Sample records for failure analysis effort

  1. A streamlined failure mode and effects analysis.

    PubMed

    Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg

    2014-06-01

    Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.

  2. Failure-Modes-And-Effects Analysis Of Software Logic

    NASA Technical Reports Server (NTRS)

    Garcia, Danny; Hartline, Thomas; Minor, Terry; Statum, David; Vice, David

    1996-01-01

    Rigorous analysis applied early in design effort. Method of identifying potential inadequacies and modes and effects of failures caused by inadequacies (failure-modes-and-effects analysis or "FMEA" for short) devised for application to software logic.

  3. A streamlined failure mode and effects analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie

    Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and usedmore » to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.« less

  4. Application of Interface Technology in Progressive Failure Analysis of Composite Panels

    NASA Technical Reports Server (NTRS)

    Sleight, D. W.; Lotts, C. G.

    2002-01-01

    A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.

  5. Analyzing and Predicting Effort Associated with Finding and Fixing Software Faults

    NASA Technical Reports Server (NTRS)

    Hamill, Maggie; Goseva-Popstojanova, Katerina

    2016-01-01

    Context: Software developers spend a significant amount of time fixing faults. However, not many papers have addressed the actual effort needed to fix software faults. Objective: The objective of this paper is twofold: (1) analysis of the effort needed to fix software faults and how it was affected by several factors and (2) prediction of the level of fix implementation effort based on the information provided in software change requests. Method: The work is based on data related to 1200 failures, extracted from the change tracking system of a large NASA mission. The analysis includes descriptive and inferential statistics. Predictions are made using three supervised machine learning algorithms and three sampling techniques aimed at addressing the imbalanced data problem. Results: Our results show that (1) 83% of the total fix implementation effort was associated with only 20% of failures. (2) Both safety critical failures and post-release failures required three times more effort to fix compared to non-critical and pre-release counterparts, respectively. (3) Failures with fixes spread across multiple components or across multiple types of software artifacts required more effort. The spread across artifacts was more costly than spread across components. (4) Surprisingly, some types of faults associated with later life-cycle activities did not require significant effort. (5) The level of fix implementation effort was predicted with 73% overall accuracy using the original, imbalanced data. Using oversampling techniques improved the overall accuracy up to 77%. More importantly, oversampling significantly improved the prediction of the high level effort, from 31% to around 85%. Conclusions: This paper shows the importance of tying software failures to changes made to fix all associated faults, in one or more software components and/or in one or more software artifacts, and the benefit of studying how the spread of faults and other factors affect the fix implementation effort.

  6. A mid-layer model for human reliability analysis : understanding the cognitive causes of human failure events.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Song-Hua; Chang, James Y. H.; Boring,Ronald L.

    2010-03-01

    The Office of Nuclear Regulatory Research (RES) at the US Nuclear Regulatory Commission (USNRC) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method's middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identifiedmore » human failure events, analysts identify potential failure mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.« less

  7. Skin Effect Simulation for Area 11 Dense Plasma Focus Hot Plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehan, B. Timothy

    Two arc flashover events occurred at the DPF Area 11 facility. These flashover events happened in the same location on the bank current delivery plates. The damage from one of these events can be seen on the left-hand side of Figure 1. Since the flashovers occurred in the same area of the bank, and the reliability of the bank is important for future DPF experiments, a failure analysis effort was initiated. Part of this failure analysis effort was an effort to understand the physical reasons behind why the flashover happened, and why it happened in the same place twice. Thismore » paper summarizes an effort to simulate the current flow in the bank in order to understand the reasons for the flashover.« less

  8. Analysis and Test Correlation of Proof of Concept Box for Blended Wing Body-Low Speed Vehicle

    NASA Technical Reports Server (NTRS)

    Spellman, Regina L.

    2003-01-01

    The Low Speed Vehicle (LSV) is a 14.2% scale remotely piloted vehicle of the revolutionary Blended Wing Body concept. The design of the LSV includes an all composite airframe. Due to internal manufacturing capability restrictions, room temperature layups were necessary. An extensive materials testing and manufacturing process development effort was underwent to establish a process that would achieve the high modulus/low weight properties required to meet the design requirements. The analysis process involved a loads development effort that incorporated aero loads to determine internal forces that could be applied to a traditional FEM of the vehicle and to conduct detailed component analyses. A new tool, Hypersizer, was added to the design process to address various composite failure modes and to optimize the skin panel thickness of the upper and lower skins for the vehicle. The analysis required an iterative approach as material properties were continually changing. As a part of the material characterization effort, test articles, including a proof of concept wing box and a full-scale wing, were fabricated. The proof of concept box was fabricated based on very preliminary material studies and tested in bending, torsion, and shear. The box was then tested to failure under shear. The proof of concept box was also analyzed using Nastran and Hypersizer. The results of both analyses were scaled to determine the predicted failure load. The test results were compared to both the Nastran and Hypersizer analytical predictions. The actual failure occurred at 899 lbs. The failure was predicted at 1167 lbs based on the Nastran analysis. The Hypersizer analysis predicted a lower failure load of 960 lbs. The Nastran analysis alone was not sufficient to predict the failure load because it does not identify local composite failure modes. This analysis has traditionally been done using closed form solutions. Although Hypersizer is typically used as an optimizer for the design process, the failure prediction was used to help gain acceptance and confidence in this new tool. The correlated models and process were to be used to analyze the full BWB-LSV airframe design. The analysis and correlation with test results of the proof of concept box is presented here, including the comparison of the Nastran and Hypersizer results.

  9. A Mid-Layer Model for Human Reliability Analysis: Understanding the Cognitive Causes of Human Failure Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey M. L. Hendrickson; April M. Whaley; Ronald L. Boring

    The Office of Nuclear Regulatory Research (RES) is sponsoring work in response to a Staff Requirements Memorandum (SRM) directing an effort to establish a single human reliability analysis (HRA) method for the agency or guidance for the use of multiple methods. As part of this effort an attempt to develop a comprehensive HRA qualitative approach is being pursued. This paper presents a draft of the method’s middle layer, a part of the qualitative analysis phase that links failure mechanisms to performance shaping factors. Starting with a Crew Response Tree (CRT) that has identified human failure events, analysts identify potential failuremore » mechanisms using the mid-layer model. The mid-layer model presented in this paper traces the identification of the failure mechanisms using the Information-Diagnosis/Decision-Action (IDA) model and cognitive models from the psychological literature. Each failure mechanism is grouped according to a phase of IDA. Under each phase of IDA, the cognitive models help identify the relevant performance shaping factors for the failure mechanism. The use of IDA and cognitive models can be traced through fault trees, which provide a detailed complement to the CRT.« less

  10. A case study in nonconformance and performance trend analysis

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.; Newton, Coy P.

    1990-01-01

    As part of NASA's effort to develop an agency-wide approach to trend analysis, a pilot nonconformance and performance trending analysis study was conducted on the Space Shuttle auxiliary power unit (APU). The purpose of the study was to (1) demonstrate that nonconformance analysis can be used to identify repeating failures of a specific item (and the associated failure modes and causes) and (2) determine whether performance parameters could be analyzed and monitored to provide an indication of component or system degradation prior to failure. The nonconformance analysis of the APU did identify repeating component failures, which possibly could be reduced if key performance parameters were monitored and analyzed. The performance-trending analysis verified that the characteristics of hardware parameters can be effective in detecting degradation of hardware performance prior to failure.

  11. Failure modes and effects analysis automation

    NASA Technical Reports Server (NTRS)

    Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron

    1988-01-01

    A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.

  12. Memory Circuit Fault Simulator

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.; McClure, Tucker

    2013-01-01

    Spacecraft are known to experience significant memory part-related failures and problems, both pre- and postlaunch. These memory parts include both static and dynamic memories (SRAM and DRAM). These failures manifest themselves in a variety of ways, such as pattern-sensitive failures, timingsensitive failures, etc. Because of the mission critical nature memory devices play in spacecraft architecture and operation, understanding their failure modes is vital to successful mission operation. To support this need, a generic simulation tool that can model different data patterns in conjunction with variable write and read conditions was developed. This tool is a mathematical and graphical way to embed pattern, electrical, and physical information to perform what-if analysis as part of a root cause failure analysis effort.

  13. Failure Engineering Study and Accelerated Stress Test Results for the Mars Global Surveyor Spacecraft's Power Shunt Assemblies

    NASA Technical Reports Server (NTRS)

    Gibbel, Mark; Larson, Timothy

    2000-01-01

    An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.

  14. SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harry, T; University of California, San Diego, La Jolla, CA; Manger, R

    Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this workmore » was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.« less

  15. Stress Analysis and Testing at the Marshall Space Flight Center to Study Cause and Corrective Action of Space Shuttle External Tank Stringer Failures

    NASA Technical Reports Server (NTRS)

    Wingate, Robert J.

    2012-01-01

    After the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, large cracks were discovered in two of the External Tank intertank stringers. The NASA Marshall Space Flight Center, as managing center for the External Tank Project, coordinated the ensuing failure investigation and repair activities with several organizations, including the manufacturer, Lockheed Martin. To support the investigation, the Marshall Space Flight Center formed an ad-hoc stress analysis team to complement the efforts of Lockheed Martin. The team undertook six major efforts to analyze or test the structural behavior of the stringers. Extensive finite element modeling was performed to characterize the local stresses in the stringers near the region of failure. Data from a full-scale tanking test and from several subcomponent static load tests were used to confirm the analytical conclusions. The analysis and test activities of the team are summarized. The root cause of the stringer failures and the flight readiness rationale for the repairs that were implemented are discussed.

  16. Socio-cultural Differences and Developmental Changes in Continuing Motivation, Evaluation Anxiety, and Attributions of Success and Failure.

    ERIC Educational Resources Information Center

    Fyans, Leslie J., Jr.

    Students' reported reasons for academic success or failure (categorized as ability, effort, task difficulty, or luck) were studied simultaneously in over 1,000 students in grades 4, 8, and 11. Differences between 16 attributional groups (4 success x 4 failure) were reported by discriminant analysis, according to grade, sex, and ethnic…

  17. Oman India Pipeline: An operational repair strategy based on a rational assessment of risk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    German, P.

    1996-12-31

    This paper describes the development of a repair strategy for the operational phase of the Oman India Pipeline based upon the probability and consequences of a pipeline failure. Risk analyses and cost benefit analyses performed provide guidance on the level of deepwater repair development effort appropriate for the Oman India Pipeline project and identifies critical areas toward which more intense development effort should be directed. The risk analysis results indicate that the likelihood of a failure of the Oman India Pipeline during its 40-year life is low. Furthermore, the probability of operational failure of the pipeline in deepwater regions ismore » extremely low, the major proportion of operational failure risk being associated with the shallow water regions.« less

  18. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    NASA Technical Reports Server (NTRS)

    Flores, Melissa; Malin, Jane T.

    2013-01-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  19. Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study

    NASA Astrophysics Data System (ADS)

    Flores, Melissa D.; Malin, Jane T.; Fleming, Land D.

    2013-09-01

    An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component's functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.

  20. Evaluation of Progressive Failure Analysis and Modeling of Impact Damage in Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Sanchez, Christopher M.

    2011-01-01

    NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.

  1. Independent Orbiter Assessment (IOA): Assessment of the EPD and C/remote manipulator system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Robinson, W. W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Distribution and Control (EPD and C)/Remote Manipulator System (RMS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA analysis of the EPD and C/RMS hardware initially generated 345 failure mode worksheets and identified 117 Potential Critical Items (PCIs) before starting the assessment process. These analysis results were compared to the proposed NASA Post 51-L baseline of 132 FMEAs and 66 CIL items.

  2. Failure analysis of composite laminates including biaxial compression

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Elliott, W. G.

    1983-01-01

    This report describes a continued effort on the development and application of the tensor polynomial failure criterion for composite laminate analysis. In particular, emphasis is given to the design, construction and testing of a cross-beam laminate configuration to obtain "pure' biaxial compression failure. The purpose of this test case was to provide to permit "closure' of the cubic form of the failure surface in the 1-2 compression-compression quadrant. This resulted in a revised set of interaction strength parameters and the construction of a failure surface which can be used with confidence for strength predictions, assuming a plane stress state exists. Furthermore, the problem of complex conjugate roots which can occur in some failure regions is addressed and an "engineering' interpretation is provided. Results are presented illustrating this behavior and the methodology for overcoming this problem is discussed.

  3. Attributions for Success and Failure in Algebra of Samoan Community College Students: A Profile Analysis.

    ERIC Educational Resources Information Center

    Powers, Stephen; And Others

    Sex differences in attributions for success and failure in algebra of Samoan community college students were examined and compared with attributions of a large group of mainland U.S. students. study included the Mathematics Attribution Scale: Algebra Version (MAS), which assessed students' attributions of achievement in algebra to their effort,…

  4. Analysis of Rail Vehicle Suspension Spring with Special Emphasis on Curving, Tracking and Tractive Efforts

    NASA Astrophysics Data System (ADS)

    Kumbhalkar, M. A.; Bhope, D. V.; Vanalkar, A. V.

    2016-09-01

    The dynamics of the rail vehicle represents a balance between the forces acting between wheel and rail, the inertia forces and the forces exerted by suspension and articulation. Axial loading on helical spring causes vertical deflection at straight track but failures calls to investigate for lateral and longitudinal loading at horizontal and vertical curves respectively. Goods carrying vehicle has the frequent failures of middle axle inner suspension spring calls for investigation. The springs are analyzed for effect of stress concentration due to centripetal force and due to tractive and breaking effort. This paper also discusses shear failure analysis of spring at curvature and at uphill at various speeds for different loading condition analytically and by finite element analysis. Two mass rail vehicle suspension systems have been analyzed for vibration responses analytically using mathematical tool Matlab Simulink and the same will be evaluated using FFT vibration analyzer to find peak resonance in vertical, lateral and longitudinal direction. The results prove that the suspension acquires high repeated load in vertical and lateral direction due to tracking and curving causes maximum stress concentration on middle axle suspension spring as height of this spring is larger than end axle spring in primary suspension system and responsible for failure of middle axle suspension spring due to high stress acquisition.

  5. Independent Orbiter Assessment (IOA): Assessment of the Orbiter Experiment (OEX) subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbiter Experiments (OEX) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter OEX hardware are documented. The IOA product for the OEX analysis consisted of 82 failure mode worksheets that resulted in two potential critical items being identified.

  6. Independent Orbiter Assessment (IOA): Weibull analysis report

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1987-01-01

    The Auxiliary Power Unit (APU) and Hydraulic Power Unit (HPU) Space Shuttle Subsystems were reviewed as candidates for demonstrating the Weibull analysis methodology. Three hardware components were identified as analysis candidates: the turbine wheel, the gearbox, and the gas generator. Detailed review of subsystem level wearout and failure history revealed the lack of actual component failure data. In addition, component wearout data were not readily available or would require a separate data accumulation effort by the vendor. Without adequate component history data being available, the Weibull analysis methodology application to the APU and HPU subsystem group was terminated.

  7. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery.

    PubMed

    Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya

    2015-05-01

    Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth. Mitigation strategies for the top failure mode decreased the RPN from 288 to 72. Based on the FMEA performed in this work, the use of surface imaging for monitoring intrafraction position in Linac-based stereotactic radiosurgery (SRS) did not greatly increase the risk of the Linac-based SRS process. In some cases, SIG helped to reduce the risk of Linac-based RS. The FMEA was augmented by the use of FTA since it divided the failure modes into their fundamental components, which simplified the task of developing mitigation strategies.

  8. Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure

    NASA Technical Reports Server (NTRS)

    Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.

    2010-01-01

    During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve

  9. Flight Test Comparison of Different Adaptive Augmentations for Fault Tolerant Control Laws for a Modified F-15 Aircraft

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Hanson, Curtis E.; Lee, James A.; Kaneshige, John T.

    2009-01-01

    This report describes the improvements and enhancements to a neural network based approach for directly adapting to aerodynamic changes resulting from damage or failures. This research is a follow-on effort to flight tests performed on the NASA F-15 aircraft as part of the Intelligent Flight Control System research effort. Previous flight test results demonstrated the potential for performance improvement under destabilizing damage conditions. Little or no improvement was provided under simulated control surface failures, however, and the adaptive system was prone to pilot-induced oscillations. An improved controller was designed to reduce the occurrence of pilot-induced oscillations and increase robustness to failures in general. This report presents an analysis of the neural networks used in the previous flight test, the improved adaptive controller, and the baseline case with no adaptation. Flight test results demonstrate significant improvement in performance by using the new adaptive controller compared with the previous adaptive system and the baseline system for control surface failures.

  10. Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test 3 - Anatomy of a failure

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Woodis, W. R.

    1979-01-01

    A test failure dramatically points out a design weakness or the limits of the material in the test article. In a low budget test program, with a very limited number of tests, a test failure sparks supreme efforts to investigate, analyze, and/or explain the anomaly and to improve the design such that the failure will not recur. The third air drop of the Space Shuttle Solid Rocket Booster Recovery System experienced such a dramatic failure. On air drop 3, the 54-ft drogue parachute was totally destroyed 0.7 sec after deployment. The parachute failure investigation, based on analysis of drop test data and supporting ground element test results is presented. Drogue design modifications are also discussed.

  11. Failure Progress of 3D Reinforced GFRP Laminate during Static Bending, Evaluated by Means of Acoustic Emission and Vibrations Analysis.

    PubMed

    Koziol, Mateusz; Figlus, Tomasz

    2015-12-14

    The work aimed to assess the failure progress in a glass fiber-reinforced polymer laminate with a 3D-woven and (as a comparison) plain-woven reinforcement, during static bending, using acoustic emission signals. The innovative method of the separation of the signal coming from the fiber fracture and the one coming from the matrix fracture with the use of the acoustic event's energy as a criterion was applied. The failure progress during static bending was alternatively analyzed by evaluation of the vibration signal. It gave a possibility to validate the results of the acoustic emission. Acoustic emission, as well as vibration signal analysis proved to be good and effective tools for the registration of failure effects in composite laminates. Vibration analysis is more complicated methodologically, yet it is more precise. The failure progress of the 3D laminate is "safer" and more beneficial than that of the plain-woven laminate. It exhibits less rapid load capacity drops and a higher fiber effort contribution at the moment of the main laminate failure.

  12. Independent Orbiter Assessment (IOA): Assessment of the main propulsion subsystem FMEA/CIL, volume 3

    NASA Technical Reports Server (NTRS)

    Holden, K. A.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. Volume 3 continues the presentation of IOA worksheets and includes the potential critical items list.

  13. Independent Orbiter Assessment (IOA): Assessment of the main propulsion subsystem FMEA/CIL, volume 2

    NASA Technical Reports Server (NTRS)

    Holden, K. A.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. Volume 2 continues the presentation of IOA worksheets for MPS hardware items.

  14. Independent Orbiter Assessment (IOA): Assessment of the communication and tracking subsystem, volume 2

    NASA Technical Reports Server (NTRS)

    Long, W. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 2 continues the presentation of IOA worksheets.

  15. Dynamic FLIR Target Acquisition. Phase I.

    DTIC Science & Technology

    1978-08-02

    The execution of the experimental plan developed and outlined in this report will make up the bulk of our second year effort. The third year will be...outlined in this report will make up the bulk of our second year effort. The third year will be devoted to further experimentation and analysis of...established. 2.1 TARGET SELECTION In an analysis of the success or failure of past air strike campaigns from WW II through the Six Day War (see Figure 2

  16. Independent Orbiter Assessment (IOA): Assessment of the main propulsion subsystem FMEA/CIL, volume 4

    NASA Technical Reports Server (NTRS)

    Slaughter, B. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. Volume 4 contains the IOA analysis worksheets and the NASA FMEA to IOA worksheet cross reference and recommendations.

  17. Independent Orbiter Assessment (IOA): Assessment of the nose wheel steering subsystem

    NASA Technical Reports Server (NTRS)

    Mediavilla, Anthony Scott

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Nose Wheel Steering (NWS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter NWS hardware.

  18. Launch Vehicle Failure Dynamics and Abort Triggering Analysis

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.

    2011-01-01

    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  19. Verification and Validation Process for Progressive Damage and Failure Analysis Methods in the NASA Advanced Composites Consortium

    NASA Technical Reports Server (NTRS)

    Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl

    2017-01-01

    The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.

  20. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  1. Independent Orbiter Assessment (IOA): Assessment of the crew equipment subsystem

    NASA Technical Reports Server (NTRS)

    Saxon, H.; Richard, Bill; Sinclair, S. K.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Crew Equipment hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Crew Equipment hardware. The IOA product for the Crew Equipment analysis consisted of 352 failure mode worksheets that resulted in 78 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 351 FMEAs and 82 CIL items.

  2. NiCd cell reliability in the mission environment

    NASA Technical Reports Server (NTRS)

    Denson, William K.; Klein, Glenn C.

    1993-01-01

    This paper summarizes an effort by Gates Aerospace Batteries (GAB) and the Reliability Analysis Center (RAC) to analyze survivability data for both General Electric and GAB NiCd cells utilized in various spacecraft. For simplicity sake, all mission environments are described as either low Earth orbital (LEO) or geosynchronous Earth orbit (GEO). 'Extreme value statistical methods' are applied to this database because of the longevity of the numerous missions while encountering relatively few failures. Every attempt was made to include all known instances of cell-induced-failures of the battery and to exclude battery-induced-failures of the cell. While this distinction may be somewhat limited due to availability of in-flight data, we have accepted the learned opinion of the specific customer contacts to ensure integrity of the common databases. This paper advances the preliminary analysis reported upon at the 1991 NASA Battery Workshop. That prior analysis was concerned with an estimated 278 million cell-hours of operation encompassing 183 satellites. The paper also cited 'no reported failures to date.' This analysis reports on 428 million cell hours of operation emcompassing 212 satellites. This analysis also reports on seven 'cell-induced-failures.'

