 was highly expressed in eyes, brain and intestine. In rabbitfish primary hepatocytes treated with Lxr agonist T0901317, the expression of Lxr and Srebp1 was activated, accompanied by elevated mRNA levels of Δ4 and Δ6/Δ5 fatty acyl desaturase (Fad), key enzymes of LC-PUFA biosynthesis, as well as peroxisome proliferator-activated receptor γ (PPARγ). In addition, Srebp1 displayed higher expression levels in liver of rabbitfish fed a vegetable oil diet or reared at 10 ppt salinity, which were conditions reported to increase the liver expression of Δ4 and Δ6/Δ5 Fad and LC-PUFA biosynthetic ability, than fish fed a fish oil diet or reared at 32 ppt, respectively. These results suggested that Lxr and Srebp1 are involved in regulation of LC-PUFA biosynthesis probably by promoting the expression of two Fad in rabbitfish liver, which, to our knowledge, is the first report in marine teleosts.
Shi, Jianghua; Lang, Chunxiu; Wang, Fulin; Wu, Xuelong; Liu, Renhu; Zheng, Tao; Zhang, Dongqing; Chen, Jinqing; Wu, Guanting
2017-10-01
In plants, the enzymes fatty acid dehydrogenase 2 (FAD2) and fatty acid elongase 1 (FAE1) have been shown in previous studies to play important roles in the de novo biosynthesis of fatty acids. However, the effects of depressed expression of FAD2 and FAE1 on seed storage compounds accumulation remains to be elucidated. In this study, we produced RNA interfering transgenic rapeseeds lines, BnFAD2-Ri, BnFAE1-Ri and BnFAD2/BnFAE1-Ri, which exhibited depressed expression of the BnFAD2 and BnFAE1 genes under the control of seed-specific napin A promoter. These transgenic rapeseeds showed normal growth and development as compared with the wild type (CY2). Depressed expression of BnFAD2 and BnFAE1 genes modified fatty acid profiles, leading to increased oleic acid and decreased erucic acid contents in transgenic seeds. Consistent with these results, the ratios of C18:1/C18:2 and C18:1/C18:3 in C18 unsaturated fatty acids were greatly increased due to increased oleic acid content in transgenic seeds. Moreover, depressed expression of BnFAD2 and BnFAE1 genes resulted in slightly decreased oil contents and increased protein contents in transgenic seeds. Our results demonstrated that depressed expression of BnFAD2 and BnFAE1 greatly improves seed nutritional quality by modulating the fatty acid metabolism and storage products accumulation and that BnFAD2 and BnFAE1 are reliable targets for genetic improvement of rapeseed in seed nutritional quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Dong, Yewei; Wang, Shuqi; Chen, Junliang; Zhang, Qinghao; Liu, Yang; You, Cuihong; Monroig, Óscar; Tocher, Douglas R.; Li, Yuanyou
2016-01-01
Rabbitfish Siganus canaliculatus was the first marine teleost demonstrated to have the capability of biosynthesizing long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors, and to possess a Δ4 fatty acyl desaturase (Δ4 Fad) which was the first report in vertebrates, and is a good model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. In order to understand regulatory mechanisms of transcription of Δ4 Fad, the gene promoter was cloned and characterized in the present study. An upstream sequence of 1859 bp from the initiation codon ATG was cloned as the promoter candidate. On the basis of bioinformatic analysis, several binding sites of transcription factors (TF) including GATA binding protein 2 (GATA-2), CCAAT enhancer binding protein (C/EBP), nuclear factor 1 (NF-1), nuclear factor Y (NF-Y), hepatocyte nuclear factor 4α (HNF4α) and sterol regulatory element (SRE), were identified in the promoter by site-directed mutation and functional assays. HNF4α and NF-1 were confirmed to interact with the core promoter of Δ4 Fad by gel shift assay and mass spectrometry. Moreover, over-expression of HNF4α increased promoter activity in HEK 293T cells and mRNA level of Δ4 Fad in rabbitfish primary hepatocytes, respectively. The results indicated that HNF4α is a TF of rabbitfish Δ4 Fad. To our knowledge, this is the first report on promoter structure of a Δ4 Fad, and also the first demonstration of HNF4α as a TF of vertebrate Fad gene involved in transcription regulation of LC-PUFA biosynthesis. PMID:27472219
2013-01-01
Background Crambe abyssinica produces high erucic acid (C22:1, 55-60%) in the seed oil, which can be further increased by reduction of polyunsaturated fatty acid (PUFA) levels. The omega-6 fatty acid desaturase enzyme (FAD2) is known to be involved in PUFA biosynthesis. In crambe, three CaFAD2 genes, CaFAD2-C1, CaFAD2-C2 and CaFAD2-C3 are expressed. Results The individual effect of each CaFAD2 gene on oil composition was investigated through studying transgenic lines (CaFAD2-RNAi) for differential expression levels in relation to the composition of seed-oil. Six first generation transgenic plants (T1) showed C18:1 increase (by 6% to 10.5%) and PUFA reduction (by 8.6% to 10.2%). The silencing effect in these T1-plants ranged from the moderate silencing (40% to 50% reduction) of all three CaFAD2 genes to strong silencing (95% reduction) of CaFAD2-C3 alone. The progeny of two T1-plants (WG4-4 and WG19-6) was further analysed. Four or five transgene insertions are characterized in the progeny (T2) of WG19-6 in contrast to a single insertion in the T2 progeny of WG4-4. For the individual T2-plants of both families (WG19-6 and WG4-4), seed-specific silencing of CaFAD2-C1 and CaFAD2-C2 was observed in several individual T2-plants but, on average in both families, the level of silencing of these genes was not significant. A significant reduction in expression level (P < 0.01) in both families was only observed for CaFAD2-C3 together with significantly different C18:1 and PUFA levels in oil. Conclusions CaFAD2-C3 expression is highly correlated to levels of C18:1 (r = -0.78) and PUFA (r = 0.75), which suggests that CaFAD2-C3 is the most important one for changing the oil composition of crambe. PMID:24083776
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brizio, Carmen; Galluccio, Michele; Wait, Robin
2006-06-09
FAD synthetase (FADS) (EC 2.7.7.2) is a key enzyme in the metabolic pathway that converts riboflavin into the redox cofactor FAD. Two hypothetical human FADSs, which are the products of FLAD1 gene, were over-expressed in Escherichia coli and identified by ESI-MS/MS. Isoform 1 was over-expressed as a T7-tagged protein which had a molecular mass of 63 kDa on SDS-PAGE. Isoform 2 was over-expressed as a 6-His-tagged fusion protein, carrying an extra 84 amino acids at the N-terminal with an apparent molecular mass of 60 kDa on SDS-PAGE. It was purified near to homogeneity from the soluble cell fraction by one-stepmore » affinity chromatography. Both isoforms possessed FADS activity and had a strict requirement for MgCl{sub 2}, as demonstrated using both spectrophotometric and chromatographic methods. The purified recombinant isoform 2 showed a specific activity of 6.8 {+-} 1.3 nmol of FAD synthesized/min/mg protein and exhibited a K {sub M} value for FMN of 1.5 {+-} 0.3 {mu}M. This is First report on characterization of human FADS, and First cloning and over-expression of FADS from an organism higher than yeast.« less
Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk
2013-12-01
Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. © 2013.
Ochiai, Natsuki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi
2016-05-01
Factor for adipocyte differentiation 24 (fad24) is a positive regulator of adipogenesis. We previously found that human fad24 is abundantly expressed in skeletal muscle. However, the function of fad24 in skeletal muscle remains largely unknown. Because skeletal muscle is a highly regenerative tissue, we focused on the function of fad24 in skeletal muscle regeneration. In this paper, we investigated the role of fad24 in the cell cycle re-entry of quiescent C2C12 myoblasts-mimicked satellite cells. The expression levels of fad24 and histone acetyltransferase binding to ORC1 (hbo1), a FAD24-interacting factor, were elevated at the early phase of the regeneration process in response to cardiotoxin-induced muscle injury. The knockdown of fad24 inhibited the proliferation of quiescent myoblasts, whereas fad24 knockdown did not affect differentiation. S phase entry following serum activation is abrogated by fad24 knockdown in quiescent cells. Furthermore, fad24 knockdown cells show a marked accumulation of p27(Kip1) protein. These results suggest that fad24 may have an important role in the S phase re-entry of quiescent C2C12 cells through the regulation of p27(Kip1) at the protein level.
Xie, Dizhi; Chen, Fang; Lin, Siyuan; You, Cuihong; Wang, Shuqi; Zhang, Qinghao; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou
2016-08-01
Both the spotted scat Scatophagus argus and rabbitfish Siganus canaliculatus belong to the few cultured herbivorous marine teleost, however, their fatty acyl desaturase (Fad) system involved in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is different. The S. argus has a △6 Fad, while the rabbitfish has △4 and △6/△5 Fads, which were the first report in vertebrate and marine teleost, respectively. In order to compare the characteristics of elongases of very long-chain fatty acids (Elovl) between them, two Elovl cDNAs were cloned from S. argus in the present study. One has 885bp of open read fragment (ORF) encoding a protein with 294 amino acid (aa) showing Elovl5 activity functionally characterized by heterologous expression in yeast, which was primarily active for the elongation of C18 and C20 PUFAs. The other has 915bp of ORF coding for a 305 aa protein showing Elovl4 activity, which was more efficient in the elongation of C20 and C22 PUFAs. Tissue distribution analyses by RT-PCR showed that elovl5 was highly expressed in the liver compared to other tissues determined, whereas elovl4 transcripts were only detected in the eye. The expression of elovl5 and elovl4 were significantly affected by dietary fatty acid composition, with highest expression of mRNA in the liver and eye of fish fed a diet with an 18:3n-3/18:2n-6 ratio of 1.7:1. These results indicated that the S. argus has a similar Elovl system in the LC-PUFA biosynthetic pathway to that of rabbitfish although their Fad system was different, suggesting that the diversification of fish LC-PUFA biosynthesis specificities is more associated with its Fad system. These new insights expand our knowledge and understanding of the molecular basis and regulation of LC-PUFA biosynthesis in fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Matteucci, M.; D'Angeli, S.; Errico, S.; Lamanna, R.; Perrotta, G.; Altamura, M. M.
2011-01-01
The olive tree lacks dormancy and is low temperature sensitive, with differences in cold tolerance and oil quality among genotypes. The oil is produced in the drupe, and the unsaturated fatty acids contribute to its quality. The aim of the present research was to investigate the relationship among development, cold response, expression of fatty acid desaturase (FAD) genes, and unsaturated fatty acid composition in drupes belonging to genotypes differing in leaf cold tolerance, but producing good oil (i.e. the non-hardy Moraiolo, the semi-hardy Frantoio, and the hardy Canino). In all genotypes, cold sensitivity, evaluated by cold-induced transient increases in cytosolic calcium, was high in the epi-mesocarp cells before oil body formation, and decreased during oil biogenesis. However, genotype-dependent differences in cold sensitivity appeared at the end of oil production. Genotype-dependent differences in FAD2.1, FAD2.2, FAD6, and FAD7 expression levels occurred in the epi-mesocarp cells during the oleogenic period. However, FAD2.1 and FAD7 were always the highest in the first part of this period. FAD2.2 and FAD7 increased after cold applications during oleogenesis, independently of the genotype. Unsaturated fatty acids increased in the drupes of the non-hardy genotype, but not in those of the hardy one, after cold exposure at the time of the highest FAD transcription. The results show a direct relationship between FAD expression and lipid desaturation in the drupes of the cold-sensitive genotype, and an inverse relationship in those of the cold-resistant genotype, suggesting that drupe cold acclimation requires a fine FAD post-transcriptional regulation. Hypotheses relating FAD desaturation to storage and membrane lipids, and genotype cold hardiness are discussed. PMID:21357772
Identification and Analysis of a Gene from Calendula officinalis Encoding a Fatty Acid Conjugase
Qiu, Xiao; Reed, Darwin W.; Hong, Haiping; MacKenzie, Samuel L.; Covello, Patrick S.
2001-01-01
Two homologous cDNAs, CoFad2 and CoFac2, were isolated from a Calendula officinalis developing seed by a polymerase chain reaction-based cloning strategy. Both sequences share similarity to FAD2 desaturases and FAD2-related enzymes. In C. officinalis plants CoFad2 was expressed in all tissues tested, whereas CoFac2 expression was specific to developing seeds. Expression of CoFad2 cDNA in yeast (Saccharomyces cerevisiae) indicated it encodes a Δ12 desaturase that introduces a double bond at the 12 position of 16:1(9Z) and 18:1(9Z). Expression of CoFac2 in yeast revealed that the encoded enzyme acts as a fatty acid conjugase converting 18:2(9Z, 12Z) to calendic acid 18:3(8E, 10E, 12Z). The enzyme also has weak activity on the mono-unsaturates 16:1(9Z) and 18:1(9Z) producing compounds with the properties of 8,10 conjugated dienes. PMID:11161042
Gillberg, Linn; Perfilyev, Alexander; Brøns, Charlotte; Thomasen, Martin; Grunnet, Louise G; Volkov, Petr; Rosqvist, Fredrik; Iggman, David; Dahlman, Ingrid; Risérus, Ulf; Rönn, Tina; Nilsson, Emma; Vaag, Allan; Ling, Charlotte
2016-04-01
Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW. mRNA expression was analysed using Affymetrix Human Gene 1.0 ST arrays and DNA methylation using Illumina 450K BeadChip arrays. We found differential DNA methylation at 53 sites in SAT from LBW vs normal birthweight (NBW) men (false discovery rate <5%), including sites in the FADS2 and CPLX1 genes previously associated with type 2 diabetes. When we used reference-free cell mixture adjustments to potentially adjust for cell composition, 4,323 sites had differential methylation in LBW vs NBW men. However, no differences in SAT gene expression levels were identified between LBW and NBW men. In the combined group of all 40 participants, 3,276 genes (16.5%) were differentially expressed in SAT after HFO (false discovery rate <5%) and there was no difference between LBW men and controls. The most strongly upregulated genes were ELOVL6, FADS2 and NNAT; in contrast, INSR, IRS2 and the SLC27A2 fatty acid transporter showed decreased expression after HFO. Interestingly, SLC27A2 expression correlated negatively with diabetes- and obesity-related traits in a replication cohort of 142 individuals. DNA methylation at 652 CpG sites (including in CDK5, IGFBP5 and SLC2A4) was altered in SAT after overfeeding in this and in another cohort. Young men who had a LBW exhibit epigenetic alterations in their adipose tissue that potentially influence insulin resistance and risk of type 2 diabetes. Short-term overfeeding influences gene transcription and, to some extent, DNA methylation in adipose tissue; there was no major difference in this response between LBW and control participants.
Francisco, A; Alves, S P; Portugal, P V; Pires, V M R; Dentinho, M T; Alfaia, C M; Jerónimo, E; Prates, J A M; Santos-Silva, J; Bessa, R J B
2016-12-01
The effects of feeding Cistus ladanifer (Cistus) and a blend of soybean and linseed oil (1 : 2 vol/vol) on fatty acid (FA) composition of lamb meat lipids and messenger RNA (mRNA) expression of desaturase enzymes was assessed. In total, 54 male lambs were randomly assigned to 18 pens and to nine diets, resulting from the combination of three inclusion levels of Cistus (50 v. 100 v. 200 g/kg of dry matter (DM)) and three inclusion levels of oil (0 v. 40 v. 80 g/kg of DM). The forage-to-concentrate ratio of the diets was 1 : 1. Longissimus muscle lipids were extracted, fractionated into neutral (NL) and polar lipid (PL) and FA methyl esters obtained and analyzed by GLC. The expression of genes encoding Δ5, Δ6 and Δ9 desaturases (fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and stearoyl CoA desaturase (SCD)) was determined. Intramuscular fat, NL and PL contents were not affected by oil or Cistus. Oil supplementation reduced (P<0.05) 16:0, c9-16:1, 17:0, c9-17:1 and c9-18:1 FA and increased (P<0.05) 18:2n-6, 18:3n-3 and the majority of biohydrogenation intermediates in NL. Cistus alone had few effects on FA of NL but interacted with oil (P<0.05) by increasing t10-18:1,t10,t12-18:2,t10,c12-18:2 and t7,c9-18:2. The t10-/t11-18:1 ratio increased with both Cistus and oil levels. The c9, t11-18:2 did not increase (P<0.05) with both oil and Cistus dietary inclusion. Oil reduced c9-16:1, 17:0, c9-17:1,c9-18:1, 20:4n-6, 22:4n-6 and 20:3n-9 proportions in PL, and increased 18:2n-6, 18:3n-3, 20:3n-3 and of most of the biohydrogenation intermediates. The Cistus had only minor effects on FA composition of PL. Cistus resulted in a reduction (P<0.05) of 20:5n-3 and 22:6n-3 in the meat PL. The expression level of SCD mRNA increased (P=0.015) with Cistus level, although a linear relationship with condensed tannins intake (P=0.11) could not be established. FADS1 mRNA expressed levels increased linearly (P=0.019) with condensed tannins intake. In summary, the inclusion of Cistus and oil in 1 : 1 forage-to-concentrate ratio diets resulted in a large increase in t10-18:1 and no increase in c9,t11-18:2 or n-3 long chain poor in polyunsaturated fatty acids in lamb meat.
Monroig, Oscar; Zheng, Xiaozhong; Morais, Sofia; Leaver, Michael J; Taggart, John B; Tocher, Douglas R
2010-09-01
Fish are the primary source in the human food basket of the n-3 long-chain polyunsaturated fatty acids, eicosapentaenoate (EPA; 20:5n-3) and docosahexaenoate (DHA; 22:6n-3), that are crucial to the health of higher vertebrates. Atlantic salmon are able to synthesize EPA and DHA from 18:3n-3 through reactions catalyzed by fatty acyl desaturases (Fad) and elongases of very long chain fatty acids. Previously, two cDNAs encoding functionally distinct Delta5 and Delta6 Fads were isolated, but screening of a genomic DNA library revealed the existence of more putative fad genes in the Atlantic salmon genome. In the present study, we show that there are at least four genes encoding putative Fad proteins in Atlantic salmon. Two genes, Delta6fad_a and Delta5fad, corresponded to the previously cloned Delta6 and Delta5 Fad cDNAs. Functional characterization by heterologous expression in yeast showed that the cDNAs for both the two further putative fad genes, Delta6fad_b and Delta6fad_c, had only Delta6 activity, converting 47 % and 12 % of 18:3n-3 to 18:4n-3, and 25 and 7 % of 18:2n-6 to 18:3n-6, for 6Fad_b and Delta6fad_c, respectively. Both 6fad_a and 6fad_b genes were highly expressed in intestine (pyloric caeca), liver and brain, with 6fad_b also highly expressed in gill, whereas 6fad_c transcript was found predominantly in brain, with lower expression levels in all other tissues. The expression levels of the 6fad_a gene in liver and the 6fad_b gene in intestine were significantly higher in fish fed diets containing vegetable oil compared to fish fed fish oil suggesting up-regulation in response to reduced dietary EPA and DHA. In contrast, no significant differences were found between transcript levels for 6fad_a in intestine, 6fad_b in liver, or 6fad_c in liver or intestine of fish fed vegetable oil compared to fish fed fish oil. The observed differences in tissue expression and nutritional regulation of the fad genes are discussed in relation to gene structures and fish physiology. 2010 Elsevier B.V. All rights reserved.
Xue, Yufei; Chen, Baojun; Win, Aung Naing; Fu, Chun; Lian, Jianping; Liu, Xue; Wang, Rui; Zhang, Xingcui
2018-01-01
Omega-3 fatty acid desaturase (ω-3 FAD, D15D) is a key enzyme for α-linolenic acid (ALA) biosynthesis. Both chia (Salvia hispanica) and perilla (Perilla frutescens) contain high levels of ALA in seeds. In this study, the ω-3 FAD gene family was systematically and comparatively cloned from chia and perilla. Perilla FAD3, FAD7, FAD8 and chia FAD7 are encoded by single-copy (but heterozygous) genes, while chia FAD3 is encoded by 2 distinct genes. Only 1 chia FAD8 sequence was isolated. In these genes, there are 1 to 6 transcription start sites, 1 to 8 poly(A) tailing sites, and 7 introns. The 5’UTRs of PfFAD8a/b contain 1 to 2 purine-stretches and 2 pyrimidine-stretches. An alternative splice variant of ShFAD7a/b comprises a 5’UTR intron. Their encoded proteins harbor an FA_desaturase conserved domain together with 4 trans-membrane helices and 3 histidine boxes. Phylogenetic analysis validated their identity of dicot microsomal or plastidial ω-3 FAD proteins, and revealed some important evolutionary features of plant ω-3 FAD genes such as convergent evolution across different phylums, single-copy status in algae, and duplication events in certain taxa. The qRT-PCR assay showed that the ω-3 FAD genes of two species were expressed at different levels in various organs, and they also responded to multiple stress treatments. The functionality of the ShFAD3 and PfFAD3 enzymes was confirmed by yeast expression. The systemic molecular and functional features of the ω-3 FAD gene family from chia and perilla revealed in this study will facilitate their use in future studies on genetic improvement of ALA traits in oilseed crops. PMID:29351555
Chen, Yicun; Cui, Qinqin; Xu, Yongjie; Yang, Susu; Gao, Ming; Wang, Yangdong
2015-08-01
Genetic engineering to produce valuable lipids containing unsaturated fatty acids (UFAs) holds great promise for food and industrial applications. Efforts to genetically modify plants to produce desirable UFAs with single enzymes, however, have had modest success. The key enzymes fatty acid desaturase (FAD) and diacylglycerol acyltransferase (DGAT) are responsible for UFA biosynthesis (a push process) and assembling fatty acids into lipids (a pull process) in plants, respectively. To examine their roles in UFA accumulation, VfFAD2 and VfDGAT2 genes cloned from Vernicia fordii (tung tree) oilseeds were conjugated and transformed into Rhodotorula glutinis and Arabidopsis thaliana via Agrobacterium tumefaciens. Real-time quantitative PCR revealed variable gene expression levels in the transformants, with a much higher level of VfDGAT2 than VfFAD2. The relationship between VfFAD2 expression and linoleic acid (C18:2) increases in R. glutinis (R (2) = 0.98) and A. thaliana (R (2) = 0.857) transformants was statistically linear. The VfDGAT2 expression level was statistically correlated with increased total fatty acid content in R. glutinis (R (2) = 0.962) and A. thaliana (R (2) = 0.8157) transformants. With a similar expression level between single- and two-gene transformants, VfFAD2-VfDGAT2 co-transformants showed a higher linolenic acid (C18:3) yield in R. glutinis (174.36 % increase) and A. thaliana (14.61 % increase), and eicosatrienoic acid (C20:3) was enriched (17.10 % increase) in A. thaliana. Our data suggest that VfFAD2-VfDGAT2 had a synergistic effect on UFA metabolism in R. glutinis, and to a lesser extent, A. thaliana. These results show promise for further genetic engineering of plant lipids to produce desirable UFAs.
A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes
Sharma, Sunita; Zhou, Xiaobo; Thibault, Derek M.; Himes, Blanca E.; Liu, Andy; Szefler, Stanley J.; Strunk, Robert; Castro, Mario; Hansel, Nadia N.; Diette, Gregory B.; Vonakis, Becky M.; Adkinson, N. Franklin; Avila, Lydiana; Soto-Quiros, Manuel; Barraza-Villareal, Albino; Lemanske, Robert F.; Solway, Julian; Krishnan, Jerry; White, Steven R.; Cheadle, Chris; Berger, Alan E.; Fan, Jinshui; Boorgula, Meher Preethi; Nicolae, Dan; Gilliland, Frank; Barnes, Kathleen; London, Stephanie J.; Martinez, Fernando; Ober, Carole; Celedón, Juan C.; Carey, Vincent J.; Weiss, Scott T.; Raby, Benjamin A.
2014-01-01
Background Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. Objective We evaluated 6,706 cis-acting expression-associated variants (eSNP) identified through a genome-wide eQTL survey of CD4+ lymphocytes for association with asthma. Methods eSNP were tested for association with asthma in 359 asthma cases and 846 controls from the Childhood Asthma Management Program, with verification using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE)-qPCR and Chromatin-Immunoprecipitation (ChIP)-PCR in lung derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. Results Cis-acting eSNP demonstrated associations with asthma in both cohorts. We confirmed the previously-reported association of ORMDL3/GSDMB variants with asthma (combined p=2.9 × 108). Reproducible associations were also observed for eSNP in three additional genes: FADS2 (p=0.002), NAGA (p=0.0002), and F13A1 (p=0.0001). We subsequently demonstrated that FADS2 mRNA is increased in CD4+ lymphocytes in asthmatics, and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. Conclusions Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes, and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma. PMID:24934276
Two ω-3 FADs Are Associated with Peach Fruit Volatile Formation
Wang, Jiao-Jiao; Liu, Hong-Ru; Gao, Jie; Huang, Yu-Ji; Zhang, Bo; Chen, Kun-Song
2016-01-01
Aroma-related volatiles, together with sugars and acids, play an important role in determining fruit flavor quality. Characteristic volatiles of peach fruit are mainly derived from fatty acids such as linoleic acid (18:2) and linolenic acid (18:3). In the present study, six genes encoding fatty acid desaturases (FAD) were cloned, including two ω-6 FAD genes (PpFAD2, PpFAD6) and four ω-3 FAD genes (PpFAD3-1, PpFAD3-2, PpFAD7 and PpFAD8). Heterologous expression of peach FADs in tobacco plants showed that PpFAD3-1, and PpFAD3-2 significantly reduced contents of 18:2, and accumulated significant higher levels of 18:3. In the case of volatiles, transgenic plants produced lower concentrations of hexanal and higher levels of (E)-2-hexenal. Consequently, the ratio of the (E)-2-hexenal and hexanal was about 5- and 3-fold higher than that of wild type (WT) in PpFAD3-1 and PpFAD3-2 transformants, respectively. No significant changes in volatile profiles were observed in transgenic plants overexpressing the four other peach FAD genes. Real-time quantitative polymerase chain reaction (qPCR) analysis showed that ripe fruit had high PpFAD3-1 and low PpFAD3-2 transcript levels. In contrast, high PpFAD3-2 and low PpFAD3-1 transcript levels were observed in young fruit. These results indicate a temporal regulation of these two ω-3 FADs during development and ripening, influencing peach fruit volatile formation. PMID:27043529
Microarray mRNA expression analysis of Fanconi anemia fibroblasts.
Galetzka, D; Weis, E; Rittner, G; Schindler, D; Haaf, T
2008-01-01
Fanconi anemia (FA) cells are generally hypersensitive to DNA cross-linking agents, implying that mutations in the different FANC genes cause a similar DNA repair defect(s). By using a customized cDNA microarray chip for DNA repair- and cell cycle-associated genes, we identified three genes, cathepsin B (CTSB), glutaredoxin (GLRX), and polo-like kinase 2 (PLK2), that were misregulated in untreated primary fibroblasts from three unrelated FA-D2 patients, compared to six controls. Quantitative real-time RT PCR was used to validate these results and to study possible molecular links between FA-D2 and other FA subtypes. GLRX was misregulated to opposite directions in a variety of different FA subtypes. Increased CTSB and decreased PLK2 expression was found in all or almost all of the analyzed complementation groups and, therefore, may be related to the defective FA pathway. Transcriptional upregulation of the CTSB proteinase appears to be a secondary phenomenon due to proliferation differences between FA and normal fibroblast cultures. In contrast, PLK2 is known to play a pivotal role in processes that are linked to FA defects and may contribute in multiple ways to the FA phenotype: PLK2 is a target gene for TP53, is likely to function as a tumor suppressor gene in hematologic neoplasia, and Plk2(-/-) mice are small because of defective embryonal development. (c) 2008 S. Karger AG, Basel.
Molecular cloning and functional analysis of two FAD2 genes from American grape (Vitis labrusca L.).
Lee, Kyeong-Ryeol; Kim, Sun Hee; Go, Young-Sam; Jung, Sung Min; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi-Chung; Lee, Sukchan; Kim, Hyun Uk
2012-11-10
The synthesis of polyunsaturated fatty acids (PUFAs), the most abundant fatty acids in plants, begins with a reaction catalyzed by fatty acid desaturase 2 (FAD2; EC 1.3.1.35), also called microsomal oleate Δ12-desaturase. Since the FAD2 gene was first identified in Arabidopsis thaliana, FAD2 research has gained wide interest as the essential enzyme for synthesizing PUFA. Grapes are one of the most frequently cultivated fruits in the world, with most commercial growers cultivating Vitis vinifera and V. labrusca. Grapeseed oil contains a high proportion, 60-70% of linoleic acid (18:2). We cloned two putative FAD2 genes from V. labrusca cv. Campbell Early based on V. vinifera genome sequences. Deduced amino acid sequences of two putative genes showed that VlFAD2s show high similarity to Arabidopsis FAD2 and commonly contain six transmembrane domain, three histidine boxes and endoplasmic reticulum (ER) retrieval motif representing the characteristics of fatty acid desaturase. Phylogenetic analyses of various plant FAD2s showed that VlFAD2-1 and VlFAD2-2 are separately grouped with constitutive and seed-type FAD2s, respectively. Southern blot showed that one or two bands are found in each lane. Because Campbell Early is a hybrid cultivar, FAD2-1 and FAD2-2 genes may exist as one copy in V. labrusca. Expression analysis in different tissues indicated that VlFAD2-1 is a constitutive gene but VlFAD2-2 is a seed-type gene. Complementation experiments of fad2-1 mutant Arabidopsis with VlFAD2-1 or VlFAD2-2 demonstrated that VlFAD2-1 and VlFAD2-2 can restore low PUFA proportion of fad2 to normal PUFA proportion. Copyright © 2012 Elsevier B.V. All rights reserved.
Huang, Yong; Lu, Xue-Ping; Wang, Luo-Luo; Wei, Dong; Feng, Zi-Jiao; Zhang, Qi; Xiao, Lin-Fan; Dou, Wei; Wang, Jin-Jun
2015-01-01
NADPH cytochrome P450 reductase (CPR) is essential for cytochrome P450 catalysis, which is important in the detoxification and activation of xenobiotics. In this study, two transcripts of Bactrocera dorsalis CPR (BdCPR) were cloned, and the deduced amino-acid sequence had an N-terminus membrane anchor for BdCPR-X1 and three conserved binding domains (FMN, FAD, and NADP), as well as an FAD binding motif and catalytic residues for both BdCPR-X1 and BdCPR-X2. BdCPR-X1 was detected to have the high expression levels in adults and in Malpighian tubules, fat bodies, and midguts of adults, but BdCPR-X2 expressed lowly in B. dorsalis. The levels of BdCPRs were similar in malathion-resistant strain compared to susceptible strain. However, injecting adults with double-stranded RNA against BdCPR significantly reduced the transcript levels of the mRNA, and knockdown of BdCPR increased adult susceptibility to malathion. Expressing complete BdCPR-X1 cDNA in Sf9 cells resulted in high activity determined by cytochrome c reduction and these cells had higher viability after exposure to malathion than control. The results suggest that BdCPR could affect the susceptibility of B. dorsalis to malathion and eukaryotic expression of BdCPR would lay a solid foundation for further investigation of P450 in B. dorsalis. PMID:26681597
Chen, Lizhi; Wang, Lei; Wang, Herong; Sun, Ruhao; You, Lili; Zheng, Yusheng; Yuan, Yijun
2018-01-01
In higher plants, ω-3 fatty acid desaturases are the key enzymes in the biosynthesis of alpha-linolenic acid (18:3), which plays key roles in plant metabolism as a structural component of both storage and membrane lipids. Here, the first ω-3 fatty acid desaturase gene was identified and characterized from oil palm. The bioinformatic analysis indicated it encodes a temperature-sensitive chloroplast ω-3 fatty acid desaturase, designated as EgFAD8. The expression analysis revealed that EgFAD8 is highly expressed in the oil palm leaves, when compared with the expression in the mesocarp. The heterologous expression of EgFAD8 in yeast resulted in the production of a novel fatty acid 18:3 (about 0.27%), when fed with 18:2 in the induction culture. Furthermore, to detect whether EgFAD8 could be induced by the environment stress, we detected the expression efficiency of the EgFAD8 promoter in transgenic Arabidopsis treated with low temperature and darkness, respectively. The results indicated that the promoter of EgFAD8 gene could be significantly induced by low temperature and slightly induced by darkness. These results reveal the function of EgFAD8 and the feature of its promoter from oil palm fruits, which will be useful for understanding the fuction and regulation of plastidial ω-3 fatty acid desaturases in higher plants. PMID:29698515
Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J
2001-01-26
Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.
Jung, Tae Woo; Choi, Hae Yoon; Lee, So Young; Hong, Ho Cheol; Yang, Sae Jeong; Yoo, Hye Jin; Youn, Byung-Soo; Baik, Sei Hyun; Choi, Kyung Mook
2013-01-01
Selenoprotein P (SeP) was recently identified as a hepatokine that induces insulin resistance (IR) in rodents and humans. Recent clinical trials have shown that salsalate, a prodrug of salicylate, significantly lowers blood glucose levels and increases adiponectin concentrations. We examined the effects of salsalate and full length-adiponectin (fAd) on the expression of SeP under hyperlipidemic conditions and explored their regulatory mechanism on SeP. In palmitate-treated HepG2 cells as well as high fat diet (HFD)-fed male Spraque Dawley (SD) rats and male db/db mice, SeP expression and its regulatory pathway, including AMPK-FOXO1α, were evaluated after administration of salsalate and salicylate. Palmitate treatment significantly increased SeP expression and aggravated IR, while knock-down of SeP by siRNA restored these changes in HepG2 cells. Palmitate-induced SeP expression was inhibited by both salsalate and salicylate, which was mediated by AMPK activation, and was blocked by AMPK siRNA or an inhibitor of AMPK. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift (EMSA) assay showed that salsalate suppressed SeP expression by AMPK-mediated phosphorylation of FOXO1α. Moreover, fAd also reduced palmitate-induced SeP expression through the activation of AMPK, which results in improved IR. Both salsalate and salicylate treatment significantly improved glucose intolerance and insulin sensitivity, accompanied by reduced SeP mRNA and protein expression in HFD-fed rats and db/db mice, respectively. Taken together, we found that salsalate and adiponectin ameliorated palmitate-induced IR in hepatocytes via SeP inhibition through the AMPK-FOXO1α pathway. The regulation of SeP might be a novel mechanism mediating the anti-diabetic effects of salsalate and adiponectin.
Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.
The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. These data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.« less
Genome-wide analysis of the omega-3 fatty acid desaturase gene family in Gossypium
Yurchenko, Olga P.; Park, Sunjung; Ilut, Daniel C.; ...
2014-11-18
The majority of commercial cotton varieties planted worldwide are derived from Gossypium hirsutum, which is a naturally occurring allotetraploid produced by interspecific hybridization of A- and D-genome diploid progenitor species. While most cotton species are adapted to warm, semi-arid tropical and subtropical regions, and thus perform well in these geographical areas, cotton seedlings are sensitive to cold temperature, which can significantly reduce crop yields. One of the common biochemical responses of plants to cold temperatures is an increase in omega-3 fatty acids, which protects cellular function by maintaining membrane integrity. The purpose of our study was to identify and characterizemore » the omega-3 fatty acid desaturase (FAD) gene family in G. hirsutum, with an emphasis on identifying omega-3 FADs involved in cold temperature adaptation. Results: Eleven omega-3 FAD genes were identified in G. hirsutum, and characterization of the gene family in extant A and D diploid species ( G. herbaceum and G. raimondii, respectively) allowed for unambiguous genome assignment of all homoeologs in tetraploid G. hirsutum. The omega-3 FAD family of cotton includes five distinct genes, two of which encode endoplasmic reticulum-type enzymes ( FAD3-1 and FAD3-2) and three that encode chloroplast-type enzymes ( FAD7/8-1, FAD7/8-2, and FAD7/8-3). The FAD3-2 gene was duplicated in the A genome progenitor species after the evolutionary split from the D progenitor, but before the interspecific hybridization event that gave rise to modern tetraploid cotton. RNA-seq analysis revealed conserved, gene-specific expression patterns in various organs and cell types and semi-quantitative RT-PCR further revealed that FAD7/8-1 was specifically induced during cold temperature treatment of G. hirsutum seedlings. Conclusions: The omega-3 FAD gene family in cotton was characterized at the genome-wide level in three species, showing relatively ancient establishment of the gene family prior to the split of A and D diploid progenitor species. The FAD genes are differentially expressed in various organs and cell types, including fiber, and expression of the FAD7/8-1 gene was induced by cold temperature. These data define the genetic and functional genomic properties of this important gene family in cotton and provide a foundation for future efforts to improve cotton abiotic stress tolerance through molecular breeding approaches.« less
Rosen, Brandon C.; Dillon, Nicholas A.; Peterson, Nicholas D.; Minato, Yusuke
2016-01-01
ABSTRACT Pyrazinamide (PZA) is a first-line tuberculosis (TB) drug that has been in clinical use for 60 years yet still has an unresolved mechanism of action. Based upon the observation that the minimum concentration of PZA required to inhibit the growth of Mycobacterium tuberculosis is approximately 1,000-fold higher than that of other first-line drugs, we hypothesized that M. tuberculosis expresses factors that mediate intrinsic resistance to PZA. To identify genes associated with intrinsic PZA resistance, a library of transposon-mutagenized Mycobacterium bovis BCG strains was screened for strains showing hypersusceptibility to the active form of PZA, pyrazinoic acid (POA). Disruption of the long-chain fatty acyl coenzyme A (CoA) ligase FadD2 enhanced POA susceptibility by 16-fold on agar medium, and the wild-type level of susceptibility was restored upon expression of fadD2 from an integrating mycobacterial vector. Consistent with the recent observation that POA perturbs mycobacterial CoA metabolism, the fadD2 mutant strain was more vulnerable to POA-mediated CoA depletion than the wild-type strain. Ectopic expression of the M. tuberculosis pyrazinamidase PncA, necessary for conversion of PZA to POA, in the fadD2 transposon insertion mutant conferred at least a 16-fold increase in PZA susceptibility under active growth conditions in liquid culture at neutral pH. Importantly, deletion of fadD2 in M. tuberculosis strain H37Rv also resulted in enhanced susceptibility to POA. These results indicate that FadD2 is associated with intrinsic PZA and POA resistance and provide a proof of concept for the target-based potentiation of PZA activity in M. tuberculosis. PMID:27855077
Regulated expression of a repressor protein: FadR activates iclR.
Gui, L; Sunnarborg, A; LaPorte, D C
1996-01-01
The control of the glyoxylate bypass operon (aceBAK) of Escherichia coli is mediated by two regulatory proteins, IclMR and FadR. IclMR is a repressor protein which has previously been shown to bind to a site which overlaps the aceBAK promoter. FAR is a repressor/activator protein which participates in control of the genes of fatty acid metabolism. A sequence just upstream of the iclR promoter bears a striking resemblance to FadR binding sites found in the fatty acid metabolic genes. The in vitro binding specificity of FadR, determined by oligonucleotide selection, was in good agreement with the sequences of these sites. The ability of FadR to bind to the site associated with iclR was demonstrated by gel shift and DNase I footprint analyses. Disruption of FadR or inactivation of the FadR binding site of iclR decreased the expression of an iclR::lacZ operon fusion, indicating that FadR activates the expression of iclR. It has been reported that disruption of fadR increases the expression of aceBAK. We observed a similar increase when we inactivated the FadR binding site of an iclR+ allele. This result suggests that FadR regulates aceBAK indirectly by altering the expression of IclR. PMID:8755903
Nayak, Madhusmita; Saha, Ashis; Pradhan, Avinash; Samanta, Mrinal; Giri, Shiba Shankar
2017-03-01
Silver barb (Puntius gonionotus) is considered a promising medium carp species for freshwater aquaculture in Asia. This study in silver barb was carried out to evaluate the effects of total or partial substitution of dietary fish oil (FO) with linseed oil (LO) on growth, nutrient utilization, whole-body composition, muscle and liver fatty acid composition. Fish (12.1±0.4g of initial body weight) were fed for 60days with five experimental iso-proteinous, iso-lipidic and iso-caloric diets in which FO (control diet) was replaced by 33.3%, 50%, 66.7% and 100% LO. Final weight, weight gain, percent weight gain, SGR decreased linearly (p<0.001) with increasing LO levels in the diets. Dietary LO substitution levels did not significantly (p>0.05) affect the feed conversion ratio (FCR), protein efficiency ratio (PER) and whole body proximate composition. Furthermore, enhanced level of LO increased α-linolenic acid (ALA; 18:3n3) and linoleic acid (LA; 18:2n6) and decreased eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3) in muscle and liver. To understand the molecular mechanism of long chain-polyunsaturated fatty acid (LC-PUFA) biosynthesis, we cloned and characterized the fatty acyl Δ6 desaturase (Δ6 fad) cDNA and investigated its expression in various organs/tissues following replacement of FO with LO in the diet. The full-length Δ6 fad cDNA was 2056bp encoding 444 amino acids and was widely expressed in various organs/tissues. Replacement of FO with LO increased the expression of Δ6 fad mRNA in liver, muscle and intestine but no significant difference was found in the brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Leone, Piero; Galluccio, Michele; Barbiroli, Alberto; Eberini, Ivano; Tolomeo, Maria; Vrenna, Flavia; Gianazza, Elisabetta; Iametti, Stefania; Bonomi, Francesco; Indiveri, Cesare; Barile, Maria
2018-01-06
FAD synthase (FADS, EC 2.7.7.2) is the last essential enzyme involved in the pathway of biosynthesis of Flavin cofactors starting from Riboflavin (Rf). Alternative splicing of the human FLAD1 gene generates different isoforms of the enzyme FAD synthase. Besides the well characterized isoform 1 and 2, other FADS isoforms with different catalytic domains have been detected, which are splice variants. We report the characterization of one of these novel isoforms, a 320 amino acid protein, consisting of the sole C-terminal 3'-phosphoadenosine 5'-phosphosulfate (PAPS) reductase domain (named FADS6). This isoform has been previously detected in Riboflavin-Responsive (RR-MADD) and Non-responsive Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) patients with frameshift mutations of FLAD1 gene. To functionally characterize the hFADS6, it has been over-expressed in Escherichia coli and purified with a yield of 25 mg·L -1 of cell culture. The protein has a monomeric form, it binds FAD and is able to catalyze FAD synthesis (k cat about 2.8 min -1 ), as well as FAD pyrophosphorolysis in a strictly Mg 2+ -dependent manner. The synthesis of FAD is inhibited by HgCl₂. The enzyme lacks the ability to hydrolyze FAD. It behaves similarly to PAPS. Combining threading and ab-initio strategy a 3D structural model for such isoform has been built. The relevance to human physio-pathology of this FADS isoform is discussed.
Hernández, M Luisa; Sicardo, M Dolores; Martínez-Rivas, José M
2016-01-01
Linolenic acid is a polyunsaturated fatty acid present in plant lipids, which plays key roles in plant metabolism as a structural component of storage and membrane lipids, and as a precursor of signaling molecules. The synthesis of linolenic acid is catalyzed by two different ω-3 fatty acid desaturases, which correspond to microsomal- (FAD3) and chloroplast- (FAD7 and FAD8) localized enzymes. We have investigated the specific contribution of each enzyme to the linolenic acid content in olive fruit. With that aim, we isolated two different cDNA clones encoding two ω-3 fatty acid desaturases from olive (Olea europaea cv. Picual). Sequence analysis indicates that they code for microsomal (OepFAD3B) and chloroplast (OepFAD7-2) ω-3 fatty acid desaturase enzymes, different from the previously characterized OekFAD3A and OekFAD7-1 genes. Functional expression in yeast of the corresponding OepFAD3A and OepFAD3B cDNAs confirmed that they encode microsomal ω-3 fatty acid desaturases. The linolenic acid content and transcript levels of olive FAD3 and FAD7 genes were measured in different tissues of Picual and Arbequina cultivars, including mesocarp and seed during development and ripening of olive fruit. Gene expression and lipid analysis indicate that FAD3A is the gene mainly responsible for the linolenic acid present in the seed, while FAD7-1 and FAD7-2 contribute mostly to the linolenic acid present in the mesocarp and, therefore, in the olive oil. These results also indicate the relevance of lipid trafficking between the endoplasmic reticulum and chloroplast in determining the linolenic acid content of membrane and storage lipids in oil-accumulating photosynthetic tissues. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Vahmani, P; Glover, K E; Fredeen, A H
2014-07-01
Research was conducted to evaluate the effects of management system (MS), marine lipid supplementation (LS), and their interaction on the relative mRNA abundance of 11 genes involved in lipid synthesis in mammary, liver, and subcutaneous adipose tissues in lactating dairy cows. These genes included those involved in FA uptake (LPL), de novo FA synthesis (ACACA, FASN), FA desaturation (SCD1, FADS1, FADS2), and transcriptional regulation of lipogenesis (SREBF1, SCAP, INSIG1, THRSP, and PPARG). Forty-eight peripartal Holstein cows were blocked by parity and predicted calving date and assigned to either a pasture (n=23) or confinement (n=25) system. Within each system, cows were allocated randomly (7-9 cows per treatment) to a control (no oil supplement) or 1 of 2 isolipidic (200 g/d) supplements, fish oil (FO) or microalgae (MA), for 125 ± 5 d starting 30 d precalving. The experiment was conducted as a split-plot design, with MS being the whole plot treatment and LS as the subplot treatment. At 100 ± 2 DIM, 4 cows from each treatment combination (24 cows in total) were euthanized and tissue samples were collected for gene expression analysis. No interactions between MS and LS were observed regarding any of the variables measured in this study. Milk production (34.0 vs. 40.1 kg/d), milk fat (1.10 vs. 1.41 kg/d), protein (0.95 vs. 1.22 kg/d), and lactose (1.56 vs. 1.86 kg/d) were lower for pasture compared with confinement. The effect of LS on milk production and milk composition (yields and contents) was significant only for milk fat content that was reduced with MA compared with FO (3.00 vs. 3.40%) and the control (3.56%). The mammary mRNA abundance of PPARG (-32%) and FASN (-29%) was lower in grazing compared with confined cows, which was accompanied by reduced (-43%) secretion of de novo synthesized fatty acids in milk. Grazing was associated with reduced expression of ACACA (-48%), FASN (-48%), and THRSP (-53%) in subcutaneous adipose tissues, which was consistent with the lower body condition score (i.e., lower net adipose tissue deposition) in grazing compared with confined cows. Feeding either FO or MA downregulated hepatic expression of FASN, SCD1, FADS2, and THRSP. The reduced secretion of de novo synthesized fatty acids in milk of grazing cows compared with confined cows might be related in part to the downregulation of genes involved in lipid synthesis, and that LS have tissue-specific effects on expression of genes involved in lipid metabolism, with liver being the most responsive tissue. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
1950 MHz Electromagnetic Fields Ameliorate Aβ Pathology in Alzheimer’s Disease Mice
Jeong, Ye Ji; Kang, Ga-Young; Kwon, Jong Hwa; Choi, Hyung-Do; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil; Lee, Hae-June
2015-01-01
The involvement of radiofrequency electromagnetic fields (RF-EMF) in the neurodegenerative disease, especially Alzheimer’s disease (AD), has received wide consideration, however, outcomes from several researches have not shown consistency. In this study, we determined whether RF-EMF influenced AD pathology in vivo using Tg-5xFAD mice as a model of AD-like amyloid β (Aβ) pathology. The transgenic (Tg)-5xFAD and wild type (WT) mice were chronically exposed to RF-EMF for 8 months (1950 MHz, SAR 5W/kg, 2 hrs/day, 5 days/week). Notably, chronic RF-EMF exposure significantly reduced not only Aβ plaques, APP, and APP carboxyl-terminal fragments (CTFs) in whole brain including hippocampus and entorhinal cortex but also the ratio of Aβ42 and Aβ40 peptide in the hippocampus of Tg-5xFAD mice. We also found that parenchymal expression of β-amyloid precursor protein cleaving enzyme 1(BACE1) and neuroinflammation were inhibited by RF-EMF exposure in Tg-5xFAD. In addition, RF-EMF was shown to rescue memory impairment in Tg-5xFAD. Moreover, gene profiling from microarray data using hippocampus of WT and Tg-5xFAD following RF-EMF exposure revealed that 5 genes (Tshz2, Gm12695, St3gal1, Isx and Tll1), which are involved in Aβ, are significantly altered inTg-5xFAD mice, exhibiting different responses to RF-EMF in WT or Tg-5xFAD mice; RF-EMF exposure in WT mice showed similar patterns to control Tg-5xFAD mice, however, RF-EMF exposure in Tg-5xFAD mice showed opposite expression patterns. These findings indicate that chronic RF-EMF exposure directly affects Aβ pathology in AD but not in normal brain. Therefore, RF-EMF has preventive effects against AD-like pathology in advanced AD mice with a high expression of Aβ, which suggests that RF-EMF can have a beneficial influence on AD. PMID:26017559
Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.).
Thambugala, Dinushika; Cloutier, Sylvie
2014-11-01
Little is known about the relationship between expression levels of fatty acid desaturase genes during seed development and fatty acid (FA) composition in flax. In the present study, we looked at promoter structural variations of six FA desaturase genes and their relative expression throughout seed development. Computational analysis of the nucleotide sequences of the sad1, sad2, fad2a, fad2b, fad3a and fad3b promoters showed several basic transcriptional elements including CAAT and TATA boxes, and several putative target-binding sites for transcription factors, which have been reported to be involved in the regulation of lipid metabolism. Using semi-quantitative reverse transcriptase PCR, the expression patterns throughout seed development of the six FA desaturase genes were measured in six flax genotypes that differed for FA composition but that carried the same desaturase isoforms. FA composition data were determined by phenotyping the field grown genotypes over four years in two environments. All six genes displayed a bell-shaped pattern of expression peaking at 20 or 24 days after anthesis. Sad2 was the most highly expressed. The expression of all six desaturase genes did not differ significantly between genotypes (P = 0.1400), hence there were no correlations between FA desaturase gene expression and variations in FA composition in relatively low, intermediate and high linolenic acid genotypes expressing identical isoforms for all six desaturases. These results provide further clues towards understanding the genetic factors responsible for FA composition in flax.
Induction of 1-acylglycerophosphocholine acyltransferase genes by fibrates in the liver of rats.
Yamazaki, Tohru; Wakabayashi, Michiko; Ikeda, Erika; Tanaka, Shizuyo; Sakamoto, Takeshi; Mitsumoto, Atsushi; Kudo, Naomi; Kawashima, Yoichi
2012-01-01
The effect of fibrates (clofibric acid, bezafibrate and fenofibrate) on the gene expression and activity of 1-acylglycerophosphocholine acyltransferase (LPCAT) was investigated. The administration of 0.1% (w/w) clofibric acid, bezafibrate or fenofibrate in diet for 14 d to rats induced LPCAT activity in hepatic microsomes in the following order: fenofibrate>bezafibrate>clofibric acid. The LPCAT induced by fenofibrate preferred to arachidonoyl-CoA and linoleoyl-CoA to a greater extent than did LPCAT in control microsomes. The treatment with the fibrates resulted in upregulation of the relative expression of mRNAs encoding LPCAT3 and LPCAT4 in the following order: fenofibrate>bezafibrate>clofibric acid. The administration of fibrates did not change the expression of genes encoding either LPCAT1 or LPCAT2. The treatment with fibrates elevated relative levels of both mRNAs encoding Δ6 desaturase (Fads2) and Δ5 desaturase (Fads1) in the order of fenofibrate>bezafibrate>clofibric acid, and the extent of the increase in the level of Δ6 desaturase mRNA was greater than that of Δ5 desaturase. Fatty acid profile in hepatic phosphatidylcholine (PC) was significantly changed by the treatments with fibrates. These results suggest (i) that fibrates induce LPCAT activity in hepatic microsomes by elevating the expression of genes encoding LPCAT3 and LPCAT4, (ii) that the changes in fatty acid profile of hepatic PC are, in part, due to the elevated expression of two isoforms, LPCAT3 and LPCAT4, and (iii) that the ability of fibrates to induce these changes are in the order of fenofibrate>bezafibrate>clofibric acid.
Zeng, Yanling; Tan, Xiaofeng; Zhang, Lin; Jiang, Nan; Cao, Heping
2014-01-01
Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metabolites for oil biosynthesis. The objectives of this study were to identify FBA genes and investigate the relationship between FBA gene expression and oil content in developing seeds of tea oil tree. In this paper, four developmentally up-regulated CoFBA genes were identified in Camellia oleifera seeds based on the transcriptome from two seed developmental stages corresponding to the initiation and peak stages of lipid biosynthesis. The expression of CoFBA genes, along with three key oil biosynthesis genes CoACP, CoFAD2 and CoSAD were analyzed in seeds from eight developmental stages by real-time quantitative PCR. The oil content and fatty acid composition were also analyzed. The results showed that CoFBA and CoSAD mRNA levels were well-correlated with oil content whereas CoFAD2 gene expression levels were correlated with fatty acid composition in Camellia seeds. We propose that CoFBA and CoSAD are two important factors for determining tea oil yield because CoFBA gene controls the flux of key intermediates for oil biosynthesis and CoSAD gene controls the synthesis of oleic acid, which accounts for 80% of fatty acids in tea oil. These findings suggest that tea oil yield could be improved by enhanced expression of CoFBA and CoSAD genes in transgenic plants.
Takkunen, Markus J; de Mello, Vanessa D; Schwab, Ursula S; Kuusisto, Johanna; Vaittinen, Maija; Ågren, Jyrki J; Laakso, Markku; Pihlajamäki, Jussi; Uusitupa, Matti I J
2016-02-01
Limited information exists on how the relationship between dietary intake of fat and fatty acids in erythrocytes and plasma is modulated by polymorphisms in the FADS gene cluster. We examined gene-diet interaction of total marine PUFA intake with a known gene encoding Δ-5 desaturase enzyme (FADS1) variant (rs174550) for fatty acids in erythrocyte membranes and plasma phospholipids (PL), cholesteryl esters (CE), and triglycerides (TG). In this cross-sectional study, fatty acid compositions were measured using GC, and total intake of polyunsaturated fat from fish and fish oil was estimated using a food frequency questionnaire in a subsample (n = 962) of the Metabolic Syndrome in Men Study. We found nominally significant gene-diet interactions for eicosapentaenoic acid (EPA, 20:5n-3) in erythrocytes (pinteraction = 0.032) and for EPA in plasma PL (pinteraction = 0.062), CE (pinteraction = 0.035), and TG (pinteraction = 0.035), as well as for docosapentaenoic acid (22:5n-3) in PL (pinteraction = 0.007). After excluding omega-3 supplement users, we found a significant gene-diet interaction for EPA in erythrocytes (pinteraction < 0.003). In a separate cohort of the Kuopio Obesity Surgery Study, the same locus was strongly associated with hepatic mRNA expression of FADS1 (p = 1.5 × 10(-10) ). FADS1 variants may modulate the relationship between marine fatty acid intake and circulating levels of long-chain omega-3 fatty acids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Okada, Shoko; Zhou, Xue-Rong; Damcevski, Katherine; Gibb, Nerida; Wood, Craig; Hamberg, Mats; Haritos, Victoria S.
2013-01-01
Plants in the Santalaceae family, including the native cherry Exocarpos cupressiformis and sweet quandong Santalum acuminatum, accumulate ximenynic acid (trans-11-octadecen-9-ynoic acid) in their seed oil and conjugated polyacetylenic fatty acids in root tissue. Twelve full-length genes coding for microsomal Δ12 fatty acid desaturases (FADs) from the two Santalaceae species were identified by degenerate PCR. Phylogenetic analysis of the predicted amino acid sequences placed five Santalaceae FADs with Δ12 FADs, which include Arabidopsis thaliana FAD2. When expressed in yeast, the major activity of these genes was Δ12 desaturation of oleic acid, but unusual activities were also observed: i.e. Δ15 desaturation of linoleic acid as well as trans-Δ12 and trans-Δ11 desaturations of stearolic acid (9-octadecynoic acid). The trans-12-octadecen-9-ynoic acid product was also detected in quandong seed oil. The two other FAD groups (FADX and FADY) were present in both species; in a phylogenetic tree of microsomal FAD enzymes, FADX and FADY formed a unique clade, suggesting that are highly divergent. The FADX group enzymes had no detectable Δ12 FAD activity but instead catalyzed cis-Δ13 desaturation of stearolic acid when expressed in yeast. No products were detected for the FADY group when expressed recombinantly. Quantitative PCR analysis showed that the FADY genes were expressed in leaf rather than developing seed of the native cherry. FADs with promiscuous and unique activities have been identified in Santalaceae and explain the origin of some of the unusual lipids found in this plant family. PMID:24062307
Okada, Shoko; Zhou, Xue-Rong; Damcevski, Katherine; Gibb, Nerida; Wood, Craig; Hamberg, Mats; Haritos, Victoria S
2013-11-08
Plants in the Santalaceae family, including the native cherry Exocarpos cupressiformis and sweet quandong Santalum acuminatum, accumulate ximenynic acid (trans-11-octadecen-9-ynoic acid) in their seed oil and conjugated polyacetylenic fatty acids in root tissue. Twelve full-length genes coding for microsomal Δ12 fatty acid desaturases (FADs) from the two Santalaceae species were identified by degenerate PCR. Phylogenetic analysis of the predicted amino acid sequences placed five Santalaceae FADs with Δ12 FADs, which include Arabidopsis thaliana FAD2. When expressed in yeast, the major activity of these genes was Δ12 desaturation of oleic acid, but unusual activities were also observed: i.e. Δ15 desaturation of linoleic acid as well as trans-Δ12 and trans-Δ11 desaturations of stearolic acid (9-octadecynoic acid). The trans-12-octadecen-9-ynoic acid product was also detected in quandong seed oil. The two other FAD groups (FADX and FADY) were present in both species; in a phylogenetic tree of microsomal FAD enzymes, FADX and FADY formed a unique clade, suggesting that are highly divergent. The FADX group enzymes had no detectable Δ12 FAD activity but instead catalyzed cis-Δ13 desaturation of stearolic acid when expressed in yeast. No products were detected for the FADY group when expressed recombinantly. Quantitative PCR analysis showed that the FADY genes were expressed in leaf rather than developing seed of the native cherry. FADs with promiscuous and unique activities have been identified in Santalaceae and explain the origin of some of the unusual lipids found in this plant family.
Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D
2011-09-01
The alteration of fatty acid profiles in soybean to improve soybean oil quality has been a long-time goal of soybean researchers. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of soybean oil compared to other oils. In the lipid biosynthetic pathway, the enzyme fatty acid desaturase 2 (FAD2) is responsible for the conversion of oleic acid precursors to linoleic acid precursors in developing soybean seeds. Two genes encoding FAD2-1A and FAD2-1B were identified to be expressed specifically in seeds during embryogenesis and have been considered to hold an important role in controlling the seed oleic acid content. A total of 22 soybean plant introduction (PI) lines identified to have an elevated oleic acid content were characterized for sequence mutations in the FAD 2-1A and FAD2-1B genes. PI 603452 was found to contain a deletion of a nucleotide in the second exon of FAD2-1A. These important SNPs were used in developing molecular marker genotyping assays. The assays appear to be a reliable and accurate tool to identify the FAD 2-1A and FAD2-1B genotype of wild-type and mutant plants. PI 603452 was subsequently crossed with PI 283327, a soybean line that has a mutation in FAD2-1B. Interestingly, soybean lines carrying both homozygous insertion/deletion mutation (indel) FAD2-1A alleles and mutant FAD2-1B alleles have an average of 82-86% oleic acid content, compared to 20% in conventional soybean, and low levels of linoleic and linolenic acids. The newly identified indel mutation in the FAD2-1A gene offers a simple method for the development of high oleic acid commercial soybean varieties.
Sautron, Emeline; Boudiere, Laurence; Michaud, Morgane; Dubots, Emmanuelle; Albrieux, Catherine; Marechal, Eric; Jouhet, Juliette
2016-01-01
The biogenesis of photosynthetic membranes relies on galactoglycerolipids, which are synthesized via pathways that are dispatched over several cell compartments. This membrane biogenesis requires both trafficking of lipid intermediates and a tight homeostatic regulation. In this work, we address the role of ALA10 (for aminophospholipid ATPase), a P4-type ATPase, in a process counteracting the monogalactosyldiacylglycerol (MGDG) shortage in Arabidopsis (Arabidopsis thaliana) leaves. ALA10 can interact with protein partners, ALIS1 (for ALA-interacting subunit1) or ALIS5, leading to differential endomembrane localizations of the interacting proteins, close to the plasma membrane with ALIS1 or to chloroplasts with ALIS5. ALA10 interacts also with FATTY ACID DESATURASE2 (FAD2), and modification of ALA10 expression affects phosphatidylcholine (PC) fatty acyl desaturation by disturbing the balance between FAD2 and FAD3 activities. Modulation of ALA10 expression downstream impacts the fatty acyl composition of chloroplast PC. ALA10 expression also enhances leaf growth and improves the MGDG-PC ratio, possibly through MGDG SYNTHASE1 (MGD1) activation by phosphatidic acid. The positive effect of ALA10 on leaf development is significant in conditions such as upon treatment of plants with Galvestine-1, an inhibitor of MGDG synthases, or when plants are grown at chilling temperature. PMID:26620528
FAD Regulates CRYPTOCHROME Protein Stability and Circadian Clock in Mice.
Hirano, Arisa; Braas, Daniel; Fu, Ying-Hui; Ptáček, Louis J
2017-04-11
The circadian clock generates biological rhythms of metabolic and physiological processes, including the sleep-wake cycle. We previously identified a missense mutation in the flavin adenine dinucleotide (FAD) binding pocket of CRYPTOCHROME2 (CRY2), a clock protein that causes human advanced sleep phase. This prompted us to examine the role of FAD as a mediator of the clock and metabolism. FAD stabilized CRY proteins, leading to increased protein levels. In contrast, knockdown of Riboflavin kinase (Rfk), an FAD biosynthetic enzyme, enhanced CRY degradation. RFK protein levels and FAD concentrations oscillate in the nucleus, suggesting that they are subject to circadian control. Knockdown of Rfk combined with a riboflavin-deficient diet altered the CRY levels in mouse liver and the expression profiles of clock and clock-controlled genes (especially those related to metabolism including glucose homeostasis). We conclude that light-independent mechanisms of FAD regulate CRY and contribute to proper circadian oscillation of metabolic genes in mammals. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Ran, Zhaoshou; Xu, Jilin; Liao, Kai; Li, Shuang; Chen, Shubing; Yan, Xiaojun
2018-05-09
To investigate the endogenous long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic ability in Sinonovacula constricta, fatty acid desaturases (Fads) of this bivalve, namely, Scfad5a, Scfad5b, and Scfad6, were cloned and characterized in the current study. Meanwhile, the tissue distributions of S. constricta Fads and fatty acids (FAs) were examined. Heterologous expression in yeasts confirmed that Scfad5a and Scfad5b were both Δ5 Fads, while Scfad6 was a Δ6 Fad. However, compared with Fads in other organisms, the desaturation activities of S. constricta Fads were relatively low (especially for Scfad6), indicating an adaptation to living conditions. S. constricta Fads were expressed in all tissues examined, and particularly high expressions were found in intestine and gonad. Moreover, FAs were differently distributed among tissues, which might be correlated with their corresponding physiological roles. Taken together, the results provided an insight into LC-PUFA biosynthesis in S. constricta. Notably, Scfad6 was the first functionally characterized Δ6 Fad in marine molluscs to date.
Liu, Y; Zhang, Q H; Dong, Y W; You, C H; Wang, S Q; Li, Y Q; Li, Y Y
2017-08-01
A hepatocyte line was established from the liver of white-spotted spinefoot Siganus canaliculatus to study the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA). The cells from the line, designated S. canaliculatus hepatocyte line (SCHL), grew and multiplied well in Dulbecco's modified Eagle's medium (DMEM)-F12 medium supplemented with 20 mM 4-(2-hydroxyethyl) piperazine-1-ethanesulphonic acid (HEPES), 10% foetal bovine serum (FBS) and 0·5% rainbow trout Oncorhychus mykiss serum at 28° C, showing an epithelial-like morphology and the normal chromosome number of 48 (2n) and have been subcultured for over 60 passages. The identity of the hepatocytes was confirmed by periodic acid Schiff (PAS) staining. The mRNA expression of all genes encoding the key enzymes for LC-PUFA biosynthesis including two desaturases (Δ4 Fad and Δ6-Δ5 Fad) and two elongases (Elovl4 and Elovl5), were detected in all cells from passages 5 to 60 and their expression levels became stable after passage 35 and showed responses to various PUFA incubation. This is similar to the situation determined in the liver of S. canaliculatus that were fed diets containing different fatty acids. These results indicated that SCHL was successfully established and can provide an in vitro tool to investigate lipid metabolism and regulatory mechanisms of LC-PUFA biosynthesis in teleosts, especially marine species. © 2017 The Fisheries Society of the British Isles.
D'Angeli, S; Falasca, G; Matteucci, M; Altamura, M M
2013-01-01
FAD2 and FAD7 desaturases are involved in cold acclimation of olive (Olea europaea) mesocarp. There is no research information available on cold acclimation of seeds during mesocarp cold acclimation or on differences in the cold response of the seed coat and embryo. How FAD2 and FAD7 affect seed coat and embryo cold responses is unknown. Osmotin positively affects cold acclimation in olive tree vegetative organs, but its role in the seeds requires investigation. OeFAD2.1, OeFAD2.2, OeFAD7 and Oeosmotin were investigated before and after mesocarp acclimation by transcriptomic, lipidomic and immunolabelling analyses, and cytosolic calcium concentration ([Ca(2+)](cyt)) signalling, F-actin changes and seed development were investigated by epifluorescence/histological analyses. Transient [Ca(2+)](cyt) rises and F-actin disassembly were found in cold-shocked protoplasts from the seed coat, but not from the embryo. The thickness of the outer endosperm cuticle increased during drupe exposure to lowering of temperature, whereas the embryo protoderm always lacked cuticle. OeFAD2 transcription increased in both the embryo and seed coat in the cold-acclimated drupe, but linoleic acid (i.e. the product of FAD2 activity) increased solely in the seed coat. Osmotin was immunodetected in the seed coat and endosperm of the cold-acclimated drupe, and not in the embryo. The results show cold responsiveness in the seed coat and cold tolerance in the embryo. We propose a role for the seed coat in maintaining embryo cold tolerance by increasing endosperm cutinization through FAD2 and osmotin activities. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Bouaziz, Mehdi; Bejaoui, Safa; Rabeh, Imen; Besbes, Raouf; El Cafsi, M 'Hamed; Falcon, Jack
2017-06-01
Teleost fish are ectothermic vertebrates. Their metabolism, physiology and behavior rely on the external temperature. This study, on the retina of the sea bass Dicentrarchus labrax, reports on the impact of temperature on the fatty acid composition and mRNA abundance of key enzymes of lipid metabolism: fatty acid desaturase-2 (FADS2), fatty acid elongase-5 (ELOVL5), sterol regulatory element-binding protein-1 (SREBP-1), triglyceride lipase and phospholipase A2 (PLA2). We also report on the effects on the photopigment molecule rhodopsin and on enzymes of the melatonin synthesis pathway, namely arylalkylamine N-acetyltransferases 1a and 1b and acetylserotonin methyltransferase. Juvenile fish were placed for 30 days at 18, 23 or 28 °C. At 23 °C, the fatty acid composition of D. labrax retina showed, as generally reported for the retina of other fish species, particularly high amounts of docosahexaenoic (DHA), palmitic and oleic acids. The fatty acids composition was not significantly (P > 0.05) altered between 23 and 28 °C, but did increase at 18 °C compared to 23 and 28 °C. At 18 °C there were noticeable increases in total DHA, ecosapentaenoic, arachidonic, oleic, linoleic, palmitoleic and stearic acids. A negative correlation was found in the abundance of neutral (NL) vs. polar (PL) lipids: 18 °C induced an increase in NL and a decrease in PL, while 28 °C induced higher PL with decreased NL. In NL the changes affected mainly triglycerides. FADS2 and ELOVL5 mRNA abundance decreased from 18° to 28 °C while SREBP-1 and triglyceride lipase mRNA remained stable. Conversely PLA2 mRNA was more abundant at 23 than at 18 and 28 °C. Temperature increased and decreased rhodopsin mRNA abundance, at 28 °C and 18 °C respectively, while there was no effect on mRNA from the melatonin synthesis enzymes. In conclusion the data indicate a temperature induced redistribution of fatty acids among the lipid classes that might affect the physical properties of the plasma membranes as well as functions associated with photoreception or generation of intracellular second messengers. In addition, the results suggest that temperature targets only the proteins and activities of retinal melatonin production. This study opens new lines of investigation related to the role temperature and fatty acids play in fish visual perception. They are relevant in the context of the global warming of seas affecting both the wild and the aquaculture species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Ruimin; Huang, Youjun; Sun, Zhichao; Huang, Jianqin; Wang, Zhengjia
2017-05-24
Pecan (Carya illinoinensis) is an important woody tree species because of the high content of healthy oil in its nut. Thus far, the pathways and key genes related to oil biosynthesis in developing pecan seeds remain largely unclear. Our analyses revealed that mature pecan embryo accumulated more than 80% oil, in which 90% was unsaturated fatty acids with abundant oleic acid. RNA sequencing generated 84,643 unigenes in three cDNA libraries prepared from pecan embryos collected at 105, 120, and 165 days after flowering (DAF). We identified 153 unigenes associated with lipid biosynthesis, including 107 unigenes for fatty acid biosynthesis, 34 for triacylglycerol biosynthesis, 7 for oil bodies, and 5 for transcription factors involved in oil synthesis. The genes associated with fatty acid synthesis were the most abundantly expressed genes at 120 DAF. Additionally, the biosynthesis of oil began to increase while crude fat contents increased from 16.61 to 74.45% (165 DAF). We identified four SAD, two FAD2, one FAD6, two FAD7, and two FAD8 unigenes responsible for unsaturated fatty acid biosynthesis. However, FAD3 homologues were not detected. Consequently, we inferred that the linolenic acid in developing pecan embryos is generated by FAD7 and FAD8 in plastids rather than FAD3 in endoplasmic reticula. During pecan embryo development, different unigenes are expressed for plastidial and cytosolic glycolysis. Plastidial glycolysis is more relevant to lipid synthesis than cytosolic glycolysis. The 18 most important genes associated with lipid biosynthesis were evaluated in five stages of developing embryos using quantitative PCR (qPCR). The qPCR data were well consistent with their expression in transcriptomic analyses. Our data would be important for the metabolic engineering of pecans to increase oil contents and modify fatty acid composition.
Functional characterization of two microsomal fatty acid desaturases from Jatropha curcas L.
Wu, Pingzhi; Zhang, Sheng; Zhang, Lin; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang
2013-10-15
Linoleic acid (LA, C18:2) and α-linolenic acid (ALA, C18:3) are polyunsaturated fatty acids (PUFAs) and major storage compounds in plant seed oils. Microsomal ω-6 and ω-3 fatty acid (FA) desaturases catalyze the synthesis of seed oil LA and ALA, respectively. Jatropha curcas L. seed oils contain large proportions of LA, but very little ALA. In this study, two microsomal desaturase genes, named JcFAD2 and JcFAD3, were isolated from J. curcas. Both deduced amino acid sequences possessed eight histidines shown to be essential for desaturases activity, and contained motif in the C-terminal for endoplasmic reticulum localization. Heterologous expression in Saccharomyces cerevisiae and Arabidopsis thaliana confirmed that the isolated JcFAD2 and JcFAD3 proteins could catalyze LA and ALA synthesis, respectively. The results indicate that JcFAD2 and JcFAD3 are functional in controlling PUFA contents of seed oils and could be exploited in the genetic engineering of J. curcas, and potentially other plants. Copyright © 2013 Elsevier GmbH. All rights reserved.
Hayashi, Takahiro; Nozaki, Yuriko; Nishizuka, Makoto; Ikawa, Masahito; Osada, Shigehiro; Imagawa, Masayoshi
2011-01-01
To clarify the molecular mechanism of adipocyte differentiation, we previously isolated a novel gene, factor for adipocyte differentiation (fad) 158, whose expression was induced during the earliest stages of adipogenesis, and its product was localized to the endoplasmic reticulum. We found that the knockdown of fad158 expression prevented the differentiation of 3T3-L1 cells into adipocytes. In addition, over-expression of fad158 promoted the differentiation of NIH-3T3 cells, which do not usually differentiate into adipocytes. Although these findings strongly suggest that fad158 has a crucial role in regulating adipocyte differentiation, the physiological role of the gene is still unclear. In this study, we generated mice in which fad158 expression was deleted. The fad158-deficient mice did not show remarkable changes in body weight or the weight of white adipose tissue on a chow diet, but had significantly lower body weights and fat mass than wild-type mice when fed a high-fat diet. Furthermore, although the disruption of fad158 did not influence insulin sensitivity on the chow diet, it improved insulin resistance induced by the high-fat diet. These results indicate that fad158 is a key factor in the development of obesity and insulin resistance caused by a high-fat diet.
Baumgartner, Jeannine; Smuts, Cornelius M; Malan, Linda; Arnold, Myrtha; Yee, Benjamin K; Bianco, Laura E; Boekschoten, Mark V; Müller, Michael; Langhans, Wolfgang; Hurrell, Richard F; Zimmermann, Michael B
2012-08-01
Deficiencies of iron (Fe) (ID) and (n-3) fatty acids (FA) [(n-3)FAD] may impair brain development and function through shared mechanisms. However, little is known about the potential interactions between these 2 common deficiencies. We studied the effects of ID and (n-3)FAD, alone and in combination, on brain monoamine pathways (by measuring monoamines and related gene expression) and spatial working and reference memory (by Morris water maze testing). Using a 2 × 2 design, male rats were fed an ID, (n-3)FAD, ID+(n-3)FAD, or control diet for 5 wk postweaning (postnatal d 21-56) after (n-3)FAD had been induced over 2 generations. The (n-3)FAD and ID diets decreased brain (n-3) FA by 70-76% and Fe by 20-32%, respectively. ID and (n-3)FAD significantly increased dopamine (DA) concentrations in the olfactory bulb (OB) and striatum, with an additive 1- to 2-fold increase in ID+(n-3)FAD rats compared with controls (P < 0.05). ID decreased serotonin (5-HT) levels in OB, with a significant decrease in ID+(n-3)FAD rats. Furthermore, norepinephrine concentrations were increased 2-fold in the frontal cortex (FC) of (n-3)FAD rats (P < 0.05). Dopa decarboxylase was downregulated in the hippocampus of ID and ID+(n-3)FAD rats (fold-change = -1.33; P < 0.05). ID and (n-3)FAD significantly impaired working memory performance and the impairment positively correlated with DA concentrations in FC (r = 0.39; P = 0.026). Reference memory was impaired in the ID+(n-3)FAD rats (P < 0.05) and was negatively associated with 5-HT in FC (r = -0.42; P = 0.018). These results suggest that the combined deficiencies of Fe and (n-3) FA disrupt brain monoamine metabolism and produce greater deficits in reference memory than ID or (n-3)FAD alone.
Genome of wild olive and the evolution of oil biosynthesis.
Unver, Turgay; Wu, Zhangyan; Sterck, Lieven; Turktas, Mine; Lohaus, Rolf; Li, Zhen; Yang, Ming; He, Lijuan; Deng, Tianquan; Escalante, Francisco Javier; Llorens, Carlos; Roig, Francisco J; Parmaksiz, Iskender; Dundar, Ekrem; Xie, Fuliang; Zhang, Baohong; Ipek, Arif; Uranbey, Serkan; Erayman, Mustafa; Ilhan, Emre; Badad, Oussama; Ghazal, Hassan; Lightfoot, David A; Kasarla, Pavan; Colantonio, Vincent; Tombuloglu, Huseyin; Hernandez, Pilar; Mete, Nurengin; Cetin, Oznur; Van Montagu, Marc; Yang, Huanming; Gao, Qiang; Dorado, Gabriel; Van de Peer, Yves
2017-10-31
Here we present the genome sequence and annotation of the wild olive tree ( Olea europaea var. sylvestris ), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2 , SACPD, EAR , and ACPTE , following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2 , 3 , 5 , and 7 , consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
Genome of wild olive and the evolution of oil biosynthesis
Unver, Turgay; Wu, Zhangyan; Sterck, Lieven; Turktas, Mine; Lohaus, Rolf; Li, Zhen; Yang, Ming; He, Lijuan; Deng, Tianquan; Escalante, Francisco Javier; Llorens, Carlos; Roig, Francisco J.; Parmaksiz, Iskender; Dundar, Ekrem; Xie, Fuliang; Zhang, Baohong; Ipek, Arif; Uranbey, Serkan; Erayman, Mustafa; Ilhan, Emre; Badad, Oussama; Ghazal, Hassan; Lightfoot, David A.; Kasarla, Pavan; Colantonio, Vincent; Tombuloglu, Huseyin; Hernandez, Pilar; Mete, Nurengin; Cetin, Oznur; Van Montagu, Marc; Yang, Huanming; Gao, Qiang; Dorado, Gabriel; Van de Peer, Yves
2017-01-01
Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics. PMID:29078332
Conjugated Fatty Acid Synthesis
Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John
2012-01-01
Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660
Yeast ERV2p is the first microsomal FAD-linked sulfhydryl oxidase of the Erv1p/Alrp protein family.
Gerber, J; Mühlenhoff, U; Hofhaus, G; Lill, R; Lisowsky, T
2001-06-29
Saccharomyces cerevisiae Erv2p was identified previously as a distant homologue of Erv1p, an essential mitochondrial protein exhibiting sulfhydryl oxidase activity. Expression of the ERV2 (essential for respiration and vegetative growth 2) gene from a high-copy plasmid cannot substitute for the lack of ERV1, suggesting that the two proteins perform nonredundant functions. Here, we show that the deletion of the ERV2 gene or the depletion of Erv2p by regulated gene expression is not associated with any detectable growth defects. Erv2p is located in the microsomal fraction, distinguishing it from the mitochondrial Erv1p. Despite their distinct subcellular localization, the two proteins exhibit functional similarities. Both form dimers in vivo and in vitro, contain a conserved YPCXXC motif in their carboxyl-terminal part, bind flavin adenine dinucleotide (FAD) as a cofactor, and catalyze the formation of disulfide bonds in protein substrates. The catalytic activity, the ability to form dimers, and the binding of FAD are associated with the carboxyl-terminal domain of the protein. Our findings identify Erv2p as the first microsomal member of the Erv1p/Alrp protein family of FAD-linked sulfhydryl oxidases. We propose that Erv2p functions in the generation of microsomal disulfide bonds acting in parallel with Ero1p, the essential, FAD-dependent oxidase of protein disulfide isomerase.
Is hepatic lipid metabolism of beef cattle influenced by breed and dietary silage level?
2014-01-01
Background In ruminants, unsaturated dietary fatty acids are biohydrogenated in the rumen and are further metabolised in various tissues, including liver, which has an important role in lipid and lipoprotein metabolism. Therefore, manipulation of muscle fatty acid composition should take into account liver metabolism. In the present study, the influence of breed and diet on liver lipid composition and gene expression was investigated in order to clarify the role of this organ in the lipid metabolism of ruminants. Forty purebred young bulls from two phylogenetically distant autochthonous cattle breeds, Alentejana and Barrosã, were assigned to two different diets (low vs. high silage) and slaughtered at 18 months of age. Liver fatty acid composition, mRNA levels of enzymes and transcription factors involved in lipid metabolism, as well as the plasma lipid profile, were assessed. Results In spite of similar plasma non-esterified fatty acids levels, liver triacylglycerols content was higher in Barrosã than in Alentejana bulls. Moreover, the fatty acid composition of liver was clearly distinct from the remaining tissues involved in fatty acid metabolism of ruminants, as shown by Principal Components Analysis. The hepatic tissue is particularly rich in α-linolenic acid and their products of desaturation and elongation. Results indicate that DGAT1, ELOVL2, FADS1 and FADS2 genes influence the fatty acid composition of the liver the most. Moreover, genes such as DGAT1 and ELOVL2 appear to be more sensitive to genetic background than to dietary manipulation, whereas genes encoding for desaturases, such as FADS1, appear to be modulated by dietary silage level. Conclusions Our results indicate that liver plays an important role in the biosynthesis of n-3 LC-PUFA. It is also suggested that dietary silage level influences the hepatic fatty acid metabolism in a breed-dependent manner, through changes in the expression of genes encoding for enzymes associated with the desaturation and elongation pathway. The importance of devising custom-made feeding strategies taking into account the genetic background is, therefore, stressed by the results from this experiment. PMID:24621212
Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.
Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng
2014-09-01
Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Wang, Tianya; Xing, Jiewen; Liu, Xinye; Liu, Zhenshan; Yao, Yingyin; Hu, Zhaorong; Peng, Huiru; Xin, Mingming; Zhou, Dao-Xiu; Zhang, Yirong; Ni, Zhongfu
2016-12-01
Seed oils are important natural resources used in the processing and preparation of food. Histone modifications represent key epigenetic mechanisms that regulate gene expression, plant growth and development. However, histone modification events during fatty acid (FA) biosynthesis are not well understood. Here, we demonstrate that a mutation of the histone acetyltransferase GCN5 can decrease the ratio of α-linolenic acid (ALA) to linoleic acid (LA) in seed oil. Using RNA-Seq and ChIP assays, we identified FAD3, LACS2, LPP3 and PLAIIIβ as the targets of GCN5. Notably, the GCN5-dependent H3K9/14 acetylation of FAD3 determined the expression levels of FAD3 in Arabidopsis thaliana seeds, and the ratio of ALA/LA in the gcn5 mutant was rescued to the wild-type levels through the overexpression of FAD3. The results of this study indicated that GCN5 modulated FA biosynthesis by affecting the acetylation levels of FAD3. We provide evidence that histone acetylation is involved in FA biosynthesis in Arabidopsis seeds and might contribute to the optimization of the nutritional structure of edible oils through epigenetic engineering. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
My, L.; Ghandour Achkar, N.; Viala, J. P.
2015-01-01
ABSTRACT In Escherichia coli, the FadR transcriptional regulator represses the expression of fatty acid degradation (fad) genes. However, FadR is also an activator of the expression of fabA and fabB, two genes involved in unsaturated fatty acid synthesis. Therefore, FadR plays an important role in maintaining the balance between saturated and unsaturated fatty acids in the membrane. We recently showed that FadR also activates the promoter upstream of the fabH gene (L. My, B. Rekoske, J. J. Lemke, J. P. Viala, R. L. Gourse, and E. Bouveret, J Bacteriol 195:3784–3795, 2013, doi:10.1128/JB.00384-13). Furthermore, recent transcriptomic and proteomic data suggested that FadR activates the majority of fatty acid (FA) synthesis genes. In the present study, we tested the role of FadR in the expression of all genes involved in FA synthesis. We found that FadR activates the transcription of all tested FA synthesis genes, and we identified the FadR binding site for each of these genes. This necessitated the reassessment of the transcription start sites for accA and accB genes described previously, and we provide evidence for the presence of multiple promoters driving the expression of these genes. We showed further that regulation by FadR impacts the amount of FA synthesis enzymes in the cell. Our results show that FadR is a global regulator of FA metabolism in E. coli, acting both as a repressor of catabolism and an activator of anabolism, two directly opposing pathways. IMPORTANCE In most bacteria, a transcriptional regulator tunes the level of FA synthesis enzymes. Oddly, such a global regulator still was missing for E. coli, which nonetheless is one of the prominent model bacteria used for engineering biofuel production using the FA synthesis pathway. Our work identifies the FadR functional dual regulator as a global activator of almost all FA synthesis genes in E. coli. Because FadR also is the repressor of FA degradation, FadR acts both as a repressor and an activator of the two opposite pathways of FA degradation and synthesis. Our results show that there are still discoveries waiting to be made in the understanding of the genetic regulation of FA synthesis, even in the very well-known bacterium E. coli. PMID:25802297
Evidence that norflurazon affects chloroplast lipid unsaturation in soybean leaves (Glycine max L.).
Abrous-Belbachir, Ouzna; De Paepe, Rosine; Trémolières, Antoine; Mathieu, Chantal; Ad, Fatiha; Benhassaine-Kesri, Ghouziel
2009-12-09
Norflurazon is a bleaching herbicide known to block carotenoid biosynthesis by inhibiting phytoene desaturase activity. Soybean plants were treated with norflurazon, and we examined the effects on the desaturation of lipid molecular species in leaves using ammonium [1-(14)C] oleate labeling. In monogalactosyldiacylglycerol (MGDG), the main chloroplast lipid, a decrease in 18:3/18:3 molecular species and an increase in its precursors 18:2/18:3 and 18:2/18:2 were observed suggesting that the omega(3) FAD7 desaturase activity in planta was inhibited by norflurazon. The in vitro activity of MGDG synthase was also inhibited by 69%. In contrast, the amount of 18:3/18:3 molecular species of phosphatidylcholine (PC) in the extraplastid compartment increased. The observed increase in in vitro lysoPC-acyltransferase activity and activation of desaturation of [1-(14)C] oleate suggest that extraplastid omega(3)FAD3 desaturase was activated. Analysis of the expression of omega(3) FAD3 and omega(3) FAD7 genes in norflurazon treated plants indicate that omega(3) FAD7 and omega(3) FAD3 desaturases are controlled at the post-transcriptional level.