  3. Ultimate strength analysis of inland tank barges

    DOT National Transportation Integrated Search

    1997-06-16

    In an effort to understand the cause of recent catastrophic failures of inland tank barges and reduce the possibility of future casualties, the Coast Guard Marine Safety Center (MSC) studied the buckling" phenomenon. In conclusion, inland tank barges...

  4. Cut set-based risk and reliability analysis for arbitrarily interconnected networks

    DOEpatents

    Wyss, Gregory D.

    2000-01-01

    Method for computing all-terminal reliability for arbitrarily interconnected networks such as the United States public switched telephone network. The method includes an efficient search algorithm to generate minimal cut sets for nonhierarchical networks directly from the network connectivity diagram. Efficiency of the search algorithm stems in part from its basis on only link failures. The method also includes a novel quantification scheme that likewise reduces computational effort associated with assessing network reliability based on traditional risk importance measures. Vast reductions in computational effort are realized since combinatorial expansion and subsequent Boolean reduction steps are eliminated through analysis of network segmentations using a technique of assuming node failures to occur on only one side of a break in the network, and repeating the technique for all minimal cut sets generated with the search algorithm. The method functions equally well for planar and non-planar networks.

  5. Failure statistics for commercial lithium ion batteries: A study of 24 pouch cells

    NASA Astrophysics Data System (ADS)

    Harris, Stephen J.; Harris, David J.; Li, Chen

    2017-02-01

    There are relatively few publications that assess capacity decline in enough commercial cells to quantify cell-to-cell variation, but those that do show a surprisingly wide variability. Capacity curves cross each other often, a challenge for efforts to measure the state of health and predict the remaining useful life (RUL) of individual cells. We analyze capacity fade statistics for 24 commercial pouch cells, providing an estimate for the time to 5% failure. Our data indicate that RUL predictions based on remaining capacity or internal resistance are accurate only once the cells have already sorted themselves into "better" and "worse" ones. Analysis of our failure data, using maximum likelihood techniques, provide uniformly good fits for a variety of definitions of failure with normal and with 2- and 3-parameter Weibull probability density functions, but we argue against using a 3-parameter Weibull function for our data. pdf fitting parameters appear to converge after about 15 failures, although business objectives should ultimately determine whether data from a given number of batteries provides sufficient confidence to end lifecycle testing. Increased efforts to make batteries with more consistent lifetimes should lead to improvements in battery cost and safety.

  6. Primary Prevention of Heart Failure

    PubMed Central

    Butler, Javed

    2012-01-01

    Most heart failure research and quality improvement efforts are targeted at treatment and secondary prevention of patients with manifest heart failure. This is distinct from coronary disease where primary prevention has been a focus for over three decades. Given the current importance and the projected worsening of heart failure epidemiology, a more focused effort on prevention is urgently needed. PMID:22957272

  7. Independent Orbiter Assessment (IOA): Assessment of the active thermal control system

    NASA Technical Reports Server (NTRS)

    Sinclair, S. K.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Active Thermal Control System (ATCS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the available NASA FMEA/CIL data. Discrepancies from the comparison were documented, and where enough information was available, recommendations for resolution of the discrepancies were made. This report documents the results of that comparison for the Orbiter ATCS hardware. The IOA product for the ATCS independent analysis consisted of 310 failure mode worksheets that resulted in 101 potential critical items (PCI) being identified. A comparison was made to the available NASA data which consisted of 252 FMEAs and 109 CIL items.

  8. Analysis and test of low profile aluminum aerospace tank dome

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Wilhelm, J. M.

    1993-12-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  9. Analysis and test of low profile aluminum aerospace tank dome

    NASA Technical Reports Server (NTRS)

    Ahmed, R.; Wilhelm, J. M.

    1993-01-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  10. Launch Vehicle Abort Analysis for Failures Leading to Loss of Control

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hill, Ashley D.; Beard, Bernard B.

    2013-01-01

    Launch vehicle ascent is a time of high risk for an onboard crew. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based on data already available from the Guidance, Navigation, and Control system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. The two primary areas of focus are the derivation of abort triggers to ensure that abort occurs as quickly as possible when needed, but that false aborts are avoided, and evaluation of success in aborting off the failing launch vehicle.

  11. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 5

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 5 contains detailed analysis and superseded analysis worksheets and the NASA FMEA to IOA worksheet cross reference and recommendations.

  12. Independent Orbiter Assessment (IOA): Assessment of the communication and tracking subsystem, volume 3

    NASA Technical Reports Server (NTRS)

    Long, W. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 3 continues the presentation of IOA worksheets and contains the potential critical items list, detailed analysis, and the NASA FMEA to IOA worksheet cross reference and recommendations.

  13. Independent Orbiter Assessment (IOA): Assessment of the extravehicular mobility unit, volume 1

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort performed an independent analysis of the Extravehicular Mobility Unit (EMU) hardware and system, generating draft failure modes criticalities and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to the most recent proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EMU hardware.

  14. Independent Orbiter Assessment (IOA): Assessment of the data processing system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Lowery, H. J.; Haufler, W. A.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Data Processing System (DPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison is documented for the Orbiter DPS hardware.

  15. Independent validation of the MMPI-2-RF Somatic/Cognitive and Validity scales in TBI Litigants tested for effort.

    PubMed

    Youngjohn, James R; Wershba, Rebecca; Stevenson, Matthew; Sturgeon, John; Thomas, Michael L

    2011-04-01

    The MMPI-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008) is replacing the MMPI-2 as the most widely used personality test in neuropsychological assessment, but additional validation studies are needed. Our study examines MMPI-2-RF Validity scales and the newly created Somatic/Cognitive scales in a recently reported sample of 82 traumatic brain injury (TBI) litigants who either passed or failed effort tests (Thomas & Youngjohn, 2009). The restructured Validity scales FBS-r (restructured symptom validity), F-r (restructured infrequent responses), and the newly created Fs (infrequent somatic responses) were not significant predictors of TBI severity. FBS-r was significantly related to passing or failing effort tests, and Fs and F-r showed non-significant trends in the same direction. Elevations on the Somatic/Cognitive scales profile (MLS-malaise, GIC-gastrointestinal complaints, HPC-head pain complaints, NUC-neurological complaints, and COG-cognitive complaints) were significant predictors of effort test failure. Additionally, HPC had the anticipated paradoxical inverse relationship with head injury severity. The Somatic/Cognitive scales as a group were better predictors of effort test failure than the RF Validity scales, which was an unexpected finding. MLS arose as the single best predictor of effort test failure of all RF Validity and Somatic/Cognitive scales. Item overlap analysis revealed that all MLS items are included in the original MMPI-2 Hy scale, making MLS essentially a subscale of Hy. This study validates the MMPI-2-RF as an effective tool for use in neuropsychological assessment of TBI litigants.

  16. Common Cause Failure Modes

    NASA Technical Reports Server (NTRS)

    Wetherholt, Jon; Heimann, Timothy J.; Anderson, Brenda

    2011-01-01

    High technology industries with high failure costs commonly use redundancy as a means to reduce risk. Redundant systems, whether similar or dissimilar, are susceptible to Common Cause Failures (CCF). CCF is not always considered in the design effort and, therefore, can be a major threat to success. There are several aspects to CCF which must be understood to perform an analysis which will find hidden issues that may negate redundancy. This paper will provide definition, types, a list of possible causes and some examples of CCF. Requirements and designs from NASA projects will be used in the paper as examples.

  17. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 3

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 3 continues the presentation of IOA worksheets.

  18. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 2

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 2 continues the presentation of IOA worksheets.

  19. Independent Orbiter Assessment (IOA): Assessment of the life support and airlock support systems, volume 1

    NASA Technical Reports Server (NTRS)

    Arbet, J. D.; Duffy, R. E.; Barickman, K.; Saiidi, M. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Life Support and Airlock Support Systems (LSS and ALSS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. The discrepancies were flagged for potential future resolution. This report documents the results of that comparison for the Orbiter LSS and ALSS hardware. The IOA product for the LSS and ALSS analysis consisted of 511 failure mode worksheets that resulted in 140 potential critical items. Comparison was made to the NASA baseline which consisted of 456 FMEAs and 101 CIL items. The IOA analysis identified 39 failure modes, 6 of which were classified as CIL items, for components not covered by the NASA FMEAs. It was recommended that these failure modes be added to the NASA FMEA baseline. The overall assessment produced agreement on all but 301 FMEAs which caused differences in 111 CIL items.

  20. CRYOGENIC UPPER STAGE SYSTEM SAFETY

    NASA Technical Reports Server (NTRS)

    Smith, R. Kenneth; French, James V.; LaRue, Peter F.; Taylor, James L.; Pollard, Kathy (Technical Monitor)

    2005-01-01

    NASA s Exploration Initiative will require development of many new systems or systems of systems. One specific example is that safe, affordable, and reliable upper stage systems to place cargo and crew in stable low earth orbit are urgently required. In this paper, we examine the failure history of previous upper stages with liquid oxygen (LOX)/liquid hydrogen (LH2) propulsion systems. Launch data from 1964 until midyear 2005 are analyzed and presented. This data analysis covers upper stage systems from the Ariane, Centaur, H-IIA, Saturn, and Atlas in addition to other vehicles. Upper stage propulsion system elements have the highest impact on reliability. This paper discusses failure occurrence in all aspects of the operational phases (Le., initial burn, coast, restarts, and trends in failure rates over time). In an effort to understand the likelihood of future failures in flight, we present timelines of engine system failures relevant to initial flight histories. Some evidence suggests that propulsion system failures as a result of design problems occur shortly after initial development of the propulsion system; whereas failures because of manufacturing or assembly processing errors may occur during any phase of the system builds process, This paper also explores the detectability of historical failures. Observations from this review are used to ascertain the potential for increased upper stage reliability given investments in integrated system health management. Based on a clear understanding of the failure and success history of previous efforts by multiple space hardware development groups, the paper will investigate potential improvements that can be realized through application of system safety principles.

  1. Independent Orbiter Assessment (IOA): Assessment of the remote manipulator system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Tangorra, F.; Grasmeder, R. F.; Montgomery, A. D.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Remote Manipulator System (RMS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter RMS hardware are documented. The IOA product for the RMS analysis consisted of 604 failure mode worksheets that resulted in 458 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 45 FMEAs and 321 CIL items. This comparison produced agreement on all but 154 FMEAs which caused differences in 137 CIL items.

  2. Independent Orbiter Assessment (IOA): Assessment of the hydraulics/water spray boiler subsystem

    NASA Technical Reports Server (NTRS)

    Bynum, M. C.; Duval, J. D.; Parkman, W. E.; Davidson, W. R.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Hydraulics/Water Spray Boiler (HYD/WSB) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter HYD/WSB hardware. The IOA product for the HYD/WSB analysis consisted of 447 failure mode worksheets that resulted in 183 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 364 FMEAs and 111 CIL items. This comparison produced agreement on all but 68 FMEAs which caused differences in 23 CIL items.

  3. Competing risk models in reliability systems, an exponential distribution model with Bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, I.

    2018-03-01

    The exponential distribution is the most widely used reliability analysis. This distribution is very suitable for representing the lengths of life of many cases and is available in a simple statistical form. The characteristic of this distribution is a constant hazard rate. The exponential distribution is the lower rank of the Weibull distributions. In this paper our effort is to introduce the basic notions that constitute an exponential competing risks model in reliability analysis using Bayesian analysis approach and presenting their analytic methods. The cases are limited to the models with independent causes of failure. A non-informative prior distribution is used in our analysis. This model describes the likelihood function and follows with the description of the posterior function and the estimations of the point, interval, hazard function, and reliability. The net probability of failure if only one specific risk is present, crude probability of failure due to a specific risk in the presence of other causes, and partial crude probabilities are also included.

  4. Independent Orbiter Assessment (IOA): Assessment of the Electrical Power Distribution and Control/Electrical Power Generation (EPD and C/EPG) FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Mccants, C. N.; Bearrow, M.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Distribution and Control/Electrical Power Generation (EPD and C/EPG) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison was provided through additional analysis as required. The results of that comparison is documented for the Orbiter EPD and C/EPG hardware. The IOA product for the EPD and C/EPG analysis consisted of 263 failure mode worksheets that resulted in 42 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 211 FMEA and 47 CIL items.

  5. Independent Orbiter Assessment (IOA): Assessment of the auxiliary power unit

    NASA Technical Reports Server (NTRS)

    Barnes, J. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Auxiliary Power Unit (APU) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter APU hardware. The IOA product for the APU analysis, covering both APU hardware and APU electrical components, consisted of 344 failure mode worksheets that resulted in 178 potential critical items being identified. A comparison was made of the IOA product to the NASA APU hardware FMEA/CIL baseline which consisted of 184 FMEAs and 57 CIL items. The comparison identified 72 discrepancies.

  6. Independent Orbiter Assessment (IOA): Assessment of the guidance, navigation, and control subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Drapela, L. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Guidance, Navigation, and Control System (GNC) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter GNC hardware is documented. The IOA product for the GNC analysis consisted of 141 failure mode worksheets that resulted in 24 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 148 FMEAs and 36 CIL items. This comparison produced agreement on all but 56 FMEAs which caused differences in zero CIL items.

  7. Application of Failure Mode and Effect Analysis (FMEA), cause and effect analysis, and Pareto diagram in conjunction with HACCP to a corn curl manufacturing plant.

    PubMed

    Varzakas, Theodoros H; Arvanitoyannis, Ioannis S

    2007-01-01

    The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of corn curl manufacturing. A tentative approach of FMEA application to the snacks industry was attempted in an effort to exclude the presence of GMOs in the final product. This is of crucial importance both from the ethics and the legislation (Regulations EC 1829/2003; EC 1830/2003; Directive EC 18/2001) point of view. The Preliminary Hazard Analysis and the Fault Tree Analysis were used to analyze and predict the occurring failure modes in a food chain system (corn curls processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and the fishbone diagram). Finally, Pareto diagrams were employed towards the optimization of GMOs detection potential of FMEA.

  8. Independent Orbiter Assessment (IOA): Assessment of the body flap subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Body Flap (BF) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BF hardware. The IOA product for the BF analysis consisted of 43 failure mode worksheets that resulted in 19 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 34 FMEAs and 15 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  9. Independent Orbiter Assessment (IOA): Assessment of the elevon actuator subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Elevon Subsystem hardware, generating draft failure modes, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Elevon hardware. The IOA product for the Elevon analysis consisted of 25 failure mode worksheets that resulted in 17 potential critical items being identified. Comparison was made to the NASA FMEA/CIL, which consisted of 23 FMEAs and 13 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  10. Independent Orbiter Assessment (IOA): Assessment of instrumental subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Gardner, J. R.; Addis, A. W.

    1988-01-01

    The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). The IOA effort first completed an analysis of the Instrumentation hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter Instrumentation hardware are documented. The IOA product for Instrumentation analysis consisted of 107 failure mode worksheets that resulted in 22 critical items being identified. Comparison was made to the Pre 51-L NASA baseline with 14 Post 51-L FMEAs added, which consists of 96 FMEAs and 18 CIL items. This comparison produced agreement on all but 25 FMEAs which caused differences in 5 CIL items.

  11. Compression After Impact on Honeycomb Core Sandwich Panels with Thin Facesheets, Part 2: Analysis

    NASA Technical Reports Server (NTRS)

    Mcquigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2012-01-01

    A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part 2, the subject of the current paper, is focused on the analysis, which corresponds to the CAI testings described in Part 1. Of interest, are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of materials, which were identical with the exception of the density of the honeycomb core, were tested in Part 1. The results highlighted the need for analysis methods which taken into account multiple failure modes. A finite element model (FEM) is developed here, in Part 2. A commercial implementation of the Multicontinuum Failure Theory (MCT) for progressive failure analysis (PFA) in composite laminates, Helius:MCT, is included in this model. The inclusion of PFA in the present model provided a new, unique ability to account for multiple failure modes. In addition, significant impact damage detail is included in the model. A sensitivity study, used to assess the effect of each damage parameter on overall analysis results, is included in an appendix. Analysis results are compared to the experimental results for each of the 32 CAI sandwich panel specimens tested to failure. The failure of each specimen is predicted using the high-fidelity, physicsbased analysis model developed here, and the results highlight key improvements in the understanding of honeycomb core sandwich panel CAI failure. Finally, a parametric study highlights the strength benefits compared to mass penalty for various core densities.

  12. 48 CFR 52.219-16 - Liquidated Damages-Subcontracting Plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... following clause: Liquidated Damages—Subcontracting Plan (JAN 1999) (a) Failure to make a good faith effort... has failed to make such good faith effort, the Contracting Officer shall give the Contractor written notice specifying the failure and permitting the Contractor to demonstrate what good faith efforts have...

  13. Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/fuel cell powerplant subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Brown, K. L.; Bertsch, P. J.

    1987-01-01

    Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Generation/Fuel Cell Powerplant (EPG/FCP) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EPG/FCP hardware.

  14. The Shuttle processing contractors (SPC) reliability program at the Kennedy Space Center - The real world

    NASA Astrophysics Data System (ADS)

    McCrea, Terry

    The Shuttle Processing Contract (SPC) workforce consists of Lockheed Space Operations Co. as prime contractor, with Grumman, Thiokol Corporation, and Johnson Controls World Services as subcontractors. During the design phase, reliability engineering is instrumental in influencing the development of systems that meet the Shuttle fail-safe program requirements. Reliability engineers accomplish this objective by performing FMEA (failure modes and effects analysis) to identify potential single failure points. When technology, time, or resources do not permit a redesign to eliminate a single failure point, the single failure point information is formatted into a change request and presented to senior management of SPC and NASA for risk acceptance. In parallel with the FMEA, safety engineering conducts a hazard analysis to assure that potential hazards to personnel are assessed. The combined effort (FMEA and hazard analysis) is published as a system assurance analysis. Special ground rules and techniques are developed to perform and present the analysis. The reliability program at KSC is vigorously pursued, and has been extremely successful. The ground support equipment and facilities used to launch and land the Space Shuttle maintain an excellent reliability record.

  15. Independent Orbiter Assessment (IOA): Analysis of the nose wheel steering subsystem

    NASA Technical Reports Server (NTRS)

    Mediavilla, Anthony Scott

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Nose Wheel Steering (NWS) hardware are documented. The NWS hardware provides primary directional control for the Orbiter vehicle during landing rollout. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The original NWS design was envisioned as a backup system to differential braking for directional control of the Orbiter during landing rollout. No real effort was made to design the NWS system as fail operational. The brakes have much redundancy built into their design but the poor brake/tire performance has forced the NSTS to upgrade NWS to the primary mode of directional control during rollout. As a result, a large percentage of the NWS system components have become Potential Critical Items (PCI).

  16. Is psychology suffering from a replication crisis? What does "failure to replicate" really mean?

    PubMed

    Maxwell, Scott E; Lau, Michael Y; Howard, George S

    2015-09-01

    Psychology has recently been viewed as facing a replication crisis because efforts to replicate past study findings frequently do not show the same result. Often, the first study showed a statistically significant result but the replication does not. Questions then arise about whether the first study results were false positives, and whether the replication study correctly indicates that there is truly no effect after all. This article suggests these so-called failures to replicate may not be failures at all, but rather are the result of low statistical power in single replication studies, and the result of failure to appreciate the need for multiple replications in order to have enough power to identify true effects. We provide examples of these power problems and suggest some solutions using Bayesian statistics and meta-analysis. Although the need for multiple replication studies may frustrate those who would prefer quick answers to psychology's alleged crisis, the large sample sizes typically needed to provide firm evidence will almost always require concerted efforts from multiple investigators. As a result, it remains to be seen how many of the recently claimed failures to replicate will be supported or instead may turn out to be artifacts of inadequate sample sizes and single study replications. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  17. Spatial correlation analysis of cascading failures: Congestions and Blackouts

    PubMed Central

    Daqing, Li; Yinan, Jiang; Rui, Kang; Havlin, Shlomo

    2014-01-01

    Cascading failures have become major threats to network robustness due to their potential catastrophic consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading via direct contacts due to structural interdependencies, overload failures usually propagate through collective interactions among system components. Despite the critical need in developing protection or mitigation strategies in networks such as power grids and transportation, the propagation behavior of cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards improving actively system resilience ranging from evaluation of design schemes, development of protection strategies to implementation of mitigation programs. PMID:24946927

  18. Missile and Space Systems Reliability versus Cost Trade-Off Study

    DTIC Science & Technology

    1983-01-01

    F00-1C09 Robert C. Schneider F00-1C09 V . PERFORMING ORGANIZATION NAME AM0 ADDRESS 16 PRGRAM ELEMENT. PROJECT. TASK BoeingAerosace CmpAnyA CA WORK UNIT...reliability problems, which has the - real bearing on program effectiveness. A well planned and funded reliability effort can prevent or ferret out...failure analysis, and the in- corporation and verification of design corrections to prevent recurrence of failures. 302.2.2 A TMJ test plan shall be

  19. Effect of failure/success feedback and the moderating influence of personality on reward motivation.

    PubMed

    Anand, Deepika; Oehlberg, Katherine A; Treadway, Michael T; Nusslock, Robin

    2016-01-01

    While motivation to pursue goals is often assumed to be a trait-like characteristic, it is influenced by a variety of situational factors. In particular, recent experiences of success or failure, as well as cognitive responses to these outcomes, may shape subsequent willingness to expend effort for future rewards. To date, however, these effects have not been explicitly tested. In the present study, 131 healthy individuals received either failure or success feedback on a cognitive task. They were then instructed to either ruminate or distract themselves from their emotions. Finally, they completed the Effort Expenditure for Rewards Task, a laboratory measure of reward motivation. Results indicate that participants who received failure feedback relied more strongly on the reward magnitude when choosing whether to exert greater effort to obtain larger rewards, though this effect only held under conditions of significant uncertainty about whether the effort would be rewarded. Further, participants with high levels of trait inhibition were less responsive to reward value and probability when choosing whether to expend greater effort, results that echo past studies of effort-based decision-making in psychological disorders.

  20. Spacecraft and propulsion technician error

    NASA Astrophysics Data System (ADS)

    Schultz, Daniel Clyde

    Commercial aviation and commercial space similarly launch, fly, and land passenger vehicles. Unlike aviation, the U.S. government has not established maintenance policies for commercial space. This study conducted a mixed methods review of 610 U.S. space launches from 1984 through 2011, which included 31 failures. An analysis of the failure causal factors showed that human error accounted for 76% of those failures, which included workmanship error accounting for 29% of the failures. With the imminent future of commercial space travel, the increased potential for the loss of human life demands that changes be made to the standardized procedures, training, and certification to reduce human error and failure rates. Several recommendations were made by this study to the FAA's Office of Commercial Space Transportation, space launch vehicle operators, and maintenance technician schools in an effort to increase the safety of the space transportation passengers.

  1. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Astrophysics Data System (ADS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-08-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  2. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 4

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 4 continues the presentation of IOA worksheets and contains the potential critical items list.

  3. Nonlinear and progressive failure aspects of transport composite fuselage damage tolerance

    NASA Technical Reports Server (NTRS)

    Walker, Tom; Ilcewicz, L.; Murphy, Dan; Dopker, Bernhard

    1993-01-01

    The purpose is to provide an end-user's perspective on the state of the art in life prediction and failure analysis by focusing on subsonic transport fuselage issues being addressed in the NASA/Boeing Advanced Technology Composite Aircraft Structure (ATCAS) contract and a related task-order contract. First, some discrepancies between the ATCAS tension-fracture test database and classical prediction methods is discussed, followed by an overview of material modeling work aimed at explaining some of these discrepancies. Finally, analysis efforts associated with a pressure-box test fixture are addressed, as an illustration of modeling complexities required to model and interpret tests.

  4. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    NASA Technical Reports Server (NTRS)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-01-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  5. Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/power reactant storage and distribution subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Ames, B. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA effort first completed an analysis of the Electrical Power Generation/Power Reactant Storage and Distribution (EPG/PRSD) subsystem hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baselines with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison are documented for the Orbiter EPG/PRSD hardware. The comparison produced agreement on all but 27 FMEAs and 9 CIL items. The discrepancy between the number of IOA findings and NASA FMEAs can be partially explained by the different approaches used by IOA and NASA to group failure modes together to form one FMEA. Also, several IOA items represented inner tank components and ground operations failure modes which were not in the NASA baseline.

  6. Characteristics of Male and Female Students Who Experienced Success or Failure in Their First College Science Course.

    ERIC Educational Resources Information Center

    DeBoer, George E.

    1985-01-01

    Examined personality (persistence, future orientation, and the tendency toward reckless/rash behavior) and cognitive factors related to success or failure in college science courses. One finding noted is that both men and women were more apt to attribute their success to effort/ability, and their failure to the difficulty of a task. (JN)

  7. Experiences with Two Reliability Data Collection Efforts (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, S.; Lantz, E.

    2013-08-01

    This presentation, given by NREL at the Wind Reliability Experts Meeting in Albuquerque, New Mexico, outlines the causes of wind plant operational expenditures and gearbox failures and describes NREL's efforts to create a gearbox failure database.

  8. Bounding the Failure Probability Range of Polynomial Systems Subject to P-box Uncertainties

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2012-01-01

    This paper proposes a reliability analysis framework for systems subject to multiple design requirements that depend polynomially on the uncertainty. Uncertainty is prescribed by probability boxes, also known as p-boxes, whose distribution functions have free or fixed functional forms. An approach based on the Bernstein expansion of polynomials and optimization is proposed. In particular, we search for the elements of a multi-dimensional p-box that minimize (i.e., the best-case) and maximize (i.e., the worst-case) the probability of inner and outer bounding sets of the failure domain. This technique yields intervals that bound the range of failure probabilities. The offset between this bounding interval and the actual failure probability range can be made arbitrarily tight with additional computational effort.

  9. Independent Orbiter Assessment (IOA): Assessment of the extravehicular mobility unit, volume 2

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort performed an independent analysis of the Extravehicular Mobility Unit (EMU) hardware and system, generating draft failure modes criticalities and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the most recent proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EMU hardware. Volume 2 continues the presentation of IOA analysis worksheets and contains the potential critical items list and NASA FMEA to IOA worksheet cross references and recommendations.

  10. The Full Spectrum of Clinical Ethical Issues in Kidney Failure. Findings of a Systematic Qualitative Review.

    PubMed

    Kahrass, Hannes; Strech, Daniel; Mertz, Marcel

    2016-01-01

    When treating patients with kidney failure, unavoidable ethical issues often arise. Current clinical practice guidelines some of them, but lack comprehensive information about the full range of relevant ethical issues in kidney failure. A systematic literature review of such ethical issues supports medical professionalism in nephrology, and offers a solid evidential base for efforts that aim to improve ethical conduct in health care. To identify the full spectrum of clinical ethical issues that can arise for patients with kidney failure in a systematic and transparent manner. A systematic review in Medline (publications in English or German between 2000 and 2014) and Google Books (with no restrictions) was conducted. Ethical issues were identified by qualitative text analysis and normative analysis. The literature review retrieved 106 references that together mentioned 27 ethical issues in clinical care of kidney failure. This set of ethical issues was structured into a matrix consisting of seven major categories and further first and second-order categories. The systematically-derived matrix helps raise awareness and understanding of the complexity of ethical issues in kidney failure. It can be used to identify ethical issues that should be addressed in specific training programs for clinicians, clinical practice guidelines, or other types of policies dealing with kidney failure.

  11. The Full Spectrum of Clinical Ethical Issues in Kidney Failure. Findings of a Systematic Qualitative Review

    PubMed Central

    Kahrass, Hannes; Strech, Daniel; Mertz, Marcel

    2016-01-01

    Background When treating patients with kidney failure, unavoidable ethical issues often arise. Current clinical practice guidelines some of them, but lack comprehensive information about the full range of relevant ethical issues in kidney failure. A systematic literature review of such ethical issues supports medical professionalism in nephrology, and offers a solid evidential base for efforts that aim to improve ethical conduct in health care. Aim To identify the full spectrum of clinical ethical issues that can arise for patients with kidney failure in a systematic and transparent manner. Method A systematic review in Medline (publications in English or German between 2000 and 2014) and Google Books (with no restrictions) was conducted. Ethical issues were identified by qualitative text analysis and normative analysis. Results The literature review retrieved 106 references that together mentioned 27 ethical issues in clinical care of kidney failure. This set of ethical issues was structured into a matrix consisting of seven major categories and further first and second-order categories. Conclusions The systematically-derived matrix helps raise awareness and understanding of the complexity of ethical issues in kidney failure. It can be used to identify ethical issues that should be addressed in specific training programs for clinicians, clinical practice guidelines, or other types of policies dealing with kidney failure. PMID:26938863

  12. Independent Orbiter Assessment (IOA): Assessment of the rudder/speed brake subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Rudder/Speed Brake (RSB) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline along with the proposed Post 51-L CIL updates included. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter RSB hardware. The IOA product for the RSB analysis consisted of 38 failure mode worksheets that resulted in 27 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 34 FMEAs and 18 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  13. Independent Orbiter Assessment (IOA): Assessment of the manned maneuvering unit

    NASA Technical Reports Server (NTRS)

    Huynh, M.; Duffy, R. E.; Saiidi, M. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Manned Maneuvering Unit (MMU) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contain within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Martin Marietta FMEA/CIL Post 51-L updates. A discussion of each discrepancy from the comparison is provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. The results of this comparison for the Orbiter MMU hardware are documented. The IOA product for the MMU analysis consisted of 204 failure mode worksheets that resulted in 95 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 179 FMEAs and 110 CIL items. This comparison produced agreement on all 121 FMEAs which caused differences in 92 CIL items.

  14. Independent Orbiter Assessment (IOA): Assessment of the landing/deceleration (LDG/DEC) subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Odonnell, R. A.; Weissinger, D.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Landing/Deceleration (LDG/DEC) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter LDG/DEC hardware. The IOA product for the LDG/DEC analysis consisted of 259 failure mode worksheets that resulted in 124 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 267 FMEA's and 120 CIL items. This comparison produced agreement on all but 75 FMEA's which caused differences in 51 CIL items.

  15. Independent Orbiter Assessment (IOA): Assessment of the ascent thrust vector control actuator subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Ascent Thrust Vector Control Actuator (ATVD) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter ATVC hardware. The IOA product for the ATVC actuator analysis consisted of 25 failure mode worksheets that resulted in 16 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 21 FMEAs and 13 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.

  16. Tutoring for Success: Empowering Graduate Nurses After Failure on the NCLEX-RN.

    PubMed

    Lutter, Stacy L; Thompson, Cheryl W; Condon, Marian C

    2017-12-01

    Failure on the National Council Licensure Examination for Registered Nurses (NCLEX-RN) is a devastating experience. Most research related to NCLEX-RN is focused on predicting and preventing failure. Despite these efforts, more than 20,000 nursing school graduates experience failure on the NCLEX-RN each year, and there is a paucity of literature regarding remediation after failure. The aim of this article is to describe an individualized tutoring approach centered on establishing a trusting relationship and incorporating two core strategies for remediation: the nugget method, and a six-step strategy for question analysis. This individualized tutoring method has been used by three nursing faculty with a 95% success rate on an NCLEX retake attempt. Further research is needed to identify the elements of this tutoring method that influence success. [J Nurs Educ. 2017;56(12):758-761.]. Copyright 2017, SLACK Incorporated.

  17. The Local Wind Pump for Marginal Societies in Indonesia: A Perspective of Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Gunawan, Insan; Taufik, Ahmad

    2007-10-01

    There are many efforts to reduce a cost of investment of well established hybrid wind pump applied to rural areas. A recent study on a local wind pump (LWP) for marginal societies in Indonesia (traditional farmers, peasant and tribes) was one of the efforts reporting a new application area. The objectives of the study were defined to measure reliability value of the LWP due to fluctuated wind intensity, low wind speed, economic point of view regarding a prolong economic crisis occurring and an available local component of the LWP and to sustain economics productivity (agriculture product) of the society. In the study, a fault tree analysis (FTA) was deployed as one of three methods used for assessing the LWP. In this article, the FTA has been thoroughly discussed in order to improve a better performance of the LWP applied in dry land watering system of Mesuji district of Lampung province-Indonesia. In the early stage, all of local component of the LWP was classified in term of its function. There were four groups of the components. Moreover, all of the sub components of each group were subjected to failure modes of the FTA, namely (1) primary failure modes; (2) secondary failure modes and (3) common failure modes. In the data processing stage, an available software package, ITEM was deployed. It was observed that the component indicated obtaining relative a long life duration of operational life cycle in 1,666 hours. Moreover, to enhance high performance the LWP, maintenance schedule, critical sub component suffering from failure and an overhaul priority have been identified in term of quantity values. Throughout a year pilot project, it can be concluded that the LWP is a reliable product to the societies enhancing their economics productivities.

  18. Personal and Interpersonal Motivation for Group Projects: Replications of an Attributional Analysis

    ERIC Educational Resources Information Center

    Peterson, Sarah E.; Schreiber, James B.

    2012-01-01

    We report the results of two replication studies using attribution theory to analyze personal and interpersonal motivation for collaborative projects. Undergraduate students responded to questionnaires containing hypothetical vignettes depicting success or failure outcomes due to ability or effort for dyads working on a group project. Dependent…

  19. Surveys for sensitivity to fibers and potential impacts from fiber induced failures

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.

    1979-01-01

    The surveys for sensitivities to fibers and potential impacts from fiber induced failures begins with a review of the survey work completed to date and then describes an impact study involving four industrial installations located in Virginia. The observations and results from both the surveys and the study provide guidelines for future efforts. The survey work was done with three broad objectives: (1) identify the pieces of potentially vulnerable equipment as candidates for test; (2) support the transfer function work by gaining an understanding of how fibers could get into a building; and (3) support the economic analysis by understanding what would happen if fibers precipitated a failure in an item of equipment.

  20. Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  1. Uncertainty Analysis via Failure Domain Characterization: Unrestricted Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. The methods developed herein, which are based on nonlinear constrained optimization, are applicable to requirement functions whose functional dependency on the uncertainty is arbitrary and whose explicit form may even be unknown. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the assumed uncertainty model (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  2. Improved Multi-Axial, Temperature and Time Dependent (MATT) Failure Model

    NASA Technical Reports Server (NTRS)

    Richardson, D. E.; Anderson, G. L.; Macon, D. J.

    2002-01-01

    An extensive effort has recently been completed by the Space Shuttle's Reusable Solid Rocket Motor (RSRM) nozzle program to completely characterize the effects of multi-axial loading, temperature and time on the failure characteristics of three filled epoxy adhesives (TIGA 321, EA913NA, EA946). As part of this effort, a single general failure criterion was developed that accounted for these effects simultaneously. This model was named the Multi- Axial, Temperature, and Time Dependent or MATT failure criterion. Due to the intricate nature of the failure criterion, some parameters were required to be calculated using complex equations or numerical methods. This paper documents some simple but accurate modifications to the failure criterion to allow for calculations of failure conditions without complex equations or numerical techniques.

  3. Independent Orbiter Assessment (IOA): Assessment of the purge, vent and drain subsystem

    NASA Technical Reports Server (NTRS)

    Bynum, M. C., III

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Purge, Vent and Drain (PV and D) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter PV and D hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET disconnect.

  4. Application of Weibull analysis to SSME hardware

    NASA Technical Reports Server (NTRS)

    Gray, L. A. B.

    1986-01-01

    Generally, it has been documented that the wearing of engine parts forms a failure distribution which can be approximated by a function developed by Weibull. The purpose here is to examine to what extent the Weibull distribution approximates failure data for designated engine parts of the Space Shuttle Main Engine (SSME). The current testing certification requirements will be examined in order to establish confidence levels. An examination of the failure history of SSME parts/assemblies (turbine blades, main combustion chamber, or high pressure fuel pump first stage impellers) which are limited in usage by time or starts will be done by using updated Weibull techniques. Efforts will be made by the investigator to predict failure trends by using Weibull techniques for SSME parts (turbine temperature sensors, chamber pressure transducers, actuators, and controllers) which are not severely limited by time or starts.

  5. Lessons regarding the safety of orthopaedic patient care: an analysis of four hundred and sixty-four closed malpractice claims.

    PubMed

    Matsen, Frederick A; Stephens, Linda; Jette, Jocelyn L; Warme, Winston J; Posner, Karen L

    2013-02-20

    An orthopaedic malpractice claim alleges that the patient sustained a preventable iatrogenic injury. The analysis of a representative series of malpractice claims provides a unique view of alleged orthopaedic adverse events, revealing what can potentially go wrong across a spectrum of practice settings and anatomic locations. The goal of this study was to identify high-impact targets in order to institute measures to reduce claims through efforts focused on patient safety. The authors investigated 464 consecutive closed malpractice claims from the nation's largest insurer of medical liability. We analyzed the claims by anatomical site, type of care rendered, type of allegation, and payment. We calculated an "impact factor" for each claim type by dividing the percentage of total payments for each type by the percentage of total claims for that type. Our analysis revealed major concerns regarding patient safety within this series of malpractice claims. One-third of the claims alleged permanent disabling injuries, including amputations, brain damage, and major nerve damage. The highest impact allegations were failure to protect structures in the surgical field (41% of total payments to plaintiffs, 15% of all claims, impact factor of 2.7) and failure to prevent, diagnose, and/or treat complications of treatment (16% of total payments, 7% of all claims, impact factor of 2.3). Spine procedures had high impact (1.9), representing 28% of dollars paid and 15% of claims, with 45% of spine claims involving death or severe permanent injury. Failure of implant positioning was commonly alleged in hip and knee arthroplasty. In claims related to fracture care, the most common allegations were related to malunions, nonunions, dislocations, failure to protect structures in the surgical field, infection, and treatment complications. Total payment for the eighty-eight claims paid was $17,917,614 (U.S. dollars adjusted to 2009). Regarding clinical relevance, this analysis suggests risk areas for targeted efforts to improve patient safety and reduce malpractice claims.

  6. Final report of coordination and cooperation with the European Union on embankment failure analysis

    USDA-ARS?s Scientific Manuscript database

    There has been an emphasis in the European Union (EU) community on the investigation of extreme flood processes and the uncertainties related to these processes. Over a 3-year period, the EU and the U.S. dam safety community (1) coordinated their efforts and collected information needed to integrate...

  7. Carbon Fiber Risk Analysis. [conference

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The scope and status of the effort to assess the risks associated with the accidental release of carbon/graphite fibers from civil aircraft is presented. Vulnerability of electrical and electronic equipment to carbon fibers, dispersal of carbon fibers, effectiveness of filtering systems, impact of fiber induced failures, and risk methodology are among the topics covered.

  8. Ultra Reliable Closed Loop Life Support for Long Space Missions

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  9. Construction and initial validation of the self-worth protection scale.

    PubMed

    Thompson, Ted; Dinnel, Dale L

    2003-03-01

    The self-worth theory of achievement motivation holds that in certain circumstances students stand to gain by deliberately withdrawing effort. When failure occurs despite effort, students are likely to conclude that failure resulted from lack of ability. Thus, withdrawing effort offers a defence against conclusions of low ability, thereby protecting self-worth. We undertook to assess the psychometric properties of the Self-Worth Protection Scale (SWPS). Data were obtained from 243 participants (Study 1) and 411 participants (Study 2) enrolled in undergraduate psychology courses at a university in the United States. We administered a number of scales, including the SWPS and scales assessing a fear of negative evaluation, academic self-esteem, uncertain global self-evaluations, self-handicapping, and causal uncertainty. Exploratory factor analysis indicated a three-factor solution (ability doubts, the importance of ability as a criterion of self-worth, and an avoidance orientation) utilising 33 of the original 44 items. A confirmatory factor analysis indicated that this three-factor solution was a poor fit of the data. After modifying the model, a confirmatory factor analysis indicated that a three-factor solution with 26 of the original items and a higher order factor of self-worth protection was an adequate fit of the data. Reliability measures were acceptable for the three subscales and total score. The total score of the SWPS was positively correlated with theoretically related constructs, demonstrating construct validity. The SWPS appears to be a psychometrically sound scale to assist in identifying individuals who manifest self-worth protection in achievement situations.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hueter, J.M.

    Creativity involves the associating of hitherto unrelated elements to form a new and useful combination. All have the ability but most seldom use it because of some false beliefs and failure to understand the creative process. Deterrents to creativity include fear of criticism, narrowness of education and training, habit, negative attitudes toward problems, lack of motivation, lack of self-confidence, lack of courage and discouragement by failures. The recognition and development of creative ideas requires mental effort, an open mind, searching seemingly unrelated fields and definition of the problem. Brainstorming is widely used to produce alternate ideas. Modifications of it aremore » the Gordon Technique and Synectics. Morphological analysis and the examination of attributes are other aids to creativity. Recognition of a need, or of a new use of an old idea can be helpful. Management should encourage attempts at creativity. If the will exists, creativity can be developed by conscious effort instead of being left to chance.« less

  11. Refusal to participate in heart failure studies: do age and gender matter?

    PubMed Central

    Harrison, Jordan M; Jung, Miyeon; Lennie, Terry A; Moser, Debra K; Smith, Dean G; Dunbar, Sandra B; Ronis, David L; Koelling, Todd M; Giordani, Bruno; Riley, Penny L; Pressler, Susan J

    2018-01-01

    Aims and objectives The objective of this retrospective study was to evaluate reasons heart failure patients decline study participation, to inform interventions to improve enrollment. Background Failure to enrol older heart failure patients (age > 65) and women in studies may lead to sampling bias, threatening study validity. Design This study was a retrospective analysis of refusal data from four heart failure studies that enrolled 788 patients in four states. Methods Chi-Square and a pooled t-test were computed to analyse refusal data (n = 300) obtained from heart failure patients who were invited to participate in one of the four studies but declined. Results Refusal reasons from 300 patients (66% men, mean age 65 33) included: not interested (n = 163), too busy (n = 64), travel burden (n = 50), too sick (n = 38), family problems (n = 14), too much commitment (n = 13) and privacy concerns (n = 4). Chi-Square analyses showed no differences in frequency of reasons (p > 0 05) between men and women. Patients who refused were older, on average, than study participants. Conclusions Some reasons were patient-dependent; others were study-dependent. With ‘not interested’ as the most common reason, cited by over 50% of patients who declined, recruitment measures should be targeted at stimulating patients’ interest. Additional efforts may be needed to recruit older participants. However, reasons for refusal were consistent regardless of gender. Relevance to clinical practice Heart failure researchers should proactively approach a greater proportion of women and patients over age 65. With no gender differences in type of reasons for refusal, similar recruitment strategies can be used for men and women. However, enrolment of a representative proportion of women in heart failure studies has proven elusive and may require significant effort from researchers. Employing strategies to stimulate interest in studies is essential for recruiting heart failure patients, who overwhelmingly cited lack of interest as the top reason for refusal. PMID:26914834

  12. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon

    2009-01-01

    Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.

  13. Using Combined SFTA and SFMECA Techniques for Space Critical Software

    NASA Astrophysics Data System (ADS)

    Nicodemos, F. G.; Lahoz, C. H. N.; Abdala, M. A. D.; Saotome, O.

    2012-01-01

    This work addresses the combined Software Fault Tree Analysis (SFTA) and Software Failure Modes, Effects and Criticality Analysis (SFMECA) techniques applied to space critical software of satellite launch vehicles. The combined approach is under research as part of the Verification and Validation (V&V) efforts to increase software dependability and as future application in other projects under development at Instituto de Aeronáutica e Espaço (IAE). The applicability of such approach was conducted on system software specification and applied to a case study based on the Brazilian Satellite Launcher (VLS). The main goal is to identify possible failure causes and obtain compensating provisions that lead to inclusion of new functional and non-functional system software requirements.