Kim, Hyun-Soo; Kim, Na-Rae; Choi, Wonja
2011-03-01
The effect of change in unsaturated fatty acid composition on ethanol tolerance in Saccharomyces cerevisiae overexpressing ScOLE1 (∆9 fatty acid desaturase gene of S. cerevisiae), CaFAD2 (∆12 fatty acid desaturase gene of Candida albicans), or CaFAD3 (ω3 fatty acid desaturase gene of C. albicans) was examined. ScOLE1 over-expression increased the total unsaturated fatty acid content and enhanced ethanol tolerance, compared with a control strain. In contrast, overexpression of CaFAD2 and CaFAD3, which led to production of linoleic acid (18:2) and α-linolenic acid (18:3), respectively, neither changed total unsaturated fatty acids nor enhanced ethanol tolerance. The total unsaturated fatty acid content rather than the degree of unsaturation is thus an important factor for ethanol tolerance.
Minocycline Reduces Spontaneous Hemorrhage in Mouse Models of Cerebral Amyloid Angiopathy
Liao, Fan; Xiao, Qingli; Kraft, Andrew; Gonzales, Ernie; Perez, Ron; Greenberg, Steven M.; Holtzman, David; Lee, Jin-Moo
2015-01-01
Background and Purpose Cerebral Amyloid Angiopathy (CAA) is a common cause of recurrent intracerebral hemorrhage (ICH) in the elderly. Previous studies have shown that CAA induces inflammation and expression of matrix metalloproteinase-2 and -9 (gelatinases) in amyloid-laden vessels. Here, we inhibited both using minocycline in CAA mouse models to determine if spontaneous ICH could be reduced. Methods Tg2576 (n=16) and 5×FAD/ApoE4 knock-in mice (n=16), aged to 17 and 12 months, respectively, were treated with minocycline (50 mg/kg, i.p.) or saline every other day for two months. Brains were extracted and stained with X-34 (to quantify amyloid), Perl’s blue (to quantify hemorrhage), and immunostained to examined Aβ load, gliosis (GFAP, Iba-1), and vascular markers of blood-brain-barrier integrity (ZO-1 and collagen IV). Brain extracts were used to quantify mRNA for a variety of inflammatory genes. Results Minocycline treatment significantly reduced hemorrhage frequency in the brains of Tg2576 and 5×FAD/ApoE4 mice relative to the saline-treated mice, without affecting CAA load. Gliosis (GFAP and Iba-1 immunostaining), gelatinase activity, and expression of a variety of inflammatory genes (MMP-9, Nox4, CD45, S-100b, Iba-1) were also significantly reduced. Higher levels of microvascular tight junction and basal lamina proteins were found in the brains of minocycline-treated Tg2576 mice relative to saline-treated controls. Conclusions Minocycline reduced gliosis, inflammatory gene expression, gelatinase activity, and spontaneous hemorrhage in two different mouse models of CAA, supporting the importance of MMP-related and inflammatory pathways in ICH pathogenesis. As an FDA-approved drug, minocycline might be considered for clinical trials to test efficacy in preventing CAA-related ICH. PMID:25944329
Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John
2012-05-11
Conjugated linolenic acids (CLNs), 18:3 Δ(9,11,13), lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ(9,12,15)). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ(9cis,11trans,13cis)) or α-eleostearic acid (18:3 Δ(9cis,11trans,13trans)). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation.
Zhang, Hong-Tao; Yang, Jia-Sen; Shan, Lei; Bi, Yu-Ping
2006-01-01
Alpha-linolenic acid(ALA, C18:3delta9,12,15 ) is an essential fatty acid which has many sanitary functions to human. However, its contents in diets are often not enough. In plants, omega-3 fatty acid desaturases(FAD) catalyze linoleic acid(LA, C18:2delta9,12) into ALA. The seed oil of Glycine max contains high level of ALA. To investigate the functions of Glycine max omega-3FAD, the cDNA of GmFAD3 C was amplified by RT-PCR from immature seeds, then cloned into the shuttle expression vector p416 to generate the recombinant vector p4GFAD3C. The resulting vector was transformed into Saccharomyces cerevisiae K601 throuth LiAc method. The positive clones were screened on the CM(Ura-) medium and identified by PCR, and then cultured in CM (Ura-) liquid medium with exogenous LA in 20 degrees C for three days. The intracellular fatty acid composition of the engineering strain Kp416 and Kp4GFAD3C was analyzed by gas chromatography (GC). A novel peak in strain Kp4GFAD3C was detected,which was not detectable in control, Comparison of the retention times of the newly yielded peak with that of authentic standard indicated that the fatty acid is ALA. The content of ALA reached to 3.1% of the total fatty acid in recombinant strain, the content of LA correspondingly decreased from 22% to 16.2% by contrast. It was suggested that the protein encoded by GmFAD3 C can specifically catalyze 18 carbon PUFA substrate of LA into ALA by taking off hydrogen atoms at delta15 location. In this study, we expressed a Glycine max omega-3 fatty acid desaturase gene in S. cerevisiae; An efficient and economical yeast expressing system(K601-p416 system) which is suitable for the expression of FAD was built.
De Novo Chromosome Copy Number Variation in Fanconi Anemia-Associated Hematopoietic Defects
2013-04-01
We have confirmed re-expression of FANCA , FANCD2, and FANCG in the FA-A + FANCA , FA-D2 + FANCD2, and FA-G + FANCG cells, respectively. We have also...confirmed restoration of FANCD2 and FANCI monoubiquitination and functional complementation of the FA-A + FANCA and FA-D2 + FANCD2 cells. In... gene products BRCA1 and BRCA2 function cooperatively in the FA-BRCA pathway to repair damaged DNA. Recent studies have demonstrated that the FA-BRCA
Xue, Yufei; Chen, Baojun; Wang, Rui; Win, Aung Naing; Li, Jiana; Chai, Yourong
2018-02-01
Rapeseed (Brassica napus) is an important oilseed crop worldwide, and fatty acid (FA) compositions determine the nutritional and economic value of its seed oil. Fatty acid desaturases (FADs) play a pivotal role in regulating FA compositions, but to date, no comprehensive genome-wide analysis of FAD gene family in rapeseed and its parent species has been reported. In this study, using homology searches, 84, 45, and 44 FAD genes were identified in rapeseed, Brassica rapa, and Brassica oleracea genomes, respectively. These FAD genes were unevenly located in 17 chromosomes and 2 scaffolds of rapeseed, 9 chromosomes and 1 scaffold of B. rapa, and all the chromosomes of B. oleracea. Phylogenetic analysis showed that the soluble and membrane-bound FADs in the three Brassica species were divided into four and six subfamilies, respectively. Generally, the soluble FADs contained two conserved histidine boxes, while three highly conserved histidine boxes were harbored in membrane-bound FADs. Exon-intron structure, intron phase, and motif composition and position were highly conserved in each FAD subfamily. Putative subcellular locations of FAD proteins in three Brassica species were consistent with those of corresponding known FADs. In total, 25 of simple sequence repeat (SSR) loci were found in FAD genes of the three Brassica species. Transcripts of selected FAD genes in the three species were examined in various organs/tissues or stress treatments from NCBI expressed sequence tag (EST) database. This study provides a critical molecular basis for quality improvement of rapeseed oil and facilitates our understanding of key roles of FAD genes in plant growth and development and stress response.
Interaction between NADH and electron-transferring flavoprotein from Megasphaera elsdenii.
Sato, Kyosuke; Nishina, Yasuzo; Shiga, Kiyoshi
2013-06-01
Electron-transferring flavoprotein (ETF) from the anaerobic bacterium Megasphaera elsdenii is a heterodimer containing two FAD cofactors. Isolated ETF contains only one FAD molecule, FAD-1, because the other, FAD-2, is lost during purification. FAD-2 is recovered by adding FAD to the isolated ETF. The two FAD molecules in holoETF were characterized using NADH. Spectrophotometric titration of isolated ETF with NADH showed a two-electron reduction of FAD-1 according to a monophasic profile indicating that FAD-1 receives electrons from NADH without involvement of FAD-2. When holoETF was titrated with NADH, FAD-2 was reduced to an anionic semiquinone and then was fully reduced before the reduction of FAD-1. The midpoint potential values at pH 7 were +81, -136 and -279 mV for the reduction of oxidized FAD-2 to semiquinone, semiquinone to the fully reduced FAD-2 and the two-electron reduction of FAD-1, respectively. Both FAD-1 and FAD-2 in holoETF were reduced by excess NADH very rapidly. The reduction of FAD-2 was slowed by replacement of FAD-1 with 8-cyano-FAD indicating that FAD-2 receives electrons from FAD-1 but not from NADH directly. The present results suggest that FAD-2 is the counterpart of the FAD in human ETF, which contains one FAD and one AMP.
The noradrenaline precursor L-DOPS reduces pathology in a mouse model of Alzheimer’s disease
Kalinin, Sergey; Polak, Paul E.; Lin, Shao Xia; Sakharkar, Amul J.; Pandey, Subhash C.; Feinstein, Douglas L.
2013-01-01
Damage to noradrenergic neurons in the locus coeruleus (LC) is a hallmark of Alzheimer’s disease (AD) and may contribute to disease progression. In 5xFAD transgenic mice, which accumulate amyloid burden at early ages, the LC undergoes stress as evidenced by increased astrocyte activation, neuronal hypertrophy, reduced levels of LC-enriched messenger RNAs (mRNAs), and increased inflammatory gene expression. Central nervous system (CNS) noradrenaline (NA) levels in 5-month-old male 5xFAD mice were increased using the NA precursor L-threo-3,4-dihydroxyphenylserine (L-DOPS). After 1 month, L-DOPS treatment improved learning in the Morris water maze test compared with vehicle-treated mice. L-DOPS increased CNS NA levels, and average latency times in the water maze test were inversely correlated to NA levels. L-DOPS reduced astrocyte activation and Thioflavin-S staining; increased mRNA levels of neprilysin and insulin degrading enzyme, and of several neurotrophins; and increased brain-derived neurotrophic factor protein levels. These data demonstrate the presence of LC stress in a robust mouse model of AD, and suggest that raising CNS NA levels could provide benefit in AD. PMID:21705113
The noradrenaline precursor L-DOPS reduces pathology in a mouse model of Alzheimer's disease.
Kalinin, Sergey; Polak, Paul E; Lin, Shao Xia; Sakharkar, Amul J; Pandey, Subhash C; Feinstein, Douglas L
2012-08-01
Damage to noradrenergic neurons in the locus coeruleus (LC) is a hallmark of Alzheimer's disease (AD) and may contribute to disease progression. In 5xFAD transgenic mice, which accumulate amyloid burden at early ages, the LC undergoes stress as evidenced by increased astrocyte activation, neuronal hypertrophy, reduced levels of LC-enriched messenger RNAs (mRNAs), and increased inflammatory gene expression. Central nervous system (CNS) noradrenaline (NA) levels in 5-month-old male 5xFAD mice were increased using the NA precursor L-threo-3,4-dihydroxyphenylserine (L-DOPS). After 1 month, L-DOPS treatment improved learning in the Morris water maze test compared with vehicle-treated mice. L-DOPS increased CNS NA levels, and average latency times in the water maze test were inversely correlated to NA levels. L-DOPS reduced astrocyte activation and Thioflavin-S staining; increased mRNA levels of neprilysin and insulin degrading enzyme, and of several neurotrophins; and increased brain-derived neurotrophic factor protein levels. These data demonstrate the presence of LC stress in a robust mouse model of AD, and suggest that raising CNS NA levels could provide benefit in AD. Copyright © 2012 Elsevier Inc. All rights reserved.
Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes
2010-01-01
Background Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome. Results In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. Conclusions There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should consider and, when possible take advantage of, the implications of polyploidy. PMID:20977772
Sato, Kyosuke; Nishina, Yasuzo; Shiga, Kiyoshi
2013-07-01
Electron-transferring flavoprotein (ETF) from Megasphaera elsdenii contains two FAD molecules, FAD-1 and FAD-2. FAD-2 shows an unusual absorption spectrum with a 400-nm peak. In contrast, ETFs from other sources such as pig contain one FAD and one AMP with the FAD showing a typical flavin absorption spectrum with 380- and 440-nm peaks. It is presumed that FAD-2 is the counterpart of the FAD in other ETFs. In this study, the FAD-1 and FAD-2 fluorescence spectra were determined by titration of FAD-1-bound ETF with FAD using excitation-emission matrix (EEM) fluorescence spectroscopy. The EEM data were globally analysed, and the FAD fluorescence spectra were calculated from the principal components using their respective absorption spectra. The FAD-2 fluorescence spectrum was different from that of pig ETF, which is more intense and blue-shifted. AMP-free pig ETF in acidic solution, which has a comparable absorption spectrum to FAD-2, also had a similar fluorescence spectrum. This result suggests that FAD-2 in M. elsdenii ETF and the FAD in acidic AMP-free pig ETF share a common microenvironment. A review of published ETF fluorescence spectra led to the speculation that the majority of ETF molecules in solution are in the conformation depicted by the crystal structure.
You, Cuihong; Jiang, Danli; Zhang, Qinghao; Xie, Dizhi; Wang, Shuqi; Dong, Yewei; Li, Yuanyou
2017-04-01
Rabbitfish Siganus canaliculatus is the first marine teleost reported to have the ability of biosynthesizing C 20-22 long-chain polyunsaturated fatty acids (LC-PUFA) from C 18 precursors, and thus provides a model for studying the regulatory mechanisms of LC-PUFA biosynthesis in teleosts. To investigate the possible roles of peroxisome proliferator-activated receptors (PPARs), critical transcription factors involved in the regulation of lipid metabolism, in the regulation of LC-PUFA biosynthesis in rabbitfish, the PPAR genes were cloned and their expression characterization with PPAR agonists, dietary lipid resource, and ambient salinity were examined. Three cDNA sequences respectively encoding 477, 516 and 519 amino acids of PPARα, PPARβ, and PPARγ isoforms were obtained. PPARα exhibited a wide tissue expression with its highest levels in the heart and brain; PPARβ was predominantly expressed in the gills, while PPARγ was highly expressed in the intestine and gills. In rabbitfish primary hepatocytes, both the PPAR agonists 2-bromopalmitate (2-Bro) and fenofibrate (FF) increased the expression of PPARγ, SREBP1c and Elovl5, whereas FF depressed the expression of Δ6/Δ5 Fad. Moreover, a higher hepatic PPARβ expression was observed in fish fed diets with vegetable oils (VO) than that with fish oil (FO), in the former the expression of PPARα, PPARβ, and PPARγ were increased at the low ambient salinity (10ppt), where an increasing expression of Δ5/Δ6 Fad, Δ4 Fad and Elovl5 genes was previously reported. These results suggest that PPARs might be involved in the upregulation of LC-PUFA biosynthesis with dietary VO and low ambient salinity in rabbitfish. Copyright © 2017 Elsevier Inc. All rights reserved.
D'Angeli, Simone; Matteucci, Maya; Fattorini, Laura; Gismondi, Angelo; Ludovici, Matteo; Canini, Antonella; Altamura, Maria Maddalena
2016-05-01
Cold-acclimation genes in woody dicots without winter-dormancy, e.g., olive-tree, need investigation. Positive relationships between OeFAD8, OeOSM , and OeLIP19 and olive-tree cold-acclimation exist, and couple with increased lipid unsaturation and cutinisation. Olive-tree is a woody species with no winter-dormancy and low frost-tolerance. However, cold-tolerant genotypes were empirically selected, highlighting that cold-acclimation might be acquired. Proteins needed for olive-tree cold-acclimation are unknown, even if roles for osmotin (OeOSM) as leaf cryoprotectant, and seed lipid-transfer protein for endosperm cutinisation under cold, were demonstrated. In other species, FAD8, coding a desaturase producing α-linolenic acid, is activated by temperature-lowering, concomitantly with bZIP-LIP19 genes. The research was focussed on finding OeLIP19 gene(s) in olive-tree genome, and analyze it/their expression, and that of OeFAD8 and OeOSM, in drupes and leaves under different cold-conditions/developmental stages/genotypes, in comparison with changes in unsaturated lipids and cell wall cutinisation. Cold-induced cytosolic calcium transients always occurred in leaves/drupes of some genotypes, e.g., Moraiolo, but ceased in others, e.g., Canino, at specific drupe stages/cold-treatments, suggesting cold-acclimation acquisition only in the latter genotypes. Canino and Moraiolo were selected for further analyses. Cold-acclimation in Canino was confirmed by an electrolyte leakage from leaf/drupe membranes highly reduced in comparison with Moraiolo. Strong increases in fruit-epicarp/leaf-epidermis cutinisation characterized cold-acclimated Canino, and positively coupled with OeOSM expression, and immunolocalization of the coded protein. OeFAD8 expression increased with cold-acclimation, as the production of α-linolenic acid, and related compounds. An OeLIP19 gene was isolated. Its levels changed with a trend similar to OeFAD8. All together, results sustain a positive relationship between OeFAD8, OeOSM and OeLIP19 expression in olive-tree cold-acclimation. The parallel changes in unsaturated lipids and cutinisation concur to suggest orchestrated roles of the coded proteins in the process.
Functional analysis of aldehyde oxidase using expressed chimeric enzyme between monkey and rat.
Itoh, Kunio; Asakawa, Tasuku; Hoshino, Kouichi; Adachi, Mayuko; Fukiya, Kensuke; Watanabe, Nobuaki; Tanaka, Yorihisa
2009-01-01
Aldehyde oxidase (AO) is a homodimer with a subunit molecular mass of approximately 150 kDa. Each subunit consists of about 20 kDa 2Fe-2S cluster domain storing reducing equivalents, about 40 kDa flavine adenine dinucleotide (FAD) domain and about 85 kDa molybdenum cofactor (MoCo) domain containing a substrate binding site. In order to clarify the properties of each domain, especially substrate binding domain, chimeric cDNAs were constructed by mutual exchange of 2Fe-2S/FAD and MoCo domains between monkey and rat. Chimeric monkey/rat AO was referred to one with monkey type 2Fe-2S/FAD domains and a rat type MoCo domain. Rat/monkey AO was vice versa. AO-catalyzed 2-oxidation activities of (S)-RS-8359 were measured using the expressed enzyme in Escherichia coli. Substrate inhibition was seen in rat AO and chimeric monkey/rat AO, but not in monkey AO and chimeric rat/monkey AO, suggesting that the phenomenon might be dependent on the natures of MoCo domain of rat. A biphasic Eadie-Hofstee profile was observed in monkey AO and chimeric rat/monkey AO, but not rat AO and chimeric monkey/rat AO, indicating that the biphasic profile might be related to the properties of MoCo domain of monkey. Two-fold greater V(max) values were observed in monkey AO than in chimeric rat/monkey AO, and in chimeric monkey/rat AO than in rat AO, suggesting that monkey has the more effective electron transfer system than rat. Thus, the use of chimeric enzymes revealed that 2Fe-2S/FAD and MoCo domains affect the velocity and the quantitative profiles of AO-catalyzed (S)-RS-8359 2-oxidation, respectively.
NASA Astrophysics Data System (ADS)
Li, Mingzhu; Mai, Kangsen; Ai, Qinghui; He, Gen; Xu, Wei; Zhang, Wenbing; Zhang, Yanjiao; Zhou, Huihui; Liufu, Zhiguo
2015-04-01
This study investigated the effect of dietary lipid on the growth, fatty acid composition and Δ5 fatty acyl desaturase genes ( Fads) expression of juvenile abalone ( Haliotis discus hannai Ino) hepatopancreas. Six purified diets were formulated to contain tripalmitin (TP), olive oil (OO, 72.87% 18:1n-9), grape seed oil (GO, 68.67% 18:2n-6), linseed oil (LO, 70.48% 18:3n-3), ARA oil (AO, 41.81% ARA) or EPA oil (EO, 44.09% EPA and 23.67% DAH). No significant difference in survival rate was observed among abalone fed with different diets. Weight gain rate ( WGR) and daily growth rate of shell length ( DGR SL) were significantly increased in abalone fed with diets containing OO, AO and EO, but decreased in abalone fed with LO diet ( P < 0.05) in comparison with those fed with TP. High level of dietary 18:2n-6 resulted in higher content of n-6 polyunsaturated fatty acids (PUFAs) in abalone fed with GO than those fed with TP, OO, LO and EO ( P < 0.05). n-3 PUFAs in abalone fed with LO was significantly higher than those in abalone fed with TP, OO, GO and AO ( P < 0.05). The highest contents of 20:1n-9 and 22:1n-9 were observed in abalone fed with OO. The expression of Δ5 Fads in hepatopancreas of abalone was enhanced by high concentration of 18:3n-3 and suppressed by dietary LC-PUFAs; however it was not affected by dietary high concentration of 18:1n-9 or 18:2n-6. These results provided valuable information for understanding the synthesis of LC-PUFAs and nutritional regulation of Δ5 Fads expression in abalone.
Park, Hui Gyu; Kothapalli, Kumar S D; Park, Woo Jung; DeAllie, Christian; Liu, Lei; Liang, Allison; Lawrence, Peter; Brenna, J Thomas
2016-02-01
Sapienic acid, 16:1n-10 is the most abundant unsaturated fatty acid on human skin where its synthesis is mediated by FADS2 in the sebaceous glands. The FADS2 product introduces a double bond at the Δ6, Δ4 and Δ8 positions by acting on at least ten substrates, including 16:0, 18:2n-6, and 18:3n-3. Our aim was to characterize the competition for accessing FADS2 mediated Δ6 desaturation between 16:0 and the most abundant polyunsaturated fatty acids (PUFA) in the human diet, 18:2n-6 and 18:3n-3, to evaluate whether competition may be relevant in other tissues and thus linked to metabolic abnormalities associated with FADS2 or fatty acid levels. MCF7 cells stably transformed with FADS2 biosynthesize 16:1n-10 from exogenous 16:0 in preference to 16:1n-7, the immediate product of SCD highly expressed in cancer cell lines, and 16:1n-9 via partial β-oxidation of 18:1n-9. Increasing availability of 18:2n-6 or 18:3n-3 resulted in decreased bioconversion of 16:0 to 16:1n-10, simultaneously increasing the levels of highly unsaturated products. FADS2 cells accumulate the desaturation-elongation products 20:3n-6 and 20:4n-3 in preference to the immediate desaturation products 18:3n-6 and 18:4n-3 implying prompt/coupled elongation of the nascent desaturation products. MCF7 cells incorporate newly synthesized 16:1n-10 into phospholipids. These data suggest that excess 16:0 due to, for instance, de novo lipogenesis from high carbohydrate or alcohol consumption, inhibits synthesis of highly unsaturated fatty acids, and may in part explain why supplemental preformed EPA and DHA in some studies improves insulin resistance and other factors related to diabetes and metabolic syndrome aggravated by excess calorie consumption. Copyright © 2015 Elsevier B.V. All rights reserved.
Demorest, Zachary L; Coffman, Andrew; Baltes, Nicholas J; Stoddard, Thomas J; Clasen, Benjamin M; Luo, Song; Retterath, Adam; Yabandith, Ann; Gamo, Maria Elena; Bissen, Jeff; Mathis, Luc; Voytas, Daniel F; Zhang, Feng
2016-10-13
The ability to modulate levels of individual fatty acids within soybean oil has potential to increase shelf-life and frying stability and to improve nutritional characteristics. Commodity soybean oil contains high levels of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability - a problem that has been addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid (18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were introduced into FAD3A by directly delivering TALENs into fad2-1a fad2-1b soybean plants. Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b fad3a soybean lines were identified. The methods presented here provide an efficient means for using sequence-specific nucleases to stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and linolenic acid levels below 3 %.
Velkoff, Elizabeth A; Forrest, Lauren N; Dodd, Dorian R; Smith, April R
2016-06-01
Objective measures of suicide risk can convey life-saving information to clinicians, but few such measures exist. This study examined an objective measure of fearlessness about death (FAD), testing whether FAD relates to self-reported and physiological aversion to death. Females (n = 87) reported FAD and disgust sensitivity, and facial electromyography was used to measure physiological facial responses consistent with disgust while viewing death-related images. FAD predicted attenuated expression of physiological death aversion, even when controlling for self-reported death-related disgust sensitivity. Diminished physiological aversion to death-related stimuli holds promise as an objective measure of FAD and suicide risk. © 2015 The American Association of Suicidology.
Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang
2009-06-01
To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.
Kothapalli, Kumar S. D.; Ye, , Kaixiong; Gadgil, Maithili S.; Carlson, Susan E.; O’Brien, Kimberly O.; Zhang, Ji Yao; Park, Hui Gyu; Ojukwu, Kinsley; Zou, James; Hyon, Stephanie S.; Joshi, Kalpana S.; Gu, Zhenglong; Keinan, Alon; Brenna, J.Thomas
2016-01-01
Long chain polyunsaturated fatty acids (LCPUFA) are bioactive components of membrane phospholipids and serve as substrates for signaling molecules. LCPUFA can be obtained directly from animal foods or synthesized endogenously from 18 carbon precursors via the FADS2 coded enzyme. Vegans rely almost exclusively on endogenous synthesis to generate LCPUFA and we hypothesized that an adaptive genetic polymorphism would confer advantage. The rs66698963 polymorphism, a 22-bp insertion–deletion within FADS2, is associated with basal FADS1 expression, and coordinated induction of FADS1 and FADS2 in vitro. Here, we determined rs66698963 genotype frequencies from 234 individuals of a primarily vegetarian Indian population and 311 individuals from the US. A much higher I/I genotype frequency was found in Indians (68%) than in the US (18%). Analysis using 1000 Genomes Project data confirmed our observation, revealing a global I/I genotype of 70% in South Asians, 53% in Africans, 29% in East Asians, and 17% in Europeans. Tests based on population divergence, site frequency spectrum, and long-range haplotype consistently point to positive selection encompassing rs66698963 in South Asian, African, and some East Asian populations. Basal plasma phospholipid arachidonic acid (ARA) status was 8% greater in I/I compared with D/D individuals. The biochemical pathway product–precursor difference, ARA minus linoleic acid, was 31% and 13% greater for I/I and I/D compared with D/D, respectively. This study is consistent with previous in vitro data suggesting that the insertion allele enhances n-6 LCPUFA synthesis and may confer an adaptive advantage in South Asians because of the traditional plant-based diet practice. PMID:27188529
Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides.
Stokin, Gorazd B; Almenar-Queralt, Angels; Gunawardena, Shermali; Rodrigues, Elizabeth M; Falzone, Tomás; Kim, Jungsu; Lillo, Concepción; Mount, Stephanie L; Roberts, Elizabeth A; McGowan, Eileen; Williams, David S; Goldstein, Lawrence S B
2008-11-15
Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer's disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-beta peptides (Abeta), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Abeta poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Abeta, we perturbed Abeta generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Abeta42/Abeta40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Abeta with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Abeta ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Abeta.
Feng, Saixiang; Xu, Chenggang; Yang, Kaijie; Wang, Haihong; Fan, Huiying; Liao, Ming
2017-01-01
In Haemophilus parasuis , the genes HAPS_0217 and HAPS_1695 are predicted to encode long-chain fatty acid-CoA ligases (FACSs). These proteins contain ATP/AMP signature motifs and FACS conserved motifs that are homologous to those in Escherichia coli FadD (EcFadD). In this study, we demonstrate that HAPS_0217 and HAPS_1695 can functionally replace EcFadD in the E. coli fadD mutant JW1794, and were thus designated fadD1 and fadD2 , respectively. An evaluation of kinetic parameters indicated that FadD1 and FadD2 have a substrate preference for long-chain fatty acids. Moreover, FadD2 exhibited substrate inhibition in the presence of high concentrations of oleic acid. Single mutants of each of the fadD genes were easily constructed, whereas double mutants were not. These results were further confirmed using genomic site-directed mutagenesis, which supported the idea that H. parasuis requires either fadD1 or fadD2 for survival. The fadD1 mutant exhibited slower growth than the wild-type strain SC096, and its complementation resulted in a restored phenotype. The wild-type strain did not grow on chemically defined medium without the addition of oleic acid, indicating that lipids are a vital nutrient for this bacterium. Additionally, strains with a disrupted fadD1 gene also exhibited increased sensitivity to quinolone antibiotics, including levofloxacin, enrofloxacin, ciprofloxacin and nalidixic acid.
Ram, P A; Waxman, D J
1992-02-15
The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major increase in P450 reductase protein or activity was detectable over a 3-day period. Together, these studies establish that thyroid hormone regulates P450 reductase expression by pretranslational mechanisms. They also suggest that other regulatory mechanisms, which may involve changes in P450 reductase protein stability and/or changes in the translational efficiency of its mRNA, are likely to occur.
Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis
Giancaspero, Teresa A.; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina M.; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria
2015-01-01
The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD “chaperone.” The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells. PMID:25954742
Flavin-Induced Oligomerization in Escherichia coli Adaptive Response Protein AidB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamill, Michael J.; Jost, Marco; Wong, Cintyu
2011-11-21
The process known as 'adaptive response' allows Escherichia coli to respond to small doses of DNA-methylating agents by upregulating the expression of four proteins. While the role of three of these proteins in mitigating DNA damage is well understood, the function of AidB is less clear. Although AidB is a flavoprotein, no catalytic role has been established for the bound cofactor. Here we investigate the possibility that flavin plays a structural role in the assembly of the AidB tetramer. We report the generation and biophysical characterization of deflavinated AidB and of an AidB mutant that has greatly reduced affinity formore » flavin adenine dinucleotide (FAD). Using fluorescence quenching and analytical ultracentrifugation, we find that apo AidB has a high affinity for FAD, as indicated by an apparent dissociation constant of 402.1 {+-} 35.1 nM, and that binding of substoichiometric amounts of FAD triggers a transition in the AidB oligomeric state. In particular, deflavinated AidB is dimeric, whereas the addition of FAD yields a tetramer. We further investigate the dimerization and tetramerization interfaces of AidB by determining a 2.8 {angstrom} resolution crystal structure in space group P3{sub 2} that contains three intact tetramers in the asymmetric unit. Taken together, our findings provide strong evidence that FAD plays a structural role in the formation of tetrameric AidB.« less
Nakayama, Kazuhiro; Bayasgalan, Tumenbayer; Tazoe, Fumiko; Yanagisawa, Yoshiko; Gotoh, Takaya; Yamanaka, Kazuhiro; Ogawa, Ayumi; Munkhtulga, Lkhagvasuren; Chimedregze, Ulziiburen; Kagawa, Yasuo; Ishibashi, Shun; Iwamoto, Sadahiko
2010-06-01
Recent genome-wide association studies (GWASs) showed that single nucleotide polymorphisms (SNPs) in FADS1/FADS2 were associated with plasma lipid concentrations in populations with European ancestry. We investigated the associations between the SNPs in FADS1/FADS2 and plasma concentrations of triglycerides, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in two Asian groups, i.e., Japanese and Mongolians. The genotype of rs174547 (T/C), found to be associated with triglyceride and HDL-C concentrations in the GWAS, was determined in 21,004 Japanese and 1,203 Mongolian individuals. Genotype-phenotype association was assessed by using multiple linear regression models, assuming an additive model of inheritance. The copy number of the rs174547 C allele was significantly associated with increased triglyceride levels (P = 1.5 x 10(-6)) and decreased HDL-C levels (P = 0.03) in the Japanese population. On the other hand, in the Mongolian population, the rs174547 C allele copy number was strongly associated with decreased LDL-C levels (P = 2.6 x 10(-6)), but was not associated with triglyceride and HDL-C levels. The linkage disequilibrium pattern and haplotype structures of SNPs around the FADS1/FADS2 locus showed no marked dissimilarity between Japanese and Mongolian individuals. The present data indicate that the FADS1/FADS2 locus can be added to the growing list of loci involved in polygenic dyslipidemia in Asians. Furthermore, the variable effects of FADS1/FADS2 on plasma lipid profiles in Asians may result from differences in the dietary intake of polyunsaturated fatty acids, which serve as substrates for enzymes encoded by FADS1/FADS2.
Obesity resistance and deregulation of lipogenesis in Δ6-fatty acid desaturase (FADS2) deficiency.
Stoffel, Wilhelm; Hammels, Ina; Jenke, Britta; Binczek, Erika; Schmidt-Soltau, Inga; Brodesser, Susanne; Odenthal, Margarete; Thevis, Mario
2014-01-01
Δ-6-fatty acid desaturase (FADS2) is the key enzyme in the biosynthesis of polyunsaturated fatty acids (PUFAs), the essential structural determinants of mammalian membrane lipid-bilayers. We developed the auxotrophic fads2(-/-) mouse mutant to assess the enigmatic role of ω3- and ω6-PUFAs in lipid homeostasis, membrane structure and function. Obesity resistance is another major phenotype of the fads2(-/-) mutant, the molecular basis of which is unknown. Phospholipidomic profiling of membrane systems of fads2(-/-)mice revealed diacylglycerol-structures, deprived of PUFAs but substituted with surrogate eicosa-5,11,14-trienoic acid. ω6-Arachidonic (AA) and ω3-docosahexaenoic acid (DHA) supplemented diets transformed fads2(-/-) into AA-fads2(-/-) and DHA-fads2(-/-) mutants. Severely altered phospholipid-bilayer structures of subcellular membranes of fads2(-/-) liver specifically interfered with maturation of transcription factor sterol-regulatory-element-binding protein, the key regulator of lipogenesis and lipid homeostasis. This study strengthens the concept that specific PUFA-substituted membrane phospholipid species are critical constituents of the structural platform operative in lipid homeostasis in normal and disease conditions.
2014-01-01
Background Fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes code respectively for the enzymes delta-5 and delta-6 desaturases which are rate limiting enzymes in the synthesis of polyunsaturated omega-3 and omega-6 fatty acids (FAs). Omega-3 and-6 FAs as well as conjugated linoleic acid (CLA) are present in bovine milk and have demonstrated positive health effects in humans. Studies in humans have shown significant relationships between genetic variants in FADS1 and 2 genes with plasma and tissue concentrations of omega-3 and-6 FAs. The aim of this study was to evaluate the extent of sequence variations within these two genes in Canadian Holstein cows as well as the association between sequence variants and health promoting FAs in milk. Results Thirty three SNPs were detected within the studied regions of genes including a synonymous mutation (FADS1-07, rs42187261, 306Tyr > Tyr) in exon 8 of FADS1, a non-synonymous mutation (FADS2-14, rs211580559, 294Ala > Val) within FADS2 exon 7, a splice site SNP (FADS2-05, rs211263660), a 3′UTR SNP (FADS2-23, rs109772589), and another 3′UTR SNP with an effect on a microRNA binding site within FADS2 gene (FADS2-19, rs210169303). Association analyses showed significant relations between three out of seven tested SNPs and several FAs. Significant associations (FDR P < 0.05) were recorded between FADS2-23 (rs109772589) and two omega-6 FAs (dihomogamma linolenic acid [C20:3n6] and arachidonic acid [C20:4n6]), FADS1-07 (rs42187261) and one omega-3 FA (eicosapentaenoic acid, C20:5n3) and tricosanoic acid (C23:0), and one intronic SNP, FADS1-01 (rs136261927) and C20:3n6. Conclusion Our study has demonstrated positive associations between three SNPs within FADS1 and FADS2 genes (a SNP within the 3’UTR, a synonymous SNP and an intronic SNP), with three milk PUFAs of Canadian Holstein cows thus suggesting possible involvement of synonymous and non-coding region variants in FA synthesis. These SNPs may serve as potential genetic markers in breeding programs to increase milk FAs that are of benefit to human health. PMID:24533445
Ibeagha-Awemu, Eveline M; Akwanji, Kingsley A; Beaudoin, Frédéric; Zhao, Xin
2014-02-17
Fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes code respectively for the enzymes delta-5 and delta-6 desaturases which are rate limiting enzymes in the synthesis of polyunsaturated omega-3 and omega-6 fatty acids (FAs). Omega-3 and-6 FAs as well as conjugated linoleic acid (CLA) are present in bovine milk and have demonstrated positive health effects in humans. Studies in humans have shown significant relationships between genetic variants in FADS1 and 2 genes with plasma and tissue concentrations of omega-3 and-6 FAs. The aim of this study was to evaluate the extent of sequence variations within these two genes in Canadian Holstein cows as well as the association between sequence variants and health promoting FAs in milk. Thirty three SNPs were detected within the studied regions of genes including a synonymous mutation (FADS1-07, rs42187261, 306Tyr > Tyr) in exon 8 of FADS1, a non-synonymous mutation (FADS2-14, rs211580559, 294Ala > Val) within FADS2 exon 7, a splice site SNP (FADS2-05, rs211263660), a 3'UTR SNP (FADS2-23, rs109772589), and another 3'UTR SNP with an effect on a microRNA binding site within FADS2 gene (FADS2-19, rs210169303). Association analyses showed significant relations between three out of seven tested SNPs and several FAs. Significant associations (FDR P < 0.05) were recorded between FADS2-23 (rs109772589) and two omega-6 FAs (dihomogamma linolenic acid [C20:3n6] and arachidonic acid [C20:4n6]), FADS1-07 (rs42187261) and one omega-3 FA (eicosapentaenoic acid, C20:5n3) and tricosanoic acid (C23:0), and one intronic SNP, FADS1-01 (rs136261927) and C20:3n6. Our study has demonstrated positive associations between three SNPs within FADS1 and FADS2 genes (a SNP within the 3'UTR, a synonymous SNP and an intronic SNP), with three milk PUFAs of Canadian Holstein cows thus suggesting possible involvement of synonymous and non-coding region variants in FA synthesis. These SNPs may serve as potential genetic markers in breeding programs to increase milk FAs that are of benefit to human health.
Urrutia, Olaia; Mendizabal, José Antonio; Insausti, Kizkitza; Soret, Beatriz; Purroy, Antonio; Arana, Ana
2016-01-01
This study examined the effect of linseed and algae on growth and carcass parameters, adipocyte cellularity, fatty acid profile and meat quality and gene expression in subcutaneous and intramuscular adipose tissues (AT) in lambs. After weaning, 33 lambs were fed three diets up to 26.7 ± 0.3 kg: Control diet (barley and soybean); L diet (barley, soybean and 10% linseed) and L-A diet (barley, soybean, 5% linseed and 3.89% algae). Lambs fed L-A diet showed lower average daily gain and greater slaughter age compared to Control and L (P < 0.001). Carcass traits were not affected by L and L-A diets, but a trend towards greater adipocyte diameter was observed in L and L-A in the subcutaneous AT (P = 0.057). Adding either linseed or linseed and algae increased α-linolenic acid and eicosapentaenoic acid contents in both AT (P < 0.001); however, docosahexaenoic acid was increased by L-A (P < 0.001). The n-6/n-3 ratio decreased in L and L-A (P < 0.001). Algae had adverse effects on meat quality, with greater lipid oxidation and reduced ratings for odor and flavor. The expression of lipogenic genes was downregulated in the subcutaneous AT (P < 0.05): acetyl-CoA carboxylase 1 (ACACA) in L and L-A and lipoprotein lipase (LPL) and stearoyl-CoA desaturase (SCD) in L-A. Fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2) and fatty acid elongase 5 (ELOVL5) were unaffected. In the subcutaneous AT, supplementing either L or L-A increased peroxisome proliferator-activated receptor gamma (PPARG) and CAAT-enhancer binding protein alpha (CEBPA) (P < 0.05), although it had no effect on sterol regulatory element-binding factor 1 (SREBF1). In the intramuscular AT, expression of ACACA, SCD, FADS1 and FADS2 decreased in L and L-A (P < 0.001) and LPL in L (P < 0.01), but PPARG, CEBPA and SREBF1 were unaffected. PMID:27253325
Liu, Su; Liang, Qing-Mei; Huang, Yuan-Jie; Yuan, Xin; Zhou, Wen-Wu; Qiao, Fei; Cheng, Jiaan; Gurr, Geoff M; Zhu, Zeng-Rong
2013-01-01
NADPH-cytochrome P450 reductase (CPR) is one of the most important components of the cytochrome P450 enzyme system. It catalyzes electron transfer from NADPH to all known P450s, thus plays central roles not only in the metabolism of exogenous xenobiotics but also in the regulation of endogenous hormones in insects. In this study, a full-length cDNA encoding of a CPR (named CsCPR) was isolated from the Asiatic rice striped stem borer, Chilo suppressalis, by using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. The cDNA contains a 2061 bp open reading frame, which encodes an enzyme of 686 amino acid residues, with a calculated molecular mass of 77.6 kDa. The deduced peptide has hallmarks of typical CPR, including an N-terminal membrane anchor and the FMN, FAD and NADPH binding domains. The N-terminal-truncated protein fused with a 6 × His·tag was heterologously expressed in Escherichia coli Rosetta (DE3) cells and purified, specific activity and the Km values of the recombinant enzyme were determined. Tissue- and developmental stage-dependent expression of CsCPR mRNA was investigated by real-time quantitative PCR. The CsCPR mRNA was noticeably expressed in the digestive, metabolic, and olfactory organs of the larvae and adults of C. suppressalis. Our initial results would provide valuable information for further study on the interactions between CPR and cytochrome P450 enzyme systems. © 2013.
Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid
2012-01-01
Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid) which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s) through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78%) and a corresponding reduction in polyunsaturated fatty acids (< 3%) in its seed oil. The control Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60) in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha that will help reduce public concerns for environmental issues surrounding genetically modified plants. Conclusion In this study we produced seed-specific JcFAD2-1 RNA interference transgenic Jatropha without a selectable marker. We successfully increased the proportion of oleic acid versus linoleic in Jatropha through genetic engineering, enhancing the quality of its oil. PMID:22377043
Neuronal pentraxin 1: A synaptic-derived plasma biomarker in Alzheimer's disease.
Ma, Qiu-Lan; Teng, Edmond; Zuo, Xiaohong; Jones, Mychica; Teter, Bruce; Zhao, Evan Y; Zhu, Cansheng; Bilousova, Tina; Gylys, Karen H; Apostolova, Liana G; LaDu, Mary Jo; Hossain, Mir Ahamed; Frautschy, Sally A; Cole, Gregory M
2018-06-01
Synaptic neurodegeneration is thought to be an early event initiated by soluble β-amyloid (Aβ) aggregates that closely correlates with cognitive decline in Alzheimer disease (AD). Apolipoprotein ε4 (APOE4) is the most common genetic risk factor for both familial AD (FAD) and sporadic AD; it accelerates Aβ aggregation and selectively impairs glutamate receptor function and synaptic plasticity. However, its molecular mechanisms remain elusive and these synaptic deficits are difficult to monitor. AD- and APOE4-dependent plasma biomarkers have been proposed, but synapse-related plasma biomarkers are lacking. We evaluated neuronal pentraxin 1 (NP1), a potential CNS-derived plasma biomarker of excitatory synaptic pathology. NP1 is preferentially expressed in brain and involved in glutamate receptor internalization. NP1 is secreted presynaptically induced by Aβ oligomers, and implicated in excitatory synaptic and mitochondrial deficits. Levels of NP1 and its fragments were increased in a correlated fashion in both brain and plasma of 7-8 month-old E4FAD mice relative to E3FAD mice. NP1 was also found in exosome preparations and reduced by dietary DHA supplementation. Plasma NP1 was higher in E4FAD+ (APOE4 +/+ /FAD +/- ) relative to E4FAD- (non-carrier; APOE4 +/+ /FAD -/- ) mice, suggesting NP1 is modulated by Aβ expression. Finally, relative to normal elderly, plasma NP1 was also elevated in patients with mild cognitive impairment (MCI) and elevated further in the subset who progressed to early-stage AD. In those patients, there was a trend towards increased NP1 levels in APOE4 carriers relative to non-carriers. These findings indicate that NP1 may represent a potential synapse-derived plasma biomarker relevant to early alterations in excitatory synapses in MCI and early-stage AD. Copyright © 2018. Published by Elsevier Inc.
Distributed Leadership as Fashion or Fad
ERIC Educational Resources Information Center
Lumby, Jacky
2016-01-01
Despite frequently expressed reservations concerning its fundamental theoretical weakness, distributed leadership (DL) has grown to become the preferred leadership concept and has acquired taken-for-granted status. This article suggests that the dominance of DL can best be understood as a fashion or fad rather than as a rational choice. It…
Voruganti, V Saroja; Higgins, Paul B; Ebbesson, Sven O E; Kennish, John; Göring, Harald H H; Haack, Karin; Laston, Sandra; Drigalenko, Eugene; Wenger, Charlotte R; Harris, William S; Fabsitz, Richard R; Devereux, Richard B; Maccluer, Jean W; Curran, Joanne E; Carless, Melanie A; Johnson, Matthew P; Moses, Eric K; Blangero, John; Umans, Jason G; Howard, Barbara V; Cole, Shelley A; Comuzzie, Anthony Gean
2012-01-01
The delta-5 and delta-6 desaturases (D5D and D6D), encoded by fatty acid desaturase 1 (FADS1) and 2 (FADS2) genes, respectively, are rate-limiting enzymes in the metabolism of ω-3 and ω-6 fatty acids. The objective of this study was to identify genes influencing variation in estimated D5D and D6D activities in plasma and erythrocytes in Alaskan Eskimos (n = 761) participating in the genetics of coronary artery disease in Alaska Natives (GOCADAN) study. Desaturase activity was estimated by product: precursor ratio of polyunsaturated fatty acids. We found evidence of linkage for estimated erythrocyte D5D (eD5D) on chromosome 11q12-q13 (logarithm of odds score = 3.5). The confidence interval contains candidate genes FADS1, FADS2, 7-dehydrocholesterol reductase (DHCR7), and carnitine palmitoyl transferase 1A, liver (CPT1A). Measured genotype analysis found association between CPT1A, FADS1, and FADS2 single-nucleotide polymorphisms (SNPs) and estimated eD5D activity (p-values between 10(-28) and 10(-5)). A Bayesian quantitative trait nucleotide analysis showed that rs3019594 in CPT1A, rs174541 in FADS1, and rs174568 in FADS2 had posterior probabilities > 0.8, thereby demonstrating significant statistical support for a functional effect on eD5D activity. Highly significant associations of FADS1, FADS2, and CPT1A transcripts with their respective SNPs (p-values between 10(-75) and 10(-7)) in Mexican Americans of the San Antonio Family Heart Study corroborated our results. These findings strongly suggest a functional role for FADS1, FADS2, and CPT1A SNPs in the variation in eD5D activity.
Pham, Anh-Tung; Shannon, J Grover; Bilyeu, Kristin D
2012-08-01
High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.
Martínez, Eriel; Estupiñán, Mónica; Pastor, F I Javier; Busquets, Montserrat; Díaz, Pilar; Manresa, Angeles
2013-02-01
Bacterial proteins of the FadL family have frequently been associated to the uptake of exogenous hydrophobic substrates. However, their outer membrane location and involvement in substrate uptake have been inferred mainly from sequence similarity to Escherichia coli FadL, the first well-characterized outer membrane transporters of Long-Chain Fatty Acids (LCFAs) in bacteria. Here we report the functional characterization of a Pseudomonas aeruginosa outer membrane protein (ORF PA1288) showing similarities to the members of the FadL family, for which we propose the name ExFadLO. We demonstrate herein that this protein is required to export LCFAs 10-HOME and 7,10-DiHOME, derived from a diol synthase oxygenation activity on oleic acid, from the periplasm to the extracellular medium. Accumulation of 10-HOME and 7,10-DiHOME in the extracellular medium of P. aeruginosa was abolished by a transposon insertion mutation in exFadLO (ExFadLO¯ mutant). However, intact periplasm diol synthase activity was found in this mutant, indicating that ExFadLO participates in the export of these oxygenated LCFAs across the outer membrane. The capacity of ExFadLO¯ mutant to export 10-HOME and 7,10-DiHOME was recovered after complementation with a wild-type, plasmid-expressed ExFadLO protein. A western blot assay with a variant of ExFadLO tagged with a V5 epitope confirmed the location of ExFadLO in the bacterial outer membrane under the experimental conditions tested. Our results provide the first evidence that FadL family proteins, known to be involved in the uptake of hydrophobic substrates from the extracellular environment, also function as secretion elements for metabolites of biological relevance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Itoh, Kazuko; Izumi, Yuichiro; Inoue, Takeaki; Inoue, Hideki; Nakayama, Yushi; Uematsu, Takayuki; Fukuyama, Takashi; Yamazaki, Taiga; Yasuoka, Yukiko; Makino, Takeshi; Nagaba, Yasushi; Tomita, Kimio; Kobayashi, Noritada; Kawahara, Katsumasa; Mukoyama, Masashi; Nonoguchi, Hiroshi
2014-10-24
Sodium reabsorption via Na-K-2Cl cotransporter 2 (NKCC2) in the thick ascending limbs has a major role for medullary osmotic gradient and subsequent water reabsorption in the collecting ducts. We investigated intrarenal localization of three isoforms of NKCC2 mRNA expressions and the effects of dehydration on them in rats. To further examine the mechanisms of dehydration, the effects of hyperosmolality on NKCC2 mRNA expression in microdissected renal tubules was studied. RT-PCR and RT-competitive PCR were employed. The expressions of NKCC2a and b mRNA were observed in the cortical thick ascending limbs (CAL) and the distal convoluted tubules (DCT) but not in the medullary thick ascending limbs (MAL), whereas NKCC2f mRNA expression was seen in MAL and CAL. Two-day dehydration did not affect these mRNA expressions. In contrast, hyperosmolality increased NKCC2 mRNA expression in MAL in vitro. Bradykinin dose-dependently decreased NKCC2 mRNA expression in MAL. However, dehydration did not change NKCC2 protein expression in membrane fraction from cortex and outer medulla and in microdissected MAL. These data show that NKCC2a/b and f types are mainly present in CAL and MAL, respectively. Although NKCC2 mRNA expression was stimulated by hyperosmolality in vitro, NKCC2 mRNA and protein expressions were not stimulated by dehydration in vivo. These data suggest the presence of the inhibitory factors for NKCC2 expression in dehydration. Considering the role of NKCC2 for the countercurrent multiplier system, NKCC2f expressed in MAL might be more important than NKCC2a/b. Copyright © 2014 Elsevier Inc. All rights reserved.
Gamliel-Lazarovich, Aviva; Gantman, Anna; Coleman, Raymond; Jeng, Arco Y; Kaplan, Marielle; Keidar, Shlomo
2010-09-01
Aldosterone is known to be involved in atherosclerosis and cardiovascular disease and blockade of its receptor was shown to improve cardiovascular function. It was, therefore, hypothesized that inhibition of aldosterone synthesis would also reduce atherosclerosis development. To test this hypothesis, we examined the effect of FAD286 (FAD), an aldosterone synthase inhibitor, on the development of atherosclerosis in spontaneous atherosclerotic apolipoprotein E-deficient mice. Mice were divided into three treatment groups: normal diet, low-salt diet (LSD) and LSD treated with FAD at 30 mg/kg per day (LSD + FAD) for 10 weeks. Histomorphometry of the aortas obtained from these mice showed that atherosclerotic lesion area increased by three-fold under LSD compared with normal diet and FAD significantly reduced lesion area to values similar to normal diet. Changes in atherosclerosis were paralleled by changes in the expression of the inflammation markers (C-reactive protein, monocyte chemotactic protein-1, interleukin-6, nuclear factor kappa B and intercellular adhesion molecule-1) in peritoneal macrophages obtained from these mice. Surprisingly, whereas LSD increased serum or urine aldosterone levels, FAD did not alter these levels when evaluated at the end of the study. In J774A.1 macrophage-like cell line stimulated with lipopolysaccharide, FAD was shown to have a direct dose-dependent anti-inflammatory effect. In apolipoprotein E-deficient mice, FAD reduces atherosclerosis and inflammation. However, these actions appeared to be dissociated from its effect on inhibition of aldosterone synthesis.
Howard, Timothy D; Mathias, Rasika A; Seeds, Michael C; Herrington, David M; Hixson, James E; Shimmin, Lawrence C; Hawkins, Greg A; Sellers, Matthew; Ainsworth, Hannah C; Sergeant, Susan; Miller, Leslie R; Chilton, Floyd H
2014-01-01
Levels of omega-6 (n-6) and omega-3 (n-3), long chain polyunsaturated fatty acids (LcPUFAs) such as arachidonic acid (AA; 20:4, n-6), eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3) impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1) are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs) such as LA (18:2, n-6) to AA and α-linolenic acid (ALA, 18:3, n-3) to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids. Importantly, these same variants are documented determinants of important cardiovascular disease risk factors (total, LDL, and HDL cholesterol, triglycerides, CRP and proinflammatory eicosanoids). FADS1 and FADS2 lie head-to-head (5' to 5') in a cluster configuration on chromosome 11 (11q12.2). There is considerable linkage disequilibrium (LD) in this region, where multiple SNPs display association with LcPUFA levels. For instance, rs174537, located ∼ 15 kb downstream of FADS1, is associated with both FADS1 desaturase activity and with circulating AA levels (p-value for AA levels = 5.95 × 10(-46)) in humans. To determine if DNA methylation variation impacts FADS activities, we performed genome-wide allele-specific methylation (ASM) with rs174537 in 144 human liver samples. This approach identified highly significant ASM with CpG sites between FADS1 and FADS2 in a putative enhancer signature region, leading to the hypothesis that the phenotypic associations of rs174537 are likely due to methylation differences. In support of this hypothesis, methylation levels of the most significant probe were strongly associated with FADS1 and, to a lesser degree, FADS2 activities.
Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.
Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo
2006-02-01
The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.
Castro, Luís Filipe Costa; Monroig, Óscar; Leaver, Michael J; Wilson, Jonathan; Cunha, Isabel; Tocher, Douglas R
2012-01-01
Long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are essential components of biomembranes, particularly in neural tissues. Endogenous synthesis of ARA, EPA and DHA occurs from precursor dietary essential fatty acids such as linoleic and α-linolenic acid through elongation and Δ5 and Δ6 desaturations. With respect to desaturation activities some noteworthy differences have been noted in vertebrate classes. In mammals, the Δ5 activity is allocated to the Fads1 gene, while Fads2 is a Δ6 desaturase. In contrast, teleosts show distinct combinations of desaturase activities (e.g. bifunctional or separate Δ5 and Δ6 desaturases) apparently allocated to Fads2-type genes. To determine the timing of Fads1-Δ5 and Fads2-Δ6 evolution in vertebrates we used a combination of comparative and functional genomics with the analysis of key phylogenetic species. Our data show that Fads1 and Fads2 genes with Δ5 and Δ6 activities respectively, evolved before gnathostome radiation, since the catshark Scyliorhinus canicula has functional orthologues of both gene families. Consequently, the loss of Fads1 in teleosts is a secondary episode, while the existence of Δ5 activities in the same group most likely occurred through independent mutations into Fads2 type genes. Unexpectedly, we also establish that events of Fads1 gene expansion have taken place in birds and reptiles. Finally, a fourth Fads gene (Fads4) was found with an exclusive occurrence in mammalian genomes. Our findings enlighten the history of a crucially important gene family in vertebrate fatty acid metabolism and physiology and provide an explanation of how observed lineage-specific gene duplications, losses and diversifications might be linked to habitat-specific food web structures in different environments and over geological timescales.
Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis
NASA Astrophysics Data System (ADS)
Giancaspero, Teresa Anna; Colella, Matilde; Brizio, Carmen; Difonzo, Graziana; Fiorino, Giuseppina Maria; Leone, Piero; Brandsch, Roderich; Bonomi, Francesco; Iametti, Stefania; Barile, Maria
2015-04-01
The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in energetic metabolism, epigenetics, protein folding, as well as in a number of diverse regulatory processes. The problem of localisation of flavin cofactor synthesis events and in particular of the FAD synthase (EC 2.7.7.2) in HepG2 cells is addressed here by confocal microscopy in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalysed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesising activity, hFADS is able to operate as a FAD "chaperone". The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear or a mitochondrial enzyme that is lysine specific demethylase 1 (LSD1, EC 1.-.-.-) and dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4), respectively which carry out similar reactions of oxidative demethylation, assisted by tetrahydrofolate used to form 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.
Yeates, Alison J; Love, Tanzy M; Engström, Karin; Mulhern, Maria S; McSorley, Emeir M; Grzesik, Katherine; Alhamdow, Ayman; Wahlberg, Karin; Thurston, Sally W; Davidson, Philip W; van Wijngaarden, Edwin; Watson, Gene E; Shamlaye, Conrad F; Myers, G J; Strain, J J; Broberg, Karin
2015-12-01
Long-chain n-6 and n-3 PUFA (LC-PUFA), arachidonic acid (AA) (20:4n-6) and DHA (22:6n-3), are critical for optimal brain development. These fatty acids can be consumed directly from the diet, or synthesized endogenously from precursor PUFA by Δ-5 (encoded by FADS1) and Δ-6 desaturases (encoded by FADS2). The aim of this study was to determine the potential importance of maternal genetic variability in FADS1 and FADS2 genes to maternal LC-PUFA status and infant neurodevelopment in populations with high fish intakes. The Nutrition Cohorts 1 (NC1) and 2 (NC2) are longitudinal observational mother-child cohorts in the Republic of Seychelles. Maternal serum LC-PUFA was measured at 28 weeks gestation and genotyping for rs174537 (FADS1), rs174561 (FADS1), rs3834458 (FADS1-FADS2) and rs174575 (FADS2) was performed in both cohorts. The children completed the Bayley Scales of Infant Development II (BSID-II) at 30 months in NC1 and at 20 months in NC2. Complete data were available for 221 and 1310 mothers from NC1 and NC2 respectively. With increasing number of rs3834458 minor alleles, maternal concentrations of AA were significantly decreased (NC1 p=0.004; NC2 p<0.001) and precursor:product ratios for linoleic acid (LA) (18:2n-6)-to-AA (NC1 p<0.001; NC2 p<0.001) and α-linolenic acid (ALA) (18:3n-3)-to-DHA were increased (NC2 p=0.028). There were no significant associations between maternal FADS genotype and BSID-II scores in either cohort. A trend for improved PDI was found among infants born to mothers with the minor rs3834458 allele.In these high fish-eating cohorts, genetic variability in FADS genes was associated with maternal AA status measured in serum and a subtle association of the FADS genotype was found with neurodevelopment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
USDA-ARS?s Scientific Manuscript database
In plants, the endoplasmic reticulum (ER)-localized omega-3 fatty acid desaturases (Fad3s) increase the production of polyunsaturated fatty acids at cooler temperatures, but the FAD3 genes themselves are typically not upregulated during this adaptive response. Here, we expressed two closely related ...
FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †
Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.
2011-01-01
FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226
Steer, P A; O'Rourke, D; Ghorashi, S A; Noormohammadi, A H
2011-05-01
Fowl adenoviruses (FAdVs) cause inclusion body hepatitis (IBH) in chickens. In this study, clinical cases of IBH from Australian broiler flocks were screened for the presence and genotype of FAdVs. Twenty-six IBH cases from commercial poultry farms were screened. Polymerase chain reaction (PCR) coupled with high-resolution melt (HRM) curve analysis (PCR/HRM genotyping) was used to determine the presence and genotype of FAdVs. For comparison, field isolates were also assessed by virus microneutralisation and nucleotide sequence analysis of the hexon loop 1 (Hex L1) gene. PCR detection of chicken anaemia virus (CAV) and infectious bursal disease virus (IBDV) was also employed. FAdV-8b and FAdV-11 were identified in 13 cases each. In one case, FAdV-1 was also identified. Cross-neutralisation was observed between the FAdV-11 field strain and the reference FAdV-2 and 11 antisera, a result also seen with the type 2 and 11 reference FAdVs. Field strains 1 and 8b were neutralised only by their respective type antisera. The FAdV-8b field strain was identical to the Australian FAdV vaccine strain (type 8b) in the Hex L1 region. The Hex L1 sequence of the FAdV-11 field strain had the highest identity to FAdV-11 (93.2%) and FAdV-2 (92.7%) reference strains. In the five cases tested for CAV and IBDV, neither virus was detected. The evidence suggested the presence of sufficient antibodies against CAV and IBD in the parent flocks and there was no indication of immunosuppression caused by these viruses. These results indicate that PCR/HRM genotyping is a reliable diagnostic method for FAdV identification and is more rapid than virus neutralisation and direct sequence analysis. Furthermore, they suggest that IBH in Australian broiler flocks is a primary disease resulting from two alternative FAdV strains from different species. © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.
Dietary adaptation of FADS genes in Europe varied across time and geography.
Ye, Kaixiong; Gao, Feng; Wang, David; Bar-Yosef, Ofer; Keinan, Alon
2017-05-26
Fatty acid desaturase (FADS) genes encode rate-limiting enzymes for the biosynthesis of omega-6 and omega-3 long-chain polyunsaturated fatty acids (LCPUFAs). This biosynthesis is essential for individuals subsisting on LCPUFA-poor diets (for example, plant-based). Positive selection on FADS genes has been reported in multiple populations, but its cause and pattern in Europeans remain unknown. Here we demonstrate, using ancient and modern DNA, that positive selection acted on the same FADS variants both before and after the advent of farming in Europe, but on opposite (that is, alternative) alleles. Recent selection in farmers also varied geographically, with the strongest signal in southern Europe. These varying selection patterns concur with anthropological evidence of varying diets, and with the association of farming-adaptive alleles with higher FADS1 expression and thus enhanced LCPUFA biosynthesis. Genome-wide association studies reveal that farming-adaptive alleles not only increase LCPUFAs, but also affect other lipid levels and protect against several inflammatory diseases.
de la Garza Puentes, Andrea; Montes Goyanes, Rosa; Chisaguano Tonato, Aida Maribel; Torres-Espínola, Francisco José; Arias García, Miriam; de Almeida, Leonor; Bonilla Aguirre, María; Guerendiain, Marcela; Castellote Bargalló, Ana Isabel; Segura Moreno, Maite; García-Valdés, Luz; Campoy, Cristina; Lopez-Sabater, M. Carmen
2017-01-01
Single nucleotide polymorphisms (SNPs) in the genes encoding the fatty acid desaturase (FADS) and elongase (ELOVL) enzymes affect long-chain polyunsaturated fatty acid (LC-PUFA) production. We aimed to determine if these SNPs are associated with body mass index (BMI) or affect fatty acids (FAs) in pregnant women. Participants (n = 180) from the PREOBE cohort were grouped according to pre-pregnancy BMI: normal-weight (BMI = 18.5–24.9, n = 88) and overweight/obese (BMI≥25, n = 92). Plasma samples were analyzed at 24 weeks of gestation to measure FA levels in the phospholipid fraction. Selected SNPs were genotyped (7 in FADS1, 5 in FADS2, 3 in ELOVL2 and 2 in ELOVL5). Minor allele carriers of rs174545, rs174546, rs174548 and rs174553 (FADS1), and rs1535 and rs174583 (FADS2) were nominally associated with an increased risk of having a BMI≥25. Only for the normal-weight group, minor allele carriers of rs174537, rs174545, rs174546, and rs174553 (FADS1) were negatively associated with AA:DGLA index. Normal-weight women who were minor allele carriers of FADS SNPs had lower levels of AA, AA:DGLA and AA:LA indexes, and higher levels of DGLA, compared to major homozygotes. Among minor allele carriers of FADS2 and ELOVL2 SNPs, overweight/obese women showed higher DHA:EPA index than the normal-weight group; however, they did not present higher DHA concentrations than the normal-weight women. In conclusion, minor allele carriers of FADS SNPs have an increased risk of obesity. Maternal weight changes the effect of genotype on FA levels. Only in the normal-weight group, minor allele carriers of FADS SNPs displayed reduced enzymatic activity and FA levels. This suggests that women with a BMI≥25 are less affected by FADS genetic variants in this regard. In the presence of FADS2 and ELOVL2 SNPs, overweight/obese women showed higher n-3 LC-PUFA production indexes than women with normal weight, but this was not enough to obtain a higher n-3 LC-PUFA concentration. PMID:28598979
Multidomain flavin-dependent sulfhydryl oxidases.
Coppock, Donald L; Thorpe, Colin
2006-01-01
Eukaryotic flavin-dependent sulfhydryl oxidases catalyze oxidative protein folding with the generation of disulfides and the reduction of oxygen to hydrogen peroxide. This review deals principally with the Quiescinsulfhydryl oxidases (QSOX) that are found in multiple forms in multicellular organisms and singly in a number of protozoan parasites. QSOX is an ancient fusion of thioredoxin domains and an FAD-binding module, ERV1/ALR. Interdomain disulfide exchanges transmit reducing equivalents from substrates to the flavin cofactor and thence to molecular oxygen. The in vitro substrate specificity of avian QSOX1 and the likely substrates of QSOXs in vivo are discussed. The location of QSOX immunoreactivity and mRNA expression levels in human cells and tissues is reviewed. Generally, there is a marked association of QSOX1 expression with cell types that have a high secretory load of disulfide-containing peptides and proteins. The abundance of sulfhydryl oxidases in the islets of Langerhans suggests that oxidative protein folding may directly contribute to the oxidative stress believed to be a factor in the progression to type II diabetes. Finally, the structure and mechanism of QSOX proteins is compared to their smaller stand-alone cousins: yeast ERV1p and ERV2p, the mammalian augmenter of liver regeneration (ALR), and the viral ALR homologs.
Nawade, Bhagwat; Bosamia, Tejas C.; Thankappan, Radhakrishnan; Rathnakumar, Arulthambi L.; Kumar, Abhay; Dobaria, Jentilal R.; Kundu, Rahul; Mishra, Gyan P.
2016-01-01
In peanut (Arachis hypogaea L.), the customization of fatty acid profile is an evolving area to fulfill the nutritional needs in the modern market. A total of 174 peanut genotypes, including 167 Indian cultivars, 6 advanced breeding lines and “SunOleic95R”—a double mutant line, were investigated using AS-PCRs, CAPS and gene sequencing for the ahFAD2 allele polymorphism, along with its fatty acid compositions. Of these, 80 genotypes were found having substitution (448G>A) mutation only in ahFAD2A gene, while none recorded 1-bp insertion (441_442insA) mutation in ahFAD2B gene. Moreover, 22 wild peanut accessions found lacking both the mutations. Among botanical types, the ahFAD2A mutation was more frequent in ssp. hypogaea (89%) than in ssp. fastigiata (17%). This single allele mutation, found affecting not only oleic to linoleic acid fluxes, but also the composition of other fatty acids in the genotypes studied. Repeated use of a few selected genotypes in the Indian varietal development programs were also eminently reflected in its ahFAD2 allele polymorphism. Absence of known mutations in the wild-relatives indicated the possible origin of these mutations, after the allotetraploidization of cultivated peanut. The SNP analysis of both ahFAD2A and ahFAD2B genes, revealed haplotype diversity of 1.05% and 0.95%, while Ka/Ks ratio of 0.36 and 0.39, respectively, indicating strong purifying selection pressure on these genes. Cluster analysis, using ahFAD2 gene SNPs, showed presence of both mutant and non-mutant genotypes in the same cluster, which might be due the presence of ahFAD2 gene families. This investigation provided insights into the large number of Indian peanut genotypes, covering various aspects related to O/L flux regulation and ahFAD2 gene polymorphism. PMID:27610115
Hollingsworth, M A; Strawhecker, J M; Caffrey, T C; Mack, D R
1994-04-15
We examined the steady-state expression levels of mRNA for the MUC1, MUC2, MUC3 and MUC4 gene products in 12 pancreatic tumor cell lines, 6 colon tumor cell lines, and one ileocecal tumor cell line. The results showed that 10 of 12 pancreatic tumor cell lines expressed MUC1 mRNA and that 7 of these 12 lines also expressed relatively high levels of MUC4 mRNA. In contrast, MUC2 mRNA was expressed at only low levels and MUC3 was not detected in the pancreatic tumor cell lines. All 7 intestinal tumor cell lines examined expressed MUC2, and 5 of 7 expressed MUC3; however only one expressed significant levels of MUC1 and 2 expressed low levels of MUC4 mRNA. This report of high levels of MUC4 mRNA expression by pancreatic tumor cells raises the possibility that mucin carbohydrate epitopes defined by antibodies such as DuPan 2 may be expressed on a second mucin core protein produced by pancreatic tumor cells.
Simopoulos, Artemis P
2010-07-01
The tissue composition of polyunsaturated fatty acids is important to health and depends on both dietary intake and metabolism controlled by genetic polymorphisms that should be taken into consideration in the determination of nutritional requirements. Therefore at the same dietary intake of linoleic acid (LA) and alpha-linolenic acid (ALA), their respective health effects may differ due to genetic differences in metabolism. Delta-5 and delta-6 desaturases, FADS1 and FADS2, respectively, influence the serum, plasma and membrane phospholipid levels of LA, ALA and long-chain polyunsaturated fatty acids during pregnancy, lactation, and may influence an infant's IQ, atopy and coronary heart disease (CHD) risk. At low intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), polymorphisms at the 5-lipoxygenase (5-LO) level increase the risk for CHD whereas polymorphisms at cyclooxgenase-2 increase the risk for prostate cancer. At high intakes of LA the risk for breast cancer increases. EPA and DHA influence gene expression. In future, intervention studies on the biological effects of LA, ALA and LC-PUFAs, and the effects of genetic variants in FADS1 and FADS2, 5-LO and cyclooxygenase-2 should be taken into consideration both in the determination of nutritional requirements and chronic disease risk. Furthermore, genome-wide association studies need to include environmental exposures and include diet in the interaction between genetic variation and disease association.
Crystallization and preliminary X-ray data of the FadA adhesin from Fusobacterium nucleatum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nithianantham, Stanley; Xu, Minghua; Wu, Nan
2006-12-01
The FadA adhesin from F. nucleatum, which is involved in bacterial attachment and invasion of human oral epithelial cells, has been crystallized in space group P6{sub 1} or P6{sub 5}, and X-ray data have been collected to 1.9 Å resolution. Fusobacterium nucleatum is a Gram-negative anaerobe prevalent in the oral cavity that is associated with periodontal disease, preterm birth and infections in other parts of the human body. The bacteria attach to and invade epithelial and endothelial cells in the gum tissue and elsewhere via a 13.7 kDa adhesin protein FadA (Fusobacterium adhesin A). FadA exists in two forms: themore » intact form (pre-FadA), consisting of 129 amino acids, and the mature form (mFadA), which lacks an 18-residue signal sequence. Both forms have been expressed in Escherichia coli and purified. mFadA has been crystallized. The crystals belong to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 59.3, c = 125.7 Å and one molecule per asymmetric unit. The crystals exhibit an unusually high solvent content of 74%. Synchrotron X-ray data have been collected to 1.9 Å. The crystals are suitable for X-ray structure determination. The crystal structure of FadA may provide a basis for the development of therapeutic agents to combat periodontal disease and other infections associated with F. nucleatum.« less
Ding, Zhen; Liu, Guo-Liang; Li, Xiang; Chen, Xue-Yan; Wu, Yi-Xia; Cui, Can-Can; Zhang, Xi; Yang, Guang; Xie, Lin
2016-06-01
The fatty acid desaturase (FADS) controls polyunsaturated fatty acid (PUFA) synthesis in human tissues and breast milk. Evaluate the influence of 10 single nucleotide polymorphisms (SNPs) and various haplotypes in the FADS gene cluster (FADS1, FADS2, FADS3) on PUFA concentration in the breast milk of 209 healthy Chinese women. PUFA concentrations were measured in breast milk using gas chromatography and genotyping was performed using the Sequenom Mass Array system. A SNP (rs1535) and 2-locus haplotypes (rs3834458-rs1535, rs1535-rs174575) in the FADS2 gene were associated with concentrations of γ-linoleic acid (GLA) and arachidonic acid (AA) in breast milk. Likewise, in the FADS1 gene, a 2-locus constructed haplotype (rs174547-rs174553) also affected GLA and AA concentration (P<0.05 for all). Minor allele carriers of the SNP and haplotypes described above had lower concentrations of GLA and AA. In the FADS2 gene, the 3-locus haplotype rs3834458-rs1535-rs174575, significantly affected concentrations of GLA but not AA. Pairwise comparison showed that individuals major homozygous for the SNP rs1000778 in the FADS3 gene had lower concentrations of ALA and linoleic acid (LA) in their breast milk. Polymorphisms in the FADS gene cluster influence PUFA concentrations in the breast milk of Chinese Han lactating women. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morioka, Norimitsu, E-mail: mnori@hiroshima-u.ac.jp; Tomori, Mizuki; Zhang, Fang Fang
Under physiological conditions, astrocytes maintain homeostasis in the CNS. Following inflammation and injury to the CNS, however, activated astrocytes produce neurotoxic molecules such as cytokines and chemokines, amplifying the initial molecular-cellular events evoked by inflammation and injury. Nuclear receptors REV-ERBα and REV-ERBβ (REV-ERBs) are crucial in the regulation of inflammation- and metabolism-related gene transcription. The current study sought to elucidate a role of REV-ERBs in rat C6 astroglial cells on the expression of inflammatory molecules following stimulation with the neuroinflammatory cytokine tumor necrosis factor (TNF). Stimulation of C6 cells with TNF (10 ng/ml) significantly increased the mRNA expression of CCL2, interleukin-6more » (IL-6), inducible nitric oxide synthase (iNOS), and matrix metalloprotease (MMP)-9, but not fibroblast growth factor-2 (FGF-2), cyclooxygenase-2 (COX-2) and MMP-2. Treatment with either REV-ERB agonists GSK4112 or SR9009 significantly blocked TNF-induced upregulation of CCL2 mRNA and MMP-9 mRNA, but not IL-6 mRNA and iNOS mRNA expression. Furthermore, treatment with RGFP966, a selective histone deacetylase 3 (HDAC3) inhibitor, potently reversed the inhibitory effects of GSK4112 on TNF-induced expression of MMP-9 mRNA, but not CCL2 mRNA. Expression of Rev-erbs mRNA in C6 astroglial cells, primary cultured rat cortical and spinal astrocytes was confirmed by reverse transcription polymerase chain reaction. Together, the findings demonstrate an anti-inflammatory effect, downregulating of MMP-9 and CCL2 transcription, of astroglial REV-ERBs activation through HDAC3-dependent and HDAC3-independent mechanisms. - Highlights: • Rev-erbα mRNA and Rev-erbβ mRNA are expressed in C6 astroglial cells. • TNF increases the expression of CCL2, IL-6, MMP-9 and iNOS mRNA. • REV-ERB activation inhibits CCL2 mRNA and MMP-9 mRNA expression. • HDAC3 activity is involved in the inhibitory effect of REV-ERB on MMP-9 induction.« less
Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer's disease.
Dorfman, Verónica Berta; Pasquini, Laura; Riudavets, Miguel; López-Costa, Juan José; Villegas, Andrés; Troncoso, Juan Carlos; Lopera, Francisco; Castaño, Eduardo Miguel; Morelli, Laura
2010-10-01
Alzheimer's disease (AD) is characterized by amyloid beta (A beta) accumulation in the brain and is classified as familial early-onset (FAD) or sporadic late-onset (SAD). Evidences suggest that deficits in the brain expression of insulin degrading enzyme (IDE) and neprilysin (NEP), both proteases involved in amyloid degradation, may promote A beta deposition in SAD. We studied by immunohistochemistry IDE and NEP cortical expression in SAD and FAD samples carrying the E280A presenilin-1 missense mutation. We showed that IDE, a soluble peptidase, is linked with aggregated A beta 40 isoform while NEP, a membrane-bound protease, negatively correlates with amyloid angiopathy and its expression in the senile plaques is independent of aggregated amyloid and restricted to SAD cases. NEP, but not IDE, is over-expressed in dystrophic neurites, both proteases are immunoreactive in activated astrocytes but not in microglia and IDE was the only one detected in astrocytes of white matter from FAD cases. Collectively, our results support the notion that gross conformational changes involved in the modification from "natively folded-active" to "aggregated-inactive" IDE and NEP may be a relevant pathogenic mechanism in SAD. (c) 2008 Elsevier Inc. All rights reserved.
Schonewille, Esther; Jaspers, Ron; Paul, Guntram; Hess, Michael
2010-06-01
By adapting a very virulent fowl adenovirus serotype 4 (FAdV-4) to a fibroblast cell line (QT35) instead of growing the virus in chicken embryo liver cells or chicken kidney cells, it was possible to attenuate the virus. Birds infected with the attenuated virus (FAdV-4/QT35) on the first day of life expressed no adverse clinical signs and no mortality. Intramuscular challenge with the virulent virus grown on chicken embryo liver cells (FAdV-4/CEL) at 21 days of life induced high mortality in previously nonvaccinated birds, whereas none of the birds vaccinated at 1 day old with FAdV-4/QT35 died due to this challenge. Applying enzyme-linked immunosorbent assay and virus neutralization assay, only a weak antibody response could be detected in some birds following vaccination, a response that increased directly after challenge. Nonvaccinated birds displayed a delayed development of antibodies after challenge as compared to previously vaccinated birds. Even birds that did not develop a measurable neutralizing antibody titer prior to challenge were protected from the adverse effects of the virulent FAdV-4/CEL, a phenomenon not described so far for FAdVs. Altogether, the present investigation underlines that neutralizing antibodies are not needed to protect chickens against a severe infection with a virulent fowl adenovirus.
Baumgartner, Jeannine; Smuts, Cornelius M; Malan, Linda; Arnold, Myrtha; Yee, Benjamin K; Bianco, Laura E; Boekschoten, Mark V; Müller, Michael; Langhans, Wolfgang; Hurrell, Richard F; Zimmermann, Michael B
2012-08-01
Concurrent deficiencies of iron (Fe) (ID) and (n-3) fatty acids [(n-3)FAD)] in rats can alter brain monoamine pathways and impair learning and memory. We examined whether repletion with Fe and DHA/EPA, alone and in combination, corrects the deficits in brain monoamine activity (by measuring monoamines and related gene expression) and spatial working and reference memory [by Morris water maze (MWM) testing] associated with deficiency. Using a 2 × 2 design, male rats with concurrent ID and (n-3)FAD [ID+(n-3)FAD] were fed an Fe+DHA/EPA, Fe+(n-3)FAD, ID+DHA/EPA, or ID+(n-3)FAD diet for 5 wk [postnatal d 56-91]. Biochemical measures and MWM performance after repletion were compared to age-matched control rats. The provision of Fe in combination with DHA/EPA synergistically increased Fe concentrations in the olfactory bulb (OB) (Fe x DHA/EPA interaction). Similarly, provision of DHA/EPA in combination with Fe resulted in higher brain DHA concentrations than provision of DHA alone in the frontal cortex (FC) and OB (P < 0.05). Dopamine (DA) receptor D1 was upregulated in the hippocampus of Fe+DHA/EPA rats (fold-change = 1.25; P < 0.05) and there were significant Fe x DHA/EPA interactions on serotonin (5-HT) in the OB and on the DA metabolite dihydroxyphenylacetic acid in the FC and striatum. Working memory performance was impaired in ID+DHA/EPA rats compared with controls (P < 0.05). In the reference memory task, Fe+DHA/EPA improved learning behavior, but Fe or DHA/EPA alone did not. These findings suggest that feeding either Fe or DHA/EPA alone to adult rats with both ID and (n-3)FAD affects the DA and 5-HT pathways differently than combined repletion and exacerbates the cognitive deficits associated with combined deficiency.
Genetic variation of six desaturase genes in flax and their impact on fatty acid composition.
Thambugala, Dinushika; Duguid, Scott; Loewen, Evelyn; Rowland, Gordon; Booker, Helen; You, Frank M; Cloutier, Sylvie
2013-10-01
Flax (Linum usitatissimum L.) is one of the richest plant sources of omega-3 fatty acids praised for their health benefits. In this study, the extent of the genetic variability of genes encoding stearoyl-ACP desaturase (SAD), and fatty acid desaturase 2 (FAD2) and 3 (FAD3) was determined by sequencing the six paralogous genes from 120 flax accessions representing a broad range of germplasm including some EMS mutant lines. A total of 6 alleles for sad1 and sad2, 21 for fad2a, 5 for fad2b, 15 for fad3a and 18 for fad3b were identified. Deduced amino acid sequences of the alleles predicted 4, 2, 3, 4, 6 and 7 isoforms, respectively. Allele frequencies varied greatly across genes. Fad3a, with 110 SNPs and 19 indels, and fad3b, with 50 SNPs and 5 indels, showed the highest levels of genetic variations. While most of the SNPs and all the indels were silent mutations, both genes carried nonsense SNP mutations resulting in premature stop codons, a feature not observed in sad and fad2 genes. Some alleles and isoforms discovered in induced mutant lines were absent in the natural germplasm. Correlation of these genotypic data with fatty acid composition data of 120 flax accessions phenotyped in six field experiments revealed statistically significant effects of some of the SAD and FAD isoforms on fatty acid composition, oil content and iodine value. The novel allelic variants and isoforms identified for the six desaturases will be a resource for the development of oilseed flax with unique and useful fatty acid profiles.
NASA Astrophysics Data System (ADS)
Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.
2008-09-01
The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.
Vasques, Enio Rodrigues; Cunha, José Eduardo Monteiro; Kubrusly, Marcia Saldanha; Coelho, Ana Maria; Sanpietri, Sandra N; Nader, Helena B; Tersariol, Ivarne L S; Lima, Marcelo A; Chaib, Eleazar; D'Albuquerque, Luiz Augusto Carneiro
2018-06-21
Intracellular calcium overload is known to be a precipitating factor of pancreatic cell injury in acute pancreatitis (AP). Intracellular calcium homeostasis depends of Plasmatic Membrane Calcium ATPase (PMCA), Sarcoplasmic Endothelial Reticulum Calcium ATPase 2 (SERCA 2) and the Sodium Calcium Exchanger (NCX1). The antioxidant melatonin (Mel) and Trisulfate Disaccharide (TD) that accelerates NCX1 action could reduce the cell damage determined by the AP. To evaluate m-RNA expressions of SERCA2 and NCX1 in acute pancreatitis induced by sodium taurocholate in Wistar rats pre-treated with melatonin and/or TD. Wistar rats were divided in groups: 1) without AP; 2) AP without pre-treatment; 3) AP and Melatonin; 4) AP and TD; 5) AP and Melatonin associated to TD. Pancreatic tissue samples were collected for detection of SERCA2 and NCX1 m-R NA levels by polymerase chain reaction (PCR). Increased m-RNA expression of SERCA2 in the melatonin treated group, without increase of m-RNA expression of the NCX1. The TD did not affect levels of SERCA2 and NCX1 m-RNA expressions. The combined melatonin and TD treatment reduced the m-RNA expression of SERCA2. The effect of melatonin is restricted to increased m-RNA expression of SERCA2. Although TD does not affect gene expression, its action in accelerating calcium exchanger function can explain the slightest expression of SERCA2 m-RNA when associated with Melatonin, perhaps by a joint action of drugs with different and but possibly complementary mechanisms.
Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P
1999-01-01
It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429
Wagner, Nicholas; Mroczka, Andrew; Roberts, Peter D; Schreckengost, William; Voelker, Toni
2011-09-01
Suppression of the microsomal ω6 oleate desaturase during the seed development of soybean (Glycine max) with the 420-bp soybean FAD2-1A intron as RNAi trigger shifts the conventional fatty acid composition of soybean oil from 20% oleic and 60% polyunsaturates to one containing greater than 80% oleic acid and less than 10% polyunsaturates. To determine whether RNAi could be attenuated by reducing the trigger fragment length, transgenic plants were generated to express successively shorter 5' or 3' deletion derivatives of the FAD2-1A intron. We observed a gradual reduction in transcript suppression with shorter trigger fragments. Fatty acid composition was less affected with shorter triggers, and triggers less than 60 bp had no phenotypic effect. No trigger sequences conferring significantly higher or lower suppression efficiencies were found, and the primary determinant of suppression effect was sequence length. The observed relationship of transcript suppression with the induced fatty acid phenotype indicates that RNAi is a saturation process and not a step change between suppressed and nonsuppressed states and intermediate suppression states can be achieved. © 2010 Monsanto. Plant Biotechnology Journal © 2010 Society for Experimental Biology and Blackwell Publishing Ltd.