  14. Independent Orbiter Assessment (IOA): Assessment of the orbital maneuvering system FMEA/CIL, volume 1

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Haufler, W. A.; Marino, A. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbital Maneuvering System (OMS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter OMS hardware. The IOA analysis defined the OMS as being comprised of the following subsystems: helium pressurization, propellant storage and distribution, Orbital Maneuvering Engine, and EPD and C. The IOA product for the OMS analysis consisted of 284 hardware and 667 EPD and C failure mode worksheets that resulted in 160 hardware and 216 EPD and C potential critical items (PCIs) being identified. A comparison was made of the IOA product to the NASA FMEA/CIL baseline which consisted of 101 hardware and 142 EPD and C CIL items.

  15. Hyper-X Stage Separation: Simulation Development and Results

    NASA Technical Reports Server (NTRS)

    Reubush, David E.; Martin, John G.; Robinson, Jeffrey S.; Bose, David M.; Strovers, Brian K.

    2001-01-01

    This paper provides an overview of stage separation simulation development and results for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current 14 degree of freedom stage separation simulation tool (SepSim) and results from use of the tool in a Monte Carlo analysis to evaluate the risk of failure for the separation event. Results from use of the tool show that there is only a very small risk of failure in the separation event.

  16. Independent Orbiter Assessment (IOA): Assessment of the atmospheric revitalization pressure control subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Saiidi, M. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the atmospheric Revitalization Pressure Control Subsystem (ARPCS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL proposed Post 51-L updates based upon the CCB/PRCB presentations and an informal criticality summary listing. A discussion of each discrepancy from the comparison is provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. This report documents the results of that comparison for the Orbiter ARPCS hardware.

  17. Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    NASA Technical Reports Server (NTRS)

    Johnston, A. R.; Peng, T. K. C.; Vivian, H. C.; Wang, P. K.

    1978-01-01

    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard.

  18. Independent Orbiter Assessment (IOA): Assessment of the orbital maneuvering subsystem, volume 2

    NASA Technical Reports Server (NTRS)

    Haufler, W. A.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbital Maneuvering System (OMS) hardware and electrical power distribution and control (EPD and C), generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter OMS hardware and EPD and C systems. Volume 2 continues the presentation of IOA worksheets and contains the critical items list and the NASA FMEA to IOA worksheet cross reference and recommendations.

  19. Cerebrospinal Fluid Shunting Complications in Children

    PubMed Central

    Hanak, Brian W.; Bonow, Robert H.; Harris, Carolyn A.; Browd, Samuel R.

    2018-01-01

    Although cerebrospinal fluid (CSF) shunt placement is the most common procedure performed by pediatric neurosurgeons, shunts remain among the most failure-prone life-sustaining medical devices implanted in modern medical practice. This article provides an overview of the mechanisms of CSF shunt failure for the 3 most commonly employed definitive CSF shunts in the practice of pediatric neurosurgery: ventriculoperitoneal, ventriculopleural, and ventriculoatrial. The text has been partitioned into the broad modes of shunt failure: obstruction, infection, mechanical shunt failure, overdrainage, and distal catheter site-specific failures. Clinical management strategies for the various modes of shunt failure are discussed as are research efforts directed towards reducing shunt complication rates. As it is unlikely that CSF shunting will become an obsolete procedure in the foreseeable future, it is incumbent on the pediatric neurosurgery community to maintain focused efforts to improve our understanding of and management strategies for shunt failure and shunt-related morbidity. PMID:28249297

  20. Delicate Moments: Kids Talk about Socially Complicated Issues. Occasional Paper Series 19

    ERIC Educational Resources Information Center

    Bauman, Amy

    2007-01-01

    The author offers an analysis of the failures and insights she experienced working with adolescents at a progressive school while discussing how the students understood and experienced race and identity -- their own and that of others. While she encountered students who were willing to take her into their worlds, her efforts fell flat when her…

  1. Teachers Making Sense of Result-Oriented Teams: A Cognitive Anthropological Approach to Educational Change

    ERIC Educational Resources Information Center

    Wierenga, Sijko J.; Kamsteeg, Frans H.; Simons, P. Robert Jan; Veenswijk, Marcel

    2015-01-01

    Studies on educational change efforts abound but generally limit themselves to post hoc explanations of failure and success. Such explanations are rarely turned into attempts at providing models for predicting change outcomes. The present study tries to develop such a model based on the teachers' impact analysis of a management-driven…

  2. Shifting Engagement Efforts through Disciplinary Departments: A Mistake or A Starting Point? A Cross-Institutional, Multidepartment Analysis

    ERIC Educational Resources Information Center

    Lake, Danielle; Mileva, Gloria; Carpenter, Heather L.; Carr, Dillon; Lancaster, Paula; Yarbrough, Todd

    2017-01-01

    This article documents the innovative practices and initial outcomes from the Grand Rapids Engaged Department Initiative, a cross-institutional collaboration designed in response to the failures of higher education to systematically engage in place. Created to incentivize and resource systemic and cultural shifts across three institutions of…

  3. Assessment of Technologies for the Space Shuttle External Tank Thermal Protection System and Recommendations for Technology Improvement. Part 2; Structural Analysis Technologies and Modeling Practices

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.

    2004-01-01

    A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.

  4. Causal Attributions for Failure and the Effect of Gender among Moroccan EFL University Learners

    ERIC Educational Resources Information Center

    Zohri, Abdelaziz

    2011-01-01

    This paper reports a study that sought to investigate Moroccan university learners' perceptions of failure. 333 subjects studying English at university ranked their perceptions of failure in a Causal Attribution Scale of University Failure (CASUF). The results show that Moroccan learners attribute their failure to teachers' attitude, effort,…

  5. Independent Orbiter Assessment (IOA): Assessment of the backup flight system FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Prust, E. E.; Ewell, J. J., Jr.; Hinsdale, L. W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Backup Flight System (BFS) hardware, generating draft failure modes and Potential Critical Items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA Post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BFS hardware. The IOA product for the BFS analysis consisted of 29 failure mode worksheets that resulted in 21 Potential Critical Items (PCI) being identified. This product was originally compared with the proposed NASA BFS baseline and subsequently compared with the applicable Data Processing System (DPS), Electrical Power Distribution and Control (EPD and C), and Displays and Controls NASA CIL items. The comparisons determined if there were any results which had been found by the IOA but were not in the NASA baseline. The original assessment determined there were numerous failure modes and potential critical items in the IOA analysis that were not contained in the NASA BFS baseline. Conversely, the NASA baseline contained three FMEAs (IMU, ADTA, and Air Data Probe) for CIL items that were not identified in the IOA product.

  6. Simplified spacecraft vulnerability assessments at component level in early design phase at the European Space Agency's Concurrent Design Facility

    NASA Astrophysics Data System (ADS)

    Kempf, Scott; Schäfer, Frank K.; Cardone, Tiziana; Ferreira, Ivo; Gerené, Sam; Destefanis, Roberto; Grassi, Lilith

    2016-12-01

    During recent years, the state-of-the-art risk assessment of the threat posed to spacecraft by micrometeoroids and space debris has been expanded to the analysis of failure modes of internal spacecraft components. This method can now be used to perform risk analyses for satellites to assess various failure levels - from failure of specific sub-systems to catastrophic break-up. This new assessment methodology is based on triple-wall ballistic limit equations (BLEs), specifically the Schäfer-Ryan-Lambert (SRL) BLE, which is applicable for describing failure threshold levels for satellite components following a hypervelocity impact. The methodology is implemented in the form of the software tool Particle Impact Risk and vulnerability Analysis Tool (PIRAT). During a recent European Space Agency (ESA) funded study, the PIRAT functionality was expanded in order to provide an interface to ESA's Concurrent Design Facility (CDF). The additions include a geometry importer and an OCDT (Open Concurrent Design Tool) interface. The new interface provides both the expanded geometrical flexibility, which is provided by external computer aided design (CAD) modelling, and an ease of import of existing data without the need for extensive preparation of the model. The reduced effort required to perform vulnerability analyses makes it feasible for application during early design phase, at which point modifications to satellite design can be undertaken with relatively little extra effort. The integration of PIRAT in the CDF represents the first time that vulnerability analyses can be performed in-session in ESA's CDF and the first time that comprehensive vulnerability studies can be applied cost-effectively in early design phase in general.

  7. Expert systems for automated maintenance of a Mars oxygen production system

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Huang, Jen-Kuang; Ho, Ming-Tsang

    1989-01-01

    A prototype expert system was developed for maintaining autonomous operation of a Mars oxygen production system. Normal operation conditions and failure modes according to certain desired criteria are tested and identified. Several schemes for failure detection and isolation using forward chaining, backward chaining, knowledge-based and rule-based are devised to perform several housekeeping functions. These functions include self-health checkout, an emergency shut down program, fault detection and conventional control activities. An effort was made to derive the dynamic model of the system using Bond-Graph technique in order to develop the model-based failure detection and isolation scheme by estimation method. Finally, computer simulations and experimental results demonstrated the feasibility of the expert system and a preliminary reliability analysis for the oxygen production system is also provided.

  8. X-framework: Space system failure analysis framework

    NASA Astrophysics Data System (ADS)

    Newman, John Steven

    Space program and space systems failures result in financial losses in the multi-hundred million dollar range every year. In addition to financial loss, space system failures may also represent the loss of opportunity, loss of critical scientific, commercial and/or national defense capabilities, as well as loss of public confidence. The need exists to improve learning and expand the scope of lessons documented and offered to the space industry project team. One of the barriers to incorporating lessons learned include the way in which space system failures are documented. Multiple classes of space system failure information are identified, ranging from "sound bite" summaries in space insurance compendia, to articles in journals, lengthy data-oriented (what happened) reports, and in some rare cases, reports that treat not only the what, but also the why. In addition there are periodically published "corporate crisis" reports, typically issued after multiple or highly visible failures that explore management roles in the failure, often within a politically oriented context. Given the general lack of consistency, it is clear that a good multi-level space system/program failure framework with analytical and predictive capability is needed. This research effort set out to develop such a model. The X-Framework (x-fw) is proposed as an innovative forensic failure analysis approach, providing a multi-level understanding of the space system failure event beginning with the proximate cause, extending to the directly related work or operational processes and upward through successive management layers. The x-fw focus is on capability and control at the process level and examines: (1) management accountability and control, (2) resource and requirement allocation, and (3) planning, analysis, and risk management at each level of management. The x-fw model provides an innovative failure analysis approach for acquiring a multi-level perspective, direct and indirect causation of failures, and generating better and more consistent reports. Through this approach failures can be more fully understood, existing programs can be evaluated and future failures avoided. The x-fw development involved a review of the historical failure analysis and prevention literature, coupled with examination of numerous failure case studies. Analytical approaches included use of a relational failure "knowledge base" for classification and sorting of x-fw elements and attributes for each case. In addition a novel "management mapping" technique was developed as a means of displaying an integrated snapshot of indirect causes within the management chain. Further research opportunities will extend the depth of knowledge available for many of the component level cases. In addition, the x-fw has the potential to expand the scope of space sector lessons learned, and contribute to knowledge management and organizational learning.

  9. Attributions to Failure: The Effects of Effort, Ability, and Learning Strategy Use on Perceptions of Future Goals and Emotional Responses.

    ERIC Educational Resources Information Center

    Holschuh, Jodi Patrick; Nist, Sherrie L.; Olejnik, Stephen

    2001-01-01

    Examines college students' attributions to failure in an introductory biology course. Determines how males and females viewed the attributions of ability, effort, and learning strategy use. Concludes that collectively, results indicate differences in patterns of responses between future goal and emotional items. Notes the importance for…

  10. Independent Orbiter Assessment (IOA): Assessment of the communication and tracking subsystem, volume 1

    NASA Technical Reports Server (NTRS)

    Long, W. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. The IOA product for the Communication and Tracking consisted of 1,108 failure mode worksheets that resulted in 298 critical items being identified. Comparison was made to the NASA baseline which consists of 697 FMEAs and 239 CIL items. The comparison determined if there were any results which had been found by IOA but were not in the NASA baseline. This comparison produced agreement on all but 407 FMEAs which caused differences in 294 CIL items. Volume 1 contains the subsystem description, assessment results, ground rules and assumptions, and some of the IOA worksheets.

  11. Attributional Effects in Interpersonal Settings.

    ERIC Educational Resources Information Center

    Anderson, Craig A.

    Research has shown that attributing failure to lack of ability leads to lower motivation than does attributing the failure to lack of effort. An attributional model of motivation and performance following failure was tested with college students (N=63), who were preselected on the basis of their attributional styles for interpersonal failures, as…

  12. Validation of PV-RPM Code in the System Advisor Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Lavrova, Olga; Freeman, Janine

    2017-04-01

    This paper describes efforts made by Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) to validate the SNL developed PV Reliability Performance Model (PV - RPM) algorithm as implemented in the NREL System Advisor Model (SAM). The PV - RPM model is a library of functions that estimates component failure and repair in a photovoltaic system over a desired simulation period. The failure and repair distributions in this paper are probabilistic representations of component failure and repair based on data collected by SNL for a PV power plant operating in Arizona. The validation effort focuses on whethermore » the failure and repair dist ributions used in the SAM implementation result in estimated failures that match the expected failures developed in the proof - of - concept implementation. Results indicate that the SAM implementation of PV - RPM provides the same results as the proof - of - concep t implementation, indicating the algorithms were reproduced successfully.« less

  13. Reliability Assessment of Graphite Specimens under Multiaxial Stresses

    NASA Technical Reports Server (NTRS)

    Sookdeo, Steven; Nemeth, Noel N.; Bratton, Robert L.

    2008-01-01

    An investigation was conducted to predict the failure strength response of IG-100 nuclear grade graphite exposed to multiaxial stresses. As part of this effort, a review of failure criteria accounting for the stochastic strength response is provided. The experimental work was performed in the early 1990s at the Oak Ridge National Laboratory (ORNL) on hollow graphite tubes under the action of axial tensile loading and internal pressurization. As part of the investigation, finite-element analysis (FEA) was performed and compared with results of FEA from the original ORNL report. The new analysis generally compared well with the original analysis, although some discrepancies in the location of peak stresses was noted. The Ceramics Analysis and Reliability Evaluation of Structures Life prediction code (CARES/Life) was used with the FEA results to predict the quadrants I (tensile-tensile) and quadrant IV (compression-tension) strength response of the graphite tubes for the principle of independent action (PIA), the Weibull normal stress averaging (NSA), and the Batdorf multiaxial failure theories. The CARES/Life reliability analysis showed that all three failure theories gave similar results in quadrant I but that in quadrant IV, the PIA and Weibull normal stress-averaging theories were not conservative, whereas the Batdorf theory was able to correlate well with experimental results. The conclusion of the study was that the Batdorf theory should generally be used to predict the reliability response of graphite and brittle materials in multiaxial loading situations.

  14. Independent Orbiter Assessment (IOA): Assessment of the life support and airlock support systems, volume 2

    NASA Technical Reports Server (NTRS)

    Barickman, K.

    1988-01-01

    The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). The IOA effort first completed an analysis of the Life Support and Airlock Support Systems (LSS and ALSS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. The discrepancies were flagged for potential future resolution. This report documents the results of that comparison for the Orbiter LSS and ALSS hardware. Volume 2 continues the presentation of IOA worksheets and contains the critical items list and NASA FMEA to IOA worksheet cross reference and recommendations.

  15. Word Memory Test failure 23 times higher in mild brain injury than in parents seeking custody: the power of external incentives.

    PubMed

    Flaro, Lloyd; Green, Paul; Robertson, Ellen

    2007-04-01

    Motivation has an important influence on neuropsychological test performances. This study examined effort on the Word Memory Test (WMT) in groups with differing external incentives. 774 adults with Traumatic Brain Injury (TBI), tested as part of a Workers' Compensation, disability or personal injury claim stood to gain financially by appearing impaired on testing. In contrast, parents ordered by the Court to undergo a parenting assessment were highly motivated to do their best on cognitive tests because their goal was to regain custody of their children. Consistent with these assumptions, 98.3% of 118 parents seeking child custody passed the WMT effort subtests but in cases of mild TBI the pass rate on the WMT was only 60%. The WMT failure rate in the mild TBI sample was 23 times higher than in the group of parents seeking custody. WMT failure was twice as frequent in the mild TBI group than in those with more severe TBI. WMT failure was also much higher in adults with mild TBI than in children with significant impairment from various clinical conditions. Such differences in failure rates on the WMT effort subtests cannot be explained by differences in cognitive skills but they are explainable by differences in external incentives. The findings support the recommendation that objective tests of effort should be used when evaluating cognitive impairment.

  16. Study of the Progressive Failure of Composites under Axial Loading with Varying Strain Rates

    DTIC Science & Technology

    2011-12-01

    8 a. Waddoups, Eisenmann , and Kaminski Failure Theory ..........8 b. Whitney-Nuismer Failure Theory ..........................................11...Width (m) WEK Waddoups, Eisenmann , and Kaminski failure theory xiv x Coordinate measured from center of notch perpendicular to direction of...comprised of differing assumptions, effort, and knowledge of material properties. a. Waddoups, Eisenmann , and Kaminski Failure Theory One of the

  17. Evaluation of a Multi-Axial, Temperature, and Time Dependent (MATT) Failure Model

    NASA Technical Reports Server (NTRS)

    Richardson, D. E.; Anderson, G. L.; Macon, D. J.; Rudolphi, Michael (Technical Monitor)

    2002-01-01

    To obtain a better understanding the response of the structural adhesives used in the Space Shuttle's Reusable Solid Rocket Motor (RSRM) nozzle, an extensive effort has been conducted to characterize in detail the failure properties of these adhesives. This effort involved the development of a failure model that includes the effects of multi-axial loading, temperature, and time. An understanding of the effects of these parameters on the failure of the adhesive is crucial to the understanding and prediction of the safety of the RSRM nozzle. This paper documents the use of this newly developed multi-axial, temperature, and time (MATT) dependent failure model for modeling failure for the adhesives TIGA 321, EA913NA, and EA946. The development of the mathematical failure model using constant load rate normal and shear test data is presented. Verification of the accuracy of the failure model is shown through comparisons between predictions and measured creep and multi-axial failure data. The verification indicates that the failure model performs well for a wide range of conditions (loading, temperature, and time) for the three adhesives. The failure criterion is shown to be accurate through the glass transition for the adhesive EA946. Though this failure model has been developed and evaluated with adhesives, the concepts are applicable for other isotropic materials.

  18. Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.

  19. In Support of Failure

    ERIC Educational Resources Information Center

    Carr, Allison

    2013-01-01

    In this essay, I propose a concerted effort to begin devising a theory and pedagogy of failure. I review the discourse of failure in Western culture as well as in composition pedagogy, ultimately suggesting that failure is not simply a judgement or indication of rank but is a relational, affect-bearing concept with tremendous relevance to…

  20. Heroic Reliability Improvement in Manned Space Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    System reliability can be significantly improved by a strong continued effort to identify and remove all the causes of actual failures. Newly designed systems often have unexpected high failure rates which can be reduced by successive design improvements until the final operational system has an acceptable failure rate. There are many causes of failures and many ways to remove them. New systems may have poor specifications, design errors, or mistaken operations concepts. Correcting unexpected problems as they occur can produce large early gains in reliability. Improved technology in materials, components, and design approaches can increase reliability. The reliability growth is achieved by repeatedly operating the system until it fails, identifying the failure cause, and fixing the problem. The failure rate reduction that can be obtained depends on the number and the failure rates of the correctable failures. Under the strong assumption that the failure causes can be removed, the decline in overall failure rate can be predicted. If a failure occurs at the rate of lambda per unit time, the expected time before the failure occurs and can be corrected is 1/lambda, the Mean Time Before Failure (MTBF). Finding and fixing a less frequent failure with the rate of lambda/2 per unit time requires twice as long, time of 1/(2 lambda). Cutting the failure rate in half requires doubling the test and redesign time and finding and eliminating the failure causes.Reducing the failure rate significantly requires a heroic reliability improvement effort.

  1. The Mediating Role of Self-Exertion on the Effects of Effort on Learning Virtues and Emotional Distress in Academic Failure in a Confucian Context

    PubMed Central

    Fwu, Bih-Jen; Chen, Shun-Wen; Wei, Chih-Fen; Wang, Hsiou-Huai

    2017-01-01

    Previous studies have found that in East Asian Confucian societies, hardworking students are often trapped in a dilemma of enjoying a positive moral image while suffering from emotional distress due to academic failure. This study intends to further explore whether the cultural-specific belief in self-exertion acts as a psychological mechanism to lessen these students’ negative emotions. A group of 288 college students in Taiwan were administered a questionnaire to record their responses to past academic failures. The results from structural equation modeling showed that self-exertion functioned as a mediator between the effects of effort on learning virtues and emotional distress. Self-exertion to fulfill one’s duty to oneself positively mediated the effect of effort on learning virtues, whereas self-exertion to fulfill one’s duty to one’s parents negatively mediated the effect of effort on emotional distress. Theoretical and cultural implications are further discussed. PMID:28119648

  2. Preventing Continuous Positive Airway Pressure Failure: Evidence-Based and Physiologically Sound Practices from Delivery Room to the Neonatal Intensive Care Unit.

    PubMed

    Wright, Clyde J; Sherlock, Laurie G; Sahni, Rakesh; Polin, Richard A

    2018-06-01

    Routine use of continuous positive airway pressure (CPAP) to support preterm infants with respiratory distress is an evidenced-based strategy to decrease incidence of bronchopulmonary dysplasia. However, rates of CPAP failure remain unacceptably high in very premature neonates, who are at high risk for developing bronchopulmonary dysplasia. Using the GRADE framework to assess the quality of available evidence, this article reviews strategies aimed at decreasing CPAP failure, starting with delivery room interventions and followed through to system-based efforts in the neonatal intensive care unit. Despite best efforts, some very premature neonates fail CPAP. Also reviewed are predictors of CPAP failure in this vulnerable population. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Commercialization of NESSUS: Status

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Millwater, Harry R.

    1991-01-01

    A plan was initiated in 1988 to commercialize the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) probabilistic structural analysis software. The goal of the on-going commercialization effort is to begin the transfer of Probabilistic Structural Analysis Method (PSAM) developed technology into industry and to develop additional funding resources in the general area of structural reliability. The commercialization effort is summarized. The SwRI NESSUS Software System is a general purpose probabilistic finite element computer program using state of the art methods for predicting stochastic structural response due to random loads, material properties, part geometry, and boundary conditions. NESSUS can be used to assess structural reliability, to compute probability of failure, to rank the input random variables by importance, and to provide a more cost effective design than traditional methods. The goal is to develop a general probabilistic structural analysis methodology to assist in the certification of critical components in the next generation Space Shuttle Main Engine.

  4. Robust detection, isolation and accommodation for sensor failures

    NASA Technical Reports Server (NTRS)

    Emami-Naeini, A.; Akhter, M. M.; Rock, S. M.

    1986-01-01

    The objective is to extend the recent advances in robust control system design of multivariable systems to sensor failure detection, isolation, and accommodation (DIA), and estimator design. This effort provides analysis tools to quantify the trade-off between performance robustness and DIA sensitivity, which are to be used to achieve higher levels of performance robustness for given levels of DIA sensitivity. An innovations-based DIA scheme is used. Estimators, which depend upon a model of the process and process inputs and outputs, are used to generate these innovations. Thresholds used to determine failure detection are computed based on bounds on modeling errors, noise properties, and the class of failures. The applicability of the newly developed tools are demonstrated on a multivariable aircraft turbojet engine example. A new concept call the threshold selector was developed. It represents a significant and innovative tool for the analysis and synthesis of DiA algorithms. The estimators were made robust by introduction of an internal model and by frequency shaping. The internal mode provides asymptotically unbiased filter estimates.The incorporation of frequency shaping of the Linear Quadratic Gaussian cost functional modifies the estimator design to make it suitable for sensor failure DIA. The results are compared with previous studies which used thresholds that were selcted empirically. Comparison of these two techniques on a nonlinear dynamic engine simulation shows improved performance of the new method compared to previous techniques

  5. The acute effect of a caffeine-containing energy drink on mood state, readiness to invest effort, and resistance exercise to failure.

    PubMed

    Duncan, Michael J; Smith, Mike; Cook, Kathryn; James, Rob S

    2012-10-01

    The efficacy of caffeine ingestion in enhancing aerobic performance is well established. The evidence for caffeine's effects on resistance exercise is mixed and has not fully examined the associated psychological and psychophysiological changes. This study examined acute effects of ingesting a caffeine-containing energy drink on repetitions to failure, the rating of perceived exertion (RPE), and the readiness to invest physical effort (RTIPE) and mental effort during resistance exercise to failure. Thirteen resistance-trained men took part in this double-blind, randomized cross-over experimental study whereby they ingested a caffeinated (179 mg) energy drink or placebo solution 60 minutes before completing a bout of resistance exercise comprising bench press, deadlift, prone row, and back squat exercise to failure at an intensity of 60% 1-repetition maximum. Experimental conditions were separated by at least 48 hours. Participants completed significantly greater repetitions to failure, irrespective of exercise, in the energy drink condition (p = 0.015). Rating of perceived exertion was significantly higher in the placebo condition (p = 0.02) and was significantly higher during lower-body exercises compared with upper-body exercises irrespective of the substance ingested (p = 0.0001). Readiness to invest mental effort was greater with the energy drink condition (p = 0.04), irrespective of time. A significant time × substance interaction (p = 0.036) for RTIPE indicated that RTIPE increased for both placebo and energy drink conditions preingestion to pre-exercise, but the magnitude of increase was greater with the energy drink condition compared with placebo. This resulted in higher RTIPE postexercise for the energy drink condition. These results suggest that acute ingestion of a caffeine-containing energy drink can enhance resistance exercise performance to failure and positively enhance psychophysiological factors related to exertion in trained men.

  6. Space Shuttle Main Engine Quantitative Risk Assessment: Illustrating Modeling of a Complex System with a New QRA Software Package

    NASA Technical Reports Server (NTRS)

    Smart, Christian

    1998-01-01

    During 1997, a team from Hernandez Engineering, MSFC, Rocketdyne, Thiokol, Pratt & Whitney, and USBI completed the first phase of a two year Quantitative Risk Assessment (QRA) of the Space Shuttle. The models for the Shuttle systems were entered and analyzed by a new QRA software package. This system, termed the Quantitative Risk Assessment System(QRAS), was designed by NASA and programmed by the University of Maryland. The software is a groundbreaking PC-based risk assessment package that allows the user to model complex systems in a hierarchical fashion. Features of the software include the ability to easily select quantifications of failure modes, draw Event Sequence Diagrams(ESDs) interactively, perform uncertainty and sensitivity analysis, and document the modeling. This paper illustrates both the approach used in modeling and the particular features of the software package. The software is general and can be used in a QRA of any complex engineered system. The author is the project lead for the modeling of the Space Shuttle Main Engines (SSMEs), and this paper focuses on the modeling completed for the SSMEs during 1997. In particular, the groundrules for the study, the databases used, the way in which ESDs were used to model catastrophic failure of the SSMES, the methods used to quantify the failure rates, and how QRAS was used in the modeling effort are discussed. Groundrules were necessary to limit the scope of such a complex study, especially with regard to a liquid rocket engine such as the SSME, which can be shut down after ignition either on the pad or in flight. The SSME was divided into its constituent components and subsystems. These were ranked on the basis of the possibility of being upgraded and risk of catastrophic failure. Once this was done the Shuttle program Hazard Analysis and Failure Modes and Effects Analysis (FMEA) were used to create a list of potential failure modes to be modeled. The groundrules and other criteria were used to screen out the many failure modes that did not contribute significantly to the catastrophic risk. The Hazard Analysis and FMEA for the SSME were also used to build ESDs that show the chain of events leading from the failure mode occurence to one of the following end states: catastrophic failure, engine shutdown, or siccessful operation( successful with respect to the failure mode under consideration).

  7. [Sleep apnea and heart failure: pathophysiology, diagnosis and therapy].

    PubMed

    Monda, Cinzia; Scala, Oriana; Paolillo, Stefania; Savarese, Gianluigi; Cecere, Milena; D'Amore, Carmen; Parente, Antonio; Musella, Francesca; Mosca, Susanna; Filardi, Pasquale Perrone

    2010-11-01

    Sleep apnea, defined as a pathologic pause in breathing during sleep >10 s, promotes the progression of chronic heart failure and may be a predictor of poor prognosis. It causes, in fact, several mechanical, hemodynamic, chemical and inflammatory changes that negatively compromise cardiovascular homeostasis of heart failure patients. Sleep apnea is recognized as sleep apnea syndrome when specific symptoms, such as sleepiness and headache during the daytime and snoring, are present and is diagnosed with an overnight test called polysomnography. There are two different forms of sleep apnea, central and obstructive. Breathing is interrupted by the loss of respiratory drive and the lack of respiratory effort in the central form, which affects about 40-60% of heart failure patients. In obstructive sleep apnea, breathing stops when throat muscles relax, despite respiratory effort. This form affects about 3% of the general population, while it is present in at least 30% of heart failure patients. The diagnosis of sleep disorders in heart failure becomes very important to help patients adopting lifestyle changes and starting specific therapies to improve quality of life and retard the progression of chronic heart failure.

  8. Current problems in the management of marine fisheries.

    PubMed

    Beddington, J R; Agnew, D J; Clark, C W

    2007-06-22

    The public perception of fisheries is that they are in crisis and have been for some time. Numerous scientific and popular articles have pointed to the failures of fisheries management that have caused this crisis. These are widely accepted to be overcapacity in fishing fleets, a failure to take the ecosystem effects of fishing into account, and a failure to enforce unpalatable but necessary reductions in fishing effort on fishing fleets and communities. However, the claims of some analysts that there is an inevitable decline in the status of fisheries is, we believe, incorrect. There have been successes in fisheries management, and we argue that the tools for appropriate management exist. Unfortunately, they have not been implemented widely. Our analysis suggests that management authorities need to develop legally enforceable and tested harvest strategies, coupled with appropriate rights-based incentives to the fishing community, for the future of fisheries to be better than their past.

  9. Application of Wear Debris Analysis to Aircraft Hydraulic Systems.

    DTIC Science & Technology

    1982-05-10

    C. Wescott, "Predicting and Determining Failures by Means of Ferrography ", paper given at Ninth Annual FAA International Aviation Maintenance...morphological characteristics (reference (c)). In this particular effort the morphologi- cal studies were performed by means of analytical ferrography ...peak of 191,000 at 225 hours. As time progressed, the index again began to fall and returned to Ref: (c) "Wear Particle Atlas " Naval Air Engineering

  10. Evaluation program for secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Christy, D. E.; Harkness, J. D.

    1973-01-01

    A life cycle test of secondary electric batteries for spacecraft applications was conducted. A sample number of nickel cadmium batteries were subjected to general performance tests to determine the limit of their actual capabilities. Weaknesses discovered in cell design are reported and aid in research and development efforts toward improving the reliability of spacecraft batteries. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is provided.

  11. Composite laminate failure parameter optimization through four-point flexure experimentation and analysis

    DOE PAGES

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    2016-05-06

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  12. Analysis of LNG peakshaving-facility release-prevention systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelto, P.J.; Baker, E.G.; Powers, T.B.

    1982-05-01

    The purpose of this study is to provide an analysis of release prevention systems for a reference LNG peakshaving facility. An overview assessment of the reference peakshaving facility, which preceeded this effort, identified 14 release scenarios which are typical of the potential hazards involved in the operation of LNG peakshaving facilities. These scenarios formed the basis for this more detailed study. Failure modes and effects analysis and fault tree analysis were used to estimate the expected frequency of each release scenario for the reference peakshaving facility. In addition, the effectiveness of release prevention, release detection, and release control systems weremore » evaluated.« less

  13. Effort test failure: toward a predictive model.

    PubMed

    Webb, James W; Batchelor, Jennifer; Meares, Susanne; Taylor, Alan; Marsh, Nigel V

    2012-01-01

    Predictors of effort test failure were examined in an archival sample of 555 traumatically brain-injured (TBI) adults. Logistic regression models were used to examine whether compensation-seeking, injury-related, psychological, demographic, and cultural factors predicted effort test failure (ETF). ETF was significantly associated with compensation-seeking (OR = 3.51, 95% CI [1.25, 9.79]), low education (OR:. 83 [.74, . 94]), self-reported mood disorder (OR: 5.53 [3.10, 9.85]), exaggerated displays of behavior (OR: 5.84 [2.15, 15.84]), psychotic illness (OR: 12.86 [3.21, 51.44]), being foreign-born (OR: 5.10 [2.35, 11.06]), having sustained a workplace accident (OR: 4.60 [2.40, 8.81]), and mild traumatic brain injury severity compared with very severe traumatic brain injury severity (OR: 0.37 [0.13, 0.995]). ETF was associated with a broader range of statistical predictors than has previously been identified and the relative importance of psychological and behavioral predictors of ETF was evident in the logistic regression model. Variables that might potentially extend the model of ETF are identified for future research efforts.

  14. Shortcuts in complex engineering systems: a principal-agent approach to risk management.

    PubMed

    Garber, Russ; Paté-Cornell, Elisabeth

    2012-05-01

    In this article, we examine the effects of shortcuts in the development of engineered systems through a principal-agent model. We find that occurrences of illicit shortcuts are closely related to the incentive structure and to the level of effort that the agent is willing to expend from the beginning of the project to remain on schedule. Using a probabilistic risk analysis to determine the risks of system failure from these shortcuts, we show how a principal can choose optimal settings (payments, penalties, and inspections) that can deter an agent from cutting corners and maximize the principal's value through increased agent effort. We analyze the problem for an agent with limited liability. We consider first the case where he is risk neutral; we then include the case where he is risk averse. © 2011 Society for Risk Analysis.

  15. Integrating Insults: Using Fault Tree Analysis to Guide Schizophrenia Research across Levels of Analysis.

    PubMed

    MacDonald Iii, Angus W; Zick, Jennifer L; Chafee, Matthew V; Netoff, Theoden I

    2015-01-01

    The grand challenges of schizophrenia research are linking the causes of the disorder to its symptoms and finding ways to overcome those symptoms. We argue that the field will be unable to address these challenges within psychiatry's standard neo-Kraepelinian (DSM) perspective. At the same time the current corrective, based in molecular genetics and cognitive neuroscience, is also likely to flounder due to its neglect for psychiatry's syndromal structure. We suggest adopting a new approach long used in reliability engineering, which also serves as a synthesis of these approaches. This approach, known as fault tree analysis, can be combined with extant neuroscientific data collection and computational modeling efforts to uncover the causal structures underlying the cognitive and affective failures in people with schizophrenia as well as other complex psychiatric phenomena. By making explicit how causes combine from basic faults to downstream failures, this approach makes affordances for: (1) causes that are neither necessary nor sufficient in and of themselves; (2) within-diagnosis heterogeneity; and (3) between diagnosis co-morbidity.

  16. Decreasing Efficacy of Antimalarial Combination Therapy in Uganda Explained by Decreasing Host Immunity Rather than Increasing Drug Resistance

    PubMed Central

    Greenhouse, Bryan; Slater, Madeline; Njama-Meya, Denise; Nzarubara, Bridget; Maiteki-Sebuguzi, Catherine; Clark, Tamara D.; Staedke, Sarah G.; Kamya, Moses R.; Hubbard, Alan; Rosenthal, Philip J.; Dorsey, Grant

    2009-01-01

    Background Improved control efforts are reducing the burden of malaria in Africa, but may result in decreased antimalarial immunity. Methods A cohort of 129 children aged 1–10 years in Kampala, Uganda were treated with amodiaquine+sulfadoxine-pyrimethamine for 396 episodes of uncomplicated malaria over a 29 month period as part of a longitudinal clinical trial. Results The risk of treatment failure increased over the course of the study from 5% to 21% (HR=2.4/yr, 95%CI=1.3–4.3). Parasite genetic polymorphisms were associated with an increased risk of failure, but their prevalence did not change over time. Three markers of antimalarial immunity were associated with a decreased risk of treatment failure: increased age (HR=0.5/5yrs, 95%CI=0.2–1.2), living in an area of higher malaria incidence (HR=0.26, 95%CI=0.11–0.64), and recent asymptomatic parasitemia (HR=0.06, 95%CI=0.01–0.36). In multivariate analysis, adjustment for recent asymptomatic parasitemia, but not parasite polymorphisms, removed the association between calendar time and the risk of treatment failure (HR=1.5/yr, 95%CI=0.7–3.4), suggesting that worsening treatment efficacy was best explained by decreasing host immunity. Conclusion Declining immunity in our study population appeared to be the primary factor underlying decreased efficacy of amodiaquine+sulfadoxine-pyrimethamine. With improved malaria control efforts, decreasing immunity may unmask resistance to partially efficacious drugs. PMID:19199542

  17. Accelerated fatigue durability of a high performance composite

    NASA Technical Reports Server (NTRS)

    Rotem, A.

    1982-01-01

    The fatigue behavior of multidirectional graphite-epoxy laminates was analyzed theoretically and experimentally in an effort to establish an accelerated testing methodology. Analysis of the failure mechanism in fatigue of the laminates led to the determination of the failure mode governing fracture. The nonlinear, cyclic-dependent shear modulus was used to calculate the changing stress field in the laminate during the fatigue loading. Fatigue tests were performed at three different temperatures: 25 C, 74 C, and 114 C. The prediction of the S-N curves was made based on the artificial static strength artificial static strength at a reference temperature and the fatigue functions associated with them. The prediction of an S-N curve at other temperatures was performed using shifting factors determined for the specific failure mode. For multidirectional laminates, different S-N curves at different temperatures could be predicted using these shifting factors. Different S-N curves at different temperatures occur only when the fatigue failure mode is matrix dominated. It was found that whenever the fatigue failure mode is fiber dominated, temperature, over the range investigated, had no influence on the fatigue life. These results permit the prediction of long-time, low temperature fatigue behavior from data obtained in short time, high temperature testing, for laminates governed by a matrix failure mode.

  18. Lithographic chip identification: meeting the failure analysis challenge

    NASA Astrophysics Data System (ADS)

    Perkins, Lynn; Riddell, Kevin G.; Flack, Warren W.

    1992-06-01

    This paper describes a novel method using stepper photolithography to uniquely identify individual chips for permanent traceability. A commercially available 1X stepper is used to mark chips with an identifier or `serial number' which can be encoded with relevant information for the integrated circuit manufacturer. The permanent identification of individual chips can improve current methods of quality control, failure analysis, and inventory control. The need for this technology is escalating as manufacturers seek to provide six sigma quality control for their products and trace fabrication problems to their source. This need is especially acute for parts that fail after packaging and are returned to the manufacturer for analysis. Using this novel approach, failure analysis data can be tied back to a particular batch, wafer, or even a position within a wafer. Process control can be enhanced by identifying the root cause of chip failures. Chip identification also addresses manufacturers concerns with increasing incidences of chip theft. Since chips currently carry no identification other than the manufacturer's name and part number, recovery efforts are hampered by the inability to determine the sales history of a specific packaged chip. A definitive identifier or serial number for each chip would address this concern. The results of chip identification (patent pending) are easily viewed through a low power microscope. Batch number, wafer number, exposure step, and chip location within the exposure step can be recorded, as can dates and other items of interest. An explanation of the chip identification procedure and processing requirements are described. Experimental testing and results are presented, and potential applications are discussed.

  19. Evaluation Methodologies for Estimating the Likelihood of Program Implementation Failure

    ERIC Educational Resources Information Center

    Durand, Roger; Decker, Phillip J.; Kirkman, Dorothy M.

    2014-01-01

    Despite our best efforts as evaluators, program implementation failures abound. A wide variety of valuable methodologies have been adopted to explain and evaluate the "why" of these failures. Yet, typically these methodologies have been employed concurrently (e.g., project monitoring) or to the post-hoc assessment of program activities.…

  20. Young Black Males: Resilience and the Use of Capital to Transform School "Failure"

    ERIC Educational Resources Information Center

    Wright, Cecile; Maylor, Uvanney; Becker, Sophie

    2016-01-01

    This article addresses the idea of "failure" of young black males with respect to schooling. Perceptions of black masculinity are often linked to "underperformance" in the context of school academic achievement. This article addresses how young black men, by great personal effort, recover from school "failure". It…

  1. Improving the treatment planning and delivery process of Xoft electronic skin brachytherapy.

    PubMed

    Manger, Ryan; Rahn, Douglas; Hoisak, Jeremy; Dragojević, Irena

    2018-05-14

    To develop an improved Xoft electronic skin brachytherapy process and identify areas of further improvement. A multidisciplinary team conducted a failure modes and effects analysis (FMEA) by developing a process map and a corresponding list of failure modes. The failure modes were scored for their occurrence, severity, and detectability, and a risk priority number (RPN) was calculated for each failure mode as the product of occurrence, severity, and detectability. Corrective actions were implemented to address the higher risk failure modes, and a revised process was generated. The RPNs of the failure modes were compared between the initial process and final process to assess the perceived benefits of the corrective actions. The final treatment process consists of 100 steps and 114 failure modes. The FMEA took approximately 20 person-hours (one physician, three physicists, and two therapists) to complete. The 10 most dangerous failure modes had RPNs ranging from 336 to 630. Corrective actions were effective at addressing most failure modes (10 riskiest RPNs ranging from 189 to 310), yet the RPNs were higher than those published for alternative systems. Many of these high-risk failure modes remained due to hardware design limitations. FMEA helps guide process improvement efforts by emphasizing the riskiest steps. Significant risks are apparent when using a Xoft treatment unit for skin brachytherapy due to hardware limitations such as the lack of several interlocks, a short source lifespan, and variability in source output. The process presented in this article is expected to reduce but not eliminate these risks. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Causal attribution for success and failure in mathematics among MDAB pre-diploma students

    NASA Astrophysics Data System (ADS)

    Maidinsah, Hamidah; Embong, Rokiah; Wahab, Zubaidah Abd

    2014-07-01

    The Program Mengubah Destini Anak Bangsa (MDAB) is a pre-diploma programme catering to SPM school leavers who do not meet the minimum requirement to enter any of UiTM diploma programmes. The study aims to evaluate the perceptions of MDAB students toward the main causal attribution factors underlying students' success and failure in mathematics. Research sample comprised of 482 students from five UiTM branch campuses. Research instrument used was a set of GALUS questionnaire consisting of 36 items based on the Weiner Attribution Theory. Four causal attributions factors for success and failures evaluated are ability, effort, question difficulty and environment. GALUS reliability index was 0.93. The research found that effort appears to be the main causal attribution factor in students' success and failure in mathematics, followed by environment, question difficulty and ability. High achiever students strongly agree that the ability factor influenced their success while low achiever students strongly agree that all attributing factors influenced their failures in mathematics.

  3. C-Coupon Studies of CMCS: Fracture Behavior and Microstructural Characterization

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.; Abdul-Aziz, Ali

    2001-01-01

    A curved beam 'C-coupon' was used to assess fracture behavior in a Sylramic(tm)/melt infiltration (MI) SiC matrix composite. Failure stresses and fracture mechanisms, as determined by optical and scanning electron microstructural analysis, are compared with finite element stress calculations to analyze failure modes. Material microstructure was found to have a strong influence on mechanical behavior. Fracture occurs in interlaminar tension (ILT), provided that the ratio of ILT to tensile strength for the material is less than the ratio of radial to hoop stresses for the C-coupon geometry. Utilization of 3D architectures to improve interlaminar strength requires significant development efforts to incorporate through thickness fibers in regions with high curvatures while maintaining uniform thickness, radius, and microstructure.

  4. Longitudinal joint treatment.

    DOT National Transportation Integrated Search

    2006-03-01

    Maine highways have been showing signs of longitudinal joint failure for a number of years. In an effort : to reduce the amount of joint failures the Maine Department of Transportation (MDOT) is currently : evaluating two projects. One project is mon...