Matern, Andreas; Pedrolli, Danielle; Großhennig, Stephanie; Johansson, Jörgen; Mack, Matthias
2016-12-01
The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are produced by the bacteria Streptomyces davawensis and Streptomyces cinnabarinus Riboflavin analogs have the potential to be used as broad-spectrum antibiotics, and we therefore studied the metabolism of riboflavin (vitamin B 2 ), RoF, and AF in the human pathogen Listeria monocytogenes, a bacterium which is a riboflavin auxotroph. We show that the L. monocytogenes protein Lmo1945 is responsible for the uptake of riboflavin, RoF, and AF. Following import, these flavins are phosphorylated/adenylylated by the bifunctional flavokinase/flavin adenine dinucleotide (FAD) synthetase Lmo1329 and adenylylated by the unique FAD synthetase Lmo0728, the first monofunctional FAD synthetase to be described in bacteria. Lmo1329 generates the cofactors flavin mononucleotide (FMN) and FAD, whereas Lmo0728 produces FAD only. The combined activities of Lmo1329 and Lmo0728 are responsible for the intracellular formation of the toxic cofactor analogs roseoflavin mononucleotide (RoFMN), roseoflavin adenine dinucleotide (RoFAD), 8-demethyl-8-aminoriboflavin mononucleotide (AFMN), and 8-demethyl-8-aminoriboflavin adenine dinucleotide (AFAD). In vivo reporter gene assays and in vitro transcription/translation experiments show that the L. monocytogenes FMN riboswitch Rli96, which controls expression of the riboflavin transport gene lmo1945, is negatively affected by riboflavin/FMN and RoF/RoFMN but not by AF/AFMN. Treatment of L. monocytogenes with RoF or AF leads to drastically reduced FMN/FAD levels. We suggest that the reduced flavin cofactor levels in combination with concomitant synthesis of inactive cofactor analogs (RoFMN, RoFAD, AFMN, and AFAD) explain why RoF and AF contribute to antibiotic activity in L. monocytogenes IMPORTANCE: The riboflavin analogs roseoflavin (RoF) and 8-demethyl-8-aminoriboflavin (AF) are small molecules which are produced by Streptomyces davawensis and Streptomyces cinnabarinus RoF and AF were reported to have antibacterial activity, and we studied how these compounds are metabolized by the human bacterial pathogen Listeria monocytogenes We found that the L. monocytogenes protein Lmo1945 mediates uptake of AF and RoF and that the combined activities of the enzymes Lmo1329 and Lmo0728 are responsible for the conversion of AF and RoF to toxic cofactor analogs. Comparative studies with RoF and AF (a weaker antibiotic) suggest that the reduction in FMN/FAD levels and the formation of inactive FMN/FAD analogs explain to a large extent the antibiotic activity of AF and RoF. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Ortega Serrano, P V; Guzmán, A; Hernández-Coronado, C G; Castillo-Juárez, H; Rosales-Torres, A M
2016-12-01
The vascular endothelial growth factor (VEGF) is essential for follicular development by promoting follicular angiogenesis, as well as for the proliferation and survival of granulosa cells. The biological effects of VEGF are regulated by two membrane receptors, VEGFR1 and VEGFR2, and two soluble receptors, sVEGFR1 and sVEGFR2, which play an antagonistic role. Thus, the objective of this study was to identify the mRNA expression pattern of total VEGF, VEGFR1, VEGFR2, sVEGFR1 and sVEGFR2 in bovine preselected follicles (PRF) and post-selected follicles (POF). The mRNA expression of these five genes in both granulosa cells (GC) and theca cells (TC) was compared between follicles classified as PRF and POF based on their diameter and on their ratio of estradiol/progesterone (E2/P4). Results showed a lower expression of mRNA of sVEGFR1 and sVEGFR2 in POF than in PRF (p < .05). Regarding the mRNA expression of total VEGF, VEGFR1 and VEGFR2, there was no difference between POF and PRF follicles (p > .05). Our results showed that the mRNA expression of VEGFR2 and sVEGFR1 was more abundant than the expression of VEGFR1 and sVEGFR2, while GC was the main source of mRNA for total VEGF. On the other hand, TC was the follicular compartment where the receptors were most expressed. Our results suggest that non-dominant follicles maintain a greater concentration of the mRNA expression of both membrane and soluble VEGF receptors. On the other hand, follicular dominance is related to a reduction in the mRNA expression of sVEGFR1 and sVEGFR2, which may favour VEGF binding with VEGFR2 and, hence, improve the follicular health and development. © 2016 Blackwell Verlag GmbH.
Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.
Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J
2005-01-01
Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.
Schachner, Anna; Marek, Ana; Grafl, Beatrice; Hess, Michael
2016-04-15
Forty-eight fowl aviadenoviruses (FAdVs) isolated from recent IBH outbreaks across Europe were investigated, by utilizing for the first time the two major adenoviral antigenic domains, hexon loop-1 and fiber, for compound molecular characterization of IBH-associated FAdVs. Successful target gene amplification, following virus isolation in cell culture or from FTA-card samples, demonstrated presence of FAdVs in all cases indicative for IBH. Based on hexon loop-1 analysis, 31 European field isolates exhibited highest nucleotide identity (>97.2%) to reference strains FAdV-2 or -11 representing FAdV-D, while 16 and one European isolates shared >96.0% nucleotide identity with FAdV-8a and -8b, or FAdV-7, the prototype strains representing FAdV-E. These results extend recognition of specific FAdV-D and FAdV-E affiliate genotypes as causative agents of IBH to the European continent. In all isolates, species specificity determined by fiber gene analysis correlated with hexon-based typing. A threshold of 72.0% intraspecies nucleotide identity between fibers from investigated prototype and field strains corresponded with demarcation criteria proposed for hexon, suggesting fiber-based analysis as a complementary tool for molecular FAdV typing. A limited number of strains exhibited inconsistencies between hexon and fiber subclustering, indicating potential constraints for single-gene based typing of those FAdVs. Within FAdV-D, field isolate fibers shared a high degree of nucleotide (>96.7%) and aa (>95.8%) identity, while FAdV-E field isolate fibers displayed greater nucleotide divergence of up to 22.6%, resulting in lower aa identities of >81.7%. Furthermore, comparison with FAdVs from IBH outbreaks outside Europe revealed close genetic relationship in the fiber, independent of the strains' geographic origin. Copyright © 2016 Elsevier B.V. All rights reserved.
FAD-induced in vitro activation of glutathione reductase in the lens of B2 deficient rats.
Ono, S; Hirano, H
1984-04-01
We studied the FAD-induced in vitro stimulation of lenticular glutathione reductase in riboflavin-deficient rats. The stimulatory effect of FAD on lenticular glutathione reductase in rats fed a B2-deficient diet for 4 weeks was remarkably higher than in paired control rats fed a B2-supplemented basal diet and control rats had ad libitum access to a B2-supplemented basal diet. The in vitro FAD stimulation effect on rat lenticular glutathione reductase represents a sensitive indicator of the B2 deficient status.
FAD oxidizes the ERO1-PDI electron transfer chain: The role of membrane integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, Eszter; Nardai, Gabor; Mandl, Jozsef
2005-12-16
The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD. Microsomal membrane integrity was mandatory for all FAD-related oxidation steps downstream of Ero1. The PDI inhibitor bacitracin could inhibit FAD-mediated oxidation of microsomal proteins and PDI, but did not hinder the FAD-driven oxidation of Ero1. Our data demonstrated that Ero1more » can utilize FAD as an electron acceptor and that FAD-driven protein oxidation goes through the Ero1-PDI pathway and requires the integrity of the endoplasmic reticulum membrane. Our findings prompt further studies to elucidate the membrane-dependent steps of PDI oxidation and the role of FAD in redox folding.« less
Wojciechowska, A; Mlynarczuk, J; Kotwica, J
2017-01-15
Disorders in the barrier function and secretory activity of the placenta can be caused by xenobiotics (XB) present in the environment and their accumulation in tissues of living organisms. Thus, the aim of this study was to investigate the effect of 1,1,1-trichloro-2,2,-bis-4-chlorophenyl-ethane (DDT) and its metabolite 1,1-dichloro-2,2-bis-4-chlorophenyl-ethene (DDE) (for 24 or 48h) at doses of 1, 10 or 100ng/ml on the function of cow placentome sections in the second trimester of pregnancy. DDT and DDE affected neither (P>0.05) the viability nor hypoxia inducible factor 1 (HIF1α) mRNA expression of the sections. XB decreased (P<0.05) connexin (Cx) 26, 32, 43 and placenta-specific 1 (PLAC-1) mRNA expression but did not affect (P>0.05) keratin 8 (KRT8) mRNA expression. DDT and DDE also reduced (P<0.05) prostaglandin F2α (PGF2α) synthase (PGFS) mRNA expression, while DDT increased (P<0.05) prostaglandin E2 (PGE2) synthase (PGES) mRNA expression. Neither cyclooxygenase 2 (COX-2) mRNA expression nor PGF2α and PGE2 secretion were affected. Both DDT and DDE increased (P<0.05) neurophysin I/oxytocin (NP1/OT) mRNA expression and oxytocin (OT), oestradiol (E2) and progesterone (P4) secretion while DDT stimulated only 3β-hydroxysteroid dehydrogenase (3βHSD) and cholesterol side-chain cleavage enzyme (CYP11A1) mRNA expression (P<0.05). In summary, DDT and DDE impaired the barrier function and secretory activity of the placenta. Thus, these compounds can disrupt trophoblast invasion, myometrium contractility and gas/nutrient exchange throughout pregnancy in cows. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Larsson, S; Hotchkiss, G; Andäng, M; Nyholm, T; Inzunza, J; Jansson, I; Ahrlund-Richter, L
1994-01-01
We have generated three artificial hammerhead ribozymes, denoted 'Rz-b', 'Rz-c' and 'Rz-d', with different specificities for exon II of the mouse beta-2-microglobulin (beta 2M) mRNA. In this study we tested for ribozyme mediated reduction of beta 2M mRNA in a cell line and in transgenic mice. Transfections of either of the Rz-b, Rz-c or Rz-d plasmids into a mouse cell-line (NIH/3T3) revealed reductions of beta 2M mRNA substrate in each case. Ribozyme expression in individual transfected clones was accompanied with an up to 80% reduction of beta 2M mRNA levels. Rz-c was selected for a transgenic study. Seven Rz-c transgenic founder animals were identified from which three ribozyme expressing families were established and analysed. Expression of the ribozyme transgene was tested for and detected in lung, kidney and spleen. Expression was accompanied with reduction of the beta 2M mRNA levels of heterozygous (Rz+/-) animals compared to non-transgenic litter mates. The effect was most pronounced in lung with more than 90% beta 2M mRNA reduction in individual mice. In summary, expression of our ribozymes in a cell free system, in a cell-line and in transgenic mice were all accompanied with reductions of beta 2M mRNA levels. Images PMID:8036151
Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals.
Carmona-Antoñanzas, Greta; Tocher, Douglas R; Martinez-Rubio, Laura; Leaver, Michael J
2014-01-15
Lipid content and composition in aquafeeds have changed rapidly as a result of the recent drive to replace ecologically limited marine ingredients, fishmeal and fish oil (FO). Terrestrial plant products are the most economic and sustainable alternative; however, plant meals and oils are devoid of physiologically important cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and arachidonic (ARA) acids. Although replacement of dietary FO with vegetable oil (VO) has little effect on growth in Atlantic salmon (Salmo salar), several studies have shown major effects on the activity and expression of genes involved in lipid homeostasis. In vertebrates, sterols and LC-PUFA play crucial roles in lipid metabolism by direct interaction with lipid-sensing transcription factors (TFs) and consequent regulation of target genes. The primary aim of the present study was to elucidate the role of key TFs in the transcriptional regulation of lipid metabolism in fish by transfection and overexpression of TFs. The results show that the expression of genes of LC-PUFA biosynthesis (elovl and fads2) and cholesterol metabolism (abca1) are regulated by Lxr and Srebp TFs in salmon, indicating highly conserved regulatory mechanism across vertebrates. In addition, srebp1 and srebp2 mRNA respond to replacement of dietary FO with VO. Thus, Atlantic salmon adjust lipid metabolism in response to dietary lipid composition through the transcriptional regulation of gene expression. It may be possible to further increase efficient and effective use of sustainable alternatives to marine products in aquaculture by considering these important molecular interactions when formulating diets. © 2013.
Brené, S; Lindefors, N; Herrera-Marschitz, M; Persson, H
1990-01-01
In situ hybridization was used to study dopamine D2 receptor (D2R) and choline acetyltransferase (ChAT) mRNA expression in neurons of the rat forebrain, both on control animals and after a unilateral 6-hydroxydopamine (6-OHDA) lesion of midbrain dopamine neurons. D2R mRNA expressing neurons were seen in regions which are known to be heavily innervated by midbrain dopamine fibers such as caudate-putamen, nucleus accumbens and olfactory tubercle. ChAT mRNA expressing neurons were seen in caudate-putamen, nucleus accumbens and septal regions including vertical limb of the diagonal band. In caudate-putamen, approximately 55% of the medium sized neurons, which is the predominating neuronal cell-size in this region, were specifically labeled with the D2R probe. In addition, approximately 95% of the large size neurons in caudate-putamen were specifically labeled with both the D2R and ChAT probes, suggesting that most cholinergic neurons in the caudate-putamen express D2R mRNA. After a unilateral lesion of midbrain dopamine neurons, no change in the level of either D2R or ChAT mRNA were seen in the large size intrinsic cholinergic neurons in caudate-putamen. Similarly, no evidence was obtained for altered levels of D2R mRNA in medium size neurons in medial caudate-putamen, or nucleus accumbens. However, an increase in the number of medium size neurons expressing D2R mRNA was observed in the lateral part of the dopamine deafferented caudate-putamen. Thus, it appears that midbrain dopamine deafferentation causes an increase in D2R mRNA expression in a subpopulation of medium size neurons in the lateral caudate-putamen.
Parra, Mario A; Mikulan, Ezequiel; Trujillo, Natalia; Sala, Sergio Della; Lopera, Francisco; Manes, Facundo; Starr, John; Ibanez, Agustin
2017-01-01
Alzheimer's disease (AD) as a disconnection syndrome which disrupts both brain information sharing and memory binding functions. The extent to which these two phenotypic expressions share pathophysiological mechanisms remains unknown. To unveil the electrophysiological correlates of integrative memory impairments in AD towards new memory biomarkers for its prodromal stages. Patients with 100% risk of familial AD (FAD) and healthy controls underwent assessment with the Visual Short-Term Memory binding test (VSTMBT) while we recorded their EEG. We applied a novel brain connectivity method (Weighted Symbolic Mutual Information) to EEG data. Patients showed significant deficits during the VSTMBT. A reduction of brain connectivity was observed during resting as well as during correct VSTM binding, particularly over frontal and posterior regions. An increase of connectivity was found during VSTM binding performance over central regions. While decreased connectivity was found in cases in more advanced stages of FAD, increased brain connectivity appeared in cases in earlier stages. Such altered patterns of task-related connectivity were found in 89% of the assessed patients. VSTM binding in the prodromal stages of FAD are associated to altered patterns of brain connectivity thus confirming the link between integrative memory deficits and impaired brain information sharing in prodromal FAD. While significant loss of brain connectivity seems to be a feature of the advanced stages of FAD increased brain connectivity characterizes its earlier stages. These findings are discussed in the light of recent proposals about the earliest pathophysiological mechanisms of AD and their clinical expression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yang, K; Lamprecht, S A; Liu, Y; Shinozaki, H; Fan, K; Leung, D; Newmark, H; Steele, V E; Kelloff, G J; Lipkin, M
2000-09-01
In this study we investigated the chemopreventive effects of quercetin and rutin when added to standard AIN-76A diet and fed to normal and azoxymethane (AOM)-treated mice. Early changes in colonic mucosa were analyzed, including colonic cell proliferation, apoptotic cell death, cyclin D(1) expression and focal areas of dysplasia (FAD). The findings show that the number of colonic epithelial cells per crypt column increased (P: < 0.01) in each normal mouse group fed the flavonoids; AOM administration increased colonic crypt cell proliferation and resulted in a marked rise of bromodeoxyuridine-labeled cells in the lower proliferative zone of the crypt. Both supplementary dietary quercetin and rutin increased the apoptotic index and caused a redistribution of apoptotic cells along the crypt axis in normal mice fed a standard AIN-76A diet. The number of apoptotic cells/column and apoptotic indices markedly increased (P: < 0.01) in the AOM-treated group compared with untreated animals; apoptotic cells expanded throughout the colonic crypts after flavonoid supplementation and AOM administration. Positive cyclin D(1) expression was detected in mice on diets supplemented either with quercetin (P: < 0.01) or rutin (P: < 0.05). AOM administration resulted in the formation of FAD. Both the number of mice exhibiting FAD and the total numer of FAD observed were significantly reduced (P: < 0.01) in AOM-treated animals fed flavonoids compared with mice maintained on the standard AIN-76A diet. Surprisingly, however, quercetin alone was able to induce FAD in 22% of normal mice fed the standard AIN-76A diet.
Presenilin 1 mutations influence processing and trafficking of the ApoE receptor apoER2.
Wang, Wei; Moerman-Herzog, Andrea M; Slaton, Arthur; Barger, Steven W
2017-01-01
Presenilin (PS)-1 is an intramembrane protease serving as the catalytic component of γ-secretase. Mutations in the PS1 gene are the most common cause of familial Alzheimer's disease (FAD). The low-density lipoprotein (LDL)-receptor family member apoER2 is a γ-secretase substrate that has been associated with AD in several ways, including acting as a receptor for apolipoprotein E (ApoE). ApoER2 is processed by γ-secretase into a C-terminal fragment (γ-CTF) that appears to regulate gene expression. FAD PS1 mutations were tested for effects on apoER2. PS1 mutation R278I showed impaired γ-secretase activity for apoER2 in the basal state or after exposure to Reelin. PS1 M146V mutation permitted accumulation of apoER2 CTFs after Reelin treatment, whereas no difference was seen between wild-type (WT) and M146V in the basal state. PS1 L282V mutation, combined with the γ-secretase inhibitor N-(N-[3,5-Difluorophenacetyl]-L-alanyl)-S-phenylglycine t-butyl ester, greatly reduced the cell-surface levels of apoER2 without affecting total apoER2 levels, suggesting a defect in receptor trafficking. These findings indicate that impaired processing or localization of apoER2 may contribute to the pathogenic effects of FAD mutations in PS1. Published by Elsevier Inc.
Urbatzka, R; Lutz, I; Kloas, W
2007-01-01
The key enzymes involved in the production of endogenous sex steroids are steroid-5-alpha-reductase and aromatase converting testosterone (T) into dihydrotestosterone (DHT) and into estradiol (E2), respectively. To gain more insights into the molecular mechanisms of sexual differentiation of amphibians, we determined the mRNA expression of steroid-5-alpha-reductase type1 (Srd5a1), type2 (Srd5a2) and aromatase (Aro) during ontogeny starting from the egg and ending after completion of metamorphosis in Xenopus laevis. Expression of all three enzymes was measured by means of semi-quantitative RT-PCR, determining for the first time Srd5a1 and Srd5a2 mRNA expression in amphibians. mRNA was analyzed in whole body homogenates from stage 12 to 48, while brain and gonads with kidney were studied separately from stage 48 to 66. Different ontogenetic mRNA expression patterns were observed for all genes analyzed, revealing early mRNA expression of Srd5a1 already in the egg at stage 12 whereas Srd5a2 and Aro was detected at stage 39. Sex-specific mRNA expressions of Srd5a2 and of Aro were determined in the gonads with kidney but not in brain. Srd5a2 was two-fold higher expressed in testes than in ovaries while Aro mRNA was ten-fold higher in ovaries. No gender-specific mRNA expression was observed for Srd5a1 in gonads and in brain. The ontogenetic patterns of Aro, Srd5a1 and Srd5a2 suggest that these genes are involved in sexual differentiation of gonads and brain already in early developmental stages. Especially in gonads Srd5a2 seems to be important for physiological regulation of testis development while Aro is associated with the development of ovaries.
Testosterone Regulates NUCB2 mRNA Expression in Male Mouse Hypothalamus and Pituitary Gland
Seon, Sojeong; Jeon, Daun; Kim, Heejeong; Chung, Yiwa; Choi, Narae; Yang, Hyunwon
2017-01-01
ABSTRACT Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17β-estradiol and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland. PMID:28484746
Zhang, R; Lin, Y; Zhi, L; Liao, H; Zuo, L; Li, Z; Xu, Y
2017-04-01
1. Adiponectin and its receptors (ADIPOR1 and ADIPOR2) are novel endocrine systems that act at various levels to modulate glucose and lipid metabolism. This study was designed to investigate the spatial expression of adiponectin, ADIPOR1 and ADIPOR2 genes in various tissues in Tibetan chicken. The temporal expression of adiponectin and its receptor mRNAs were also studied in adipose tissue, breast muscle and thigh muscle and the correlations of the levels of adiponectin, ADIPOR1 and ADIPOR2 mRNA with the contents of intramuscular fat in breast muscle and thigh muscle of Tibetan chicken were determined. 2. Quantitative real-time PCR detected chicken adiponectin, ADIPOR1 and ADIPOR2 mRNA transcripts in heart, liver, spleen, lung, kidney, skeletal muscle and adipose tissue. 3. Adipose tissue contained the highest amount of adiponectin mRNA followed by the kidney and liver. The expression levels of ADIPOR1 mRNA were significantly higher in adipose tissue, lung and spleen, and adipose tissue exhibited significantly higher levels of ADIPOR2 mRNA followed by the spleen and lung compared with other tissues. 4. Temporal expression profiles of adiponectin, ADIPOR1 and ADIPOR2 mRNA showed gender differences in adipose tissue and skeletal muscle at certain ages. In adipose tissue, adiponectin mRNA was higher in 154-d-old females and ADIPOR1 mRNA was higher in 154-d-old males: Adiponectin and ADIPOR2 mRNA were higher, and ADIPOR1 mRNA was lower, in thigh muscle in female compared with male chickens. 5. The correlation data showed that, except for adiponectin mRNA, the levels of ADIPOR1 and ADIPOR2 mRNA in thigh muscle of males were significantly positively correlated with IMF (r = 0.206 for the ADIPOR1 gene and r = 0.676 for the ADIPOR2 gene). 6. Taken together, it was concluded that adiponectin and the ADIPOR1 and ADIPOR2 genes are ubiquitously expressed in various tissues of Tibetan chicken and the expression of the adiponectin system is gender-dependant at certain ages in adipose tissue and skeletal muscle.
The potential role of myocardial serotonin receptor 2B expression in canine dilated cardiomyopathy.
Fonfara, Sonja; Hetzel, Udo; Oyama, Mark A; Kipar, Anja
2014-03-01
Serotonin signalling in the heart is mediated by receptor subtype 2B (5-HTR2B). A contribution of serotonin to valvular disease has been reported, but myocardial expression of 5-HTR2B and its role in canine dilated cardiomyopathy (DCM) is not known. The aim of the present study was to investigate myocardial 5-HTR2B mRNA expression in dogs with DCM and to correlate results with expression of markers for inflammation and remodelling. Myocardial samples from eight healthy dogs, four dogs with DCM, five with cardiac diseases other than DCM and six with systemic non-cardiac diseases were investigated for 5-HTR2B mRNA expression using quantitative PCR (qPCR). The results were compared to mRNA expression of selected cytokines, matrix metalloproteinases (MMP) and tissue inhibitors of matrix metalloproteinase (TIMP). Laser microdissection with subsequent qPCR and immunohistochemistry were employed to identify the cells expressing 5-HTR2B. The myocardium of control dogs showed constitutive 5-HTR2B mRNA expression. In dogs with DCM, 5-HTR2B mRNA values were significantly greater than in all other groups, with highest levels of expression in the left ventricle and right atrium. Myocytes were identified as the source of 5-HTR2B mRNA and protein. A significant positive correlation of 5-HTR2B mRNA with expression of several cytokines, MMPs and TIMPs was observed. The findings suggest that serotonin might play a role in normal cardiac structure and function and could contribute to myocardial remodelling and functional impairment in dogs with DCM. Copyright © 2013 Elsevier Ltd. All rights reserved.
Giebler, Maria; Greither, Thomas; Müller, Lisa; Mösinger, Carina; Behre, Hermann M
2018-01-01
In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5 th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.
Ni, Haifeng; Zhou, Zhen; Jiang, Bo; Yuan, Xiaoyang; Cao, Xiaolin; Huang, Guangwu; Li, Yong
2017-03-01
This study aimed to investigate the inactivation of the parkin gene by promoter methylation and its relationship with genome instability in nasopharyngeal carcinoma. Parkin was considered as a tumor suppressor gene in various types of cancers. However, its role in nasopharyngeal carcinoma is unexplored. Genomic instabilities were detected in nasopharyngeal carcinoma tissues by the random amplified polymorphic DNA. The methylation-specific polymerase chain reaction, semi-quantitative reverse transcription polymerase chain reaction, and immunohistochemical analysis were used to detect methylation and mRNA and protein expression of parkin in 54 cases of nasopharyngeal carcinoma tissues and 16 cases of normal nasopharyngeal epithelia tissues, and in 5 nasopharyngeal carcinoma cell lines (CNE1, CNE2, TWO3, C666, and HONE1) and 1 normal nasopharyngeal epithelia cell line (NP69). mRNA expression of parkin in CNE1 and CNE2 was analyzed before and after methyltransferase inhibitor 5-aza-2-deoxycytidine treatment. The relationship between promoter methylation and mRNA expression, demethylation and mRNA expression, and mRNA and protein expression of the gene and clinical factors and genomic instabilities were analyzed. The mRNA and protein expression levels were significantly reduced in 54 cases of human nasopharyngeal carcinoma compared with 16 cases of normal nasopharyngeal epithelia. Parkin-methylated cases showed significantly lower mRNA and protein expression levels compared with unmethylated cases. After 5-aza-2-deoxycytidine treatment, parkin mRNA expression was restored in CNE1 and CNE2; 92.59% (50/54) of nasopharyngeal carcinoma demonstrated genomic instability. Parkin is frequently inactivated by promoter methylation, and its mRNA and protein expression correlate with lymph node metastasis and genomic instability. Parkin deficiency probably promotes tumorigenesis in nasopharyngeal carcinoma.
Gupta, Ashish; Popowich, Shelly; Ojkic, Davor; Kurukulasuriya, Shanika; Chow-Lockerbie, Betty; Gunawardana, Thushari; Goonewardene, Kalhari; Karunarathna, Ruwani; Ayalew, Lisanework E; Ahmed, Khawaja Ashfaque; Tikoo, Suresh K; Willson, Philip; Gomis, Susantha
2018-01-29
Fowl adenovirus (FAdV) is comprised of five species (A to E) and 12 serotypes (1-7, 8a, 8b, 9-11). Inclusion body hepatitis (IBH) is caused by FAdV-7, 8a, 8b (species E) and FAdV-2 and 11 (species D). Commercial vaccines against IBH are not available in Canada. Autogenous FAdV broiler breeder vaccines are now used in some areas where outbreaks of IBH are occurring. The objective of this study was to evaluate the efficacy of a bivalent (species D and E) live and an inactivated FAdV broiler breeder vaccine in protecting broiler chicks against IBH through maternal antibody (MtAb) transfer. FAdV seronegative broiler breeders (n = 300/group) received either a live or inactivated bivalent (FAdV-8b-SK + FAdV-11-1047) vaccine. The live vaccine (1 × 10 4 TCID 50 of each virus/bird) was given orally once at 16 weeks of age and the inactivated vaccine (1 × 10 6 TCID 50 of each virus + 20% Emulsigen D) was given intramuscularly at 16 and 19 weeks of age. Controls (n = 150) were given saline orally. The inactivated vaccine group was boosted 3 weeks later with the same vaccine. Neutralizing antibodies (NAb) in sera (n = 10) were detected at 19, 22, 30 and 48 weeks of age. NAb were able to neutralize various FAdV serotypes within species D and E. Mean NAb were similar in the both live and killed vaccine groups at 19, 30 and 48 weeks and ranged from 2.4 to 3.7 log 10 . Approximately 26 ± 7% of MtAbs were passively transferred through eggs to day-old chicks. Progeny challenged with a lethal dose (1 × 10 7 TCID 50 /bird intramuscularly) of FAdV-8b-SK, FAdV-11-1047, or FAdV-2-685 (n = 90/group) at 14 days post-hatch (dph) showed 98-100% protection in broiler chicks to homologous or heterologous FAdV challenges. Our data suggests that a bivalent live and an inactivated FAdV vaccine are equally effective and have the potential for the control of IBH. Copyright © 2017 Elsevier Ltd. All rights reserved.
Adams, M B; McMillen, I C
2000-01-01
We have investigated adrenal mRNA expression of the catecholamine synthetic enzymes tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) following acute hypoxia in fetal sheep before (< 105 days gestation, n = 20) and after (> 125 days gestation, n = 20) the development of adrenal innervation and following pretreatment with the nicotinic receptor anatgonist hexamethonium (n = 12). Total RNA was extracted from fetal adrenal glands collected at specific time points at 3-20 h after the onset of either hypoxia (∼50% reduction in fetal arterial oxygen saturation (SO2) for 30 min), or normoxia. Before 105 days, there was a decrease in adrenal TH mRNA expression at 20 h after hypoxia and adrenal TH mRNA expression was directly related to the changes in arterial PO2 measured during normoxia and hypoxia. After 125 days, adrenal TH mRNA levels were suppressed for up to 12 h following hypoxia. In both age groups, adrenal PNMT mRNA expression increased at 3-5 h after hypoxia and was inversely related to the changes in fetal arterial PO2 during normoxia or hypoxia. After 125 days, the administration of hexamethonium (25 mg kg−1, I. V.) reduced TH mRNA but not PNMT mRNA expression after normoxia. After hexamethonium pretreatment, there was no significant change in either adrenal TH or PNMT mRNA expression following hypoxia. We conclude that acute hypoxia differentially regulates adrenal TH and PNMT mRNA expression in the fetal sheep both before and after the development of adrenal innervation. After the development of adrenal innervation, however, the effect of acute hypoxia upon adrenal TH and PNMT mRNA expression is dependent upon neurogenic input acting via nicotinic receptors. PMID:11118487
Schwarz, Alexander P; Trofimov, Alexander N; Zubareva, Olga E; Lioudyno, Victoria I; Kosheverova, Vera V; Ischenko, Alexander M; Klimenko, Victor M
2017-08-30
Long (D2L) and short (D2S) isoform of the D2 dopamine receptor are believed to play different roles in behavioral regulation. However, little is known about differential regulation of these isoforms mRNA expression during the process of learning in physiological and pathological states. In this study, we have investigated the combined effect of training in active avoidance (AA) paradigm and chronic early life treatment with pro-inflammatory cytokine interleukin (IL)-1β (1μg/kg i.p., P15-21) on D2S and D2L dopamine receptor mRNA expression in the medial prefrontal cortex (mPFC) of adult rats. We have shown differential regulation of D2 short and long mRNA isoform expression in the mPFC. There was no effect of AA-training on D2S mRNA expression, while D2L mRNA was downregulated in AA-trained control (intact and saline-treated) animals, and this effect was not observed in rats treated with IL-1β. D2S mRNA expression level negatively correlated with learning ability within control (saline-treated and intact) groups but not in IL-1β-treated animals. Thus, prefrontal expression of distinct D2 dopamine receptor splice variants is supposed to be implicated in cognitive decline caused by early life immune challenge. Copyright © 2017 Elsevier B.V. All rights reserved.
Joshi, Aditi; Ringman, John M; Lee, Albert S; Juarez, Kevin O; Mendez, Mario F
2012-10-01
Although familial Alzheimer's disease (FAD) is an early onset AD (EAD), most patients with EAD do not have a familial disorder. Recent guidelines recommend testing for genes causing FAD only in those EAD patients with two first-degree relatives. However, some patients with FAD may lack a known family history or other indications for suspecting FAD but might nonetheless be carriers of FAD mutations. The study was aimed to identify clinical features that distinguish FAD from non-familial EAD (NF-EAD). A retrospective review of a university-based cohort of 32 FAD patients with PSEN1-related AD and 81 with NF-EAD was conducted. The PSEN1 patients, compared to the NF-EAD patients, had an earlier age of disease onset (41.8 ± 5.2 vs. 55.9 ± 4.8 years) and, at initial assessment, a longer disease duration (5.1 ± 3.4 vs. 3.3 ± 2.6 years) and lower MMSE scores (10.74 ± 8.0 vs. 20.95 ± 5.8). Patients with NF-EAD were more likely to present with non-memory deficits, particularly visuospatial symptoms, than were FAD patients. When age, disease duration, and MMSE scores were controlled in a logistical regression model, FAD patients were more likely to have significant headaches, myoclonus, gait abnormality, and pseudobulbar affect than those with NF-EAD. In addition to a much younger age of onset, FAD patients with PSEN1 mutations differed from those with NF-EAD by a history of headaches and pseudobulbar affect, as well as myoclonus and gait abnormality on examination. These may represent differences in pathophysiology between FAD and NF-EAD and in some contexts such findings should lead to genetic counseling and appropriate recommendations for genetic testing for FAD.
Ringman, John M.; Lee, Albert S.; Juarez, Kevin O.; Mendez, Mario F.
2012-01-01
Although familial Alzheimer’s disease (FAD) is an early onset AD (EAD), most patients with EAD do not have a familial disorder. Recent guidelines recommend testing for genes causing FAD only in those EAD patients with two first-degree relatives. However, some patients with FAD may lack a known family history or other indications for suspecting FAD but might nonetheless be carriers of FAD mutations. The study was aimed to identify clinical features that distinguish FAD from non-familial EAD (NF-EAD). A retrospective review of a university-based cohort of 32 FAD patients with PSEN1-related AD and 81 with NF-EAD was conducted. The PSEN1 patients, compared to the NF-EAD patients, had an earlier age of disease onset (41.8 ± 5.2 vs. 55.9 ± 4.8 years) and, at initial assessment, a longer disease duration (5.1 ± 3.4 vs. 3.3 ± 2.6 years) and lower MMSE scores (10.74 ± 8.0 vs. 20.95 ± 5.8). Patients with NF-EAD were more likely to present with non-memory deficits, particularly visuospatial symptoms, than were FAD patients. When age, disease duration, and MMSE scores were controlled in a logistical regression model, FAD patients were more likely to have significant headaches, myoclonus, gait abnormality, and pseudobulbar affect than those with NF-EAD. In addition to a much younger age of onset, FAD patients with PSEN1 mutations differed from those with NF-EAD by a history of headaches and pseudobulbar affect, as well as myoclonus and gait abnormality on examination. These may represent differences in pathophysiology between FAD and NF-EAD and in some contexts such findings should lead to genetic counseling and appropriate recommendations for genetic testing for FAD. PMID:22460587
Li, Hua-Xiang; Lu, Zhen-Ming; Zhu, Qing; Gong, Jin-Song; Geng, Yan; Shi, Jin-Song; Xu, Zheng-Hong; Ma, Yan-He
2017-09-01
Medicinal mushroom Antrodia camphorata sporulate large numbers of arthroconidia in submerged fermentation, which is rarely reported in basidiomycetous fungi. Nevertheless, the molecular mechanisms underlying this asexual sporulation (conidiation) remain unclear. Here, we used comparative transcriptomic and proteomic approaches to elucidate possible signaling pathway relating to the asexual sporulation of A. camphorata. First, 104 differentially expressed proteins and 2586 differential cDNA sequences during the culture process of A. camphorata were identified by 2DE and RNA-seq, respectively. By applying bioinformatics analysis, a total of 67 genes which might play roles in the sporulation were obtained, and 18 of these genes, including fluG, sfgA, SfaD, flbA, flbB, flbC, flbD, nsdD, brlA, abaA, wetA, ganB, fadA, PkaA, veA, velB, vosA, and stuA might be involved in a potential FluG-mediated signaling pathway. Furthermore, the mRNA expression levels of the 18 genes in the proposed FluG-mediated signaling pathway were analyzed by quantitative real-time PCR. In summary, our study helps elucidate the molecular mechanisms underlying the asexual sporulation of A. camphorata, and provides also useful transcripts and proteome for further bioinformatics study of this valuable medicinal mushroom. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Teng; Jin, Qianyue; Ding, Peiyang; Wang, Yinbiao; Chai, Yongxiao; Li, Yafei; Liu, Xiao; Luo, Jun; Zhang, Gaiping
2016-11-18
In several parts of China, there have been a large number of hydropericardium syndrome (HPS) outbreaks caused by serotype 4 fowl adenovirus (FAdV-4) in broiler chickens since 2015. These outbreak-associated FAdV-4 strains were distinct from previous circulating strains which did not lead to severe HPS outbreaks. To better understand the molecular epidemiology of the currently circulating FAdV strains for effective diagnosis and treatment of HPS, we isolated 12 HPS outbreak-associated FAdV-4 strains from different regions in central China and investigated their molecular characteristics by performing phylogenetic analyses based on the hexon genes. Our results indicated the FAdV-4 strains in this study all belonged to serotype FAdV-4, species FAdV-C. And in comparison with ON1, KR5, MX-SHP95, PK-01, PJ-06 strains within the cluster where outbreak-associated FAdV-4 strains were located, the nucleotide sequence divergence were 1.31, 1.10, 1.42, 2.77 and 2.84%, respectively. Phylogenetic analyses revealed the hexon genes of the 12 outbreak-associated strains clustered to a relatively independent branch of the tree, and evolved from the same ancestor and we suggested that these outbreak-associated FAdV-4 strains originate from earlier strains in India.
Gene Expression Signature in Adipose Tissue of Acromegaly Patients
Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave
2015-01-01
To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292
CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients
Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Kappler, Matthias
2017-01-01
The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (rs = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients’ disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression. PMID:29215551
CMG2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients.
Greither, Thomas; Wedler, Alice; Rot, Swetlana; Keßler, Jacqueline; Kehlen, Astrid; Holzhausen, Hans-Jürgen; Bache, Matthias; Würl, Peter; Taubert, Helge; Kappler, Matthias
2017-12-07
The capillary morphogenesis gene 2 (CMG2), also known as the anthrax toxin receptor 2 (ANTXR2), is a transmembrane protein putatively involved in extracellular matrix (ECM) adhesion and tissue remodeling. CMG2 promotes endothelial cell proliferation and exhibits angiogenic properties. Its downregulation is associated with a worsened survival of breast carcinoma patients. Aim of this study was to analyze the CMG2 mRNA and protein expression in soft tissue sarcoma and their association with patient outcome. CMG2 mRNA was measured in 121 tumor samples of soft tissue sarcoma patients using quantitative real-time PCR. CMG2 protein was evaluated in 52 tumor samples by ELISA. CMG2 mRNA was significantly correlated with the corresponding CMG2 protein expression (r s = 0.31; p = 0.027). CMG2 mRNA expression was associated with the mRNA expressions of several ECM and tissue remodeling enzymes, among them CD26 and components of the uPA system. Low CMG2 mRNA expression was correlated with a worsened patients' disease-specific survival in Kaplan-Meier analyses (mean patient survival was 25 vs. 96 months; p = 0.013), especially in high-stage tumors. A decreased CMG2 expression is a negative prognostic factor for soft tissue sarcoma patients. CMG2 may be an interesting candidate gene for the further exploration of soft tissue sarcoma genesis and progression.
Liu, Baoshan; Yan, Rongdi; Zhang, Jie; Wang, Bin; Sun, Hu; Cui, Xing
2017-08-02
As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins' mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.
Pandey, Manish K; Wang, Ming Li; Qiao, Lixian; Feng, Suping; Khera, Pawan; Wang, Hui; Tonnis, Brandon; Barkley, Noelle A; Wang, Jianping; Holbrook, C Corley; Culbreath, Albert K; Varshney, Rajeev K; Guo, Baozhu
2014-12-10
Peanut is one of the major source for human consumption worldwide and its seed contain approximately 50% oil. Improvement of oil content and quality traits (high oleic and low linoleic acid) in peanut could be accelerated by exploiting linked markers through molecular breeding. The objective of this study was to identify QTLs associated with oil content, and estimate relative contribution of FAD2 genes (ahFAD2A and ahFAD2B) to oil quality traits in two recombinant inbred line (RIL) populations. Improved genetic linkage maps were developed for S-population (SunOleic 97R × NC94022) with 206 (1780.6 cM) and T-population (Tifrunner × GT-C20) with 378 (2487.4 cM) marker loci. A total of 6 and 9 QTLs controlling oil content were identified in the S- and T-population, respectively. The contribution of each QTL towards oil content variation ranged from 3.07 to 10.23% in the S-population and from 3.93 to 14.07% in the T-population. The mapping positions for ahFAD2A (A sub-genome) and ahFAD2B (B sub-genome) genes were assigned on a09 and b09 linkage groups. The ahFAD2B gene (26.54%, 25.59% and 41.02% PVE) had higher phenotypic effect on oleic acid (C18:1), linoleic acid (C18:2), and oleic/linoleic acid ratio (O/L ratio) than ahFAD2A gene (8.08%, 6.86% and 3.78% PVE). The FAD2 genes had no effect on oil content. This study identified a total of 78 main-effect QTLs (M-QTLs) with up to 42.33% phenotypic variation (PVE) and 10 epistatic QTLs (E-QTLs) up to 3.31% PVE for oil content and quality traits. A total of 78 main-effect QTLs (M-QTLs) and 10 E-QTLs have been detected for oil content and oil quality traits. One major QTL (more than 10% PVE) was identified in both the populations for oil content with source alleles from NC94022 and GT-C20 parental genotypes. FAD2 genes showed high effect for oleic acid (C18:1), linoleic acid (C18:2), and O/L ratio while no effect on total oil content. The information on phenotypic effect of FAD2 genes for oleic acid, linoleic acid and O/L ratio, and oil content will be applied in breeding selection.
Zeliou, Konstantina; Papasotiropoulos, Vassilis; Manoussopoulos, Yiannis; Lamari, Fotini N
2018-02-01
There are many factors determining the strawberry organoleptic profile and they are difficult to define. In this study, the sensory, physical, and chemical quality characteristics, the antioxidant properties as examined using ferric reducing antioxidant power (FRAP) and 1-diphenyl-2-picrylhydrazyl (DPPH) assays, the lactone concentration, and the FaFAD1 expression of ripe strawberries (cv. Camarosa, Florida Fortuna, and Sabrina) from Greece were evaluated and their interrelationships were investigated. 'Camarosa' had the highest antioxidant capacity and polyphenol content, although significant intra-cultivar variations of sugars, solid soluble content/titratable acidity (SSC/TA), red color intensity, sweetness, and hardness were recorded. In 'Sabrina' there was a constant lactone presence and FaFAD1 expression; it also had the lowest ascorbic acid content, the highest pH, SSC/TA index, firmness, and sweetness. 'Fortuna' showed the lowest sweetness and aroma indices, whereas 'Camarosa' had intermediate ones. Overall, firmness was correlated with hardness, while pH and SSC/TA index correlated with juiciness and sweetness. Both γ-decalactone and γ-dodecalactone concentrations were correlated with FaFAD1 expression and pH, but they did not solely determine the aroma sensory perception. In total, FRAP values were positively correlated with ascorbic acid and polyphenol content, and negatively with pH. Significant inter- and intra-cultivar variation was recorded, revealing the impact of the genotype and underlining the effect of microenvironmental and cultivation conditions on quality and sensory perception. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Rodríguez-Vargas, Sonia; Sánchez-García, Alicia; Martínez-Rivas, Jose Manuel; Prieto, Jose Antonio; Randez-Gil, Francisca
2007-01-01
Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Δ9 position. We expressed two sunflower (Helianthus annuus) oleate Δ12 desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Δ9,12, the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15°C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp+ or Trp− strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30°C or 15°C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains. PMID:17071783
Martin, Nicolas W; Benyamin, Beben; Hansell, Narelle K; Montgomery, Grant W; Martin, Nicholas G; Wright, Margaret J; Bates, Timothy C
2011-01-01
Breast-fed C-allele carriers of the rs174575 single nucleotide polymorphism in the fatty acyl desaturase 2 (FADS2) gene have been reported to show a 6.4 to 7 IQ point advantage over formula-fed C-allele carriers, with no effect of breast-feeding in GG carriers. An Australian sample was examined to determine if an interaction between breast-feeding and the rs174575 single nucleotide polymorphism had any effect on IQ. This hypothesis was tested in more than 700 families of adolescent twins assessed for IQ and breast-feeding, birth weight, and FADS2 polymorphisms, and parental socioeconomic status and education, and maternal FADS2 status. No significant evidence for a moderating effect on IQ of rs174575 C-carrier status and breast-feeding was found, and there no effects of maternal FADS2 status on offspring IQ. In addition, no main effects of any FADS2 polymorphisms on IQ were found when the genotype was kept as two-homozygote and one-heterozygote categories and indeed no evidence for effects of breast-feeding on IQ scores after controlling for parental socioeconomic status and education. The investigation was extended to two additional FADS2 polymorphisms (rs1535 and rs174583), but again, although these polymorphisms code alleles affecting fatty acid metabolism, no main or interaction effects were found on IQ. These results support the view that apparent effects of breast-feeding on IQ reflect differential likelihood of breast-feeding as a function of parental education and did not support the predicted interaction effect of FADS2 and breast-feeding on IQ. Copyright © 2011 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Luo, Li; Dong, Bi-rong; Teng, Li-hua
2008-07-01
To explore the effects of Houttuynia Cordata on expression of human beta-defensin-2 (HBD-2) in pulmonary epithelial cells (SPC-A-1) in vitro; and to observe the correlationship between the level of HBD-2 mRNA and the concentrations or treatment times of Houttuynia Cordata. The SPC-A-1 cells were cultured with different concentrations of Houttuynia Cordata in vitro, including 0, 12.5, 25, 50, 100 and 200 microg/ml. And then, the SPC-A-1 cells were cultured with the optimal concentration of Houttuynia Cordata in different lengths of time, including 1, 2, 4, 8, 16 and 24 hours. After the treatment, the mRNA level of HBD-2 in pulmonary epithelial cells was detected by means of semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). After being cultured with Houttuynia Cordata, the expression of HBD-2 mRNA had positive correlation with the stimulus concentrations (rs=0.829, P=0.042) and stimulus time (rs=0.914, P=0.003). The highest expression of HBD-2 mRNA was induced by 100 microg/ml Houttuynia Cordata after 8-hour treatment. In comparison with the normal control group and the interleukin-1beta group, 100 microg/ml Houttuynia Cordata could significantly up-regulate the expression of HBD-2 mRNA in SPC-A-1 cells after 8-hour treatment (P<0.01). Houttuynia Cordata can up-regulate expression of HBD-2 mRNA in SPC-A-1 cells, and the highest expression level of HBD-2 mRNA can be obtained by culture with 100 microg/ml Houttuynia Cordata for 8 hours.
Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9
USDA-ARS?s Scientific Manuscript database
The CRISPR/Cas9 system is known for its precise and efficient gene-editing of a targeted region in a variety of organisms including plants. We targeted FAD2 gene region to perform CRISPR/Cas9 gene-editing in peanut. The FAD2 gene encodes fatty acid desaturase which catalyzes the conversion of oleic ...
Grommen, Sylvia V H; Arckens, Lutgarde; Theuwissen, Tim; Darras, Veerle M; De Groef, Bert
2008-03-01
In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.
Skeletal muscle deiodinase type 2 regulation during illness in mice.
Kwakkel, J; van Beeren, H C; Ackermans, M T; Platvoet-Ter Schiphorst, M C; Fliers, E; Wiersinga, W M; Boelen, A
2009-11-01
We have previously shown that skeletal muscle deiodinase type 2 (D2) mRNA (listed as Dio2 in MGI Database) is upregulated in an animal model of acute illness. However, human studies on the expression of muscle D2 during illness report conflicting data. Therefore, we evaluated the expression of skeletal muscle D2 and D2-regulating factors in two mouse models of illness that differ in timing and severity of illness: 1) turpentine-induced inflammation, and 2) Streptococcus pneumoniae infection. During turpentine-induced inflammation, D2 mRNA and activity increased compared to pair-fed controls, most prominently at day 1 and 2, whereas after S. pneumoniae infection D2 mRNA decreased. We evaluated the association of D2 expression with serum thyroid hormones, (de-)ubiquitinating enzymes ubiquitin-specific peptidase 33 and WD repeat and SOCS box-containing 1 (Wsb1), cytokine expression and activation of inflammatory pathways and cAMP pathway. During chronic inflammation the increased muscle D2 expression is associated with the activation of the cAMP pathway. The normalization of D2 5 days after turpentine injection coincides with increased Wsb1 and tumor necrosis factor alpha expression. Muscle interleukin-1beta (Il1b) expression correlated with decreased D2 mRNA expression after S. pneumoniae infection. In conclusion, muscle D2 expression is differentially regulated during illness, probably related to differences in the inflammatory response and type of pathology. D2 mRNA and activity increases in skeletal muscle during the acute phase of chronic inflammation compared to pair-fed controls probably due to activation of the cAMP pathway. In contrast, muscle D2 mRNA decreases 48 h after a severe bacterial infection, which is associated with local Il1b mRNA expression and might also be due to diminished food-intake.
Mulder, Paul; Mellin, Virginie; Favre, Julie; Vercauteren, Magali; Remy-Jouet, Isabelle; Monteil, Christelle; Richard, Vincent; Renet, Sylvanie; Henry, Jean Paul; Jeng, Arco Y; Webb, Randy L; Thuillez, Christian
2008-09-01
Inhibition of aldosterone synthase, the key enzyme in aldosterone formation, could be an alternative strategy for mineralocorticoid-receptor antagonists in congestive heart failure (CHF), but its effect in CHF is unknown. We compared, in rats with CHF, the effects of a 7 day and a 12 week treatment with the aldosterone synthase inhibitor FAD286 (4 mg kg(-1) day(-1)) with those induced by spironolactone (80 mg kg(-1) day(-1)). FAD286/spironolactone increased cardiac output without modifying arterial pressure. Long-term FAD286 and spironolactone reduced left ventricular (LV) end-diastolic pressure, LV relaxation constant, and LV dilatation, and these effects were more marked with FAD286, whereas both drugs reduced LV hypertrophy and collagen accumulation to the same extent. Long-term FAD286/spironolactone prevented CHF-related enhancement in LV ACE and reduction in LV ACE-2, but only FAD286 prevented the reduction in LV AT(2) receptors. FAD286, but not long-term spironolactone, reduced the CHF-related enhancements in LV reactive oxygen species, reduced-oxidized glutathione ratio, and aortic nicotinamide adenine dinucleotide phosphate oxidase activity. FAD286 normalized the CHF-induced impairment of endothelium-dependent vasodilatation. In experimental CHF, FAD286 and spironolactone improve LV haemodynamics, remodelling, and function, but only FAD286 persistently normalizes LV 'redox status'. These results suggest that aldosterone synthase inhibition is a potential therapeutic strategy for the treatment of CHF.
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure
Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-ichiro; Nakao, Mitsuyoshi
2012-01-01
Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis. PMID:22453831
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.
Hino, Shinjiro; Sakamoto, Akihisa; Nagaoka, Katsuya; Anan, Kotaro; Wang, Yuqing; Mimasu, Shinya; Umehara, Takashi; Yokoyama, Shigeyuki; Kosai, Ken-Ichiro; Nakao, Mitsuyoshi
2012-03-27
Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis.
Popowich, Shelly; Gupta, Ashish; Chow-Lockerbie, Betty; Ayalew, Lisanework; Ambrose, Neil; Ojkic, Davor; Gunawardana, Thushari; Kurukulasuriya, Shanika; Willson, Philip; Tikoo, Suresh K; Gomis, Susantha
2018-06-01
Historically, fowl adenovirus (FAdV) associated inclusion body hepatitis (IBH) was considered a secondary disease in broiler chickens associated with immunosuppression. However, we previously reported the occurrence of IBH as a primary disease in the broiler chicken industry in Canada as a result of infections with various FAdV serotypes. Therefore, the objectives of this study were to develop an immunization strategy in broiler breeders using live FAdV 11-1047 and FAdV8a-TR59 to confer homologous and heterologous protection in broiler progeny against IBH and to study the efficacy of natural exposure of naïve broiler breeders to a vaccine virus from live FAdV vaccinated birds as an immunization technique. Broiler breeders vaccinated orally with FAdV8a-TR59 (1 × 10 4 TCID 50 /bird) and FAdV11-1047 (1 × 10 4 TCID 50 /bird), FAdV8a-TR59 (1 × 10 6 TCID 50 /bird) and FAdV11-1047 (1 × 10 6 TCID 50 /bird) or FAdV8b (1 × 10 6 TCID 50 /bird) transferred substantial levels of neutralizing antibodies to their progeny. The efficacy of maternal antibodies was studied by challenging 14-day old broiler chickens with 1 × 10 7 TCID 50 of FAdV2-685, FAdV7-x11a like, FAdV8a-TR59, FAdV8b-SK or FAdV11-1047 which are the dominant serotypes causing IBH outbreaks in Canada. Broiler chickens from the low and high dose vaccinated breeders were significantly protected against all serotypes of FAdV (P < 0.05). Comingling of unvaccinated broiler breeders with FAdV-vaccinated broiler breeders was an effective immunization technique for in-contact naïve birds. This study confirms that IBH can be effectively controlled in Canada by vaccination of broiler breeder parents with a bivalent vaccine containing live FAdV8a-TR59 and FAdV11-1047. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shao, M; Sha, Z; Zhang, X; Rao, Z; Xu, M; Yang, T; Xu, Z; Yang, S
2017-01-01
3-ketosteroid-Δ 1 -dehydrogenase (KSDD), a flavin adenine dinucleotide (FAD)-dependent enzyme involved in sterol metabolism, specifically catalyses the conversion of androst-4-ene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). However, the low KSDD activity and the toxic effects of hydrogen peroxide (H 2 O 2 ) generated during the biotransformation of AD to ADD with FAD regeneration hinder its application on AD conversion. The aim of this work was to improve KSDD activity and eliminate the toxic effects of the generated H 2 O 2 to enhance ADD production. The ksdd gene obtained from Mycobacterium neoaurum JC-12 was codon-optimized to increase its expression level in Bacillus subtilis, and the KSDD activity reached 12·3 U mg -1 , which was sevenfold of that of codon-unoptimized gene. To improve AD conversion, catalase was co-expressed with KSDD in B. subtilis 168/pMA5-ksdd opt -katA to eliminate the toxic effects of H 2 O 2 generated during AD conversion. Finally, under optimized bioconversion conditions, fed-batch strategy was carried out and the ADD yield improved to 8·76 g l -1 . This work demonstrates the potential to improve enzyme activity by codon-optimization and eliminate the toxic effects of H 2 O 2 by co-expressing catalase. This study showed the highest ADD productivity ever reported and provides a promising strain for efficient ADD production in the pharmaceutical industry. © 2016 The Society for Applied Microbiology.
Milton, Ross D; Giroud, Fabien; Thumser, Alfred E; Minteer, Shelley D; Slade, Robert C T
2013-11-28
Hydrogen peroxide production by glucose oxidase (GOx) and its negative effect on laccase performance have been studied. Simultaneously, FAD-dependent glucose dehydrogenase (FAD-GDH), an O2-insensitive enzyme, has been evaluated as a substitute. Experiments focused on determining the effect of the side reaction of GOx between its natural electron acceptor O2 (consumed) and hydrogen peroxide (produced) in the electrolyte. Firstly, oxygen consumption was investigated by both GOx and FAD-GDH in the presence of substrate. Relatively high electrocatalytic currents were obtained with both enzymes. O2 consumption was observed with immobilized GOx only, whilst O2 concentration remained stable for the FAD-GDH. Dissolved oxygen depletion effects on laccase electrode performances were investigated with both an oxidizing and a reducing electrode immersed in a single compartment. In the presence of glucose, dramatic decreases in cathodic currents were recorded when laccase electrodes were combined with a GOx-based electrode only. Furthermore, it appeared that the major loss of performance of the cathode was due to the increase of H2O2 concentration in the bulk solution induced laccase inhibition. 24 h stability experiments suggest that the use of O2-insensitive FAD-GDH as to obviate in situ peroxide production by GOx is effective. Open-circuit potentials of 0.66 ± 0.03 V and power densities of 122.2 ± 5.8 μW cm(-2) were observed for FAD-GDH/laccase biofuel cells.
Williams, C M; Coleman, J W
1995-01-01
We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs. Images Figure 1 Figure 2 Figure 3 PMID:7490125
Cheatham, Carol L; Lupu, Daniel S; Niculescu, Mihai D
2015-11-01
Maternal transfer of fatty acids is important to fetal brain development. The prenatal environment may differentially affect the substrates supporting declarative memory abilities, as the level of fatty acids transferred across the placenta may be affected by the maternal fatty acid desaturase 2 (FADS2) rs174575 single nucleotide polymorphism. In this study, we hypothesized that toddler and maternal rs174575 genotype and FADS2 promoter methylation would be related to the toddlers' declarative memory performance. Seventy-one 16-month-old toddlers participated in an imitation paradigm designed to test immediate and long-term declarative memory abilities. FADS2 rs174575 genotype was determined and FADS2 promoter methylation was quantified from blood by bisulfite pyrosequencing for the toddlers and their natural mothers. Toddlers of GG mothers at the FADS2 rs174575 single nucleotide polymorphism did not perform as well on memory assessments as toddlers of CC or CG mothers when controlling for plasma α-linolenic acid and child genotype. Toddler methylation status was related to immediate memory performance, whereas maternal methylation status was related to delayed memory performance. Thus, prenatal experience and maternal FADS2 status have a pervasive, long-lasting influence on the brain development of the offspring, but as the postnatal environment becomes more primary, the offsprings' own biology begins to have an effect. Copyright © 2015 Elsevier Inc. All rights reserved.
[Desaturases of fatty acids (FADS) and their physiological and clinical implication].
Žák, Aleš; Slabý, Adolf; Tvrzická, Eva; Jáchymová, Marie; Macášek, Jaroslav; Vecka, Marek; Zeman, Miroslav; Staňková, Barbora
States associated with insulin resistance, as overweight/obesity, type 2 diabetes mellitus (DM2), cardiovascular diseases (CVD), some cancers and neuropsychiatric diseases are characterized with a decrease of long-chain polyunsaturated fatty acids (LC-PUFA) levels. Amounts of LC-PUFA depend on the exogenous intake of their precursors [linoleic (LA) and α-linolenic acid (ALA)] and by rate of their metabolism, which is influenced by activities of enzymes, such as Δ6-desaturase (D6D, FADS2), D5D, FADS1, elongases (Elovl2, -5, 6).Altered activities of D5D/D6D were described in plenty of diseases, e.g. neuropsychiatric (depressive disorders, bipolar disorder, dementia), metabolic (obesity, metabolic syndrome, DM2) and cardiovascular diseases (arterial hypertension, coronary heart disease), inflammatory states and allergy (Crohns disease, atopic eczema) or some malignancies. Similar results were obtained in studies dealing with the associations between genotypes/haplotypes of FADS1/FADS2 and above mentioned diseases, or interactions of dietary intake of LA and ALA on one hand and of the polymorphisms of minor allels of FADS1/FADS2, usually characterized by lower activities, on the other hand.The decrease of the desaturases activities leads to decreased concentrations of products with concomitant increased concentrations of substrates. Associations of some SNP FADS with coronary heart disease, concentrations of plasma lipids, oxidative stress, glucose homeostasis, and inflammatory reaction, were described. Experimental studies on animal models and occurrence of rare diseases, associated with missing or with marked fall activities of D5D/D6D emphasized the significance of desaturases for healthy development of organism as well as for pathogenesis of some disease.
Hofmann, Anja; Brunssen, Coy; Peitzsch, Mirko; Balyura, Mariya; Mittag, Jennifer; Frenzel, Annika; Jannasch, Anett; Brown, Nicholas F; Weldon, Steven M; Gueneva-Boucheva, Kristina K; Eisenhofer, Graeme; Bornstein, Stefan R; Morawietz, Henning
2017-06-01
Inhibition of aldosterone synthase is an alternative treatment option to mineralocorticoid receptor antagonism to prevent harmful aldosterone actions. FAD286 is one of the best characterized aldosterone synthase inhibitors to date. FAD286 improves glucose tolerance and increases glucose-stimulated insulin secretion in obese and diabetic ZDF rats. However, there is limited knowledge about the dose-dependent effects of FAD286 on plasma aldosterone, corticosterone, and 11-deoxycorticosterone in ZDF rats and in db / db mice, a second important rodent model of obesity and type 2 diabetes. In addition, effects of FAD286 on plasma steroids in mice and rats are controversial. Therefore, obese Zucker diabetic fatty (ZDF) rats and db / db mice were treated with FAD286 for up to 15 weeks and plasma steroids were evaluated using highly sensitive liquid chromatography-tandem mass spectrometry. In ZDF rats, FAD286 (10 mg/kg/d) treatment resulted in nearly complete disappearance of plasma aldosterone while corticosterone levels remained unaffected and those of 11-deoxycorticosterone were increased ~4-fold compared to vehicle control. A lower dose of FAD286 (3 mg/kg / d) showed no effect on plasma aldosterone or corticosterone, but 11-deoxycorticosterone was again increased ~4-fold compared to control. In contrast to ZDF rats, a high dose of FAD286 (40 mg/kg/d) did not affect plasma aldosterone levels in db / db mice although 11-deoxycorticosterone increased ~2.5-fold. A low dose of FAD286 (10 mg/kg/d) increased plasma aldosterone without affecting corticosterone or 11-deoxycorticosterone. In conclusion, the aldosterone synthase inhibitor, FAD286, lowers plasma aldosterone in obese ZDF rats, but not in obese db / db mice. © Georg Thieme Verlag KG Stuttgart · New York.
Li, S; Vestergren, A Schiller; Wall, H; Trattner, S; Pickova, J; Ivarsson, E
2017-08-01
This study investigated the dietary effect of steam-pelleted rapeseed (RS) diets with different inclusion levels on the fatty acid composition of chicken meat and the expression of lipid metabolism-related genes in the liver. Experimental diets included 6 different wheat-soybean meal based diets either in nonpelleted or steam-pelleted form supplemented with 80, 160, and 240 g RS/kg feed and one nonpelleted wheat-soybean meal based diet without RS supplementation as the control. These diets were fed to newly hatched broiler chickens (Ross 308) for 34 days. Compared to the control diet, steam-pelleted diets containing 160 or 240 g/kg RS significantly increased the content of omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) in the breast and drumstick, while their meat yields were not affected. Moreover, the mRNA levels of fatty acid desaturase 1 (FADS1) and acyl-coenzyme A oxidase 1 (ACOX1) in their livers increased. Therefore, steam-pelleted diets with 160 or 240 g/kg RS can be used to increase the n-3 LC-PUFA content in chicken meat without compromising meat yield. © 2017 Poultry Science Association Inc.
2010-01-01
Background The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Results Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. Conclusions We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation of high oleic acid soybeans provide a framework to efficiently develop soybean varieties to meet changing market demands. PMID:20828382
Pham, Anh-Tung; Lee, Jeong-Dong; Shannon, J Grover; Bilyeu, Kristin D
2010-09-09
The alteration of fatty acid profiles in soybean [Glycine max (L.) Merr.] to improve soybean oil quality is an important and evolving theme in soybean research to meet nutritional needs and industrial criteria in the modern market. Soybean oil with elevated oleic acid is desirable because this monounsaturated fatty acid improves the nutrition and oxidative stability of the oil. Commodity soybean oil typically contains 20% oleic acid and the target for high oleic acid soybean oil is approximately 80% of the oil; previous conventional plant breeding research to raise the oleic acid level to just 50-60% of the oil was hindered by the genetic complexity and environmental instability of the trait. The objective of this work was to create the high oleic acid trait in soybeans by identifying and combining mutations in two delta-twelve fatty acid desaturase genes, FAD2-1A and FAD2-1B. Three polymorphisms found in the FAD2-1B alleles of two soybean lines resulted in missense mutations. For each of the two soybean lines, there was one unique amino acid change within a highly conserved region of the protein. The mutant FAD2-1B alleles were associated with an increase in oleic acid levels, although the FAD2-1B mutant alleles alone were not capable of producing a high oleic acid phenotype. When existing FAD2-1A mutations were combined with the novel mutant FAD2-1B alleles, a high oleic acid phenotype was recovered only for those lines which were homozygous for both of the mutant alleles. We were able to produce conventional soybean lines with 80% oleic acid in the oil in two different ways, each requiring the contribution of only two genes. The high oleic acid soybean germplasm developed contained a desirable fatty acid profile, and it was stable in two production environments. The presumed causative sequence polymorphisms in the FAD2-1B alleles were developed into highly efficient molecular markers for tracking the mutant alleles. The resources described here for the creation of high oleic acid soybeans provide a framework to efficiently develop soybean varieties to meet changing market demands.
Zhang, Zhen-Hai; Wu, Shuo-Dong; Gao, Hong; Shi, Gang; Jin, Jun-Zhe; Kong, Jing; Tian, Zhong; Su, Yang
2006-03-07
To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor 1 (VPCAP1-R)and VPCAP2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps. The expression of VPCAP1-R and VPCAP2-R mRNA in gallbladder tissues was detected in 25 patients with gallstone,8 patients with gallbladder polyps and 7 donors of liver transplantation by reverse transcription polymerase chain reaction (RT-PCR). The VPCAP2-R mRNA expression level in the control group (1.09+/-0.58) was lower than that in the gallbladder polyp group (1.64+/-0.56) and the gallstone group (1.55+/-0.45) (P<0.05) while the VPCAP1-R mRNA expression level in the control group (1.15+/-0.23) was not apparently different from that in the gallbladder polyp group (1.28+/-0.56) and the gallstone group (1.27+/-0.38). The abnormal expression of VPCAP2-R mRNA in gallbladder tissue may play a role in the formation of gallbladder stone and gallbladder polyps.
Scholtz, S A; Kerling, E H; Shaddy, D J; Li, S; Thodosoff, J M; Colombo, J; Carlson, S E
2015-03-01
Some FADS alleles are associated with lower DHA and ARA status assessed by the relative amount of arachidonic acid (ARA) and docosahexaenoic acid (DHA) in plasma and red blood cell (RBC) phospholipids (PL). We determined two FADS single nucleotide polymorphisms (SNPs) in a cohort of pregnant women and examined the relationship of FADS1rs174533 and FADS2rs174575 to DHA and ARA status before and after supplementation with 600mg per day of DHA. The 205 pregnant women studied were randomly assigned to placebo (mixed soy and corn oil) (n=96) or 600mg algal DHA (n=109) in 3 capsules per day for the last two trimesters of pregnancy. Women homozygous for the minor allele of FADS1rs174533 (but not FADS2rs174575) had lower DHA and ARA status at baseline. At delivery, minor allele homozygotes of FADS1rs174533 in the placebo group had lower RBC-DHA compared to major-allele carriers (P=0.031), while in the DHA-supplemented group, all genotypes had higher DHA status compared to baseline (P=0.001) and status did not differ by genotype (P=0.941). Surprisingly, DHA but not the placebo decreased ARA status of minor allele homozygotes of both FADS SNPs but not major allele homozygotes at delivery. Any physiological effects of changing the DHA to ARA ratio by increasing DHA intake appears to be greater in minor allele homozygotes of some FADS SNPs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mzhelskaya, M M; Klinnikova, M G; Koldysheva, E V; Lushnikova, E L
2017-10-01
The expression of VEGFR2 (Flk-1, according to immunohistochemistry) and of cyclin D2 mRNA (according to real-time PCR) in the myocardium of rats is studied in doxorubicin-induced cardiomyopathy and in response to betulonic acid amide. Doxorubicin alone and in combination with betulonic acid amide causes after 3 days a manifest reduction of cyclin D2 mRNA expression (by 38 and 63%, respectively), while injection of betulonic acid amide alone causes a 23-fold increase of cyclin D2 mRNA expression. An increase of cyclin D2 mRNA expression has been detected in all experimental groups after 14 days of experiment, the most pronounced in response to betulonic acid amide (63 times). The expression of Flk-1 in cardiomyocytes increases significantly in response to both chemical agents starting from day 3 of experiment. These results indicate that doxorubicin and betulonic acid amide induce cytoprotective reactions in the myocardium, first at the intracellular, then at the cellular levels.
Effect of raclopride on dopamine D2 receptor mRNA expression in rat brain.
Kopp, J; Lindefors, N; Brené, S; Hall, H; Persson, H; Sedvall, G
1992-01-01
Prolonged treatment with dopamine D2 receptor antagonists is known to elevate the density of dopamine D2 receptor binding sites in caudate-putamen and nucleus accumbens in rat and human brain. In this study we used the dopamine D2 receptor antagonist raclopride (3 mumol/kg, s.c.) to determine if a single injection or daily administration of this drug for up to 18 days changed the expression of dopamine D2 receptor mRNA in rat caudate-putamen and accumbens as measured by in situ hybridization. A single injection of raclopride did not significantly change the numerical density of dopamine D2 receptor mRNA-expressing neurons in any of the regions examined. A daily administration of raclopride for 18 days resulted in a 31% increase in the number of cells expressing detectable amounts of dopamine D2 receptor mRNA in dorsolateral caudate-putamen and in a 20% increase in the area of silver grains over individual hybridization-positive neurons in this brain region measured on emulsion-dipped slides. The region-specific increase in the D2 receptor mRNA level in dorsolateral caudate-putamen was confirmed by measurement of the hybridization signal on X-ray film autoradiograms. The levels of D2 receptor mRNA remained unchanged in medial caudate-putamen and accumbens after 18 days' treatment. The region-selective increase in dopamine D2 receptor mRNA expression in dorsolateral caudate-putamen indicates a differential regulation of dopamine D2 receptor mRNA expression in a subpopulation of caudate-putamen neurons by this neuroleptic. We suggest that the increase in dopamine D2 receptor density in caudate-putamen known to follow prolonged dopamine D2 receptor blockade to some extent is regulated at the level of gene expression.
Lin, Kuo Chiang; Lin, Yu Ching; Chen, Shen Ming
2012-01-07
A simple method to immobilize poly(neutral red) (PNR) and flavin adenine dinucleotide (FAD) hybrid film (PNR/FAD) by cyclic voltammetry is proposed. The PNR/FAD hybrid film can be easily prepared on an electrode surface involving electropolymerization of neutral red (NR) monomers and the electrostatic interaction between the positively charged PNR and the negatively charged FAD. It exhibits electroactive, stable, surface-confined, pH-dependent, nano-sized, and compatible properties. It provides good electrocatalytic properties to various species. It shows a sensitivity of 5.4 μA mM(-1) cm(-2) and 21.5 μA mM(-1) cm(-2) for hydrogen peroxide (H(2)O(2)) and nicotinamide adenine dinucleotide (NADH) with the linear range of 0.1 μM-39 mM and 5 × 10(-5) to 2.5 × 10(-4) M, respectively. It shows another linear range of 48.8-355.5 mM with the sensitivity of 12.3 μA mM(-1) cm(-2) for H(2)O(2). In particular, the PNR/FAD hybrid film has potential to replace some hemoproteins to be a cathode of biofuel cells and provide the biosensing system for glucose and ethanol. This journal is © The Royal Society of Chemistry 2012
Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji
2016-12-01
Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor. Copyright © 2016 Elsevier B.V. All rights reserved.
Yu, Qing-Sheng; Yu, Hong-Liang; Pan, Jin-Fang
2011-02-01
To observe the effect of Qihuang Decoction (QHD) on mRNA expression of apoptosis genes Bcl-2, Bax, and signal transduction molecules Caspase-3, 9 in intestinal mucosa epithelium of ischemia/ reperfusion (I/R) injured rats. Forty Wistar rats were randomized equally into 4 groups, the control group, the model group, the glutamine group, and the QHD group. Rats in the latter two groups were gastric infused with glutamine and QHD respectively for 3 days, but saline was infused instead to rats in the control group and model group. After then, except those in the control group intervened only by sham operation, rats were made into I/R injured model by 45 min occlusion of superior mesenteric artery followed by 1 h reperfusion. Immediately after modeling, mRNA expressions of Bcl-2, Bax, Caspase-3, and Caspase-9 in intestinal mucosa epithelium of rats were detected by reverse transcription-polymerase chain reaction (RT-PCR). Compared with the control group, mRNA expressions of Bcl-2, Bax, Caspase-3 and Caspase-9 were higher in the other three groups (P < 0.05). Compared with the model group, Bcl-2 mRNA expression was higher, while the expressions of the other three indices were lower in both the glutamine group and the QHD group (P < 0.05); and comparisons between the glutamine group and the QHD group showed a more depressed Bax mRNA expression (0.281 +/- 0.087 vs 0.350 +/- 0.053) and higher Bcl-2/Bax ratio (1.648 vs 1. 374) in the QHD group. QHD can reduce the I/R injury in the intestinal mucosa epithelium by inhibiting the cell apoptosis. The mechanism may be correlated with increased Bcl-2 mRNA expressions and decreased mRNA expressions of Bax, Caspase-3 and Caspase-9.
Zaroff, Samantha; Leone, Paola; Markov, Vladimir; Francis, Jeremy S
2015-03-01
N-acetylaspartate (NAA) provides a non-invasive clinical index of neuronal metabolic integrity across the entire neurodegenerative spectrum. While NAA function is not comprehensively defined, reductions in the brain are associated with compromised mitochondrial metabolism and are tightly linked to ATP. We have undertaken an analysis of abnormalities in NAA during early stage pathology in the 5xFAD mouse model of familial Alzheimer's disease and show here that dysregulated expression of the gene encoding for the rate-limiting NAA synthetic enzyme (Nat8L) is associated with deficits in mitochondrial oxidative phosphorylation in this model system. Downreguation of Nat8L is particularly pronounced in the 5xFAD hippocampus, and is preceded by a significant upregulation of oligodendrocytic aspartoacylase (aspa), which encodes for the sole known NAA-catabolizing enzyme in the brain. Reductions in 5xFAD NAA and Nat8L cannot be accounted for by discrepancies in either neuron content or activity of the substrate-providing malate-aspartate shuttle, thereby implicating transcriptional regulation in a coordinated response to pathological energetic crisis. A central role for ASPA in this response is supported by a parallel developmental analysis showing highly significant increases in Nat8L expression in an ASPA-null mouse model during a period of early postnatal development normally punctuated by the transcriptional upregulation of aspa. These results provide preliminary evidence of a signaling mechanism in Alzheimer's disease that involves cross talk between neurons and oligodendrocytes, and suggest that ASPA acts to negatively regulate Nat8L expression. This mechanism is proposed to be a fundamental means by which the brain conserves available substrate during energy crises. Copyright © 2015 Elsevier Inc. All rights reserved.
Cannon, T. M.; Shah, A. T.; Skala, M. C.
2017-01-01
Two-photon microscopy of cellular autofluorescence intensity and lifetime (optical metabolic imaging, or OMI) is a promising tool for preclinical drug development. OMI, which exploits the endogenous fluorescence from the metabolic coenzymes NAD(P)H and FAD, is sensitive to changes in cell metabolism produced by drug treatment. Previous studies have shown that drug response, genetic expression, cell-cell communication, and cell signaling in 3D culture match those of the original in vivo tumor, but not those of 2D culture. The goal of this study is to use OMI to quantify dynamic cell-level metabolic differences in drug response in 2D cell lines vs. 3D organoids generated from xenograft tumors of the same cell origin. BT474 cells and Herceptin-resistant BT474 (HR6) cells were tested. Cells were treated with vehicle control, Herceptin, XL147 (PI3K inhibitor), and the combination. The OMI index was used to quantify response, and is a linear combination of the redox ratio (intensity of NAD(P)H divided by FAD), mean NADH lifetime, and mean FAD lifetime. The results confirm that the OMI index resolves significant differences (p<0.05) in drug response for 2D vs. 3D cultures, specifically for BT474 cells 24 hours after Herceptin treatment, for HR6 cells 24 and 72 hours after combination treatment, and for HR6 cells 72 hours after XL147 treatment. Cell-level analysis of the OMI index also reveals differences in the number of cell sub-populations in 2D vs. 3D culture at 24, 48, and 72 hours post-treatment in control and treated groups. Finally, significant increases (p<0.05) in the mean lifetime of NADH and FAD were measured in 2D vs. 3D for both cell lines at 72 hours post-treatment in control and all treatment groups. These whole-population differences in the mean NADH and FAD lifetimes are supported by differences in the number of cell sub-populations in 2D vs. 3D. Overall, these studies confirm that OMI is sensitive to differences in drug response in 2D vs. 3D, and provides further information on dynamic changes in the relative abundance of metabolic cell sub-populations that contribute to this difference. PMID:28663873
Use of 5-deazaFAD to study hydrogen transfer in the D-amino acid oxidase reaction.
Hersh, L B; Jorns, M S
1975-11-25
The apoprotein of hog kidney D-amino acid oxidase was reconstituted with 5-deazaflavin adenine dinucleotide (5-deazaFAD) to yield a protein which contains 1.5 mol of 5-deazaFAD/mol of enzyme. The deazaFAD-containing enzyme forms complexes with benzoate, 2-amino benzoate, and 4-aminobenzoate which are both qualitatively and quantitatively similar to those observed with native enzyme. The complex with 2-aminobenzoate exhibits a new long wavelength absorption band characteristic of a flavin charge-transfer complex. The reconstituted enzyme exhibits no activity when assayed by D-alanine oxidation. However, the bound chromophore can be reduced by alanine, phenylalanine, proline, methionine, and valine, but not by glutamate or aspartate, indicating the deazaFAD enzyme retains the substrate specificity of the native enzyme. Reduction of the enzyme by D-alanine exhibits a 1.6-fold deuterium isotope effect. Reoxidation of the reduced enzyme occurred in the presence of pyruvate plus ammonia, but not with pyruvate alone or ammonia alone. beta-Phenylpyruvate and alpha-ketobutyrate, but not alpha-ketoglutarate could replace pyruvate. Reduced enzyme isolated following reaction with [alpha-3H]alanine was found to contain 0.5 mol of tritium/mol of deazaFADH2. After denaturation of the tritium-labeled enzyme, the radioactivity was identified as deazaFADH2. Reaction of the reduced tritium-labeled enzyme with pyruvate plus ammonia prior to denaturation yields [alpha-3H]alanine and unlabeled deazaFAD. These results suggest that reduction and reoxidation of enzyme-bound deazaFAD involves the stereo-specific transfer of alpha-hydrogen from substrate to deazaFAD.
Kim, Na Na; Jin, Deuk-Hee; Lee, Jehee; Kil, Gyung-Suk; Choi, Cheol Young
2010-10-01
In the present study, we investigated the expression pattern of estrogen receptors (esr) and vitellogenin (vtg) mRNA in the gonads and liver during sex change in cinnamon clownfish by using quantitative polymerase chain reaction. We divided gonadal development during the sex change from male to female into 3 stages (mature male, male at 90days after removing female, and mature female) and investigated esr and vtg mRNA expressions during the sex change. With female, the esr and vtg mRNA expressions increased. In western blot analysis, Esr1 protein was detected only in the ovaries of female cinnamon clownfish. Also, to understand the effect of 17beta-estradiol (E(2)), we investigated the esr and vtg mRNA expression patterns in the gonads and liver, and the changes in plasma E(2) level after E(2) injection. E(2) treatment increased both mRNA expression levels of esr and vtg and plasma E(2) levels. The present study describes the molecular characterization of esr subtypes and the interactions between esr and vtg after E(2) treatment in cinnamon clownfish. 2010 Elsevier Inc. All rights reserved.
Williams, C M; Coleman, J W
1995-10-01
We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.
Chen, Yan-Jin; Wang, Yu-Guang; Ma, Zeng-Chun; Xiao, Cheng-Rong; Tan, Hong-Ling; Liang, Qian-De; Tang, Xiang-Lin; Zhao, Yong-Hong; Wang, Dong-Gen; Gao, Yue
2014-10-01
To study the effect of Panax notoginseng saponins (PNS) on liver drug metabolic enzyme activity, mRNA and protein expressions in rats. Male Wistar rats were randomly divided into nine groups. After administration of the test drugs, their liver microsomes, liver total RNA and total protein were extracted to detect the regulating effect of PNS on liver drug metabolic enzyme activity-related subtype enzymatic activity, mRNA and protein expression by substrate probe, quantitative PCR and Western Blot technology. The result of this experiment was that PNS could significantly induce CYP1A2 and CYP2E1 enzyme activity, mRNA expression, CYP2E1 protein expression level. PNS significantly induced CYP3A mRNA expression, but with no significant effect in CYP3A enzyme activity level. PNS had no significant effect CYP1A1 and CYP2B mRNA expressions and enzyme activity levels. PNS had selective regulations on different P450 subtypes, and the major subtypes were CYP1A2 and CYP2E1. In clinical practice, particularly in the combination with CYP1A2 and CYP2E1 metabolism-related drugs, full consideration shall be given to the possible drug interactions in order to avoid potential toxic and side effects. Meanwhile, whether the induction effect of CYP2E1 gets involved in ginsenoside's effect incavenging free radicals deserves further studies.
USDA-ARS?s Scientific Manuscript database
The level of oleic acid in peanut seed is one of the most important factors in determining seed quality and is controlled by two pairs of homeologous genes Fatty Acid Desaturase 2A and 2B (FAD2A and FAD2B). The genotypes of eight F8 breeding lines were determined as AABB, aaBB, AAbb, and aabb by rea...
Meißner, Joachim D; Kubis, Hans-Peter; Scheibe, Renate J; Gros, Gerolf
2000-01-01
The adult fast character and a Ca2+-inducible reversible transition from a fast to a slow type of rabbit myotube in a primary culture were demonstrated at the mRNA level by Northern blot analysis with probes specific for different myosin heavy chain (MyHC) isoforms and enzymes of energy metabolism. No non-adult MyHC isoform mRNA was detected after 22 days of culture. After 4 weeks of culture the fast MyHCIId mRNA was strongly expressed while MyHCI mRNA was virtually absent, indicating the fast adult character of the myotubes in the primary skeletal muscle culture. The data show that a fast-to-slow transition occurred in the myotubes at the level of MyHC isoform gene expression after treatment with the Ca2+ ionophore A23187. The effects of ionophore treatment were decreased levels of fast MyHCII mRNA and an augmented expression of the slow MyHCI gene. Changes in gene expression started very rapidly 1 day after the onset of ionophore treatment. Levels of citrate synthase mRNA increased and levels of glyceraldehyde 3-phosphate dehydrogenase mRNA decreased during ionophore treatment. This points to a shift from anaerobic to oxidative energy metabolism in the primary skeletal muscle culture cells at the level of gene expression. Withdrawal of the Ca2+ ionophore led to a return to increased levels of MyHCII mRNA and decreased levels of MyHCI mRNA, indicating a slow-to-fast transition in the myotubes and the reversibility of the effect of ionophore on MyHC isoform gene expression. PMID:10673542
Tavares, Catarina; Eloy, Catarina; Melo, Miguel; Gaspar da Rocha, Adriana; Pestana, Ana; Batista, Rui; Rios, Elisabete; Sobrinho Simões, Manuel
2018-01-01
The mammalian target of rapamycin (mTOR) pathway is overactivated in thyroid cancer (TC). We previously demonstrated that phospho-mTOR expression is associated with tumor aggressiveness, therapy resistance, and lower mRNA expression of SLC5A5 in papillary thyroid carcinoma (PTC), while phospho-S6 (mTORC1 effector) expression was associated with less aggressive clinicopathological features. The distinct behavior of the two markers led us to hypothesize that mTOR activation may be contributing to a preferential activation of the mTORC2 complex. To approach this question, we performed immunohistochemistry for phospho-AKT Ser473 (mTORC2 effector) in a series of 182 PTCs previously characterized for phospho-mTOR and phospho-S6 expression. We evaluated the impact of each mTOR complex on SLC5A5 mRNA expression by treating cell lines with RAD001 (mTORC1 blocker) and Torin2 (mTORC1 and mTORC2 blocker). Phospho-AKT Ser473 expression was positively correlated with phospho-mTOR expression. Nuclear expression of phospho-AKT Ser473 was significantly associated with the presence of distant metastases. Treatment of cell lines with RAD001 did not increase SLC5A5 mRNA levels, whereas Torin2 caused a ~6 fold increase in SLC5A5 mRNA expression in the TPC1 cell line. In PTC, phospho-mTOR activation may lead to the activation of the mTORC2 complex. Its downstream effector, phospho-AKT Ser473, may be implicated in distant metastization, therapy resistance, and downregulation of SLC5A5 mRNA expression. PMID:29757257
Tavares, Catarina; Eloy, Catarina; Melo, Miguel; Gaspar da Rocha, Adriana; Pestana, Ana; Batista, Rui; Bueno Ferreira, Luciana; Rios, Elisabete; Sobrinho Simões, Manuel; Soares, Paula
2018-05-13
The mammalian target of rapamycin (mTOR) pathway is overactivated in thyroid cancer (TC). We previously demonstrated that phospho-mTOR expression is associated with tumor aggressiveness, therapy resistance, and lower mRNA expression of SLC5A5 in papillary thyroid carcinoma (PTC), while phospho-S6 (mTORC1 effector) expression was associated with less aggressive clinicopathological features. The distinct behavior of the two markers led us to hypothesize that mTOR activation may be contributing to a preferential activation of the mTORC2 complex. To approach this question, we performed immunohistochemistry for phospho-AKT Ser473 (mTORC2 effector) in a series of 182 PTCs previously characterized for phospho-mTOR and phospho-S6 expression. We evaluated the impact of each mTOR complex on SLC5A5 mRNA expression by treating cell lines with RAD001 (mTORC1 blocker) and Torin2 (mTORC1 and mTORC2 blocker). Phospho-AKT Ser473 expression was positively correlated with phospho-mTOR expression. Nuclear expression of phospho-AKT Ser473 was significantly associated with the presence of distant metastases. Treatment of cell lines with RAD001 did not increase SLC5A5 mRNA levels, whereas Torin2 caused a ~6 fold increase in SLC5A5 mRNA expression in the TPC1 cell line. In PTC, phospho-mTOR activation may lead to the activation of the mTORC2 complex. Its downstream effector, phospho-AKT Ser473, may be implicated in distant metastization, therapy resistance, and downregulation of SLC5A5 mRNA expression.