  5. Integrating Six Sigma with total quality management: a case example for measuring medication errors.

    PubMed

    Revere, Lee; Black, Ken

    2003-01-01

    Six Sigma is a new management philosophy that seeks a nonexistent error rate. It is ripe for healthcare because many healthcare processes require a near-zero tolerance for mistakes. For most organizations, establishing a Six Sigma program requires significant resources and produces considerable stress. However, in healthcare, management can piggyback Six Sigma onto current total quality management (TQM) efforts so that minimal disruption occurs in the organization. Six Sigma is an extension of the Failure Mode and Effects Analysis that is required by JCAHO; it can easily be integrated into existing quality management efforts. Integrating Six Sigma into the existing TQM program facilitates process improvement through detailed data analysis. A drilled-down approach to root-cause analysis greatly enhances the existing TQM approach. Using the Six Sigma metrics, internal project comparisons facilitate resource allocation while external project comparisons allow for benchmarking. Thus, the application of Six Sigma makes TQM efforts more successful. This article presents a framework for including Six Sigma in an organization's TQM plan while providing a concrete example using medication errors. Using the process defined in this article, healthcare executives can integrate Six Sigma into all of their TQM projects.

  6. High-fidelity modeling and impact footprint prediction for vehicle breakup analysis

    NASA Astrophysics Data System (ADS)

    Ling, Lisa

    For decades, vehicle breakup analysis had been performed for space missions that used nuclear heater or power units in order to assess aerospace nuclear safety for potential launch failures leading to inadvertent atmospheric reentry. Such pre-launch risk analysis is imperative to assess possible environmental impacts, obtain launch approval, and for launch contingency planning. In order to accurately perform a vehicle breakup analysis, the analysis tool should include a trajectory propagation algorithm coupled with thermal and structural analyses and influences. Since such a software tool was not available commercially or in the public domain, a basic analysis tool was developed by Dr. Angus McRonald prior to this study. This legacy software consisted of low-fidelity modeling and had the capability to predict vehicle breakup, but did not predict the surface impact point of the nuclear component. Thus the main thrust of this study was to develop and verify the additional dynamics modeling and capabilities for the analysis tool with the objectives to (1) have the capability to predict impact point and footprint, (2) increase the fidelity in the prediction of vehicle breakup, and (3) reduce the effort and time required to complete an analysis. The new functions developed for predicting the impact point and footprint included 3-degrees-of-freedom trajectory propagation, the generation of non-arbitrary entry conditions, sensitivity analysis, and the calculation of impact footprint. The functions to increase the fidelity in the prediction of vehicle breakup included a panel code to calculate the hypersonic aerodynamic coefficients for an arbitrary-shaped body and the modeling of local winds. The function to reduce the effort and time required to complete an analysis included the calculation of node failure criteria. The derivation and development of these new functions are presented in this dissertation, and examples are given to demonstrate the new capabilities and the improvements made, with comparisons between the results obtained from the upgraded analysis tool and the legacy software wherever applicable.

  7. Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 1

    NASA Technical Reports Server (NTRS)

    Prust, Chet D.; Hartman, Dan W.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware, and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. The IOA product for the RCS analysis consisted of 208 hardware and 2064 EPD and C failure mode worksheets that resulted in 141 hardware and 449 EPD and C potential critical items (PCIs) being identified. A comparison was made of the IOA product to the NASA FMEA/CIL baseline. After comparison and discussions with the NASA subsystem manager, 96 hardware issues, 83 of which concern CIL items or PCIs, and 280 EPD and C issues, 158 of which concern CIL items or PCIs, and 280 EPD and C issues, 158 of which concern CIL items or PCIs, remain unresolved. Volume 1 contains the subsystem description, assessment results, and some of the IOA worksheets.

  8. [MaRS Project

    NASA Technical Reports Server (NTRS)

    Aruljothi, Arunvenkatesh

    2016-01-01

    The Space Exploration Division of the Safety and Mission Assurances Directorate is responsible for reducing the risk to Human Space Flight Programs by providing system safety, reliability, and risk analysis. The Risk & Reliability Analysis branch plays a part in this by utilizing Probabilistic Risk Assessment (PRA) and Reliability and Maintainability (R&M) tools to identify possible types of failure and effective solutions. A continuous effort of this branch is MaRS, or Mass and Reliability System, a tool that was the focus of this internship. Future long duration space missions will have to find a balance between the mass and reliability of their spare parts. They will be unable take spares of everything and will have to determine what is most likely to require maintenance and spares. Currently there is no database that combines mass and reliability data of low level space-grade components. MaRS aims to be the first database to do this. The data in MaRS will be based on the hardware flown on the International Space Stations (ISS). The components on the ISS have a long history and are well documented, making them the perfect source. Currently, MaRS is a functioning excel workbook database; the backend is complete and only requires optimization. MaRS has been populated with all the assemblies and their components that are used on the ISS; the failures of these components are updated regularly. This project was a continuation on the efforts of previous intern groups. Once complete, R&M engineers working on future space flight missions will be able to quickly access failure and mass data on assemblies and components, allowing them to make important decisions and tradeoffs.

  9. Investigating premature pavement failure due to moisture : final report.

    DOT National Transportation Integrated Search

    2009-07-01

    This report details the forensic investigations conducted to identify the causes of pavement failures shortly after a rehabilitation activity on five interstate highway projects in Oregon, and the research efforts conducted to develop guidelines to m...

  10. Investigating premature pavement failure due to moisture : final report : appendices.

    DOT National Transportation Integrated Search

    2009-07-01

    The article are appendices. : This report details the forensic investigations conducted to identify the causes of pavement failures shortly after a rehabilitation activity on five interstate highway projects in Oregon, and the research efforts conduc...

  11. Longitudinal joint treatment : construction report.

    DOT National Transportation Integrated Search

    2000-05-01

    Maine highways have been showing signs of longitudinal joint failure for a number of : years. In an effort to reduce the amount of joint failures the Maine Department of : Transportation (MDOT) is currently evaluating two projects. One project is mon...

  12. A dual-center review of compressive osseointegration for fixation of massive endoprosthetics: 2- to 9-year followup.

    PubMed

    Calvert, George T; Cummings, Judd E; Bowles, Austin J; Jones, Kevin B; Wurtz, L Daniel; Randall, R Lor

    2014-03-01

    Aseptic failure of massive endoprostheses used in the reconstruction of major skeletal defects remains a major clinical problem. Fixation using compressive osseointegration was developed as an alternative to cemented and traditional press-fit fixation in an effort to decrease aseptic failure rates. The purpose of this study was to answer the following questions: (1) What is the survivorship of this technique at minimum 2-year followup? (2) Were patient demographic variables (age, sex) or anatomic location associated with implant failure? (3) Were there any prosthesis-related variables (eg, spindle size) associated with failure? (4) Was there a discernible learning curve associated with the use of the new device as defined by a difference in failure rate early in the series versus later on? The first 50 cases using compressive osseointegration fixation from two tertiary referral centers were retrospectively studied. Rates of component removal for any reason and for aseptic failure were calculated. Demographic, surgical, and oncologic factors were analyzed using regression analysis to assess for association with implant failure. Minimum followup was 2 years with a mean of 66 months. Median age at the time of surgery was 14.5 years. A total of 15 (30%) implants were removed for any reason. Of these revisions, seven (14%) were the result of aseptic failure. Five of the seven aseptic failures occurred at less than 1 year (average, 8.3 months), and none occurred beyond 17 months. With the limited numbers available, no demographic, surgical, or prosthesis-related factors correlated with failure. Most aseptic failures of compressive osseointegration occurred early. Longer followup is needed to determine if this technique is superior to other forms of fixation.

  13. Improving Quality of Seal Leak Test Product using Six Sigma

    NASA Astrophysics Data System (ADS)

    Luthfi Malik, Abdullah; Akbar, Muhammad; Irianto, Dradjad

    2016-02-01

    Seal leak test part is a polyurethane material-based product. Based on past data, defect level of this product was 8%, higher than the target of 5%. Quality improvement effort was done using six sigma method that included phases of define, measure, analyse, improve, and control. In the design phase, a Delphi method was used to identify factors that were critical to quality. In the measure phase, stability and process capability was measured. Fault tree analysis (FTA) and failure mode and effect analysis (FMEA) were used in the next phase to analize the root cause and to determine the priority issues. Improve phase was done by compiling, selecting, and designing alternative repair. Some improvement efforts were identified, i.e. (i) making a checklist for maintenance schedules, (ii) making written reminder form, (iii) modifying the SOP more detail, and (iv) performing a major service to the vacuum machine. To ensure the continuity of improvement efforts, some control activities were executed, i.e. (i) controlling, monitoring, documenting, and setting target frequently, (ii) implementing reward and punishment system, (iii) adding cleaning tool, and (iv) building six sigma organizational structure.

  14. 15 CFR 270.202 - Coordination with search and rescue efforts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.202 Coordination with search and... efforts being undertaken at the site of the building failure, including FEMA urban search and rescue teams...

  15. 15 CFR 270.202 - Coordination with search and rescue efforts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.202 Coordination with search and... efforts being undertaken at the site of the building failure, including FEMA urban search and rescue teams...

  16. 15 CFR 270.202 - Coordination with search and rescue efforts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.202 Coordination with search and... efforts being undertaken at the site of the building failure, including FEMA urban search and rescue teams...

  17. 15 CFR 270.202 - Coordination with search and rescue efforts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.202 Coordination with search and... efforts being undertaken at the site of the building failure, including FEMA urban search and rescue teams...

  18. 15 CFR 270.202 - Coordination with search and rescue efforts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SAFETY TEAMS NATIONAL CONSTRUCTION SAFETY TEAMS Investigations § 270.202 Coordination with search and... efforts being undertaken at the site of the building failure, including FEMA urban search and rescue teams...

  19. Application of the NUREG/CR-6850 EPRI/NRC Fire PRA Methodology to a DOE Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom Elicson; Bentley Harwood; Richard Yorg

    2011-03-01

    The application NUREG/CR-6850 EPRI/NRC fire PRA methodology to DOE facility presented several challenges. This paper documents the process and discusses several insights gained during development of the fire PRA. A brief review of the tasks performed is provided with particular focus on the following: • Tasks 5 and 14: Fire-induced risk model and fire risk quantification. A key lesson learned was to begin model development and quantification as early as possible in the project using screening values and simplified modeling if necessary. • Tasks 3 and 9: Fire PRA cable selection and detailed circuit failure analysis. In retrospect, it wouldmore » have been beneficial to perform the model development and quantification in 2 phases with detailed circuit analysis applied during phase 2. This would have allowed for development of a robust model and quantification earlier in the project and would have provided insights into where to focus the detailed circuit analysis efforts. • Tasks 8 and 11: Scoping fire modeling and detailed fire modeling. More focus should be placed on detailed fire modeling and less focus on scoping fire modeling. This was the approach taken for the fire PRA. • Task 14: Fire risk quantification. Typically, multiple safe shutdown (SSD) components fail during a given fire scenario. Therefore dependent failure analysis is critical to obtaining a meaningful fire risk quantification. Dependent failure analysis for the fire PRA presented several challenges which will be discussed in the full paper.« less

  20. 1001518

    NASA Image and Video Library

    2010-09-01

    DEVELOPMENT TESTING BEING CONDUCTED AT THE REQUEST OF THE MSFC DYNAMICS, LOADS, AND STRENGTH BRANCH (EV31) TO STUDY THE FAILURE BEHAVIOR OF FASTENERS SUBJECTED TO COMBINED SHEAR AND TENSION LOADING. THE DATA FROM THIS TESTING WILL BE USED TO DEVELOP APPROPRIATE STRUCTURAL ANALYSIS METHODS AS PART OF A FASTENER STANDARDS EFFORT SPONSORED BY THE NASA ENGINEERING SAFETY CENTER (NESC). THE TEST FIXTURE WAS DESIGNED AND FABRICATED THROUGH THE MSFC MECHANICAL FABRICATION BRANCH (ES23). THE TESTING ORGANIZATION IS THE MSFC MATERIALS TEST BRANCH (EM10).

  1. 1001519

    NASA Image and Video Library

    2010-09-01

    DEVELOPMENT TESTING BEING CONDUCTED AT THE REQUEST OF THE MSFC DYNAMICS, LOADS, AND STRENGTH BRANCH (EV31) TO STUDY THE FAILURE BEHAVIOR OF FASTENERS SUBJECTED TO COMBINED SHEAR AND TENSION LOADING. THE DATA FROM THIS TESTING WILL BE USED TO DEVELOP APPROPRIATE STRUCTURAL ANALYSIS METHODS AS PART OF A FASTENER STANDARDS EFFORT SPONSORED BY THE NASA ENGINEERING SAFETY CENTER (NESC). THE TEST FIXTURE WAS DESIGNED AND FABRICATED THROUGH THE MSFC MECHANICAL FABRICATION BRANCH (ES23). THE TESTING ORGANIZATION IS THE MSFC MATERIALS TEST BRANCH (EM10).

  2. 1001520

    NASA Image and Video Library

    2010-09-01

    DEVELOPMENT TESTING BEING CONDUCTED AT THE REQUEST OF THE MSFC DYNAMICS, LOADS, AND STRENGTH BRANCH (EV31) TO STUDY THE FAILURE BEHAVIOR OF FASTENERS SUBJECTED TO COMBINED SHEAR AND TENSION LOADING. THE DATA FROM THIS TESTING WILL BE USED TO DEVELOP APPROPRIATE STRUCTURAL ANALYSIS METHODS AS PART OF A FASTENER STANDARDS EFFORT SPONSORED BY THE NASA ENGINEERING SAFETY CENTER (NESC). THE TEST FIXTURE WAS DESIGNED AND FABRICATED THROUGH THE MSFC MECHANICAL FABRICATION BRANCH (ES23). THE TESTING ORGANIZATION IS THE MSFC MATERIALS TEST BRANCH (EM10).

  3. 1001521

    NASA Image and Video Library

    2010-09-01

    DEVELOPMENT TESTING BEING CONDUCTED AT THE REQUEST OF THE MSFC DYNAMICS, LOADS, AND STRENGTH BRANCH (EV31) TO STUDY THE FAILURE BEHAVIOR OF FASTENERS SUBJECTED TO COMBINED SHEAR AND TENSION LOADING. THE DATA FROM THIS TESTING WILL BE USED TO DEVELOP APPROPRIATE STRUCTURAL ANALYSIS METHODS AS PART OF A FASTENER STANDARDS EFFORT SPONSORED BY THE NASA ENGINEERING SAFETY CENTER (NESC). THE TEST FIXTURE WAS DESIGNED AND FABRICATED THROUGH THE MSFC MECHANICAL FABRICATION BRANCH (ES23). THE TESTING ORGANIZATION IS THE MSFC MATERIALS TEST BRANCH (EM10).

  4. Longitudinal joint treatment : first interim report.

    DOT National Transportation Integrated Search

    2000-11-01

    Maine highways have been showing signs of longitudinal joint failure for a number of : years. In an effort to reduce the amount of joint failures the Maine Department of : Transportation (MDOT) is currently evaluating two projects. One project is mon...

  5. Longitudinal joint treatment : second interim report.

    DOT National Transportation Integrated Search

    2001-09-01

    Maine highways have been showing signs of longitudinal joint failure for a : number of years. In an effort to reduce the amount of joint failures the Maine : Department of Transportation (MDOT) is currently evaluating two projects. One : project is m...

  6. Longitudinal joint treatment, interim report - third year, March 2004.

    DOT National Transportation Integrated Search

    2004-03-01

    Maine highways have been showing signs of longitudinal joint failure for a number of years. In an effort : to reduce the amount of joint failures the Maine Department of Transportation (MDOT) is currently : evaluating two projects. One project is mon...

  7. Longitudinal joint treatment, interim report - fourth year, March 2005.

    DOT National Transportation Integrated Search

    2005-03-01

    Maine highways have been showing signs of longitudinal joint failure for a number of years. In an effort : to reduce the amount of joint failures the Maine Department of Transportation (MDOT) is currently : evaluating two projects. One project is mon...

  8. Simulating Fatigue Crack Growth in Spiral Bevel Pinion

    NASA Technical Reports Server (NTRS)

    Ural, Ani; Wawrzynek, Paul A.; Ingraffe, Anthony R.

    2003-01-01

    This project investigates computational modeling of fatigue crack growth in spiral bevel gears. Current work is a continuation of the previous efforts made to use the Boundary Element Method (BEM) to simulate tooth-bending fatigue failure in spiral bevel gears. This report summarizes new results predicting crack trajectory and fatigue life for a spiral bevel pinion using the Finite Element Method (FEM). Predicting crack trajectories is important in determining the failure mode of a gear. Cracks propagating through the rim may result in catastrophic failure, whereas the gear may remain intact if one tooth fails and this may allow for early detection of failure. Being able to predict crack trajectories is insightful for the designer. However, predicting growth of three-dimensional arbitrary cracks is complicated due to the difficulty of creating three-dimensional models, the computing power required, and absence of closed- form solutions of the problem. Another focus of this project was performing three-dimensional contact analysis of a spiral bevel gear set incorporating cracks. These analyses were significant in determining the influence of change of tooth flexibility due to crack growth on the magnitude and location of contact loads. This is an important concern since change in contact loads might lead to differences in SIFs and therefore result in alteration of the crack trajectory. Contact analyses performed in this report showed the expected trend of decreasing tooth loads carried by the cracked tooth with increasing crack length. Decrease in tooth loads lead to differences between SIFs extracted from finite element contact analysis and finite element analysis with Hertz contact loads. This effect became more pronounced as the crack grew.

  9. Treatment options after sorafenib failure in patients with hepatocellular carcinoma

    PubMed Central

    Dika, Imane El

    2017-01-01

    Second line therapy after failure of sorafenib continues to be under study. Prognosis of hepatocellular carcinoma is measured in months, with median overall survival reaching 10.7 months with sorafenib. Because of the modest net benefit sorafenib has contributed, and rising incidence of hepatocellular carcinoma in the world, continued efforts are ongoing to look for efficient upfront, second line, or combination therapies. Herein we review the most relevant to date published literature on treatment options beyond sorafenib, reported studies, ongoing investigational efforts, and possibilities for future studies in advanced hepatocellular carcinoma. PMID:29151326

  10. An in-depth, longitudinal examination of the daily physical activity of a patient with heart failure using a Nintendo Wii at home: a case report.

    PubMed

    Klompstra, Leonie Verheijden; Jaarsma, Tiny; Strömberg, Anna

    2013-06-01

    To explore the influence of the Nintendo Wii on the daily physical activity of a patient with chronic heart failure at home. A 74-year-old Swedish patient with heart failure had access to a Nintendo Wii at home for 12 weeks. Exercise motivation, exercise self-efficacy and exercise capacity were assessed before and after the intervention. Data on perceived physical effort, global well-being and expended energy were collected every day during the intervention. During the 12 weeks of access to the Nintendo Wii, daily physical activity increased by 200% on weekdays and 57% on weekends, compared with baseline. The patient's exercise motivation and exercise self-efficacy increased during the study, whereas perceived physical effort and global well-being did not change. The patient had no difficulties in using the system and did not suffer any major harm. The results of this case study suggest that providing patients with heart failure access to a Nintendo Wii is a promising and safe intervention. The energy expended by the patient per day increased, as did exercise capacity. Playing the Nintendo Wii did not increase the perceived physical effort, but increased motivation to exercise and decreased barriers to exercising.

  11. Integrating Insults: Using Fault Tree Analysis to Guide Schizophrenia Research across Levels of Analysis

    PubMed Central

    MacDonald III, Angus W.; Zick, Jennifer L.; Chafee, Matthew V.; Netoff, Theoden I.

    2016-01-01

    The grand challenges of schizophrenia research are linking the causes of the disorder to its symptoms and finding ways to overcome those symptoms. We argue that the field will be unable to address these challenges within psychiatry’s standard neo-Kraepelinian (DSM) perspective. At the same time the current corrective, based in molecular genetics and cognitive neuroscience, is also likely to flounder due to its neglect for psychiatry’s syndromal structure. We suggest adopting a new approach long used in reliability engineering, which also serves as a synthesis of these approaches. This approach, known as fault tree analysis, can be combined with extant neuroscientific data collection and computational modeling efforts to uncover the causal structures underlying the cognitive and affective failures in people with schizophrenia as well as other complex psychiatric phenomena. By making explicit how causes combine from basic faults to downstream failures, this approach makes affordances for: (1) causes that are neither necessary nor sufficient in and of themselves; (2) within-diagnosis heterogeneity; and (3) between diagnosis co-morbidity. PMID:26779007

  12. Independent Orbiter Assessment (IOA): Assessment of the orbiter main propulsion system FMEA/CIL, volume 1

    NASA Technical Reports Server (NTRS)

    Slaughter, B. C.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. The Orbiter MPS is composed of the Propellant Management Subsystem (PMS) consisting of the liquid oxygen (LO2) and liquid hydrogen (LH2) subsystems and the helium subsystem. The PMS is a system of manifolds, distribution lines, and valves by which the liquid propellants pass from the External Tank to the Space Shuttle Main Engine (SSME). The helium subsystem consists of a series of helium supply tanks and their associated regulators, control valves, and distribution lines. Volume 1 contains the MPS description, assessment results, ground rules and assumptions, and some of the IOA worksheets.

  13. Map showing ground failures from the Greenville/Mount Diablo earthquake sequence of January 1980, Northern California

    USGS Publications Warehouse

    Wilson, R.C.; Wieczorek, G.F.; Keefer, D.K.; Harp, E.L.; Tannaci, N.E.

    1985-01-01

    Information about the individual ground failures may be obtained from the map and the brief descriptions in table 1. The following text is a general discussion of the distribution and the mechanisms of the ground failures, followed by a discussion of the effects of wet winter conditions and of topographic amplification on the distribution and mechanisms of slope failure, and it concludes with a description of our (unsuccessful) efforts to locate any ground failures due to liquefaction. The discussion is intended not only to describe the GMDES slope failures but also to place them into the larger general context of seismically induced slope failures.