Rolletschek, Hardy; Borisjuk, Ljudmilla; Sánchez-García, Alicia; Gotor, Cecilia; Romero, Luis C; Martínez-Rivas, José M; Mancha, Manuel
2007-01-01
Oleoyl-phosphatidylcholine desaturase (FAD2) is a key enzyme involved in fatty acid desaturation in oilseeds, which is affected by environmental temperature. The results of this study show that FAD2 is regulated in vivo via temperature-dependent endogenous oxygen concentrations in developing sunflower (Helianthus annuus L.) seeds. By combining in vivo oxygen profiling, in situ hybridization of FAD2 genes, an assay of energy status, fatty acid analysis, and an in vitro FAD2 enzyme activity assay, it is shown that: (i) the oil-storing embryo is characterized by a very low oxygen level that is developmentally regulated. Oxygen supply is mainly limited by the thin seed coat. (ii) Elevations of external oxygen supply raised the energy status of seed and produced a dramatic increase of the FAD2 enzyme activity as well as the linoleic acid content. (iii) A clear negative correlation exists between temperature and internal oxygen concentration. The changes occurred almost instantly and the effect was fully reversible. The results indicate that the internal oxygen level acts as a key regulator for the activity of the FAD2 enzyme. It is concluded that a major mechanism by which temperature modifies the unsaturation degree of the sunflower oil is through its effect on dissolved oxygen levels in the developing seed.
Mitsui, Yozo; Hirata, Hiroshi; Arichi, Naoko; Hiraki, Miho; Yasumoto, Hiroaki; Chang, Inik; Fukuhara, Shinichiro; Yamamura, Soichiro; Shahryari, Varahram; Deng, Guoren; Saini, Sharanjot; Majid, Shahana; Dahiya, Rajvir; Tanaka, Yuichiro; Shiina, Hiroaki
2015-01-01
We investigated whether impaired regulation of bone morphogenetic protein-2 (BMP-2) via epigenetic pathways is associated with renal cell carcinoma (RCC) pathogenesis. Expression and CpG methylation of the BMP-2 gene were analyzed using RCC cell lines, and 96 matched RCC and normal renal tissues. We also performed functional analysis using BMP-2 restored RCC cells. A significant association of BMP-2 mRNA expression was also found with advanced tumor stage and lymph node involvement, while lower BMP-2 mRNA expression was significantly associated with poor overall survival after radical nephrectomy. In RCC cells, BMP-2 restoration significantly inhibited cell proliferation, migration, invasion, and colony formation. In addition, BMP-2 overexpression induced p21WAF1/CIP1 and p27KIP1 expression, and cellular apoptosis in RCC cells. BMP-2 mRNA expression was significantly enhanced in RCC cells by 5-aza-2′-deoxycitidine treatment. The prevalence of BMP-2 promoter methylation was significantly greater and BMP-2 mRNA expression was significantly lower in RCC samples as compared to normal kidney samples. Furthermore, a significant correlation was found between BMP-2 promoter methylation and mRNA transcription in tumors. Aberrant BMP-2 methylation and the resultant loss of BMP-2 expression may be a useful molecular marker for designing improved diagnostic and therapeutic strategies for RCC. PMID:25797254
Guo, Hongrui; Cui, Hengmin; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling; Chen, Kejie; Deng, Jie
2016-01-01
Up to now, the precise mechanism of Ni toxicology is still indistinct. Our aim was to test the apoptosis, cell cycle arrest and inflammatory response mechanism induced by NiCl2 in the liver of broiler chickens. NiCl2 significantly increased hepatic apoptosis. NiCl2 activated mitochondria-mediated apoptotic pathway by decreasing Bcl-2, Bcl-xL, Mcl-1, and increasing Bax, Bak, caspase-3, caspase-9 and PARP mRNA expression. In the Fas-mediated apoptotic pathway, mRNA expression levels of Fas, FasL, caspase-8 were increased. Also, NiCl2 induced ER stress apoptotic pathway by increasing GRP78 and GRP94 mRNA expressions. The ER stress was activated through PERK, IRE1 and ATF6 pathways, which were characterized by increasing eIF2α, ATF4, IRE1, XBP1 and ATF6 mRNA expressions. And, NiCl2 arrested G2/M phase cell cycle by increasing p53, p21 and decreasing cdc2, cyclin B mRNA expressions. Simultaneously, NiCl2 increased TNF-α, IL-1β, IL-6, IL-8 mRNA expressions through NF-κB activation. In conclusion, NiCl2 induces apoptosis through mitochondria, Fas and ER stress-mediated apoptotic pathways and causes cell cycle G2/M phase arrest via p53-dependent pathway and generates inflammatory response by activating NF-κB pathway. PMID:27824316
Arai, Koji Y; Fujioka, Atsuko; Okamura, Ryoko; Nishiyama, Toshio
2014-01-01
Epidermal-dermal interaction plays important roles in physiological events such as wound healing. In this study, we examined a double paracrine mechanism between keratinocytes and fibroblasts through interleukin-1 (IL-1) and an IL-1-induced inflammatory mediator prostaglandin E₂ (PGE₂) using the skin equivalent. The epidermal layer of the skin equivalent expressed high levels of IL-1α mRNA (IL1A mRNA) and relatively low levels of IL-1β mRNA (IL1B mRNA). IL1A mRNA was not detected in fibroblasts. Fibroblasts also expressed low but not negligible levels of IL1B mRNA only in the presence of keratinocytes. Expression of prostaglandin-endoperoxide synthase 2 mRNA (PTGS2 mRNA) and production of PGE₂ in three-dimensionally cultured fibroblasts were noticeably stimulated by co-culture with keratinocytes, whereas PTGS2 mRNA expression in the epidermal layer was very low. In addition, hydroxyprostaglandin dehydrogenase 15-(NAD) mRNA was highly expressed in keratinocytes but not in fibroblasts, and exogenous IL-1β stimulated PTGS2 mRNA expression in the dermal equivalent. The thickness of the epidermal layer and the number of MKI67-positive keratinocytes in the skin equivalent were decreased by treatment with indomethacin, and the decrease recovered when exogenous PGE₂ was added. These results indicate that keratinocytes stimulate their own proliferation through a double paracrine mechanism mediated by IL-1 and PGE₂. © 2014 by the Wound Healing Society.
Glutamatergic and Dopaminergic Neurons in the Mouse Ventral Tegmental Area
Yamaguchi, Tsuyoshi; Qi, Jia; Wang, Hui-Ling; Zhang, Shiliang; Morales, Marisela
2014-01-01
The ventral tegmental area (VTA) comprises dopamine (DA), GABA and glutamate (Glu) neurons. Some rat VTA Glu neurons, expressing vesicular glutamate transporter 2 (VGluT2), co-express tyrosine hydroxylase (TH). While transgenic mice are now being used in attempts to determine the role of VGluT2/TH neurons in reward and neuronal signaling, such neurons have not been characterized in mouse tissue. By cellular detection of VGluT2-mRNA and TH-immunoreactivity (TH-IR), we determined the cellular expression of VGluT2-mRNA within VTA TH-IR neurons in the mouse. We found that some mouse VGluT2 neurons co-expressed TH-IR, but their frequency was lower than in the rat. To determine whether low expression of TH mRNA or TH-IR accounts for this low frequency, we evaluated VTA cellular co-expression of TH-transcripts and TH-protein. Within the medial aspects of the VTA, some neurons expressed TH mRNA but lacked TH-IR; among them a subset co-expressed VGluT2 mRNA. To determine if lack of VTA TH-IR was due to TH trafficking, we tagged VTA TH neurons by cre-inducible expression of mCherry in TH::Cre mice. By dual immunofluorescence, we detected axons containing mCherry, but lacking TH-IR, in the lateral habenula, indicating that mouse low frequency of VGluT2 mRNA (+)/TH-IR (+) neurons is due to lack of synthesis of TH protein, rather than TH-protein trafficking. In conclusion, VGluT2 neurons are present in the rat and mouse VTA, but they differ in the populations of VGluT2/TH and TH neurons. We reveal that under normal conditions, the translation of TH protein is suppressed in the mouse mesohabenular TH neurons. PMID:25572002
Zhang, Zhen-Hai; Wu, Shuo-Dong; Gao, Hong; Shi, Gang; Jin, Jun-Zhe; Kong, Jing; Tian, Zhong; Su, Yang
2006-01-01
AIM: To detect the expression of pituitary adenylate cyclase-activating polypeptide receptor 1 (VPCAP1-R) and VPCAP2-R mRNA in gallbladder tissues of patients with gallstone or gallbladder polyps. METHODS: The expression of VPCAP1-R and VPCAP2-R mRNA in gallbladder tissues was detected in 25 patients with gallstone, 8 patients with gallbladder polyps and 7 donors of liver transplantation by reverse transcription polymerase chain reaction (RT-PCR). RESULTS: The VPCAP2-R mRNA expression level in the control group (1.09±0.58) was lower than that in the gallbladder polyp group (1.64 ± 0.56) and the gallstone group (1.55±0.45) (P < 0.05) while the VPCAP1-R mRNA expression level in the control group (1.15 ± 0.23) was not apparently different from that in the gallbladder polyp group (1.28±0.56) and the gallstone group (1.27 ± 0.38). CONCLUSION: The abnormal expression of VPCAP2-R mRNA in gallbladder tissue may play a role in the formation of gallbladder stone and gallbladder polyps. PMID:16552823
Kitada, Masaaki; Takeda, Kazuya; Dezawa, Mari
2016-07-01
We previously demonstrated that NG2-positive oligodendrocyte precursor cells (OPCs) do not express DM-20 mRNA and identified a distinct DM-20 mRNA-positive cell population expressing glutathione-S-transferase pi isoform (GST-pi) in the nucleus (GST-pi(Nuc)) of the adult rat spinal cord. As GST-pi intranuclear localization correlates with progenitor cell properties, we examined the differentiation status of this cell population under the intensive 5-bromo-2'-deoxyuridine (BrdU) administration method, consisting of intraperitoneal BrdU injections every 2 h for 48 h. We observed that a certain population of proliferating/proliferated cells expressed DM-20 mRNA, and sometimes two proliferating/proliferated cells were observed still attached to each other. We performed triple staining for BrdU, DM-20 mRNA, and NG2 and found pairs of neighboring BrdU-positive cells, which were considered to originate from the same progenitor cells and where both cells expressed DM-20 mRNA. Triple staining for BrdU, DM-20 mRNA, and GST-pi detected proliferating/proliferated cells exhibiting the GST-pi(Nuc)/DM-20 mRNA-positive expression pattern. These findings suggested the presence of a GST-pi(Nuc)/DM-20 mRNA-positive oligodendrocyte-lineage progenitor cell population in the adult rat spinal cord. However, we did not find any pair of neighboring BrdU-positive cells with this expression pattern. These observations collectively support the idea that GST-pi(Nuc)/DM-20 mRNA-expressing cells are the progeny of NG2-positive OPCs rather than a novel type of oligodendrocyte-lineage progenitor cells and that DM-20 mRNA expression is dynamically regulated during differentiation of OPCs into oligodendrocytes.
Ferron, Laurent; Davies, Anthony; Page, Karen M.; Cox, David J.; Leroy, Jerôme; Waithe, Dominic; Butcher, Adrian J.; Sellaturay, Priya; Bolsover, Steven; Pratt, Wendy S.; Moss, Fraser J.; Dolphin, Annette C.
2009-01-01
The role(s) of the novel stargazin-like γ-subunit proteins remain controversial. We have shown previously that the neuron-specific γ7 suppresses the expression of certain calcium channels, particularly CaV2.2, and is therefore unlikely to operate as a calcium channel subunit. We now show that the effect of γ7 on CaV2.2 expression is via an increase in the degradation rate of CaV2.2 mRNA, and hence a reduction of CaV2.2 protein level. Furthermore, exogenous expression of γ7 in PC12 cells also decreased the endogenous CaV2.2 mRNA level. Conversely, knockdown of endogenous γ7 with short-hairpin RNAs produced a reciprocal enhancement of CaV2.2 mRNA stability and an increase in endogenous calcium currents in PC12 cells. Moreover, both endogenous and expressed γ7 are present on intracellular membranes, rather than the plasma membrane. The cytoplasmic C-terminus of γ7 is essential for all its effects, and we show that γ7 binds directly via its C-terminus to a ribonucleoprotein (hnRNP A2), which also binds to a motif in CaV2.2 mRNA, and is associated with native CaV2.2 mRNA in PC12 cells. The expression of hnRNP A2 enhances CaV2.2 IBa and this enhancement is prevented by a concentration of γ7 that alone has no effect on IBa. The effect of γ7 is selective for certain mRNAs as it had no effect on α2δ-2 mRNA stability, but it decreased the mRNA stability for the potassium-chloride co-transporter, KCC1, which contains a similar hnRNP A2 binding motif to that in CaV2.2 mRNA. Our results indicate that γ7 plays a role in stabilizing CaV2.2 mRNA. PMID:18923037
Li, Qiangxiang; Chen, Jing; Li, Yajia; Chen, Ting; Zou, Jing; Wang, Hua
2017-01-01
Abstract Background: The aim of the study was to observe the effect of polysaccharide of dendrobium candidum (PDC) and high glucose on proliferation, apoptosis of human corneal epithelial cells (HCEC). Methods: The MTT method was used to screen and take the optimal high-glucose concentration, treatment time, and PDC concentration using HCEC and divide it into 4 groups: control group (C), high glucose group (HG), PDC group, and HG + PDC group. We observed and compared the effect of the 4 groups on HCEC proliferation by MTT, apoptosis by Annexin V-FITC/PI double fluorescent staining and flow cytometry (FCM), and expression of bax mRNA and bcl-2 mRNA by RT-qPCR. Results: Compared with the control group, proliferative activity of HCEC cells was reduced; the cells apoptosis ratio was increased; the expression of bax mRNA was increased, and the expression of bcl-2 mRNA was reduced in the HG group. Proliferative activity of HCEC cells in the PDC group was increased, and the expression of bcl-2 mRNA was increased but that of bax mRNA was decreased. Proliferative activity of HCEC cells in the HG + PDC group was increased, but it could not restore to the normal level; the expression of bax mRNA was significantly decreased but the expression of bcl-2 mRNA was significantly increased. Conclusions: Our results demonstrate that high glucose can inhibit proliferative activity and induce apoptosis of HCEC. PDC can improve the proliferative activity of HCEC cells under the high glucose environment and reduce the apoptosis of cells by regulating the expression of bax and bcl-2. PDC play a very important role on protecting and repairing of corneal epithelial cells damage in high glucose. PMID:28796073
Triptolide inhibits COX-2 expression by regulating mRNA stability in TNF-{alpha}-treated A549 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Lixin; Zhang, Shuang; Jiang, Zhenzhou
2011-12-09
Highlights: Black-Right-Pointing-Pointer Triptolide inhibited COX-2 expression and the half-life of COX-2 mRNA is decreased. Black-Right-Pointing-Pointer The HuR protein shuttling from nucleus to cytoplasm is inhibited by triptolide. Black-Right-Pointing-Pointer Triptolide inhibited 3 Prime -UTR fluorescence reporter gene activity. Black-Right-Pointing-Pointer COX-2 mRNA binding to HuR is decreased by triptolide in pull-down experiments. -- Abstract: Cyclooxygenase-2 (COX-2) over-expression is frequently associated with human non-small-cell lung cancer (NSCLC) and involved in tumor proliferation, invasion, angiogenesis and resistance to apoptosis. In the present study, the effects of triptolide on COX-2 expression in A549 cells were investigated and triptolide was found to inhibit TNF-{alpha}-induced COX-2 expression.more » In our further studies, it was found that triptolide decreased the half-life of COX-2 mRNA dramatically and that it inhibited 3 Prime -untranslated region (3 Prime -UTR) fluorescence reporter gene activity. Meanwhile, triptolide inhibited the HuR shuttling from nucleus to cytoplasm. After triptolide treatment, decreased COX-2 mRNA in pull-down experiments with anti-HuR antibodies was observed, indicating that the decreased cytoplasmic HuR is responsible for the decreased COX-2 mRNA. Taken together, our results provided evidence for the first time that triptolide inhibited COX-2 expression by COX-2 mRNA stability modulation and post-transcriptional regulation. These results provide a novel mechanism of action for triptolide which may be important in the treatment of lung cancer.« less
[Mutations of amyloid precursor protein in early-onset familial Alzheimer's disease].
Naruse, S; Tsuji, S; Miyatake, T
1992-09-01
Genetic linkage studies of familial Alzheimer's disease (FAD) have suggested that some form of early-onset FAD is linked to proximal long arm of chromosome 21. It has been also suggested that some form of late-onset FAD is linked to long arm of chromosome 19. Goate et al have identified a mis-sense mutation (Val to Ile) in exon 17 of the amyloid precursor protein (APP) gene in 2 of 16 early-onset FAD families, and have shown that the FAD locus in an FAD family is tightly linked to the mis-sense mutation. To determine if the mis-sense mutation is observed in different ethnic origine, we have studied some early-onset FAD families. Two early-onset FAD families showed the existence of the mutation. As the mutation has been identified in different ethnic origine and the mutation has not been observed in normal individuals, it strengthen hypothesis that the mutation is pathogenic. Recently, Val to Phe and Val to Gly mutations have been also identified at the same codon (Codon 717) of the APP gene.
Liu, Su; Liang, Qing-Mei; Zhou, Wen-Wu; Jiang, Yan-Dong; Zhu, Qing-Zi; Yu, Hang; Zhang, Chuan-Xi; Gurr, Geoff M; Zhu, Zeng-Rong
2015-01-01
NADPH-cytochrome P450 reductase (CPR) is essential for numerous biological reactions catalysed by microsomal cytochrome P450 monooxygenases (P450s). Knockdown of CPR in several insects leads to developmental defects and increased susceptibility to insecticides. However, information about the role of CPR in the brown planthopper, Nilaparvata lugens, is still unavailable. A full-length cDNA encoding CPR was cloned from N. lugens (NlCPR). The deduced amino acid sequence showed marked features of classical CPRs, such as an N-terminus membrane anchor, conserved domains for flavin mononucleotide, flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate binding, as well as an FAD-binding motif and catalytic residues. Phylogenetic analysis revealed that NlCPR was located in a branch along with bed bug and pea aphid hemipteran insects. NlCPR mRNA was detectable in all tissues and developmental stages of N. lugens, as determined by real-time quantitative PCR. NlCPR transcripts were most abundant in the abdomen in adults, and in first-instar nymphs. Injection of N. lugens with double-strand RNA (dsRNA) against NlCPR significantly reduced the transcription level of the mRNA, and silencing of NlCPR resulted in increased susceptibility in N. lugens to beta-cypermethrin and imidacloprid. The results provide first evidence that NlCPR contributes to the susceptibility to beta-cypermethrin and imidacloprid in N. lugens. © 2014 Society of Chemical Industry.
Roke, Kaitlin
2017-03-01
From a global health perspective, increased intake of omega-3 fatty acids (FAs), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for human health. However, the consumption of EPA- and DHA-rich foods such as fatty fish is low in the Western diet. Therefore, finding new ways to motivate people to increase their consumption of omega-3 FAs is essential. To find effective ways to motivate individuals, understanding people's awareness of omega-3 FAs and how they obtain their knowledge about nutrition and health is critical. Consequently, we developed an online survey to assess awareness and self-reported intake of omega-3 FAs and supplements in young adults. EPA and DHA are also produced endogenously to a limited extent through a pathway regulated by fatty acid desaturase 1 and 2 (FADS1 and FADS2) genes. Of relevance, single nucleotide polymorphisms (SNPs) in the FADS genes influence levels of omega-3 FAs, where minor allele carriers have lower levels compared with major allele carriers. Accordingly, we conducted a clinical trial to investigate FA levels in response to dietary EPA and DHA supplementation in young adults stratified by SNPs in FADS1 and FADS2. The level of reported awareness of omega-3 terminology varied depending on an individual's field of study and thus providing all participants with the same set of nutrition information could be an effective tool to increase knowledge and motivate behaviour change. Additionally, the variation in FA levels in accordance to SNPs in FADS1 and FADS2 could be used to create tailored nutritional recommendations which may improve lifestyle habits. The results discovered in the first 2 studies regarding awareness of omega-3 FAs and genetic variation were subsequently used to design a nutrigenetics intervention in young adults. Individuals who received their FADS1 genetic information were more aware of different omega-3 FAs and reported fewer barriers to their consumption by the end of the study, compared with those who did not receive their personal genetic information. All participants increased their intake of EPA and DHA, which was reflected in the analyses of red blood cells. Overall, this thesis demonstrates the power of combining nutritional and genetic information as motivators to increase omega-3 consumption.
Margaryan, Sona; Witkowicz, Agata; Partyka, Anna; Yepiskoposyan, Levon; Manukyan, Gayane; Karabon, Lidia
2017-10-19
Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders whose major hallmark is insulin resistance. Impaired mitochondrial activity, such as reduced ratio of energy production to respiration, has been implicated in the development of insulin resistance. Uncoupling proteins (UCPs) are proton carriers, expressed in the mitochondrial inner membrane, that uncouple oxygen consumption by the respiratory chain from ATP synthesis. The aim of the study was to determine transcriptional levels of UCP1 and UCP2 in peripheral blood mononuclear cells (PBMCs) from patients with metabolic disorders: T2DM, obesity and from healthy individuals. The mRNA levels of UCP1, UCP2 were determined by Real-Time PCR method using Applied Biosystems assays. The UCP1 mRNA expression level was not detectable in the majority of studied samples, while very low expression was found in PBMCs from 3 obese persons. UCP2 mRNA expression level was detectable in all samples. The median mRNA expression of UCP2 was lower in all patients with metabolic disorders as compared to the controls (0.20+0.14 vs. 0.010+0.009, p=0.05). When compared separately, the differences of medians UCP2 mRNA expression level between the obese individuals and the controls as well as between the T2DM patients and the controls did not reach statistical significance. Decreased UCP2 gene expression in mononuclear cells from obese and diabetic patients might contribute to the immunological abnormalities in these metabolic disorders and suggests its role as a candidate gene in future studies of obesity and diabetes.
Son, Seung-Myoung; Ha, Sang-Yun; Yoo, Hae-Yong; Oh, Dongryul; Kim, Seok-Jin; Kim, Won-Seog; Ko, Young-Hyeh
2017-01-01
The prognostic role of MYC has been well documented in non-central nervous system diffuse large B-cell lymphoma; however, it remains controversial in central nervous system diffuse large B-cell lymphoma. To investigate the prognostic value of MYC, we analyzed the MYC protein expression by immunohistochemistry, mRNA expression by RNA in situ hybridization, and gene status by fluorescence in situ hybridization in 74 cases of central nervous system diffuse large B-cell lymphoma. Moreover, we examined the correlation between MYC translocation, mRNA expression, and protein expression. The mean percentage of MYC immunopositive cells was 49%. Using a 44% cutoff value, 49 (66%) cases showed MYC protein overexpression. The result of mRNA in situ hybridization using the RNA scope technology was obtained using the H-scoring system; the median value was 34.2. Using the cutoff value of 63.5, 16 (22%) cases showed MYC mRNA overexpression. MYC gene rearrangement was detected in five out of 68 (7%) cases. MYC translocation showed no statistically significant correlation with mRNA expression; however, all MYC translocation-positive cases showed MYC protein overexpression, with a higher mean percentage of MYC protein expression than that of translocation-negative cases (78 vs 48%, P=0.001). The level of MYC mRNA expression was moderately correlated with the level of MYC protein expression (P<0.001). The mean percentage of MYC protein expression in the high MYC mRNA group was higher than that in the low MYC mRNA group (70 vs 47%, P<0.001). A univariate analysis showed that age over 60 years, Eastern Cooperative Oncology Group (ECOG) performance status ≥2 and MYC protein overexpression were significantly associated with an increased risk of death. MYC translocation and MYC mRNA expression had no prognostic significance. On multivariate analysis, MYC protein overexpression and ECOG score retained prognostic significance.
Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites
Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You
2013-01-01
AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465
Tian, Ping; Luo, Yanwen; Li, Xian; Tian, Jing; Tao, Shiyu; Hua, Canfeng; Geng, Yali; Ni, Yingdong; Zhao, Ruqian
2017-01-01
It is well known that feeding a high concentrate (HC) diet to lactating ruminants likely induces subacute ruminal acidosis (SARA) and leads to a decrease in milk fat production. However, the effects of feeding a HC diet for long periods on milk fatty acids composition and the mechanism behind the decline of milk fat still remains poorly understood. The aim of this study was to investigate the impact of feeding a HC diet to lactating dairy goats on milk fat yield and fatty acids composition with an emphasis on the mechanisms underlying the milk fat depression. Seventeen mid-lactating dairy goats were randomly allocated to three groups. The control treatment was fed a low-concentrate diet (35% concentrate, n = 5, LC) and there were two high-concentrate treatments (65% concentrate, HC), one fed a high concentrate diet for a long period (19 wks, n = 7, HL); one fed a high concentrate diet for a short period of time (4 wk, n = 5, HS). Milk fat production and fatty acids profiles were measured. In order to investigate the mechanisms underlying the changes in milk fat production and composition, the gene expression involved in lipid metabolism and DNA methylation in the mammary gland were also analyzed. Milk production was increased by feeding the HC diet in the HS and HL groups compared with the LC diet ( P < 0.01), while the percentage of milk fat was lower in the HL ( P < 0.05) but not in the HS group. The total amount of saturated fatty acids (SFA) in the milk was not changed by feeding the HC diet, whereas the levels of unsaturated fatty acids (UFA) and monounsaturated fatty acids (MUFA) were markedly decreased in the HL group compared with the LC group ( P < 0.05). Among these fatty acids, the concentrations of C15:0 ( P < 0.01), C17:0 ( P < 0.01), C17:1 ( P < 0.01), C18:1n-9c ( P < 0.05), C18:3n-3r ( P < 0.01) and C20:0 ( P < 0.01) were markedly lower in the HL group, and the concentrations of C20:0 ( P < 0.05) and C18:3n-3r ( P < 0.01) were lower in the HS group compared with the LC group. However, the concentrations of C18:2n-6c ( P < 0.05) and C20:4n-6 ( P < 0.05) in the milk fat were higher in the HS group. Real-time PCR results showed that the mRNA expression of the genes involved in milk fat production in the mammary gland was generally decreased in the HL and HS groups compared with the LC group. Among these genes, ACSL1 , ACSS1 & 2 , ACACA , FAS , SCD , FADS2, and SREBP1 were down-regulated in the mammary gland of the HL group ( P < 0.05), and the expressions of ACSS2 , ACACA, and FADS2 mRNA were markedly decreased in the HS goats compared with the LC group ( P < 0.05). In contrast to the gene expression, the level of DNA methylation in the promoter regions of the ACACA and SCD genes was increased in the HL group compared with the LC group ( P < 0.05). The levels of ACSL1 protein expression and FAS enzyme activity were also decreased in the mammary gland of the HL compared with the LC group ( P < 0.05). Long-term feeding of a HC diet to lactating goats induced milk fat depression and FAs profile shift with lower MUFAs but higher SFAs. A general down-regulation of the gene expression involved in the milk fat production and a higher DNA methylation in the mammary gland may contribute to the decrease in milk fat production in goats fed a HC diet for long time periods.
Photocycle dynamics of the E149A mutant of cryptochrome 3 from Arabidopsis thaliana.
Zirak, P; Penzkofer, A; Moldt, J; Pokorny, R; Batschauer, A; Essen, L-O
2009-11-09
The E149A mutant of the cryDASH member cryptochrome 3 (cry3) from Arabidopsis thaliana was characterized in vitro by optical absorption and emission spectroscopic studies. The mutant protein non-covalently binds the chromophore flavin adenine dinucleotide (FAD). In contrast to the wild-type protein it does not bind N5,N10-methenyl-5,6,7,8-tetrahydrofolate (MTHF). Thus, the photo-dynamics caused by FAD is accessible without the intervening coupling with MTHF. In dark adapted cry3-E149A, FAD is present in the oxidized form (FAD(ox)), semiquinone form (FADH(.)), and anionic hydroquinone form (FAD(red)H(-)). Blue-light photo-excitation of previously unexposed cry3-E149A transfers FAD(ox) to the anionic semiquinone form (FAD()(-)) with a quantum efficiency of about 2% and a back recovery time of about 10s (photocycle I). Prolonged photo-excitation leads to an irreversible protein re-conformation with structure modification of the U-shaped FAD and enabling proton transfer. Thus, a change in the photocycle dynamics occurs with photo-conversion of FAD(ox) to FADH(.), FADH(.) to FAD(red)H(-), and thermal back equilibration in the dark (photocycle II). The photocycle dynamics of cry3-E149A is compared with the photocycle behaviour of wild-type cry3 and other photo-sensory cryptochromes.
Altered monocyte cyclo-oxygenase response in non-obese diabetic mice.
Beyan, H; Buckley, L R; Bustin, S A; Yousaf, N; Pozzilli, P; Leslie, R D
2009-02-01
Monocytes infiltrate islets in non-obese diabetic (NOD) mice. Activated monocyte/macrophages express cyclo-oxygenase-2 (COX-2) promoting prostaglandin-E(2) (PGE(2)) secretion, while COX-1 expression is constitutive. We investigated in female NOD mice: (i) natural history of monocyte COX expression basally and following lipopolysaccharide (LPS) stimulation; (ii) impact of COX-2 specific inhibitor (Vioxx) on PGE(2), insulitis and diabetes. CD11b(+) monocytes were analysed for COX mRNA expression from NOD (n = 48) and C57BL/6 control (n = 18) mice. NOD mice were treated with either Vioxx (total dose 80 mg/kg) (n = 29) or methylcellulose as control (n = 29) administered by gavage at 4 weeks until diabetes developed or age 30 weeks. In all groups, basal monocyte COX mRNA and PGE(2) secretion were normal, while following LPS, after 5 weeks of age monocyte/macrophage COX-1 mRNA decreased (P < 0.01) and COX-2 mRNA increased (P < 0.01). However, diabetic NOD mice had reduced COX mRNA response (P = 0.03). Vioxx administration influenced neither PGE(2), insulitis nor diabetes. We demonstrate an isoform switch in monocyte/macrophage COX mRNA expression following LPS, which is altered in diabetic NOD mice as in human diabetes. However, Vioxx failed to affect insulitis or diabetes. We conclude that monocyte responses are altered in diabetic NOD mice but COX-2 expression is unlikely to be critical to disease risk.
Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis.
Zhang, Ji Yao; Kothapalli, Kumar S D; Brenna, J Thomas
2016-03-01
Endogenous synthesis of the long-chain polyunsaturated fatty acids (LCPUFAs) is mediated by the fatty acid desaturase (FADS) gene cluster (11q12-13.1) and elongation of very long-chain fatty acids 2 (ELOVL2) (6p24.2) and ELOVL5 (6p12.1). Although older biochemical work identified the product of one gene, FADS2, rate limiting for LCPUFA synthesis, recent studies suggest that polymorphisms in any of these genes can limit accumulation of product LCPUFA. Genome-wide association study (GWAS) of Greenland Inuit shows strong adaptation signals within FADS gene cluster, attributed to high omega-3 fatty acid intake, while GWAS found ELOVL2 associated with sleep duration, age and DNA methylation. ELOVL5 coding mutations cause spinocerebellar ataxia 38, and epigenetic marks were associated with depression and suicide risk. Two sterol response element binding sites were found on ELOVL5, a SREBP-1c target gene. Minor allele carriers of a 3 single nucleotide polymorphism (SNP) haplotype in ELOVL2 have decreased 22 : 6n-3 levels. Unequivocal molecular evidence shows mammalian FADS2 catalyzes direct Δ4-desaturation to yield 22 : 6n-3 and 22 : 5n-6. An SNP near FADS1 influences the levels of 5-lipoxygenase products and epigenetic alteration. Genetic polymorphisms within FADS and ELOVL can limit LCPUFA product accumulation at any step of the biosynthetic pathway.
Jin, Seong Eun; Ha, Hyekyung; Seo, Chang-Seob; Shin, Hyeun-Kyoo; Jeong, Soo-Jin
2016-01-01
Objective: The purpose of this study was to investigate the potential influences of Socheongryong-tang (SCRT) on the messenger ribonucleic acid (mRNA) and protein expression of cytochrome P450 (CYP450) in vivo. Materials and Methods: SCRT was orally administered to either male or female Sprague-Dawley rats once daily at doses of 0, 1000, 2000, or 5000 mg/kg/day for 13 weeks. The mRNA expression of CYP450s (CYP1A1, 1A2, 2B1/2, 2C11, 2E1, 3A1, 3A2, and 4A1) in liver tissues was measured by reverse transcription polymerase chain reaction. And then, the protein expression of CYP1A1 and CYP2B1/2 in liver tissues was analyzed by the Western blot. Results: We found no significant influence in the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1 after repeated administration of SCRT for 13 weeks. By contrast, the mRNA and protein expression of hepatic CYP1A1 was increased by repeated SCRT treatment in male rats, but not in female rats. The mRNA and protein expression of hepatic CYP2B1/2 in both genders was increased by administration of SCRT. Conclusion: A caution is needed when SCRT is co-administered with substrates of CYP2B1/2 for clinical usage. In case of male, an attention is also required when SCRT and drugs metabolized by CYP1A1 are taken together. Our findings provide information regarding the safety and effectiveness of SCRT when combined with conventional drugs. SUMMARY Oral administration of Socheongryong-tang for 13 weeks did not affect the mRNA expression of hepatic CYP1A2, 2C11, 2E1, 3A1, 3A2, and 4A1In male rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP1A1 and CYP2B1/2In female rats, oral administration of Socheongryong-tang for 13 weeks induced the mRNA and protein expression of hepatic CYP2B1/2. Abbreviations used: SCRT: Socheongryong-tang, CYP450: Cytochrome P450, HPLC: High performance liquid chromatography, RT-PCR: Reverse transcription polymerase chain reaction. PMID:27601852
Differential Expression Patterns of occ1-Related Genes in Adult Monkey Visual Cortex
Takahata, Toru; Komatsu, Yusuke; Watakabe, Akiya; Hashikawa, Tsutomu; Tochitani, Shiro
2009-01-01
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins. PMID:19073625
Danylovych, H V
2016-01-01
We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+- dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.
Progesterone and 17β-estradiol regulate expression of nesfatin-1/NUCB2 in mouse pituitary gland.
Chung, Yiwa; Kim, Jinhee; Im, Eunji; Kim, Heejeong; Yang, Hyunwon
2015-01-01
Nesfatin-1 was first shown to be involved in the control of appetite and energy metabolism in the hypothalamus. Many recent reports have shown nesfatin-1 expression in various tissues including the pituitary gland, but its expression and regulation mechanisms in the pituitary gland are unclear. Therefore, first, we investigated the mRNA and protein expression of nesfatin-1 in the pituitary using qRT-PCR and Western blotting, respectively. Expression of NUCB2 mRNA and nesfatin-1 protein was higher in the pituitary gland than in other organs, and nesfatin-1 protein was localized in many cells in the anterior pituitary gland. Next, we investigated whether NUCB2 mRNA expression in the pituitary gland was regulated by sex steroid hormones secreted by the ovary. Mice were ovariectomized and injected with progesterone (P4) and 17β-estradiol (E2). The expression of NUCB2 in the pituitary gland was dramatically decreased after ovariectomy and increased with injection of P4 and E2, respectively. The in vitro experiment to elucidate the direct effect of P4 and E2 on NUCB2 mRNA expression showed NUCB2 mRNA expression was significantly increased with E2 and decreased with P4 alone and P4 plus E2 in cultured pituitary tissue. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the mouse pituitary and was regulated by P4 and E2. These data suggest that reproductive-endocrine regulation through hypothalamus-pituitary-ovary axis may contribute to nesfatin-1/NUCB2 expression in the pituitary gland. Copyright © 2014 Elsevier Inc. All rights reserved.
Kobayashi, Y; Peterson, B C; Waldbieser, G C
2015-04-01
This study tested the hypothesis that increased growth in channel catfish is associated with expression of the genes that code for uncoupling proteins (UCP) 2 and 3, members of the mitochondrial channel proteins involved in nutrient sensing and metabolism. The specific objective was to contrast the levels of UCP2 messenger RNA (mRNA) in fast vs slow growing catfish as well as in fed vs fasted catfish. Two distinct UCP2 transcripts were identified and named UCP2a and UCP2b, respectively. Nucleotide and amino acid sequence of catfish UCP2s were highly similar to UCP2 and other UCPs from other fish and mammals (>75%). Expression of UCP2a mRNA was detectable at very low levels in various metabolically active tissues, whereas the expression of UCP2b mRNA was readily detectable in the muscle and heart. In a 21-wk feeding study, fish that grew faster had a greater percent body fat at the end of the study (P < 0.01). Expression of UCP2b mRNA tended to be lower (P < 0.10) in fast growing fish in the middle of the study although levels were similar at the beginning and the end of the study. In the fed vs fasted study, expression of UCP2b mRNA in muscle was increased (P < 0.05) in fish assigned to 30 d of fasting. Our results suggest that, based on the nucleotide and amino acid sequence similarities and tissue mRNA distribution, catfish UCP2b may be the analog to UCP3. Moreover, our results suggest selection toward growth and associated fat accumulation appears to be independent of muscle UCP2b mRNA expression and UCP2b-mediated mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Ponglowhapan, S; Church, D B; Khalid, M
2009-05-01
As pituitary gonadotrophins can induce prostaglandin (PG) synthesis and receptors for LH and FSH are present in the canine lower urinary tract (LUT), the objectives of this study were to (i) investigate the expression of COX-2, a key rate-limiting enzyme in PG production, in the canine LUT and (ii) determine if COX-2 expression differs between gender, gonadal status (intact and gonadectomised) and LUT regions. Four regions (body and neck of the bladder as well as proximal and distal urethra) of the LUT were obtained from 20 clinically healthy dogs (5 intact males, 5 intact anoestrous females, 4 castrated males, 6 spayed females). In situ hybridization and immunohistochemistry were performed to determine the presence of COX-2 mRNA and protein, respectively. The mRNA and protein expression was semi-quantitatively assessed. The scoring system combined both the distribution and intensity of positive staining and was carried out separately on the three tissue layers (epithelium, sub-epithelial stroma and muscle) for each of four regions of the LUT. In comparison to intact dogs, lower expression (P<0.001) of COX-2 and its mRNA in gonadectomised males and females was observed in all tissue layers of each region of the LUT except in the distal urethra where there was no difference in mRNA expression between gonadal statuses. Regardless of region and tissue layer, intact females expressed more (P<0.05) COX-2 and its mRNA than intact males. However, in gonadectomised dogs, mRNA expression of COX-2 did not differ between genders; males had higher (P<0.001) protein level of COX-2 compared to females. In conclusion, both COX-2 and its mRNA were expressed in the canine LUT and COX-2-regulated PG synthesis in the canine LUT may differ between gonadal statuses and genders. The lower expression of COX-2 in gonadectomised dogs may impair normal function of the LUT and probably implicated in the development of neutering-induced urinary incontinence in the dog.
Liu, Chang; Wu, Zhe; Sun, Hong-chen
2009-01-01
Aim To determine the effect of local simvastatin application on the mRNA expression level of transforming growth factor-β1 (TGF-β1), bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) in the tooth sockets of rat. Methodology Forty-eight male Wistar rats were randomly divided into experimental and control groups (n=24). Polylactic acid/polyglycolic acid copolymer carriers, with or without simvastatin, were implanted into extraction sockets of right mandibular incisors. The expression of TGF-β1, BMP-2 and VEGF mRNA was determined by in situ hybridization in the tooth extraction socket at five days, one week, two weeks and four weeks after implantation. Results The fusiform stroma cells in the tooth extraction socket began to express TGF-β1, BMP-2 and VEGF mRNA in both experimental and control groups from one week after tooth extraction until the end of experiment. The expression of TGF-β1 and BMP-2 mRNA in the experimental group was significantly up-regulated after one, two and four weeks, and expression of VEGF mRNA was significantly increased after one and two weeks compared with that in the control group. Conclusion The findings indicate that local administration of simvastatin can influence alveolar bone remodeling by regulating the expression of a school of growth factors which are crucial to osteogenesis in the tooth extraction socket. PMID:20687301
Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S
1996-01-01
Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA. PMID:8943327
Pasion, S G; Hines, J C; Ou, X; Mahmood, R; Ray, D S
1996-12-01
Gene expression in trypanosomatids appears to be regulated largely at the posttranscriptional level and involves maturation of mRNA precursors by trans splicing of a 39-nucleotide miniexon sequence to the 5' end of the mRNA and cleavage and polyadenylation at the 3' end of the mRNA. To initiate the identification of sequences involved in the periodic expression of DNA replication genes in trypanosomatids, we have mapped splice acceptor sites in the 5' flanking region of the TOP2 gene, which encodes the kinetoplast DNA topoisomerase, and have carried out deletion analysis of this region on a plasmid-encoded TOP2 gene. Block deletions within the 5' untranslated region (UTR) identified two regions (-608 to -388 and -387 to -186) responsible for periodic accumulation of the mRNA. Deletion of one or the other of these sequences had no effect on periodic expression of the mRNA, while deletion of both regions resulted in constitutive expression of the mRNA throughout the cell cycle. Subcloning of these sequences into the 5' UTR of a construct lacking both regions of the TOP2 5' UTR has shown that an octamer consensus sequence present in the 5' UTR of the TOP2, RPA1, and DHFR-TS mRNAs is required for normal cycling of the TOP2 mRNA. Mutation of the consensus octamer sequence in the TOP2 5' UTR in a plasmid construct containing only a single consensus octamer and that shows normal cycling of the plasmid-encoded TOP2 mRNA resulted in substantial reduction of the cycling of the mRNA level. These results imply a negative regulation of TOP2 mRNA during the cell cycle by a mechanism involving redundant elements containing one or more copies of a conserved octamer sequence within the 5' UTR of TOP2 mRNA.
Wu, Bangyuan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Huang, Jianying
2014-01-01
The purpose of this study was to investigate the effects of dietary NiCl2 on antioxidant function, apoptosis, and the protein expression, mRNA expression and contents of the bcl-2, bax and caspase-3 in the cecal tonsil of broilers. 280 one-day-old avian broilers were divided into four groups and fed on a corn-soybean basal diet as control diet or the same basal diet supplemented with 300, 600 and 900 mg/kg of NiCl2 for 42 days. The activities of SOD, CAT and GSH-Px, and the ability to inhibit hydroxy radical, and GSH content were significantly decreased in all experimental groups. MDA content was significantly increased. The protein expression, mRNA expression and contents of bcl-2 were decreased, and bax and caspase-3 were increased in all experimental groups. The percentages of apoptotic lymphocytes were significantly increased. In conclusion, dietary NiCl2 in excess of 300 mg/kg caused oxidative stress, and then induced decreased the protein expression, mRNA expression and the contents of bcl-2, and increased protein expression, mRNA expression and the contents of bax and caspase-3 proteins in the cecal tonsil. The local intestinal mucosal immunity could finally be impaired due to the oxidative stress and apoptosis in the cecal tonsil caused by NiCl2. Copyright © 2013 Elsevier Ltd. All rights reserved.
McNaughton, J; Roberts, M; Smith, B; Rice, D; Hinds, M; Sanders, C; Layton, R; Lamb, I; Delaney, B
2008-12-01
DP-3Ø5423-1 (305423) is a genetically modified soybean that was produced by biolistic insertion of the gm-fad2-1 gene fragment and gm-hra genes into the germline of soybean seeds. Expression of gm-fad2-1 results in greater concentrations of oleic acid (18:1) by suppressing expression of the endogenous FAD2-1 gene, which encodes an n-6 fatty acid desaturase enzyme that catalyzes desaturation of 18:1 to linoleic acid (18:2). The GM-HRA protein expressed by the gm-hra gene is a modified version of the soybean acetolactate synthase enzyme that is used as a selectable marker during transformation. A 42-d feeding trial was conducted with broiler chickens to compare the nutritional performance of 305423 soybeans with nontransgenic soybeans. Diets were prepared using processed fractions (meal, hulls, and oil) from 305423 soybean plants. For comparison, additional diets were produced with soybean fractions obtained from a nontransgenic near-isoline (control) and nontransgenic commercial Pioneer brand varieties (93B86, 93B15, and 93M40). Diets were fed to Ross x Cobb broilers (n = 120/group, 50% male and 50% female) in 3 phases. Starter, grower, and finisher diets contained 26.5, 23, and 21.5% soybean meal, respectively. Soybean hulls and oil were added at 1.0 and 0.5%, respectively, across all diets in each phase. No statistically significant differences were observed in growth performance (BW, mortality, feed efficiency), organ yield (liver and kidney), or carcass yield (breast, thigh, leg, wing, and abdominal fat) variables between broilers consuming diets prepared with isolated fractions from 305423 or near-isoline control soybean. Additionally, all performance and carcass variables from control and 305423 soybean treatment groups fell within tolerance intervals constructed for each response variable using data from broilers fed diets prepared with reference soybean fractions. Based on the results from this study, it was concluded that 305423 soybeans were nutritionally equivalent to non-transgenic control soybeans with a comparable genetic background.
Evodiamine Inhibits Angiotensin II-Induced Rat Cardiomyocyte Hypertrophy.
He, Na; Gong, Qi-Hai; Zhang, Feng; Zhang, Jing-Yi; Lin, Shu-Xian; Hou, Hua-Hua; Wu, Qin; Sun, An-Sheng
2018-05-01
To investigate the effects of evodiamine (Evo), a component of Evodiaminedia rutaecarpa (Juss.) Benth, on cardiomyocyte hypertrophy induced by angiotensin II (Ang II) and further explore the potential mechanisms. Cardiomyocytes from neonatal Sprague Dawley rats were isolated and characterized, and then the cadiomyocyte cultures were randomly divided into control, model (Ang II 0.1 μmol/L), and Evo (0.03, 0.3, 3 μmol/L) groups. The cardiomyocyte surface area, protein level, intracellular free calcium ([Ca 2+ ] i ) concentration, activity of nitric oxide synthase (NOS) and content of nitric oxide (NO) were measured, respectively. The mRNA expressions of atrial natriuretic factor (ANF), calcineurin (CaN), extracellular signal-regulated kinase-2 (ERK-2), and endothelial nitric oxide synthase (eNOS) of cardiomyocytes were analyzed by real-time reverse transcriptionpolymerase chain reaction. The protein expressions of calcineurin catalytic subunit (CnA) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by Western blot analysis. Compared with the control group, Ang II induced cardiomyocytes hypertrophy, as evidenced by increased cardiomyocyte surface area, protein content, and ANF mRNA expression; increased intracellular free calcium ([Ca 2+ ] i ) concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but decreased MKP-1 protein expression (P<0.05 or P<0.01). Compared with Ang II, Evo (0.3, 3 μmol/L) significantly attenuated Ang II-induced cardiomyocyte hypertrophy, decreased the [Ca 2+ ] i concentration and expressions of CaN mRNA, CnA protein, and ERK-2 mRNA, but increased MKP-1 protein expression (P<0.05 or P<0.01). Most interestingly, Evo increased the NOS activity and NO production, and upregulated the eNOS mRNA expression (P<0.05). Evo signifificantly attenuated Ang II-induced cardiomyocyte hypertrophy, and this effect was partly due to promotion of NO production, reduction of [Ca 2+ ]i concentration, and inhibition of CaN and ERK-2 signal transduction pathways.
Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.
Nakashima, Yukiko; Takahashi, Satoru
2014-08-22
Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Co-ordinated expression of MMP-2 and its putative activator, MT1-MMP, in human placentation.
Bjørn, S F; Hastrup, N; Lund, L R; Danø, K; Larsen, J F; Pyke, C
1997-08-01
The spatial expression of mRNA for matrix metalloproteinase 2 (MMP-2), its putative activator, the membrane-type 1 matrix metalloproteinase (MT1-MMP), and the MMP-2 substrate type IV collagen was investigated in human placentas of both normal and tubal ectopic pregnancies and in cyclic endometrium using in-situ hybridization. Cytokeratin staining applied to adjacent sections was used to identify epithelial and trophoblast cells. In both normal and tubal pregnancies MT1-MMP, MMP-2 and type IV collagen mRNA were highly expressed and co-localized in the extravillous cytotrophoblasts of anchoring villi, in cytotrophoblasts that had penatrated into the placental bed and in cytotrophoblastic cell islands. In addition, the decidual cells of normal pregnancies in some areas co-expressed MT1-MMP and MMP-2 mRNA, with moderate signals for both components. Fibroblast-like stromal cells in tubal pregnancies were positive for MMP-2 mRNA but generally negative for MT1-MMP mRNA. The consistent co-localization of MT1-MMP with MMP-2 and type IV collagen in the same subset of cytotrophoblasts strongly suggests that all three components co-operate in the tightly regulated fetal invasion process. The co-expression of MT1-MMP and MMP-2 mRNA in some of the decidual cells indicates that these cells are also actively involved in the placentation process.
Rahman, Habibur; Singer, Stacy D; Weselake, Randall J
2013-06-01
Designing the fatty acid composition of Brassica napus L. seed oil for specific applications would extend the value of this crop. A mutation in Fatty Acid Desaturase 3 (FAD3), which encodes the desaturase responsible for catalyzing the formation of α-linolenic acid (ALA; 18:3 (cisΔ9,12,15)), in a diploid Brassica species would potentially result in useful germplasm for creating an amphidiploid displaying low ALA content in the seed oil. For this, seeds of B. oleracea (CC), one of the progenitor species of B. napus, were treated with ethyl-methane-sulfonate to induce mutations in genes encoding enzymes involved in fatty acid biosynthesis. Seeds from 1,430 M2 plants were analyzed, from which M3 seed families with 5.7-6.9 % ALA were obtained. Progeny testing and selection for low ALA content were carried out in M3-M7 generations, from which mutant lines with <2.0 % ALA were obtained. Molecular analysis revealed that the mutation was due to a single nucleotide substitution from G to A in exon 3 of FAD3, which corresponds to an amino acid residue substitution from glutamic acid to lysine. No obvious differences in the expression of the FAD3 gene were detected between wild type and mutant lines; however, evaluation of the performance of recombinant Δ-15 desaturase from mutant lines in yeast indicated reduced production of ALA. The novelty of this mutation can be inferred from the position of the point mutation in the C-genome FAD3 gene when compared to the position of mutations reported previously by other researchers. This B. oleracea mutant line has the potential to be used for the development of low-ALA B. napus and B. carinata oilseed crops.
Prognostic impact of mRNA levels of osteopontin splice variants in soft tissue sarcoma patients.
Hahnel, Antje; Wichmann, Henri; Greither, Thomas; Kappler, Matthias; Würl, Peter; Kotzsch, Matthias; Taubert, Helge; Vordermark, Dirk; Bache, Matthias
2012-04-02
It is well known that osteopontin (OPN) plays an important role in tumor progression and that a high OPN expression level in several tumor entities correlates with poor prognosis in cancer patients. However, little is known about the prognostic relevance of the OPN mRNA splice variants. We analyzed the mRNA expression levels of different OPN splice variants in tumor tissue of 124 soft tissue sarcoma (STS) patients. Quantitative real-time PCR (qRT-PCR) was used to analyze the mRNA expression level of three OPN splice variants (OPN-a, -b and -c). The multivariate Cox's proportional hazard regression model revealed that high mRNA expression levels of OPN splice variants are significantly associated with poor prognosis in STS patients (n = 124). Women (n = 68) with high mRNA expression levels of OPN-a and OPN-b have an especially elevated risk of tumor-related death (OPN-a: RR = 3.0, P = 0.01, CI = 1.3-6.8; OPN-b: RR = 3.4, P = 0.01, CI = 1.4-8.2). In particular, we found that high mRNA expression levels of OPN-b and OPN-c correlated with a high risk of tumor-related death in STS patients that received radiotherapy (n = 52; OPN-b: RR = 10.3, P < 0.01, CI = 2.0-53.7; OPN-c: RR = 11.4, P < 0.01, CI = 2.2-59.3). Our study shows that elevated mRNA expression levels of OPN splice variants are negative prognostic and predictive markers for STS patients. Further studies are needed to clarify the impact of the OPN splice variants on prognosis.
Liu, Liang; Liu, Chang; Zhang, Xiao-qi; Ming, Jia; Liu, Xu-sheng; Xu, Hui; Cheng, Tian-min
2005-06-01
To investigate the influence of macrophages on the expression of the vascular endothelial growth factor (VEGF) receptor (KDR) mRNA, homeobox B2 (HOXB2) mRNA, and integrin alpha nu beta3 in vitro in vascular endothelial strain. Human umbilical vein cells (ECV304) were cultured in vitro and divided into 4 groups, i.e. (1) ECV304 group, (2) ECV304 + conA group [with conA (25 microg/ml in culture) added to ECV304], (3) ECV304 + U937 group (with 1 x 10(5)/ml of U937 cells added to 1 x 10(5)/ml ECV 304), (4) ECV304 + U937 + conA group [with 1 x 10(5)/ml of U937 cells and conA (25 microg/ml in culture)] groups. Forty-eight hours after culturing, the expression of integrin receptor alpha nu beta3 and the changes in the expression of KDR mRNA and HOXB2 mRNA in each group were determined by immunofluorescent technique and RT-PCR, respectively. The expression of integrin receptor alpha nu beta3, KDR mRNA, and HOXB2 mRNA in ECV304 group were 6.7 +/- 1.5, 0.633 +/- 0.012, and 0.674 +/- 0.004, respectively, while those in ECV304 + U937 + conA group (10.2 +/- 1.7, 0.879 +/- 0.003, 0.947 +/- 0.003) were obviously more upregulated when compared with those in ECV304 group (P < 0.01). No difference in the above indices was found between ECV304 and ECV304 + conA, ECV304 + U937 groups (P > 0.05). Macrophages activated by ConA can accelerate the proliferation, migration and adhesion to the basement membrane matrix of vascular endothelial cells through the influence on the expression of KDR mRNA, HOXB2 mRNA and integrin alpha nu beta3, and through this pathway the angiogenesis is modulated.
[Inactivation of PMS2 gene by promoter methylation in nasopharyngeal carcinoma].
Ni, H F; Jiang, B; Zhou, Z; Li, Y; Yuan, X Y; Cao, X L; Huang, G W
2016-11-23
Objective: To investigate the inactivation of PMS2 gene mediated by promoter methylation and its regulatory mechanism in nasopharyngeal carcinoma (NPC). Methods: Fifty-four NPC tissues, 16 normal nasopharyngeal epithelia (NNE), 5 NPC cell lines (CNE1, CNE2, TWO3, HNE1 and HONE1) and 1 normal nasopharyngeal epithelial cell line (NP69) were collected.Methylation-specific PCR (MSP) was used to detect the PMS2 promoter methylation, semi-quantitative reverse transcription PCR (qRT-PCR) was applied to determine its mRNA expression, and immunohistochemistry (IHC) was used to detect the protein expression of PMS2. The expressions of PMS2 mRNA in CNE1 and CNE2 cells before and after treated with methyltransferase inhibitor 5-aza-2-deoxycytidine were analyzed by qRT-PCR. The impact of methylation and demethylation on the mRNA expression of PMS2, and the association of mRNA and protein expression of PMS2 with clinicopathological features of nasopharyngeal cancer were analyzed. Results: Methylation of PMS2 gene was detected in all of the five NPC cell lines, but not in normal nasopharyngeal epithelial NP69 cells. The methylation rate of PMS2 gene in NPC tissues was 63% (34/54), significantly higher than that of the normal nasopharyngeal epithelia (0/16, P <0.001). The expression levels of PMS2 mRNA and protein were significantly down-regulated in the 54 NPC tissues when compared with those in the 16 NNE tissues ( P <0.001), and were also significantly lower in the 34 methylated NPC tissues than those in the 20 unmethylated NPC tissues ( P <0.001). After treatment with 5-aza-2-deoxycytidine, the expression of PMS2 mRNA was restored in the CNE1 and CNE2 cells.However, the expressions of PMS2 mRNA and protein were not significantly correlated with patients' age, gender, TNM stage, histopathologic type or lymph node metastasis ( P >0.05 for all). Conclusions: Promoter methylation-mediated inactivation of PMS2 gene participates in carcinogenesis and development of NPC. PMS2 may be a candidate tumor suppressor in the treatment for patients with inactivation of PMS2 promoter methylation.
Urbanová, M; Dostálová, I; Trachta, P; Drápalová, J; Kaválková, P; Haluzíková, D; Matoulek, M; Lacinová, Z; Mráz, M; Kasalický, M; Haluzík, M
2014-01-01
Omentin is a novel adipokine with insulin-sensitizing effects expressed predominantly in visceral fat. We investigated serum omentin levels and its mRNA expression in subcutaneous adipose tissue (SCAT) of 11 women with type 2 diabetes mellitus (T2DM), 37 obese non-diabetic women (OB) and 26 healthy lean women (C) before and after various weight loss interventions: 2-week very-low-calorie diet (VLCD), 3-month regular exercise and laparoscopic sleeve gastrectomy (LSG). At baseline, both T2DM and OB groups had decreased serum omentin concentrations compared with C group while omentin mRNA expression in SCAT did not significantly differ among the groups. Neither VLCD nor exercise significantly affected serum omentin concentrations and its mRNA expression in SCAT of OB or T2DM group. LSG significantly increased serum omentin levels in OB group. In contrast, omentin mRNA expression in SCAT was significantly reduced after LSG. Baseline fasting serum omentin levels in a combined group of the studied subjects (C, OB, T2DM) negatively correlated with BMI, CRP, insulin, LDL-cholesterol, triglycerides and leptin and were positively related to HDL-cholesterol. Reduced circulating omentin levels could play a role in the etiopathogenesis of obesity and T2DM. The increase in circulating omentin levels and the decrease in omentin mRNA expression in SCAT of obese women after LSG might contribute to surgery-induced metabolic improvements and sustained reduction of body weight.
Lattka, E.; Eggers, S.; Moeller, G.; Heim, K.; Weber, M.; Mehta, D.; Prokisch, H.; Illig, T.; Adamski, J.
2010-01-01
Fatty acid desaturases (FADS) play an important role in the formation of omega-6 and omega-3 highly unsaturated fatty acids (HUFAs). The composition of HUFAs in the human metabolome is important for membrane fluidity and for the modulation of essential physiological functions such as inflammation processes and brain development. Several recent studies reported significant associations of single nucleotide polymorphisms (SNPs) in the human FADS gene cluster with HUFA levels and composition. The presence of the minor allele correlated with a decrease of desaturase reaction products and an accumulation of substrates. We performed functional studies with two of the associated polymorphisms (rs3834458 and rs968567) and showed an influence of polymorphism rs968567 on FADS2 promoter activity by luciferase reporter gene assays. Electrophoretic mobility shift assays proved allele-dependent DNA-binding ability of at least two protein complexes to the region containing SNP rs968567. One of the proteins binding to this region in an allele-specific manner was shown to be the transcription factor ELK1 (a member of ETS domain transcription factor family). These results indicate that rs968567 influences FADS2 transcription and offer first insights into the modulation of complex regulation mechanisms of FADS2 gene transcription by SNPs. PMID:19546342
Lattka, E; Eggers, S; Moeller, G; Heim, K; Weber, M; Mehta, D; Prokisch, H; Illig, T; Adamski, J
2010-01-01
Fatty acid desaturases (FADS) play an important role in the formation of omega-6 and omega-3 highly unsaturated fatty acids (HUFAs). The composition of HUFAs in the human metabolome is important for membrane fluidity and for the modulation of essential physiological functions such as inflammation processes and brain development. Several recent studies reported significant associations of single nucleotide polymorphisms (SNPs) in the human FADS gene cluster with HUFA levels and composition. The presence of the minor allele correlated with a decrease of desaturase reaction products and an accumulation of substrates. We performed functional studies with two of the associated polymorphisms (rs3834458 and rs968567) and showed an influence of polymorphism rs968567 on FADS2 promoter activity by luciferase reporter gene assays. Electrophoretic mobility shift assays proved allele-dependent DNA-binding ability of at least two protein complexes to the region containing SNP rs968567. One of the proteins binding to this region in an allele-specific manner was shown to be the transcription factor ELK1 (a member of ETS domain transcription factor family). These results indicate that rs968567 influences FADS2 transcription and offer first insights into the modulation of complex regulation mechanisms of FADS2 gene transcription by SNPs.
Mayuzumi, N; Ikeda, S; Kawada, H; Fan, P S; Ogawa, H
2005-04-01
Darier disease (DD) and Hailey-Hailey disease (HHD) are autosomal dominantly inherited skin disorders that histologically share the characteristics of suprabasal separation and acantholysis of epidermal keratinocytes. Various mutations in the DD gene (ATP2A2) and the HHD gene (ATP2C1) (respectively encoding the calcium pumps of the sarco/endoplasmic reticulum and the Golgi apparatus) have recently been described in multiple families with DD and HHD. Mutations in ATP2A2 or ATP2C1 have been suggested as causing the conditions via the mechanism of haploinsufficiency. Ultraviolet (UV) B irradiation is thought to be an aggravating factor in both diseases. To examine the effects of various stimuli on ATP2A2 and ATP2C1 mRNA expression, and to examine the role of calcium pumps during keratinocyte differentiation. The effects of UVB irradiation, of UVB-inducible inflammatory cytokines produced by keratinocytes and of high-calcium medium (1.8 mmol L(-1) as opposed to 0.08 mmol L(-1) Ca2+) on ATP2A2 and ATP2C1 mRNA expression were quantified in cultured normal human keratinocytes using reverse transcription-polymerase chain reaction. Expression of ATP2A2 and ATP2C1 mRNA was suppressed immediately after exposure to UVB irradiation, and modulation of mRNA expression was achieved in keratinocytes cultured with proinflammatory cytokines. The mRNA expression of both genes was increased significantly after the shift to high extracellular Ca2+ concentration. The results suggest that modulation of ATP2A2 and ATP2C1 mRNA expression by UV or cytokines might contribute to the clinical presentations unique to DD and HHD, and that the controlled expression of these genes plays an important role in keratinocyte homeostasis, function and differentiation.
mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.
Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk
2015-06-01
The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme.
Menendez-Bravo, Simón; Paganini, Julián; Avignone-Rossa, Claudio; Gramajo, Hugo; Arabolaza, Ana
2017-01-01
Oleaginous microorganisms represent possible platforms for the sustainable production of oleochemicals and biofuels due to their metabolic robustness and the possibility to be engineered. Streptomyces coelicolor is among the narrow group of prokaryotes capable of accumulating triacylglycerol (TAG) as carbon and energy reserve. Although the pathways for TAG biosynthesis in this organism have been widely addressed, the set of genes required for their breakdown have remained elusive so far. Here, we identified and characterized three gene clusters involved in the β-oxidation of fatty acids (FA). The role of each of the three different S. coelicolor FadAB proteins in FA catabolism was confirmed by complementation of an Escherichia coliΔfadBA mutant strain deficient in β-oxidation. In S. coelicolor, the expression profile of the three gene clusters showed variation related with the stage of growth and the presence of FA in media. Flux balance analyses using a corrected version of the current S. coelicolor metabolic model containing detailed TAG biosynthesis reactions suggested the relevance of the identified fadAB genes in the accumulation of TAG. Thus, through the construction and analysis of fadAB knockout mutant strains, we obtained an S. coelicolor mutant that showed a 4.3-fold increase in the TAG content compared to the wild type strain grown under the same culture conditions. PMID:28824562
Effects of rhynchophylline on GluN1 and GluN2B expressions in primary cultured hippocampal neurons.
He, Yan; Zeng, Sheng-Ya; Zhou, Shi-Wen; Qian, Gui-Sheng; Peng, Kang; Mo, Zhi-Xian; Zhou, Ji-Yin
2014-10-01
N-methyl-d-aspartate (NMDA) receptor subunits GluN1 and GluN2B in hippocampal neurons play key roles in anxiety. Our previous studies show that rhynchophylline, an active component of the Uncaria species, down-regulates GluN2B expression in the hippocampal CA1 area of amphetamine-induced rat. The effects of rhynchophylline on expressions of GluN1 and GluN2B in primary hippocampal neurons in neonatal rats in vitro were investigated. Neonatal hippocampal neurons were cultured with neurobasal-A medium. After incubation for 6h or 48 h with rhynchophylline (non-competitive NMDAR antagonist) and MK-801 (non-competitive NMDAR antagonist with anxiolytic effect, as the control drug) from day 6, neuron toxicity, mRNA and protein expressions of GluN1 and GluN2B were analyzed. GluN1 is mainly distributed on neuronal axons and dendritic trunks, cytoplasm and cell membrane near axons and dendrites. GluN2B is mainly distributed on the membrane, dendrites, and axon membranes. GluN1 and GluN2B are codistributed on dendritic trunks and dendritic spines. After 48 h incubation, a lower concentration of rhynchophylline (lower than 400 μmol/L) and MK-801 (lower than 200 μmol/L) have no toxicity on neonatal hippocampal neurons. Rhynchophylline up-regulated GluN1 mRNA expression at 6h and mRNA and protein expressions at 48h, but down-regulated GluN2B mRNA and protein expressions at 48 h. However, GluN1 and GluN2B mRNA expressions were down-regulated at 6h, and mRNA and protein expressions were both up-regulated by MK-801 at 48h. These findings show that rhynchophylline reciprocally regulates GluN1 and GluN2B expressions in hippocampal neurons, indicating a potential anxiolytic property for rhynchophylline. Copyright © 2014 Elsevier B.V. All rights reserved.
Mirza, Masroor; Javid, Jamsheed; Yadav, Prasant; Mohan, Anant; Ray, Prakash Chandra; Saxena, Alpana
2016-06-01
Circulating DNA and RNA is an important prognostic tool for noninvasive malignant disease detection and in disease prognosis. Study aimed to evaluate the possible prognostic role of HER2 (-3444C/T) promoter polymorphism and its mRNA expression in Lung adenocarcinoma patients using circulating DNA and RNA. One hundred newly diagnosed lung adenocarcinoma patients and 100 age and sex matched healthy controls were included and allele specific (AS) polymerase chain reaction (PCR) was used for genotyping and expression was analyzed by quantitative real time PCR. Overall survival of patients was analyzed by Kaplan-Meier method. We observed a statistically significant difference in the frequency of HER2 CC, CT, and CT genotype among lung adenocarcinoma cases vs. healthy controls (P=0.001). Compared to the CC genotype, OR 2.51 (1.4-4.51), 5.97 (1.17-30.41) and RR 1.56 (1.17-2.07), 2.83 (0.82-9.73) for heterozygous CT and homozygous TT genotypes suggesting possible dominant effect on risk of lung adenocarcinoma. Cases with CC genotype showed 9.29 fold increased mRNA expression while cases with heterozygous CT and homozygous TT genotype showed 16.26, 16.72 fold increased mRNA expression (P<0.0001). We observed 13.92 fold increased HER2mRNA expression Lung adenocarcinoma patients. Patients in different TNM stages showed significant difference in HER2 mRNA expression which was found to be significantly associated (P<0.0001). Patients with distant metastases and without distant metastases had 17.44 and 11.16 fold increased HER2 mRNA expression was also found to be significantly associated (P<0.0001). It was also observed that patients with pleural effusion and without pleural effusion showed significant difference in HER2 mRNA expression (P=0.03). We also analysed patients with CC, TT, CT (P=0.02) and CT + TT (P=0.008) genotype showed 15.8, 7.9, 9.5 and 7.9 months of overall median survival time and found to be significantly associated, respectively. Patients with >13 and ≤13 fold increased HER mRNA expression also showed 7.9 and 11.5 months of overall median survival time was also found to be significantly associated (P=0.01). Our work provides evidence that circulating DNA and RNA may be a potential prognostic tool in Lung adenocarcinoma patients. Promoter polymorphism of HER2 (-3444C/T) gene had significant impact on higher HER2 mRNA expression could be a predictive factor for patients' worse overall survival and metastatic behaviour.
Molecular analysis of nicotinic receptor expression in autism.
Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K
2004-04-07
Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.
Aoki, V W; Liu, L; Carrell, D T
2006-01-01
Sperm protamine deficiency has been associated with human male infertility. However, the aetiology of deregulated protamine expression remains elusive. The objective of this study was to evaluate the underlying aetiology of protamine deficiency in male infertility patients with deregulated protamine expression. Protamine-1 (P1) and protamine-2 (P2) protein concentrations were compared against P1 and P2 mRNA levels in the sperm of 166 male infertility patients and 27 men of known fertility. Protamine protein concentrations were quantified by nuclear protein extraction, gel electrophoresis and densitometry analysis. Semi-quantitative real-time RT-PCR was used to quantify P1 and P2 mRNA levels. P1 mRNA concentrations were significantly increased in patients underexpressing P1 protein versus those with normal and increased P1 levels. In patients with an abnormally low ratio of P1 to P2 (P1/P2 <0.8), there was a significant increase in P1 mRNA retention. Patients underexpressing P2 also had significantly increased mean P2 mRNA levels, although the majority of these P2-deficient patients showed an increased frequency of significantly reduced P2 mRNA levels. This is the first study to concomitantly evaluate P1 and P2 protein and mRNA levels in mature human sperm. Abnormally elevated protamine mRNA retention appears to be associated with aberrant protamine expression in infertile human males. These data suggest that defects in protamine translation regulation may contribute to protamine deficiency in infertile males.
Park, Duckshin; Lee, Taejeong; Lee, Yongil; Jeong, Wonseog; Kwon, Soon-Bark; Kim, Dongsool; Lee, Kiyoung
2017-01-01
Emission reduction is one of the most efficient control measures in fuel-powered locomotives. The purpose of this study was to determine the reduction in particulate matter (PM) and black carbon (BC) emissions following the installation of a fuel activation device (FAD). The FAD was developed to enhance fuel combustion by atomizing fuel and to increase the surface area per unit volume of injected fuel. Emission reduction by the FAD was evaluated by installing a FAD in an operating diesel locomotive in Mongolia. The test was conducted on a train operating on a round-trip 238-km route between Ulaanbaatar and Choir stations in Mongolia. The fuel consumption rate was slightly reduced following the FAD installation. The FAD installation decreased PM and BC emissions in the diesel locomotive, especially coarse PM. The PM 10 reductions achieved after FAD installation were 58.0, 69.7, and 34.2% for the constant velocity, stopping, and acceleration stages of the train's operation, respectively. The BC reduction rates were 29.5, 52.8, and 27.4% for the constant velocity, stopping, and acceleration stages, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Zhen-Feng; Wu, Gen-Cheng; Cao, Xiao-Ding
2002-01-01
It has been reported that interleukin-1beta (IL-1beta ) play a key role in the pathogenesis of cerebral ischemia. Acupuncture is an effective traditional medical therapy in China. The aim of present study was to evaluate the effect of electroacupuncture (EA) on IL-1beta mRNA expression after middle cerebral artery occlusion (MCAO) in rats. Using in situ hybridization technique, it was found that in the MCAO group the expression of IL-1beta mRNA was significantly increased at 2h, 6h, 12h after reperfusion in cerebral ischemic cortex compared with normal group. In EA+ MCAO group the expression of IL-1beta mRNA was significantly decreased at 2h, 6h and 12h in ischemic cortex compared with MCAO group. The results indicated that EA might decrease the IL-1beta protein expression by reducing the IL-beta mRNA expression in ischemic cortex.
Standl, Marie; Lattka, Eva; Stach, Barbara; Koletzko, Sibylle; Bauer, Carl-Peter; von Berg, Andrea; Berdel, Dietrich; Krämer, Ursula; Schaaf, Beate; Röder, Stefan; Herbarth, Olf; Buyken, Anette; Drogies, Tim; Thiery, Joachim; Koletzko, Berthold; Heinrich, Joachim
2012-01-01
Background Elevated cholesterol levels in children can be a risk factor for cardiovascular diseases in later life. In adults, it has been shown that blood lipid levels are strongly influenced by polymorphisms in the fatty acid desaturase (FADS) gene cluster in addition to nutritional and other exogenous and endogenous determinants. Our aim was to investigate whether lipid levels are determined by the FADS genotype already in children and whether this association interacts with dietary intake of n-3 fatty acids. Methods The analysis was based on data of 2006 children from two German prospective birth cohort studies. Total cholesterol, HDL, LDL and triglycerides were measured at 10 years of age. Six single nucleotide polymorphisms (SNPs) of the FADS gene cluster were genotyped. Dietary n-3 fatty acid intake was assessed by food frequency questionnaire. Linear regression modeling was used to assess the association between lipid levels, n-3 fatty acid intake and FADS genotype. Results Individuals carrying the homozygous minor allele had lower levels of total cholesterol [means ratio (MR) ranging from 0.96 (p = 0.0093) to 0.98 (p = 0.2949), depending on SNPs] and LDL [MR between 0.94 (p = 0.0179) and 0.97 (p = 0.2963)] compared to homozygous major allele carriers. Carriers of the heterozygous allele showed lower HDL levels [β between −0.04 (p = 0.0074) to −0.01 (p = 0.3318)] and higher triglyceride levels [MR ranging from 1.06 (p = 0.0065) to 1.07 (p = 0.0028)] compared to homozygous major allele carriers. A higher n-3 PUFA intake was associated with higher concentrations of total cholesterol, LDL, HDL and lower triglyceride levels, but these associations did not interact with the FADS1 FADS2 genotype. Conclusion Total cholesterol, HDL, LDL and triglyceride concentrations may be influenced by the FADS1 FADS2 genotype already in 10 year old children. Genetically determined blood lipid levels during childhood might differentially predispose individuals to the development of cardiovascular diseases later in life. PMID:22629455
Mäder, K; Crémmilleux, Y; Domb, A J; Dunn, J F; Swartz, H M
1997-06-01
The purpose of this study was to compare drug release and polymer erosion from biodegradable P(FAD-SA) polyanhydrides in vitro and in vivo in real time and with minimal disturbance of the investigated system. P(FAD-SA) 20:80 and P(FAD-SA) 50:50 polymer tablets were loaded with the spin probe 3-carboxy-2,2,5,5-tetramethyl-pyrrollidine-1-oxyl (PCA) and implanted subcutaneously in the neck of rats or placed in 0.1 M phosphate buffer. 1.1 GHz EPR spectroscopy experiments and 7T MRI studies (T1 and T2 weighted) were performed. A front of water penetration was visible by MRI in vitro in the case of P(FAD-SA) 20:80, but not for P(FAD-SA) 50:50. For both polymers, the thickness of the tablets decreased with time and a insoluble, easy deformable residue remained. Important processes such as edema, deformation of the implant, encapsulation and bioresorption were observable by MRI in vivo. P(FAD-SA) 50:50 was almost entirely absorbed by day 44, whereas an encapsulated residue was found for P(FAD-SA) 20:80 after 65 days. The EPR studies gave direct evidence of a water penetration induced changes of the microenvironment inside the tablet. EPR signals were still detectable in P(FAD-SA) 20:80 implants after 65 days, while the nitroxide was released in vitro within 16 days. Important parameters and processes such as edema, deformation of the tablet, microviscosity inside the tablet and encapsulation can be monitored in real time by the combined use of the noninvasive techniques MRI and EPR leading to better understanding of the differences between the in vitro and in vivo situation.
Liao, Yi-Hung; Chen, Chung-Yu; Chen, Chiao-Nan; Wu, Chia-Ying; Tsai, Shiow-Chwen
2018-01-01
Background: Unhealthy western dietary patterns lead to over-consumption of fat and advanced glycation end-products (AGEs), and these account for the developments of obesity, diabetes, and related metabolic disorders. Certain amino acids (AAs) have been recently demonstrated to improve glycemia and reduce adiposity. Therefore, our primary aims were to examine whether feeding an isoleucine-enriched AA mixture (4.5% AAs; Ile: 3.0%, Leu: 1.0%, Val: 0.2%, Arg: 0.3% in the drinking water) would affect adiposity development and prevent the impairments of glycemic control in rats fed with the fat/AGE-containing diet (FAD). Methods: Twenty-four male Sprague-Dawley rats were assigned into 1) control diet (CD, N = 8), 2) FAD diet (FAD, N = 8), and 3) FAD diet plus AA (FAD/AA, N = 8). After 9-weeks intervention, the glycemic control capacity (glucose level, ITT, and HbA1c levels), body composition, and spontaneous locomotor activity (SLA) were evaluated, and the fasting blood samples were collected for analyzing metabolic related hormones (insulin, leptin, adiponectin, and corticosterone). The adipose tissues were also surgically collected and weighed. Results: FAD rats showed significant increases in weight gain, body fat %, blood glucose, HbA1c, leptin, and area under the curve of glucose during insulin tolerance test (ITT-glucose-AUC) in compared with the CD rats. However, the fasting levels of blood glucose, HbA1c, leptin, and ITT-glucose-AUC did not differ between CD and FAD/AA rats. FAD/AA rats also showed a greater increase in serum testosterone. Conclusion: The amino acid mixture consisting of Ile, Leu, Val, and Arg showed clear protective benefits on preventing the FAD-induced obesity and impaired glycemic control. PMID:29333102
Liao, Yi-Hung; Chen, Chung-Yu; Chen, Chiao-Nan; Wu, Chia-Ying; Tsai, Shiow-Chwen
2018-01-01
Background: Unhealthy western dietary patterns lead to over-consumption of fat and advanced glycation end-products (AGEs), and these account for the developments of obesity, diabetes, and related metabolic disorders. Certain amino acids (AAs) have been recently demonstrated to improve glycemia and reduce adiposity. Therefore, our primary aims were to examine whether feeding an isoleucine-enriched AA mixture (4.5% AAs; Ile: 3.0%, Leu: 1.0%, Val: 0.2%, Arg: 0.3% in the drinking water) would affect adiposity development and prevent the impairments of glycemic control in rats fed with the fat/AGE-containing diet (FAD). Methods: Twenty-four male Sprague-Dawley rats were assigned into 1) control diet (CD, N = 8), 2) FAD diet (FAD, N = 8), and 3) FAD diet plus AA (FAD/AA, N = 8). After 9-weeks intervention, the glycemic control capacity (glucose level, ITT, and HbA1c levels), body composition, and spontaneous locomotor activity (SLA) were evaluated, and the fasting blood samples were collected for analyzing metabolic related hormones (insulin, leptin, adiponectin, and corticosterone). The adipose tissues were also surgically collected and weighed. Results: FAD rats showed significant increases in weight gain, body fat %, blood glucose, HbA1c, leptin, and area under the curve of glucose during insulin tolerance test (ITT-glucose-AUC) in compared with the CD rats. However, the fasting levels of blood glucose, HbA1c, leptin, and ITT-glucose-AUC did not differ between CD and FAD/AA rats. FAD/AA rats also showed a greater increase in serum testosterone. Conclusion: The amino acid mixture consisting of Ile, Leu, Val, and Arg showed clear protective benefits on preventing the FAD-induced obesity and impaired glycemic control.
Application of cross-priming amplification (CPA) for detection of fowl adenovirus (FAdV) strains.
Niczyporuk, Jowita Samanta; Woźniakowski, Grzegorz; Samorek-Salamonowicz, Elżbieta
2015-04-01
Fowl adenoviruses (FAdVs) are widely distributed among chickens. Detection of FAdVs is mainly accomplished by virus isolation, serological assays, various polymerase chain reaction (PCR) assays, and loop-mediated isothermal amplification (LAMP). To increase the diagnostic capacity of currently applied techniques, cross-priming amplification (CPA) for the detection of the FAdV hexon gene was developed. The single CPA assay was optimised to detect all serotypes 1-8a-8b-11 representing the species Fowl aviadenovirus A-E. The optimal temperature and incubation time were determined to be 68 °C for 2 h. Using different incubation temperatures, it was possible to differentiate some FAdV serotypes. The results were recorded after addition of SYBR Green I(®) dye, which produced a greenish fluorescence under UV light. The CPA products separated by gel electrophoresis showed different "ladder-like" patterns for the different serotypes. The assay was specific for all serotypes of FAdV, and no cross-reactivity was observed with members of the genus Atadenovirus, duck atadenovirus A (egg drop syndrome virus EDS-76 [EDSV]) or control samples containing Marek's disease virus (MDV), infectious laryngotracheitis virus (ILTV) or chicken anaemia virus (CAV). The results of the newly developed FAdV-CPA were compared with those of real-time PCR. The sensitivity of CPA was equal to that of real-time PCR and reached 10(-2.0) TCID50, but the CPA method was more rapid and cheaper than the PCR systems. CPA is a highly specific, sensitive, efficient, and rapid tool for detection of all FAdV serotypes. This is the first report on the application of CPA for detection of FAdV strains.
RNA-binding Protein Quaking Stabilizes Sirt2 mRNA during Oligodendroglial Differentiation*
Thangaraj, Merlin P.; Furber, Kendra L.; Gan, Jotham K.; Ji, Shaoping; Sobchishin, Larhonda; Doucette, J. Ronald; Nazarali, Adil J.
2017-01-01
Myelination is controlled by timely expression of genes involved in the differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes (OLs). Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, plays a critical role in OL differentiation by promoting both arborization and downstream expression of myelin-specific genes. However, the mechanisms involved in regulating SIRT2 expression during OL development are largely unknown. The RNA-binding protein quaking (QKI) plays an important role in myelination by post-transcriptionally regulating the expression of several myelin specific genes. In quaking viable (qkv/qkv) mutant mice, SIRT2 protein is severely reduced; however, it is not known whether these genes interact to regulate OL differentiation. Here, we report for the first time that QKI directly binds to Sirt2 mRNA via a common quaking response element (QRE) located in the 3′ untranslated region (UTR) to control SIRT2 expression in OL lineage cells. This interaction is associated with increased stability and longer half-lives of Sirt2.1 and Sirt2.2 transcripts leading to increased accumulation of Sirt2 transcripts. Consistent with this, overexpression of qkI promoted the expression of Sirt2 mRNA and protein. However, overexpression of the nuclear isoform qkI-5 promoted the expression of Sirt2 mRNA, but not SIRT2 protein, and delayed OL differentiation. These results suggest that the balance in the subcellular distribution and temporal expression of QKI isoforms control the availability of Sirt2 mRNA for translation. Collectively, our study demonstrates that QKI directly plays a crucial role in the post-transcriptional regulation and expression of Sirt2 to facilitate OL differentiation. PMID:28188285
Schuchardt, J P; Köbe, T; Witte, V; Willers, J; Gingrich, A; Tesky, V; Pantel, J; Rujescu, D; Illig, T; Flöel, A; Hahn, A
2016-01-01
Long-chain (> 20 C-atoms) polyunsaturated fatty acids (LC PUFAs) of both the omega-6 (n-6) and omega-3 (n-3) series are important for the functional integrity of brain and thereby cognition, memory and mood. Clinical studies observed associations between altered LC PUFA levels and neurodegenerative diseases such as Alzheimer´s disease and its prodromal stage, mild cognitive impairment (MCI). The present study examined the LC PUFA status of MCI patients with specific view on the relative LC n-3 PUFA levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in erythrocyte membranes (omega-3 index). 12 single nucleotide polymorphisms (SNPs) of the FADS1, FADS2, and FADS3 gene clusters were genotyped in 111 MCI patients and evaluated associations with PUFA levels in erythrocyte membranes (primary outcome). In addition, the associations between FADS SNPs and LC PUFA levels with serum lipid levels as well as depressive symptoms were examined (secondary outcomes). Minor allele carrier of rs174546, rs174548 (FADS1), rs3834458, rs1535, rs174574, rs174575, rs174576, and rs174578 (FADS2) showed significant higher n-6 and n-3 precursor PUFA levels (linoleic acid, and alpha-linolenic acid, respectively) and lower arachidonic acid (AA) levels in erythrocyte membranes compared to the major allele carriers. Differences in EPA and DHA levels were not significant. Minor allele carriers of rs174574, rs174576 and rs174578 (FADS2) and rs174455 (FADS3) exhibited significant higher triglyceride levels, whereas minor allele carriers for rs174449 and rs174455 (FADS3) exhibited significant higher total- and LDL-cholesterol levels compared to the more common variant. The mean omega-3 index of the study cohort was 6.19 ± 1.55 %. In more than 85 % of the patients, the omega-3 index was below 8 % and in 23 % below 5 %. Moreover, it was shown that a low DHA status and omega-3 index was associated with depressive symptoms (Beck's depression-inventory). These findings indicate an association between several FADS genotypes for higher n-6 and n-3 precursor PUFA and lower AA levels in erythrocyte membranes in minor compared to major allele carriers. To what extent FADS genotypes and a lower conversion of LA and ALA to biologically important LC PUFAs such as AA, EPA and DHA contributes to cognitive decline should be investigated in further trials. Nevertheless, the omega-3 index in this cohort of MCI patients can be classified as insufficient.
Puchau, Blanca; Hermsdorff, Helen Hermana M; Zulet, M Angeles; Martínez, J Alfredo
2009-01-01
The purpose of this study was to evaluate whether the mRNA expression profiles of three genes (PRMT1, DDAH2 and NOS3) are related to ADMA metabolism and signalling, and the potential relationships with anthropometrical, biochemical, lifestyle and inflammatory indicators in healthy young adults. An emphasis on the putative effect of different mRNA expression on cardiovascular risk-related features was paid. Anthropometrical measurements as well as lifestyle features were analyzed in 120 healthy young adults. Fasting blood samples were collected for the measurement of glucose and lipid profiles as well as the concentrations of selected inflammatory markers. Profiles of mRNA expression were assessed for PRMT1, DDAH2 and NOS3 genes from peripheral blood mononuclear cells. Regarding inflammatory biomarkers, DDAH2 was inversely associated with IL-6 and TNF-alpha. Moreover, subjects in the highest quintile of DDAH2 mRNA expression showed a reduced risk to have higher values of waist circumference, and to be more prone to show higher values of HDL-c. Interestingly, DDAH2 gene expression seemed to be related with some anthropometrical, biochemical, lifestyle and inflammatory indicators linked to cardiovascular risk in apparently healthy young adults, emerging as a potential disease marker.
T-lymphocyte cytokine mRNA expression in cystic echinococcosis.
Fauser, S; Kern, P
1997-04-01
In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.
Dumont, Julie; Huybrechts, Inge; Spinneker, Andre; Gottrand, Frédéric; Grammatikaki, Evangelia; Bevilacqua, Noemi; Vyncke, Krishna; Widhalm, Kurt; Kafatos, Anthony; Molnar, Denes; Labayen, Idoia; Gonzalez-Gross, Marcela; Amouyel, Philippe; Moreno, Luis A; Meirhaeghe, Aline; Dallongeville, Jean
2011-07-01
Two rate-limiting enzymes in PUFA biosynthesis, Δ5- and Δ6-desaturases, are encoded by the FADS1 and FADS2 genes, respectively. Genetic variants in the FADS1-FADS2 gene cluster are associated with changes in plasma concentrations of PUFA, HDL- and LDL-cholesterol, and TG. However, little is known about whether dietary PUFA intake modulates these associations, especially in adolescents. We assessed whether dietary linoleic acid (LA) or α-linolenic acid (ALA) modulate the association between the FADS1 rs174546 polymorphism and concentrations of PUFA, other lipids, and lipoproteins in adolescents. Dietary intakes of LA and ALA, FADS1 rs174546 genotypes, PUFA levels in serum phospholipids, and serum concentrations of TG, cholesterol, and lipoproteins were determined in 573 European adolescents from the HELENA study. The sample was stratified according to the median dietary LA (≤9.4 and >9.4 g/d) and ALA (≤1.4 and >1.4 g/d) intakes. The associations between FADS1 rs174546 and concentrations of PUFA, TG, cholesterol, and lipoproteins were not affected by dietary LA intake (all P-interaction > 0.05). Similarly, the association between the FADS1 rs174546 polymorphism and serum phospholipid concentrations of ALA or EPA was not modified by dietary ALA intake (all P-interaction > 0.05). In contrast, the rs174546 minor allele was associated with lower total cholesterol concentrations (P = 0.01 under the dominant model) and non-HDL-cholesterol concentrations (P = 0.02 under the dominant model) in the high-ALA-intake group but not in the low-ALA-intake group (P-interaction = 0.01). These results suggest that dietary ALA intake modulates the association between FADS1 rs174546 and serum total and non-HDL-cholesterol concentrations at a young age.
Lupu, Daniel S; Cheatham, Carol L; Corbin, Karen D; Niculescu, Mihai D
2015-11-01
Polyunsaturated fatty acid metabolism in toddlers is regulated by a complex network of interacting factors. The contribution of maternal genetic and epigenetic makeup to this milieu is not well understood. In a cohort of mothers and toddlers 16 months of age (n = 65 mother-child pairs), we investigated the association between maternal genetic and epigenetic fatty acid desaturase 2 (FADS2) profiles and toddlers' n-6 and n-3 fatty acid metabolism. FADS2 rs174575 variation and DNA methylation status were interrogated in mothers and toddlers, as well as food intake and plasma fatty acid concentrations in toddlers. A multivariate fit model indicated that maternal rs174575 genotype, combined with DNA methylation, can predict α-linolenic acid plasma concentration in all toddlers and arachidonic acid concentrations in boys. Arachidonic acid intake was predictive for its plasma concentration in girls, whereas intake of 3 major n-3 species (eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were predictive for their plasma concentrations in boys. FADS2 genotype and DNA methylation in toddlers were not related to plasma concentrations or food intakes, except for CpG8 methylation. Maternal FADS2 methylation was a predictor for the boys' α-linolenic acid intakes. This exploratory study suggests that maternal FADS2 genetic and epigenetic status could be related to toddlers' polyunsaturated fatty acid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.
Goppelt-Struebe, M; Schaefer, D; Habenicht, A J
1997-10-01
1. The objective of the present study was to determine the effects of dexamethasone on key constituents of prostaglandin and leukotriene biosynthesis, cyclo-oxygenase-2 (COX-2) and 5-lipoxygenase activating protein (FLAP). The human monocytic cell line THP-1 was used as a model system. mRNA and protein levels of COX-2 and FLAP were determined by Northern and Western blot analyses, respectively. 2. Low levels of COX-2 and FLAP mRNA were expressed in undifferentiated THP-1 cells, but were induced upon differentiation of the cells along the monocytic pathway by treatment with phorbol ester (TPA, 5 nM). Maximal expression was observed after two days. 3. Coincubation of the undifferentiated cells with dexamethasone (10(-9) - 10(-6) M) and phorbol ester prevented induction of COX-2 mRNA, but did not affect the induction of FLAP mRNA. 4. Dexamethasone downregulated COX-2 mRNA and protein in differentiated, monocyte-like THP-1 cells. In contrast, FLAP mRNA and protein were upregulated by dexamethasone in differentiated THP-1 cells. After 24 h, FLAP mRNA levels were increased more than 2 fold. Dexamethasone did not change 5-lipoxygenase mRNA expression. 5. Release of prostaglandin E2 (PGE2) and peptidoleukotrienes was determined in cell culture supernatants of differentiated THP-1 cells by ELISA. Calcium ionophore-dependent PGE2 synthesis was associated with COX-2 expression, whereas COX-1 and COX-2 seemed to participate in arachidonic acid-dependent PGE2 synthesis. Very low levels of peptidoleukotrienes were released from differentiated THP-1 cells upon incubation with ionophore. Treatment with dexamethasone did not significantly affect leukotriene release. 6. These data provide evidence that prostaglandin synthesis is consistently downregulated by glucocorticoids. However, the glucocorticoid-mediated induction of FLAP may provide a mechanism to maintain leukotriene biosynthesis through more efficient transfer of arachidonic acid to the 5-lipoxygenase reaction, in spite of inhibitory effects on other enzymes of the biosynthetic pathway.
Lee, Cheng-Tse; Chang, Li-Ching; Wu, Pei-Fung
2016-06-01
This study explored that lipoic acid treatment for 24 h significantly upregulated and promoted heat shock-induced catalase expression and downregulated GPx1 messenger RNA (mRNA) expression, indicating that lipoic acid exhibits antioxidant activity in the decomposition of hydrogen peroxide by upregulating catalase expression. Moreover, lipoic acid treatment for 3 h increased and promoted heat shock-induced interleukin (IL)-6 mRNA and protein levels and that for 24 h downregulated IL-6 mRNA expression, suggesting a dual effect of lipoic acid on IL-6 regulation. Lipoic acid alone failed to increase or reduce tumor necrosis factor (TNF)-α mRNA and protein levels, whereas heat shock alone downregulated TNF-α mRNA and protein expression. These data suggest that lipoic acid does not have a proinflammatory role and that heat shock acts as an anti-inflammatory agent by downregulating TNF-α expression in C2C12 myotubes. Moreover, lipoic acid or heat shock alone upregulated the IL-6 receptor (IL-6R-α) and glycoprotein 130 (gp130) mRNA expression followed by IL-6 expression; these data indicate that the regulation of lipoic acid or heat shock is mediated by IL-6R signaling, thus suggesting that C2C12 myotubes possesses a mechanism for regulating IL-6R and gp130 expression following lipoic acid treatment or heat shock.
Kusuhara, H; Komatsu, H; Hisadome, M; Ikeda, Y
1996-12-01
(+/-)-3-[4-(2-Dimethylamino-1-methylethoxy)phenyl]-1H-pyrazolo[3, 4-b]pyridine-1-acetic acid (Y-25510) stimulated the mRNA expression for interleukin-1 beta (IL-1 beta), and enhanced the expression induced by lipopolysaccharide (LPS) in cultured human peripheral blood mononuclear cells (PBMC) and THP-1 cells, a cell-line derived from human monocytic leukemia. Y-25510 also stimulated the mRNA expression for IL-6 in both types of the cells, however, the stimulation required the presence of LPS. In THP-1 cells, the stimulation of IL-1 beta mRNA expression by Y-25510 was suppressed by cycloheximide, an inhibitor of protein synthesis. This phenomenon indicates that the stimulation requires de norv protein synthesis. In contrast, the stimulation of mRNA expression for IL-6 by Y-25510 was not suppressed by cycloheximide but suppressed by N alpha-p-tosyl-L-phenylalanine chloromethyl ketone (TPCK), an inhibitor of nuclear transcription factor-kappa B (NF-kappa B) activation, in the presence of LPS, suggesting that the stimulation requires NF-kappa activation. These results demonstrate that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms. Dexamethasone suppressed the LPS-induced expression of mRNA for IL-1 beta and IL-6 in THP-1 cells, whereas the drug never suppressed the mRNA expression for these cytokines in the presence of Y-25510. The result indicates that Y-25510 stimulates the mRNA expression for IL-1 beta and IL-6 by different mechanisms from those of LPS.
Mushroom β-Glucan May Immunomodulate the Tumor-Associated Macrophages in the Lewis Lung Carcinoma
Wang, Wan-Jhen; Wu, Yu-Sheng; Chen, Sherwin; Liu, Chi-Feng
2015-01-01
The present study showed that oral mushroom beta-glucan treatment significantly increased IFN-γ mRNA expression but significantly reduced COX-2 mRNA expression within the lung. For LLC tumor model, oral Ganoderma lucidum or Antrodia camphorata polysaccharides treatments significantly reduced TGF-β production in serum. In addition, IL-12 and IFN-γ mRNA expression were significantly increased, but IL-6, IL-10, COX-2, and TGF-β mRNA expression were substantially following oral mushroom polysaccharides treatments. The study highlights the efficacious effect of mushroom polysaccharides for ameliorating the immune suppression in the tumor microenvironment. Increased M1 phenotype of tumor-associated macrophages and attenuated M2 phenotype of tumor-associated macrophages could be achieved by ingesting mushroom polysaccharides. PMID:26167490
Trushina, Eugenia; Nemutlu, Emirhan; Zhang, Song; Christensen, Trace; Camp, Jon; Mesa, Janny; Siddiqui, Ammar; Tamura, Yasushi; Sesaki, Hiromi; Wengenack, Thomas M.; Dzeja, Petras P.; Poduslo, Joseph F.
2012-01-01
Background The identification of early mechanisms underlying Alzheimer's Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics. Methods and Findings We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics, morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from mice expressing mutant human presenilin 1, PS1(M146L) and the double mutation of human amyloid precursor protein APP(Tg2576) and PS1(M146L) contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice. Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well with the biomarkers currently used for diagnosis in humans. Conclusions Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures of mitochondrial stress and altered energy metabolism indicated alterations in nucleotide, Krebs cycle, energy transfer, carbohydrate, neurotransmitter, and amino acid metabolic pathways. Mitochondrial dysfunction, therefore, is an underlying event in AD progression, and FAD mouse models provide valuable tools to study early molecular mechanisms implicated in AD. PMID:22393443
ZHANG, H. N.; KO, M. C.
2009-01-01
Chemical-induced seizures up-regulated brain-derived neurotrophic factor (BDNF) mRNA expression. Intracerebroventricular (i.c.v.) administration of endogenous opioids preferentially activating μ opioid receptor (MOR) could also increase BDNF mRNA expression. The aim of this study was to determine to what extent i.c.v. administration of synthetic MOR-selective agonists in rats can modulate both seizure activity and up-regulation of BDNF mRNA expression. Effects and potencies of i.c.v. administration of morphine and [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO), were directly investigated by scoring behavioral seizures and measuring BDNF mRNA expression. In addition, effects of the opioid receptor antagonist naloxone and antiepileptic drugs, diazepam, phenobarbital, and valproate, on i.c.v. MOR agonist-induced behavioral seizures and up-regulation of BDNF mRNA expression were determined. A single i.c.v. administration of morphine (10–100 μg) or DAMGO (0.15–1.5 μg) dose-dependently elicited behavioral seizures and increased BDNF mRNA expression in the widespread brain regions. However, subcutaneous administration of MOR agonists neither produced behavioral seizures nor increased BDNF mRNA expression. Pretreatment with naloxone 1 mg/kg significantly reduced behavioral seizure scores and the up-regulation of BDNF mRNA expression elicited by i.c.v. morphine or DAMGO. Similarly, diazepam 10 mg/kg and phenobarbital 40 mg/kg significantly blocked i.c.v. MOR agonist-induced actions. Pretreatment with valproate 300 mg/kg only attenuated behavioral seizures, but it did not affect morphine-induced increase of BDNF mRNA expression. This study provides supporting evidence that seizure activity plays an important role in the up-regulation of BDNF mRNA expression elicited by central MOR activation and that decreased inhibitory action of GABAergic system through the modulation on GABA receptor synaptic function by central MOR activation is involved in its regulation of BDNF mRNA expression. PMID:19303919
Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S
2016-04-01
Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols.
Shardonofsky, Felix R; Moore, Joan; Schwartz, Robert J; Boriek, Aladin M
2012-03-01
We hypothesized that ablation of smooth muscle α-actin (SM α-A), a contractile-cytoskeletal protein expressed in airway smooth muscle (ASM) cells, abolishes ASM shortening capacity and decreases lung stiffness. In both SM α-A knockout and wild-type (WT) mice, airway resistance (Raw) determined by the forced oscillation technique rose in response to intravenous methacholine (Mch). However, the slope of Raw (cmH(2)O·ml(-1)·s) vs. log(2) Mch dose (μg·kg(-1)·min(-1)) was lower (P = 0.007) in mutant (0.54 ± 0.14) than in WT mice (1.23 ± 0.19). RT-PCR analysis performed on lung tissues confirmed that mutant mice lacked SM α-A mRNA and showed that these mice had robust expressions of both SM γ-A mRNA and skeletal muscle (SKM) α-A mRNA, which were not expressed in WT mice, and an enhanced SM22 mRNA expression relative to that in WT mice. Compared with corresponding spontaneously breathing mice, mechanical ventilation-induced lung mechanical strain increased the expression of SM α-A mRNA in WT lungs; in mutant mice, it augmented the expressions of SM γ-A mRNA and SM22 mRNA and did not alter that of SKM α-A mRNA. In mutant mice, the expression of SM γ-A mRNA in the lung during spontaneous breathing and its enhanced expression following mechanical ventilation are consistent with the likely possibility that in the absence of SM α-A, SM γ-A underwent polymerization and interacted with smooth muscle myosin to produce ASM shortening during cholinergic stimulation. Thus our data are consistent with ASM in mutant mice experiencing compensatory mechanisms that modulated its contractile muscle capacity.
Powell, David R; Gay, Jason P; Smith, Melinda; Wilganowski, Nathaniel; Harris, Angela; Holland, Autumn; Reyes, Maricela; Kirkham, Laura; Kirkpatrick, Laura L; Zambrowicz, Brian; Hansen, Gwenn; Platt, Kenneth A; van Sligtenhorst, Isaac; Ding, Zhi-Ming; Desai, Urvi
2016-01-01
Delta-5 desaturase (D5D) and delta-6 desaturase (D6D), encoded by fatty acid desaturase 1 (FADS1) and FADS2 genes, respectively, are enzymes in the synthetic pathways for ω3, ω6, and ω9 polyunsaturated fatty acids (PUFAs). Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs) of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels measured in brain and liver phospholipid fractions of Fads1 KO mice were consistent with decreased D5D activity and normal D6D activity. The beneficial metabolic phenotype demonstrated in Fads1 KO mice suggests that selective D5D inhibitors may be useful in the treatment of human obesity, diabetes, and atherosclerotic cardiovascular disease. PMID:27382320
Local expression of interferon-alpha and interferon receptors in cervical intraepithelial neoplasia.
Tirone, Nelson R; Peghini, Bethanea C; Barcelos, Ana Cristina M; Murta, Eddie F C; Michelin, Marcia A
2009-12-01
The present study evaluated mRNA expression of interferon-alpha (IFN-alpha), IFN-alpha receptor subunits (IFNAR-1 and IFNAR-2) and an IFN-stimulated gene encoding the enzyme 2',5'-oligoadenylate synthetase (2'5'OAS) in biopsies on patients with varying grades of cervical intraepithelial neoplasia (CIN I, II and III). Uterine cervix biopsies were collected from women with CIN I, II and III (n = 28) and controls without CIN lesions or human papilloma virus (HPV) infection (n = 17). The presence of high and low-risk HPV DNA was determined using hybrid capture. The mRNA levels of IFNAR-1, IFNAR-2, IFN-alpha and 2'5'OAS were determined by RT-PCR with specific primers. The control group exhibited a greater frequency of IFNAR-1 expression (10/17; 58.3%) than the CIN samples (4/28; 14.2%) (P = 0.0018), while, the expression of IFNAR-2 was also greater in the control samples (11/17; 64.7%) than in the patients with lesions (2/28; 7.1%) (P = 0.0018). Importantly, simultaneous expression of both receptors was observed only in the control group (8/17; 47.0%) (P = 0.0001). Among the CIN samples, there was one case of low expression of mRNA of IFNAR-1 and IFNAR-2. IFN-alpha was present in 14.2% (4/28) of the CIN samples but was not expressed in the control group. mRNA 2'5'OAS were expressed in 28.5% (8/28) of the CIN samples and 11.7% (2/17) of the control samples (not statistically significant). Fifty percent (14/28) of the CIN samples were positive for HPV DNA. Cervical biopsy samples from control women or those without neoplasia or HPV infection displayed higher IFN-alpha receptor expression than those with CIN, while simultaneous expression of both IFN-alpha receptor subunits was found only in the control group. There was no significant difference in mRNA expression of IFN-alpha and 2'5'OAS between the control and CIN groups. Then we concluded that the samples obtained from patients with CIN present low levels of the IFN-alpha receptor mRNA.
Type 2 iodothyronine deiodinase in skeletal muscle: effects of hypothyroidism and fasting.
Heemstra, Karen A; Soeters, Maarten R; Fliers, Eric; Serlie, Mireille J; Burggraaf, Jacobus; van Doorn, Martijn B; van der Klaauw, Agatha A; Romijn, Johannes A; Smit, Johannes W; Corssmit, Eleonora P; Visser, Theo J
2009-06-01
The iodothyronine deiodinases D1, D2, and D3 enable tissue-specific adaptation of thyroid hormone levels in response to various conditions, such as hypothyroidism or fasting. The possible expression of D2 mRNA in skeletal muscle is intriguing because this enzyme could play a role in systemic as well as local T3 production. We determined D2 activity and D2 mRNA expression in human skeletal muscle biopsies under control conditions and during hypothyroidism, fasting, and hyperinsulinemia. This was a prospective study. The study was conducted at a university hospital. We studied 11 thyroidectomized patients with differentiated thyroid carcinoma (DTC) on and after 4 wk off T4( replacement and six healthy lean subjects in the fasting state and during hyperinsulinemia after both 14 and 62 h of fasting. D2 activity and D2 mRNA levels were measured in skeletal muscle samples. No differences were observed in muscle D2 mRNA levels in DTC patients on and off T4 replacement therapy. In healthy subjects, muscle D2 mRNA levels were lower after 62 h compared to 14 h of fasting. Insulin increased mRNA expression after 62 h, but not after 14 h of fasting. Skeletal muscle D2 activities were very low and not influenced by hypothyroidism and fasting. Human skeletal muscle D2 mRNA expression is modulated by fasting and insulin, but not by hypothyroidism. The lack of a clear effect of D2 mRNA modulation on the observed low D2 activities questions the physiological relevance of D2 activity in human skeletal muscle.
FADS2 genotype influences whole-body resting fat oxidation in young adult men.
Roke, Kaitlin; Jannas-Vela, Sebastian; Spriet, Lawrence L; Mutch, David M
2016-07-01
Considerable evidence supports an association between fatty acid desaturase 2 (FADS2) polymorphisms and the efficiency of converting alpha-linolenic acid (ALA) into eicosapentaenoic acid (EPA) via the desaturation-elongation pathway. However, ALA conversion into EPA represents only 1 of the metabolic fates for this essential fatty acid, as ALA is also highly oxidized. This study demonstrates for the first time that genetic variation in FADS2 (rs174576) is not only associated with the activity of the desaturation-elongation pathway, but also whole-body fat oxidation.
Developmental expression of the neuroligins and neurexins in fragile X mice.
Lai, Jonathan K Y; Doering, Laurie C; Foster, Jane A
2016-03-01
Neuroligins and neurexins are transsynaptic proteins involved in the maturation of glutamatergic and GABAergic synapses. Research has identified synaptic proteins and function as primary contributors to the development of fragile X syndrome. Fragile X mental retardation protein (FMRP), the protein that is lacking in fragile X syndrome, binds neuroligin-1 and -3 mRNA. Using in situ hybridization, we examined temporal and spatial expression patterns of neuroligin (NLGN) and neurexin (NRXN) mRNAs in the somatosensory (S1) cortex and hippocampus in wild-type (WT) and fragile X knockout (FMR1-KO) mice during the first 5 weeks of postnatal life. Genotype-based differences in expression included increased NLGN1 mRNA in CA1 and S1 cortex, decreased NLGN2 mRNA in CA1 and dentate gyrus (DG) regions of the hippocampus, and increased NRXN3 mRNA in CA1, DG, and S1 cortex between female WT and FMR1-KO mice. In male mice, decreased expression of NRXN3 mRNA was observed in CA1 and DG regions of FMR1-KO mice. Sex differences in hippocampal expression of NLGN2, NRXN1, NRXN2, and NRXN3 mRNAs and in S1 cortex expression of NRXN3 mRNAs were observed WT mice, whereas sex differences in NLGN3, NRXN1, NRXN2, and NRXN3 mRNA expression in the hippocampus and in NLGN1, NRXN2 and NRXN3 mRNA expression in S1 cortex were detected in FMR1-KO mice. These results provide a neuroanatomical map of NLGN and NRXN expression patterns over postnatal development in WT and FMR1-KO mice. The differences in developmental trajectory of these synaptic proteins could contribute to long-term differences in CNS wiring and synaptic function. © 2015 Wiley Periodicals, Inc.
Yuan, Li-Xing; Liu, Han-Min; Li, Mi; Gao, Ju; Zhou, Tong-Fu
2005-09-01
To study the expression of heme oxygenase-1 mRNA and pulmonary remodeling before and after surgical establishment of left-to-right shunt in volume-overloaded SD rats and rats with Losartan intervention. Left-to-right shunt volume-overloaded SD rat models were established by aortocaval shunt operation. Seven rats with shunt were placed on Losartan (Losartan group), 7 rats with but not given Losartan were included in the operation group, and 4 rats after sham operation served as controls. Pulmonary pressure and right ventricular pressure were measured during catheterization. The relative weights ventricles were determined after execution of the rats. Pulmonary vascular remodeling parameters, including percentage arterial wall thickness and percentage muscularized small arteries, were assessed by morphometry. Heme oxygenase-1 (HO-1) mRNA expression and heme oxygenase-2 (HO-2) mRNA expression were detected RT-PCR method. Pulmonary artery pressure and right ventricular relative weight decreased significantly in the rats of Losartan group; in addition, the percentage arterial wall thickness and percentage of muscularized small arteries in the Losartan group were reduced as compared with those in the operation group. The level 1 mRAN expression in rats with shunt was significantly higher than that in rats without shunt. The level mRNA expression in the Losartan group decreased remarkably as compared against that in the operation The level of HO-1 mRNA expression in lungs was significantly higher than that in ventricles. There statistically significant differences in HO-2 mRNA expression levels between the three rat groups. Losartan intervention can markedly reduce pulmonary pressure, inhibit vascular remodeling in volume-overloaded left-to-right shunt rats, and result in down-regulation of HO-1 mRNA expression.
Mraz, M; Lacinova, Z; Drapalova, J; Haluzikova, D; Horinek, A; Matoulek, M; Trachta, P; Kavalkova, P; Svacina, S; Haluzik, M
2011-04-01
Low-grade inflammation links obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. To explore the expression profile of genes involved in inflammatory pathways in adipose tissue and peripheral monocytes (PM) of obese patients with and without T2DM at baseline and after dietary intervention. Two-week intervention study with very-low-calorie diet (VLCD). University hospital. Twelve obese females with T2DM, 8 obese nondiabetic females (OB) and 15 healthy age-matched females. Two weeks of VLCD (2500 kJ/d). Metabolic parameters, circulating cytokines, hormones, and mRNA expression of 39 genes in sc adipose tissue (SCAT) and PM. Both T2DM and OB group had significantly increased serum concentrations of circulating proinflammatory factors (C-reactive protein, TNFα, IL-6, IL-8), mRNA expression of macrophage antigen CD68 and proinflammatory chemokines (CCL-2, -3, -7, -8, -17, -22) in SCAT and complementary chemokine receptors (CCR-1, -2, -3, -5) and other proinflammatory receptors (toll-like receptor 2 and 4, TNF receptor superfamily 1A and 1B, IL-6R) in PM, with OB group showing less pronounced chemoattracting and proinflammatory profile compared to T2DM group. In T2DM patients VLCD decreased body weight, improved metabolic profile, and decreased mRNA expression of up-regulated CCRs in PM and chemokines [CCL 8, chemokine (C-X-C motif) ligand 10] in SCAT. VLCD markedly increased mRNA expression of T-lymphocyte attracting chemokine CCL-17 in SCAT. Obese patients with and without T2DM have increased mRNA expression of chemotactic and proinflammatory factors in SCAT and expression of corresponding receptors in PM. Two weeks of VLCD significantly improved this profile in T2DM patients.
Chen, Yi-Tzai; Trzoss, Lynnie; Yang, Dongfang; Yan, Bingfang
2015-01-01
Human carboxylesterase-2 (CES2) and cytochrome P450 3A4 (CYP3A4) are two major drug metabolizing enzymes that play critical roles in hydrolytic and oxidative biotransformation, respectively. They share substrates but may have opposite effect on therapeutic potential such as the metabolism of the anticancer prodrug irinotecan. Both CES2 and CYP3A4 are expressed in the liver and the gastrointestinal tract. This study was conducted to determine whether CES2 and CYP3A4 are expressed under developmental regulation and whether the regulation occurs differentially between the liver and duodenum. A large number of tissues (112) were collected with majority of them from donors at 1-198 days of age. In addition, multi-sampling (liver, duodenum and jejunum) was performed in some donors. The expression was determined at mRNA and protein levels. In the liver, CES2 and CYP3A4 mRNA exhibited a postnatal surge (1 versus 2 months of age) by 2.7 and 29 fold, respectively. CYP3A4 but not CES2 mRNA in certain pediatric groups reached or even exceeded the adult level. The duodenal samples, on the other hand, showed a gene-specific expression pattern at mRNA level. CES2 mRNA increased with age but the opposite was true with CYP3A4 mRNA. The levels of CES2 and CYP3A4 protein, on the other hand, increased with age in both liver and duodenum. The multi-sampling study demonstrated significant correlation of CES2 expression between the duodenum and jejunum. However, neither duodenal nor jejunal expression correlated with hepatic expression of CES2. These findings establish that developmental regulation occurs in a gene and organ-dependent manner. PMID:25724353
Selection in Europeans on Fatty Acid Desaturases Associated with Dietary Changes
Buckley, Matthew T.; Racimo, Fernando; Allentoft, Morten E.; Jensen, Majken K.; Jonsson, Anna; Huang, Hongyan; Hormozdiari, Farhad; Sikora, Martin; Marnetto, Davide; Eskin, Eleazar; Jørgensen, Marit E.; Grarup, Niels; Pedersen, Oluf; Hansen, Torben; Kraft, Peter; Willerslev, Eske
2017-01-01
Abstract FADS genes encode fatty acid desaturases that are important for the conversion of short chain polyunsaturated fatty acids (PUFAs) to long chain fatty acids. Prior studies indicate that the FADS genes have been subjected to strong positive selection in Africa, South Asia, Greenland, and Europe. By comparing FADS sequencing data from present-day and Bronze Age (5–3k years ago) Europeans, we identify possible targets of selection in the European population, which suggest that selection has targeted different alleles in the FADS genes in Europe than it has in South Asia or Greenland. The alleles showing the strongest changes in allele frequency since the Bronze Age show associations with expression changes and multiple lipid-related phenotypes. Furthermore, the selected alleles are associated with a decrease in linoleic acid and an increase in arachidonic and eicosapentaenoic acids among Europeans; this is an opposite effect of that observed for selected alleles in Inuit from Greenland. We show that multiple SNPs in the region affect expression levels and PUFA synthesis. Additionally, we find evidence for a gene–environment interaction influencing low-density lipoprotein (LDL) levels between alleles affecting PUFA synthesis and PUFA dietary intake: carriers of the derived allele display lower LDL cholesterol levels with a higher intake of PUFAs. We hypothesize that the selective patterns observed in Europeans were driven by a change in dietary composition of fatty acids following the transition to agriculture, resulting in a lower intake of arachidonic acid and eicosapentaenoic acid, but a higher intake of linoleic acid and α-linolenic acid. PMID:28333262
Jourová, L; Anzenbacher, P; Lišková, B; Matušková, Z; Hermanová, P; Hudcovic, T; Kozáková, H; Hrnčířová, L; Anzenbacherová, E
2017-11-01
Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877 ; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nithianantham, Stanley; Xu, Minghua; Yamada, Mitsunori
2009-04-07
Many bacterial appendages have filamentous structures, often composed of repeating monomers assembled in a head-to-tail manner. The mechanisms of such linkages vary. We report here a novel protein oligomerization motif identified in the FadA adhesin from the Gram-negative bacterium Fusobacterium nucleatum. The 2.0 {angstrom} crystal structure of the secreted form of FadA (mFadA) reveals two antiparallel {alpha}-helices connected by an intervening 8-residue hairpin loop. Leucine-leucine contacts play a prominent dual intra- and intermolecular role in the structure and function of FadA. First, they comprise the main association between the two helical arms of the monomer; second, they mediate the head-to-tailmore » association of monomers to form the elongated polymers. This leucine-mediated filamentous assembly of FadA molecules constitutes a novel structural motif termed the 'leucine chain.' The essential role of these residues in FadA is corroborated by mutagenesis of selected leucine residues, which leads to the abrogation of oligomerization, filament formation, and binding to host cells.« less
Martyniuk, Christopher J; Kroll, Kevin J.; Porak, Wesley F.; Steward, Cheree; Grier, Harry J.; Denslow, Nancy D.
2011-01-01
The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) β subunit and follicle-stimulating hormone (FSH) β subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May through August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2–3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHβ mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin β subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction. PMID:19416730
Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D
2009-09-15
The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.
Trichomonas vaginalis Flavin Reductase 1 and its Role in Metronidazole Resistance
Leitsch, David; Janssen, Brian D.; Kolarich, Daniel; Johnson, Patricia J.; Duchêne, Michael
2015-01-01
Summary The enzyme flavin reductase 1 (FR1) from Trichomonas vaginalis, formerly known as NADPH oxidase, was isolated and identified. Flavin reductase is part of the antioxidative defense in T. vaginalis and indirectly reduces molecular oxygen to hydrogen peroxide via free flavins. Importantly, a reduced or absent flavin reductase activity has been reported in metronidazole-resistant T. vaginalis, resulting in elevated intracellular oxygen levels and futile cycling of metronidazole. Interestingly, FR1 has no close homologue in any other sequenced genome, but seven full-length and three truncated isoforms exist in the T. vaginalis genome. However, out of these, only FR1 has an affinity for flavins, i.e. FMN, FAD, and riboflavin, which is high enough to be of physiological relevance. Although there are no relevant changes in the gene sequence or any alterations of the predicted FR1-mRNA structure in any of the strains studied, FR1 is not expressed in highly metronidazole-resistant strains. Transfection of a metronidazole-resistant clinical isolate (B7268), which does not express any detectable amounts of FR, with a plasmid bearing a functional FR1 gene nearly completely restored metronidazole sensitivity. Our results indicate that FR1 has a significant role in the emergence of metronidazole resistance in T. vaginalis. PMID:24256032
Sarcomeric Myosin Expression in the Tongue Body of Humans, Macaques and Rats
Rahnert, Jill A.; Sokoloff, Alan J.; Burkholder, Thomas J.
2010-01-01
Expression of developmental and unconventional myosin heavy chain (MHC) isoforms in some adult head and neck muscles is thought to reflect specific contractile demands of muscle fibers active during kinematically complex movements. Mammalian tongue muscles are active during oromotor behaviors that encompass a wide range of tongue movement speeds and tongue shape changes (e.g. respiration, oral transport, swallowing, rejection), but the extent to which tongue muscles express developmental and unconventional MHC is not known. Quantitative PCR was used to determine the mRNA content of conventional MHC-beta, MHC-2a, MHC-2b and MHC-2x, the developmental isoforms embryonic MHC and neonatal MHC and the unconventional isoforms atrial/cardiac-α MHC (MHC-alpha), extraocular MHC, masseter MHC and slow tonic MHC in tongue body muscles of the rat, macaque and human. In all species, conventional MHC isoforms predominate. MHC-2b and MHC-2x account for 98% of total MHC mRNA in the rat. MHC-2a, MHC-2x and MHC-beta account for 94% of total MHC mRNA in humans and 96% of total MHC mRNA in macaque. With the exception of MHC-alpha in humans (5%), developmental and unconventional MHC mRNA represents less than 0.3% of total MHC mRNA. We conclude that in these species, there is limited expression of developmental and unconventional MHC and that diversity of tongue body muscle fiber contractile properties is achieved primarily by MHC-beta, MHC-2a, MHC-2x and MHC-2b. Whether expression of MHC-alpha mRNA in tongue is unique to humans or present in other hominoids awaits further investigation. PMID:19907142
NASA Astrophysics Data System (ADS)
Malikanti, Ramesh; Vadija, Rajender; Veeravarapu, Hymavathi; Mustyala, Kiran Kumar; Malkhed, Vasavi; Vuruputuri, Uma
2017-12-01
Tuberculosis (Tb) is one of the major health challenges for the global scientific community. The 3-hydroxy butyryl-CoA dehydrogenase (Fad B2) protein belongs to 3-hydroxyl acetyl-CoA dehydrogenase family, which plays a key role in the fatty acid metabolism and β-oxidation in the cell membrane of Mycobacterium tuberculosis (Mtb). In the present study the Fad B2 protein is targeted for the identification of potential drug candidates for tuberculosis. The 3D model of the target protein Fad B2, was generated using homology modeling approach and was validated. The plausible binding site of the Fad B2 protein was identified from computational binding pocket prediction tools, which ranges from ASN120 to VAL150 amino acid residues. Virtual screening was carried out with the databases, Ligand box UOS and hit definder, at the binding site region. 133 docked complex structures were generated as an output. The identified ligands show good glide scores and glide energies. All the ligand molecules contain benzyl amine pharmacophore in common, which show specific and selective binding interactions with the SER122 and ASN146 residues of the Fad B2 protein. The ADME properties of all the ligand molecules were observed to be within the acceptable range. It is suggested from the result of the present study that the docked molecular structures with a benzyl amine pharmacophore act as potential ligands for Fad B2 protein binding and as leads in Tb drug discovery.
Protease-activated receptor-2 (PAR(2)) in human periodontitis.
Holzhausen, M; Cortelli, J R; da Silva, V Araújo; Franco, G C Nobre; Cortelli, S Cavalca; Vergnolle, N
2010-09-01
No evidence for the role of protease-activated receptor-2 (PAR(2)) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR(2) mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR(2) potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR(2) mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1alpha, IL-6, IL-8, and TNF-alpha, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR(2) mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR(2) may play a role in periodontal inflammation.
Li, Mengmeng; Zhai, Shuangshuang; Xie, Qiang; Tian, Lu; Li, Xiaocun; Zhang, Jiaming; Ye, Hui; Zhu, Yongwen; Yang, Lin; Wang, Wence
2017-11-22
The objective of this study was to investigate the effects of dietary n-6:n-3 PUFA ratio on growth performance, serum and tissue lipid levels, fatty acid profile, and hepatic expression of fatty acid synthesis genes in ducks. A total of 3168 15-day old ducks were fed different n-6:n-3 PUFA ratios: 13:1 (control), 10:1, 8:1, 6:1, 4:1, and 2:1. The feeding trial lasted 4 weeks. Our results revealed that dietary n-6:n-3 PUFA ratios had no effects on growth performance. The 2:1 group had the highest serum triglyceride levels. Serum total cholesterol and HDL levels were higher in the 13:1 and 8:1 groups than in the 6:1 and 2:1 groups. The concentration of C18:3n-3 in serum and tissues (liver and muscle) increased with decreasing dietary n-6:n-3 PUFA ratios. The hepatic expression of FADS2, ELOVL5, FADS1, and ELOVL2 increased on a quadratic function with decreasing dietary n-6:n-3 PUFA ratios. These results demonstrate that lower dietary n-6:n-3 PUFA ratios had strong effects on the fatty acid profile of edible parts and the deposition of n-3 PUFAs in adipose tissue of ducks.
Nesbitt, Natasha M.; Yang, Xinxin; Fontán, Patricia; Kolesnikova, Irina; Smith, Issar; Sampson, Nicole S.; Dubnau, Eugenie
2010-01-01
Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen that shifts to a lipid-based metabolism in the host. Moreover, metabolism of the host lipid cholesterol plays an important role in M. tuberculosis infection. We used transcriptional profiling to identify genes transcriptionally regulated by cholesterol and KstR (Rv3574), a TetR-like repressor. The fadA5 (Rv3546) gene, annotated as a lipid-metabolizing thiolase, the expression of which is upregulated by cholesterol and repressed by KstR, was deleted in M. tuberculosis H37Rv. We demonstrated that fadA5 is required for utilization of cholesterol as a sole carbon source in vitro and for full virulence of M. tuberculosis in the chronic stage of mouse lung infection. Cholesterol is not toxic to the fadA5 mutant strain, and, therefore, toxicity does not account for its attenuation. We show that the wild-type strain, H37Rv, metabolizes cholesterol to androst-4-ene-3,17-dione (AD) and androsta-1,4-diene-3,17-dione (ADD) and exports these metabolites into the medium, whereas the fadA5 mutant strain is defective for this activity. We demonstrate that FadA5 catalyzes the thiolysis of acetoacetyl-coenzyme A (CoA). This catalytic activity is consistent with a β-ketoacyl-CoA thiolase function in cholesterol β-oxidation that is required for the production of androsterones. We conclude that the attenuated phenotype of the fadA5 mutant is a consequence of disrupted cholesterol metabolism that is essential only in the persistent stage of M. tuberculosis infection and may be caused by the inability to produce AD/ADD from cholesterol. PMID:19822655
Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian, E-mail: jian@cfs.bioment.umaryland.edu; Fu, Yi; Li, Ge
2012-08-31
Highlights: Black-Right-Pointing-Pointer Metal nanoparticle for fluorescence cell imaging. Black-Right-Pointing-Pointer Non-invasive emission detection of coenzyme in cell on time-resolved confocal microscope. Black-Right-Pointing-Pointer Near-field interaction of flavin adenine dinucleotide with silver substrate. Black-Right-Pointing-Pointer Isolation of emissions by coenzymes from cellular autofluorescence on fluorescence cell imaging. -- Abstract: Flavin adenine dinucleotide (FAD) is a key metabolite in cellular energy conversion. Flavin can also bind with some enzymes in the metabolic pathway and the binding sites may be changed due to the disease progression. Thus, there is interest on studying its expression level, distribution, and redox state within the cells. FAD is naturally fluorescent,more » but it has a modest extinction coefficient and quantum yield. Hence the intrinsic emission from FAD is generally too weak to be isolated distinctly from the cellular backgrounds in fluorescence cell imaging. In this article, the metal nanostructures on the glass coverslips were used as substrates to measure FAD in cells. Particulate silver films were fabricated with an optical resonance near the absorption and the emission wavelengths of FAD which can lead to efficient coupling interactions. As a result, the emission intensity and quantum yield by FAD were greatly increased and the lifetime was dramatically shortened resulting in less interference from the longer lived cellular background. This feature may overcome the technical limits that hinder the direct observation of intrinsically fluorescent coenzymes in the cells by fluorescence microscopy. Fluorescence cell imaging on the metallic particle substrates may provide a non-invasive strategy for collecting the information of coenzymes in cells.« less
Shimojo, Masafumi; Sahara, Naruhiko; Mizoroki, Tatsuya; Funamoto, Satoru; Morishima-Kawashima, Maho; Kudo, Takashi; Takeda, Masatoshi; Ihara, Yasuo; Ichinose, Hiroshi; Takashima, Akihiko
2008-06-13
Presenilin (PS)/gamma-secretase-mediated intramembranous proteolysis of amyloid precursor protein produces amyloid beta (Abeta) peptides in which Abeta species of different lengths are generated through multiple cleavages at the gamma-, zeta-, and epsilon-sites. An increased Abeta42/Abeta40 ratio is a common characteristic of most cases of familial Alzheimer disease (FAD)-linked PS mutations. However, the molecular mechanisms underlying amyloid precursor protein proteolysis leading to increased Abeta42/Abeta40 ratios still remain unclear. Here, we report our findings on the enzymatic analysis of gamma-secretase derived from I213T mutant PS1-expressing PS1/PS2-deficient (PS(-/-)) cells and from the brains of I213T mutant PS1 knock-in mice. Kinetics analyses revealed that the FAD mutation reduced de novo Abeta generation, suggesting that mutation impairs the total catalytic rate of gamma-secretase. Analysis of each Abeta species revealed that the FAD mutation specifically reduced Abeta40 levels more drastically than Abeta42 levels, leading to an increased Abeta42/Abeta40 ratio. By contrast, the FAD mutation increased the generation of longer Abeta species such as Abeta43, Abeta45, and >Abeta46. These results were confirmed by analyses of gamma-secretase derived from I213T knock-in mouse brains, in which the reduction of de novo Abeta generation was mutant allele dose-dependent. Our findings clearly indicate that the mechanism underlying the increased Abeta42/Abeta40 ratio observed in cases of FAD mutations is related to the differential inhibition of gamma-site cleavage reactions, in which the reaction producing Abeta40 is subject to more inhibition than that producing Abeta42. Our results also provide novel insight into how enhancing the generation of longer Abetas may contribute to Alzheimer disease onset.
Washio, Tsubasa; Oikawa, Tadao
2018-01-01
We successfully expressed the L-aspartate oxidase homolog gene (accession no: OCC_06611) of Thermococcus litoralis DSM 5473 in the soluble fraction of Escherichia coli BL21 (DE3) using a pET21b vector with 6X His tag at its C-terminus. The gene product (Tl-LASPO) showed L-aspartate oxidase activity in the presence of FAD in vitro, and this report is the first that details an L-aspartate oxidase derived from a Thermococcus species. The homologs of Tl-LASPO existed mainly in archaea, especially in the genus of Thermococcus, Pyrococcus, Sulfolobus, and Halobacteria. The quaternary structure of Tl-LASPO was homotrimeric with a subunit molecular mass of 52 kDa. The enzyme activity of Tl-LASPO increased with temperature up to 70 °C. Tl-LASPO was active from pH 6.0 to 9.0, and its highest activity was at pH 8.0. Tl-LASPO was stable at 80 °C for 1 h. The highest k cat /K m value was observed in assays at 70 °C. Tl-LASPO was highly specific for L-aspartic acid. Tl-LASPO utilized fumaric acid, 2,6-dichlorophenolindophenol, and ferricyanide in addition to FAD as a cofactor under anaerobic conditions. The absorption spectrum of holo-Tl-LASPO exhibited maxima at 380 and 450 nm. The FAD dissociation constant, K d , of the FAD-Tl-LASPO complex was determined to be 5.9 × 10 -9 M.
Kim, Eleanor; Eiby, Yvonne; Lumbers, Eugenie; Boyce, Amanda; Gibson, Karen; Lingwood, Barbara
2015-10-01
The newborn circulating, cardiac and renal renin-angiotensin systems (RASs) are essential for blood pressure control, and for cardiac and renal development. If cardiac and renal RASs are immature this may contribute to cardiovascular compromise in preterm infants. This study measured mRNA expression of cardiac and renal RAS components in preterm, glucocorticoid (GC) exposed preterm, and term piglets. Renal and cardiac RAS mRNA levels were measured using real-time polymerase chain reaction (PCR). Genes studied were: (pro)renin receptor, renin, angiotensinogen, angiotensin converting enzyme (ACE), ACE2, angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptor (AT2R). All the genes studied were expressed in the kidney; neither renin nor AT2R mRNA were detected in the heart. There were no gestational changes in (pro)renin receptor, renin, ACE or AT1R mRNA levels. Right ventricular angiotensinogen mRNA levels in females were lower in preterm animals than at term, and GC exposure increased levels in male piglets. Renal angiotensinogen mRNA levels in female term piglets were lower than females from both preterm groups, and lower than male term piglets. Left ventricular ACE2 mRNA expression was lower in GC treated preterm piglets. Renal AT2R mRNA abundance was highest in GC treated preterm piglets, and the AT1R/AT2R ratio was increased at term. Preterm cardiac and renal RAS mRNA levels were similar to term piglets, suggesting that immaturity of these RASs does not contribute to preterm cardiovascular compromise. Since preterm expression of both renal and cardiac angiotensin II-AT1R is similar to term animals, cardiovascular dysfunction in the sick preterm human neonate might be effectively treated by agents acting on their RASs. © The Author(s), 2015.
Zirak, P; Penzkofer, A; Mathes, T; Hegemann, P
2009-11-09
The wild-type BLUF protein Slr1694 from Synechocystis sp. PCC6803 (BLUF=blue-light sensor using FAD) has flavin adenosine dinucleotide (FAD) as natural cofactor. This light sensor causes positive phototaxis of the marine cyanobacterium. In this study the FAD cofactor of the wild-type Slr1694 was replaced by roseoflavin (RoF) and the roseoflavin derivatives RoFMN and RoFAD during heterologous expression in a riboflavin auxotrophic E. coli strain. An absorption and emission spectroscopic characterization of the cofactor-exchanged-Slr1694 (RoSlr) was carried out both under dark conditions and under illuminated conditions. The behaviour of RoF embedded in RoSlr in aqueous solution at pH 8 is compared with the behaviour of RoF in aqueous solution. The fluorescence of RoF and RoSlr is quenched by photo-induced twisted intra-molecular charge transfer at room temperature with stronger effect for RoF. The fluorescence quenching is diminished at liquid nitrogen temperature. Light exposure of RoSlr causes irreversible conversion of the protein embedded roseoflavins to 8-methylamino-flavins, 8-dimethylamino-lumichrome and 8-methylamino-lumichrome.
Futai, Eugene; Osawa, Satoko; Cai, Tetsuo; Fujisawa, Tomoya; Ishiura, Shoichi; Tomita, Taisuke
2016-01-01
γ-Secretase is a multisubunit membrane protein complex containing presenilin (PS1) as a catalytic subunit. Familial Alzheimer disease (FAD) mutations within PS1 were analyzed in yeast cells artificially expressing membrane-bound substrate, amyloid precursor protein, or Notch fused to Gal4 transcriptional activator. The FAD mutations, L166P and G384A (Leu-166 to Pro and Gly-384 to Ala substitution, respectively), were loss-of-function in yeast. We identified five amino acid substitutions that suppress the FAD mutations. The cleavage of amyloid precursor protein or Notch was recovered by the secondary mutations. We also found that secondary mutations alone activated the γ-secretase activity. FAD mutants with suppressor mutations, L432M or S438P within TMD9 together with a missense mutation in the second or sixth loops, regained γ-secretase activity when introduced into presenilin null mouse fibroblasts. Notably, the cells with suppressor mutants produced a decreased amount of Aβ42, which is responsible for Alzheimer disease. These results indicate that the yeast system is useful to screen for mutations and chemicals that modulate γ-secretase activity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lee, Richard H; Stanczyk, Frank Z; Stolz, Andrew; Ji, Qing; Yang, Gloria; Goodwin, T Murphy
2008-10-01
We sought to determine relative mRNA expression of AKR1C1 and SRD5A1, which respectively encode for the key progesterone metabolizing enzymes, 20alpha-hydroxysteroid dehydrogenase and 5alpha-reductase type 1, in the myometrium and chorioamniotic membranes during human spontaneous or induced labor and nonlabor. Quantitative real-time reverse-transcriptase polymerase chain reaction was used to compare relative mRNA expression of AKR1C1 and SRD5A1 in the myometrium and chorioamniotic membranes from 20 subjects during three different states of labor: not in labor ( N = 10), spontaneous labor ( N = 5), or induced labor ( N = 5). Labor was defined as regular uterine contractions that resulted in cervical dilation. Myometrial AKR1C1 mRNA expression was significantly greater in spontaneously laboring subjects compared with those not in labor (2.4-fold [1.97 to 2.98], P = 0.02). There was no difference in myometrial AKR1C1 mRNA expression between those with induced labor compared with those not in labor. Regardless of labor status, no differences were observed in the chorioamniotic membrane AKR1C1 mRNA expression between the groups. SRD5A1 mRNA expression was significantly lower in the membranes of both laboring groups when compared with those not in labor (spontaneous: 0.10-fold [0.06 to 0.18], P = 0.007; induced: 0.09-fold [0.03 to 0.25], P = 0.013). Regardless of labor status, there was no difference in SRD5A1 mRNA expression in the myometrium. Our study demonstrated tissue-specific changes in progesterone metabolizing enzyme mRNA expression in human intrauterine tissue at term associated with labor status. These observed changes in mRNA expression may have important implications for progesterone metabolism at those specific sites and thereby may differentially regulate the tissue-specific progesterone concentration and/or the level of specific progesterone metabolites.
Effects of gold thioglucose treatment on central corticotrophin-releasing hormone systems in mice.
Noguchi, T; Makino, S; Shinahara, M; Nishiyama, M; Hashimoto, K; Terada, Y
2013-04-01
Systemic administration of gold thioglucose (GTG) causes a hypothalamic lesion that extends from the ventral part of the ventromedial hypothalamus (VMH) to the dorsal part of the arcuate nucleus (ARC), resulting in hyperphagia and obesity in mice. In the present study, we used in situ hybridisation histochemistry to explore the effects of GTG on the central corticotrophin-releasing hormone (CRH) system, which regulates feeding and energy homeostasis. Type 2 CRH receptor (CRHR-2) mRNA expression decreased by 40% at 8 weeks in the VMH and by 40-60% at 2 and 8 weeks in the ARC after GTG injection. By contrast, CRHR-2 mRNA expression in the hypothalamic paraventricular nucleus (PVN) and lateral septum was unchanged. Urocortin (Ucn) 3 mRNA expression in the perifornical area and medial amygdala decreased, whereas CRH mRNA expression in the PVN increased at 2 and 8 weeks after GTG injection. Ucn 1 mRNA expression in the Edingher-Westphal nucleus and Ucn 2 mRNA expression in the PVN were unchanged. Because Ucn 3 is an anorexigenic and a possible endogenous ligand for VMH CRHR-2, our results suggest that decreased Ucn 3 expression and decreased VMH CRHR-2 expression contribute, in part, to GTG-induced hyperphagia and obesity. To determine whether VMH CRHR-2 mediates the anorexigenic effects of Ucn 3, Ucn 3 was administered i.c.v. and food intake was measured 8 weeks after GTG treatment. Ucn 3 decreased cumulative food intake on days 4-7 after surgery compared to i.c.v. administration of vehicle in control mice. By contrast, the anorexigenic effects of i.c.v. Ucn 3 were abolished in GTG-treated mice. Taken together, our results indicate that the Ucn 3 pathway, which innervates the VMH, is involved in appetite regulation via CRHR-2. It remains to be determined whether CRHR-2 in the ARC has additional roles in appetite regulation by Ucn 3. © 2012 British Society for Neuroendocrinology.
Lachgar, S; Charveron, M; Gall, Y; Bonafe, J L
1998-03-01
The hair follicle dermal papilla which controls hair growth, is characterized in the anagen phase by a highly developed vascular network. We have demonstrated in a previous study that the expression of an angiogenic growth factor called vascular endothelial growth factor (VEGF) mRNA varied during the hair cycle. VEGF mRNA is strongly expressed in dermal papilla cells (DPC) in the anagen phase, but during the catagen and telogen phases. VEGF mRNA is less strongly expressed. This involvement of VEGF during the hair cycle allowed us to determine whether VEGF mRNA expression by DPC was regulated by minoxidil. In addition, the effect of minoxidil on VEGF protein synthesis in both cell extracts and DPC-conditioned medium, was investigated immunoenzymatically. Both VEGF mRNA and protein were significantly elevated in treated DPC compared with controls. DPC incubated with increasing minoxidil concentrations (0.2, 2, 6, 12 and 24 mumol/L) induced a dose-dependent expression of VEGF mRNA. Quantification of transcripts showed that DPC stimulated with 24 mumol/L minoxidil express six times more VEGF mRNA than controls. Similarly, VEGF protein production increases in cell extracts and conditioned media following minoxidil stimulation. These studies strongly support the likely involvement of minoxidil in the development of dermal papilla vascularization via a stimulation of VEGF expression, and support the hypothesis that minoxidil has a physiological role in maintaining a good vascularization of hair follicles in androgenetic alopecia.
The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes.
Yin, Yiran; Tang, Lian; Shi, Lei
2017-03-01
The expression of the metastasis suppressor gene KISS-1 in osteosarcoma cells during apoptosis and autophagy was evaluated. MG-63 osteosarcoma cells were transfected with either KISS-1 overexpression or KISS-1 knockdown expression vector in vitro, and compared with cell lines transfected with empty vector. After 12, 24, 48 and 72 h of cell culture, the cell proliferation was examined. The MTT method was used to detect apoptosis by flow cytometry, and the mRNA levels of apoptosis and autophagy markers caspase-3, Bcl-2, Bax, LC3 and Beclin1 were assessed by RT-PCR. Our results showed that cells in the control and low expression group kept proliferating during the cell culture period of 72 h, while the cells in the overexpression group progressively decreased in number. Also, the proliferation rate of the low expression group was significantly higher than that of the control group. The relative mRNA expression levels of caspase-3 and Bax mRNA in the control and low expression group showed no change (the expression was lowest in the low expression group). Moreover, the mRNA level of Bcl-2 increased in both cell groups. The mRNA expression levels of caspase-3 and Bax in the overexpression group were increased, and the level of Bcl-2 was reduced significantly. At the same time, the relative expression level of LC3 and Beclin1 mRNA in the control and low expression groups remained the same, and that of the overexpression group increased. The mRNA levels of LC3 and Beclin1 in the overexpression group were the highest, and that of the low expression group the lowest. The differences were statistically significant (P<0.05). Based on these results, we showed that KISS-1 inhibited the proliferation of osteosarcoma in vitro, probably by accelerating the processes of apoptosis and autophagy in the cells.
Huang, Jin; Hu, Huabin; Xie, Yangchun; Tang, Youhong; Liu, Wei; Zhong, Meizuo
2013-06-01
To analyze the impact of β-tubulin-III (TUBB3), thymidylate synthase (TS) and excision repair cross complementation group 1 (ERCC1) mRNA expression on chemoresponse and clinical outcome of patients with advanced gastric cancer treated with TXT/CDDP/FU (DCF) regimen chemotherapy. The study population consisted of 48 patients with advanced gastric cancer. All patients were treated with DCF regimen palliative chemotherapy. The mRNA expressions of TUBB3, TS and ERCC1 of primary tumors were examined by multiplex branched-DNA liquid chip technology. The patients with low TUBB3 mRNA expression had higher response rate to chemotherapy than patients with high TUBB3 expression (P=0.011). There were no significant differences between response rate and TS or ERCC1 expression pattern. Median overall survival (OS) and median time to progression (TTP) were significantly longer in patients with low TUBB3 mRNA expression (P=0.002, P<0.001). TS or ERCC1 expression was not correlated with TTP and OS. In the combined analysis including TUBB3, TS and ERCC1, the patients with 0 or 1 high expression gene had better response rate, TTP and OS than the remaining patients (all P<0.001). Multivariate analysis revealed that ECOG (Eastern Cooperative Oncology Group)≥2 (HR=2.42, P=0.009) and TUBB3 (HR=2.34, P=0.036) mRNA expression significantly impacted on OS. High TUBB3 mRNA expression is correlated with resistance to DCF regimen chemotherapy. TUBB3 might be a predictive and prognostic factor in patients with advanced gastric cancer treated with TXT-based chemotherapy. The combined evaluation of TUBB3, TS and ERCC1 expression can promote the individual treatment in advanced gastric cancer.
Gao, Jinpeng; Ajjawi, Imad; Manoli, Arthur; Sawin, Andrew; Xu, Changcheng; Froehlich, John E; Last, Robert L; Benning, Christoph
2009-12-01
Polar membrane glycerolipids occur in a mixture of molecular species defined by a polar head group and characteristic acyl groups esterified to a glycerol backbone. A molecular species of phosphatidylglycerol specific to chloroplasts of plants carries a Delta(3-trans) hexadecenoic acid in the sn-2 position of its core glyceryl moiety. The fad4-1 mutant of Arabidopsis thaliana missing this particular phosphatidylglycerol molecular species lacks the necessary fatty acid desaturase, or a component thereof. The overwhelming majority of acyl groups associated with membrane lipids in plants contains double bonds with a cis configuration. However, FAD4 is unusual because it is involved in the formation of a trans double bond introduced close to the carboxyl group of palmitic acid, which is specifically esterified to the sn-2 glyceryl carbon of phosphatidylglycerol. As a first step towards the analysis of this unusual desaturase reaction, the FAD4 gene was identified by mapping of the FAD4 locus and coexpression analysis with known lipid genes. FAD4 encodes a predicted integral membrane protein that appears to be unrelated to classic membrane bound fatty acid desaturases based on overall sequence conservation. However, the FAD4 protein contains two histidine motifs resembling those of metalloproteins such as fatty acid desaturases. FAD4 is targeted to the plastid. Overexpression of the cDNA in transgenic Arabidopsis led to increased accumulation of the Delta(3-trans) hexadecanoyl group in phosphatidylglycerol relative to wild type. Taken together these results are consistent with the hypothesis that FAD4 is the founding member of a novel class of fatty acid desaturases.
Yu, Ling; Xue, Fu-Shan; Li, Cheng-Wen; Xu, Ya-Chao; Zhang, Guo-Hua; Liu, Kun-Peng; Liu, Yi; Sun, Hai-Tao
2006-12-25
The effect of systemic administration of nonspecific nitric oxide synthase inhibitor (N(omega)-nitro-L-arginine methyl ester, L-NAME) on morphine analgesia tolerance was observed by using the thermal tail-flick method, and the roles of NO and NMDA receptors in morphine analgesia tolerance were evaluated on the basis of the expressions of nNOS mRNA, NR1A mRNA and NR2A mRNA in spinal cord and midbrain. Thirty-six healthy adult Sprague-Dawley rats were randomly divided into six groups (6 rats per group). Group 1, control group, received a subcutaneous (s.c.) injection of normal saline (1 ml); Groups 2, 3, 4, 5 and 6, the treatment groups received s.c. injection of L-NAME 10 mg/kg, L-NAME 20 mg/kg, morphine 10 mg/kg, L-NAME 10 mg/kg + morphine 10 mg/kg, and L-NAME 20 mg/kg + morphine 10 mg/kg, respectively. All rats received s.c. injections twice per day (8:00 and 17:00). The tail-flick latency (TFL) was measured in each rat before the injection as a baseline value, and then TFL at 50 min after the 1st injection every day as the measuring values. The animals (except for groups 2 and 5) were decapitated at 80 min after the last injection on the 8th day. The spinal segments and midbrain were removed for analysis of nNOS mRNA, NR1A mRNA and NR2A mRNA expressions by the RT-PCR method. The results showed that TFL remained unchangeable in group 2 compared with baseline value during the 7-day observation, while increased significantly on the 7th day in group 3. In group 4, TFL was longest on the 1st day, then decreased gradually from the 2nd day to the 6th day, and restored to the baseline value on the 6th day. In group 5, TFL showed a decreasing tendency during the 7-day observation, but was still significantly longer than the baseline value on the 7th day. The changes of TFL obtained in group 6 were similar to those in group 5. The results of RT-PCR showed that as compared with group 1, nNOS mRNA expressions in spinal cord and midbrain were significantly down-regulated in group 3, but the expressions of the NR1A mRNA and NR2A mRNA in both groups were similar, while the nNOS mRNA, NR(1A) mRNA and NR(2A) mRNA expressions were all significantly up-regulated in group 4. As compared with group 4, the expressions of nNOS mRNA, NR(1A) mRNA and NR(2A) mRNA were significantly inhibited in group 6. These results suggest that the expressions of nNOS and NMDA receptors in spinal cord and midbrain were significantly up-regulated in the rats with morphine analgesia tolerance. Chronic co-administration of L-NAME could effectively inhibit the morphine-induced overexpressions of nNOS and NMDA receptors, and postpone the development of morphine analgesia tolerance. Based on the results of this study, it is concluded that NO/NMDA receptor in spinal cord and midbrain is closely related to the development of morphine analgesia tolerance.
Sakao, Kei; Takahashi, Kenji A; Arai, Yuji; Saito, Masazumi; Honjyo, Kuniaki; Hiraoka, Nobuyuki; Kishida, Tsunao; Mazda, Osam; Imanishi, Jiro; Kubo, Toshikazu
2009-11-01
To clarify the significance of subchondral bone and osteophytes in the pathology of osteoarthritis (OA), we investigated the expression of asporin (ASPN), transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, and runt-related transcription factor-2 (Runx2) genes involved in bone metabolism. Osteoblasts were isolated from 19 patients diagnosed with knee OA and from 4 patients diagnosed with femoral neck fracture. Osteoblast expression of mRNA encoding ASPN, TGF-beta1, TGF-beta2, TGF-beta3, and Runx2 was analyzed using real-time RT-PCR. Expression of ASPN, TGF-beta1, and TGF-beta3 mRNA in the subchondral bone and osteophytes of OA patients increased compared with that of non-OA patients. The ratio of ASPN to TGF-beta1 mRNA in patients with severe cartilage damage was higher than that in patients with mild cartilage damage. The increased ratio of ASPN mRNA to TGF-beta1 mRNA in patients with severe relative to mild cartilage damage indicates that increased ASPN mRNA expression was significantly associated with the severity of cartilage degeneration. This finding suggests that ASPN may regulate TGF-beta1-mediated factors in the development of OA, which may provide clues as to the underlying pathology of OA.
Xing, H J; Wang, Z Y; Zhong, B S; Ying, S J; Nie, H T; Zhou, Z R; Fan, Y X; Wang, F
2014-07-24
MSTN, IGF-І(insulin-like growth factor-І) and IGF-II (insulin-like growth factor-II) regulate skeletal muscle growth. This study investigated the effects of different dietary intake levels on skeletal muscles. Sheep was randomly assigned to 3 feeding groups: 1) the maintenance diet (M), 2) 1.4 x the maintenance diet (1.4M), and 3) 2.15 x the maintenance diet (2.15M). Before slaughtering the animals, blood samples were collected to measure plasma urea, growth hormone, and insulin concentrations. After slaughtering, the longissimus dorsi, semitendinosus, semimembranosus, gastrocnemius, soleus, and chest muscle were removed to record various parameters, including the mRNA expression levels of MSTN and IGFs, in addition to skeletal muscle fiber diameter and cross-sectional area. The result showed that as dietary intake improved, the mRNA expression levels of MSTN and IGF-II decreased, whereas IGF-Іexpression increased. The mRNA expression levels of MSTN and IGFs were significantly different in the same skeletal muscle under different dietary intake. The skeletal muscle fiber diameter and cross-sectional area increased with greater dietary intake, as observed for the mRNA expression of IGF-І; however, it contrasted to that observed for the mRNA expression of MSTN and IGF-II. In conclusion, dietary intake levels have a certain influence on MSTN and IGFs mRNA expression levels, in addition to skeletal muscle fiber diameter and cross-sectional area. This study contributes valuable information for enhancing the molecular-based breeding of sheep.
Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa.
Morineau, Céline; Bellec, Yannick; Tellier, Frédérique; Gissot, Lionel; Kelemen, Zsolt; Nogué, Fabien; Faure, Jean-Denis
2017-06-01
In many plant species, gene dosage is an important cause of phenotype variation. Engineering gene dosage, particularly in polyploid genomes, would provide an efficient tool for plant breeding. The hexaploid oilseed crop Camelina sativa, which has three closely related expressed subgenomes, is an ideal species for investigation of the possibility of creating a large collection of combinatorial mutants. Selective, targeted mutagenesis of the three delta-12-desaturase (FAD2) genes was achieved by CRISPR-Cas9 gene editing, leading to reduced levels of polyunsaturated fatty acids and increased accumulation of oleic acid in the oil. Analysis of mutations over four generations demonstrated the presence of a large variety of heritable mutations in the three isologous CsFAD2 genes. The different combinations of single, double and triple mutants in the T3 generation were isolated, and the complete loss-of-function mutants revealed the importance of delta-12-desaturation for Camelina development. Combinatorial association of different alleles for the three FAD2 loci provided a large diversity of Camelina lines with various lipid profiles, ranging from 10% to 62% oleic acid accumulation in the oil. The different allelic combinations allowed an unbiased analysis of gene dosage and function in this hexaploid species, but also provided a unique source of genetic variability for plant breeding. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Genome Wide Analysis of Fatty Acid Desaturation and Its Response to Temperature1[OPEN
Menard, Guillaume N.; Moreno, Jose Martin; Bryant, Fiona M.; Munoz-Azcarate, Olaya; Hassani-Pak, Keywan; Kurup, Smita
2017-01-01
Plants modify the polyunsaturated fatty acid content of their membrane and storage lipids in order to adapt to changes in temperature. In developing seeds, this response is largely controlled by the activities of the microsomal ω-6 and ω-3 fatty acid desaturases, FAD2 and FAD3. Although temperature regulation of desaturation has been studied at the molecular and biochemical levels, the genetic control of this trait is poorly understood. Here, we have characterized the response of Arabidopsis (Arabidopsis thaliana) seed lipids to variation in ambient temperature and found that heat inhibits both ω-6 and ω-3 desaturation in phosphatidylcholine, leading to a proportional change in triacylglycerol composition. Analysis of the 19 parental accessions of the multiparent advanced generation intercross (MAGIC) population showed that significant natural variation exists in the temperature responsiveness of ω-6 desaturation. A combination of quantitative trait locus (QTL) analysis and genome-wide association studies (GWAS) using the MAGIC population suggests that ω-6 desaturation is largely controlled by cis-acting sequence variants in the FAD2 5′ untranslated region intron that determine the expression level of the gene. However, the temperature responsiveness of ω-6 desaturation is controlled by a separate QTL on chromosome 2. The identity of this locus is unknown, but genome-wide association studies identified potentially causal sequence variants within ∼40 genes in an ∼450-kb region of the QTL. PMID:28108698
Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazarus, Kyren A.; Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122; Zhao, Zhe
2013-08-30
Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels highermore » in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.« less
Sgroi, Stefania; Capper-Loup, Christine; Paganetti, Paolo; Kaelin-Lang, Alain
2016-06-01
The opioidergic neuropeptides dynorphin (DYN) and enkephalin (ENK) and the D1 and D2 dopaminergic receptors (D1R, D2R) are involved in the striatal control of motor and behavioral function. In Parkinson's disease, motor disturbances such as "on-off" motor fluctuations and involuntary movements (dyskinesia) are severe complications that often arise after chronic l-dihydroxyphenylalanine (l-DOPA) treatment. Changes in the striatal expression of preproENK (PPENK), proDYN (PDYN), D1R, and D2R mRNA have been observed in parkinsonian animals treated with l-DOPA. Enhanced opioidergic transmission has been found in association with l-DOPA-induced dyskinesia, but the connection of PPENK, PDYN, D1R, and D2R mRNA expression with locomotor activity remains unclear. In this study, we measured PPENK, PDYN, D1R and D2R mRNA levels by in situ hybridization in the striatum of 6-OHDA hemi-parkinsonian rats treated with l-DOPA (PD+l-DOPA group), along with two control groups (PD+saline and naive+l-DOPA). We found different levels of expression of PPENK, PDYN, D1R and D2R mRNA across the experimental groups and correlated the changes in mRNA expression with dyskinesia and locomotor variables assessed by open field test during several phases of l-DOPA treatment. Both PDYN and PPENK mRNA levels were correlated with the severity of dyskinesia, while PPENK mRNA levels were also correlated with the frequency of contralateral rotational movements and with locomotor variables. Moreover, a strong correlation was found between D1R mRNA expression and D2R mRNA expression in the PD+l-DOPA group. These findings suggest that, in parkinsonian animals treated with l-DOPA, high levels of PPENK are a prerequisite for a locomotor sensitization to l-DOPA treatment, while PDYN overexpression is responsible only for the development of dyskinesia. Copyright © 2016 Elsevier Inc. All rights reserved.
Feng, Lin; Gan, Lu; Jiang, Wei-Dan; Wu, Pei; Liu, Yang; Jiang, Jun; Tang, Ling; Kuang, Sheng-Yao; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu
2017-04-01
This study firstly aimed to test the impact of dietary isoleucine (Ile) on tight junction protein, inflammation, apoptosis, antioxidant defense and related signaling molecule gene expression in the gill of fish. Young grass carp (Ctenopharyngodon idella) (weighing 256.8 ± 3.5 g) were fed six diets containing graded levels of Ile, namely, 3.8, 6.6, 9.3, 12.5, 15.2 and 18.5 g/kg diet for 8 weeks. The results firstly revealed that Ile deficiency down-regulated the mRNA expressions of claudin-3, claudin-b, claudin-c, occludin and zonula occludens-1 (ZO-1) and up-regulated the mRNA expression of claudin-12, which led to the intercellular structure damage of fish gill. These effects were partially ascribed to the up-regulation of pro-inflammatory cytokines [interleukin 1β (IL-1β), interleukin 8 (IL-8) and tumor necrosis factor-α (TNF-α)] mRNA expressions that referring to up-regulated nuclear factor κB P65 (NF-κB P65) mRNA expression and down-regulated inhibitor factor κBα (IκBα) mRNA expression, and the down-regulation of anti-inflammatory cytokines [interleukin 10 (IL-10) and transforming growth factor β1 (TGF-β1)] mRNA expressions that referring to the down-regulated TOR and S6K1 mRNA expression. Interestingly, no change in claudin 15 mRNA level was observed among every treatment. At the same time, the results firstly indicated that Ile deficiency also resulted in the cellular structure damage of fish gill: (1) DNA fragmentation partially due to the up-regulation of caspase-3, caspase-8 and caspase-9 mRNA expression; (2) increase in protein carbonyl (PC), malondialdehyde (MDA) and ROS contents, which may be partially attributed to the impaired antioxidant defense [indicated by decreased glutathione (GSH) level and depressed anti-superoxide anion (ASA), anti-hydroxyl radical (a-HR), copper/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT) and glutathione peroxidase (GPx) activities] that referring to the down-regulation of corresponding antioxidant enzyme mRNA expressions and the related signaling molecules Nrf2 mRNA expression. Ile excess caused similar negative effects that observed in Ile-deficient group, whereas these negative effects were reversed with appropriate Ile supplementation. In conclusion, our results indicated that Ile deficiency or excess disrupted the structural integrity of fish gill, partially due to the trigger of apoptosis, the impairment of antioxidant defense, and the regulation of tight junction protein, inflammatory cytokines, apoptosis-related, antioxidant enzymes and related signaling molecules mRNA expressions in the fish gill. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E
2010-02-01
Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.
Sakamoto, Asuka; Nakamura, Masatsugu
2012-01-01
This study evaluated the effects of flavin adenine dinucleotide (FAD) on ultraviolet B (UV-B)-induced damage in cultured human corneal epithelial (HCE-T) cells. The cultured HCE-T cells were treated with 0.003125-0.05% FAD before exposure to 80 mJ/cm2 UV-B. Cell viability was measured 24 h after UV-B irradiation using the MTS assay. Reactive oxygen species (ROS) were detected 30 min after UV-B irradiation using 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester. Apoptosis was evaluated 4 h after UV-B irradiation in the caspase-3/7 activity assay. UV-B irradiation reduced cell viability and stimulated ROS production and caspase-3/7 activity in HCE-T cells. Pretreatment of UV-B irradiated HCE-T cells with FAD significantly attenuated cell viability reduction and inhibited the stimulation of both ROS production and caspase-3/7 activity due to UV-B exposure compared with those with vehicle (0% FAD). These results clarified that FAD inhibits ROS-mediated apoptosis by UV-B irradiation in HCE-T cells and suggest that FAD may be effective as a radical scavenger in UV-B-induced corneal damage.
Lee, Sung Dae; Kim, Hoi Yun; Jung, Hyun Jung; Ji, Sang Yun; Chowdappa, Rekha; Ha, Ji Hee; Song, Young Min; Park, Jun Cheol; Moon, Hong Kil; Kim, In Cheul
2009-02-01
The objective of the present study was to investigate the effect of fermented apple diet (FAD) supplementation on the growth performance and meat quality in finishing Berkshires. The FAD was made from dropped apple mixed with rice bran and barley bran. Until 81 +/- 1 kg live weight at 133 +/- 1 days, the animals were fed a growing diet, after which experimental samples were fixed at 0, 2, 4 and 6% FAD as C, T1, T2 and T3 in the finishing diets. Growth performance, ADG, ADFI and feed efficiency were improved in T1 than other groups. In carcass parameters, carcass weight was higher (P < 0.05) in T1 than in other groups. In meat quality, moisture and crude protein contents decreased (P < 0.05) by addition of FAD. pH(24) and WHC were higher (P < 0.05) in T1 than other groups. In sensory evaluation, marbling of fresh meat and tenderness, juiciness, flavor and overall acceptability of cooked meat were improved by the addition of FAD. According to the results of our experiment, FAD can be used for improvement of meat quality parameters.
Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F
1989-01-01
Uncoupling-protein (UCP) mRNA expression is decreased to 15% of virgin control levels between days 10 and 15 of pregnancy, and remains at these low values during late pregnancy and lactation. Abrupt weaning of mid-lactating rats causes a slight but significant increase in UCP mRNA. Expression of mRNA for subunit II of cytochrome c oxidase (COII) decreased to half that of virgin control in late pregnancy and during lactation. Whereas COII mRNA expression is in step with the known modifications of brown-fat mitochondria content during the breeding cycle of the rat, UCP mRNA expression appears to be diminished much earlier than the mitochondrial proton-conductance-pathway activity. On the other hand, the reactivity of brown fat to increase expression of UCP and COII mRNAs in response to acute cold or noradrenaline treatment is not impaired during lactation. Images Fig. 1. Fig. 2. Fig. 3. PMID:2557014
Chapela, Patricia J; Broaddus, Russell R; Hawkins, Shannon M; Lessey, Bruce A; Carson, Daniel D
2015-11-01
MUC4, a transmembrane glycoprotein, interferes with cell adhesion, and promotes EGFR signaling in cancer. Studies in rat models have demonstrated steroid hormonal regulation of endometrial MUC4 expression. In this study, qRT-PCR screening of mouse tissues determined that Muc4 mRNA also was robustly expressed in mouse uteri. Previous studies from our labs have demonstrated MUC4 mRNA was expressed at levels <1% of MUC1 mRNA in human endometrium and endometriotic tissue. Multiple human endometrial adenocarcinoma cell lines were assayed for MUC4 mRNA expression revealing extremely low basal expression in the Ishikawa, RL-95-2, AN3CA, and KLE lines. Moderate to high expression was observed in HEC50 and HEC-1A cells. MUC4 mRNA expression was not affected by progesterone and/or estrogen treatment, but was greatly stimulated at both mRNA and protein levels by proinflammatory cytokines (IFN-γ and TNF-α), particularly when used in combination. In endometrial tissue, MUC4 mRNA levels did not change significantly between normal or cancerous samples; although, a subset of patients with grade 1 and 2 tumors displayed substantially higher expression. Likewise, immunostaining of human endometrial adenocarcinoma tissues revealed little to no staining in many patients (low MUC4), but strong staining in some patients (high MUC4) independent of cancer grade. In cases where staining was observed, it was heterogeneous with some cells displaying robust MUC4 expression and others displaying little or no staining. Collectively, these observations demonstrate that while MUC4 is highly expressed in the mouse uterus, it is not a major mucin in normal human endometrium. Rather, MUC4 is a potential marker of endometrial adenocarcinoma in a subset of patients. © 2015 Wiley Periodicals, Inc.
Kong, Qingxia; Min, Xia; Sun, Ran; Gao, Jianying; Liang, Ruqing; Li, Lei; Chu, Xu
2016-01-01
The present study aimed to investigate the effects of various pharmacological agents on the hippocampal expression of neural cell adhesion molecule 1 (NCAM1) and extracellular signal-regulated kinase 2 (ERK2) in epileptic rats with cognitive dysfunction. The experiments were conducted using 120 Wistar rats: 20 controls and 100 with pilocarpine-induced status epilepticus (SE). The SE rats were randomly assigned to 5 groups (n=20/group) that received daily treatments for 1 month with one of the following: (i) saline (no effect on epilepsy); (ii) carbamazepine (an anticonvulsant); (iii) oxcarbazepine (an anticonvulsant); (iv) aniracetam (a nootropic); or (v) donepezil (an acetylcholinesterase inhibitor). Spatial learning and memory were assessed using a Morris Water Maze (MWM). Hippocampal tissue was assessed for NCAM1 and ERK2 messenger RNA (mRNA) expression by reverse transcription polymerase chain reaction, and protein expression by immunochemistry. The results revealed that SE rats had significantly poorer MWM performances compared with controls (P<0.01). Performance in SE rats was improved with donepezil treatment (P<0.01), but declined with carbamazepine (P<0.01). Compared with controls, saline-treated SE rats exhibited increased hippocampal NCAM1 mRNA expression (P<0.01). Among SE rats, NCAM1 mRNA expression was highest in those treated with donepezil, followed by aniracetam-, saline-, oxcarbazepine- and carbamazepine-treated rats. Compared to controls, saline-treated SE rats exhibited decreased hippocampal ERK2 mRNA expression (P<0.01). Among SE rats, ERK2 mRNA expression was highest in those treated with donepezil, followed by aniracetam, saline, oxcarbazepine and carbamazepine. NCAM1 and ERK2 protein expression levels were parallel to those of the mRNA. In saline-treated SE rats, hippocampal ERK2 expression was decreased and NCAM1 expression was increased; thus, these two molecules may be involved in the impairment of spatial memory. Carbamazepine augmented this impairment, whereas donepezil was found to ameliorate the dysfunction associated with epilepsy. In conclusion, ERK2 and NCAM1 have significant roles in impairment of spatial memory in SE rats. Carbamazepine may increase this impairment, while donepezil may decrease this impairment. PMID:27588125
Carlson, Paula; Acosta, Andres; Busciglio, Irene
2015-01-01
The mucosal gene expression in rectosigmoid mucosa (RSM) in irritable bowel syndrome with diarrhea (IBS-D) is unknown. Our objectives were, first, to study mRNA expression [by RT2 PCR of 19 genes pertaining to tight junctions, immune activation, intestinal ion transport and bile acid (BA) homeostasis] in RSM in IBS-D patients (n = 47) and healthy controls (n = 17) and study expression of a selected protein (PDZD3) in 10 IBS-D patients and 4 healthy controls; second, to assess RSM mRNA expression according to genotype and fecal BA excretion (high ≥2,337 μmol/48 h); and third, to determine whether genotype or mucosal mRNA expression is associated with colonic transit or BA parameters. Fold changes were corrected for false detection rate for 19 genes studied (P < 0.00263). In RSM in IBS-D patients compared with controls, mRNA expression of GUC2AB, PDZD3, and PR2Y4 was increased, whereas CLDN1 and FN1 were decreased. One immune-related gene was upregulated (C4BP4) and one downregulated (CCL20). There was increased expression of a selected ion transport protein (PDZD3) on immunohistochemistry and Western blot in IBS-D compared with controls (P = 0.02). There were no significant differences in mucosal mRNA in 20 IBS-D patients with high compared with 27 IBS-D patients with normal BA excretion. GPBAR1 (P < 0.05) was associated with colonic transit. We concluded that mucosal ion transport mRNA (for several genes and PDZD3 protein) is upregulated and barrier protein mRNA downregulated in IBS-D compared with healthy controls, independent of genotype. There are no differences in gene expression in IBS-D with high compared with normal fecal BA excretion. PMID:25930081
Camilleri, Michael; Carlson, Paula; Acosta, Andres; Busciglio, Irene
2015-07-01
The mucosal gene expression in rectosigmoid mucosa (RSM) in irritable bowel syndrome with diarrhea (IBS-D) is unknown. Our objectives were, first, to study mRNA expression [by RT(2) PCR of 19 genes pertaining to tight junctions, immune activation, intestinal ion transport and bile acid (BA) homeostasis] in RSM in IBS-D patients (n = 47) and healthy controls (n = 17) and study expression of a selected protein (PDZD3) in 10 IBS-D patients and 4 healthy controls; second, to assess RSM mRNA expression according to genotype and fecal BA excretion (high ≥ 2,337 μmol/48 h); and third, to determine whether genotype or mucosal mRNA expression is associated with colonic transit or BA parameters. Fold changes were corrected for false detection rate for 19 genes studied (P < 0.00263). In RSM in IBS-D patients compared with controls, mRNA expression of GUC2AB, PDZD3, and PR2Y4 was increased, whereas CLDN1 and FN1 were decreased. One immune-related gene was upregulated (C4BP4) and one downregulated (CCL20). There was increased expression of a selected ion transport protein (PDZD3) on immunohistochemistry and Western blot in IBS-D compared with controls (P = 0.02). There were no significant differences in mucosal mRNA in 20 IBS-D patients with high compared with 27 IBS-D patients with normal BA excretion. GPBAR1 (P < 0.05) was associated with colonic transit. We concluded that mucosal ion transport mRNA (for several genes and PDZD3 protein) is upregulated and barrier protein mRNA downregulated in IBS-D compared with healthy controls, independent of genotype. There are no differences in gene expression in IBS-D with high compared with normal fecal BA excretion. Copyright © 2015 the American Physiological Society.
Shimizu, Takashi; Kaji, Ayami; Murayama, Chiaki; Magata, Fumie; Shirasuna, Koumei; Wakamiya, Kaori; Okuda, Kiyoshi; Miyamoto, Akio
2012-01-01
Interleukin 8 (IL-8) is a chemoattractant involved in the recruitment and activation of neutrophils and is associated with the ovulate process. We examined the possible role of IL-8 in steroid production by bovine granulosa cells before and after ovulation. The concentration of IL-8 in the follicular fluid of estrogen-active dominant (EAD) and pre-ovulatory follicles (POF) was higher than that of small follicles (SF). CXCR1 mRNA expression was higher in the granulosa cells of EAD and POF than that of SF. In contrast, CXCR2 mRNA expression was lower in granulosa cells of EAD and POF than in SF. IL-8 inhibited estradiol (E2) production in follicle-stimulating hormone (FSH)-treated granulosa cells at 48 h of culture. IL-8 also suppressed CYP19A1 mRNA expression in FSH-treated granulosa cells. IL-8 stimulated progesterone (P4) production in luteinizing hormone (LH)-treated granulosa cells at 48 h of culture. Although IL-8 did not alter the expression of genes associated with P4 production, it induced StAR protein expression in LH-treated granulosa cells. The expression of CXCR1 mRNA in corpus luteum (CL) did not change during the luteal phase. In contrast, the expression of CXCR2 mRNA in middle CL was significantly higher than in early and regression CL during the luteal phase. In luteinizing granulosa cells, an in vitro model of granulosa cell luteinization, CXCR2 mRNA expression was downregulated, whereas CXCR1 mRNA expression was unchanged. IL-8 also stimulated P4 production in luteinizing granulosa cells. These data provide evidence that IL-8 functions not only as a chemokine, but also act as a regulator of steroid synthesis in granulosa cells to promote luteinization after ovulation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rzehak, Peter; Thijs, Carel; Standl, Marie; Mommers, Monique; Glaser, Claudia; Jansen, Eugène; Klopp, Norman; Koppelman, Gerard H.; Singmann, Paula; Postma, Dirkje S.; Sausenthaler, Stefanie; Dagnelie, Pieter C.; van den Brandt, Piet A.; Koletzko, Berthold; Heinrich, Joachim
2010-01-01
Background Association of genetic-variants in the FADS1-FADS2-gene-cluster with fatty-acid-composition in blood of adult-populations is well established. We analyze this genetic-association in two children-cohort-studies. In addition, the association between variants in the FADS-gene-cluster and blood-fatty-acid-composition with eczema was studied. Methods and Principal Findings Data of two population-based-birth-cohorts in the Netherlands and Germany (KOALA, LISA) were pooled (n = 879) and analyzed by (logistic) regression regarding the mutual influence of single-nucleotide-polymorphisms (SNPs) in the FADS-gene-cluster (rs174545, rs174546, rs174556, rs174561, rs3834458), on polyunsaturated fatty acids (PUFA) in blood and parent-reported eczema until the age of 2 years. All SNPs were highly significantly associated with all PUFAs except for alpha-linolenic-acid and eicosapentaenoic-acid, also after correction for multiple-testing. All tested SNPs showed associations with eczema in the LISA-study, but not in the KOALA-study. None of the PUFAs was significantly associated with eczema neither in the pooled nor in the analyses stratified by study-cohort. Conclusions and Significance PUFA-composition in young children's blood is under strong control of the FADS-gene-cluster. Inconsistent results were found for a link between these genetic-variants with eczema. PUFA in blood was not associated with eczema. Thus the hypothesis of an inflammatory-link between PUFA and eczema by the metabolic-pathway of LC-PUFAs as precursors for inflammatory prostaglandins and leukotrienes could not be confirmed by these data. PMID:20948998
Exon 2-mediated c-myc mRNA decay in vivo is independent of its translation.