  14. Tiger in the fault tree jungle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubel, P.

    1976-01-01

    There is yet little evidence of serious efforts to apply formal reliability analysis methods to evaluate, or even to identify, potential common-mode failures (CMF) of reactor safeguard systems. The prospects for event logic modeling in this regard are examined by the primitive device of reviewing actual CMF experience in terms of what the analyst might have perceived a priori. Further insights of the probability and risks aspects of CMFs are sought through consideration of three key likelihood factors: (1) prior probability of cause ever existing, (2) opportunities for removing cause, and (3) probability that a CMF cause will be activatedmore » by conditions associated with a real system challenge. It was concluded that the principal needs for formal logical discipline in the endeavor to decrease CMF-related risks are to discover and to account for strong ''energetic'' dependency couplings that could arise in the major accidents usually classed as ''hypothetical.'' This application would help focus research, design and quality assurance efforts to cope with major CMF causes. But without extraordinary challenges to the reactor safeguard systems, there must continue to be virtually no statistical evidence pertinent to that class of failure dependencies.« less

  15. Development of failure mechanisms for fasteners in the United States

    Treesearch

    Douglas R. Rammer; Philip Line

    2006-01-01

    In the 2001 National Design Specifications® for Wood Construction (NDS), Appendix E was added to explicitly address wood failure mechanisms that may occur in fasteners. One approach to estimate design capacities for net section, row tear out, and group tear failure mechanisms is presented in Appendix E of the 2001 NDS. Since the 2001 NDS, efforts are being untaken to...

  16. Adaptive subdomain modeling: A multi-analysis technique for ocean circulation models

    NASA Astrophysics Data System (ADS)

    Altuntas, Alper; Baugh, John

    2017-07-01

    Many coastal and ocean processes of interest operate over large temporal and geographical scales and require a substantial amount of computational resources, particularly when engineering design and failure scenarios are also considered. This study presents an adaptive multi-analysis technique that improves the efficiency of these computations when multiple alternatives are being simulated. The technique, called adaptive subdomain modeling, concurrently analyzes any number of child domains, with each instance corresponding to a unique design or failure scenario, in addition to a full-scale parent domain providing the boundary conditions for its children. To contain the altered hydrodynamics originating from the modifications, the spatial extent of each child domain is adaptively adjusted during runtime depending on the response of the model. The technique is incorporated in ADCIRC++, a re-implementation of the popular ADCIRC ocean circulation model with an updated software architecture designed to facilitate this adaptive behavior and to utilize concurrent executions of multiple domains. The results of our case studies confirm that the method substantially reduces computational effort while maintaining accuracy.

  17. Stochastic Models of Human Errors

    NASA Technical Reports Server (NTRS)

    Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)

    2002-01-01

    Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.

  18. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2016-01-01

    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  19. 75 FR 34156 - United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... the package's failure. A failure of the package could expose the medical device to microbes, bacteria... research and development efforts, including, but not limited to, designs and experiments and the results of successful and unsuccessful designs and experiments; and (b) With respect to any intangible assets that are...

  20. Numerical simulations of SHPB experiments for the dynamic compressive strength and failure of ceramics

    NASA Astrophysics Data System (ADS)

    Anderson, Charles E., Jr.; O'Donoghue, Padraic E.; Lankford, James; Walker, James D.

    1992-06-01

    Complementary to a study of the compressive strength of ceramic as a function of strain rate and confinement, numerical simulations of the split-Hopkinson pressure bar (SHPB) experiments have been performed using the two-dimensional wave propagation computer program HEMP. The numerical effort had two main thrusts. Firstly, the interpretation of the experimental data relies on several assumptions. The numerical simulations were used to investigate the validity of these assumptions. The second part of the effort focused on computing the idealized constitutive response of a ceramic within the SHPB experiment. These numerical results were then compared against experimental data. Idealized models examined included a perfectly elastic material, an elastic-perfectly plastic material, and an elastic material with failure. Post-failure material was modeled as having either no strength, or a strength proportional to the mean stress. The effects of confinement were also studied. Conclusions concerning the dynamic behavior of a ceramic up to and after failure are drawn from the numerical study.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy; English, Shawn; Briggs, Timothy

    Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less

  2. Linguistic Evidence for the Failure Mindset as a Predictor of Life Span Longevity.

    PubMed

    Penzel, Ian B; Persich, Michelle R; Boyd, Ryan L; Robinson, Michael D

    2017-06-01

    When people think that their efforts will fail to achieve positive outcomes, they sometimes give up their efforts after control, which can have negative health consequences. Problematic orientations of this type, such as pessimism, helplessness, or fatalism, seem likely to be associated with a cognitive mindset marked by higher levels of accessibility for failure words or concepts. Thus, the purpose of the present research was to determine whether there are individual differences in the frequency with which people think about failure, which in turn are likely to impact health across large spans of time. Following self-regulatory theories of health and the learned helplessness tradition, two archival studies (total n = 197) scored texts (books or speeches) for their use of failure words, a category within the Harvard IV dictionary of the General Inquirer. People who used failure words more frequently exhibited shorter subsequent life spans, and this relationship remained significant when controlling for birth year. Furthermore, study 2 implicated behavioral factors. For example, the failure/longevity relationship was numerically stronger among people whose causes of death appeared to be preventable rather than non-preventable. These results significantly extend our knowledge of the personality/longevity relationship while highlighting the value of individual differences in word usage as predictors of health and mortality.

  3. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    NASA Astrophysics Data System (ADS)

    Anggraeni, Novia Antika

    2015-04-01

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano's inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 - 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between -2.86 up to 5.49 days.

  4. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anggraeni, Novia Antika, E-mail: novia.antika.a@gmail.com

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration ofmore » the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.« less

  5. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael S. Bruno

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less

  6. A computational method for comparing the behavior and possible failure of prosthetic implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, C.; Hollerbach, K.; Perfect, S.

    1995-05-01

    Prosthetic joint implants currently in use exhibit high Realistic computer modeling of prosthetic implants provides an opportunity for orthopedic biomechanics researchers and physicians to understand possible in vivo failure modes, without having to resort to lengthy and costly clinical trials. The research presented here is part of a larger effort to develop realistic models of implanted joint prostheses. The example used here is the thumb carpo-metacarpal (cmc) joint. The work, however, can be applied to any other human joints for which prosthetic implants have been designed. Preliminary results of prosthetic joint loading, without surrounding human tissue (i.e., simulating conditions undermore » which the prosthetic joint has not yet been implanted into the human joint), are presented, based on a three-dimensional, nonlinear finite element analysis of three different joint implant designs.« less

  7. Reliability of Fault Tolerant Control Systems. Part 1

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva

    2001-01-01

    This paper reports Part I of a two part effort, that is intended to delineate the relationship between reliability and fault tolerant control in a quantitative manner. Reliability analysis of fault-tolerant control systems is performed using Markov models. Reliability properties, peculiar to fault-tolerant control systems are emphasized. As a consequence, coverage of failures through redundancy management can be severely limited. It is shown that in the early life of a syi1ein composed of highly reliable subsystems, the reliability of the overall system is affine with respect to coverage, and inadequate coverage induces dominant single point failures. The utility of some existing software tools for assessing the reliability of fault tolerant control systems is also discussed. Coverage modeling is attempted in Part II in a way that captures its dependence on the control performance and on the diagnostic resolution.

  8. Going South: Analysis of an Historic Project Engineering Failure

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2009-01-01

    NASA's successful conduct of the Apollo Program greatly enhanced the prestige of the United States and remains broadly accepted as America's gift to all Mankind. NASA's accomplishments continue to amaze the world. With the Vision for Space Exploration (VSE) Americans once again tasked NASA to carry out a project that is expected to provide inspiration and economic stimulus to the United States and to the world. In preparation NASA has thoroughly examined space program precedents. There is, however, another precedent which has not been examined in this context but whose scope and environment in many ways parallel the VSE. This project was initiated by a team that had, ten years before, successfully completed an effort that, at a cost of $173 billion (in 2008 dollars), had pushed the envelope of technology, brought economic growth, established their country as the world leader in engineering, and been broadly accepted as that country's gift to all Mankind. The new project was again inspired by popular desire to enhance national prestige and make yet another major contribution to Humanity. This effort was predicted to require eight years and $156 billion (2008 dollars). However, after nine years and expenditures of 96% beyond the baseline, the project collapsed amid bankruptcy, political scandal, and criminal prosecution. This paper applies current project management metrics, such as earned value analysis, to review the strategic decisions in this historic failure and describe its ultimate collapse. Key mistakes are identified, and lessons are drawn which may prove useful in guiding the VSE.

  9. Innovative approach to improving the care of acute decompensated heart failure.

    PubMed

    Merhaut, Shawn; Trupp, Robin

    2011-06-01

    The care of patients presenting to hospitals with acute decompensated heart failure remains a challenging and multifaceted dilemma across the continuum of care. The combination of improved survival rates for and rising incidence of heart failure has created both a clinical and economic burden for hospitals of epidemic proportion. With limited clinical resources, hospitals are expected to provide efficient, comprehensive, and quality care to a population laden with multiple comorbidities and social constraints. Further, this care must be provided in the setting of a volatile economic climate heavily affected by prolonged length of stays, high readmission rates, and changing healthcare policy. Although problems continue to mount, solutions remain scarce. In an effort to help hospitals identify gaps in care, control costs, streamline processes, and ultimately improve outcomes for these patients, the Society of Chest Pain Centers launched Heart Failure Accreditation in July 2009. Rooted in process improvement science, the Society's approach includes utilization of a tiered Accreditation tool to identify best practices, facilitate an internal gap analysis, and generate opportunities for improvement. In contrast to other organizations that require compliance with predetermined specifications, the Society's Heart Failure Accreditation focuses on the overall process including the continuum of care from emergency medical services, emergency department care, inpatient management, transition from hospital to home, and community outreach. As partners in the process, the Society strives to build relationships with facilities and share best practices with the ultimate goal to improve outcomes for heart failure patients.

  10. Relationship between Sociometric Type and Self-Attributions for Academic Failure in a Spanish Sample from Secondary Education

    ERIC Educational Resources Information Center

    Inglés, Cándido J.; Aparisi, D.; Delgado, B.; Granados, L.; García-Fernández, José M.

    2017-01-01

    Introduction: The aim of this study was to analyze the relationship between sociometric types, behavioral categories and self-attributions for academic failure ("Ability", "Effort" or "External Causes") in "Reading", "Mathematics" and "General". Method: The total sample was composed of…

  11. Automating data analysis during the inspection of boiler tubes using line scanning thermography

    NASA Astrophysics Data System (ADS)

    Ley, Obdulia; Momeni, Sepand; Ostroff, Jason; Godinez, Valery

    2012-05-01

    Failures in boiler waterwalls can occur when a relatively small amount of corrosion and loss of metal have been experienced. This study presents our efforts towards the application of Line Scanning Thermography (LST) for the analysis of thinning in boiler waterwall tubing. LST utilizes a line heat source to thermally excite the surface to be inspected and an infrared detector to record the transient surface temperature increase observed due to the presence of voids, thinning or other defects. In waterwall boiler tubes the defects that can be detected using LST correspond to corrosion pitting, hydrogen damage and wall thinning produced by inadequate burner heating or problems with the water chemistry. In this paper we discuss how the LST technique is implemented to determine thickness from the surface temperature data, and we describe our efforts towards developing a semiautomatic analysis tool to speed up the time between scanning, reporting and implementing repairs. We compare the density of data produced by the common techniques used to assess wall thickness and the data produced by LST.

  12. U.S. Food Safety and Inspection Service testing for Salmonella in selected raw meat and poultry products in the United States, 1998 through 2003: analysis of set results.

    PubMed

    Naugle, Alecia Larew; Barlow, Kristina E; Eblen, Denise R; Teter, Vanessa; Umholtz, Robert

    2006-11-01

    The U.S. Food Safety and Inspection Service (FSIS) tests sets of samples of selected raw meat and poultry products for Salmonella to ensure that federally inspected establishments meet performance standards defined in the pathogen reduction-hazard analysis and critical control point system (PR-HACCP) final rule. In the present report, sample set results are described and associations between set failure and set and establishment characteristics are identified for 4,607 sample sets collected from 1998 through 2003. Sample sets were obtained from seven product classes: broiler chicken carcasses (n = 1,010), cow and bull carcasses (n = 240), market hog carcasses (n = 560), steer and heifer carcasses (n = 123), ground beef (n = 2,527), ground chicken (n = 31), and ground turkey (n = 116). Of these 4,607 sample sets, 92% (4,255) were collected as part of random testing efforts (A sets), and 93% (4,166) passed. However, the percentage of positive samples relative to the maximum number of positive results allowable in a set increased over time for broilers but decreased or stayed the same for the other product classes. Three factors associated with set failure were identified: establishment size, product class, and year. Set failures were more likely early in the testing program (relative to 2003). Small and very small establishments were more likely to fail than large ones. Set failure was less likely in ground beef than in other product classes. Despite an overall decline in set failures through 2003, these results highlight the need for continued vigilance to reduce Salmonella contamination in broiler chicken and continued implementation of programs designed to assist small and very small establishments with PR-HACCP compliance issues.

  13. Failure mode analysis in adrenal vein sampling: a single-center experience.

    PubMed

    Trerotola, Scott O; Asmar, Melissa; Yan, Yan; Fraker, Douglas L; Cohen, Debbie L

    2014-10-01

    To analyze failure modes in a high-volume adrenal vein sampling (AVS) practice in an effort to identify preventable causes of nondiagnostic sampling. A retrospective database was constructed containing 343 AVS procedures performed over a 10-year period. Each nondiagnostic AVS procedure was reviewed for failure mode and correlated with results of any repeat AVS. Data collected included selectivity index, lateralization index, adrenalectomy outcomes if performed, and details of AVS procedure. All AVS procedures were performed after cosyntropin stimulation, using sequential technique. AVS was nondiagnostic in 12 of 343 (3.5%) primary procedures and 2 secondary procedures. Failure was right-sided in 8 (57%) procedures, left-sided in 4 (29%) procedures, bilateral in 1 procedure, and neither in 1 procedure (laboratory error). Failure modes included diluted sample from correctly identified vein (n = 7 [50%]; 3 right and 4 left), vessel misidentified as adrenal vein (n = 3 [21%]; all right), failure to locate an adrenal vein (n = 2 [14%]; both right), cosyntropin stimulation failure (n = 1 [7%]; diagnostic by nonstimulated criteria), and laboratory error (n = 1 [7%]; specimen loss). A second AVS procedure was diagnostic in three of five cases (60%), and a third AVS procedure was diagnostic in one of one case (100%). Among the eight patients in whom AVS ultimately was not diagnostic, four underwent adrenalectomy based on diluted AVS samples, and one underwent adrenalectomy based on imaging; all five experienced improvement in aldosteronism. A substantial percentage of AVS failures occur on the left, all related to dilution. Even when technically nondiagnostic per strict criteria, some "failed" AVS procedures may be sufficient to guide therapy. Repeat AVS has a good yield. Copyright © 2014 SIR. Published by Elsevier Inc. All rights reserved.

  14. Multidisciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  15. Multi-Disciplinary System Reliability Analysis

    NASA Technical Reports Server (NTRS)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  16. CT Dose Optimization in Pediatric Radiology: A Multiyear Effort to Preserve the Benefits of Imaging While Reducing the Risks.

    PubMed

    Greenwood, Taylor J; Lopez-Costa, Rodrigo I; Rhoades, Patrick D; Ramírez-Giraldo, Juan C; Starr, Matthew; Street, Mandie; Duncan, James; McKinstry, Robert C

    2015-01-01

    The marked increase in radiation exposure from medical imaging, especially in children, has caused considerable alarm and spurred efforts to preserve the benefits but reduce the risks of imaging. Applying the principles of the Image Gently campaign, data-driven process and quality improvement techniques such as process mapping and flowcharting, cause-and-effect diagrams, Pareto analysis, statistical process control (control charts), failure mode and effects analysis, "lean" or Six Sigma methodology, and closed feedback loops led to a multiyear program that has reduced overall computed tomographic (CT) examination volume by more than fourfold and concurrently decreased radiation exposure per CT study without compromising diagnostic utility. This systematic approach involving education, streamlining access to magnetic resonance imaging and ultrasonography, auditing with comparison with benchmarks, applying modern CT technology, and revising CT protocols has led to a more than twofold reduction in CT radiation exposure between 2005 and 2012 for patients at the authors' institution while maintaining diagnostic utility. (©)RSNA, 2015.

  17. Hypertension, Obesity, Diabetes, and Heart Failure-Free Survival: The Cardiovascular Disease Lifetime Risk Pooling Project.

    PubMed

    Ahmad, Faraz S; Ning, Hongyan; Rich, Jonathan D; Yancy, Clyde W; Lloyd-Jones, Donald M; Wilkins, John T

    2016-12-01

    This study was designed to quantify the relationship between the absence of heart failure risk factors in middle age and incident heart failure, heart failure-free survival, and overall survival. Quantification of years lived free from heart failure in the context of risk factor burden in mid-life may improve risk communication and prevention efforts. We conducted a pooled, individual-level analysis sampling from communities across the United States as part of 4 cohort studies: the Framingham Heart, Framingham Offspring, Chicago Heart Association Detection Project in Industry, and ARIC (Atherosclerosis Risk In Communities) studies. Participants with and without hypertension (blood pressure ≥140/90 mm Hg or treatment), obesity (body mass index ≥30 kg/m 2 ), or diabetes (fasting glucose ≥126 mg/dl or treatment), and combinations of these factors, at index ages of 45 years and 55 years through 95 years. Competing risk-adjusted Cox models, a modified Kaplan-Meier estimator, and Irwin's restricted mean were used to estimate the association between the absence of risk factors at mid-life and incident heart failure, heart failure-free survival, and overall survival. For participants at age 45 years, over 516,537 person-years of follow-up, 1,677 incident heart failure events occurred. Men and women with no risk factors, compared to those with all 3, had 73% to 85% lower risks of incident heart failure. Men and women without hypertension, obesity, or diabetes at age 45 years lived on average 34.7 years and 38.0 years without incident heart failure, and they lived on average an additional 3 years to 15 years longer free of heart failure than those with 1, 2, or 3 risk factors. Similar trends were seen when stratified by race and at index age 55 years. Prevention of hypertension, obesity, and diabetes by ages 45 years and 55 years may substantially prolong heart failure-free survival, decrease heart failure-related morbidity, and reduce the public health impact of heart failure. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Air/Oil Seals R and D at AlliedSignal

    NASA Technical Reports Server (NTRS)

    Ullah, M. Rifat

    2006-01-01

    AlliedSignal aerospace company is committed to significantly improving the reliabilities of air/oil seals in their gas turbine engines. One motivation for this is that aircraft cabin air quality can be affected by the performance of mainshaft air/oil seals. In the recent past, coking related failure modes have been the focus of air/oil seal R&D at AlliedSignal. Many significant advances have been made to combat coke related failures, with some more work continuing in this area. This years R&D begins to address other commin failure modes. Among them, carbon seal "blistering" has been a chronic problem facing the sealing industry for many decades. AlliedSignal has launched an aggressive effort this year to solve this problem for our aerospace rated carbon seals in a short (one to two year) timeframe. Work also continues in developing more user-friendly tools and data for seal analysis & design. Innovations in seal cooling continue. Nominally non-contacting hydropad sealing concept is being developed for aerospace applications. Finally, proprietary work is in planning stages for development of a seal with the aggressive aim of zero oil leakage.

  19. Organizing for Excellence.

    ERIC Educational Resources Information Center

    Duttweiler, Patricia Cloud

    Factors that contribute to excellence in education, as well as those that have contributed to the failure of change efforts, are the subject of this document. It provides a summary of the literature on reform efforts; effective schools; new organizational perspectives derived from the business sector; organizational restructuring being tested in…

  20. Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hampton, Jesse Clay

    The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.

  1. Out-of-pocket costs of HAART limit HIV treatment responses in Botswana's private sector.

    PubMed

    Bisson, Gregory P; Frank, Ian; Gross, Robert; Lo Re, Vincent; Strom, Jordan B; Wang, Xingmei; Mogorosi, Mpho; Gaolathe, Tendani; Ndwapi, Ndwapi; Friedman, Harvey; Strom, Brian L; Dickinson, Diana

    2006-06-12

    A large number of HIV-infected patients in sub-Saharan Africa pay out-of-pocket for HAART. This analysis from Botswana indicates that higher median out-of-pocket regimen costs to patients for the initial 30 days of HAART are associated with failure to achieve a viral load< 400 copies/ml [US$32; interquartile range (IQR), 20-84 compared with US$22; (IQR, 17-36), P = 0.001]. HAART costs should be minimized as scale-up efforts in sub-Saharan Africa progress.

  2. Geotechnical effects of the 2015 magnitude 7.8 Gorkha, Nepal, earthquake and aftershocks

    USGS Publications Warehouse

    Moss, Robb E. S.; Thompson, Eric M.; Kieffer, D Scott; Tiwari, Binod; Hashash, Youssef M A; Acharya, Indra; Adhikari, Basanta; Asimaki, Domniki; Clahan, Kevin B.; Collins, Brian D.; Dahal, Sachindra; Jibson, Randall W.; Khadka, Diwakar; Macdonald, Amy; Madugo, Chris L M; Mason, H Benjamin; Pehlivan, Menzer; Rayamajhi, Deepak; Uprety, Sital

    2015-01-01

    This article summarizes the geotechnical effects of the 25 April 2015 M 7.8 Gorkha, Nepal, earthquake and aftershocks, as documented by a reconnaissance team that undertook a broad engineering and scientific assessment of the damage and collected perishable data for future analysis. Brief descriptions are provided of ground shaking, surface fault rupture, landsliding, soil failure, and infrastructure performance. The goal of this reconnaissance effort, led by Geotechnical Extreme Events Reconnaissance, is to learn from earthquakes and mitigate hazards in future earthquakes.

  3. Verification of the Multi-Axial, Temperature and Time Dependent (MATT) Failure Criterion

    NASA Technical Reports Server (NTRS)

    Richardson, David E.; Macon, David J.