Pistoi, S; Roland, J; Babinet, C; Morello, D
1996-01-01
We have previously shown that the steady-state level of c-myc mRNA in vivo is primarily controlled by posttranscriptional regulatory mechanisms. To identify the sequences involved in this process, we constructed a series of H-2/myc transgenic lines in which various regions of the human c-MYC gene were placed under the control of the quasi-ubiquitous H-2K class I regulatory sequences. We demonstrated that the presence of one of the two coding exons, exon 2 or exon 3, is sufficient to confer a level of expression of transgene mRNA similar to that of endogenous c-myc in various adult tissues as well as after partial hepatectomy or after protein synthesis inhibition. We now focus on the molecular mechanisms involved in modulation of expression of mRNAs containing c-myc exon 2 sequences, with special emphasis on the coupling between translation and c-myc mRNA turnover. We have undertaken an analysis of expression, both at the mRNA level and at the protein level, of new transgenic constructs in which the translation is impaired either by disruption of the initiation codon or by addition of stop codons upstream of exon 2. Our results show that the translation of c-myc exon 2 is not required for regulated expression of the transgene in the different situations analyzed, and therefore they indicate that the mRNA destabilizing function of exon 2 is independent of translation by ribosomes. Our investigations also reveal that, in the thymus, some H-2/myc transgenes express high levels of mRNA but low levels of protein. Besides the fact that these results suggest the existence of tissue-specific mechanisms that control c-myc translatability in vivo, they also bring another indication of the uncoupling of c-myc mRNA translation and degradation. PMID:8756668
Wang, Qiang; Wang, Zuo-Feng; Cao, Mei; Wang, Zhi-Ying
2013-04-01
The aim of this study was to investigate the effects of TLR2, TLR9, CD4(+)CD25(+) regulatory T cells (Treg) and transcription factor FoxP3 in the pathogenesis of children with infectious mononucleosis (IM). Thirty-five acute IM patients admitted in our hospital from April 2010 to January 2011 were enrolled in this study. Thirty-five healthy subjects were taken as control. The thirty-five patients before treatment were considered as patients in acute stage, after treatment and without clinical symptom they were thought as patients in recovery stage. The expression levels of TLR2, TLR9 and FoxP3 mRNA were detected by real time PCR using SYBR Green I. The expression of T lymphocyte subset CD4(+)CD25(+) in peripheral blood mononuclear cells was detected by flow cytometry. The results showed that the relative levels of TLR2 mRNA (4.03 ± 0.56), TLR9 mRNA (8.88 ± 1.56) in peripheral blood mononuclear cells of IM patients in acute stage were significantly higher than those of the controls [TLR2 mRNA (2.22 ± 0.57), TLR9 mRNA (3.63 ± 1.30)] and IM patients in recovery stage [TLR2 mRNA (2.76 ± 0.83), TLR9 mRNA (5.34 ± 1.60)] (P < 0.01). The result of CD4(+)CD25(+) (2.38 ± 1.32%) and relative level of FoxP3 mRNA(2.82 ± 0.90) in peripheral blood mononuclear cells of IM patients in acute stage were lower than those of the control [CD4(+)CD25(+) (7.85 ± 1.97%), FoxP3 mRNA (4.65 ± 1.23) ] (P < 0.01). There was no significant difference in CD4(+)CD25(+) (6.81 ± 1.84%), FoxP3 mRNA(4.11 ± 1.37) levels between IM patients in recovery stage and the controls (P > 0.05). It is concluded that the expression of CD4(+)CD25(+)regulatory T cells is reduced, and its special transcription factor FoxP3 mRNA is down-regulated, but expression levels of TLR2 mRNA, TLR9 mRNA are up-regulated in IM patients of acute stage.
Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1997-01-01
It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.
Profiling of m6A RNA modifications identified an age-associated regulation of AGO2 mRNA stability.
Min, Kyung-Won; Zealy, Richard W; Davila, Sylvia; Fomin, Mikhail; Cummings, James C; Makowsky, Daniel; Mcdowell, Catherine H; Thigpen, Haley; Hafner, Markus; Kwon, Sang-Ho; Georgescu, Constantin; Wren, Jonathan D; Yoon, Je-Hyun
2018-06-01
Gene expression is dynamically regulated in a variety of mammalian physiologies. During mammalian aging, there are changes that occur in protein expression that are highly controlled by the regulatory steps in transcription, post-transcription, and post-translation. Although there are global profiles of human transcripts during the aging processes available, the mechanism(s) by which transcripts are differentially expressed between young and old cohorts remains unclear. Here, we report on N6-methyladenosine (m6A) RNA modification profiles of human peripheral blood mononuclear cells (PBMCs) from young and old cohorts. An m6A RNA profile identified a decrease in overall RNA methylation during the aging process as well as the predominant modification on proteincoding mRNAs. The m6A-modified transcripts tend to be more highly expressed than nonmodified ones. Among the many methylated mRNAs, those of DROSHA and AGO2 were heavily methylated in young PBMCs which coincided with a decreased steady-state level of AGO2 mRNA in the old PBMC cohort. Similarly, downregulation of AGO2 in proliferating human diploid fibroblasts (HDFs) also correlated with a decrease in AGO2 mRNA modifications and steady-state levels. In addition, the overexpression of RNA methyltransferases stabilized AGO2 mRNA but not DROSHA and DICER1 mRNA in HDFs. Moreover, the abundance of miRNAs also changed in the young and old PBMCs which are possibly due to a correlation with AGO2 expression as observed in AGO2-depleted HDFs. Taken together, we uncovered the role of mRNA methylation on the abundance of AGO2 mRNA resulting in the repression of miRNA expression during the process of human aging. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
An, Ming-Xin; Li, Si; Yao, Han-Bing; Li, Chao; Wang, Jia-Mei; Sun, Jia; Li, Xin-Yu; Meng, Xiao-Na; Wang, Hua-Qin
2017-12-04
Aerobic glycolysis, a phenomenon known historically as the Warburg effect, is one of the hallmarks of cancer cells. In this study, we characterized the role of BAG3 in aerobic glycolysis of pancreatic ductal adenocarcinoma (PDAC) and its molecular mechanisms. Our data show that aberrant expression of BAG3 significantly contributes to the reprogramming of glucose metabolism in PDAC cells. Mechanistically, BAG3 increased Hexokinase 2 (HK2) expression, the first key enzyme involved in glycolysis, at the posttranscriptional level. BAG3 interacted with HK2 mRNA, and the degree of BAG3 expression altered recruitment of the RNA-binding proteins Roquin and IMP3 to the HK2 mRNA. BAG3 knockdown destabilized HK2 mRNA via promotion of Roquin recruitment, whereas BAG3 overexpression stabilized HK2 mRNA via promotion of IMP3 recruitment. Collectively, our results show that BAG3 promotes reprogramming of glucose metabolism via interaction with HK2 mRNA in PDAC cells, suggesting that BAG3 may be a potential target in the aerobic glycolysis pathway for developing novel anticancer agents. © 2017 An et al.
Blitek, Agnieszka; Szymanska, Magdalena
2017-10-01
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-dependent transcription factors. PPARs are critical regulators of glucose homeostasis and lipid metabolism, and affect cell proliferation and differentiation. In the current study, we examined (1) the profiles of PPARA, PPARD, and PPARG mRNA expression and DNA binding activity in porcine conceptuses collected on Days 10-11 (spherical and tubular conceptuses), 11-12 (filamentous conceptuses), 13-14, and 15-16 (elongated conceptuses) of pregnancy, (2) the presence of PPARA, PPARD, and PPARG proteins in Days 10, 12, and 15 conceptuses. Moreover, we analyzed the abundance of retinoid X receptor (RXR; PPARs heterodimer partner) transcripts as well as the correlation between PPARs mRNA expression and the expression of genes important for and/or associated with elongation of porcine conceptuses: aromatase (CYP19A1), prostaglandin endoperoxide synthase 2 (PTGS2), glucose transporter 1 (SLC2A1), and interleukin 1B (IL1B). PPARA mRNA expression in conceptuses did not change during Days 10-14 of gestation, but was greater on Days 15-16 compared to Days 10-11 (P < 0.05). A considerable increase in PPARD and PPARG mRNA expression was observed in filamentous conceptuses from Days 11-12 compared to spherical and tubular conceptuses from Days 10-11 (P < 0.01), followed by a decrease on Days 13-14 and 15-16 (P < 0.05). PPARA, PPARD, and PPARG proteins were present in conceptus tissue demonstrating nuclear localization clearly visible on Days 12 and 15 of pregnancy. DNA binding activity of the PPARD isoform was greater in filamentous conceptuses from Days 11-12 than in spherical and tubular conceptuses from Days 10-11 (P < 0.01). Moreover, concentrations of active PPARD and PPARG proteins in nuclear fractions of conceptus tissue were greater on Days 11-12 compared to Days 13-14 and 15-16 of pregnancy (P < 0.05). RXRA, RXRD, and RXRG mRNA expression in conceptuses increased on Days 11-12 compared to Days 10-11 (P < 0.05). PPARD and PPARG mRNA expression showed strong positive correlations with PTGS2 mRNA expression (P < 0.0001). Additionally, PPARD gene expression correlated with SLC2A1 and IL1B mRNA expression (P < 0.01). Collectively, these results indicate that among all three PPARs expressed in peri-implantation porcine conceptuses, PPARD and PPARG may be involved in conceptus elongation before implantation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Kiyun; Kwak, Inn-Sil
2012-12-01
The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.
Pennacchio, Gisela E; Neira, Flavia J; Soaje, Marta; Jahn, Graciela A; Valdez, Susana R
2017-02-15
Hyperthyroidism (HyperT) compromises pregnancy and lactation, hindering suckling-induced PRL release. We studied the effect of HyperT on hypothalamic mRNA (RT-qPCR) and protein (Western blot) expression of tyrosine hydroxylase (TH), PRL receptor (PRLR) and signaling pathway members, estrogen-α (ERα) and progesterone (PR) receptors on late pregnancy (days G19, 20 and 21) and early lactation (L2) in rats. HyperT advanced pre-partum PRL release, reduced circulating PRL on L2 and increased TH mRNA (G21 and L2), p-TH, PRLR mRNA, STAT5 protein (G19 and L2), PRLR protein (G21) and CIS protein (G19). PRs mRNAs and protein decreased on G19 but afterwards PRA mRNA (G20), PRB mRNA (G21) and PRA mRNA and protein (L2) increased. ERα protein increased on G19 and decreased on G20. Thus, the altered hypothalamic PRLR, STAT5, PR and ERα expression in hyperthyroid rats may induce elevated TH expression and activation, that consequently, elevate dopaminergic tone during lactation, blunting suckling-induced PRL release and litter growth. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Familial Alzheimer disease-linked mutations specifically disrupt Ca2+ leak function of presenilin 1.
Nelson, Omar; Tu, Huiping; Lei, Tianhua; Bentahir, Mostafa; de Strooper, Bart; Bezprozvanny, Ilya
2007-05-01
Mutations in presenilins are responsible for approximately 40% of all early-onset familial Alzheimer disease (FAD) cases in which a genetic cause has been identified. In addition, a number of mutations in presenilin-1 (PS1) have been suggested to be associated with the occurrence of frontal temporal dementia (FTD). Presenilins are highly conserved transmembrane proteins that support cleavage of the amyloid precursor protein by gamma-secretase. Recently, we discovered that presenilins also function as passive ER Ca(2+) leak channels. Here we used planar lipid bilayer reconstitution assays and Ca(2+) imaging experiments with presenilin-null mouse embryonic fibroblasts to analyze ER Ca(2+) leak function of 6 FAD-linked PS1 mutants and 3 known FTD-associated PS1 mutants. We discovered that L166P, A246E, E273A, G384A, and P436Q FAD mutations in PS1 abolished ER Ca(2+) leak function of PS1. In contrast, A79V FAD mutation or FTD-associated mutations (L113P, G183V, and Rins352) did not appear to affect ER Ca(2+) leak function of PS1 in our experiments. We validated our findings in Ca(2+) imaging experiments with primary fibroblasts obtained from an FAD patient possessing mutant PS1-A246E. Our results indicate that many FAD mutations in presenilins are loss-of-function mutations affecting ER Ca(2+) leak activity. In contrast, none of the FTD-associated mutations affected ER Ca(2+) leak function of PS1, indicating that the observed effects are disease specific. Our observations are consistent with the potential role of disturbed Ca(2+) homeostasis in Alzheimer disease pathogenesis.
Gardner, Katherine L.; Hale, Matthew W.; Lightman, Stafford L.; Plotsky, Paul M.; Lowry, Christopher A.
2009-01-01
Anxiety disorders, depression and animal models of vulnerability to a depression-like syndrome have been associated with dysregulation of serotonergic systems in the brain. To evaluate the effects of early life experience, adverse experiences during adulthood, and potential interactions between these factors on serotonin transporter (slc6a4) mRNA expression, we investigated in rats the effects of maternal separation (180 min/day from days 2–14 of life; MS180), neonatal handing (15 min/day from days 2–14 of life; MS15), or normal animal facility rearing control conditions (AFR) with or without subsequent exposure to adult social defeat on slc6a4 mRNA expression in the dorsal raphe nucleus (DR) and caudal linear nucleus. At the level of specific subdivisions of the DR, there were no differences in slc6a4 mRNA expression between MS15 and AFR rats. Among rats exposed to a novel cage control condition, increased slc6a4 mRNA expression was observed in the dorsal part of the DR in MS180 rats, relative to AFR control rats. In contrast, MS180 rats exposed to social defeat as adults had increased slc6a4 mRNA expression throughout the DR compared to both MS15 and AFR controls. Social defeat increased slc6a4 mRNA expression, but only in MS180 rats and only in the “lateral wings” of the DR. Overall these data demonstrate that early life experience and stressful experience during adulthood interact to determine slc6a4 mRNA expression. These data support the hypothesis that early life experience and major stressful life events contribute to dysregulation of serotonergic systems in stress-related neuropsychiatric disorders. PMID:19781533
Wang, Ming; Roberts, David L.; Paschke, Rosemary; Shea, Thomas M.; Masters, Bettie Sue Siler; Kim, Jung-Ja P.
1997-01-01
Microsomal NADPH–cytochrome P450 reductase (CPR) is one of only two mammalian enzymes known to contain both FAD and FMN, the other being nitric-oxide synthase. CPR is a membrane-bound protein and catalyzes electron transfer from NADPH to all known microsomal cytochromes P450. The structure of rat liver CPR, expressed in Escherichia coli and solubilized by limited trypsinolysis, has been determined by x-ray crystallography at 2.6 Å resolution. The molecule is composed of four structural domains: (from the N- to C- termini) the FMN-binding domain, the connecting domain, and the FAD- and NADPH-binding domains. The FMN-binding domain is similar to the structure of flavodoxin, whereas the two C-terminal dinucleotide-binding domains are similar to those of ferredoxin–NADP+ reductase (FNR). The connecting domain, situated between the FMN-binding and FNR-like domains, is responsible for the relative orientation of the other domains, ensuring the proper alignment of the two flavins necessary for efficient electron transfer. The two flavin isoalloxazine rings are juxtaposed, with the closest distance between them being about 4 Å. The bowl-shaped surface near the FMN-binding site is likely the docking site of cytochrome c and the physiological redox partners, including cytochromes P450 and b5 and heme oxygenase. PMID:9237990
Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones.
Grümmer, R; Chwalisz, K; Mulholland, J; Traub, O; Winterhager, E
1994-12-01
A distinct spatial and temporal pattern of connexin26 and connexin43 (cx26 and cx43) expression was observed in the rat endometrium in response to embryo implantation; however, connexin expression was suppressed during the preimplantation period. Pseudopregnant rats did not show connexin mRNA, while artificial decidualization induced by a scratch led to a strong expression of cx26 and cx43 in the endometrium of these animals. In order to examine the regulatory effects of ovarian steroid hormones on connexin expression, ovariectomized rats were treated with progesterone (P) and/or estradiol-17 beta (E2). Untreated, ovariectomized animals expressed mRNA for cx43, but not for cx26. Endometrial expression of mRNA for both connexins was strongly enhanced by E2 treatment; immunolabeling revealed protein for cx26 in the uterine luminal epithelial cells and for cx43 in the uterine stromal cells. P treatment, either alone or in combination with E2, suppressed expression of connexin mRNA. P suppression in the presence of E2 was reversible when P was withdrawn. When administered on Days 0-2 of pregnancy, the antiprogestin onapristone inhibited the effect of P and gave rise to strong expression of both connexin transcripts. These results demonstrate that expression of cx26 and cx43 in the rat uterine endometrium is differentially regulated by E2 and P during early pregnancy.
c-fms mRNA is regulated posttranscriptionally by 1,25(OH)2D3 in HL-60 cells.
Biskobing, D M; Fan, D; Rubin, J
1997-09-01
Macrophage colony-stimulating factor (MCSF) is required for normal osteoclast and macrophage development. The receptor for MCSF (c-fms) is expressed on the pluripotent precursor and mature osteoclasts and macrophages. We have previously shown in myelomonocytic HL-60 cells that phorbol myristate acetate (PMA) upregulates c-fms mRNA expression. This induction of c-fms is inhibited by 1,25(OH)2D3. The major regulatory control of c-fms mRNA levels by PMA has been identified as posttranscriptional. However, a role of transcript elongation in controlling levels of c-fms mRNA has also been suggested. To better understand the 1,25(OH)2D3 regulation of c-fms mRNA expression we studied nuclear run on, mRNA stability, and transcript elongation in HL-60 cells treated with 10 ng/ml phorbol myristate acetate, 10 nM 1,25(OH)2D3 alone or combined. We demonstrated by nuclear run on that c-fms was constitutively transcribed in 1,25(OH)2D3 as well as control and PMA-treated cells. Transcript elongation was evaluated by RT-PCR for exon 2 or exon 3. Both exons were minimally expressed in control and 1,25(OH)2D3-treated cells, and increased in PMA-treated cells; this increased expression was inhibited by the addition of 1,25(OH)2D3. These results fail to show differential transcript elongation. Measurement of mRNA stability demonstrated decreased mRNA half-life to 5 hours in cells treated with PMA and 1,25(OH)2D3 compared with a half-life of 8 hours in cells treated with PMA alone. Our findings demonstrate that c-fms is regulated by 1,25(OH)2D3 at the posttranscriptional level by changes in mRNA stability. This gives the cell the ability to respond to local signals with rapid changes in c-fms levels altering the ability of the cell to respond to MCSF.
Schachner, Anna; Matos, Miguel; Grafl, Beatrice; Hess, Michael
2018-04-01
The stand-alone pathogenicity of fowl adenoviruses (FAdVs) had long been disputed, given the ubiquity of the viruses versus sporadic outbreaks, and variation between experimental studies. However, a globally emerging trend of FAdV-associated diseases has marked the past two decades, with hepatitis-hydropericardium syndrome mainly in Asia besides Arabian and Latin American countries, and geographically more disseminated outbreaks of inclusion body hepatitis. Finally, the appearance of FAdV-induced gizzard erosion (AGE) in Asia and Europe completed the range of diseases. Epidemiological studies confirmed serotype FAdV-4 as agent of hepatitis-hydropericardium syndrome, whereas inclusion body hepatitis is related to FAdV-2, -8a, -8b and -11. Members of the biologically more distant serotype FAdV-1 induce AGE. Urged by increasing problems in the field, numerous pathogenicity studies with FAdVs from outbreaks substantiated the primary aetiologic role of particular strains for distinct clinical conditions. Developments in the poultry industry towards highly specialized genetic breeds and rigorous biosecurity additionally contribute to the growing incidence of FAdV-related diseases. Confirming field observations, recent studies connected a higher susceptibility of broilers with their distinct physiology, implying the choice of bird type as a factor to be considered in infection studies. Furthermore, elevated biosecurity standards have generated immunologically naïve breeding stocks, putting broilers at risk in face of vertical FAdV transmission. Therefore, future prevention strategies should include adequate antibodies in breeders prior to production and - if necessary - vaccination, in order to protect progenies. This review aims to deliver a detailed overview on the current global situation about FAdV-induced diseases, their reproduction in vivo and vaccination strategies.
Zhu, Jing; Ling, Yang; Xu, Yun; Lu, Mingzhu; Liu, Yongping; Zhang, Changsong
2017-01-01
The present study aimed to investigate the association between the methylation status of the reversion-inducing cysteine-rich protein with kazal motifs (RECK) gene and its mRNA expression levels in patients with esophageal squamous cell carcinoma (ESCC). The methylation status of RECK was analyzed by methylation-specific polymerase chain reaction (PCR), and RECK mRNA expression levels were analyzed by quantitative PCR, in 310 paired ESCC tissues. The mean RECK methylation index (MI) was 0.65 in ESCCs and 0.49 in non-tumor samples. There was a significant association between RECK methylation and the American Joint Committee on Cancer stage and lymph node metastasis in ESCC (P<0.0001; P=0.001). The mRNA expression level of RECK was lower in ESCC tissues (mean-∆Cq=−4.66) compared with non-tumor tissues (mean-∆Cq=−2.79), and decreased RECK mRNA expression levels were associated with lymph node metastasis in ESCC. In addition, RECK mRNA levels were decreased in ESCC patients with hypermethylation of the RECK gene (∆MI >0.16; mean-∆∆Cq=−2.85) compared with those with hypomethylation of the RECK gene (∆MI ≤0.16; mean-∆∆Ct=−0.83), and there was a significant difference in the mRNA expression levels of RECK between those with N0–1 and N2–3 lymph node metastasis (P<0.0001). A significant correlation was observed between RECK mRNA expression levels, the MI of RECK and poor postoperative survival (P=0.0003; P<0.0001). The results of the present study suggested that promoter hypermethylation may be an important factor for loss of RECK mRNA expression and may be an indicator of poor survival in ESCC. PMID:28454343
Kloučková, J; Lacinová, Z; Kaválková, P; Trachta, P; Kasalický, M; Haluzíková, D; Mráz, M; Haluzík, M
2016-07-18
Clusterin is a heterodimeric glycoprotein with wide range of functions. To further explore its possible regulatory role in energy homeostasis and in adipose tissue, we measured plasma clusterin and its mRNA expression in subcutaneous adipose tissue (SCAT) of 15 healthy lean women, 15 obese women (OB) and 15 obese women with type 2 diabetes mellitus (T2DM) who underwent a 2-week very low-calorie diet (VLCD), 10 obese women without T2DM who underwent laparoscopic sleeve gastrectomy (LSG) and 8 patients with T2DM, 8 patients with impaired glucose tolerance (IGT) and 8 normoglycemic patients who underwent hyperinsulinemic euglycemic clamp (HEC). VLCD decreased plasma clusterin in OB but not in T2DM patients while LSG and HEC had no effect. Clusterin mRNA expression in SCAT at baseline was increased in OB and T2DM patients compared with controls. Clusterin mRNA expression decreased 6 months after LSG and remained decreased 12 months after LSG. mRNA expression of clusterin was elevated at the end of HEC compared with baseline only in normoglycemic but not in IGT or T2DM patients. In summary, our data suggest a possible local regulatory role for clusterin in the adipose tissue rather than its systemic involvement in the regulation of energy homeostasis.
NASA Technical Reports Server (NTRS)
Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.
1998-01-01
Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; P<0.05) at all examined time points (2 to 24 hours). mRNA half-life studies showed that this response was not due to increased mRNA instability. tPA mRNA expression was decreased (to 10% of stationary control; P<0.05) by low shear stress after 12 hours of exposure and was increased (to 250% of stationary control; P<0.05) after 24 hours at high shear stress. The same trends in PAR-1 mRNA levels were observed in rat smooth muscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.
NASA Astrophysics Data System (ADS)
Wei, Fang; Li, Xiang; Cai, Meichun; Liu, Yanping; Jung, Peter; Shuai, Jianwei
2017-06-01
In neurons of patients with Alzheimer's disease, the intracellular Ca2+ concentration is increased by its release from the endoplasmic reticulum via the inositol 1, 4, 5-triphosphate receptor (IP3R). In this paper, we discuss the IP3R gating dynamics in familial Alzheimer's disease (FAD) cells induced with presenilin mutation PS1. By fitting the parameters of an IP3R channel model to experimental data of the open probability, the mean open time and the mean closed time of IP3R channels, in control cells and FAD mutant cells, we suggest that the interaction of presenilin mutation PS1 with IP3R channels leads the decrease in the unbinding rates of IP3 and the activating Ca2+ from IP3Rs. As a result, the increased affinities of IP3 and activating Ca2+ for IP3R channels induce the increase in the Ca2+ signal in FAD mutant cells. Specifically, the PS1 mutation decreases the IP3 dissociation rate of IP3R channels significantly in FAD mutant cells. Our results suggest possible novel targets for FAD therapeutic intervention.
Th1/Th2 immune responses and oxidative stress in caprine flea allergy dermatitis.
Ajith, Y; Dimri, U; Gopalakrishnan, A; Madhesh, E; Jhambh, R; Joshi, V; Devi, G
2017-12-01
Flea allergy dermatitis (FAD) is the common, often neglected skin disease of goats caused mainly by Ctenocephalides felis. This study aimed to evaluate the immuno-oxidative pathobiology of FAD in goats. Twelve goats from the same herd were divided into two groups of six animals each. The group I (FAD) included animals with natural flea infestation and severe dermatitis lesions. The group II (Healthy control) animals were free from any parasitic infestation. To assess the pathological changes, the markers of oxidative stress (lipid peroxidation, reduced glutathione and total antioxidant capacity), and immune status (Tumour necrosis factor alpha, Interleukin 10, Transforming growth factor beta 1 and Th1/Th2 cytokine ratio) were evaluated from the blood and the serum samples. Remarkable oxidative stress and severe inflammatory response with Th2 cytokine dominance were observed in flea infested animals. Highly antigenic agents of fleas, either secretory or excretory or structural, induced severe inflammatory responses and significant oxidative stress in caprine FAD. Massive release of cytokines may be responsible for severe skin inflammation and lesions in FAD in contrast to other Th2 dominant ectoparasitic skin conditions of goats'. © 2017 John Wiley & Sons Ltd.
Taylor, Robert M; Severns, Virginia; Brown, David C; Bisoffi, Marco; Sillerud, Laurel O
2012-04-01
Membrane receptors are frequent targets of cancer therapeutic and imaging agents. However, promising in vitro results often do not translate to in vivo clinical applications. To better understand this obstacle, we measured the expression differences in receptor signatures among several human prostate cancer cell lines and xenografts as a function of tumorigenicity. Messenger RNA and protein expression levels for integrin α(ν) β(3), neurotensin receptor 1 (NTSR1), prostate specific membrane antigen (PSMA), and prostate stem cell antigen (PSCA) were measured in LNCaP, C4-2, and PC-3 human prostate cancer cell lines and in murine xenografts using quantitative reverse transcriptase polymerase chain reaction, flow cytometry, and immunohistochemistry. Stable expression patterns were observed for integrin α(ν) and PSMA in all cells and corresponding xenografts. Integrin β(3) mRNA expression was greatly reduced in C4-2 xenografts and greatly elevated in PC-3 xenografts compared with the corresponding cultured cells. NTSR1 mRNA expression was greatly elevated in LNCaP and PC-3 xenografts. PSCA mRNA expression was elevated in C4-2 xenografts when compared with C4-2 cells cultured in vitro. Furthermore, at the protein level, PSCA was re-expressed in all xenografts compared with cells in culture. The regulation of mRNA and protein expression of the cell-surface target proteins α(ν) β(3), NTSR1, PSMA, and PSCA, in prostate cancer cells with different tumorigenic potential, was influenced by factors of the microenvironment, differing between cell cultures and murine xenotransplants. Integrin α(ν) β(3), NTRS1 and PSCA mRNA expression increased with tumorigenic potential, but mRNA expression levels for these proteins do not translate directly to equivalent expression levels of membrane bound protein. Copyright © 2011 Wiley Periodicals, Inc.
Prianti, Antonio Carlos Guimarães; Silva, José Antonio; Dos Santos, Regiane Feliciano; Rosseti, Isabela Bueno; Costa, Maricilia Silva
2014-07-01
In the classical model of edema formation and hyperalgesia induced by carrageenan administration in rat paw, the increase in prostaglandin E2 (PGE2) production in the central nervous system (CNS) contributes to the severity of the inflammatory and pain responses. Prostaglandins are generated by the cyclooxygenase (COX). There are two distinct COX isoforms, COX-1 and COX-2. In inflammatory tissues, COX-2 is greatly expressed producing proinflammatory prostaglandins (PGs). Low-level laser therapy (LLLT) has been used in the treatment of inflammatory pathologies, reducing both pain and acute inflammatory process. Herein we studied the effect of LLLT on both COX-2 and COX-1 messenger RNA (mRNA) expression in either subplantar or brain tissues taken from rats treated with carrageenan. The experiment was designed as follows: A1 (saline), A2 (carrageenan-0.5 mg/paw), A3 (carrageenan-0.5 mg/paw + LLLT), A4 (carrageenan-1.0 mg/paw), and A5 (carrageenan-1.0 mg/paw + LLLT). Animals from the A3 and A5 groups were irradiated at 1 h after carrageenan administration, using a diode laser with an output power of 30 mW and a wavelength of 660 nm. The laser beam covered an area of 0.785 cm(2), resulting in an energy dosage of 7.5 J/cm(2). Both COX-2 and COX-1 mRNAs were measured by RT-PCR. Six hours after carrageenan administration, COX-2 mRNA expression was significantly increased both in the subplantar (2.2-4.1-fold) and total brain (8.65-13.79-fold) tissues. COX-1 mRNA expression was not changed. LLLT (7.5 J/cm(2)) reduced significantly the COX-2 mRNA expression both in the subplantar (~2.5-fold) and brain (4.84-9.67-fold) tissues. The results show that LLLT is able to reduce COX-2 mRNA expression. It is possible that the mechanism of LLLT decreasing hyperalgesia is also related to its effect in reducing the COX-2 expression in the CNS.
Morten, Brianna C.; Scott, Rodney J.; Avery-Kiejda, Kelly A.
2016-01-01
p53 is expressed as multiple smaller isoforms whose functions in cancer are not well understood. The p53 isoforms demonstrate abnormal expression in different cancers, suggesting they are important in modulating the function of full-length p53 (FLp53). The quantification of relative mRNA expression has routinely been performed using real-time PCR (qPCR). However, there are serious limitations when detecting p53 isoforms using this method, particularly for formalin-fixed paraffin-embedded (FFPE) tissues. The use of FFPE tumours would be advantageous to correlate expression of p53 isoforms with important clinical features of cancer. One alternative method of RNA detection is the hybridization-based QuantiGene 2.0 Assay, which has been shown to be advantageous for the detection of RNA from FFPE tissues. In this pilot study, we compared the QuantiGene 2.0 Assay to qPCR for the detection of FLp53 and its isoform Δ40p53 in matched fresh frozen (FF) and FFPE breast tumours. FLp53 mRNA expression was detected using qPCR in FF and FFPE tissues, but Δ40p53 mRNA was only detectable in FF tissues. Similar results were obtained for the QuantiGene 2.0 Assay. FLp53 relative mRNA expression was shown to be strongly correlated between the two methods (R2 = 0.9927, p = 0.0031) in FF tissues, however Δ40p53 was not (R2 = 0.4429, p = 0.3345). When comparing the different methods for the detection of FLp53 mRNA from FFPE and FF samples, no correlation (R2 = 0.0002, p = 0.9863) was shown using the QuantiGene 2.0 Assay, and in contrast, the level of expression was highly correlated between the two tissues using qPCR (R2 = 0.8753, p = 0.0644). These results suggest that both the QuantiGene 2.0 Assay and qPCR methods are inadequate for the quantification of Δ40p53 mRNA in FFPE tissues. Therefore, alternative methods of RNA detection and quantification are required to study the relative expression of Δ40p53 in FFPE samples. PMID:27832134
Ammon-Treiber, Susanne; Grecksch, Gisela; Stumm, Ralf; Riechert, Uta; Tischmeyer, Helga; Reichenauer, Anke; Höllt, Volker
2004-01-01
Induction of Hsp70 in the brain has been reported after intake of drugs of abuse like amphetamine and lysergic acid diethylamide. In this investigation, gene expression of Hsp70 and other heat shock genes in the rat brain was studied in response to morphine. Twenty milligrams per kilogram morphine intraperitoneally resulted in a marked induction of Hsp70 messenger RNA (mRNA) expression in the frontal cortex with a maximum increase of 13.2-fold after 2 hours. A moderate increase of Hsp27 mRNA expression (6.7-fold) could be observed after 4 hours, whereas mRNA expression of Hsp90 and of the constitutive Hsc70 did not exceed a mean factor of 1.8-fold during the 24 hours interval. The increase in Hsp70 mRNA was dose dependent, showing a significant elevation after doses ranging from 10 to 50 mg/kg morphine. In situ hybridization revealed enhanced Hsp70 mRNA expression mainly in cortical areas, in the hippocampus, in the paraventricular and supraoptic nuclei of the hypothalamus, in the locus coeruleus, as well in the pineal body. The double in situ hybridization technique revealed increased Hsp70 mRNA expression mainly in VGLUT1-positive neurons and to a lesser extent in olig1-positive oligodendroglia. Immunohistochemistry revealed a marked increase of Hsp70 protein in neuronal cells and blood vessels after 12 hours. In contrast to animal experiments, morphine did not increase Hsp70 mRNA expression in vitro in μ-opioid receptor (MOR1)–expressing human embryonic kidney 293 cells, suggesting no direct MOR1-mediated cellular effect. To exclude a body temperature–related morphine effect on Hsp70 mRNA expression, the temperature was recorded. Five to 20 mg/kg resulted in hyperthermia (maximum 40.6°), whereas a high dose (50 mg/kg) that produced the highest mRNA induction, showed a clear hypothermia (minimum 37.2°C). These findings argue against the possibility that Hsp70 induction by morphine is caused by its effect on body temperature. It may be speculated that increased expression of Hsp70 after morphine application protects brain structures against potentially hazardous effects of opiates. PMID:15497504
Yun, Bo Seong; Seong, Seok Ju; Cha, Dong Hyun; Kim, Ji Yeon; Kim, Mi-La; Shim, Jeong Yun; Park, Ji Eun
2015-08-01
To evaluate changes in proliferating and apoptotic markers of myoma tissue from patients treated with a selective progesterone receptor modulator (SPRM) or GnRH agonist by measuring expression of PDGF-A mRNA, IGF-1 mRNA, bcl-2 mRNA, and PCNA and caspase-3 protein. Between December 2013 and July 2014, women with symptomatic leiomyoma were divided into control (no treatment before surgery), SPRM (treatment with ulipristal acetate [SPRM] for 3 months before surgery), and GnRHa (treatment with leuprolide acetate [GnRH agonist] for 3 months before surgery) groups. Tissue specimens were collected from the myoma core and normal myometrium of all patients. The expression of mRNA and protein was assessed by quantitative real-time reverse transcriptase-polymerase chain reaction and Western blot. A total of 38 patients were enrolled (control group, n=14; SPRM group, n=13; GnRHa group, n=11). PDGF-A mRNA expression was lower in both the myoma core and normal myometrium tissues of the SPRM compared with the control group, but there was no difference between the control and GnRHa group. There were also no group differences in bcl-2 mRNA or IGF-1 mRNA expression. Both PCNA and caspase-3 protein expression were higher in the leiomyoma tissue of the SPRM compared with the control group, but there was no difference between the control and GnRHa groups in the expression of either protein. Both proliferation and apoptosis were increased in the leiomyoma of patients after SPRM treatment, but there was no change following GnRH agonist treatment, in vivo. However, PDGF-A mRNA was decreased after SPRM treatment, indicating a dual effect of progesterone on the regulation of growth factors. Furthermore, there was an increase in caspase-3 protein, but not bcl-2 mRNA, expression in the SPRM group suggesting that SPRM may exert its effects in pathways other than the bcl-2 apoptotic pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Liu, Hua Liang; Yin, Zhi Jie; Xiao, Li; Xu, Yi Nong; Qu, Le Qing
2012-05-01
α-Linolenic acid (ALA) deficiency and a skewed of ω6:ω3 fatty acid ratio in the diet are a major explanation for the prevalence of cardiovascular diseases and inflammatory/autoimmune diseases. There is a need to enhance the ALA content and to reduce the ratio of linoleic acid (LA) to ALA. Six ω-3 (Δ-15) fatty acid desaturase (FAD) genes were cloned from rice and soybean. The subcellular localizations of the proteins were identified. The FAD genes were introduced into rice under the control of an endosperm-specific promoter, GluC, or a Ubi-1 promoter to evaluate their potential in increasing the ALA content in seeds. The ALA contents in the seeds of endoplasmic reticulum (ER)-localized GmFAD3-1 and OsFAD3 overexpression lines increased from 0.36 mg g⁻¹ to 8.57 mg g⁻¹ and 10.06 mg g⁻¹, respectively, which was 23.8- and 27.9-fold higher than that of non-transformants. The trait of high ALA content was stably inheritable over three generations. Homologous OsFAD3 is more active than GmFAD3-1 in catalysing LA conversion to ALA in rice seeds. Overexpression of ER-localized GmFAD3-2/3 and chloroplast-localized OsFAD7/8 had less effect on increasing the ALA content in rice seeds. The GluC promoter is advantageous compared with Ubi-1 in this experimental system. The enhanced ALA was preferentially located at the sn-2 position in triacylglycerols. A meal-size portion of high ALA rice would meet >80% of the daily adult ALA requirement. The ALA-rich rice could be expected to ameliorate much of the global dietary ALA deficiency.
[Expression of SLP-2 mRNA in endometrial cancer and its significance].
Feng, Wang-qin; Cui, Zhu-mei; Feng, Feng-zhi; Qi, Xiu-juan; Ding, Fang; Li, Wen-dong; Liu, Zhi-hua
2005-08-01
To characterize the differential expression of SLP-2 in endometrial cancer, and to study the effect of human SLP-2 gene on human endometrial cancer cell line. The expression of SLP-2 gene in 32 cases of endometrial cancer and 28 cases of normal endometrial tissues was examined by semi-quantitative RT-PCR. Eukaryotic expression vectors of sense and antisense SLP-2 were constructed and transfected into HEC-1B cell line using lipofectamine 2000 respectively. The morphological changes of the cell were observed by phase contrast microscopy. The cell growth was detected by methyl thiazolyl tetrazolium (MTT) assay, and the cell cycles were analyzed by flow cytometry. The expression of SLP-2 mRNA in endometrial cancer tissues was higher than that in normal endometrial tissues (1.6 +/- 0.7 vs 0.7 +/- 0.3, P < 0.05). Sense and antisense human SLP-2 constructs were transfected into HEC-1B cell line respectively. After being transfected with sense SLP-2, the expression of SLP-2 mRNA in HEC-1B cell line was increased by about 2.4 times that of the control group, the cell growth was accelerated, and the number of cells in G(1) phase was decreased by 12.5%, S phase was increased by 8.0%. After being transfected with antisense SLP-2, the expression of SLP-2 mRNA was declined 50%. The transfected cells showed slower growth, and the number of cells in G(1) phase was significantly increased by 10.5%, and S phase was declined by 9.8%. SLP-2 mRNA shows up-regulation in endometrial cancer tissues, and it may have some relationship with carcinogenesis of endometrial cancer.
Ozgun, Eray; Sayilan Ozgun, Gulben; Tabakcioglu, Kiymet; Suer Gokmen, Selma; Sut, Necdet; Eskiocak, Sevgi
2017-10-01
Paraoxonase-1 (PON1) and PON3 (PON3) are anti-atherosclerotic enzymes, synthesized primarily in liver and bound to HDL in circulation. The aim of the present study was to investigate the effects of therapeutic doses of lipoic acid on PON1 and PON3 protein levels, mRNA expression and arylesterase activity in liver. We treated HepG2 cells with 10, 40 and 200 μM lipoic acid for 72 h. Cell viability was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. PON1 and PON3 protein levels were measured by Western blotting, their mRNA expression was measured by quantitative PCR and arylesterase activity was measured spectrophotometrically. 200 µM lipoic acid caused a significant increase on PON1 and PON3 protein levels and arylesterase activity as compared with control, 10 µM and 40 µM lipoic acid-treated cells. 200 µM lipoic acid also caused a significant decrease on PON1 mRNA expression whereas on a significant increase PON3 mRNA expression as compared with control, 10 µM and 40 µM lipoic acid-treated cells. Our study showed that although lipoic acid up-regulates PON3 but down-regulates PON1 mRNA expression, it increases both PON1 and PON3 protein levels and arylesterase activity in HepG2 cells. We can report that lipoic acid may be useful for preventing atherosclerosis at therapeutic doses.
Effects of massage on the expression of proangiogenic markers in rat skin.
Ratajczak-Wielgomas, Katarzyna; Kassolik, Krzysztof; Grzegrzolka, Jedrzej; Halski, Tomasz; Piotrowska, Aleksandra; Mieszala, Katarzyna; Wilk, Iwona; Podhorska-Okolow, Marzenna; Dziegiel, Piotr; Andrzejewski, Waldemar
2018-05-17
Massage is a physiotherapeutic treatment, commonly used in both therapy and restoration of normal body functions. The aim of this work was to determine the effects of skin massage on stimulating the expression of angiogenesis-initiating factors, i.e. VEGF-A, FGF-2 (bFGF) and CD34 and on skin regeneration processes. The study was conducted on 48 Buffalo strain rats, randomly divided into two groups. In the first group (M, the massaged group), massage was applied five times a week for 7 weeks. In the second study group (C, the control group), the massage was omitted. Massage consisted of spiral movements at the plantar surface of skin for 5 min on each rear extremity. The gene expression of proangiogenic factors, including VEGF-A, FGF-2, CD34 at the mRNA level was determined using real-time PCR. Immunohistochemistry was performed on paraffin sections of rat skin to determine VEGF-A, FGF-2 CD34 and Ki-67expression. An increase in mRNA expression in the skin of the rat's rear extremity for VEGF-A and FGF-2 in the first week of the experiment was shown in the M group compared with the control rats. The upregulation of CD34 mRNA expression was also observed in the M group. We observed positive correlations between VEGF-A mRNA expression and the expression of mRNA for FGF-2 and CD34, as well as correlation between the expression of mRNA for FGF-2 and CD34. The immunohistochemical expression of VEGF-A, FGF-2 and CD34 was at a much lower level in the skin of control rats relative to the skin of massaged animals. Moreover, significantly higher immunoreactivity was shown for nuclear protein Ki-67 in epidermal cells in the M group compared with the C group. Rat skin massage increased the expression of the main angiogenesis-stimulating factors and the proliferative activity of epidermal cells, which can stimulate skin regeneration and tissue repairing processes.
Expression of estrogenicity genes in a lineage cell culture model of human breast cancer progression
Fu, Jiaqi; Weise, Amy M.; Falany, Josie L.; Falany, Charles N.; Thibodeau, Bryan J.; Miller, Fred R.; Kocarek, Thomas A.
2013-01-01
TaqMan Gene Expression assays were used to profile the mRNA expression of estrogen receptor (ERα and ERβ) and estrogen metabolism enzymes including cytosolic sulfotransferases (SULT1E1, SULT1A1, SULT2A1, and SULT2B1), steroid sulfatase (STS), aromatase (CYP19), 17β-hydroxysteroid dehydrogenases (17βHSD1 and 2), CYP1B1, and catechol-O-methyltransferase (COMT) in an MCF10A-derived lineage cell culture model for basal-like human breast cancer progression and in ERα-positive luminal MCF7 breast cancer cells. Low levels of ERα and ERβ mRNA were present in MCF10A-derived cell lines. SULT1E1 mRNA was more abundant in confluent relative to subconfluent MCF10A cells, a non-tumorigenic proliferative breast disease cell line. SULT1E1 was also expressed in preneoplastic MCF10AT1 and MCF10AT1K.cl2 cells, but was markedly repressed in neoplastic MCF10A-derived cell lines as well as in MCF7 cells. Steroid-metabolizing enzymes SULT1A1 and SULT2B1 were only expressed in MCF7 cells. STS and COMT were widely detected across cell lines. Pro-estrogenic 17βHSD1 mRNA was most abundant in neoplastic MCF10CA1a and MCF10DCIS.com cells, while 17βHSD2 mRNA was more prominent in parental MCF10A cells. CYP1B1 mRNA was most abundant in MCF7 cells. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) induced SULT1E1 and CYP19 mRNA but suppressed CYP1B1, STS, COMT, 17βHSD1, and 17βHSD2 mRNA in MCF10A lineage cell lines. In MCF7 cells, TSA treatment suppressed ERα, CYP1B1, STS, COMT, SULT1A1, and SULT2B1 but induced ERβ, CYP19 and SULT2A1 mRNA expression. The results indicate that relative to the MCF7 breast cancer cell line, key determinants of breast estrogen metabolism are differentially regulated in the MCF10A-derived lineage model for breast cancer progression. PMID:19308726
Wen, Shijie; Liu, Hao; Li, Xingyu; Chen, Xiaoping; Hong, Yanbin; Li, Haifen; Lu, Qing; Liang, Xuanqiang
2018-05-01
A first creation of high oleic acid peanut varieties by using transcription activator-like effecter nucleases (TALENs) mediated targeted mutagenesis of Fatty Acid Desaturase 2 (FAD2). Transcription activator like effector nucleases (TALENs), which allow the precise editing of DNA, have already been developed and applied for genome engineering in diverse organisms. However, they are scarcely used in higher plant study and crop improvement, especially in allopolyploid plants. In the present study, we aimed to create targeted mutagenesis by TALENs in peanut. Targeted mutations in the conserved coding sequence of Arachis hypogaea fatty acid desaturase 2 (AhFAD2) were created by TALENs. Genetic stability of AhFAD2 mutations was identified by DNA sequencing in up to 9.52 and 4.11% of the regeneration plants at two different targeted sites, respectively. Mutation frequencies among AhFAD2 mutant lines were significantly correlated to oleic acid accumulation. Genetically, stable individuals of positive mutant lines displayed a 0.5-2 fold increase in the oleic acid content compared with non-transgenic controls. This finding suggested that TALEN-mediated targeted mutagenesis could increase the oleic acid content in edible peanut oil. Furthermore, this was the first report on peanut genome editing event, and the obtained high oleic mutants could serve for peanut breeding project.
A New Model to Study the Role of Arachidonic Acid in Colon Cancer Pathophysiology.
Fan, Yang-Yi; Callaway, Evelyn; M Monk, Jennifer; S Goldsby, Jennifer; Yang, Peiying; Vincent, Logan; S Chapkin, Robert
2016-09-01
A significant increase in cyclooxygenase 2 (COX2) gene expression has been shown to promote cylcooxygenase-dependent colon cancer development. Controversy associated with the role of COX2 inhibitors indicates that additional work is needed to elucidate the effects of arachidonic acid (AA)-derived (cyclooxygenase and lipoxygenase) eicosanoids in cancer initiation, progression, and metastasis. We have recently developed a novel Fads1 knockout mouse model that allows for the investigation of AA-dependent eicosanoid deficiency without the complication of essential fatty acid deficiency. Interestingly, the survival rate of Fads1-null mice is severely compromised after 2 months on a semi-purified AA-free diet, which precludes long-term chemoprevention studies. Therefore, in this study, dietary AA levels were titrated to determine the minimal level required for survival, while maintaining a distinct AA-deficient phenotype. Null mice supplemented with AA (0.1%, 0.4%, 0.6%, 2.0%, w/w) in the diet exhibited a dose-dependent increase (P < 0.05) in AA, PGE2, 6-keto PGF1α, TXB2, and EdU-positive proliferative cells in the colon. In subsequent experiments, null mice supplemented with 0.6% AA diet were injected with a colon-specific carcinogen (azoxymethane) in order to assess cancer susceptibility. Null mice exhibited significantly (P < 0.05) reduced levels/multiplicity of aberrant crypt foci (ACF) as compared with wild-type sibling littermate control mice. These data indicate that (i) basal/minimal dietary AA supplementation (0.6%) expands the utility of the Fads1-null mouse model for long-term cancer prevention studies and (ii) that AA content in the colonic epithelium modulates colon cancer risk. Cancer Prev Res; 9(9); 750-7. ©2016 AACR. ©2016 American Association for Cancer Research.
Quantitative Expression of C-Type Lectin Receptors in Humans and Mice
Lech, Maciej; Susanti, Heni Eka; Römmele, Christoph; Gröbmayr, Regina; Günthner, Roman; Anders, Hans-Joachim
2012-01-01
C-type lectin receptors and their adaptor molecules are involved in the recognition of glycosylated self-antigens and pathogens. However, little is known about the species- and organ-specific expression profiles of these molecules. We therefore determined the mRNA expression levels of Dectin-1, MR1, MR2, DC-SIGN, Syk, Card-9, Bcl-10, Malt-1, Src, Dec-205, Galectin-1, Tim-3, Trem-1, and DAP-12 in 11 solid organs of human and mice. Mouse organs revealed lower mRNA levels of most molecules compared to spleen. However, Dec-205 and Galectin-1 in thymus, Src in brain, MR2, Card-9, Bcl-10, Src, and Dec-205 in small intestine, MR2, Bcl-10, Src, Galectin-1 in kidney, and Src and Galectin-1 in muscle were at least 2-fold higher expressed compared to spleen. Human lung, liver and heart expressed higher mRNA levels of most genes compared to spleen. Dectin-1, MR1, Syk and Trem-1 mRNA were strongly up-regulated upon ischemia-reperfusion injury in murine kidney. Tim3, DAP-12, Card-9, DC-SIGN and MR2 were further up-regulated during renal fibrosis. Murine kidney showed higher DAP-12, Syk, Card-9 and Dectin-1 mRNA expression during the progression of lupus nephritis. Thus, the organ-, and species-specific expression of C-type lectin receptors is different between mice and humans which must be considered in the interpretation of related studies. PMID:22949850
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, W.R., E-mail: w.francis@swansea.ac.uk; Owens, S.E.; Wilde, C.
2014-10-24
Highlights: • ERα36 is the predominant ERα isoform involved in bone regulation in human BMSC. • ERα36 mRNA is significantly upregulated during the process of osteogenesis. • The pattern of ERα36 and runx2 mRNA expression is similar during osteogenesis. • ERα36 appears to be co-localised with runx2 during osteogenesis. - Abstract: During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2),more » a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.« less
Yu, Qin Ping; Feng, Ding Yuan; He, Xiao Jun; Wu, Fan; Xia, Min Hao; Dong, Tao; Liu, Yi Hua; Tan, Hui Ze; Zou, Shi Geng; Zheng, Tao; Ou, Xian Hua; Zuo, Jian Jun
2017-01-01
Objective This study evaluated the effects of a traditional Chinese medicine formula (TCMF) on muscle fiber characteristics in finishing pigs and the effects of the formula’s extract (distilled water, ethyl acetate and petroleum ether extraction) on porcine cell proliferation and isoforms of myosin heavy chain (MyHC) gene expression in myocytes. Methods In a completely randomized design, ninety pigs were assigned to three diets with five replications per treatment and six pigs per pen. The diets included the basal diet (control group), TCMF1 (basal diet+2.5 g/kg TCMF) and TCMF2 (basal diet+5 g/kg TCMF). The psoas major muscle was obtained from pigs at the end of the experiment. Muscle fiber characteristics in the psoas major muscle were analyzed using myosin ATPase staining. Cell proliferation was measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) dye and cytometry. Isoforms of MyHC gene expression were detected by real-time quantitative polymerase chain reaction. Results The final body weight and carcass weight of finishing pigs were increased by TCMF1 (p<0.05), while the psoas major muscle cross-sectional area was increased by TCMF (p<0.05). The cross-sectional area and diameter of psoas major muscle fiber I, IIA, and IIB were increased by TCMF2 (p<0.05). The cross-sectional area and fiber diameter of psoas major muscle fiber IIA and IIB were increased by diet supplementation with TCMF1 (p<0.05). Psoas major muscle fiber IIA and IIB fiber density from the pigs fed the TCMF1 diet and the type IIB fiber density from the pigs fed the TCMF2 diet were lower compared to pigs fed the control diet (p<0.05). Pigs fed TCMF2 had a higher composition of type I fiber and a lower percentage of type IIB fiber in the psoas major muscle (p<0.05). The expression levels of MyHC I, MyHC IIa, and MyHC IIx mRNA increased and the amount of MyHC IIb mRNA decreased in the psoas major muscle from TCMF2, whereas MyHC I and MyHC IIx mRNA increased in the psoas major muscle from TCMF1 (p<0.05). Peroxisome proliferator-activated receptor γ coactivator-1α and CaN mRNA expression in the psoas major muscle were up-regulated by TCMF (p<0.05). Porcine skeletal muscle satellite cell proliferation was promoted by 4 μg/mL and 20 μg/mL TCMF water extraction (p<0.05). Both 1 μg/mL and 5 μg/mL of TCMF water extraction increased MyHC IIa, MyHC IIb, and MyHC IIx mRNA expression in porcine myocytes (p<0.05), while MyHC I mRNA expression in porcine myocytes was decreased by 5 μg/mL TCMF water extraction (p<0.05). Porcine myocyte MyHC I and MyHC IIx mRNA expression were increased, and MyHC IIa and MyHC IIb mRNA expression were down-regulated by 5 μg/mL TCMF ethyl acetate extraction (p<0.05). MyHC I and MyHC IIa mRNA expression in porcine myocytes were increased, and the MyHC IIb mRNA expression was decreased by 1 μg/mL TCMF ethyl acetate extraction (p<0.05). Four isoforms of MyHC mRNA expression in porcine myocytes were reduced by 5 μg/mL TCMF petroleum ether extraction (p<0.05). MyHC IIa mRNA expression in porcine myocytes increased and MyHC IIb mRNA expression decreased by 1 μg/mL in a TCMF petroleum ether extraction (p<0.05). Conclusion These results indicated that TCMF amplified the psoas major muscle cross-sectional area through changing muscle fiber characteristics in finishing pigs. This effect was confirmed as TCMF extraction promoted porcine cell proliferation and affected isoforms of MyHC gene expression in myocytes. PMID:28728382
Lopes-Marques, Mónica; Ozório, Rodrigo; Amaral, Ricardo; Tocher, Douglas R; Monroig, Óscar; Castro, L Filipe C
2017-01-01
The Brazilian teleost Arapaima gigas is an iconic species of the Amazon. In recent years a significant effort has been put into the farming of arapaima to mitigate overfishing threats. However, little is known regarding the nutritional requirements of A. gigas in particular those for essential fatty acids including the long-chain polyunsaturated fatty acids (LC-PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The ability to biosynthesize LC-PUFA is dependent upon the gene repertoire of fatty acyl desaturases (Fads) and elongases (Elovl), as well as their fatty acid specificities. In the present study we characterized both molecularly and functionally an orthologue of the desaturase fatty acid desaturase 2 (fads2) from A. gigas. The isolated sequence displayed the typical desaturase features, a cytochrome b 5 -domain with the heme-binding motif, two transmembrane domains and three histidine-rich regions. Functional characterization of A. gigas fads2 showed that, similar to other teleosts, the A. gigas fads2 exhibited a predominant Δ6 activity complemented with some capacity for Δ8 desaturation. Given that A. gigas belongs to one of the oldest teleostei lineages, the Osteoglossomorpha, these findings offer a significant insight into the evolution LC-PUFA biosynthesis in teleosts. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, L; Jiang, W; Lin, Q; Zhang, Y; Zhao, C
2016-11-01
Single nucleotide polymorphisms (SNPs) in the human type A gamma-aminobutyric acid (GABA) receptor β 2 subunit gene (GABRB2) have been associated with schizophrenia and quantitatively correlated with mRNA expression in the postmortem brain tissue of patients with schizophrenia. l-Methionine (MET) administration has been reported to cause a recrudescence of psychotic symptoms in patients with schizophrenia, and similar symptoms have been generated in MET-induced mice. In this study, a zebrafish animal model was used to evaluate the relationship between the gabrb2 mRNA expression and its promoter DNA methylation in developmental and MET-induced schizophrenia-like zebrafish. The results indicated developmental increases in global DNA methylation and decreases in gabrb2 promoter methylation in zebrafish. A significant increase in gabrb2 mRNA levels was observed after GABA was synthesized. Additionally, the MET-triggered schizophrenia-like symptoms in adult zebrafish, involving social withdrawal and cognitive dysfunction analyzed with social interaction and T-maze behavioral tests, were accompanied by significantly increased DNA methylation levels in the global genome and the gabrb2 promoter. Furthermore, the significant correlation between gabrb2 mRNA expression and gabrb2 promoter methylation observed in the developmental stages became non-significant in MET-triggered adult zebrafish. These findings demonstrate that gabrb2 mRNA expression is associated with DNA methylation varies by developmental stage and show that these epigenetic association mechanisms are disrupted in MET-triggered adult zebrafish with schizophrenia-like symptoms. In conclusion, these results provide plausible epigenetic evidence of the GABA A receptor β 2 subunit involvement in the schizophrenia-like behaviors and demonstrate the potential use of zebrafish models in neuropsychiatric research. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Than, Nandor Gabor; Romero, Roberto; Tarca, Adi L.; Draghici, Sorin; Erez, Offer; Chaiworapongsa, Tinnakorn; Kim, Yeon Mee; Kim, Sun Kwon; Vaisbuch, Edi; Tromp, Gerard
2010-01-01
Objective Human parturition is characterized by the activation of genes involved in acute inflammatory in the fetal membranes. Manganese superoxide dismutase (MnSOD) is a mitochondrial enzyme that scavenges reactive oxygen species (ROS). MnSOD is up-regulated in sites of inflammation and has an important role in the down-regulation of acute inflammatory processes. Therefore, the aim of this study was to determine the differences in MnSOD mRNA expression in the fetal membranes in patients with term and preterm labor as well as in acute chorioamnionitis. Study design Fetal membranes were obtained from patients in the following groups: 1) term not in labor (n=29); 2) term in labor (n=29); 3) spontaneous preterm labor with intact mebranes (n=16); 4) PTL with histological chorioamnionitis (n=12); 5) preterm prelabor rupture of membranes (PPROM; n=17); and 6) PPROM with histological chorioamnionitis (n=21). MnSOD mRNA expression in the membranes was determined by quantitative real-time RT-PCR. Results 1) MnSOD mRNA expression was higher in the fetal membranes of patients at term in labor than those not in labor (2.4-fold; p=0.02); 2) the amount of MnSOD mRNA in the fetal membranes was higher in PTL than in term labor or in PPROM (7.2-fold, p=0.03; 3.2-fold, p=0.03, respectively); 3) MnSOD mRNA expression was higher when histological chorioamnionitis was present both among patients with PPROM (3.8-fold, p=0.02) and with PTL (5.4-fold, p=0.02) than in patients with these conditions without histological chorioamnionitis; 4) expression of MnSOD mRNA was higher in PTL with chorioamnionitis than in PPROM with chorioamnionitis (4.3-fold, p=0.03); Conclusion The increase in MnSOD mRNA expression by fetal membranes in term labor and in histological chorioamnionitis in PTL and PPROM suggests that the fetus deploys anti-oxidant mechanisms to constrain the inflammatory processes in the chorioamniotic membranes. PMID:19900038
Tachibana, Masatsugu; Shinagawa, Yasuhiro; Kawamata, Hitoshi; Omotehara, Fumie; Horiuchi, Hideki; Ohkura, Yasuo; Kubota, Keiichi; Imai, Yutaka; Fujibayashi, Takashi; Fujimori, Takahiro
2003-01-01
We present a new approach towards the detection of the mRNAs in formalin-fixed, paraffin-embedded samples using a reverse transcriptase (RT)-polymerase chain reaction (PCR). The total RNAs were extracted from 10-micron-thick sections and were reverse-transcribed, then the RT-products were subjected to PCR amplification of GAPDH mRNA for screening the mRNA degradation. Next, nested PCR was performed for examining the expression of p53-related genes, p21WAF1, MDM2, p33ING1 and p14ARF. GAPDH mRNA expression was detectable in 12 out of 21 oral squamous cell carcinoma (SCC) samples. p21WAF1 mRNA expression was detectable in 5 out of 12 SCC samples, MDM2 mRNA expression was detectable in 5 our of 12 SCC samples and p33ING1 mRNA expression was detectable in 6 out of 12 SCC samples. However, the expression of p14ARF mRNA was not detectable in any of the samples. Seven out of 12 oral SCC samples showed abnormal nuclear accumulation of p53 protein by immunohistochemical staining, whereas 5 out of 12 oral SCCs showed negative staining for p53 protein. Of of p33ING1 mRNA. One of these was a verrucous carcinoma in which the p53 gene products might be inactivated by the oncoprotein E6 of human papilloma virus. Thus, the p53 tumor suppressor pathway was disrupted in most oral SCCs at the cellular levels, due to either an abnormality in p53 itself or loss of expression of p53 regulatory factors. This method would assist in making diagnosis, determining therapeutic strategy and predicting the prognosis of various cancers including oral SCCs.
Dar, Arshud; Gomis, Susantha; Shirley, Ian; Mutwiri, George; Brownlie, Robert; Potter, Andrew; Gerdts, Volker; Tikoo, Suresh K
2012-03-01
Inclusion body hepatitis (IBH) is one of the major global disease problems, causing significant economic losses to poultry industry of the United States and Canada. The disease is characterized by its sudden onset and high mortalities. Amongst different serotypes of fowl adenoviruses (FAdVs) associated with IBH, serotype 8 of group I FAdV has been isolated from majority of IBH cases. In present studies, we isolated a FAdV from morbid liver of a 17-day-old broiler from a Saskatchewan broiler farm. This newly isolated virus was designated as IBHV(SK). However, based on the sequence analysis of the L1 region of the hexon gene, the IBHV(SK) may be classified as FAdV 8b strain 764. These studies describe for the first time the complete hexon gene sequence of FAdV serotype 8b. Experimental infection of 2-day-old (n = 48) and 2-wk-old (n = 56) chicks caused 83% and 43% mortalities, respectively. Determination of the complete hexon gene sequence of IBHV(SK) with establishment of a disease model in chickens will facilitate the development of type-specific diagnostic reagents and assays for the evaluation of potential experimental vaccines against pathogenic FAdV infections.
Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder.
Yasuda, Yuka; Hashimoto, Ryota; Yamamori, Hidenaga; Ohi, Kazutaka; Fukumoto, Motoyuki; Umeda-Yano, Satomi; Mohri, Ikuko; Ito, Akira; Taniike, Masako; Takeda, Masatoshi
2011-05-26
The autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that result in severe and pervasive impairment in the development of reciprocal social interaction and verbal and nonverbal communication skills. In addition, individuals with ASD have stereotypical behavior, interests and activities. Rare mutations of some genes, such as neuroligin (NLGN) 3/4, neurexin (NRXN) 1, SHANK3, MeCP2 and NHE9, have been reported to be associated with ASD. In the present study, we investigated whether alterations in mRNA expression levels of these genes could be found in lymphoblastoid cell lines derived from patients with ASD. We measured mRNA expression levels of NLGN3/4, NRXN1, SHANK3, MeCP2, NHE9 and AKT1 in lymphoblastoid cells from 35 patients with ASD and 35 healthy controls, as well as from 45 patients with schizophrenia and 45 healthy controls, using real-time quantitative reverse transcriptase polymerase chain reaction assays. The mRNA expression levels of NLGN3 and SHANK3 normalized by β-actin or TBP were significantly decreased in the individuals with ASD compared to controls, whereas no difference was found in the mRNA expression level of MeCP2, NHE9 or AKT1. However, normalized NLGN3 and SHANK3 gene expression levels were not altered in patients with schizophrenia, and expression levels of NLGN4 and NRXN1 mRNA were not quantitatively measurable in lymphoblastoid cells. Our results provide evidence that the NLGN3 and SHANK3 genes may be differentially expressed in lymphoblastoid cell lines from individuals with ASD compared to those from controls. These findings suggest the possibility that decreased mRNA expression levels of these genes might be involved in the pathophysiology of ASD in a substantial population of ASD patients.
Mohsen, Ahmed; Collery, Philippe; Garnotel, Roselyne; Brassart, Bertrand; Etique, Nicolas; Mohamed Sabry, Gilane; Elsherif Hassan, Rasha; Jeannesson, Pierre; Desmaële, Didier; Morjani, Hamid
2017-08-16
In this study, we investigated the effect of [N-(5-chloro-2-hydroxyphenyl)-l-aspartato] chlorogallate (GS2), a new water soluble gallium complex, on cell invasion and on the expression and activity of matrix metalloproteinases (MMPs) in human metastatic HT-1080 fibrosarcoma and MDA-MB 231 breast carcinoma cells. The effect on cell invasion was studied using a modified Boyden chamber coated with a type-I collagen. We analyzed the effect of GS2 on MMP-2, MMP-9, and MMP-14 via zymography and enzymatic assay using high affinity fluorogenic substrates. The expression of MMP mRNA was analyzed via qRT-PCR. GS2 induced a decrease in cell invasion. A dose-dependent inhibition effect was observed on the activities of MMP-2, MMP-9, and MMP-14 with the IC 50 values of 168, 82, and 20 μM, respectively. A decrease in the expression of MMP-14 mRNA was observed in both cell lines, whereas the expression of MMP-2 and MMP-9 mRNA was decreased only in the MDA-MB231 cells. Data obtained for the expression of MMP-14 mRNA were confirmed via Western blotting. In fact, MMP-14 expression was decreased in the presence of GS2. Overall, these data show that GS2 is a promising compound for anti-invasive and anticancer therapy.
NASA Astrophysics Data System (ADS)
Landing, Ed; Geyer, Gerd; Brasier, Martin D.; Bowring, Samuel A.
2013-08-01
Use of the first appearance datum (FAD) of a fossil to define a global chronostratigraphic unit's base can lead to intractable correlation and stability problems. FADs are diachronous—they reflect species' evolutionary history, dispersal, biofacies, preservation, collection, and taxonomy. The Cambrian Evolutionary Radiation is characterised by diachronous FADs, biofacies controls, and provincialism of taxa and ecological communities that confound a stable Lower Cambrian chronostratigraphy. Cambrian series and stage definitions require greater attention to assemblage zone successions and non-biostratigraphic, particularly carbon isotope, correlation techniques such as those that define the Ediacaran System base. A redefined, basal Cambrian Trichophycus pedum Assemblage Zone lies above the highest Ediacaran-type biotas (vendobionts, putative metazoans, and calcareous problematica such as Cloudina) and the basal Asteridium tornatum-Comasphaeridium velvetum Zone (acritarchs). This definition and the likely close correspondence of evolutionary origin and local FAD of T. pedum preserves the Fortune Head, Newfoundland, GSSP of the Cambrian base and allows the presence of sub-Cambrian, branched ichnofossils. The sub-Tommotian-equivalent base of Stage 2 (a suggested "Laolinian Stage") should be defined by the I'/L4/ZHUCE δ13C positive peak, bracketed by the lower ranges of Watsonella crosbyi and Aldanella attleborensis (molluscs) and the Skiagia ornata-Fimbrioglomerella membranacea Zone (acritarchs). The W. crosbyi and A. attleborensis FADs cannot define a Stage 2 base as they are diachronous even in the Newfoundland "type" W. crosbyi Zone. The Series 2 base cannot be based on a species' FAD owing to the provincialism of skeletalised metazoans in the Terreneuvian-Series 2 boundary interval and global heterochrony of the oldest trilobites. A Series 2 and Stage 3 (a suggested "Lenaldanian Series" and "Zhurinskyan Stage," new) GSSP base is proposed at the Siberian lower Atdabanian δ13C IV peak—which correlates into South China, Avalonia, and Morocco and assigns the oldest trilobites to the terminal Terreneuvian Series.
The effects of splicing variant of PXR PAR-2 on CYP3A4 and MDR1 mRNA expressions.
Liu, Yan; Ji, Wei; Yin, You; Fan, Lan; Zhang, Jian; Yun, Huang; Wang, Nianci; Li, Qing; Wei, Zhang; Ouyang, Dongshen; Zhou, Hong-Hao
2009-05-01
PAR-2(SV1), a splicing variant of PXR, has similar activity as PXR wild type. Currently, a 6bp-deletion variant ((-133)GAGAAG(-128)) in promoter region of PAR-2(SV1) was reported, which could diminish the hPAR-2 promote activity in HepG2 cells. The distribution and functions of 6bp-deletion in Chinese were investigated. The PXR genotype was analyzed from 56 liver samples and 177 blood samples. Then the mRNA expression of PAR-2(SV1), total PXR, CYP3A4 and MDR1 were quantitatively analyzed by real-time PCR. The allelic frequencies of 6bp-deletion were 22.4%, 38.4% and 23.7%, in blood of Chinese healthy (n=177), hepatic carcinoma samples (n=33) and calculus of bile duct ones (n=23) respectively. PAR-2(SV1) transcript represented approximately 15.3% of the total PXR transcripts in all liver samples. The 6bp-deletion cut down PAR-2(SV1) mRNA and total PXR mRNA transcriptional expression, and then led to down regulations of MDR1 and CYP3A4. PAR-2(SV1) plays an important role in total PXR mRNA expression. The 6bp-deletion affects the PAR-2(SV1) expression greatly, and then contributes to the adjustment of expression and function of total PXR. Thus it leads to the changed target gene expressions, which may partly explain interindividual variations in CYP3A4 and MDR1. And these phenomena suggest that individuals with 6bp-deletion are prone to carcinoma when exposed to toxicity.
Iwasa, Takeshi; Matsuzaki, Toshiya; Tungalagsuvd, Altankhuu; Munkhzaya, Munkhsaikhan; Kawami, Takako; Yamasaki, Mikio; Murakami, Masahiro; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru
2014-11-01
Prokineticin (PK2) and its receptors (PKRs) are expressed in several regions of the central nervous system, including the hypothalamus. It has been reported that PK2 inhibits food intake via PKR1 and that the hypothalamic PK2 mRNA levels of adult rodents were reduced by food deprivation. However, some hypothalamic factors do not exhibit sensitivity to undernutrition in the early neonatal period, but subsequently become sensitive to it during the neonatal to pre-pubertal period. In this study, we investigated the changes in the sensitivity of hypothalamic PK2 and PKR1 mRNA expression to fasting during the developmental period in male rats. Under the fed conditions, the rats' hypothalamic PK2 and/or PKR1 mRNA levels were higher on postnatal day (PND) 10 than on PND20 or PND30. In addition, the hypothalamic PK2 and/or PKR1 mRNA levels of the male rats were higher than those of the females at all examined ages (PND10, 20, and 30). Hypothalamic PK2 mRNA expression was decreased by 24h fasting at PND10 and 30, but not at PND20. In addition, hypothalamic PKR1 mRNA expression was decreased by 24h fasting at PND10, but not at PND20 or 30. These results indicate that both PK2 and PKR1 are sensitive to nutritional status in male rats and that this sensitivity has already been established by the early neonatal period. It can be speculated that the PK2 system might compensate for the immaturity of other appetite regulatory factors in the early neonatal period. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.
Nieminen, Petteri; Rouvinen-Watt, Kirsti; Kapiainen, Suvi; Harris, Lora; Mustonen, Anne-Mari
2010-09-15
Adiponectin is a novel adipocyte-derived hormone with low circulating concentrations and/or mRNA expression in obesity and non-alcoholic fatty liver disease (NAFLD). The adiponectin mRNA of several Carnivora species was sequenced to enable further gene expression studies in this clade with potential experimental species to examine the connections of hypoadiponectinemia to hepatic lipidosis. In addition, adiponectin mRNA expression was studied in the retroperitoneal fat of the American mink (Neovison vison), as hepatic lipidosis with close similarities to NAFLD can be rapidly induced to the species by fasting. The mRNA expression was determined after overnight-7d of food deprivation and 28d of re-feeding and correlated to the liver fat %. The homologies between the determined carnivoran mRNA sequences and that of the domestic dog were 92.2-99.1%. As the mRNA expression was not affected by short-term fasting and did not correlate with the liver fat %, there seems to be no clear connection between adiponectin and the development of lipidosis in the American mink. In the future, the obtained sequences can be utilized in further studies of adiponectin expression in comparative endocrinology. Copyright (c) 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Takashi, E-mail: shimizut@obihiro.ac.jp; Hirai, Yuko; Murayama, Chiaki
2011-08-19
Highlights: {yields} Treatment with Per2 and Clock siRNAs decreased the number of granulosa cells and LHr expression. {yields}Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom. {yields} Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. {yields}Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. {yields} The expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. -- Abstract: Circadian Clock genes are associated with the estrous cycle in female animals. Treatment with Per2 and Clock siRNAs decreased the number ofmore » granulosa cells and LHr expression in follicle-stimulating hormone FSH-treated granulosa cells. Per2 siRNA treatment did not stimulate the production of estradiol and expression of P450arom, whereas Clock siRNA treatment inhibited the production of estradiol and expression of P450arom mRNA. Per2 and Clock siRNA treatment increased and unchanged, respectively, progesterone production in FSH-treated granulosa cells. Similarly, expression of StAR mRNA was increased by Per2 siRNA and unchanged by Clock siRNA. Our data provide a new insight that Per2 and Clock have different action on ovarian granulosa cell functions.« less
Meißner, Joachim D; Gros, Gerolf; Scheibe, Renate J; Scholz, Michael; Kubis, Hans-Peter
2001-01-01
The addition of cyclosporin A (500 ng ml−1) - an inhibitor of the Ca2+-calmodulin-regulated serine/threonine phosphatase calcineurin - to primary cultures of rabbit skeletal muscle cells had no influence on the expression of fast myosin heavy chain (MHC) isoforms MHCIIa and MHCIId at the level of protein and mRNA, but reduced the expression of slow MHCI mRNA. In addition, no influence of cyclosporin A on the expression of citrate synthase (CS) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was found. The level of enzyme activity of CS was also not affected. When the Ca2+ ionophore A23187 (4 × 10−7m) was added to the medium, a partial fast-to-slow transformation occurred. The level of MHCI mRNA increased, and the level of MHCIId mRNA decreased. Cotreatment with cyclosporin A was able to prevent the upregulation of MHCI at the level of mRNA as well as protein, but did not reverse the decrease in MHCIId expression. The expression of MHCIIa was also not influenced by cyclosporin A. Cyclosporin A was not able to prevent the upregulation of CS mRNA under Ca2+ ionophore treatment and failed to reduce the increased enzyme activity of CS. The expression of GAPDH mRNA was reduced under Ca2+ ionophore treatment and was not altered under cotreatment with cyclosporin A. When the myotubes in the primary muscle culture were electrostimulated at 1 Hz for 15 min periods followed by pauses of 30 min, a partial fast-to-slow transformation was induced. Again, cotreatment with cyclosporin A prevented the upregulation of MHCI at the level of mRNA and protein without affecting MHCIId expression. The nuclear translocation of the calcineurin-regulated transcription factor nuclear factor of activated thymocytes (NFATc1) during treatment with Ca2+ ionophore, and the prevention of the translocation in the presence of cyclosporin A, were demonstrated immunocytochemically in the myotubes of the primary culture. The effects of cyclosporin A demonstrate the involvement of calcineurin-dependent signalling pathways in controlling the expression of MHCI, but not of MHCIIa, MHCIId, CS and GAPDH, during Ca2+ ionophore- and electrostimulation-induced fast-to-slow transformations. The data indicate a differential regulation of MHCI, of MHCII and of metabolism. Calcineurin alone is not sufficient to mediate the complete transformation. PMID:11351029
Dikbas, Levent; Yapca, Omer Erkan; Dikbas, Neslihan; Gundogdu, Cemal
2017-05-01
Recent evidence suggests that oxidative stress is involved in the pathophysiology of many human diseases. It has been demonstrated that oxidative stress is associated with intrauterine growth restriction (IUGR), and the depletion of placental antioxidant systems has been suggested as a key factor in this disease. Our aims were to explore the possible role of antioxidant paraoxonase-2 (PON2) and paraoxonase-3 (PON3) in the pathophysiology of unexplained IUGR. We have studied the expression of mRNA for PON2, PON3 in placental tissues by using RT-qPCR. Two groups, consisting of normal (n = 18) and unexplained IUGR pregnancies (n = 20) were compared. Our results demonstrated that there were no significant differences in the mRNA expressions of PON2, PON3 between the two groups (p = 0.28, p = 0.90, respectively). PON2 and PON3 were down-regulated in IUGR. Antenatal steroid therapy had no effect on the expression mRNA in placentae of unexplained IUGR pregnancies compared to non-treated group. These results suggest that PON2, PON3 mRNA levels were not changed significantly in placentae of IUGR when compared to normal pregnant women.
Sun, Yan; Ke, Lulu; Zheng, Xiangren; Li, Tao; Ouyang, Wei; Zhang, Zigui
2017-04-01
The purpose of the investigation is to reveal the influence of dietary calcium on fluorosis-induced brain cell apoptosis in rat offspring, as well as the underlying molecular mechanism. Sprague-Dawley (SD) female rats were randomly divided into five groups: control group, fluoride group, low calcium, low calcium fluoride group, and high calcium fluoride group. SD male rats were used for breeding only. After 3 months, male and female rats were mated in a 1:1 ratio. Subsequently, 18-day-old gestation rats and 14- and 28-day-old rats were used as experimental subjects. We determined the blood/urine fluoride, the blood/urine calcium, the apoptosis in the hippocampus, and the expression levels of apoptosis-related genes, namely Bcl-2, caspase 12, and JNK. Blood or blood/urine fluoride levels and apoptotic cells were found significantly increased in fluorosis rat offspring as compared to controls. Furthermore, the Bcl-2 messenger RNA (mRNA) expression levels significantly decreased, and caspase 12 mRNA levels significantly increased in each age group as compared to controls. Compared with the fluoride group, the blood/urine fluoride content and apoptotic cells evidently decreased in the high calcium fluoride group, Bcl-2 mRNA expression significantly increased and caspase 12 mRNA expression significantly decreased in each age group. All results showed no gender difference. Based on these results, the molecular mechanisms of fluorosis-induced brain cell apoptosis in rat offspring may include the decrease in Bcl-2 mRNA expression level and increase in caspase 12 mRNA expression signaling pathways. High calcium intake could reverse these gene expression trends. By contrast, low calcium intake intensified the toxic effects of fluoride on brain cells.
Cormier, Hubert; Rudkowska, Iwona; Thifault, Elisabeth; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude
2013-09-10
Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM). Polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS) and serum fatty acid composition. To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG) and fasting insulin (FI) responses following a 6-week n-3 polyunsaturated fatty acids (PUFA) supplementation. 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g-2.2 g of EPA + 1.1 g of DHA). Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03) was performed. Carriers of the minor allele for rs482548 (FADS2) had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 (p = 0.008). For FI levels, a genotype effect was observed with one SNP (rs174456). For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 (p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively). RESULTS suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation.
Cormier, Hubert; Rudkowska, Iwona; Thifault, Elisabeth; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude
2013-01-01
Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM). Polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS) and serum fatty acid composition. Objective: To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG) and fasting insulin (FI) responses following a 6-week n-3 polyunsaturated fatty acids (PUFA) supplementation. Methods: 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g–2.2 g of EPA + 1.1 g of DHA). Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03) was performed. Results: Carriers of the minor allele for rs482548 (FADS2) had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 (p = 0.008). For FI levels, a genotype effect was observed with one SNP (rs174456). For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 (p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively). Conclusion: Results suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation. PMID:24705214
Hayano, Azusa; Komohara, Yoshihiro; Takashima, Yasuo; Takeya, Hiroto; Homma, Jumpei; Fukai, Junya; Iwadate, Yasuo; Kajiwara, Koji; Ishizawa, Shin; Hondoh, Hiroaki; Yamanaka, Ryuya
2017-10-01
Programmed cell death ligand 1 (PD-L1)/programmed cell death 1 (PD-1) have been shown to predict response to PD-L1/PD-1-targeted therapy. We analyzed PD-L1 expression in primary central nervous system lymphomas (PCNSLs). PD-L1 protein and mRNA expression were evaluated in 64 PCNSL tissue samples. IFN-γ, IL-10, CD4, and CD8 mRNA expression was also evaluated. PD-L1 protein was detected in tumor cells in 2 (4.1%) cases and in tumor microenvironments in 25 (52%) cases. PD-L1 mRNA positively correlated with IFN-γ (p=0.0024) and CD4 (p=0.0005) mRNA expression. IFN-γ mRNA positively correlated with CD8 mRNA expression (p=0.0001). Furthermore, tumor cell PD-L1 expression correlated positively with overall survival (p=0.0177), whereas microenvironmental PD-L1 expression exhibited an insignificant negative trend with overall survival (p=0.188). PD-L1 was expressed on both tumor and/or tumor-infiltrating immune cells in PCNSL. The biological roles of this marker warrant further investigation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Connor, E E; Baldwin, R L; Capuco, A V; Evock-Clover, C M; Ellis, S E; Sciabica, K S
2010-11-01
Glucagon-like peptide 2 (GLP-2), secreted by enteroendocrine cells, has several physiological effects on the intestine of monogastric species, including promotion of growth of intestinal epithelium, reduction of epithelial cell apoptosis, and enhancement of intestinal blood flow, nutrient absorption, and epithelial barrier function. The regulatory functions of GLP-2 in the ruminant gastrointestinal tract (GIT) have not been well studied. The objectives of this investigation were to characterize the mRNA expression of 4 members of the GLP-2 pathway throughout the bovine GIT, including (1) proglucagon (GCG), the parent peptide from which GLP-2 is derived through cleavage by prohormone convertase; (2) prohormone convertase (PCSK1); (3) GLP-2 receptor (GLP2R); and (4) dipeptidyl peptidase IV (DPP4), the enzyme that inactivates GLP-2. Gene expression was evaluated in rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, and rectum collected at slaughter from prepubertal heifers, mature cows in early, mid, and late lactation, and nonlactating cows (n=3 per stage) by a gene expression profiling assay. In addition, mRNA expression of 14 genes involved in nutrient transport, enzyme activity, blood flow, apoptosis, and proliferation were evaluated in the 9 GIT tissues for their association with GCG and GLP2R mRNA expression. Immunohistochemistry was used to localize GLP2R protein in tissues of the lower GIT. Results indicated that mRNA expression of GCG, PCSK1, GLP2R, and DPP4 varies across the 9 GIT tissues, with greatest expression in small and large intestines, and generally nondetectable levels in forestomachs. Expression of DPP4 and GLP2R mRNA varied by developmental stage or lactational state in intestinal tissues. Expression of GCG or GLP2R mRNA was correlated with molecular markers of proliferation, apoptosis, blood flow, enzyme activity, and urea transport, depending on the tissue examined, which suggests a potential for involvement of GLP-2 in these physiological processes in the ruminant GIT. The GLP2R protein was expressed in intestinal crypts of the bovine GIT, which is consistent with the distribution in monogastric species. Our findings support a functional role of the GLP-2 pathway in bovine GIT and the potential for use of GLP-2 as a therapy to improve intestinal function and nutrient absorption in ruminants. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Tsuruoka, Nozomu; Sadakane, Takuya; Hayashi, Rika; Tsujimura, Seiya
2017-03-10
The flavin adenine dinucleotide-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus species require suitable redox mediators to transfer electrons from the enzyme to the electrode surface for the application of bioelectrical devices. Although several mediators for FAD-GDH are already in use, they are still far from optimum in view of potential, kinetics, sustainability, and cost-effectiveness. Herein, we investigated the efficiency of various phenothiazines and quinones in the electrochemical oxidation of FAD-GDH from Aspergillus terreus . At pH 7.0, the logarithm of the bimolecular oxidation rate constants appeared to depend on the redox potentials of all the mediators tested. Notably, the rate constant of each molecule for FAD-GDH was approximately 2.5 orders of magnitude higher than that for glucose oxidase from Aspergillus sp. The results suggest that the electron transfer kinetics is mainly determined by the formal potential of the mediator, the driving force of electron transfer, and the electron transfer distance between the redox active site of the mediator and the FAD, affected by the steric or chemical interactions. Higher k ₂ values were found for ortho-quinones than for para-quinones in the reactions with FAD-GDH and glucose oxidase, which was likely due to less steric hindrance in the active site in the case of the ortho-quinones.
Katoh, M; Kirikoshi, H; Terasaki, H; Shiokawa, K
2001-12-21
Genetic alterations of WNT signaling molecules lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway. We have previously cloned and characterized WNT2B/WNT13 gene on human chromosome 1p13, which is homologous to proto-oncogene WNT2 on human chromosome 7q31. WNT2B1 and WNT2B2 mRNAs, generated from the WNT2B gene due to alternative splicing of the alternative promoter type, encode almost identical polypeptides with divergence in the N-terminal region. WNT2B2 mRNA rather than WNT2B1 mRNA is preferentially expressed in NT2 cells with the potential of neuronal differentiation. Here, we describe our investigations of expression of WNT2B mRNAs in various types of human primary cancer. Matched tumor/normal expression array analysis revealed that WNT2B mRNAs were significantly up-regulated in 2 of 8 cases of primary gastric cancer. WNT2B2 mRNA rather than WNT2B1 mRNA was found to be preferentially up-regulated in a case of primary gastric cancer (signet ring cell carcinoma). Function of WNT2B1 mRNA and that of WNT2B2 mRNA were investigated by using Xenopus axis duplication assay. Injection of synthetic WNT2B1 mRNA into the ventral marginal zone of fertilized Xenopus eggs at the 4-cell stage did not induce axis duplication. In contrast, ventral injection of synthetic WNT2B2 mRNA induced axis duplication in 90% of embryos (complete axis duplication, 24%). These results strongly suggest that WNT2B2 up-regulation in some cases of gastric cancer might lead to carcinogenesis through activation of the beta-catenin-TCF signaling pathway.
Perche, Federico; Uchida, Satoshi; Akiba, Hiroki; Lin, Chin-Yu; Ikegami, Masaru; Dirisala, Anjaneyulu; Nakashima, Toshihiro; Itaka, Keiji; Tsumoto, Kohei; Kataoka, Kazunori
2017-01-01
The ever-increasing number of people living with Alzheimer's disease urges to develop more effective therapies. Despite considerable success, anti-Alzheimer immunotherapy still faces the challenge of intracerebral and intracellular delivery. This work introduces in situ production of anti-amyloid beta (Aβ) antibody after intracerebral injection of PEG-PAsp(DET)/mRNA polyplexes as a novel immunotherapy approach and a safer alternative compared to high systemic antibodies doses or administration of adenovirus encoding anti- Aβ antibodies. We used mRNA encoding three different Aβ-specific scFV with a secretion signal for passive immunotherapy. scFv contained a 6xHis-tag for immuno-detection. The secretion signal from IL2 (IL2ss) was added to allow extracellular engagement of senile plaques. Aβ affinity of scFv was measured by surface plasmon resonance. To allow intracellular delivery, scFv were administered as polyplexes formed with our smart copolymer polyethylene glycol-poly[N'-[N-(2-aminoethyl)-2-aminoethyl] aspartamide] [PEG-PAsp (DET)]. We evaluated scFv expression in cellulo by Western blot and ELISA, their ability to disaggregate amyloid aggregates by thioflavine T assay. Moreover, in vivo expression and therapeutic activity were evaluated in a murine amyloidosis model, by anti-6xHis-tag ELISA and anti- Aβ ELISA, respectively. The selected anti-amyloid beta scFv showed affinity towards Aβ and disaggregated Aβ fibers in vitro. Whereas both DNA and mRNA transfection led to scFV expression in cancer cells, only mRNA led to detectable scFv expression in primary neurons. In addition, the use of IL2ss increased by 3.4-fold scFv secretion by primary neurons over mRNA polyplexes devoid of secretion signal. In vivo, a 3 to 11- fold of intracranial scFv levels was measured for mRNA compared to DNA polyplexes and higher in vivo scFv levels were obtained with mRNA containing IL2ss over non-secreted mRNA. Intracranial injection of anti-Aβ mRNA polyplexes with IL2ss resulted in 40 % Aβ decrease in an acute amyloidosis model; with no decrease detected with control scFv mRNA nor DNA polyplexes. However, no Aβ decrease was detected in a more challenging transgenic model of Alzheimer's disease. Our results introduce a concerted approach not only for Alzheimer's disease treatment but also for immunotherapy against neurological diseases. The effectivity of our platform required the intracranial delivery of anti-Aβ scFv as mRNA not DNA, as mRNA with an IL2ss secretion sequence to favor engagement of Aβ in the amyloidosis model, complexation with a smart copolymer for efficient transfection of primary neurons and to achieve detectable mRNA expression in the brain during 48h. Amyloid burden decrease in an acute amyloidosis model was only achieved when these three factors (mRNA coding scFv, smart copolymer, IL2ss) were integrated into a single formulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Engineering of bacterial methyl ketone synthesis for biofuels.
Goh, Ee-Been; Baidoo, Edward E K; Keasling, Jay D; Beller, Harry R
2012-01-01
We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C₁₁ to C₁₅ (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications.
Wojtczyk-Miaskowska, Anita; Presler, Malgorzata; Michajlowski, Jerzy; Matuszewski, Marcin; Schlichtholz, Beata
2017-01-01
This study investigated the gene expression and DNA methylation of selected DNA repair genes (MBD4, TDG, MLH1, MLH3) and DNMT1 in human bladder cancer in the context of pathophysiological and prognostic significance. To determine the relationship between the gene expression pattern, global methylation and promoter methylation status, we performed real-time PCR to quantify the mRNA of selected genes in 50 samples of bladder cancer and adjacent non-cancerous tissue. The methylation status was analyzed by methylation-specific polymerase chain reaction (MSP) or digestion of genomic DNA with a methylation-sensitive restriction enzyme and PCR with gene-specific primers (MSRE-PCR). The global DNA methylation level was measured using the antibody-based 5-mC detection method. The relative levels of mRNA for MBD4, MLH3, and MLH1 were decreased in 28% (14/50), 34% (17/50) and 36% (18/50) of tumor samples, respectively. The MBD4 mRNA expression was decreased in 46% of non-muscle invasive tumors (Ta/T1) compared with 11% found in muscle invasive tumors (T2-T4) (P<0.003). Analysis of mRNA expression for TDG did not show any significant differences between Ta/T1 and T2-T4 tumors. The frequency of increased DNMT1 mRNA expression was higher in T2-T4 (52%) comparing to Ta/T1 (16%). The overall methylation rates in tumor tissue were 18% for MBD4, 25% for MLH1 and there was no evidence of MLH3 promoter methylation. High grade tumors had significantly lower levels of global DNA methylation (P=0.04). There was a significant association between shorter survival and increased expression of DNMT1 mRNA (P=0.002), decreased expression of MLH1 mRNA (P=0.032) and the presence of MLH1 promoter methylation (P=0.006). This study highlights the importance of DNA repair pathways and provides the first evidence of the role of MBD4 and MLH3 in bladder cancer. In addition, our findings suggest that DNMT1 mRNA and MLH1 mRNA expression, as well as the status of MLH1 promoter methylation, are attractive prognostic markers in this pathology. © 2017 The Author(s). Published by S. Karger AG, Basel.
The NMDA receptor NR2A subunit regulates proliferation of MKN45 human gastric cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Kanako; Department of Anesthesiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501; Kanno, Takeshi
2008-03-07
The present study investigated proliferation of MKN28 and MKN45 human gastric cancer cells regulated by the N-methyl-D-aspartate (NMDA) receptor subunit. The NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP5) inhibited proliferation of MKN45 cells, but not MKN28 cells. Of the NMDA subunits such as NR1, NR2 (2A, 2B, 2C, and 2D), and NR3 (3A and 3B), all the NMDA subunit mRNAs except for the NR2B subunit mRNA were expressed in both MKN28 and MKN45 cells. MKN45 cells were characterized by higher expression of the NR2A subunit mRNA and lower expression of the NR1 subunit mRNA, but MKN28 otherwise by higher expression ofmore » the NR1 subunit mRNA and lower expression of the NR2A subunit mRNA. MKN45 cell proliferation was also inhibited by silencing the NR2A subunit-targeted gene. For MKN45 cells, AP5 or knocking-down the NR2A subunit increased the proportion of cells in the G{sub 1} phase of cell cycling and decreased the proportion in the S/G{sub 2} phase. The results of the present study, thus, suggest that blockage of NMDA receptors including the NR2A subunit suppresses MKN45 cell proliferation due to cell cycle arrest at the G{sub 1} phase; in other words, the NR2A subunit promotes MKN45 cell proliferation by accelerating cell cycling.« less
Zheng, Meiying; Cooper, David R.; Grossoehme, Nickolas E.; Yu, Minmin; Hung, Li-Wei; Cieslik, Marcin; Derewenda, Urszula; Lesley, Scott A.; Wilson, Ian A.; Giedroc, David P.; Derewenda, Zygmunt S.
2009-01-01
The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-α-helical regulatory domains classified into two related Pfam families: FadR_C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacterium glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni2+ ions but that it is able to bind Zn2+ with K d < 70 nM. It is concluded that Zn2+ is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors. PMID:19307717
Crystal structure of the flavoenzyme PA4991 from Pseudomonas aeruginosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacewicz, Agata; Schnell, Robert; Lindqvist, Ylva
PA4991 is a FAD-dependent oxidoreductase from the pathogen P. aeruginosa that is essential for virulence and survival in the infected host. The structure of this enzyme, determined to 2.4 Å resolution, reveals that PA4991 belongs to the GR{sub 2} family of flavoenzymes. The locus PA4991 in Pseudomonas aeruginosa encodes an open reading frame that has been identified as essential for the virulence and/or survival of this pathogenic organism in the infected host. Here, it is shown that this gene encodes a monomeric FAD-binding protein of molecular mass 42.2 kDa. The structure of PA4991 was determined by a combination of molecularmore » replacement using a search model generated with Rosetta and phase improvement by a low-occupancy heavy-metal derivative. PA4991 belongs to the GR{sub 2} family of FAD-dependent oxidoreductases, comprising an FAD-binding domain typical of the glutathione reductase family and a second domain dominated by an eight-stranded mixed β-sheet. Most of the protein–FAD interactions are via the FAD-binding domain, but the isoalloxazine ring is located at the domain interface and interacts with residues from both domains. A comparison with the structurally related glycine oxidase and glycerol-3-phosphate dehydrogenase shows that in spite of very low amino-acid sequence identity (<18%) several active-site residues involved in substrate binding in these enzymes are conserved in PA4991. However, enzymatic assays show that PA4991 does not display amino-acid oxidase or glycerol-3-phosphate dehydrogenase activities, suggesting that it requires different substrates for activity.« less
Gong, Lan-Bo; He, Li; Liu, Yang; Chen, Xue-Qing; Jiang, Bo
2005-01-01
AIM: To observe the expressions of early growth response factor-1 (Egr-1) and tissue factor (TF) in rats with cerulein-induced acute pancreatitis and to explore its significance. METHODS: A large dose of cerulein was used to create the experimental acute pancreatitis model in rats. The changes of Egr-1 mRNA and protein in rats were observed during 30 min to 4 h after the treatment and immunohistochemical method was used to observe the localized expression of Egr-1 in tissues. In addition to the mRNA expression of Egr-1 target gene, TF was also observed. A blank control group, and a bombesin-administered group were used for comparison. RESULTS: After the stimulation of a large dose of cerulein, the rats showed typical inflammatory changes of acute pancreatitis. Thirty minutes after the stimulation, the mRNA expression of Egr-1 in the pancreatic tissue reached its peak and then declined, while the expression of Egr-1 protein reached its peak 2 h after the stimulation. Histologically, 2 h after the stimulation, almost all pancreatic acinar cells had the expression of Egr-1 protein, which was focused in the nuclei. The mRNA expression of TF occurred 1 h after the stimulation and gradually increased within 4 h. However, a large dose of bombesin only stimulated the pancreatic tissue to produce a little mRNA expression of Egr-1 and no mRNA expression of Egr-1 protein and TF. CONCLUSION: Egr-1 as a pro-inflammatory transcription factor may play an important role in the pathogenesis of acute pancreatitis by modulating the expression of TF. PMID:16124058
Jeevan, Amminikutty; Yoshimura, Teizo; Ly, Lan H; Dirisala, Vijaya R; McMurray, David N
2011-01-01
Interleukin-4 (IL-4), a pleiotropic cytokine produced by T-helper type 2 (Th2) cells, is involved in promoting humoral immune responses, allergic reactions and asthma. Previous studies suggested an important role for IL-4 in susceptibility to pulmonary tuberculosis; however, the role of IL-4 has not been studied in the guinea pig, a highly relevant model for this disease. In the present study, we cloned a cDNA for guinea pig IL-4 and examined, for the first time, mRNA expression by real-time RT-PCR in cultured guinea pig cells. High levels of IL-4 mRNA expression were detected in spleen T cells of naïve animals after in vitro stimulation with PMA plus ionomycin for 4-24 h. The expression of IL-4 mRNA was low in spleen and lymph node cells immunized with ovalbumin (OVA) plus Complete Freund's Adjuvant (CFA) in response to OVA (Th1), but significantly higher in the guinea pigs immunized with OVA plus alum (Th2). BCG vaccination reduced the expression of IL-4 mRNA in both spleen and lung digest cells compared to naïve guinea pigs, while levels of IFN-γ were similar in both groups. Furthermore, lung cells from Mycobacterium tuberculosis-infected guinea pigs stimulated in vitro with PPD or MPT64 showed low levels of IL-4 mRNA expression. Thus, BCG vaccination or M. tuberculosis infection modulates IL-4 mRNA expression in the guinea pig. Cloning of guinea pig IL-4 will allow us to address the role of IL-4 in vaccine-induced resistance to pulmonary TB in a highly relevant animal model. Copyright © 2010 Elsevier Ltd. All rights reserved.
Vazquez-Vidal, Itzel; Voruganti, V Saroja; Hannon, Bridget A; Andrade, Flavia Cristina Drumond; Aradillas-García, Celia; Nakamura, Manabu T; Terán-García, Margarita
2018-05-30
Recent genome-wide association studies in the Mexican population have identified several genetic loci associated with blood lipid levels in adults. However, studies focusing on the fatty acid desaturase (FADS) gene cluster have been understudied in this population, even though it seems associated with lipid profiles in other ethnicities. The aim of this study was to test associations between single nucleotide polymorphisms (SNPs) in the FADS cluster (rs174546, rs1535, rs174548, rs174550, rs174450, and rs174618) and serum lipid profiles in young Mexicans. Anthropometrics, serum lipid profiles, and FADS SNPs were measured in 998 subjects in the UP-AMIGOS cohort study. Genotype-phenotype (total cholesterol [TC], triglyceride [TG], high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], and very-low-density lipoprotein [VLDL]) associations were assessed using PLINK adjusted for sex, age, and body mass index (BMI). Among 6 FADS SNPs, we found that carriers of the C-allele of the FADS1-rs174546 showed a significant association with lower TG concentrations (β = -12.6 mg/dL, p = 0.009) and lower VLDL concentrations (β = -2.52 mg/dL, p = 0.005). We found that rs174546, rs1535, and rs174550 were in high linkage disequilibrium (r2 > 0.80). There were no significant associations between rs174550, rs174548, and rs174618 and lipid profiles. A genetic variant in the FADS1 (rs174546) gene is a major contributor of plasma TG and VLDL concentrations in healthy young Mexicans. © 2018 S. Karger AG, Basel.
Jia, Ge; Qiu, Li-Hong; Li, Ren; Lü, You; Yu, Ya-Qiong; Zhong, Ming
2011-09-01
To evaluate the effect of cluster of differentiation 14 (CD-14) and Toll like receptors (TLR) on the expression of interleukin-6 (IL-6) mRNA induced by Porphyromonas endodontalis (Pe) lipopolysaccharides (LPS). MC3T3-E1 cells were treated with 10 mg/L Pe-LPS for different hours, and the cells uninvolved by anything as the blank group. The expression of IL-6 was detected by reverse transcription polymerse chain reaction (RT-PCR) and enzyme-liked immunosorbent assay (ELISA). The expression of CD-14, TLR-2 and TLR-4 mRNA was observed at different time point (0 - 24 h) by RT-PCR. The protein of CD-14, TLR-2 and TLR-4 was analyzed with a flow cytometer. MC3T3-E1 cells were pretreated with anti-CD-14, anti-TLR-2 and anti-TLR-4 antibody for 1 h, and then cells were stimulated with 10 mg/L Pe-LPS for 6 h. The expression of IL-6 mRNA was examined by RT-PCR. Statistical analysis was performed using one-way ANOVA Dunnett-t test with SPSS 11.0 software package. The IL-6 mRNA and proteins increased significantly after treatment with Pe-LPS. When MC3T3-E1 cells treated by Pe-LPS for 6 h, the expression of proteins soared from (11.696 ± 0.672) ng/L to (36.534 ± 0.574) ng/L (P < 0.01); In the control group, the CD-14 and TLR-4 mRNA are ambly-expression, and the ratios of CD-14 and TLR-4 positive cells were (39.038 ± 3.131)% and (11.438 ± 0.385)% respectively in MC3T3-E1. After treatment by Pe-LPS, the expression of CD-14 and TLR-4 mRNA increased significantly, and the ratios of CD-14 and TLR-4 positive cells markedly increased to (62.407 ± 1.800)% and (21.367 ± 2.271)%. TLR-2 expression did not change apparently after Pe-LPS treatment. The expression of IL-6 mRNA was partly inhibited by anti-CD-14 or anti-TLR-4 antibody, but not by TLR-2. Pe-LPS can induce the expression of IL-6 in osteoblast MC3T3-E1 through CD-14 and TLR-4, but not TLR-2.
Grabbe, Roman; Schmitz, Ruth A
2003-04-01
In Klebsiella pneumoniae, the flavoprotein, NifL regulates NifA mediated transcriptional activation of the N2-fixation (nif) genes in response to molecular O2 and ammonium. We investigated the influence of membrane-bound oxidoreductases on nif-regulation by biochemical analysis of purified NifL and by monitoring NifA-mediated expression of nifH'-'lacZ reporter fusions in different mutant backgrounds. NifL-bound FAD-cofactor was reduced by NADH only in the presence of a redox-mediator or inside-out vesicles derived from anaerobically grown K. pneumoniae cells, indicating that in vivo NifL is reduced by electrons derived from membrane-bound oxidoreductases of the anaerobic respiratory chain. This mechanism is further supported by three lines of evidence: First, K. pneumoniae strains carrying null mutations of fdnG or nuoCD showed significantly reduced nif-induction under derepressing conditions, indicating that NifL inhibition of NifA was not relieved in the absence of formate dehydrogenase-N or NADH:ubiquinone oxidoreductase. The same effect was observed in a heterologous Escherichia coli system carrying a ndh null allele (coding for NADH dehydrogenaseII). Second, studying nif-induction in K. pneumoniae revealed that during anaerobic growth in glycerol, under nitrogen-limitation, the presence of the terminal electron acceptor nitrate resulted in a significant decrease of nif-induction. The final line of evidence is that reduced quinone derivatives, dimethylnaphthoquinol and menadiol, are able to transfer electrons to the FAD-moiety of purified NifL. On the basis of these data, we postulate that under anaerobic and nitrogen-limited conditions, NifL inhibition of NifA activity is relieved by reduction of the FAD-cofactor by electrons derived from the reduced quinone pool, generated by anaerobic respiration, that favours membrane association of NifL. We further hypothesize that the quinol/quinone ratio is important for providing the signal to NifL.
Influenza A viruses suppress cyclooxygenase-2 expression by affecting its mRNA stability.
Dudek, Sabine Eva; Nitzsche, Katja; Ludwig, Stephan; Ehrhardt, Christina
2016-06-06
Infection with influenza A viruses (IAV) provokes activation of cellular defence mechanisms contributing to the innate immune and inflammatory response. In this process the cyclooxygenase-2 (COX-2) plays an important role in the induction of prostaglandin-dependent inflammation. While it has been reported that COX-2 is induced upon IAV infection, in the present study we observed a down-regulation at later stages of infection suggesting a tight regulation of COX-2 by IAV. Our data indicate the pattern-recognition receptor RIG-I as mediator of the initial IAV-induced COX-2 synthesis. Nonetheless, during on-going IAV replication substantial suppression of COX-2 mRNA and protein synthesis could be detected, accompanied by a decrease in mRNA half-life. Interestingly, COX-2 mRNA stability was not only imbalanced by IAV replication but also by stimulation of cells with viral RNA. Our results reveal tristetraprolin (TTP), which is known to bind COX-2 mRNA and promote its rapid degradation, as regulator of COX-2 expression in IAV infection. During IAV replication and viral RNA accumulation TTP mRNA synthesis was induced, resulting in reduced COX-2 levels. Accordingly, the down-regulation of TTP resulted in increased COX-2 protein expression after IAV infection. These findings indicate a novel IAV-regulated cellular mechanism, contributing to the repression of host defence and therefore facilitating viral replication.
Increased expression of Apo-J and Omi/HtrA2 after Intracerebral Hemorrage in rats.
Li, Feng; Yang, Jing; Guo, Xiaoyan; Zheng, Xiaomei; Lv, Zhiyu; Shi, Chang Qing; Li, Xiaogang
2018-03-23
To investigate the changes of Apo-J and Omi/HtrA2 protein expression in rats with intracerebral hemorrage. 150 SD adult rats were randomly divided into 3 groups: (1) Normal Control (NC) group, (2) Sham group, (3) Intracerebral Hemorrage (ICH) group. The data were collected at 6h, 12h, 1d, 2d, 3d, 5d and 7d. Apoptosis was measured by Tunel staining. The distributions of the Apo-J and Omi/HtrA2 proteins were determined by immunohistochemical staining. The levels of Apo-J mRNA and Omi/HtrA2 mRNA expressions were examined by RT-PCR. Apoptosis in ICH group was higher than Sham and NC groups (p<0.05). Both the Apo-J and Omi/HtrA2 expression levels were increased in the peripheral region of hemorrhage, with a peak at 3d. The Apo-J mRNA level positively correlated with HtrA2 mRNA level in ICH group (r=0.883, p<0.001). The expressions of Apo-J and Omi/HtrA2 paralelly increased in peripheral region of rat cerebral hemorrhage. Local high expressed Apo-J in the peripheral regions might play a neuroprotective role by inhibiting apoptosis via Omi/HtrA2 pathway after hemorrhage. Copyright © 2018. Published by Elsevier Inc.
Nakata, Takaya; Umeda, Makoto; Masuzaki, Hiroaki; Sawai, Hirofumi
2016-10-03
The involvement of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which converts inactive glucocorticoids into active glucocorticoids intracellularly, in metabolic diseases and chronic inflammatory diseases has been elucidated. We recently reported that an increase in 11β-HSD1 expression was associated with chronic periodontitis in humans irrespective of obesity. To further clarify the role of 11β-HSD1 in chronic periodontitis, the expression of 11β-HSD1 was investigated in experimental periodontitis model in rats. Experimental periodontitis was induced by silk ligature of left maxillary second molars of 7-week-old male Wistar rats, and periodontal tissues were collected at day 3. The expression of 11β-HSD1, 11β-HSD2, and TNFα mRNA was examined using real time reverse transcription-polymerase chain reaction. The expression of TNFα was used as an indicator of inflammation. Thus, the rats in which the levels of TNFα mRNA were increased in the ligature-induced periodontitis compared with the control were analysed. The findings demonstrated that the expression of 11β-HSD1 mRNA was significantly increased in experimental periodontitis compared with the control. The increase in the levels of 11β-HSD1 mRNA in the ligature-induced periodontitis compared with the control was positively correlated with that of TNFα mRNA. On the other hand, the expression of 11β-HSD2 mRNA, which inactivates glucocorticoids, was slightly decreased in experimental periodontitis. Therefore, the ratio of 11β-HSD1 versus 11β-HSD2 mRNA was significantly higher in experimental periodontitis than in the control. These results suggest that the increased expression of 11β-HSD1, which would result in the increased levels of intracellular glucocorticoids, may play a role in the pathophysiology of experimental periodontitis.
Moreira, Tiago J T P; Pierre, Karin; Maekawa, Fumihiko; Repond, Cendrine; Cebere, Aleta; Liljequist, Sture; Pellerin, Luc
2009-07-01
Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.
Cheraghi, Parisa; Mard, Seyyed Ali; Nagi, Tahereh
2016-01-01
Hydrogen sulfide (H 2 S) has been shown to protect the gastric mucosa through several protective mechanisms but till now its effect on mRNA expression of sodium bicarbonate cotransporter 1 (NBC1), trefoil factor1 (TFF1) and trefoil factor2 (TFF2) was not investigated. This study was aimed to evaluate the effect of H 2 S on mRNA expression of NBC1, TFF1 and TFF2 in rat gastric mucosa in response to gastric distention. Thirty two rats were randomly assigned into four equal groups. They were control (C), distention (D), propargylglycine (PAG)-, and NaHS-treated groups. To evaluate the effect of exogenous and endogenous H 2 S on gene expression of NBC1, TFF1 and TFF2, two groups of rats were received H 2 S donor, intra-peritoneal NaHS (80 µg Kg -1 ), and PAG (50 mg kg -1 ), accompanied to stimulate the gastric acid secretion, respectively. Under general anesthesia and laparotomy, a catheter was inserted into the stomach through duodenum for instillation of isotonic saline for gastric distention. Ninety min after beginning the experiment, animals were sacrificed and the gastric mucosa was collected to determine total acid content of gastric effluents and to quantify the mRNA expression of studied genes by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that A) gastric distention increased the level of mRNA expressions of NBC1, TFF1 and TFF2; B) these levels in NaHS-treated rats were significantly higher than those in Distention group; and C) PAG decreased the expression levels of NBC1 and TFF1. The Findings showed H 2 S upregulated gene expression of NBC1, TFF1 and TFF2 in gastric mucosa.
Lim, Ratana; Barker, Gillian; Menon, Ramkumar; Lappas, Martha
2016-11-01
Preterm birth remains the major cause of neonatal mortality and morbidity, mediated largely by an inflammatory process. The sirtuin (SIRT) family of cellular regulators has been implicated as key inhibitors of inflammation. We have previously reported a role for SIRT1, SIRT2, and SIRT6 in regulating inflammation-induced prolabor mediators. In this study, we determined the effect of term labor and pro-inflammatory cytokines on SIRT3, SIRT4, SIRT5, and SIRT7 expression in human myometrium. Functional studies were also used to investigate the effect of small interfering RNA (siRNA) knockdown of SIRTs in regulating inflammation-induced prolabor mediators. Western blot analysis and qRT-PCR were used to determine SIRT3, SIRT4, SIRT5, and SIRT7 mRNA and protein expression in human myometrium. Small interfering RNA knockdown of SIRT3 in myometrial primary cells determined its role in response to inflammatory stimuli IL1B and TNF. SIRT3 mRNA and protein expression levels were significantly lower in term laboring myometrium compared with term nonlaboring myometrium. There was no effect of labor on SIRT4, SIRT5 or SIRT7 protein expression. The pro-inflammatory cytokines IL1B and TNF significantly decreased levels of SIRT3 mRNA and protein expression. SIRT3 knockdown by siRNA significantly augmented IL1B- and TNF-stimulated IL6, CXCL8, and CCL2 mRNA expression and release; PTGS2 mRNA expression and subsequent PGF 2alpha release; the mRNA expression and secretion of the adhesion molecule ICAM1 and the extracellular matrix remodeling enzyme MMP9; and nuclear factor kappa B1 (NFkappaB1) transcriptional activity. In human myometrium, SIRT3 expression decreases with term labor and regulates the mediators involved in the terminal effector pathways of human labor and delivery through the NFkappaB1 pathway. © 2016 by the Society for the Study of Reproduction, Inc.
Serrano, Antonia; Rivera, Patricia; Pavon, Francisco J.; Decara, Juan; Suárez, Juan; de Fonseca, Fernando Rodriguez; Parsons, Loren H.
2011-01-01
Background Endogenous cannabinoids such as anandamide and 2-arachidonoylglycerol (2-AG) exert important regulatory influences on neuronal signaling, participate in short- and long-term forms of neuroplasticity, and modulate stress responses and affective behavior in part through the modulation of neurotransmission in the amygdala. Alcohol consumption alters brain endocannabinoid levels, and alcohol dependence is associated with dysregulated amygdalar function, stress responsivity and affective control. Methods The consequence of long-term alcohol consumption on the expression of genes related to endocannabinoid signaling was investigated using quantitative RT-PCR analyses of amygdala tissue. Two groups of ethanol-exposed rats were generated by maintenance on an ethanol liquid diet (10%): one group received continuous access to ethanol for 15 days, while the second group was given intermittent access to the ethanol diet (5 days/week for 3 weeks). Control subjects were maintained on an isocaloric ethanol-free liquid diet. To provide an initial profile of acute withdrawal amygdala tissue was harvested following either 6 or 24 hours of ethanol withdrawal. Results Acute ethanol withdrawal was associated with significant changes in mRNA expression for various components of the endogenous cannabinoid system in the amygdala. Specifically, reductions in mRNA expression for the primary clearance routes for anandamide and 2-AG (FAAH and MAGL, respectively) were evident, as were reductions in mRNA expression for CB1, CB2 and GPR55 receptors. Although similar alterations in FAAH mRNA were evident following either continuous or intermittent ethanol exposure, alterations in MAGL and cannabinoid receptor-related mRNA (e.g. CB1, CB2, GPR55) were more pronounced following intermittent exposure. In general, greater withdrawal-associated deficits in mRNA expression were evident following 24 versus 6 hours of withdrawal. No significant changes in mRNA expression for enzymes involved in 2-AG biosynthesis (e.g. DAGL-α/β) were found in any condition. Conclusions These findings suggest that ethanol dependence and withdrawal are associated with dysregulated endocannabinoid signaling in the amygdala. These alterations may contribute to withdrawal-related dysregulation of amygdalar neurotransmission. PMID:22141465
Schrauwen, P; Hoppeler, H; Billeter, R; Bakker, A H; Pendergast, D R
2001-04-01
To test the hypothesis that consumption of a high-fat diet leads to an increase in UCP mRNA expression in human skeletal muscle. In a group of endurance athletes, with a range in fiber type distribution, we hypothesized that the effect of the high-fat diet on UCP2 and UCP3 mRNA expression is more pronounced in muscle fibers which are known to have a high capacity to shift from carbohydrate to fat oxidation (type IIA fibers). Ten healthy trained athletes (five males, five females) consumed a low-fat diet (17+/-0.9 en% of fat) and high-fat diet (41.4+/-1.4 en% fat) for 4 weeks, separated by a 4 week wash-out period. Muscle biopsies were collected at the end of both dietary periods. Using RT-PCR, levels of UCP2 and UCP3 mRNA expression were measured and the percentage of type I, IIA and IIB fibers were determined using the myofibrillar ATPase method in all subjects. UCP3L mRNA expression tended to be higher on the high-fat diet, an effect which reached significance when only males were considered (P=0.037). Furthermore, diet-induced change in mRNA expression of UCP3T (r: 0.66, P=0.037), UCP3L (r: 0.61, P=0.06) and UCP2 (r: 0.70, P=0.025), but not UCP3S, correlated significantly with percentage dietary fat on the high-fat diet. Plasma FFA levels were not different during the two diets. Finally, the percentage of type IIA fibers was positively correlated with the diet-induced change in mRNA expression for UCP2 (r: 0.7, P=0.03), UCP3L (r: 0.73, P=0.016) and UCP3T (r: 0.68, P=0.03) but not with UCP3S (r: 0.06, NS). UCP2 and UCP3 mRNAs are upregulated by a high-fat diet. This upregulation is more pronounced in humans with high proportions of type IIA fibers, suggesting a role for UCPs in lipid utilization.
Pasion, S G; Brown, G W; Brown, L M; Ray, D S
1994-12-01
In trypanosomatids, DNA replication in the nucleus and in the single mitochondrion (or kinetoplast) initiates nearly simultaneously, suggesting that the DNA synthesis (S) phases of the nucleus and the mitochondrion are coordinately regulated. To investigate the basis for the temporal link between nuclear and mitochondrial DNA synthesis phases the expression of the genes encoding DNA ligase I, the 51 and 28 kDa subunits of replication protein A, dihydrofolate reductase and the mitochondrial type II topoisomerase were analyzed during the cell cycle progression of synchronous cultures of Crithidia fasciculata. These DNA replication genes were all expressed periodically, with peak mRNA levels occurring just prior to or at the peak of DNA synthesis in the synchronized cultures. A plasmid clone (pdN-1) in which TOP2, the gene encoding the mitochondrial topoisomerase, was disrupted by the insertion of a NEO drug-resistance cassette was found to express both a truncated TOP2 mRNA and a truncated topoisomerase polypeptide. The truncated mRNA was also expressed periodically coordinate with the expression of the endogenous TOP2 mRNA indicating that cis elements necessary for periodic expression are contained within cloned sequences. The expression of both TOP2 and nuclear DNA replication genes at the G1/S boundary suggests that regulated expression of these genes may play a role in coordinating nuclear and mitochondrial S phases in trypanosomatids.
[Development of free will and determinism scale in Japanese].
Goto, Takayuki; Ishibashi, Yuya; Kajimura, Shogo; Oka, Ryunosuke; Kusumi, Takashi
2015-04-01
We developed a free will and determinism scale in Japanese (FAD-J) to assess lay beliefs in free will, scientific determinism, fatalistic determinism, and unpredictability. In Study 1, we translated a free will and determinism scale (FAD-Plus) into Japanese and verified its reliability and validity. In Study 2, we examined the relationship between the FAD-J and eight other scales. Results suggested that lay beliefs in free will and determinism were related to self-regulation, critical thinking, other-oriented empathy, self-esteem, and regret and maximization in decision makings. We discuss the usefulness of the FAD-J for studying the psychological functions of lay beliefs in free will and determinism.
Characterization of a new GmFAD3A allele in Brazilian CS303TNKCA soybean cultivar.
Silva, Luiz Claudio Costa; Bueno, Rafael Delmond; da Matta, Loreta Buuda; Pereira, Pedro Henrique Scarpelli; Mayrink, Danyelle Barbosa; Piovesan, Newton Deniz; Sediyama, Carlos Sigueyuki; Fontes, Elizabeth Pacheco Batista; Cardinal, Andrea J; Dal-Bianco, Maximiller
2018-05-01
We molecularly characterized a new mutation in the GmFAD3A gene associated with low linolenic content in the Brazilian soybean cultivar CS303TNKCA and developed a molecular marker to select this mutation. Soybean is one of the most important crops cultivated worldwide. Soybean oil has 13% palmitic acid, 4% stearic acid, 20% oleic acid, 55% linoleic acid and 8% linolenic acid. Breeding programs are developing varieties with high oleic and low polyunsaturated fatty acids (linoleic and linolenic) to improve the oil oxidative stability and make the varieties more attractive for the soy industry. The main goal of this study was to characterize the low linoleic acid trait in CS303TNKCA cultivar. We sequenced CS303TNKCA GmFAD3A, GmFAD3B and GmFAD3C genes and identified an adenine point deletion in the GmFAD3A exon 5 (delA). This alteration creates a premature stop codon, leading to a truncated protein with just 207 residues that result in a non-functional enzyme. Analysis of enzymatic activity by heterologous expression in yeast support delA as the cause of low linolenic acid content in CS303TNKCA. Thus, we developed a TaqMan genotyping assay to associate delA with low linolenic acid content in segregating populations. Lines homozygous for delA had a linolenic acid content of 3.3 to 4.4%, and the variation at this locus accounted for 50.83 to 73.70% of the phenotypic variation. This molecular marker is a new tool to introgress the low linolenic acid trait into elite soybean cultivars and can be used to combine with high oleic trait markers to produce soybean with enhanced economic value. The advantage of using CS303TNKCA compared to other lines available in the literature is that this cultivar has good agronomic characteristics and is adapted to Brazilian conditions.
Ferguson, Richard A; Hunt, Julie E A; Lewis, Mark P; Martin, Neil R W; Player, Darren J; Stangier, Carolin; Taylor, Conor W; Turner, Mark C
2018-04-01
This study investigated protein kinase activation and gene expression of angiogenic factors in response to low-load resistance exercise with or without blood flow restriction (BFR). In a repeated measures cross-over design, six males performed four sets of bilateral knee extension exercise at 20% 1RM (reps per set = 30:15:15:continued to fatigue) with BFR (110 mmHg) and without (CON). Muscle biopsies were obtained from the vastus lateralis before, 2 and 4 h post-exercise. mRNA expression was determined using real-time RT-PCR. Protein phosphorylation/expression was determined using Western blot. p38MAPK phosphorylation was greater (p = 0.05) at 2 h following BFR (1.3 ± 0.8) compared to CON (0.4 ± 0.3). AMPK phosphorylation remained unchanged. PGC-1α mRNA expression increased at 2 h (5.9 ± 1.3 vs. 2.1 ± 0.8; p = 0.03) and 4 h (3.2 ± 0.8 vs. 1.5 ± 0.4; p = 0.03) following BFR exercise with no change in CON. PGC-1α protein expression did not change following either exercise. BFR exercise enhanced mRNA expression of vascular endothelial growth factor (VEGF) at 2 h (5.2 ± 2.8 vs 1.7 ± 1.1; p = .02) and 4 h (6.8 ± 4.9 vs. 2.5 ± 2.7; p = .01) compared to CON. mRNA expression of VEGF-R2 and hypoxia-inducible factor 1α increased following BFR exercise but only eNOS were enhanced relative to CON. Matrix metalloproteinase-9 mRNA expression was not altered in response to either exercise. Acute low-load resistance exercise with BFR provides a targeted angiogenic response potentially mediated through enhanced ischaemic and shear stress stimuli.
[Expression and clinical significance of KNSL4 in breast cancer].
Feng, Yu-Mei; Wan, Yan-Fang; Li, Xiao-Qing; Cao, Xu-Chen; Li, Xi
2006-06-01
Previous screening of breast cancer metastasis-related genes found that the mRNA level of kinesin-like 4 (KNSL4) gene is down-regulated in metastatic lymph nodes as compared with the paired primary breast cancer. This study was to clarify the correlations of KNSL4 mRNA expression to metastasis and prognosis of breast cancer, and explore the correlation of KNSL4 expression to c-erbB-2 expression to explore potential mechanisms of promoting metastasis by KNSL4. Real-time reverse transcription-polymerase chain reaction (RT-PCR) was used to quantify the mRNA level of KNSL4 in 108 specimens of primary breast cancer. The correlations of KNSL4 mRNA level to metastasis and prognosis of the 108 cases were analyzed. Immunohistochemistry was used to assess c-erbB-2 protien expression in 76 out of the 108 cases, and the correlation of KNSL4 expression to c-erbB-2 expression was analyzed. The mRNA level of KNSL4 was significantly lower in the cases at stages iii-iv than in the cases at stages iii-iv (P<0.001), significantly lower in the cases with more than 3 metastatic lymph nodes than in the cases with 0-3 metastatic positive lymph nodes (P<0.01), slightly lower in the cases with negative estrogen receptor or prognesterone receptor than in the cases with positive receptors (P>0.05), lower in the 6 cases with distant metastasis than in the rest cases without distant metastasis within 24 month follow up, lower in the 3 cases with bilateral breast cancer than in other cases with unilateral breast cancer, and significantly lower in c-erbB-2-positive group than in c-erB-2-negative group (P<0.01). The down-regulation of KNSL4 mRNA level is correlated to prognosis of primary breast cancer. It may enhance metastatic ability of breast cancer cells through promoting c-erbB-2 transcription and translation.
Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.
Cathcart, Mary-Clare; Gray, Steven G; Baird, Anne-Marie; Boyle, Elaine; Gately, Kathy; Kay, Elaine; Cummins, Robert; Pidgeon, Graham P; O'Byrne, Kenneth J
2011-11-15
Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. PGIS expression was reduced/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC. Copyright © 2011 American Cancer Society.
Imen, Jguirim-Souissi; Billiet, Ludivine; Cuaz-Pérolin, Clarisse; Michaud, Nadège; Rouis, Mustapha
2009-05-15
In a previous study, we identified the regulated in development and DNA damage response 2 (REDD2) gene as a highly expressed gene in human atherosclerotic lesions in comparison to normal artery, as well as in cultured human macrophages, and showed its implication in oxidized low-density lipoprotein (LDL)-induced macrophage death sensitivity. In this article, we attempt to identify the mechanism by which REDD2 induces such a phenomenon. Transient transfection of U-937 monocytic cells with a pCI.CMV.REDD2 expression vector increased by approximately twofold the mRNA levels of REDD2 in comparison to control cells transfected with pCI.CMV.GFP. Reactive oxygen species (ROS) production was significantly induced in REDD2-transfected cells compared with control cells (157+/-48 and 100+/-8 arbitrary units/mg cell protein, respectively; p<0.05). Moreover, a significant increase in parameters known to reflect the oxidative modifications of LDL was observed. Among enzymes involved in ROS production or degradation, we found a specific reduction in thioredoxin-1 (Trx-1) mRNA ( approximately 52+/-7% decrease, p<0.01 vs control cells) and protein ( approximately 60+/-4% decrease, p<0.001 vs control cells) levels in cells overexpressing REDD2 in comparison to control cells. In contrast, transfection of U-937 cells with siRNA against REDD2 decreased the mRNA levels of REDD2 by approximately 60% and increased Trx-1 mRNA and protein levels. Moreover, we observed no or a moderate increase in Bax (proapoptotic) and a significant decrease in Bcl2 (antiapoptotic) gene expression in cells that overexpress REDD2 compared to control cells. In addition, we showed that Trx-1 mRNA and protein levels were increased at low H(2)O(2) doses and decreased at higher doses. Interestingly, macrophages isolated from human atherosclerotic lesions differentially express REDD2 and Trx-1. Indeed, in certain patients, levels of REDD2 mRNA were low and those of Trx-1 mRNA were high. In contrast, in other patients, levels of REDD2 were high and levels of Trx-1 mRNA were low.
Brené, S; Lindefors, N; Persson, H
1992-06-01
Intracerebroventricular 6-hydroxydopamine injections were performed at postnatal days 3 and 6 in animals pretreated with the norepinephrine uptakeblocker desimipramine in order to generate a selective lesion of dopamine neurons. In situ hybridization was then used to analyze preprotachykinin-A (PPT-A) mRNA expression in the lesioned as well as in saline-injected control animals. The midbrain dopaminergic lesion caused a 22-25% increase in the level of PPT-A mRNA in cingulate cortex and frontoparietal cortex when analysed at 2 weeks of age, compared to saline-injected control animals. In contrast, the lesion caused no change in PPT-A mRNA expression in the neonatal caudate-putamen. These results indicate that dopamine neurons downregulate the expression of PPT-A mRNA specifically in cingulate cortex and frontoparietal cortex during early postnatal brain development. In the adult rat forebrain, lesioned at P3 and P6, no change in the level of PPT-A mRNA was seen in cingulate cortex and frontoparietal cortex. However, a 29% decrease in PPT-A mRNA was seen in the lateral caudate-putamen with no significant change in neurons of medial caudate-putamen. Thus, dopamine neurons appears to exert a region specific influence on PPT-A mRNA expression during brain development.
The Cytidine Analog Fluorocyclopentenylcytosine (RX-3117) Is Activated by Uridine-Cytidine Kinase 2
Smid, Kees; de Klerk, Daniël; van Kuilenburg, André B. P.; Meinsma, Rutger; Lee, Young B.; Kim, Deog J.; Peters, Godefridus J.
2016-01-01
Fluorocyclopentenylcytosine (RX-3117) is an orally available cytidine analog, currently in Phase I clinical trial. RX-3117 has promising antitumor activity in various human tumor xenografts including gemcitabine resistant tumors. RX-3117 is activated by uridine-cytidine kinase (UCK). Since UCK exists in two forms, UCK1 and UCK2, we investigated which form is responsible for RX-3117 phosphorylation. For that purpose we transfected A549 and SW1573 cell lines with UCK-siRNAs. Transfection of UCK1-siRNA efficiently downregulated UCK1-mRNA, but not UCK2-mRNA expression, and did not affect sensitivity to RX-3117. However, transfection of UCK2-siRNA completely downregulated UCK2-mRNA and protein and protected both A549 and SW1573 against RX-3117. UCK enzyme activity in two panels of tumor cell lines and xenograft cells correlated only with UCK2-mRNA expression (r = 0.803 and 0.915, respectively), but not with UCK1-mRNA. Moreover, accumulation of RX-3117 nucleotides correlated with UCK2 expression. In conclusion, RX-3117 is activated by UCK2 which may be used to select patients potentially sensitive to RX-3117. PMID:27612203
Aguilar-Jimenez, Wbeimar; Saulle, Irma; Trabattoni, Daria; Vichi, Francesca; Lo Caputo, Sergio; Mazzotta, Francesco; Rugeles, Maria T; Clerici, Mario; Biasin, Mara
2017-01-01
Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1 , of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G , and of immunoregulators ERAP2 and HAVCR2 , but reduced the mRNA expression of VitD receptor ( VDR ) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI , and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection.
Ali, Imran; Asghar, Rehana; Ahmed, Sajjad; Sajjad, Muhammad; Tariq, Muhammad; Waheed Akhtar, M
2015-03-01
The sequence and structure of mRNA plays an important role in solubility and expression of the translated protein. To divulge the role of mRNA secondary structure and its thermodynamics in the expression level of the recombinant endoglucanase in Escherichia coli, 5'-end of the mRNA was thermodynamically optimized. Molecular engineering was done by introducing two silent synonymous mutations at positions +5 (UCU with UCC) and +7 (UUC with UUU) of the 5'-end of mRNA to relieve hybridization with ribosomal binding site. Two variants of glycoside hydrolase family six endoglucanase, wild type (cel6A.wt) and mutant (cel6A.mut) from Thermobifida fusca were expressed and characterized in E. coli using T7 promoter-based expression vector; pET22b(+). Enhanced expression level of engineered construct (Cel6A.mut) with ∆G = -2.7 kcal mol(-1)was observed. It showed up to ~45 % higher expression as compared to the wild type construct (Cel6A.wt) having ∆G = -7.8 kcal mol(-1) and ~25 % expression to the total cell proteins. Heterologous protein was purified by heating the recombinant E. coli BL21 (DE3) CodonPlus at 60 °C. The optimum pH for enzyme activity was six and optimum temperature was 60 °C. Maximum activity was observed 4.5 Umg(-1) on CMC. Hydrolytic activity was also observed on insoluble substrates, i.e. RAC (2.8 Umg(-1)), alkali treated bagass (1.7 Umg(-1)), filter paper (1.2 Umg(-1)) and BMCC (0.3 Umg(-1)). Metal ions affect endoglucanase activity in different ways. Only Fe(2+) exhibited 20.8 % stimulatory effects on enzyme activity. Enzyme activity was profoundly inhibited by Hg2(+) (91.8 %).
Vidal, Juan-C; Espuelas, Javier; Castillo, Juan-R
2004-10-01
A new amperometric biosensor for determining cholesterol based on deflavination of the enzyme cholesterol oxidase (ChOx) and subsequent reconstitution of the apo-protein with a complexed flavin adenine dinucleotide (FAD) monolayer is described. The charge transfer mediator pyrroquinoline quinone (PQQ) was covalently bound to a cystamine self-assembled monolayer (SAM) on an Au electrode. Boronic acid (BA) was then bound to PQQ using the carbodiimide procedure, and the BA ligand was complexed to the FAD molecules on which the apo-ChOx was subsequently reconstituted. The effective release of the FAD from the enzyme and the successful reconstitution were verified using molecular fluorescence and cyclic voltammetry. The optimal orientation of FAD toward the PQQ mediator and the distances between FAD and PQQ and between PQQ and electrode enhance the charge transfer, very high sensitivity (about 2,500 nAmM(-1)cm(-2)) being obtained for cholesterol determination. The biosensor is selective toward electroactive interferents (ascorbic acid and uric acid) and was tested in reference serum samples, demonstrating excellent accuracy (relative errors below 3% in all cases). The biosensor activity can be successfully regenerated in a simple process by successive reconstitution with batches of recently prepared apo-ChOx on the same immobilized Au/SAM-PQQ-BA-FAD monolayer (it was tested five times); the lifetime of the biosensor is about 45-60 days.
Son, G Y; Yang, Y M; Park, W S; Chang, I; Shin, D M
2015-03-01
Bone remodeling occurs in response to various types of mechanical stress. The periodontal ligament (PDL) plays an important role in mechanical stress-mediated alveolar bone remodeling. However, the underlying mechanism at the cellular level has not been extensively studied. In this study, we investigated the effect of shear stress on the expression of bone remodeling factors, including receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and osteoprotegerin (OPG), as well as its upstream signaling pathway in primary human PDL cells. We applied hypotonic stress to reproduce shear stress to PDL cells. Hypotonic stress induced the messenger RNA (mRNA) and protein expression of RANKL but not OPG. It also increased intracellular Ca(2+) concentration ([Ca(2+)]i). Extracellular Ca(2+) depletion and nonspecific plasma membrane Ca(2+) channel blockers completely inhibited the increase in both [Ca(2+)]i and RANKL mRNA expression. We identified the expression and activation of transient receptor potential melastatin 3 (TRPM3) and vaniloid 4 (TRPV4) channels in PDL cells. Pregnenolone sulfate (PS) and 4α-phorbol 12, 13-didecanoate (4α-PDD), which are agonists of TRPM3 and TRPV4, augmented Ca(2+) influx and RANKL mRNA expression. Both pharmacological (2-aminoethoxydiphenyl borate [2-APB], ruthenium red [RR], ononetin [Ono], and HC 067047 [HC]) and genetic (small interfering RNA [siRNA]) inhibitors of TRPM3 and TRPV4 reduced the hypotonic stress-mediated increase in [Ca(2+)]i and RANKL mRNA expression. Our study shows that hypotonic stress induced RANKL mRNA expression via TRPM3- and TRPV4-mediated extracellular Ca(2+) influx and RANKL expression. This signaling pathway in PDL cells may play a critical role in mechanical stress-mediated alveolar bone remodeling. © International & American Associations for Dental Research 2015.
ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression.
Guerreiro, Denise Damasceno; de Lima, Laritza Ferreira; Mbemya, Gildas Tetaping; Maside, Carolina Mielgo; Miranda, André Marrocos; Tavares, Kaio César Simiano; Alves, Benner Geraldo; Faustino, Luciana Rocha; Smitz, Johan; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro
2018-06-01
The multidrug resistance proteins ABCB1, ABCC2 and ABCG2 are an energy-dependent efflux pump that functions in systemic detoxification processes. Physiologically expressed in a variety of tissues, most abundantly in the liver and intestinal epithelia, placenta, blood-brain barrier and various stem cells, until now, these pumps were not identified in goat ovarian tissue. Therefore, the aim of this study is to analyze ABCB1, ABCC2, and ABCG2 mRNA and protein expression in goat preantral follicles. Fragments (3 × 3 × 1 mm) from five pairs of ovary (n = 10) obtained from five goat were collected and immediately submitted to qPCR, Western blot, and immunofluorescence assay for mRNA detection and identification and localization of the ABC transporters, respectively. mRNA for ABCB1, ABCC2, and ABCG2 and the presence of their proteins were observed on ovarian tissue samples. Positive marks were observed for the three transport proteins in all follicular categories studied. However, the marks were primarily localized in the oocyte of primordial, transition and primary follicle categories. In conclusion, goat ovarian tissue expresses mRNA for the ABCB1, ABCC2 and ABCG2 transporters and the expression of these proteins in the preantral follicles is a follicle-dependent stage.
Torres-Jasso, J H; Bustos-Carpinteyro, A R; Garcia-Gonzalez, J R; Peregrina-Sandoval, J; Cruz-Ramos, J A; Santiago-Luna, E; Sanchez-Lopez, J Y
2016-01-01
Gastric cancer (GC) is the third worldwide leading cause of cancer-related death affecting both sexes. The aberrant expression of epidermal growth factor receptor (EGFR) gene has been detected in many human epithelial malignancies and linked to advanced disease, more aggressive phenotype, and poor prognosis. To analyze the relation that the expression of EGFR in gastric tumors holds with pathological characteristics and with the germline polymorphisms -216 G>T, -191 C>A, (CA) n IVS1, and R521K. We studied 22 biopsies from gastric tumors obtained by endoscopy. EGFR expression was determined by relative quantification real-time polymerase chain reaction with the glyceraldehyde-3-phosphate dehydrogenase reference gene (as for messenger RNA [mRNA]) and by immunohistochemistry (IHC) (as for protein). EGFR germline polymorphisms were analyzed by sequencing, GeneScan, and restriction fragment length polymorphisms. EGFR mRNA expression was increased (>2-fold) in 13.6% of GC cases, decreased (<0.5-fold) in 68.2%, and normal in 18.2%; overexpression was related to well-differentiated gastric tumors, whereas underexpression was linked to moderate or poorly differentiated gastric tumors (P < 0.001). EGFR protein expression was high (IHC 2+ and 3+) in 29.4% of gastric tumors and was normal or low (score 0 to 1+) in 70.6% cases. EGFR expression, in both mRNA and protein, was not related to any EGFR polymorphism (P > 0.05). Most gastric tumors showed low EGFR expression (mRNA and protein), whereas EGFR overexpression was related to well-differentiated gastric tumors. Furthermore, germinal polymorphisms -216, -191, (CA) n IVS1, and R521K were not related to EGFR expression (mRNA or protein).
Molecular mechanisms of repeated social defeat-induced glucocorticoid resistance: Role of microRNA.
Jung, Seung Ho; Wang, Yufen; Kim, Taewan; Tarr, Andrew; Reader, Brenda; Powell, Nicole; Sheridan, John F
2015-02-01
Glucocorticoid (GC) resistance is a severe problem associated with various inflammatory diseases. Previous studies have shown that repeated social stress induces GC resistance in innate immune cells, but the underlying molecular mechanisms have not been fully elucidated. Therefore, the purpose of this study was to examine potential underlying molecular mechanism(s) of repeated social defeat (RSD) stress on GC resistance in splenic macrophages. It was hypothesized that mRNA expression of receptors for GC and nuclear translocating-associated regulators in splenic macrophages would be affected by RSD, and that these changes would be associated with epigenetic modification. The data showed that the mRNA expression of GC and mineralocorticoid receptors were significantly decreased in splenic macrophages by RSD. RSD also induced a significantly decreased mRNA expression in FK506-binding protein 52 (FKBP52), consequently resulting in a significantly increased ratio of FKBP51 to FKBP52. Moreover, DNA methyltransferases 3a and 3b showed a significant decrease in their mRNA expression in the RSD group as did mRNA expression of histone deacetyltransferase 2. The RSD group also showed a significantly reduced quantity of methylated DNA in splenic macrophages. Based on microRNA (miRNA) profiling data, it was determined that RSD induced significantly increased expression of 9 different miRNAs that were predicted to interact with mRNAs of the GC receptor (6 miRNAs), mineralocorticoid receptor (3 miRNAs) and FKBP52 (2 miRNAs). Spearman correlation analysis revealed significantly strong correlations between the expression of 2 miRNAs and their target mRNA expression for GC receptors. Among these miRNAs, we verified direct effects of miRNA-29b and -340 overexpression on mRNA expression of GC receptors in L929 cells. The overexpression of miRNA-29b or -340 in L929 cells significantly reduced LPS-induced overexpression of GC receptors. In conclusion, this study provides evidence that epigenetic regulation, such as DNA methylation and miRNA expression, may play a role in the RSD-induced GC resistance that we have observed in splenic macrophages. Copyright © 2014 Elsevier Inc. All rights reserved.
Molecular Mechanisms of Repeated Social Defeat-Induced Glucocorticoid Resistance: Role of microRNA
Jung, Seung Ho; Wang, Yufen; Kim, Taewan; Tarr, Andrew; Reader, Brenda; Powell, Nicole; Sheridan, John F.
2014-01-01
Glucocorticoid (GC) resistance is a severe problem associated with various inflammatory diseases. Previous studies have shown that repeated social stress induces GC resistance in innate immune cells, but the underlying molecular mechanisms have not been fully elucidated. Therefore, the purpose of this study was to examine potential underlying molecular mechanism(s) of repeated social defeat (RSD) stress on GC resistance in splenic macrophages. It was hypothesized that mRNA expression of receptors for GC and nuclear translocating-associated regulators in splenic macrophages would be affected by RSD, and that these changes would be associated with epigenetic modification. The data showed that the mRNA expression of GC and mineralocorticoid receptors were significantly decreased in splenic macrophages by RSD. RSD also induced a significantly decreased mRNA expression in FK506-binding protein 52 (FKBP52), consequently resulting in a significantly increased ratio of FKBP51 to FKBP52. Moreover, DNA methyltransferases 3a and 3b showed a significant decrease in their mRNA expression in the RSD group as did mRNA expression of histone deacetyltransferase 2. The RSD group also showed a significantly reduced quantity of methylated DNA in splenic macrophages. Based on microRNA (miRNA) profiling data, it was determined that RSD induced significantly increased expression of 9 different miRNAs that were predicted to interact with mRNAs of the GC receptor (6 miRNAs), mineralocorticoid receptor (3 miRNAs) and FKBP52 (2 miRNAs). Spearman correlation analysis revealed significantly strong correlations between the expression of 2 miRNAs and their target mRNA expression for GC receptors. Among these miRNAs, we verified direct effects of miRNA-29b and -340 overexpression on mRNA expression of GC receptors in L929 cells. The overexpression of miRNA-29b or -340 in L929 cells significantly reduced LPS-induced overexpression of GC receptors. In conclusion, this study provides evidence that epigenetic regulation, such as DNA methylation and miRNA expression, may play a role in the RSD-induced GC resistance that we have observed in splenic macrophages. PMID:25317829
Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P
2016-03-01
Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. © 2015 International Society for Neurochemistry.
Modification of N6-methyladenosine RNA methylation on heat shock protein expression.
Yu, Jiayao; Li, Yi; Wang, Tian; Zhong, Xiang
2018-01-01
This study was conducted to investigate effect of N6-methyladenosine (m6A) RNA methylation on Heat shock proteins (HSPs) and dissect the profile of HSP RNA methylation. The results showed that m6A methyltransferases METTL3 mRNA was decreased in responses to heat shock stress in HepG2 cells, but m6A-specific binding protein YTHDF2 mRNA was upregulated in a manner similar to HSP70 induction. Immunofluorescence staining showed that the majority of YTHDF2 was present in the cytosol, however, nearly all YTHDF2 translocated from the cytosol into the nucleus after heat shock. METTL3 knockdown significantly changed HSP70, HSP60, and HSP27 mRNA expression in HepG2 cells using siRNA, however, mRNA lifetime was not impacted. Silence of YTHDF2 using siRNA did not change expression of HSP70, but significantly increased HSP90, HSP60, and HSPB1 mRNA expression. In addition, m6A-seq revealed that HSP m6A methylation peaks are mainly enriched on exons and around stop codons, and shows a unique distribution profile in the 5'UTR and 3'UTR. Knockdown of METTL3 changed the methylation patterns of HSPs transcript. In conclusion, m6A RNA methylation regulates HSP gene expression. Differential expression of HSPs modulated by m6A may depend on the m6A site and abundance of the target gene. This finding provides insights into new regulatory mechanisms of HSPs in normal and stress situations.
Soriguer, F.; García-Serrano, S.; Garrido-Sánchez, L.; Gutierrez-Repiso, C.; Rojo-Martínez, G.; Garcia-Escobar, E.; García-Arnés, J.; Gallego-Perales, J. L.; Delgado, V.; García-Fuentes, Eduardo
2010-01-01
The overproduction of intestinal lipoproteins may contribute to the dyslipidemia found in diabetes. We studied the influence of diabetes on the fasting jejunal lipid content and its association with plasma lipids and the expression of genes involved in the synthesis and secretion of these lipoproteins. The study was undertaken in 27 morbidly obese persons, 12 of whom had type 2 diabetes mellitus (T2DM). The morbidly obese persons with diabetes had higher levels of chylomicron (CM) triglycerides (P < 0.001) and apolipoprotein (apo)B48 (P = 0.012). The jejunum samples obtained from the subjects with diabetes had a lower jejunal triglyceride content (P = 0.012) and angiopoietin-like protein 4 (ANGPTL4) mRNA expression (P = 0.043). However, the apoA-IV mRNA expression was significantly greater (P = 0.036). The jejunal triglyceride content correlated negatively with apoA-IV mRNA expression (r = −0.587, P = 0.027). The variables that explained the jejunal triglyceride content in a multiple linear regression model were the insulin resistance state and the apoA-IV mRNA expression. Our results show that the morbidly obese subjects with diabetes had lower jejunal lipid content and that this correlated negatively with apoA-IV mRNA expression. These findings show that the jejunum appears to play an active role in lipid homeostasis in the fasting state. PMID:20855567
NASA Technical Reports Server (NTRS)
Balcer-Kubiczek, E. K.; Zhang, X. F.; Harrison, G. H.; Zhou, X. J.; Vigneulle, R. M.; Ove, R.; McCready, W. A.; Xu, J. F.
1999-01-01
PURPOSE: Differences in gene expression underlie the phenotypic differences between irradiated and unirradiated cells. The goal was to identify late-transcribed genes following irradiations differing in quality, and to determine the RBE of 1 GeV/n Fe ions. MATERIALS AND METHODS: Clonogenic assay was used to determine the RBE of Fe ions. Differential hybridization to cDNA target clones was used to detect differences in expression of corresponding genes in mRNA samples isolated from MCF7 cells irradiated with iso-survival doses of Fe ions (0 or 2.5 Gy) or fission neutrons (0 or 1.2 Gy) 7 days earlier. Northern analysis was used to confirm differential expression of cDNA-specific mRNA and to examine expression kinetics up to 2 weeks after irradiation. RESULTS: Fe ion RBE values were between 2.2 and 2.6 in the lines examined. Two of 17 differentially expressed cDNA clones were characterized. hpS2 mRNA was elevated from 1 to 14 days after irradiation, whereas CIP1/WAF1/SDI1 remained elevated from 3 h to 14 days after irradiation. Induction of hpS2 mRNA by irradiation was independent of p53, whereas induction of CIP1/WAF1/SDI1 was observed only in wild-type p53 lines. CONCLUSIONS: A set of coordinately regulated genes, some of which are independent of p53, is associated with change in gene expression during the first 2 weeks post-irradiation.
de Ruijter-Villani, Marta; van Boxtel, Paula R M; Stout, Tom A E
2013-12-01
Uterine-derived growth factors and cytokines play essential roles in regulating preimplantation conceptus development. In several species, fibroblast growth factor-2 (FGF2) promotes embryogenesis, trophoblast cell migration, and adhesion. This study investigated mRNA expression for FGF2, its receptors (FGFR1-4), the activating factor FGF binding protein (FGF-BP) in equine endometrium and trophectoderm during early pregnancy and the estrous cycle, and localized FGF2 protein in both endometrium and conceptus tissues. FGF2, FGFRs1-4, and FGFBP mRNAs were expressed in endometrium throughout the estrous cycle and early pregnancy, and in days 14 to 28 conceptus membranes. FGF2 transcription was higher during estrus than on days 7 or 14 of diestrus, suggesting estrogen dependency. Endometrial expression of FGF2 mRNA and protein increased as pregnancy progressed from days 21 and day 28; FGF2 protein was localized predominantly in the luminal and glandular epithelium. FGF2 mRNA was detectable in trophectoderm from as early as day 14, and transcription and translation increased in day 21 and 28 allantochorion. FGF2 protein was localized mainly in the trophectoderm up to day 21 but was present in both trophectoderm and endoderm of day 28 allantochorion. FGFR1 mRNA was down-regulated in the endometrium at day 7 of diestrus but increased again by day 14. Gene expression for all of the FGFR2 splice variants, including FGFR2IIIc, was up-regulated during estrus. During early pregnancy, endometrial FGFR1 expression decreased, whereas FGFR2IIIc expression did not change. Conceptus mRNA expression for all FGFRs increased as pregnancy progressed. FGFBP expression remained unchanged in endometrium, but increased in the conceptus between days 14 and 28, suggesting a role in regulating FGF2 activity in the developing conceptus. We conclude that during weeks 3 and 4 of pregnancy, the equine endometrial epithelium produces FGF2, which may play a role in trophoblast development and adhesion. Copyright © 2013 Elsevier Inc. All rights reserved.
Yu, Ya-Qiong; Guo, Jia-Jie; Qiu, Li-Hong; Li, Xiao-Lin; Yang, Di; Guo, Yan
2017-02-01
To investigate the effects of lipopolysaccharides (LPS) extracted from Porphyromonas endodontalis (P.e) on the expression of interleukin-34 (IL-34) mRNA in MC3T3-E1 cells and the role of p38MAPK, ERK1/2, NF-κB and SIRT1 in the process. MC3T3-E1 cells were treated with different concentrations of P.e-LPS(0-50 mg/L) and 20 mg/L P.e-LPS for different time (0-24 h). The expression of IL-34 mRNA was detected by real-time reverse transcription-polymerase chain reaction (real time RT-PCR). MC3T3-E1 cells were pretreated with inhibitor of NF-κB(BAY 11-7082),inhibitor of p38MAPK (SB203580), inhibitor of ERK1/2 (PD98059), agonist of sirtuin1 (SIRT1) [resveratrol (RES)] and inhibitor of SIRT1 (EX-527) for 1 h, and then were treated with 20 mg/L P.e-LPS. The expression of IL-34 mRNA was detected by real time RT-PCR. Statistical analysis was performed using one-way ANOVA and Dunnett t test with SPSS 13.0 software package. The level of IL-34 mRNA increased significantly after treatment with different concentrations of P.e-LPS(0-50 mg/L),which indicated that P.e-LPS induced osteoblasts to express IL-34 mRNA in a dose-dependent manner. Maximal induction of IL-34 mRNA expression was observed in MC3T3-E1 cells treated with 20 mg/L P.e-LPS for 24 h.At 48 h, the expression of IL-34 mRNA decreased gradually. The mRNA of IL-34 decreased significantly after pretreatment with 10 μmol/L BAY-117082, SB203580 and PD98059 for 1 h. P.e-LPS-induced IL-34 upregulation was attenuated by pretreatment with RES, but increased by EX-527. These results suggest that P.e-LPS may mediate IL-34 mRNA expression in MC3T3-E1 cells. This process is dependent, at least in part, on p38MAPK, ERK1/2, NF-κB and SIRT1 signaling pathways.
Xu, Rui; Shang, Weichao; Liu, Jianmin; Duan, Liju; Ba, Yue; Zhang, Huizhen; Cheng, Xuemin; Cui, Liuxin
2010-09-01
To study the influence of fluorine on the transcription level of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats. A method was set up the model to culture the Sertoli cells. Use a series of concentrations of NaF solutions of 2.5, 5.0, 10.0 and 20.0 mg/L to poison the cells and then, measure the relative expression amount of ABP and INHB mRNA by RT-PCR method. (1) Compare the relative expression amount of ABP mRNA of each group of different concentration with the control group. 2.5 mg/L group was higher than that in the control group, and the difference has the statistical significance (P < 0.05). The 5.0 mg/L group was also higher than that of the control group, and the difference has no statistical significance (P > 0.05). (2) Compare the relative expression amount of INH B mRNA of each group of different concentration with the control group. Both the 2.5 mg/L group and the 5.0 mg/L group were higher than that in the control group, and the difference has the statistical significance (P < 0.05). The rest 2 groups were lower than that in the control group and the difference has no statistical significance (P > 0.05). In the range of concentrations between 2.5 and 20.0 mg/L, no distinct influence of fluorine on the expression of androgen binding protein (ABP) and inhibin B (INHB) mRNA in testis sertoli cells of Sprague Dawley rats.
Polygalacturonase Gene Expression in Rutgers, rin, nor, and Nr Tomato Fruits 1
DellaPenna, Dean; Kates, David S.; Bennett, Alan B.
1987-01-01
Polygalacturonase (PG) gene expression was studied in normally ripening tomato fruit (Lycopersicon esculentum Mill, cv Rutgers) and in three ripening-impaired mutants, rin, nor, and Nr. Normal and mutant fruit of identical chronological age were analyzed at 41, 49, and 62 days after pollination. These stages corresponded to mature-green, ripe, and overripe, respectively, for Rutgers. The amount of PG mRNA in Rutgers was highest at 49 days and accounted for 2.3% of the total mRNA mass but at 62 days had decreased to 0.004% of the total mRNA mass. In Nr, the amount of PG mRNA steadily increased between 41 and 62 days after pollination, reaching a maximum level of 0.5% of the total mRNA mass. The mutant nor exhibited barely detectable levels of PG mRNA at all stages tested. Surprisingly, PG mRNA, comprising approximately 0.06% of the mRNA mass, was detected in 49 day rin fruit. This mRNA accumulation occurred in the absence of elevated ethylene production by the fruit and resulted in the synthesis of enzymically active PG I. The different patterns of PG mRNA accumulation in the three mutants suggests that distinct molecular mechanisms contribute to reduced PG expression in each ripening-impaired mutant. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:16665727
Moukadiri, Ismaïl; Prado, Silvia; Piera, Julio; Velázquez-Campoy, Adrián; Björk, Glenn R.; Armengod, M.-Eugenia
2009-01-01
The wobble uridine of certain bacterial and mitochondrial tRNAs is modified, at position 5, through an unknown reaction pathway that utilizes the evolutionarily conserved MnmE and GidA proteins. The resulting modification (a methyluridine derivative) plays a critical role in decoding NNG/A codons and reading frame maintenance during mRNA translation. The lack of this tRNA modification produces a pleiotropic phenotype in bacteria and has been associated with mitochondrial encephalomyopathies in humans. In this work, we use in vitro and in vivo approaches to characterize the enzymatic pathway controlled by the Escherichia coli MnmE•GidA complex. Surprisingly, this complex catalyzes two different GTP- and FAD-dependent reactions, which produce 5-aminomethyluridine and 5-carboxymethylamino-methyluridine using ammonium and glycine, respectively, as substrates. In both reactions, methylene-tetrahydrofolate is the most probable source to form the C5-methylene moiety, whereas NADH is dispensable in vitro unless FAD levels are limiting. Our results allow us to reformulate the bacterial MnmE•GidA dependent pathway and propose a novel mechanism for the modification reactions performed by the MnmE and GidA family proteins. PMID:19767610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana
Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA.more » Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine prevents hCG-induced expression of the ovulatory genes. • ERK1/2 activation is required for atrazine action in granulosa cells. • Atrazine does not interfere with FSH-stimulated ERK1/2 phosphorylation.« less
Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L
2017-09-01
Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.
Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M
1998-03-27
To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.
Hrubik, Jelena; Glisic, Branka; Fa, Svetlana; Pogrmic-Majkic, Kristina; Andric, Nebojsa
2016-01-05
Transcriptional activation of phase II enzymes including glutathione-S-transferase pi class (Gst Pi) is important for redox regulation and defense from xenobiotics. The role of extracellular signal-regulated kinase (Erk) and protein kinase B (Akt) in regulation of Gst Pi expression has been described using adult mammalian cells. Whether these signaling pathways contribute to Gst Pi expression during embryogenesis is unknown. Using zebrafish embryo model, we provide novel evidence that Erk signaling acts as a specific suppressor of gstp1-2 mRNA during early embryogenesis. Addition of Erk inhibitor U0126 enhanced gstp1-2 mRNA expression during transition from blastula to the segmentation stage and from pharyngula until the hatching stage. Basal Erk activity did not affect gstp1-2 expression in tert-butylhydroquinone-exposed embryos. Addition of phorbol 12-myristate 13-acetate increased Erk activity leading to suppression of gstp1-2 mRNA. Activation of cAMP/Creb pathway by forskolin prevented gstp1-2 expression, whereas U0126 suppressed Creb phosphorylation, thus setting up Creb as a proximal transmitter of Erk inhibitory effect. Collectively, these findings suggest that Erk-Creb pathway exerts suppressive effect on gstp1-2 mRNA in a narrow developmental window. This study also provides a novel link between Erk and gstp1-2 expression, setting apart a possible differential regulation of gstp1-2 in adult and embryonic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zhu, Fang; Sams, Sarah; Moural, Tim; Haynes, Kenneth F.; Potter, Michael F.; Palli, Subba R.
2012-01-01
Background NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether or not P450s are involved in resistance of bed bugs to insecticides. Methodology/Principal Findings The full length Cimex lectularius CPR (ClCPR) cDNA was isolated from a deltamethrin resistant bed bug population (CIN-1) using a combined PCR strategy. Bioinformatics and in silico modeling were employed to identify three conserved binding domains (FMN, FAD, NADP), a FAD binding motif, and the catalytic residues. The critical amino acids involved in FMN, FAD, NADP binding and their putative functions were also analyzed. No signal peptide but a membrane anchor domain with 21 amino acids which facilitates the localization of ClCPR on the endoplasmic reticulum was identified in ClCPR protein. Phylogenetic analysis showed that ClCPR is closer to the CPR from the body louse, Pediculus humanus corporis than to the CPRs from the other insect species studied. The ClCPR gene was ubiquitously expressed in all tissues tested but showed an increase in expression as immature stages develop into adults. We exploited the traumatic insemination mechanism of bed bugs to inject dsRNA and successfully knockdown the expression of the gene coding for ClCPR. Suppression of the ClCPR expression increased susceptibility to deltamethrin in resistant populations but not in the susceptible population of bed bugs. Conclusions/Significance These data suggest that P450-mediated metabolic detoxification may serve as one of the resistance mechanisms in bed bugs. PMID:22347424
Zhu, Fang; Sams, Sarah; Moural, Tim; Haynes, Kenneth F; Potter, Michael F; Palli, Subba R
2012-01-01
NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether or not P450s are involved in resistance of bed bugs to insecticides. The full length Cimex lectularius CPR (ClCPR) cDNA was isolated from a deltamethrin resistant bed bug population (CIN-1) using a combined PCR strategy. Bioinformatics and in silico modeling were employed to identify three conserved binding domains (FMN, FAD, NADP), a FAD binding motif, and the catalytic residues. The critical amino acids involved in FMN, FAD, NADP binding and their putative functions were also analyzed. No signal peptide but a membrane anchor domain with 21 amino acids which facilitates the localization of ClCPR on the endoplasmic reticulum was identified in ClCPR protein. Phylogenetic analysis showed that ClCPR is closer to the CPR from the body louse, Pediculus humanus corporis than to the CPRs from the other insect species studied. The ClCPR gene was ubiquitously expressed in all tissues tested but showed an increase in expression as immature stages develop into adults. We exploited the traumatic insemination mechanism of bed bugs to inject dsRNA and successfully knockdown the expression of the gene coding for ClCPR. Suppression of the ClCPR expression increased susceptibility to deltamethrin in resistant populations but not in the susceptible population of bed bugs. These data suggest that P450-mediated metabolic detoxification may serve as one of the resistance mechanisms in bed bugs.
Kudo, T; Akiyama, M; Kuriyama, K; Sudo, M; Moriya, T; Shibata, S
2004-08-01
An increase in PAI-1 activity is thought to be a key factor underlying myocardial infarction. Mouse Pai-1 (mPai-1) activity shows a daily rhythm in vivo, and its transcription seems to be controlled not only by clock genes but also by humoral factors such as insulin and triglycerides. Thus, we investigated daily clock genes and mPai-1 mRNA expression in the liver of db/db mice exhibiting high levels of glucose, insulin and triglycerides. Locomotor activity was measured using an infrared detection system. RT-PCR or in situ hybridisation methods were applied to measure gene expression. Humoral factors were measured using measurement kits. The db/ db mice showed attenuated locomotor activity rhythms. The rhythmic expression of mPer2 mRNA was severely diminished and the phase of mBmal1 oscillation was advanced in the db/db mouse liver, whereas mPai-1 mRNA was highly and constitutively expressed. Night-time restricted feeding led to a recovery not only from the diminished locomotor activity, but also from the diminished Per2 and advanced mBmal1 mRNA rhythms. Expression of mPai-1 mRNA in db/db mice was reduced to levels far below normal. Pioglitazone treatment slightly normalised glucose and insulin levels, with a slight reduction in mPai-1 gene expression. We demonstrated that Type 2 diabetes impairs the oscillation of the peripheral oscillator. Night-time restricted feeding rather than pioglitazone injection led to a recovery from the diminished locomotor activity, and altered oscillation of the peripheral clock and mPai-1 mRNA rhythm. Thus, we conclude that scheduled restricted food intake may be a useful form of treatment for diabetes.
Feng, Chang; Fan, Guang-qin; Wu, Feng-yun; Lin, Fen; Li, Yan-shu; Chen, Ying
2012-07-01
To study the effects of methionine and choline on the expression levels of CaMKII and CREB mRNA and proteins in hippocampus of rats exposed to lead. Male SD rats were divided into five groups. (1) control group, (2) group exposed to lead+2 by drinking water with 0.40 g/L lead acetate, (3) group exposed to methionine and choline (1:1, 400 mg/kg), (4) group exposed to 0.40 g/L lead acetate plus methionine and choline (1:1, 100 mg/kg), (5) group exposed to 0.40 g/L lead acetate plus methionine and choline (1:1, 400 mg/kg). In 8 weeks after exposure, all rats were killed. Then CREB mRNA and CaMK II mRNA expression levels in hippocampus were detected by real-time PCR, CREB and CaMK II protein expression levels in hippocampus were measured by western blot assay. The expression levels (0.743 ± 0.185 and 0.729 ± 0.199) of CaMKII mRNA and CREB mRNA in the hippocampus of lead group were significantly lower than those (0.950 ± 0.238 and 0.901 ± 0.232) of control group (P < 0.05), also the expression levels (0.271 ± 0.045 and 0.212 ± 0.058) of CREB protein and pCREB protein in the hippocampus of lead group were significantly lower than those (0.319 ± 0.058 and 0.506 ± 0.125) of control group (P < 0.05). The expression levels (1.014 ± 0.210 and 1.126 ± 0.379) of CaMKII mRNA and the expression levels (1.029 ± 0.335 and 0.932 ± 0.251) of CREB mRNA in the hippocampus of 2 groups exposed to lead acetate plus methionine and choline were significantly higher than those of lead group (P < 0.05). The expression levels (0.407 ± 0.951 and 0.563 ± 0.178) of CREB protein and pCREB protein in the hippocampus of group exposed to lead acetate plus 400 mg/kg methionine and choline were significantly higher than those of lead group (P < 0.05). Methionine and choline could decrease the inhibition effects of lead on the expression of CaMKII and CREB mRNA or CREB and pCREB proteins in the hippocampus of rats.
Xiaolan, He; Guangjie, Bao; Linglu, Sun; Xue, Zhang; Shanying, Bao; Hong, Kang
2017-08-01
Objective The effect of different oxygen tensions on the cytoskeleton remodeling of goat temporomandibular joint (TMJ) disc cells were investigated. Methods Goat TMJ disc cells were cultured under normoxia (21% O₂) and hypoxia (2%, 4%, and 8% O₂). Toluidine blue, picrosirius red, and type Ⅰ collagen immunocytochemical staining were performed to observe the changes in cell phenotype under different oxygen levels. Immunofluorescent staining and real-time reverse transcription-polymerase chain reaction analysis were then performed to identify actin, tubulin, and vimentin in the cultured disc cells. Results TMJ disc cells still displayed fibroblast characteristics under different oxygen levels and their cytoskeletons had regular arrangement. The fluorescence intensities of actin and vimentin were lowest at 4% O₂(P<0.05), whereas that of tubulin was highest at 2% O₂ (P<0.05). No significant difference among the other groups was observed (P>0.05). Actin mRNA levels were considerably decreased at 2% O₂ and 4% O₂ in hypoxic conditions, while actin mRNA expression was highest in 21% O₂. Tubulin mRNA levels considerably increased at 2% O₂, while tubulin mRNA expression was lowest in 8% O₂ (P<0.05). Vimentin mRNA expression was lowest at 4% O₂ and highest at 21% O₂, and significant differences were observed between vimentin mRNA expression levels among these oxygen levels (P<0.05). Conclusion Cytoskeletons were reconstructed in different oxygen tensions, and 2% O₂ may be the optimal oxygen level required to proliferate TMJ disc cells.
Yan, Aifen; Chen, Yanfeng; Chen, Shuang; Li, Shuisheng; Zhang, Yong; Jia, Jirong; Yu, Hui; Liu, Lian; Liu, Fang; Hu, Chaoqun; Tang, Dongsheng; Chen, Ting
2017-12-20
Leptin actions at the pituitary level have been extensively investigated in mammalian species, but remain insufficiently characterized in lower vertebrates, especially in teleost fish. Prolactin (PRL) is a pituitary hormone of central importance to osmoregulation in fish. Using goldfish as a model, we examined the global and brain-pituitary distribution of a leptin receptor (lepR) and examined the relationship between expression of lepR and major pituitary hormones in different pituitary regions. The effects of recombinant goldfish leptin-AI and leptin-AII on PRL mRNA expression in the pituitary were further analysed, and the mechanisms underlying signal transduction for leptin-induced PRL expression were determined by pharmacological approaches. Our results showed that goldfish lepR is abundantly expressed in the brain-pituitary regions, with highly overlapping PRL transcripts within the pituitary. Recombinant goldfish leptin-AI and leptin-AII proteins could stimulate PRL mRNA expression in dose- and time-dependent manners in the goldfish pituitary, by both intraperitoneal injection and primary cell incubation approaches. Moreover, the PI3K/Akt/mTOR, MKK 3/6 /p 38 MAPK, and MEK 1/2 /ERK 1/2 -but not JAK2/STAT 1, 3 and 5 cascades-were involved in leptin-induced PRL mRNA expression in the goldfish pituitary.
Pan, Tingru; Liu, Tianqi; Tan, Siran; Wan, Na; Zhang, Yiming; Li, Shu
2018-04-01
The objective of the present study was to investigate whether dietary selenium (Se) deficiency would affect the expression of selenoprotein T (SelT) and immune response in the immune organs of broilers. Changes in expression of inflammatory cytokines and oxidative stress response caused by Se deficiency can lead to organism damage, which in turn leads to immune response. Sixty (1-day-old) broilers were divided into the control group and Se-deficiency group. Animal models with exudative diathesis were duplicated in the broilers by feeding them Se-deficient diet for 20 days. After the Se-deficient group exhibited symptoms of exudative diathesis, all the broilers were euthanized, and their immune organs were taken for analysis. The tissues including spleen, bursa of Fabricius, and thymus were treated to determine the pathological changes (including microscopic and ultramicroscopic), the messenger RNA (mRNA) expression levels of SelT and its synthetase (SecS and SPS1), cytokine mRNA expression levels, and antioxidant status. The microscopic and ultramicroscopic analyses showed that immune tissues were obviously injured in the Se-deficient group. The mRNA expression of SelT was decreased compared with that in the control group. Meanwhile, the mRNA expression levels of SecS and SPS1 were downregulated. In the Se-deficient group, the mRNA expression levels of IL-1R and IL-1β were higher than those of three control organs. Additionally, the IL-2 and INF-γ mRNA expression levels were lower than those of the control group. The activity of CAT was decreased, and the contents of H 2 O 2 and •OH were increased due to Se deficiency. Pearson method analysis showed that the expression of SelT had a positive correlation with IL-2, INF-γ, SecS, and SPS1 and a negative correlation with IL-1R and IL-1β. In summary, these data indicated that Se-deficient diet decreased the SelT expression and its regulation of oxidative stress, and it inhibited a pleiotropic mechanism of the immune response.
Distinct Protein Expression Profiles of Solid-Pseudopapillary Neoplasms of the Pancreas.
Park, Minhee; Lim, Jong-Sun; Lee, Hyoung-Joo; Na, Keun; Lee, Min Jung; Kang, Chang Moo; Paik, Young-Ki; Kim, Hoguen
2015-08-07
Solid-pseudopapillary neoplasm (SPN) is an uncommon pancreatic tumor with mutation in CTNNB1 and distinct clinical and pathological features. We compared the proteomic profiles of SPN to mRNA expression. Pooled SPNs and pooled non-neoplastic pancreatic tissues were examined with high-resolution mass spectrometry. We identified 329 (150 up-regulated and 179 down-regulated) differentially expressed proteins in SPN. We identified 191 proteins (58.1% of the 329 dysregulated proteins) with the same expression tendencies in SPN based on mRNA data. Many overexpressed proteins were related to signaling pathways known to be activated in SPNs. We found that several proteins involved in Wnt signaling, including DKK4 and β-catenin, and proteins that bind β-catenin, such as FUS and NONO, were up-regulated in SPNs. Molecules involved in glycolysis, including PKM2, ENO2, and HK1, were overexpressed in accordance to their mRNA levels. In summary, SPN showed (1) distinct protein expression changes that correlated with mRNA expression, (2) overexpression of Wnt signaling proteins and proteins that bind directly to β-catenin, and (3) overexpression of proteins involved in metabolism. These findings may help develop early diagnostic biomarkers and molecular targets.
Stancová, V; Ziková, A; Svobodová, Z; Kloas, W
2015-09-01
The aim of this study was to investigate the effects of naproxen on the gene expression of antioxidant enzymes in adult zebrafish. Surprisingly, after 2 weeks exposure no significant effect on the mRNA expression of the target genes was found in the liver. However, mRNA levels of three genes were altered significantly in the intestine. The expression of Ucp-2 decreased at the environmental concentration of 1μg/L while mRNA expression of GST p2 increased at the concentration of 100μg/L. The mRNA level for the antioxidant enzyme CAT was up-regulated significantly at both the concentrations used. Exposure to naproxen caused only moderate effects on the expression of antioxidant genes in the intestine rather than in the liver, which demonstrates that the intestine is more sensitive to waterborne naproxen exposure than the liver. Interestingly, the adverse side effects of NSAIDs occur in the gastrointestinal tract of humans. To our knowledge, this is the first study that has focused on transcriptional effects of naproxen on zebrafish. Copyright © 2015 Elsevier B.V. All rights reserved.
Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology.
Wang, Runsheng; Wang, Baiping; He, Wanxia; Zheng, Hui
2006-06-02
Mutations in presenilin 1 (PS1) lead to dominant inheritance of early onset familial Alzheimer disease (FAD). These mutations are known to alter the gamma-secretase cleavage of the amyloid precursor protein, resulting in increased ratio of Abeta42/Abeta40 and accelerated amyloid plaque pathology in transgenic mouse models. To investigate the factors that drive the Abeta42/Abeta40 ratio and amyloid pathogenesis and to investigate the possible interactions between wild-type and FAD mutant PS1, which are co-expressed in transgenic animals, we expressed the PS1 M146V knock-in allele either on wild-type PS1 (PS1M146V/+) or PS1 null (PS1M146V/-) background and crossed these alleles with the Tg2576 APP transgenic mice. Introduction of the PS1 M146V mutation on Tg2576 background resulted in earlier onset of plaque pathology. Surprisingly, removing the wild-type PS1 in the presence of the PS1 M146V mutation (PS1M146V/-) greatly exacerbated the amyloid burden; and this was attributed to a reduction of gamma-secretase activity rather than an increase in Abeta42. Our findings establish a protective role of the wild-type PS1 against the FAD mutation-induced amyloid pathology through a partial loss-of-function mechanism.
Pfeifer, N; Baston-Büst, D M; Hirchenhain, J; Friebe-Hoffmann, U; Rein, D T; Krüssel, J S; Hess, A P
2012-01-01
The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.
Pfeifer, N.; Baston-Büst, D. M.; Hirchenhain, J.; Friebe-Hoffmann, U.; Rein, D. T.; Krüssel, J. S.; Hess, A. P.
2012-01-01
Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies. PMID:22919324
Li, Xiaofeng; Kong, Lixia; Liao, Suhuan; Lu, Jing; Ma, Lin; Long, Xiaohua
2017-01-01
Background/Aim: This study aims to explore the expression and significance of feces cyclooxygensae-2 (COX-2) mRNA in colorectal cancer and colorectal adenomas. Materials and Methods: The expression of feces COX-2 mRNA in colorectal cancer (n = 28), colorectal adenomas (n = 54), and normal control group (n = 11) were examined by reverse transcriptase polymerase chain reaction (RT-PCR). The positive rate of fecal occult blood test (FOBT) were detected in colorectal cancer (n = 30), colorectal adenomas (n = 56), and normal control group (n = 11); the sensitivity of the two methods was also compared. Results: The positive rate of feces COX-2 mRNA in colorectal cancer was 82.1% (25/28), which was significantly higher than colorectal adenomas 59.3% (32/54), and normal tissues 18.2% (2/11), the difference being significant between the three groups (χ2= 13.842, P = 0.001). The positive rate of FOBT in colorectal cancer was 73.3% (10/30), which was significantly higher than colorectal adenomas 10.7% (6/56) and normal tissues 9.1% (1/11), the difference being significant between these three groups (χ2= 7.525, P = 0.023). There was no significant association between feces COX-2 expression and various clinical pathological features of colorectal cancer and colorectal adenomas (P > 0.05). The sensitivity of the RT-PCR method is higher than FOBT, however, the specificity of FOBT is slightly higher than RT-PCR. Conclusions: High expression of feces COX-2 mRNA in colorectal adenomas and colorectal cancer is a common event; it is an early event in the development of colorectal adenomas to colorectal cancer. Feces COX-2 mRNA has a high sensitivity for detect colorectal cancer; combination with FOBT will be the best alternative. Feces COX-2 can be potentially used in the early diagnosis and screening of colorectal cancer. PMID:28139497
Li, Xiaofeng; Kong, Lixia; Liao, Suhuan; Lu, Jing; Ma, Lin; Long, Xiaohua
2017-01-01
This study aims to explore the expression and significance of feces cyclooxygensae-2 (COX-2) mRNA in colorectal cancer and colorectal adenomas. The expression of feces COX-2 mRNA in colorectal cancer (n = 28), colorectal adenomas (n = 54), and normal control group (n = 11) were examined by reverse transcriptase polymerase chain reaction (RT-PCR). The positive rate of fecal occult blood test (FOBT) were detected in colorectal cancer (n = 30), colorectal adenomas (n = 56), and normal control group (n = 11); the sensitivity of the two methods was also compared. The positive rate of feces COX-2 mRNA in colorectal cancer was 82.1% (25/28), which was significantly higher than colorectal adenomas 59.3% (32/54), and normal tissues 18.2% (2/11), the difference being significant between the three groups (χ2= 13.842,P= 0.001). The positive rate of FOBT in colorectal cancer was 73.3% (10/30), which was significantly higher than colorectal adenomas 10.7% (6/56) and normal tissues 9.1% (1/11), the difference being significant between these three groups (χ2= 7.525,P= 0.023). There was no significant association between feces COX-2 expression and various clinical pathological features of colorectal cancer and colorectal adenomas (P > 0.05). The sensitivity of the RT-PCR method is higher than FOBT, however, the specificity of FOBT is slightly higher than RT-PCR. High expression of feces COX-2 mRNA in colorectal adenomas and colorectal cancer is a common event; it is an early event in the development of colorectal adenomas to colorectal cancer. Feces COX-2 mRNA has a high sensitivity for detect colorectal cancer; combination with FOBT will be the best alternative. Feces COX-2 can be potentially used in the early diagnosis and screening of colorectal cancer.
Hoile, Samuel P.; Clarke-Harris, Rebecca; Huang, Rae-Chi; Calder, Philip C.; Mori, Trevor A.; Beilin, Lawrence J.; Lillycrop, Karen A.; Burdge, Graham C.
2014-01-01
Background Studies in animal models and in cultured cells have shown that fatty acids can induce alterations in the DNA methylation of specific genes. There have been no studies of the effects of fatty acid supplementation on the epigenetic regulation of genes in adult humans. Methods and Results We investigated the effect of supplementing renal patients with 4 g daily of either n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) or olive oil (OO) for 8 weeks on the methylation status of individual CpG loci in the 5′ regulatory region of genes involved in PUFA biosynthesis in peripheral blood mononuclear cells from men and women (aged 53 to 63 years). OO and n-3 LCPUFA each altered (>10% difference in methylation) 2/22 fatty acid desaturase (FADS)-2 CpGs, while n-3 LCPUFA, but not OO, altered (>10%) 1/12 ELOVL5 CpGs in men. OO altered (>6%) 8/22 FADS2 CpGs and (>3%) 3/12 elongase (ELOVL)-5 CpGs, while n-3 LCPUFA altered (>5%) 3/22 FADS2 CpGs and 2/12 (>3%) ELOVL5 CpGs in women. FADS1 or ELOVL2 methylation was unchanged. The n-3 PUFA supplementation findings were replicated in blood DNA from healthy adults (aged 23 to 30 years). The methylation status of the altered CpGs in FADS2 and ELOVL5 was associated negatively with the level of their transcripts. Conclusions These findings show that modest fatty acid supplementation can induce altered methylation of specific CpG loci in adult humans, contingent on the nature of the supplement and on sex. This has implications for understanding the effect of fatty acids on PUFA metabolism and cell function. PMID:25329159
Yamamoto, Kouichi; Asano, Keiko; Ito, Yui; Matsukawa, Naoki; Kim, Seikou; Yamatodani, Atsushi
2012-12-16
Docetaxel, a taxane derivative, is frequently used for the treatment of advanced breast cancer, non-small cell lung cancer, and metastatic prostate cancer. Clinical reports demonstrated that docetaxel-based chemotherapy often induces anorexia, but the etiology is not completely understood. To elucidate possible mechanisms, we investigated the involvement of central interleukin (IL)-1β, cyclooxygenase (COX)-2, and pro-opiomelanocortin (POMC) in the development of docetaxel-induced anorexia in rats. Rats received docetaxel (10mg/kg, i.p.) with or without pretreatment with selective COX-2 inhibitors, NS-398 (10 and 30 mg/kg, i.g.) or celecoxib (10 and 30 mg/kg, i.g.), and a non-selective COX inhibitor, indomethacin (10mg/kg, i.g.), then food intake was monitored for 24h after administration. We also examined expression of IL-1β, COX-2, and POMC mRNA in hypothalamus of docetaxel-treated rats and the effect of a COX-2 inhibitor on docetaxel-induced POMC mRNA expression. Food consumption in rats was significantly decreased 24h after administration of docetaxel and anorexia was partially reversed by all COX inhibitors. Administration of docetaxel increased IL-1β, COX-2, and POMC mRNA expression in the hypothalamus of rats. The time required to increase these gene expressions was comparable to the latency period of docetaxel-induced anorexia in rats. In addition, pretreatment with COX-2 inhibitors suppressed docetaxel-induced expression of POMC mRNA. These results suggest that IL-1β and COX-2 mRNA expression and subsequent activation of POMC in the hypothalamus may contribute to the development of docetaxel-induced anorexia in rats. Copyright © 2012. Published by Elsevier Ireland Ltd.
Bocianowski, Jan; Mikołajczyk, Katarzyna; Bartkowiak-Broda, Iwona
2012-02-01
One of the goals in oilseed rape programs is to develop genotypes producing oil with low linolenic acid content (C18:3, ≤3%). Low linolenic mutant lines of canola rapeseed were obtained via chemical mutagenesis at the Plant Breeding and Acclimatization Institute - NRI, in Poznan, Poland, and allele-specific SNP markers were designed for monitoring of two statistically important single nucleotide polymorphisms detected by SNaPshot analysis in two FAD3 desaturase genes, BnaA.FAD3 and BnaC.FAD3, respectively. Strong negative correlation between the presence of mutant alleles of the genes and linolenic acid content was revealed by analysis of variance. In this paper we present detailed characteristics of the markers by estimation of the additive and dominance effects of the FAD3 genes with respect to particular fatty acid content in seed oil, as well as by calculation of the phenotypic variation of seed oil fatty acid composition accounted by particular allele-specific marker. The obtained percentage of variation in fatty acid composition was considerable only for linolenic acid content and equaled 35.6% for BnaA.FAD3 and 39.3% for BnaC.FAD3, whereas the total percentage of variation in linolenic acid content was 53.2% when accounted for mutations in both genes simultaneously. Our results revealed high specificity of the markers for effective monitoring of the wild-type and mutated alleles of the Brassica napus FAD3 desaturase genes in the low linolenic mutant recombinants in breeding programs.
Yang, Xu; Vezeridis, Peter S; Nicholas, Brian; Crisco, Joseph J; Moore, Douglas C; Chen, Qian
2006-01-01
Objective Mechanical loading of cartilage influences chondrocyte metabolism and gene expression. The gene encoding type X collagen is expressed specifically by hypertrophic chondrocytes and up regulated during osteoarthritis. In this study we tested the hypothesis that the mechanical microenvironment resulting from higher levels of local strain in a three dimensional cell culture construct would lead to an increase in the expression of type X collagen mRNA by chondrocytes in those areas. Methods Hypertrophic chondrocytes were isolated from embryonic chick sterna and seeded onto rectangular Gelfoam sponges. Seeded sponges were subjected to various levels of cyclic uniaxial tensile strains at 1 Hz with the computer-controlled Bio-Stretch system. Strain distribution across the sponge was quantified by digital image analysis. After mechanical loading, sponges were cut and the end and center regions were separated according to construct strain distribution. Total RNA was extracted from the cells harvested from these regions, and real-time quantitative RT-PCR was performed to quantify mRNA levels for type X collagen and a housing-keeping gene 18S RNA. Results Chondrocytes distributed in high (9%) local strain areas produced more than two times type X collagen mRNA compared to the those under no load conditions, while chondrocytes located in low (2.5%) local strain areas had no appreciable difference in type X collagen mRNA production in comparison to non-loaded samples. Increasing local strains above 2.5%, either in the center or end regions of the sponge, resulted in increased expression of Col X mRNA by chondrocytes in that region. Conclusion These findings suggest that the threshold of chondrocyte sensitivity to inducing type X collagen mRNA production is more than 2.5% local strain, and that increased local strains above the threshold results in an increase of Col X mRNA expression. Such quantitative analysis has important implications for our understanding of mechanosensitivity of cartilage and mechanical regulation of chondrocyte gene expression. PMID:17150098
Cabilla, Jimena P; Nudler, Silvana I; Ronchetti, Sonia A; Quinteros, Fernanda A; Lasaga, Mercedes; Duvilanski, Beatriz H
2011-01-01
17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that E2 decreased sGC activity but exerts opposite effects on sGC subunits increasing α1 and decreasing β1 mRNA and protein levels. In the present work we investigate the mechanisms by which E2 differentially regulates sGC subunits' expression on rat anterior pituitary gland. Experiments were performed on primary cultures of anterior pituitary cells from adult female Wistar rats at random stages of estrous cycle. After 6 h of E2 treatment, α1 mRNA and protein expression is increased while β1 levels are down-regulated. E2 effects on sGC expression are partially dependent on de novo transcription while de novo translation is fully required. E2 treatment decreased HuR mRNA stabilization factor and increased AUF1 p37 mRNA destabilization factor. E2-elicited β1 mRNA decrease correlates with a mRNA destabilization environment in the anterior pituitary gland. On the other hand, after 6 h of treatment, E2-BSA (1 nM) and E2-dendrimer conjugate (EDC, 1 nM) were unable to modify α1 or β1 mRNA levels, showing that nuclear receptor is involved in E2 actions. However, at earlier times (3 h), 1 nM EDC causes a transient decrease of α1 in a PI3k-dependent fashion. Our results show for the first time that E2 is able to exert opposite actions in the anterior pituitary gland, depending on the activation of classical or non-classical pathways. Thus, E2 can also modify sGC expression through membrane-initiated signals bringing to light a new point of regulation in NO/sGC pathway. © 2011 Cabilla et al.
Mydlo, J H; Michaeli, J; Cordon-Cardo, C; Goldenberg, A S; Heston, W D; Fair, W R
1989-06-15
Using Northern blot analysis, we have demonstrated that mRNA for transforming growth factor alpha (TGF-alpha) was expressed in five malignant kidney tissue specimens but was not detected in their autologous nonneoplastic homologues. In addition, the expression of epidermal growth factor (EGF) receptor mRNA in these malignant tissues was 2- to 3-fold greater than in nontransformed tissues. In two cases examined using immunohistochemistry, we were able to correlate the increased expression of the mRNA with an increase in protein expression. Since TGF-alpha is known to bind to the EGF receptor, the finding of an increased expression of both TGF-alpha and EGF receptor mRNA in kidney tumor tissue suggests that interaction between TGF-alpha and the EGF receptor may play a role in promoting transformation and/or proliferation of kidney neoplasms, perhaps by an autocrine mechanism.
An, Kwang Wook; Lee, Jehee; Choi, Cheol Young
2010-08-01
To quantify the sex-change progression from male to female in the cinnamon clownfish, Amphiprion melanopus, we divided gonadal development into three stages (I, mature male; II, male at 90 days after removal of the female; and III, mature female), and the expression of GTH subunits and GTH receptors during each of these stages was investigated. The mRNA of the three GTH subunits and their receptors increased with progression from male to female. To understand the effect of gonadotropin-releasing hormone (GnRH) on this progression, we examined expression of genes encoding the GTH subunit mRNA in the pituitary and the GTH-receptor mRNA in the gonads in addition to investigating changes in plasma E(2) levels after GnRH analogue (GnRHa) injection. GnRHa treatment increased mRNA expression levels of these genes, as well as plasma E(2) levels, indicating that GnRH plays an important regulatory role in the brain-pituitary-gonad axis of immature cinnamon clownfish. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Pedrazza, Leonardo; Pereira, Talita Carneiro Brandão; Abujamra, Ana Lucia; Nunes, Fernanda Bordignon; Bogo, Maurício Reis; de Oliveira, Jarbas Rodrigues
2017-07-01
Experimental animal models and human clinical studies support a crucial role for TLRs in infectious diseases. The aim of this study was to test the ability of MSCs, which have immunomodulatory effects, of altering the mRNA expression of toll-like receptors during a experimental model of sepsis in different tissues. Three experimental groups (male C57BL/6 mice) were formed for the test: control group, untreated septic group and septic group treated with MSCs (1 × 10 6 cells/animal). Lungs, cortex, kidney, liver and colon tissue were dissected after 12 h of sepsis induction and TLR2/3/4/9 mRNA were evaluated by RT-qPCR. We observed a decrease of TLR2 and 9 mRNA expression in the liver of the sepsis group, while TLR3 was decreased in the lung and liver. No change was found between the sepsis group and the sepsis + MSC group. In this model of experimental sepsis the MSCs were unable to modify the mRNA expression of the different toll-like receptors evaluated.
Cruz, Ariadne Cristiane Cabral; Silva, Mariana Lúcia; Caon, Thiago; Simões, Cláudia Maria Oliveira
2012-01-01
Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.
Shahed, Asha; McMichael, Carling F.; Young, Kelly A.
2017-01-01
This study sought to characterize the rapid intraovarian mRNA response of key folliculogenic factors that may contribute to the restoration of folliculogenesis during 2-10 days of photostimulation in Siberian hamsters. Adult hamsters were exposed to short photoperiod (8L:16D) for 14 weeks (SD). A subset were then transferred to long photoperiod (16L:8D) for 2(PT day-2), 4(PT day-4), or 10 days (PT day-10). Quantitative real-time PCR was used to measure intraovarian mRNA expression of: gonadotropin releasing hormone (GnRH), follicle stimulating hormone β-subunit (FSHβ-subunit), luteinizing hormone β-subunit (LHβ-subunit), FSH and LH receptors, estrogen receptorsα and β (Esr1 and Esr2), matrix metalloproteinase (MMP)-2 and -9, anti-Müllerian hormone (AMH), inhibin-α subunit, fibroblast growth factor-2 (FGF-2) and proliferating cell nuclear antigen (PCNA). Compared to SD, plasma FSH concentrations increased on PT day-4 and the number of antral follicles and corpora lutea increased on PT day-10. FSHR and inhibin-α mRNA expression also increased on PT day-4, whereas LHR and proliferation marker PCNA both increased on PT day-10 as compared to SD. Esr1 mRNA increased on PT day-2 and remained significantly increased as compared to SD, whereas Esr1 mRNA increased only on PT day-2, similar to FGF-2 and MMP-2 results. No differences were observed in mRNA expression in ovarian GnRH, FSHβ- and LHβ-subunits, AMH, and MMP-9 mRNA with 2-10 days of photostimulation. Rapid increases in intraovarian FSHR and inhibin-α mRNA and antral follicle/corpora lutea numbers suggest that the ovary is primed to react quickly to the FSH released in response to brief periods of photostimulation. PMID:26174001
Zago, Michela; Sheridan, Jared A.; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.
2013-01-01
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target. PMID:24086407
Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J
2013-01-01
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.
Irvin, Elizabeth Ann; Williams, Denita; Hamler, Sarah E; Smith, Mary Alice
2008-10-01
Exposure to Listeria monocytogenes during pregnancy can result in spontaneous abortion and stillbirths; however, the mechanisms are unknown. Our objective was to determine the effects of infection on specific inflammatory and anti-inflammatory cytokine mRNA expression and apoptosis in the placenta after infection with L. monocytogenes. Pregnant guinea pigs were treated on gestation day (gd) 35 with 10(8) colony forming units L. monocytogenes and sacrificed on gd 37, 41, 44, or 55. At gd 41, IFN-gamma and IL-2 mRNA expression was significantly decreased in placentas from treated dams (0.0012-fold and 0.131-fold, respectively). At gd 55, TNF-alpha mRNA expression was significantly decreased (0.19-fold), while IFN-gamma mRNA expression was significantly increased (32-fold), and apoptosis was detected in 100% of placentas from treated dams. In conclusion, inflammatory cytokine mRNA expression is altered and apoptosis is increased in the placenta after treatment with L. monocytogenes, and these changes may contribute to fetal death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Meiying; Cooper, David R.; Grossoehme, Nickolas E.
2009-04-01
Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The GntR superfamily of dimeric transcription factors, with more than 6200 members encoded in bacterial genomes, are characterized by N-terminal winged-helix DNA-binding domains and diverse C-terminal regulatory domains which provide a basis for the classification of the constituent families. The largest of these families, FadR, contains nearly 3000 proteins with all-α-helical regulatory domains classified into two related Pfam families: FadR-C and FCD. Only two crystal structures of FadR-family members, those of Escherichia coli FadR protein and LldR from Corynebacteriummore » glutamicum, have been described to date in the literature. Here, the crystal structure of TM0439, a GntR regulator with an FCD domain found in the Thermotoga maritima genome, is described. The FCD domain is similar to that of the LldR regulator and contains a buried metal-binding site. Using atomic absorption spectroscopy and Trp fluorescence, it is shown that the recombinant protein contains bound Ni{sup 2+} ions but that it is able to bind Zn{sup 2+} with K{sub d} < 70 nM. It is concluded that Zn{sup 2+} is the likely physiological metal and that it may perform either structural or regulatory roles or both. Finally, the TM0439 structure is compared with two other FadR-family structures recently deposited by structural genomics consortia. The results call for a revision in the classification of the FadR family of transcription factors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, C.; Moellering, E. R., Muthan, B.; Fan, J.
2010-06-01
The transfer of lipids between the endoplasmic reticulum (ER) and the plastid in Arabidopsis involves the TRIGALACTOSYLDIACYLGLYCEROL (TGD) proteins. Lipid exchange is thought to be bidirectional based on the presence of specific lipid molecular species in Arabidopsis mutants impaired in the desaturation of fatty acids of membrane lipids in the ER and plastid. However, it was unclear whether TGD proteins were required for lipid trafficking in both directions. This question was addressed through the analysis of double mutants of tgd1-1 or tgd4-3 in genetic mutant backgrounds leading to a defect in lipid fatty acid desaturation either in the ER (fad2)more » or the plastid (fad6). The fad6 tgd1-1 and fad6 tgd4-3 double mutants showed drastic reductions in the relative levels of polyunsaturated fatty acids and of galactolipids. The growth of these plants and the development of photosynthetic membrane systems were severely compromised, suggesting a disruption in the import of polyunsaturated fatty acid-containing lipid species from the ER. Furthermore, a forward-genetic screen in the tgd1-2 dgd1 mutant background led to the isolation of a new fad6-2 allele with a marked reduction in the amount of digalactosyldiacylglycerol. In contrast, the introduction of fad2, affecting fatty acid desaturation of lipids in the ER, into the two tgd mutant backgrounds did not further decrease the level of fatty acid desaturation in lipids of extraplastidic membranes. These results suggest that the role of TGD proteins is limited to plastid lipid import, but does not extend to lipid export from the plastid to extraplastidic membranes.« less
Effect of Supplemental Trace Minerals on Hsp-70 mRNA Expression in Commercial Broiler Chicken.
Rajkumar, U; Vinoth, A; Reddy, E Pradeep Kumar; Shanmugam, M; Rao, S V Rama
2018-01-02
The effects of supplementing the organic forms of selenium (Se), chromium (Cr), and zinc (Zn) on Hsp-70 mRNA expression and body weight in broiler chickens were evaluated. 200 chicks were equally distributed into stainless steel battery brooders at the rate of 5 birds per pen and reared under heat stress condition up to 42 nd day. The chicks were fed with three experimental diets supplemented with organic forms of Se (0.30 mg/kg), Cr (2 mg/kg), and Zn (40 mg/kg) during the starter and finisher phases and a control diet without any supplementation. On the 21st and 42nd day, 20 birds from each period were sacrificed and samples were collected for analysis. Organic Se, Cr, and Zn supplementation significantly (P < 0.05) reduced the expression of Hsp-70 mRNA levels. The Hsp-70 mRNA expression levels were significantly (P < 0.05) different between the tissues studied with spleen having the lowest expression level. Hsp-70 mRNA expression level was not affected by age of the birds. The study concluded that organic trace mineral (oTM) supplementation resulted in low Hsp-70 mRNA expression, indicating reduced heat stress in broilers.
Slonim-Nevo, Vered; Sarid, Orly; Friger, Michael; Schwartz, Doron; Chernin, Elena; Shahar, Ilana; Sergienko, Ruslan; Vardi, Hillel; Rosenthal, Alexander; Mushkalo, Alexander; Dizengof, Vitaly; Ben-Yakov, Gil; Abu-Freha, Naim; Munteanu, Daniella; Gaspar, Nava; Eidelman, Leslie; Segal, Arik; Fich, Alexander; Greenberg, Dan; Odes, Shmuel
2016-09-01
Threatening life experiences and adverse family relations are major psychosocial stressors affecting mental and physical health in chronic illnesses, but their influence in Crohn's disease (CD) is unclear. We assessed whether these stressors would predict the psychological and medical condition of CD patients. Consecutive adult CD patients completed a series of instruments including demography, Patient Harvey-Bradshaw Index (P-HBI), Short Inflammatory Bowel Disease Questionnaire (SIBDQ), short-form survey instrument (SF-36), brief symptom inventory (BSI), family assessment device (FAD), and list of threatening life experiences (LTE). Associations of FAD and LTE with P-HBI, SIBDQ, SF-36, and BSI were examined by multiple linear and quantile regression analyses. The cohort included 391 patients, mean age 38.38±13.95 years, 59.6% women, with intermediate economic status. The median scores were as follows: P-HBI 4 (2-8), FAD 1.67 (1.3-2.1), LTE 1 (0-3), SF-36 physical health 43.75 (33.7-51.0), SF-36 mental health 42.99 (34.1-51.9), and BSI-Global Severity Index 0.81 (0.4-1.4). The SIBDQ was 47.27±13.9. LTE was associated with increased P-HBI in all quantiles and FAD in the 50% quantile. FAD and LTE were associated with reduced SIBDQ (P<0.001). Higher LTE was associated with lower SF-36 physical and mental health (P<0.001); FAD was associated with reduced mental health (P<0.001). FAD and LTE were associated positively with GSI in all quantiles; age was associated negatively. CD patients with more threatening life experiences and adverse family relations were less healthy both physically and mentally. Physicians offering patients sociopsychological therapy should relate to threatening life experiences and family relations.
Lysosome and calcium dysregulation in Alzheimer's disease: partners in crime.
McBrayer, MaryKate; Nixon, Ralph A
2013-12-01
Early-onset FAD (familial Alzheimer's disease) is caused by mutations of PS1 (presenilin 1), PS2 (presenilin 2) and APP (amyloid precursor protein). Beyond the effects of PS1 mutations on proteolytic functions of the γ-secretase complex, mutant or deficient PS1 disrupts lysosomal function and Ca2+ homoeostasis, both of which are considered strong pathogenic factors in FAD. Loss of PS1 function compromises assembly and proton-pumping activity of the vacuolar-ATPase on lysosomes, leading to defective lysosomal acidification and marked impairment of autophagy. Additional dysregulation of cellular Ca2+ by mutant PS1 in FAD has been ascribed to altered ion channels in the endoplasmic reticulum; however, rich stores of Ca2+ in lysosomes are also abnormally released in PS1-deficient cells secondary to the lysosomal acidification defect. The resultant rise in cytosolic Ca2+ activates Ca2+-dependent enzymes, contributing substantially to calpain overactivation that is a final common pathway leading to neurofibrillary degeneration in all forms of AD (Alzheimer's disease). In the present review, we discuss the close inter-relationships among deficits of lysosomal function, autophagy and Ca2+ homoeostasis as a pathogenic process in PS1-related FAD and their relevance to sporadic AD.
[The role of Leptin on neuron apoptosis in mice with cerebral ischemia/reperfusion injury].
Yan, Guang-tao; Si, Yi-ling; Zhang, Jin-ying; Deng, Zi-hui; Xue, Hui
2011-06-01
To study the effect of Leptin on neuron apoptosis in mice with cerebral ischemia injury and its mechanism. Seventy-five mice were randomly divided into three groups. Focal cerebral ischemia/reperfusion injury model in mice was reproduced by middle cerebral artery occlusion for 2 hours followed by reperfusion. In Leptin intervention group mice were given Leptin 1 μg/g during cerebral ischemia by intraperitoneal injection. Mice in the model group were given equal amount of phosphate buffer saline. After reperfusion for 24 hours, the neuron apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. The mRNA and protein expression of apoptosis relative gene caspase-3 and bcl-2 were determined by reverse transcription-polymerase chain reaction (RT-PCR) and immuno histochemistry. Most of neuron necrosis was observed in cerebral ischemia center in model group. Compared with sham-operation group, neuron apoptosis rate, mRNA and protein expression of caspase-3 and bcl-2 in model group increased significantly [apoptosis rate: (68.65 ± 0.79)% vs. (4.40 ± 0.00)%, caspase-3 mRNA: 2.563 ± 0.250 vs. 0.153 ± 0.020, bcl-2 mRNA: 0.337 ± 0.100 vs. 0.125 ± 0.030, caspase-3 protein (absorbance value, A value): 0.57 ± 0.05 vs. 0.37 ± 0.03, bcl-2 protein (A value): 0.51 ± 0.04 vs. 0.35 ± 0.01, all P<0.01]. The apoptosis rate of penumbra neurons was reduced in Leptin intervention group significantly compared with model group [(42.30 ± 8.45)% vs. (68.65 ± 0.79)%, P<0.01]. Compared with model group, the mRNA and protein expression of caspase-3 in Leptin intervention group were reduced significantly [caspase-3 mRNA: 2.267 ± 0.040 vs. 2.563 ± 0.250, caspase-3 protein (A value): 0.45 ± 0.04 vs. 0.57 ± 0.05, P>0.05 and P<0.01], and the mRNA and protein expression of bcl-2 in Leptin intervention group upregulated significantly [bcl-2 mRNA: 0.662 ± 0.040 vs. 0.337 ± 0.100, bcl-2 protein (A value): 0.76 ± 0.09 vs. 0.51 ± 0.04, both P<0.01]. Leptin could reduce apoptosis of neurons through down-regulation of the expression of caspase-3 and up-regulation of the expression of bcl-2. The results suggest that Leptin plays a neuroprotective role in cerebral ischemia injury.
Zhu, Lifang; Dissanayaka, Waruna Lakmal; Green, David William; Zhang, Chengfei
2015-04-01
The aim of this study was to investigate whether in vitro stimulation of dental pulp stem cells (DPSCs) by tumour necrosis factor alpha (TNF-α) would induce secretion of EphB2/ephrin-B1 signalling. Dental pulp stem cells isolated from human dental pulp were treated with TNF-α (5-100 ng/ml) over 2-48 h. EphB2/ephrin-B1 mRNA and protein levels were measured by real-time polymerase chain reaction (RT-PCR) and western blot analysis respectively. Additionally, DPSCs were pre-incubated with TNF-α receptor neutralizing antibodies or infected with nuclear factor-kappa B (NF-ĸB) inhibitor, p38 MAPK inhibitor, Jun N-terminal kinase (JNK) inhibitor and MEK inhibitor before TNF-α treatment. Results were analysed by one-way ANOVA. Tumour necrosis factor alpha increased EphB2 mRNA expression in DPSCs at concentrations up to 20 ng/ml and ephrin-B1 at concentrations up to 40 ng/ml (P < 0.05). Its mRNA expression reached maximum at 24 h when treated with TNF-α at 20 ng/ml (P < 0.05). EphB2/ephrin-B1 protein expression levels were high at 16 and 24 h as shown by western blotting. Neutralizing antibodies for TNFR1/2 receptors down-regulated EphB2/ephrin-B1 mRNA expression (P < 0.05) and ephrin-B1 protein expression, but not EphB2 protein expression. JNK-inhibitor inhibited EphB2 mRNA expression only (P < 0.05). EphB2/ephrin-B1 were invoked in DPSCs with TNF-α treatment via the JNK-dependent pathway, but not NF-ĸB, p38 MAPK or MEK signalling. © 2015 John Wiley & Sons Ltd.
Malki, Agne; Fiedler, Julia; Fricke, Kristina; Ballweg, Ines; Pfaffl, Michael W.; Krautwurst, Dietmar
2015-01-01
Our cellular immune system has to cope constantly with foodborne substances that enter the bloodstream postprandially. Here, they may activate leukocytes via specific but yet mostly unknown receptors. Ectopic RNA expression out of gene families of chemosensory receptors, i.e., the ∼400 ORs, ∼25 TAS2R bitter-taste receptors, and the TAS1R umami- and sweet-taste receptor dimers by which we typically detect foodborne substances, has been reported in a variety of peripheral tissues unrelated to olfaction or taste. In the present study, we have now discovered, by gene-specific RT-PCR experiments, the mRNA expression of most of the Class I ORs (TAS1R) and TAS2R in 5 different types of blood leukocytes. Surprisingly, we did not detect Class II OR mRNA. By RT-qPCR, we show the mRNA expression of human chemosensory receptors and their cow orthologs in PMN, thus suggesting an evolutionary concept. By immunocytochemistry, we demonstrate that some olfactory and taste receptors are expressed, on average, in 40–60% of PMN and T or B cells and largely coexpress in the same subpopulation of PMN. The mRNA expression and the size of subpopulations expressing certain chemosensory receptors varied largely among individual blood samples, suggesting a regulated expression of olfactory and taste receptors in these cells. Moreover, we show mRNA expression of their downstream signaling molecules and demonstrate that PTX abolishes saccharin- or 2-PEA-induced PMN chemotactic migration, indicating a role for Gi-type proteins. In summary, our data suggest "chemosensory"-type subpopulations of circulating leukocytes. PMID:25624459
Ghaderi, Hamid; Razmkhah, Mahboobeh; Kiany, Farin; Chenari, Nooshafarin; Haghshenas, Mohammad Reza; Ghaderi, Abbas
2018-06-01
One major goal of tissue engineering and regenerative medicine is to find an appropriate source of mesenchymal stem cells (MSCs) with higher differentiation ability. In this experimental study, the osteogenic and chondrogenic differentiation ability of buccal fat pad derived MSCs (BFP-MSCs) with gingival derived cells (GDCs) were compared. BFP-MSCs and GDCs were cultured enzymatically and expanded. The expanded cells were analyzed for membrane-associated markers, using flow cytometry. Then the ability of these cells to differentiate into osteocyte and chondrocyte was assessed morphologically and by mRNA expression of collagen I (COLL), BGLA and bone morphogenetic protein 2 (BMP2) using qRT-PCR. Flow cytometry analysis showed that both BFP-MSCs and GDCs expressed the characteristic stem cell markers such as CD73, CD44, and CD90, whereas they did not express hematopoietic markers. Mineralized calcium deposition was observed apparently in BFP-MSCs cultured in osteogenic medium but GDCs showed fewer mineralized nodules. The mRNA expression levels of BGLA and BMP2 showed 7×105 and 733-fold more mRNA expression in BFP-MSCs treated with differentiation media compared to the control group. In chondrogenic differentiation, BFP-MSCs transformed from a spindle to a cuboidal shape while GDCs showed only a slight transformation. In addition, mRNA expression of COLL showed 282-fold higher expression in BFP-MSCs in comparison to the control group. Such significant difference in mRNA expression of BGLA, BMP2, and COLL was not observed in GDCs compared to their corresponding controls. Based on the present results, BFP yields a greater proportion of stem cells compared to gingiva. Therefore, this tissue can be introduced as an easily available source for the treatment of periodontal defects and other maxillofacial injuries.
Calder, Michele D; Watson, Patricia H; Watson, Andrew J
2011-11-01
During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten's medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways.
Sant'Anna, Gabriela Dos Santos; Brum, Ilma Simoni; Branchini, Gisele; Pizzolato, Lolita Schneider; Capp, Edison; Corleta, Helena von Eye
2017-08-01
Uterine leiomyomas are the most common benign smooth muscle cell tumors in women. Estrogen (E2), progesterone (P4) and environmental factors play important roles in the development of these tumors. New treatments, such as mifepristone, have been proposed. We evaluated the gene expression of total (PRT) and B (PRB) progesterone receptors, and the histone acetyltransferase (HAT) and deacetylase (HDAC) activity after treatment with E2, P4 and mifepristone (RU486) in primary cell cultures from uterine leiomyoma and normal myometrium. Compared to myometrium, uterine leiomyoma cells showed an increase in PRT mRNA expression when treated with E2, and increase in PRB mRNA expression when treated with E2 and P4. Treatment with mifepristone had no significant impact on mRNA expression in these cells. The HDAC activity was higher in uterine leiomyoma compared to myometrial cells after treatment with E2 and E2 + P4 + mifepristone. HAT activity was barely detectable. Our results suggest that ovarian steroid hormones modulate PR, and mifepristone was unable to decrease PRT and PRB mRNA. The higher activity of HDAC leiomyoma cells could be involved in transcriptional repression of genes implicated in normal myometrium cell function, contributing to the maintenance and growth of uterine leiomyoma.
Zhan, Yuefu; Liang, Xianwen; Han, Xiangjun; Chen, Jianqiang; Zhang, Shufang; Tan, Shun; Li, Qun; Wang, Xiong; Liu, Fan
2017-02-28
To explore the correlation between the apparent diffusion coefficient (ADC) and mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in different stages of liver fibrosis in rats. Methods: A model of liver fibrosis in rats was established by intraperitoneal injection of high-fat diet combined with porcine serum. After drug administration for 4 weeks, 48 rats served as a model group and 12 rats served as a control group, then they underwent diffusion weighted imaging (DWI) scanning. The value of ADC was calculated at b value=800 s/mm2. The rats were sacrificed and carried out pathologic examination after DWI scanning immediately. The mRNA expression of TIMP-1 was detected by real time-polymerase chain reaction (RT-PCR). The rats of hepatic fibrosis were also divided into a S0 group (n=4), a S1 group (n=11), a S2 group (n=12), a S3 group (n=10), and a S4 group (n=9) according to their pathological stage. The value of ADC and the expression of TIMP-1 mRNA among the different stage groups of liver fibrosis were compared, and the correlation between ADC and the TIMP-1 mRNA were analyzed. Results: The ADC value and the TIMP-1 mRNA expression were significantly different between the control group and the liver fibrosis group (F=46.54 and 53.87, P<0.05). There were significant differences in the value of ADC between every two groups (all P<0.05), except the control group vs the S1 group, the S1 group vs the S2 group, and the S2 group vs the S3 group (all P>0.05). For the comparison of TIMP-1 mRNA, there was no significant difference between the S1 group and the S2 group, the S3 group and the S4 group (both P>0.05). There were significant differences among the rest of the groups (all P<0.05). Rank correlation analysis showed that there was a negative correlation between the ADC value and the TIMP-1 mRNA expression (r=-0.76, P<0.01). Conclusion: When the value of ADC decreases in the progress of rats' liver fibrosis, the mRNA expression of TIMP-1 increases gradually, and there is a negative correlation between them.
Kim, H; You, S; Foster, L K; Farris, J; Choi, Y J; Foster, D N
2001-01-01
We have used differential display PCR to study altered gene expression in immortalized chicken embryo fibroblasts (CEFs) that have been established in our laboratory. This technique resulted in the cloning of a novel counterpart of the previously cloned chicken dimerization cofactor of hepatocyte nuclear factor (HNF)-1 (cDcoH), which was identified as cDcoHalpha. The steady-state mRNA levels of cDcoHalpha were up-regulated in all immortal CEFs tested compared with primary CEF cells. cDcoH and cDcoHalpha showed opposite patterns of mRNA expression due to differential regulation of transcription rates, but not mRNA half-lives, in primary and immortal CEFs. Expression of cDcoHalpha increased in the late G1 and early S phases of the cell cycle, while cDcoH mRNA increased in the late S and G2/M phases. In contrast with consistent expression of both genes in primary quiescent cells, cDcoH mRNA, but not cDcoHalpha mRNA, was dramatically decreased in primary senescent cells. The highest levels of cDcoHalpha mRNA were found in the kidney, liver, heart and ovarian follicles, while the major tissues expressing cDcoH were hypothalamus, kidney and liver. cDcoH and cDcoHalpha probes did not cross-hybridize to human hepatocyte mRNA. When transfected into human HepG2 cells, both cDcoH and cDcoHalpha showed similar functional activity as measured by increased expression of a reporter gene, as well as alpha-fetoprotein and albumin genes that both contain HNF-1 binding elements in their promoters. Our results suggest that the novel chicken DcoHalpha might function as a transcriptional cofactor for HNF-1 in specific cellular-environmental states. PMID:11237869
Chan, Shiao Y; Andrews, Marcus H; Lingas, Rania; McCabe, Chris J; Franklyn, Jayne A; Kilby, Mark D; Matthews, Stephen G
2005-01-01
Thyroid hormone deprivation during fetal life has been implicated in neurodevelopmental morbidity. In humans, poor growth in utero is also associated with fetal hypothyroxinaemia. In guinea pigs, a short period (48 h) of maternal nutrient deprivation at gestational day (gd) 50 results in fetuses with hypothyroxinaemia and increased brain/body weight ratios. Thyroid hormone action is mediated by nuclear thyroid hormone receptors (TRs) and is dependent upon the prereceptor regulation of supply of triiodothyronine (T3) by deiodinase enzymes. Examination of fetal guinea pig brains using in situ hybridization demonstrated widespread expression of mRNAs encoding TRα1, α2 and β1, with regional colocalization of deiodinase type 2 (D2) mRNA in the developing forebrain, limbic structures, brainstem and cerebellum at gd52. With maternal nutrient deprivation, TRα1 and β1 mRNA expression was significantly increased in the male, but decreased in the female fetal hippocampus and cerebellum and other areas showing high TR expression under euthyroid conditions. Maternal nutrient deprivation resulted in elevated D2 mRNA expression in males and females. Deiodinase type 3 (D3) mRNA expression was confined to the shell of the nucleus accumbens, the posterior amygdalohippocampal area, brainstem and cerebellum, and did not change with maternal nutrient deprivation. In conclusion, maternal nutrient deprivation resulted in sex-specific changes in TR mRNA expression and a generalized increase in D2 mRNAs within the fetal brain. These changes may represent a protective mechanism to maintain appropriate thyroid hormone action in the face of fetal hypothyroxinaemia in order to optimize brain development. PMID:15878952
Enrofloxacin and Probiotic Lactobacilli Influence PepT1 and LEAP-2 mRNA Expression in Poultry.
Pavlova, Ivelina; Milanova, Aneliya; Danova, Svetla; Fink-Gremmels, Johanna
2016-12-01
Expression of peptide transporter 1 (PepT1) and liver-expressed antimicrobial peptide 2 (LEAP-2) in chickens can be influenced by food deprivation, pathological conditions and drug administration. Effect of three putative probiotic Lactobacillus strains and enrofloxacin on the expression of PepT1 and LEAP-2 mRNA was investigated in Ross 308 chickens. One-day-old chicks (n = 24) were allocated to following groups: control (without treatment); group treated with probiotics via feed; group treated with a combination of probiotics and enrofloxacin; and a group given enrofloxacin only. The drug was administered at a dose of 10 mg kg -1 , via drinking water for 5 days. Samples from liver, duodenum and jejunum were collected 126 h after the start of the treatment. Expression levels of PepT1 and LEAP-2 were determined by real-time polymerase chain reaction and were statistically evaluated by Mann-Whitney test. Enrofloxacin administered alone or in combination with probiotics provoked a statistically significant up-regulation of PepT1 mRNA levels in the measured organ sites. These changes can be attributed to a tendency of improvement in utilization of dietary peptide and in body weight gain. LEAP-2 mRNA expression levels did not change significantly in enrofloxacin-treated chickens in comparison with control group.
Role of cyclooxygenase-2 in intestinal injury in neonatal rats.
Lu, Hui; Zhu, Bing
2014-11-01
Necrotizing enterocolitis (NEC) is the most common gastrointestinal emergency in premature neonates. The pathogenesis of NEC remains poorly understood. The present study aimed to investigate the dynamic change and role of cyclooxygenase-2 (COX-2) in neonatal rats with intestinal injury. Wistar rats, <24 h in age, received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (LPS). Ileal tissues were collected at 1, 3, 6, 12 and 24 h following the LPS challenge for histological evaluation of NEC and for measurements of COX-2 mRNA. The correlation between the degree of intestinal injury and expression of COX-2 mRNA was determined. The LPS-injected pups showed a significant increase in injury scores compared to the control, and the most deteriorating change was at 12 h. COX-2 mRNA expression was upregulated following LPS injection. There was a significantly positive correlation between COX-2 mRNA and the grade of intestinal injury within 12 h, whereas COX-2 mRNA expression had a significantly negative correlation with the severity of intestinal injury at 24 h. COX-2 plays an important role in LPS-induced intestinal injury and the repair processes. Caution should be exerted concerning the potential therapeutic uses of COX-2 inhibitors or promoters in NEC.
Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder
2011-01-01
Background The autism spectrum disorders (ASDs) are complex neurodevelopmental disorders that result in severe and pervasive impairment in the development of reciprocal social interaction and verbal and nonverbal communication skills. In addition, individuals with ASD have stereotypical behavior, interests and activities. Rare mutations of some genes, such as neuroligin (NLGN) 3/4, neurexin (NRXN) 1, SHANK3, MeCP2 and NHE9, have been reported to be associated with ASD. In the present study, we investigated whether alterations in mRNA expression levels of these genes could be found in lymphoblastoid cell lines derived from patients with ASD. Methods We measured mRNA expression levels of NLGN3/4, NRXN1, SHANK3, MeCP2, NHE9 and AKT1 in lymphoblastoid cells from 35 patients with ASD and 35 healthy controls, as well as from 45 patients with schizophrenia and 45 healthy controls, using real-time quantitative reverse transcriptase polymerase chain reaction assays. Results The mRNA expression levels of NLGN3 and SHANK3 normalized by β-actin or TBP were significantly decreased in the individuals with ASD compared to controls, whereas no difference was found in the mRNA expression level of MeCP2, NHE9 or AKT1. However, normalized NLGN3 and SHANK3 gene expression levels were not altered in patients with schizophrenia, and expression levels of NLGN4 and NRXN1 mRNA were not quantitatively measurable in lymphoblastoid cells. Conclusions Our results provide evidence that the NLGN3 and SHANK3 genes may be differentially expressed in lymphoblastoid cell lines from individuals with ASD compared to those from controls. These findings suggest the possibility that decreased mRNA expression levels of these genes might be involved in the pathophysiology of ASD in a substantial population of ASD patients. PMID:21615902
Olsen, Rikke K J; Koňaříková, Eliška; Giancaspero, Teresa A; Mosegaard, Signe; Boczonadi, Veronika; Mataković, Lavinija; Veauville-Merllié, Alice; Terrile, Caterina; Schwarzmayr, Thomas; Haack, Tobias B; Auranen, Mari; Leone, Piero; Galluccio, Michele; Imbard, Apolline; Gutierrez-Rios, Purificacion; Palmfeldt, Johan; Graf, Elisabeth; Vianey-Saban, Christine; Oppenheim, Marcus; Schiff, Manuel; Pichard, Samia; Rigal, Odile; Pyle, Angela; Chinnery, Patrick F; Konstantopoulou, Vassiliki; Möslinger, Dorothea; Feichtinger, René G; Talim, Beril; Topaloglu, Haluk; Coskun, Turgay; Gucer, Safak; Botta, Annalisa; Pegoraro, Elena; Malena, Adriana; Vergani, Lodovica; Mazzà, Daniela; Zollino, Marcella; Ghezzi, Daniele; Acquaviva, Cecile; Tyni, Tiina; Boneh, Avihu; Meitinger, Thomas; Strom, Tim M; Gregersen, Niels; Mayr, Johannes A; Horvath, Rita; Barile, Maria; Prokisch, Holger
2016-06-02
Multiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Colussi, Timothy; Parsonage, Derek; Boles, William; Matsuoka, Takeshi; Mallett, T Conn; Karplus, P Andrew; Claiborne, Al
2008-01-22
The FAD-dependent alpha-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the alpha-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpODelta, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 A resolution. Using the GlpODelta structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 A resolution. The first two domains of the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a betabetaalpha element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2alpha in GlpODelta, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpODelta is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.
Positional cloning of the chromosome 14 Alzheimer`s disease locus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R.F.; Korenblat, K.M.; Goate, A.M.
1994-09-01
Genetic linkage analysis had indicated a locus for familial early-onset Alzheimer`s disease (FAD) on chromosome 14 at q24.3. The FAD locus has been shown previously to lie between the dinucleotide markers D14S61 and D14S63, a genetic distance of approximately 13 cM. We are currently attempting to identify the gene using a positional cloning strategy. The first step towards the isolation and characterization of this locus was the construction of an overlapping YAC contig covering the entire region. Over forty YACs which map to this region have been isolated from the St. Louis and CEPH libraries by a combination of YACmore » end sequence walking and sequence tagged site mapping. Our contig fully spans the complete domain, encompassing all genetic markers non-recombinant with FAD (i.e. D14S76, D14S43, D14S71, D14S77) and the two nearest flanking FAD-recombinant markers. With restriction mapping of the domain, we can determine the exact size of the region. As a second step, the YACs in this contig are currently being inspected for expressed sequences by exon trapping, initially on those YACs known to be nonchimeric. We have currently made exon-trapped libraries from YACs that have the markers D14S76 and D14S43. Sequence analysis of these libraries indicates that a trapped exon is identified on average for each 30 kb of YAC DNA. The trapped exons are being screened to identify likely candidate genes, which will be examined for mutations in FAD families.« less
Donner, Nina C; Handa, Robert J
2009-01-01
Dysfunctions of the brain serotonin (5-HT) system are often associated with affective disorders, such as depression. The raphe nuclei target the limbic system and most forebrain areas and constitute the main source of 5-HT in the brain. All 5-HT neurons express tryptophan hydroxylase-2 (TPH2), the brain specific, rate-limiting enzyme for 5-HT synthesis. ERbeta agonists have been shown to attenuate anxiety-and despair-like behaviors in rodent models. Therefore, we tested the hypothesis that ERbeta may contribute to the regulation of gene expression in 5-HT neurons of the dorsal raphe nuclei (DRN) by examining the effects of systemic and local application of the selective ERbeta agonist diarylpropionitrile (DPN) on tph2 mRNA expression. Ovariectomized (OVX) female rats were injected subcutaneously (s.c.) with DPN or vehicle once daily for 8 days. In situ hybridization revealed that systemic DPN-treatment elevated basal tph2 mRNA expression in the caudal and mid-dorsal DRN. Behavioral testing of all animals in the open field (OF) and on the elevated plus maze (EPM) on days 6 and 7 of treatment confirmed the anxiolytic nature of ERbeta activation. Another cohort of female OVX rats was stereotaxically implanted bilaterally with hormone-containing wax pellets flanking the DRN. Pellets contained either 17-beta-estradiol (E), DPN, or no hormone. Both DPN and E significantly enhanced tph2 mRNA expression in the mid-dorsal DRN. DPN also increased tph2 mRNA in the caudal DRN. DPN- and E-treated rats displayed a more active stress-coping behavior in the forced-swim test (FST). No behavioral differences were found in the OF or on the EPM. These data indicate that ERbeta acts at the level of the rat DRN to modulate tph2 mRNA expression and thereby influence 5-HT synthesis in DRN subregions. Our results also suggest that local activation of ERbeta neurons in the DRN may be sufficient to decrease despair-like behavior, but not anxiolytic behaviors. PMID:19559077
Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.
Heine, Thomas; Tucker, Kathryn; Okonkwo, Nonye; Assefa, Berhanegebriel; Conrad, Catleen; Scholtissek, Anika; Schlömann, Michael; Gassner, George; Tischler, Dirk
2017-04-01
The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s -1 . This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.
High BIM mRNA levels are associated with longer survival in advanced gastric cancer.
Wu, Nandie; Huang, Ying; Zou, Zhengyun; Gimenez-Capitan, Ana; Yu, Lixia; Hu, Wenjing; Zhu, Lijing; Sun, Xia; Sanchez, Jose Javier; Guan, Wenxian; Liu, Baorui; Rosell, Rafael; Wei, Jia
2017-03-01
Chemotherapy drugs, including 5-fluorouracil (5-FU), oxaliplatin and docetaxel, are commonly used in the treatment of gastric cancer (GC). Apoptosis-relevant genes may be associated with drug resistance. In the present study, the messenger RNA (mRNA) expression levels of B-cell lymphoma 2 interacting mediator of cell death (BIM), astrocyte elevated gene-1 (AEG-1) and AXL receptor tyrosine kinase (AXL) were investigated in 131 advanced GC samples, and the expression levels of these genes were correlated with patients' overall survival (OS). All 131 patients received first-line FOLFOX combination chemotherapy with folinic acid and 5-FU, in which 56 patients were further treated with second-line docetaxel-based chemotherapy. A correlation between the mRNA expression levels of BIM and AEG-1 was observed ( r s =0.30; P=0.002). There was no association between the mRNA expression levels of any of the individual genes analyzed and OS in patients only receiving first-line FOLFOX chemotherapy. In a subgroup of patients receiving docetaxel-based second-line chemotherapy, those with high or intermediate levels of BIM exhibited a median OS of 18.2 months [95% confidence interval (CI), 12.8-23.6], compared with 9.6 months (95% CI, 8.9-10.3) in patients with low BIM levels (P=0.008). However, there was no correlation between the mRNA expression levels of AEG-1 or AXL and OS. The risk of mortality was higher in patients with low BIM mRNA levels than in those with high or intermediate BIM mRNA levels (hazard ratio, 2.61; 95% CI, 1.21-5.62; P=0.010). Therefore, BIM may be considered as a biomarker to identify whether patients could benefit from docetaxel-based second-line chemotherapy in GC.
Scarr, Elizabeth; Udawela, Madhara; Greenough, Mark A; Neo, Jaclyn; Suk Seo, Myoung; Money, Tammie T; Upadhyay, Aradhana; Bush, Ashley I; Everall, Ian P; Thomas, Elizabeth A; Dean, Brian
2016-01-01
Our expression microarray studies showed messenger RNA (mRNA) for solute carrier family 39 (zinc transporter), member 12 (SLC39A12) was higher in dorsolateral prefrontal cortex from subjects with schizophrenia (Sz) in comparison with controls. To better understand the significance of these data we ascertained whether SLC39A12 mRNA was altered in a number of cortical regions (Brodmann’s area (BA) 8, 9, 44) from subjects with Sz, in BA 9 from subjects with mood disorders and in rats treated with antipsychotic drugs. In addition, we determined whether inducing the expression of SLC39A12 resulted in an increased cellular zinc uptake. SLC39A12 variant 1 and 2 mRNA was measured using quantitative PCR. Zinc uptake was measured in CHO cells transfected with human SLC39A12 variant 1 and 2. In Sz, compared with controls, SLC39A12 variant 1 and 2 mRNA was higher in all cortical regions studied. The were no differences in levels of mRNA for either variant of SLC39A12 in BA 9 from subjects with mood disorders and levels of mRNA for Slc39a12 was not different in the cortex of rats treated with antipsychotic drugs. Finally, expressing both variants in CHO-K1 cells was associated with an increase in radioactive zinc uptake. As increased levels of murine Slc39a12 mRNA has been shown to correlate with increasing cellular zinc uptake, our data would be consistent with the possibility of a dysregulated zinc homeostasis in the cortex of subjects with schizophrenia due to altered expression of SLC39A12. PMID:27336053
UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalgaard, Louise T., E-mail: ltd@ruc.dk; Department of Science, Systems and Models, Roskilde University
2012-01-06
Highlights: Black-Right-Pointing-Pointer UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. Black-Right-Pointing-Pointer UCP2 mRNA up-regulation by glucose is dependent on glucokinase. Black-Right-Pointing-Pointer Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. Black-Right-Pointing-Pointer This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic {beta}-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was tomore » examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.« less
Yang, Ji-Wen; Xu, Yan-Chun; Sun, Lin; Tian, Xiao-Dan
2010-01-01
AIM To investigate 5-hydroxytryptamine (5-HT) function and 5-HT receptor 2A (5-HT2A) mRNA expression in the formation of lens-induced myopia (LIM). METHODS Lens-induced myopia construction method was applied to generate myopia on guinea pig right eye (LIM eye). RESULTS LIM eyes formed significant myopia with longer axial length. 5-HT level in retina, choroids and sclera from LIM eyes was significantly higher than that in control group. 5-HT2A mRNA expression was also significantly up-regulated. CONCLUSION Refraction lens could induce myopia in guinea pig and 5-HT may play an important role in the formation of myopia by binding with 5-HT2A receptor. PMID:22553578
Differences in expression of retinal pigment epithelium mRNA between normal canines
2004-01-01
Abstract A reference database of differences in mRNA expression in normal healthy canine retinal pigment epithelium (RPE) has been established. This database identifies non-informative differences in mRNA expression that can be used in screening canine RPE for mutations associated with clinical effects on vision. Complementary DNA (cDNA) pools were prepared from mRNA harvested from RPE, amplified by PCR, and used in a subtractive hybridization protocol (representational differential analysis) to identify differences in RPE mRNA expression between canines. The effect of relatedness of the test canines on the frequency of occurrence of differences was evaluated by using 2 unrelated canines for comparison with 2 female sibling canines of blue heeler/bull terrier lineage. Differentially expressed cDNA species were cloned, sequenced, and identified by comparison to public database entries. The most frequently observed differentially expressed sequence from the unrelated canine comparison was cDNA with 21 base pairs (bp) identical to the human epithelial membrane protein 1 gene (present in 8 of 20 clones). Different clones from the same-sex sibling RPE contained repetitions of several short sequence motifs including the human epithelial membrane protein 1 (4 of 25 clones). Other prevalent differences between sibling RPE included sequences similar to a chicken genetic marker sequence motif (5 of 25), and 6 clones with homology to porcine major histocompatibility loci. In addition to identifying several repetitively occurring, noninformative, differentially expressed RPE mRNA species, the findings confirm that fewer differences occurred between siblings, highlighting the importance of using closely related subjects in representational difference analysis studies. PMID:15352545
Leiro, J; García, D; Arranz, J A; Delgado, R; Sanmartín, M L; Orallo, F
2004-08-01
This study investigated the effects of an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae; Vimang), which contains a defined mixture of components including polyphenols (principally mangiferin, MA), triterpenes, phytosteroids, fatty acids and microelements, on expression of inflammation mediators in inflammatory murine macrophages after stimulation in vitro with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In vitro treatment with Vimang at 4 microg/ml reduced levels of NOS-2 mRNA and NOS-2, while treatment at 40 microg/ml also reduced levels of COX-2 mRNA, COX-2, and prostaglandin E2 (PGE2). Results suggested that MA is involved in these effects. In vitro treatment with Vimang at 40 microg/ml also inhibited mRNA levels of the proinflammatory cytokines interleukin 1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha) and colony-stimulating factor (GM-CSF), but did not affect mRNA levels of IL-6 or tumor growth factor-beta (TGF-beta). Extracellular release of TNF-alpha by inflammatory macrophages was inhibited by in vitro treatment with Vimang at the same concentrations that showed inhibition of TNF-alpha mRNA levels. The inhibition of TNF-alpha production appears to be at least partially attributable to MA. Vimang at 4 microg/ml decreased mRNA levels of nuclear factor-kappaB (NF-kappaB) but did not affect expression of the NF-kappaB inhibitor (IkappaB). These data indicate that the potent anti-inflammatory effects of Vimang are due to selective modulation of the expression of inflammation-related genes, leading to attenuation of macrophage activation.
Stimulation of GLUT-1 glucose transporter expression in response to hyperosmolarity.
Hwang, D Y; Ismail-Beigi, F
2001-10-01
Glucose transporter isoform-1 (GLUT-1) expression is stimulated in response to stressful conditions. Here we examined the mechanisms mediating the enhanced expression of GLUT-1 by hyperosmolarity. GLUT-1 mRNA, GLUT-1 protein, and glucose transport increased after exposure of Clone 9 cells to 600 mosmol/l (produced by addition of mannitol). The stimulation of glucose transport was biphasic: in the early phase (0-6 h) a approximately 2.5-fold stimulation of glucose uptake was associated with no change in the content of GLUT-1 mRNA, GLUT-1 protein, or GLUT-1 in the plasma membrane, whereas the approximately 17-fold stimulation of glucose transport during the late phase (12-24 h) was associated with increases in both GLUT-1 mRNA (approximately 7.5-fold) and GLUT-1 protein content. Cell sorbitol increased after 3 h of exposure to hyperosmolarity. The increase in GLUT-1 mRNA content was associated with an increase in the half-life of the mRNA from 2 to 8 h. A 44-bp region in the proximal GLUT-1 promoter was necessary for basal activity and for the two- to threefold increases in expression by hyperosmolarity. It is concluded that the increase in GLUT-1 mRNA content is mediated by both enhanced transcription and stabilization of GLUT-1 mRNA and is associated with increases in GLUT-1 content and glucose transport activity.
miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure.
Zhou, Yongyong; Huang, Hannian; Zhang, Kai; Ding, Xianfeng; Jia, Longlue; Yu, Liang; Zhu, Guonian; Guo, Jiangfeng
2016-07-01
MicroRNA (miRNA) can regulate the expression of its target gene by mediating mRNA cleavage or by translational repression at a post-transcriptional level. Usually, one miRNA may regulate many genes as its targets, while one gene may also be targeted by many miRNAs. We previously demonstrated that cyb561d2, whose protein product is involved in cell defense, and chemical stress, is targeted by miR-155 in adult zebrafish (Danio rerio) when exposed to fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulphinyl]-1H-pyrazole-3-carbonitrile). Microcosm Targets prediction showed that the cyb561d2 gene is also highly possibly targeted by miR-194a, miR-216b, miR-429, and miR-499. These interactions need to be further validated experimentally. In this study, we evaluated the effects of fipronil on miR-194a, miR-216b, miR-429, miR-499 and cyb561d2 in zebrafish and investigated whether these four miRNAs could regulate the expression of cyb561d2 in both mRNA and protein levels. The expression of cyb561d2 was upregulated in both mRNA and protein level in a dose-dependent manner upon stimulation of fipronil, and miR-216b and miR-499 were downregulated concurrently, whereas there was no significant changes were observed in the expression level of miR-194a and miR-429. The dual luciferase report assay demonstrated that miR-216b and miR-499 interacted with cyb561d2 3'-untranslated regions (3'-UTR), miR-194a and miR-429 did not stimulate degradation of cyb561d2 mRNA. The expression of cyb561d2 was reduced in both mRNA and protein level when ZF4 cells were transfected with miR-499 mimic, whereas expression level of both mRNA and protein was increased when endogenous miR-499 was inhibited by transfection with miR-499 inhibitor. Likewise, the mRNA and protein level of cyb561d2 was affected by treatment with the mimics and the inhibitor of miR-216b. In contrast, when ZF4 cells were transfected with a mimic of miR-194a or miR-429, the expression of cyb561d2 mRNA was not significantly changed. As a result, cyb561d2 is targeted by miR-155, miR-216b and miR-499 upon fipronil exposure, and miR-194a and miR-429 can not target cyb561d2. The expression pattern of these 3 miRNAs presents novel fipronil responses that could be used as a toxicological biomarker. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected with porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (MHYO), or coinfected with both. Twenty-eight pigs were randomly assigned to one ...
Romero-Nava, R; Rodriguez, J E; Reséndiz-Albor, A A; Sánchez-Muñoz, F; Ruiz-Hernandéz, A; Huang, F; Hong, E; Villafaña, S
2016-01-01
Diabetes and hypertension have been associated with cardiovascular diseases and stroke. Some reports have related the coexistence of hypertension and diabetes with increase in the risk of developing vascular complications. Recently some studies have shown results suggesting that in the early stages of diabetes and hypertension exist a reduced functional response to vasopressor agents like angiotensin II (Ang II), which plays an important role in blood pressure regulation mechanism through the activation of its AT1 and AT2 receptors. For that reason, the aim of this work was to study the gene and protein expression of AT1 and AT2 receptors in aorta of diabetic SHR and WKY rats. Diabetes was induced by the administration of streptozotocin (60 mg/kg i.p.). After 4 weeks of the onset of diabetes, the protein expression was obtained by western blot and the mRNA expression by RT-PCR. Our results showed that the hypertensive rats have a higher mRNA and protein expression of AT1 receptors than normotensive rats while the AT2 expression remained unchanged. On the other hand, the combination of diabetes and hypertension increased the mRNA and protein expression of AT1 and AT2 receptors significantly. In conclusion, our results suggest that diabetes with hypertension modifies the mRNA and protein expression of AT1 and AT2 receptors. However, the overexpression of AT2 could be associated with the reduction in the response to Ang II in the early stage of diabetes.
Walter, R F H; Mairinger, F D; Ting, S; Vollbrecht, C; Mairinger, T; Theegarten, D; Christoph, D C; Schmid, K W; Wohlschlaeger, J
2015-03-03
Malignant pleural mesothelioma (MPM) is a highly aggressive tumour that is first-line treated with a combination of cisplatin and pemetrexed. Until now, predictive and prognostic biomarkers are lacking, making it a non-tailored therapy regimen with unknown outcome. P53 is frequently inactivated in MPM, but mutations are extremely rare. MDM2 and P14/ARF are upstream regulators of P53 that may contribute to P53 inactivation. A total of 72 MPM patients were investigated. MDM2 immunoexpression was assessed in 65 patients. MDM2 and P14/ARF mRNA expression was analysed in 48 patients of the overall collective. The expression results were correlated to overall survival (OS) and progression-free survival (PFS). OS and PFS correlated highly significantly with MDM2 mRNA and protein expression, showing a dismal prognosis for patients with elevated MDM2 expression (for OS: Score (logrank) test: P⩽0.002, and for PFS: Score (logrank) test; P<0.007). MDM2 was identified as robust prognostic and predictive biomarker for MPM on the mRNA and protein level. P14/ARF mRNA expression reached no statistical significance, but Kaplan-Meier curves distinguished patients with low P14/ARF expression and hence shorter survival from patients with higher expression and prolonged survival. MDM2 is a prognostic and predictive marker for a platin-pemetrexed therapy of patients with MPMs. Downregulation of P14/ARF expression seems to contribute to MDM2-overexpression-mediated P53 inactivation in MPM patients.
Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M
1990-09-01
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.
Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M
1990-01-01
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility. Images PMID:1697032
Developmental expression and distribution of nesfatin-1/NUCB2 in the canine digestive system.
Jiang, Shudong; Zhou, Weijuan; Zhang, Xingwang; Wang, Dengfeng; Zhu, Hui; Hong, Meizhen; Gong, Yajing; Ye, Jing; Fang, Fugui
2016-03-01
Nesfatin-1/NUCB2 is a neuropeptide that plays important roles in regulating food intake and energy homeostasis. The distribution of nesfatin-1/NUCB2 protein and mRNA has not been investigated in the canine digestive system. The present study was conducted to evaluate the expression of nesfatin-1/NUCB2 protein and NUCB2 mRNA in the canine digestive organs (esophagus, stomach, duodenum, jejunum, ileum, cecum, colon, rectum, liver and pancreas). The tissues of the digestive system were collected from dogs at different developmental stages (infantile, juvenile, pubertal and adult). Nesfatin-1/NUCB2 protein localization in the organs of adult dogs was detected by immunohistochemistry. The expression of NUCB2 mRNA at the four developmental stages was analyzed by real-time fluorescence quantitative PCR (qRT-PCR). Nesfatin-1/NUCB2 protein was distributed in the fundic gland region of the stomach, and the islet area and exocrine portions of the pancreas. However, NUCB2 mRNA was found in all digestive organs, although the expression levels in the pancreas and stomach were higher than those in liver, duodenum and other digestive tract tissues (P<0.05) at the four different developmental stages of the dogs. In this study, nesfatin-1/NUCB2 was found to be present at high levels in the stomach and pancreas at both the protein and mRNA levels; however, NUCB2 expression was found at lower levels in all of the digestive organs. These findings provide the basis of further investigations to elucidate the functions of nefatin-1 in the canine digestive system. Copyright © 2015 Elsevier GmbH. All rights reserved.
Ruckenstuhl, Christoph; Lang, Silvia; Poschenel, Andrea; Eidenberger, Armin; Baral, Pravas Kumar; Kohút, Peter; Hapala, Ivan; Gruber, Karl; Turnowsky, Friederike
2007-01-01
Squalene epoxidase (SE) is the target of terbinafine, which specifically inhibits the fungal enzyme in a noncompetitive manner. On the basis of functional homologies to p-hydroxybenzoate hydroxylase (PHBH) from Pseudomonas fluorescens, the Erg1 protein contains two flavin adenine dinucleotide (FAD) domains and one nucleotide binding (NB) site. By in vitro mutagenesis of the ERG1 gene, which codes for the Saccharomyces cerevisiae SE, we isolated erg1 alleles that conferred increased terbinafine sensitivity or that showed a lethal phenotype when they were expressed in erg1-knockout strain KLN1. All but one of the amino acid substitutions affected conserved FAD/nucleotide binding sites. The G25S, D335X (W, F, P), and G210A substitutions in the FADI, FADII, and NB sites, respectively, rendered the SE variants nonfunctional. The G30S and L37P variants exhibited decreased enzymatic activity, accompanied by a sevenfold increase in erg1 mRNA levels and an altered sterol composition, and rendered KLN1 more sensitive not only to allylamines (10 to 25 times) but also to other ergosterol biosynthesis inhibitors. The R269G variant exhibited moderately reduced SE activity and a 5- to 10-fold increase in allylamine sensitivity but no cross-sensitivity to the other ergosterol biosynthesis inhibitors. To further elucidate the roles of specific amino acids in SE function and inhibitor interaction, a homology model of Erg1p was built on the basis of the crystal structure of PHBH. All experimental data obtained with the sensitive Erg1 variants support this model. In addition, the amino acids responsible for terbinafine resistance, although they are distributed along the sequence of Erg1p, cluster on the surface of the Erg1p model, giving rise to a putative binding site for allylamines. PMID:17043127
The role of ryanodine receptor type 3 in a mouse model of Alzheimer disease
Liu, Jie; Supnet, Charlene; Sun, Suya; Zhang, Hua; Good, Levi; Popugaeva, Elena; Bezprozvanny, Ilya
2014-01-01
Dysregulated endoplasmic reticulum (ER) calcium (Ca2+) signaling is reported to play an important role in Alzheimer disease (AD) pathogenesis. The role of ER Ca2+ release channels, the ryanodine receptors (RyanRs), has been extensively studied in AD models and RyanR expression and activity are upregulated in the brains of various familial AD (FAD) models. The objective of this study was to utilize a genetic approach to evaluate the importance of RyanR type 3 (RyanR3) in the context of AD pathology. PMID:24476841
Impact of fasting followed by short-term exposure to interleukin-6 on cytochrome P450 mRNA in mice.
Rasmussen, Martin Krøyer; Bertholdt, Lærke; Gudiksen, Anders; Pilegaard, Henriette; Knudsen, Jakob G
2018-01-05
The gene expression of the cytochrome P450 (CYP) enzyme family is regulated by numerous factors. Fasting has been shown to induce increased hepatic CYP mRNA in both humans and animals. However, the coordinated regulation of CYP, CYP-regulating transcription factors, and transcriptional co-factors in the liver linking energy metabolism to detoxification has never been investigated. Interleukin-6 (IL-6) has been suggested to be released during fasting and has been shown to regulate CYP expression. The present study investigated the hepatic mRNA content of selected CYP, AhR, CAR, PXR and PPARα in mice fasted for 18h and subsequently exposed to IL-6. Furthermore, the impact of fasting on PGC-1α, HNF-4α, SIRT1 and SIRT3 mRNA was examined. Fasting induced a marked increase in Cyp2b10, Cyp2e1 and Cyp4a10 mRNA, while CYP1a1, Cyp1a2, Cyp2a4 and Cyp3a11 mRNA levels remained unchanged. In accordance, the mRNA levels of CAR and PPARα were also increased with fasting. The PGC-1α, SIRT1 and SIRT3 mRNA levels were also increased after fasting, while the HNF-4α mRNA levels remained unchanged. In mice subjected to IL-6 injection, the fasting-induced PXR, PPARα and PGC-1α mRNA responses were lower than after saline injection. In conclusion, fasting was demonstrated to be a strong inducer of hepatic CYP mRNA as well as selected transcription factors controlling the expression of the investigated CYP. Moreover, the mRNA levels of transcriptional co-factors acting as energy sensors and co-factors for CYP regulation was also increased in the liver, suggesting crosstalk at the molecular level between regulation of energy metabolism and detoxification. Copyright © 2017 Elsevier B.V. All rights reserved.
Schramek, Herbert; Sarközi, Rita; Lauterberg, Christina; Kronbichler, Andreas; Pirklbauer, Markus; Albrecht, Rudolf; Noppert, Susie-Jane; Perco, Paul; Rudnicki, Michael; Strutz, Frank M; Mayer, Gert
2009-11-01
Neuropilin-1 (NRP1) and neuropilin-2 (NRP2) are transmembrane glycoproteins with large extracellular domains that interact with class 3 semaphorins, vascular endothelial growth factor (VEGF) family members, and ligands, such as hepatocyte growth factor, platelet-derived growth factor BB, transforming growth factor-beta1 (TGF-beta1), and fibroblast growth factor2 (FGF2). Neuropilins (NRPs) have been implicated in tumor growth and vascularization, as novel mediators of the primary immune response and in regeneration and repair; however, their role in renal pathophysiology is largely unknown. Here, we report upregulation of tubular and interstitial NRP2 protein expression in patients with focal segmental glomerulosclerosis (FSGS). In an additional cohort of patients with minimal change disease (MCD), membranous nephropathy (MN), and FSGS, elevated NRP2 mRNA expression in kidney biopsies inversely correlated with estimated glomerular filtration rate (eGFR) at the time of biopsy. Furthermore, upregulation of NRP2 mRNA correlated with post-bioptic decline of kidney function. Expression of NRP1 and NRP2 in human proximal tubular cells (PTCs) was differentially affected after stimulation with TGF-beta1, interleukin-1beta (IL-1beta), and oncostatin M (OSM). Although the pro-fibrotic mediators, TGF-beta1 and IL-1beta, induced upregulation of NRP2 expression but downregulation of NRP1 expression, OSM stimulated the expression of both NRP1 and NRP2. Basal and OSM-induced NRP1 mRNA expression, as well as TGF-beta1-induced NRP2 mRNA and protein expression were partially mediated by MEK1/2-ERK1/2 signaling. This is the first report suggesting a differential role of NRP1 and NRP2 in renal fibrogenesis, and TGF-beta1, IL-1beta, and OSM represent the first ligands known to stimulate NRP2 expression in mammalian cells.
Mathias, Rasika A; Vergara, Candelaria; Gao, Li; Rafaels, Nicholas; Hand, Tracey; Campbell, Monica; Bickel, Carol; Ivester, Priscilla; Sergeant, Susan; Barnes, Kathleen C; Chilton, Floyd H
2010-09-01
Long-chain polyunsaturated fatty acids (PUFA) orchestrate immunity and inflammation through their capacity to be converted to potent inflammatory mediators. We assessed associations of FADS gene cluster polymorphisms and fasting serum PUFA concentrations in a fully ascertained, geographically isolated founder population of European descent. Concentrations of 22 PUFAs were determined by gas chromatography, of which ten fatty acids and five ratios defining FADS1 and FADS2 activity were tested for genetic association against 16 single nucleotide polymorphisms (SNP) in 224 individuals. A cluster of SNPs in tight linkage disequilibrium in the FADS1 gene (rs174537, rs174545, rs174546, rs174553, rs174556, rs174561, rs174568, and rs99780) were strongly associated with arachidonic acid (AA) (P = 5.8 x 10(-7) - 1.7 x 10(-8)) among other PUFAs, but the strongest associations were with the ratio measuring FADS1 activity in the omega-6 series (P = 2.11 x 10(-13) - 1.8 x 10(-20)). The minor allele across all SNPs was consistently associated with decreased omega-6 PUFAs, with the exception of dihomo-gamma-linoleic acid (DHGLA), where the minor allele was consistently associated with increased levels. Our findings in a geographically isolated population with a homogenous dietary environment suggest that variants in the Delta-5 desaturase enzymatic step likely regulate the efficiency of conversion of medium-chain PUFAs to potentially inflammatory PUFAs, such as AA.
Mathias, Rasika A.; Vergara, Candelaria; Gao, Li; Rafaels, Nicholas; Hand, Tracey; Campbell, Monica; Bickel, Carol; Ivester, Priscilla; Sergeant, Susan; Barnes, Kathleen C.; Chilton, Floyd H.
2010-01-01
Long-chain polyunsaturated fatty acids (PUFA) orchestrate immunity and inflammation through their capacity to be converted to potent inflammatory mediators. We assessed associations of FADS gene cluster polymorphisms and fasting serum PUFA concentrations in a fully ascertained, geographically isolated founder population of European descent. Concentrations of 22 PUFAs were determined by gas chromatography, of which ten fatty acids and five ratios defining FADS1 and FADS2 activity were tested for genetic association against 16 single nucleotide polymorphisms (SNP) in 224 individuals. A cluster of SNPs in tight linkage disequilibrium in the FADS1 gene (rs174537, rs174545, rs174546, rs174553, rs174556, rs174561, rs174568, and rs99780) were strongly associated with arachidonic acid (AA) (P = 5.8 × 10−7 – 1.7 × 10−8) among other PUFAs, but the strongest associations were with the ratio measuring FADS1 activity in the ω-6 series (P = 2.11 × 10−13 – 1.8 × 10−20). The minor allele across all SNPs was consistently associated with decreased ω-6 PUFAs, with the exception of dihomo-γ-linoleic acid (DHGLA), where the minor allele was consistently associated with increased levels. Our findings in a geographically isolated population with a homogenous dietary environment suggest that variants in the Δ-5 desaturase enzymatic step likely regulate the efficiency of conversion of medium-chain PUFAs to potentially inflammatory PUFAs, such as AA. PMID:20562440
He, Nan; Li, Zhen Hua
2016-04-21
Formic acid decomposition (FAD) reaction has been an innovative way for hydrogen energy. Noble metal catalysts, especially palladium-containing nanoparticles, supported or unsupported, perform well in this reaction. Herein, we considered the simplest model, wherein one Pd atom is used as the FAD catalyst. With high-level theoretical calculations of CCSD(T)/CBS quality, we investigated all possible FAD pathways. The results show that FAD catalyzed by one Pd atom follows a different mechanism compared with that catalyzed by surfaces or larger clusters. At the initial stage of the reaction, FAD follows a dehydration route and is quickly poisoned by CO due to the formation of very stable PdCO. PdCO then becomes the actual catalyst for FAD at temperatures approximately below 1050 K. Beyond 1050 K, there is a switch of catalyst from PdCO to Pd atom. The results also show that dehydration is always favoured over dehydrogenation on either the Pd-atom or PdCO catalyst. On the Pd-atom catalyst, neither dehydrogenation nor dehydration follows the formate mechanism. In contrast, on the PdCO catalyst, dehydrogenation follows the formate mechanism, whereas dehydration does not. We also systematically investigated the performance of 24 density functional theory methods. We found that the performance of the double hybrid mPW2PLYP functional is the best, followed by the B3LYP, B3PW91, N12SX, M11, and B2PLYP functionals.
Spirina, L V; Usynin, Y A; Yurmazov, Z A; Slonimskaya, E M; Kolegova, E S; Kondakova, I V
2017-01-01
Here, we have investigated the participation of nuclear factors NF-kB, HIF-1 and HIF-2, VEGF, VEGFR2, and carboanhydrase IX in clear-cell renal cancer. We have determined the expression and protein level of transcription factors, VEGF, VEGFR2, and carboanhydrase IX in tumor and normal tissues of 30 patients with kidney cancer. The Real-Time PCR and ELISA were used in the study. The low levels of HIF-1 mRNA expression associated with high levels of HIF-1 protein were also associated with metastasis. The expression levels of VEGF, VEGFR2, and their protein levels are increased in primary tumors of patients with disseminated kidney cancer compared to nonmetastatic cancer. No correlation was revealed between the content of mRNA and encoded proteins in the kidney cancer tissues. The changes in the ratios of mRNA levels and the respective proteins (HIF-1α, HIF-2, NF-kB, VEGF, VEGFR2, and carboanhydrase IX) may contribute to kidney-cancer metastasis.
Kulkarni, Supriya R.; Xu, Jialin; Donepudi, Ajay C.; Wei, Wei
2014-01-01
Purpose Fatty liver alters liver transporter expression. Caloric restriction (CR), the recommended therapy to reverse fatty liver, increases Sirtuin1 deacetylase activity in liver. This study evaluated whether CR and CR mimetics reversed obesity-induced transporter expression in liver and hepatocytes. Methods mRNA and protein expression was determined in adult lean (lean) and leptin-deficient obese (OB) mice fed ad libitum or placed on 40% (kCal) reduced diet. Hepatocytes were isolated from lean and OB mice, treated with AMP Kinase activators, and gene expression was determined. Results CR decreased Oatp1a1, Oatp1b2, and Abcb11 mRNA expression in lean, but not OB mice. CR increased Abcc2 mRNA OB livers, whereas protein expression increased in both genotypes. CR increased Abcc3 protein expression increased in OB livers. CR did not alter Abcc1, 4 and 5 mRNA expression in lean mice but decreased expression in livers of OB mice. CR increased Abcc4 protein in lean, but not OB mice. Conclusions CR restriction reversed the expression of some, but not all transporters in livers of OB mice. Overall, these data indicate a potential for CR to restore some hepatic transporter changes in OB mice, but suggest a functional leptin axis is needed for reversal of expression for some transporters. PMID:23949303
Willoughby, Darryn S.; Wilborn, Colin D.
2006-01-01
Eccentric contractions produce a significant degree of inflammation and muscle injury that may increase the expression of myostatin. Due to its anti- oxidant and anti-flammatory effects, circulating 17-β estradiol (E2) may attenuate myostatin expression. Eight males and eight females performed 7 sets of 10 reps of eccentric contractions of the knee extensors at 150% 1-RM. Each female performed the eccentric exercise bout on a day that fell within her mid-luteal phase (d 21-23 of her 28-d cycle). Blood and muscle samples were obtained before and 6 and 24 h after exercise, while additional blood samples were obtained at 48 and 72 h after exercise. Serum E2 and myostatin LAP/propeptide (LAP/pro) levels were determined with ELISA, and myostatin mRNA expression determined using RT-PCR. Data were analyzed with two-way ANOVA and bivariate correlations (p < 0.05). Females had greater levels of serum E2 throughout the 72- h sampling period (p < 0.05). While males had greater body mass and fat-free mass, neither was correlated to the pre-exercise levels of myostatin mRNA and LAP/pro for either gender (p > 0.05). Compared to pre-exercise, males had significant increases (p < 0.05) in LAP/propetide and mRNA of 78% and 28%, respectively, at 24 h post-exercise, whereas females underwent respective decreases of 10% and 21%. E2 and LAP/propeptide were correlated at 6 h (r = -0.804, p = 0.016) and 24 h post- exercise (r = -0.841, p = 0.009) in males, whereas in females E2 levels were correlated to myostatin mRNA at 6 h (r =0.739, p = 0.036) and 24 h (r = 0.813, p = 0.014) post-exercise and LAP/propeptide at 6 h (r = 0.713, p = 0.047) and 24 h (r = 0.735, p = 0.038). In females, myostatin mRNA expression and serum LAP/propeptide levels do not appear to be significantly up-regulated following eccentric exercise, and may be due to higher levels of circulating E2. Key Points The pre-exercise levels of myostatin mRNA and propeptide were not significantly different between genders, and even though the total body mass and fat-free mass of males were significantly greater than females, neither was correlated to myostatin mRNA or LAP/propeptide. Myostatin mRNA expression in females is less than in males 24 h after a single bout of eccentric exercise. Myostatin LAP/propeptide levels in females are lower in females than in males 24 h after a single bout of eccentric exercise, thereby suggesting a gender-specific mechanism in which females may be less responsive to eccentric exercise than males. Myostatin mRNA expression in females is attenuated, possibly due to inhibition in myostatin signaling, and appears to be more related to the presence of a higher level of circulating E2 rather than body composition. Due to their higher level of E2, females seem to be less susceptible to the mechanism by which eccentric exercise apparently up-regulates myostatin mRNA expression in males. PMID:24357964
Merkin, Ross D; Vanner, Elizabeth A; Romeiser, Jamie L; Shroyer, A Laurie W; Escobar-Hoyos, Luisa F; Li, Jinyu; Powers, Robert S; Burke, Stephanie; Shroyer, Kenneth R
2017-04-01
Clinicopathological features of breast cancer have limited accuracy to predict survival. By immunohistochemistry (IHC), keratin 17 (K17) expression has been correlated with triple-negative status (estrogen receptor [ER]/progesterone receptor/human epidermal growth factor receptor-2 [HER2] negative) and decreased survival, but K17 messenger RNA (mRNA) expression has not been evaluated in breast cancer. K17 is a potential prognostic cancer biomarker, targeting p27, and driving cell cycle progression. This study compared K17 protein and mRNA expression to ER/progesterone receptor/HER2 receptor status and event-free survival. K17 IHC was performed on 164 invasive breast cancers and K17 mRNA was evaluated in 1097 breast cancers. The mRNA status of other keratins (16/14/9) was evaluated in 113 ER - /HER2 - ductal carcinomas. IHC demonstrated intense cytoplasmic and membranous K17 localization in myoepithelial cells of benign ducts and lobules and tumor cells of ductal carcinoma in situ. In ductal carcinomas, K17 protein was detected in most triple-negative tumors (28/34, 82%), some non-triple-negative tumors (52/112, 46%), but never in lobular carcinomas (0/15). In ductal carcinomas, high K17 mRNA was associated with reduced 5-year event-free survival in advanced tumor stage (n = 149, hazard ratio [HR] = 3.68, P = .018), and large (n = 73, HR = 3.95, P = .047), triple-negative (n = 103, HR = 2.73, P = .073), and ER - /HER2 - (n = 113, HR = 2.99, P = .049) tumors. There were significant correlations among keratins 17, 16, 14, and 9 mRNA levels suggesting these keratins (all encoded on chromosome 17) could be coordinately expressed in breast cancer. Thus, K17 is expressed in a subset of triple-negative breast cancers, and is a marker of poor prognosis in patients with advanced stage and ER - /HER2 - breast cancer. Copyright © 2016 Elsevier Inc. All rights reserved.