    2005-01-01

    An extensive test and analytical effort has been completed by the Space Shuttle's Reusable Solid Rocket Motor (KSKM) nozzle program to characterize the failure behavior of two epoxy adhesives (TIGA 321 and EA946). As part of this effort, a general failure model, the "Multi-Axial, Temperature, and Time Dependent" or MATT failure criterion was developed. In the initial development of this failure criterion, tests were conducted to provide validation of the theory under a wide range of test conditions. The purpose of this paper is to present additional verification of the MATT failure criterion, under new loading conditions for the adhesives TIGA 321 and EA946. In many cases, the loading conditions involve an extrapolation from the conditions under which the material models were originally developed. Testing was conducted using three loading conditions: multi-axial tension, torsional shear, and non-uniform tension in a bondline condition. Tests were conducted at constant and cyclic loading rates ranging over four orders of magnitude. Tests were conducted under environmental conditions of primary interest to the RSRM program. The temperature range was not extreme, but the loading ranges were extreme (varying by four orders of magnitude). It should be noted that the testing was conducted at temperatures below the glass transition temperature of the TIGA 321 adhesive. However for the EA946, the testing was conducted at temperatures that bracketed the glass transition temperature.

  4. Impact Testing of Aluminum 2024 and Titanium 6Al-4V for Material Model Development

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Revilock, Duane M.; Lerch, Bradley A.; Ruggeri, Charles R.

    2013-01-01

    One of the difficulties with developing and verifying accurate impact models is that parameters such as high strain rate material properties, failure modes, static properties, and impact test measurements are often obtained from a variety of different sources using different materials, with little control over consistency among the different sources. In addition there is often a lack of quantitative measurements in impact tests to which the models can be compared. To alleviate some of these problems, a project is underway to develop a consistent set of material property, impact test data and failure analysis for a variety of aircraft materials that can be used to develop improved impact failure and deformation models. This project is jointly funded by the NASA Glenn Research Center and the FAA William J. Hughes Technical Center. Unique features of this set of data are that all material property data and impact test data are obtained using identical material, the test methods and procedures are extensively documented and all of the raw data is available. Four parallel efforts are currently underway: Measurement of material deformation and failure response over a wide range of strain rates and temperatures and failure analysis of material property specimens and impact test articles conducted by The Ohio State University; development of improved numerical modeling techniques for deformation and failure conducted by The George Washington University; impact testing of flat panels and substructures conducted by NASA Glenn Research Center. This report describes impact testing which has been done on aluminum (Al) 2024 and titanium (Ti) 6Al-4vanadium (V) sheet and plate samples of different thicknesses and with different types of projectiles, one a regular cylinder and one with a more complex geometry incorporating features representative of a jet engine fan blade. Data from this testing will be used in validating material models developed under this program. The material tests and the material models developed in this program will be published in separate reports.

  5. 14 CFR 25.809 - Emergency exit arrangement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-boost or single power-operated system is the primary system for operating more than one exit in an... effort; and must be arranged and marked so that it can be readily located and operated, even in darkness... event of failure of the primary system. Manual operation of the exit (after failure of the primary...

  6. 14 CFR 25.809 - Emergency exit arrangement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-boost or single power-operated system is the primary system for operating more than one exit in an... effort; and must be arranged and marked so that it can be readily located and operated, even in darkness... event of failure of the primary system. Manual operation of the exit (after failure of the primary...

  7. 14 CFR 25.809 - Emergency exit arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-boost or single power-operated system is the primary system for operating more than one exit in an... effort; and must be arranged and marked so that it can be readily located and operated, even in darkness... event of failure of the primary system. Manual operation of the exit (after failure of the primary...

  8. 14 CFR 25.809 - Emergency exit arrangement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-boost or single power-operated system is the primary system for operating more than one exit in an... effort; and must be arranged and marked so that it can be readily located and operated, even in darkness... event of failure of the primary system. Manual operation of the exit (after failure of the primary...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, Shawn Allen; Nelson, Stacy Michelle; Briggs, Timothy

    Presented is a model verification and validation effort using low - velocity impact (LVI) of carbon fiber reinforced polymer laminate experiments. A flat cylindrical indenter impacts the laminate with enough energy to produce delamination, matrix cracks and fiber breaks. Included in the experimental efforts are ultrasonic scans of the damage for qualitative validation of the models. However, the primary quantitative metrics of validation are the force time history measured through the instrumented indenter and initial and final velocities. The simulations, whi ch are run on Sandia's Sierra finite element codes , consist of all physics and material parameters of importancemore » as determined by a sensitivity analysis conducted on the LVI simulation. A novel orthotropic damage and failure constitutive model that is cap able of predicting progressive composite damage and failure is described in detail and material properties are measured, estimated from micromechanics or optimized through calibration. A thorough verification and calibration to the accompanying experiment s are presented. Specia l emphasis is given to the four - point bend experiment. For all simulations of interest, the mesh and material behavior is verified through extensive convergence studies. An ensemble of simulations incorporating model parameter unc ertainties is used to predict a response distribution which is then compared to experimental output. The result is a quantifiable confidence in material characterization and model physics when simulating this phenomenon in structures of interest.« less

  10. Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code thatmore » is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less

  11. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Hales; Various

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale codemore » that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less

  12. Analysis and Reduction of Complex Networks Under Uncertainty.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanem, Roger G

    2014-07-31

    This effort was a collaboration with Youssef Marzouk of MIT, Omar Knio of Duke University (at the time at Johns Hopkins University) and Habib Najm of Sandia National Laboratories. The objective of this effort was to develop the mathematical and algorithmic capacity to analyze complex networks under uncertainty. Of interest were chemical reaction networks and smart grid networks. The statements of work for USC focused on the development of stochastic reduced models for uncertain networks. The USC team was led by Professor Roger Ghanem and consisted of one graduate student and a postdoc. The contributions completed by the USC teammore » consisted of 1) methodology and algorithms to address the eigenvalue problem, a problem of significance in the stability of networks under stochastic perturbations, 2) methodology and algorithms to characterize probability measures on graph structures with random flows. This is an important problem in characterizing random demand (encountered in smart grid) and random degradation (encountered in infrastructure systems), as well as modeling errors in Markov Chains (with ubiquitous relevance !). 3) methodology and algorithms for treating inequalities in uncertain systems. This is an important problem in the context of models for material failure and network flows under uncertainty where conditions of failure or flow are described in the form of inequalities between the state variables.« less

  13. Expanded envelope concepts for aircraft control-element failure detection and identification

    NASA Technical Reports Server (NTRS)

    Weiss, Jerold L.; Hsu, John Y.

    1988-01-01

    The purpose of this effort was to develop and demonstrate concepts for expanding the envelope of failure detection and isolation (FDI) algorithms for aircraft-path failures. An algorithm which uses analytic-redundancy in the form of aerodynamic force and moment balance equations was used. Because aircraft-path FDI uses analytical models, there is a tradeoff between accuracy and the ability to detect and isolate failures. For single flight condition operation, design and analysis methods are developed to deal with this robustness problem. When the departure from the single flight condition is significant, algorithm adaptation is necessary. Adaptation requirements for the residual generation portion of the FDI algorithm are interpreted as the need for accurate, large-motion aero-models, over a broad range of velocity and altitude conditions. For the decision-making part of the algorithm, adaptation may require modifications to filtering operations, thresholds, and projection vectors that define the various hypothesis tests performed in the decision mechanism. Methods of obtaining and evaluating adequate residual generation and decision-making designs have been developed. The application of the residual generation ideas to a high-performance fighter is demonstrated by developing adaptive residuals for the AFTI-F-16 and simulating their behavior under a variety of maneuvers using the results of a NASA F-16 simulation.

  14. Flaw Tolerance In Lap Shear Brazed Joints. Part 2

    NASA Technical Reports Server (NTRS)

    Wang, Len; Flom, Yury

    2003-01-01

    This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.

  15. Insecticide resistance, control failure likelihood and the First Law of Geography.

    PubMed

    Guedes, Raul Narciso C

    2017-03-01

    Insecticide resistance is a broadly recognized ecological backlash resulting from insecticide use and is widely reported among arthropod pest species with well-recognized underlying mechanisms and consequences. Nonetheless, insecticide resistance is the subject of evolving conceptual views that introduces a different concept useful if recognized in its own right - the risk or likelihood of control failure. Here we suggest an experimental approach to assess the likelihood of control failure of an insecticide allowing for consistent decision-making regarding management of insecticide resistance. We also challenge the current emphasis on limited spatial sampling of arthropod populations for resistance diagnosis in favor of comprehensive spatial sampling. This necessarily requires larger population sampling - aiming to use spatial analysis in area-wide surveys - to recognize focal points of insecticide resistance and/or control failure that will better direct management efforts. The continuous geographical scale of such surveys will depend on the arthropod pest species, the pattern of insecticide use and many other potential factors. Regardless, distance dependence among sampling sites should still hold, following the maxim that the closer two things are, the more they resemble each other, which is the basis of Tobler's First Law of Geography. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Self-handicapping status, claimed self-handicaps and reduced practice effort following success and failure feedback.

    PubMed

    Thompson, T; Richardson, A

    2001-03-01

    Self-handicapping involves the strategic establishment of an impediment or obstacle to success prior to a performance situation which thereby provides a convenient excuse for poor performance. The study sought to establish that relative to low trait self-handicappers, high trait self-handicappers exposed to failure in an intellectually evaluative situation will (a) pre-emptively claim more handicaps, and (b) behaviourally self-handicap through reduced practice effort, and (c) report greater anxiety and negative affect relative to low trait self-handicappers. Participants were 72 undergraduate students, divided equally between high and low self-handicapping groups. This study utilised a 2 (self-handicapping status: high, low) x 3 (performance feedback: fail, low task importance; fail, high task importance; success) between-subjects factorial design to investigate claimed and behavioural self-handicapping through reduced practice effort. This was done by manipulating performance outcome and perceived task importance. Relative to low trait self-handicappers, high trait high self-handicappers claimed more handicaps and engaged in greater behavioural self-handicapping following failure when working on tasks that were described as potentially diagnostic of low ability. While low self-handicappers internalised their success more than their failure in the high task importance condition, high self-handicappers were undifferentiated in their attributions across performance conditions. Greater anxiety and greater negative affect were also characteristic of high self-handicappers. The study highlights the self-protective benefit of self-handicapping in sparing the individual from conclusions of low ability, and the failure of high self-handicappers to fully internalise their success. These elements and the role of uncertain estimates of ability are discussed in considering implications for intervention.

  17. Requirements for guidelines systems: implementation challenges and lessons from existing software-engineering efforts.

    PubMed

    Shah, Hemant; Allard, Raymond D; Enberg, Robert; Krishnan, Ganesh; Williams, Patricia; Nadkarni, Prakash M

    2012-03-09

    A large body of work in the clinical guidelines field has identified requirements for guideline systems, but there are formidable challenges in translating such requirements into production-quality systems that can be used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful in helping define sub-requirements to the point where they are implementable. Further, additional requirements emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system. In addition to requirements described by guideline-system authors, comparative reviews of such systems, and publications discussing information needs for guideline systems and clinical decision support systems in general, we have incorporated additional requirements related to production-system robustness and functionality from publications in the business workflow domain, in addition to drawing on our own experience in the development of the Proteus guideline system (http://proteme.org). The sub-requirements are discussed by conveniently grouping them into the categories used by the review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements under each category, and provide example of similar work in software-engineering efforts that have addressed a similar problem in a non-biomedical context. When analyzing requirements from the implementation viewpoint, knowledge of successes and failures in related software-engineering efforts can guide implementers in the choice of effective design and development strategies.

  18. Requirements for guidelines systems: implementation challenges and lessons from existing software-engineering efforts

    PubMed Central

    2012-01-01

    Background A large body of work in the clinical guidelines field has identified requirements for guideline systems, but there are formidable challenges in translating such requirements into production-quality systems that can be used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful in helping define sub-requirements to the point where they are implementable. Further, additional requirements emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system. Methods In addition to requirements described by guideline-system authors, comparative reviews of such systems, and publications discussing information needs for guideline systems and clinical decision support systems in general, we have incorporated additional requirements related to production-system robustness and functionality from publications in the business workflow domain, in addition to drawing on our own experience in the development of the Proteus guideline system (http://proteme.org). Results The sub-requirements are discussed by conveniently grouping them into the categories used by the review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements under each category, and provide example of similar work in software-engineering efforts that have addressed a similar problem in a non-biomedical context. Conclusions When analyzing requirements from the implementation viewpoint, knowledge of successes and failures in related software-engineering efforts can guide implementers in the choice of effective design and development strategies. PMID:22405400

  19. 45 CFR 152.39 - Maintenance of effort.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-EXISTING CONDITION INSURANCE PLAN PROGRAM Relationship to Existing Laws and Programs § 152.39 Maintenance... the contract is entered. (b) Failure to maintain efforts. In situations where a State enters into a..., against any State that fails to maintain funding levels for existing State high risk pools as required...

  20. [Chronic heart failure].

    PubMed

    Gosch, Markus

    2008-08-01

    As a consequence of the increasing life expectancy the number of patients suffering from chronic heart failure has been growing continuously in the past few decades, especially in the group of the old and oldest. Frailty is a clinical syndrome that geriatricians attach great importance to. Like many other diseases chronic heart failure can cause frailty. Based on the experience that we see only a small correlation between the functional capacity of patients with heart failure and the results of cardiological findings, the model of peripheral myopathy in chronic heart failure was developed. Different pathophysiological changes may cause the increasing exercise intolerance in patients with chronic heart failure. We can already consider different experimental approaches to the therapy of frailty caused by chronic heart failure. At the moment we have to focus our efforts on an optimal therapy of heart failure, especially with angiotensin-converting-enzyme inhibitors and beta-blockers, and on individual endurance and strength training.

  1. Definition and Demonstration of a Methodology for Validating Aircraft Trajectory Predictors

    NASA Technical Reports Server (NTRS)

    Vivona, Robert A.; Paglione, Mike M.; Cate, Karen T.; Enea, Gabriele

    2010-01-01

    This paper presents a new methodology for validating an aircraft trajectory predictor, inspired by the lessons learned from a number of field trials, flight tests and simulation experiments for the development of trajectory-predictor-based automation. The methodology introduces new techniques and a new multi-staged approach to reduce the effort in identifying and resolving validation failures, avoiding the potentially large costs associated with failures during a single-stage, pass/fail approach. As a case study, the validation effort performed by the Federal Aviation Administration for its En Route Automation Modernization (ERAM) system is analyzed to illustrate the real-world applicability of this methodology. During this validation effort, ERAM initially failed to achieve six of its eight requirements associated with trajectory prediction and conflict probe. The ERAM validation issues have since been addressed, but to illustrate how the methodology could have benefited the FAA effort, additional techniques are presented that could have been used to resolve some of these issues. Using data from the ERAM validation effort, it is demonstrated that these new techniques could have identified trajectory prediction error sources that contributed to several of the unmet ERAM requirements.

  2. A History of Aerospace Problems, Their Solutions, Their Lessons

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1996-01-01

    The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.

  3. Teacher response to learning disability: a test of attributional principles.

    PubMed

    Clark, M D

    1997-01-01

    Attribution research has identified student ability and effort expended as causes of achievement outcomes that result in differing teacher affect, evaluative feedback, and expectation of future performance. Ninety-seven elementary-school general education teachers (84 women and 13 men) rated their responses to the test failures of hypothetical boys with and without learning disabilities. In most cases, greater reward and less punishment, less anger and more pity, and higher expectations of future failure followed the negative outcomes of the boys with learning disabilities, when compared with their nondisabled ability and effort matches, indicating that learning disability acts as a cause of achievement outcomes in the same way as ability and effort. This pattern of teacher affect and response can send negative messages that are often interpreted as low-ability cues, thus affecting students' self-esteem, sense of competence as learners, and motivation to achieve.

  4. Is No Praise Good Praise? Effects of Positive Feedback on Children's and University Students' Responses to Subsequent Failures

    ERIC Educational Resources Information Center

    Skipper, Yvonne; Douglas, Karen

    2012-01-01

    Background: According to Dweck and colleagues, praise can be delivered using person ("you are clever") or process terms ("you worked hard"). Research suggests that giving people process praise after success can help them deal better with subsequent failures because it attributes outcomes to effort rather than fixed ability.…

  5. Test and Analysis Correlation of a Large-Scale, Orthogrid-Stiffened Metallic Cylinder without Weld Lands

    NASA Technical Reports Server (NTRS)

    Rudd, Michelle T.; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.

    2018-01-01

    The NASA Engineering Safety Center (NESC) Shell Buckling Knockdown Factor Project (SBKF) was established in 2007 by the NESC with the primary objective to develop analysis-based buckling design factors and guidelines for metallic and composite launch-vehicle structures.1 A secondary objective of the project is to advance technologies that have the potential to increase the structural efficiency of launch-vehicles. The SBKF Project has determined that weld-land stiffness discontinuities can significantly reduce the buckling load of a cylinder. In addition, the welding process can introduce localized geometric imperfections that can further exacerbate the inherent buckling imperfection sensitivity of the cylinder. Therefore, single-piece barrel fabrication technologies can improve structural efficiency by eliminating these weld-land issues. As part of this effort, SBKF partnered with the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center (LaRC), the Mechanical and Fabrication Branch at NASA Marshall Space Flight Center (MSFC), and ATI Forged Products to design and fabricate an 8-ft-diameter orthogrid-stiffened seamless metallic cylinder. The cylinder was subjected to seven subcritical load sequences (load levels that are not intended to induce test article buckling or material failure) and one load sequence to failure. The purpose of this test effort was to demonstrate the potential benefits of building cylindrical structures with no weld lands using the flow-formed manufacturing process. This seamless barrel is the ninth 8-ft-diameter metallic barrel and the first single-piece metallic structure to be tested under this program.

  6. A systems approach to accident causation in mining: an application of the HFACS method.

    PubMed

    Lenné, Michael G; Salmon, Paul M; Liu, Charles C; Trotter, Margaret

    2012-09-01

    This project aimed to provide a greater understanding of the systemic factors involved in mining accidents, and to examine those organisational and supervisory failures that are predictive of sub-standard performance at operator level. A sample of 263 significant mining incidents in Australia across 2007-2008 were analysed using the Human Factors Analysis and Classification System (HFACS). Two human factors specialists independently undertook the analysis. Incidents occurred more frequently in operations concerning the use of surface mobile equipment (38%) and working at heights (21%), however injury was more frequently associated with electrical operations and vehicles and machinery. Several HFACS categories appeared frequently: skill-based errors (64%) and violations (57%), issues with the physical environment (56%), and organisational processes (65%). Focussing on the overall system, several factors were found to predict the presence of failures in other parts of the system, including planned inappropriate operations and team resource management; inadequate supervision and team resource management; and organisational climate and inadequate supervision. It is recommended that these associations deserve greater attention in future attempts to develop accident countermeasures, although other significant associations should not be ignored. In accordance with findings from previous HFACS-based analyses of aviation and medical incidents, efforts to reduce the frequency of unsafe acts or operations should be directed to a few critical HFACS categories at the higher levels: organisational climate, planned inadequate operations, and inadequate supervision. While remedial strategies are proposed it is important that future efforts evaluate the utility of the measures proposed in studies of system safety. Copyright © 2011. Published by Elsevier Ltd.

  7. Attributional Bias Instrument (ABI): Validation of a Measure to Assess Ability and Effort Explanations for Math Performance

    ERIC Educational Resources Information Center

    Espinoza, Penelope P.; Quezada, Stephanie A.; Rincones, Rodolfo; Strobach, E. Natalia; Gutierrez, Maria Armida Estrada

    2012-01-01

    The present work investigates the validation of a newly developed instrument, the attributional bias instrument, based on achievement attribution theories that distinguish between effort and ability explanations of behavior. The instrument further incorporates the distinction between explanations for success versus failure in academic performance.…

  8. "What I Worry About." Meeting the Needs of the Community College Student.

    ERIC Educational Resources Information Center

    Zaritsky, Joyce Ship

    1990-01-01

    Summarizes concerns commonly expressed by incoming LaGuardia Community College freshmen (e.g., worries about parenting; fear of random violence; financial worries; fear of educational failure; and anxiety about mastering English). Reviews an instructor's efforts to empower students and build self-concept. Advocates a systemwide effort to meet…

  9. Out of sight, out of mind: why doesn't widespread clinical quality failure command our attention?

    PubMed

    Milstein, Arnold; Adler, Nancy E

    2003-01-01

    This paper examines the tolerance by all stakeholders of increasingly well documented evidence of serious and widespread clinical quality failure in the United States. Using research evidence from psychology, it describes specific cognitive and motivational impediments to the perception of quality failure-those shared by all stakeholders and those particularly relevant to patients and their families and to health care professionals. The authors endorse efforts by the National Quality Forum and others to make quality failure more publicly visible. They also point to the pivotal role of health care industry leaders in sustaining focus on a problem that inherently resists visibility.

  10. SU-F-T-250: What Does It Take to Correctly Assess the High Failure Modes of an Advanced Radiotherapy Procedure Such as Stereotactic Body Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Vile, D; Rosu, M

    Purpose: Assess the correct implementation of risk-based methodology of TG 100 to optimize quality management and patient safety procedures for Stereotactic Body Radiation Therapy. Methods: A detailed process map of SBRT treatment procedure was generated by a team of three physicists with varying clinical experience at our institution to assess the potential high-risk failure modes. The probabilities of occurrence (O), severity (S) and detectability (D) for potential failure mode in each step of the process map were assigned by these individuals independently on the scale from1 to 10. The risk priority numbers (RPN) were computed and analyzed. The highest 30more » potential modes from each physicist’s analysis were then compared. Results: The RPN values assessed by the three physicists ranged from 30 to 300. The magnitudes of the RPN values from each physicist were different, and there was no concordance in the highest RPN values recorded by three physicists independently. The 10 highest RPN values belonged to sub steps of CT simulation, contouring and delivery in the SBRT process map. For these 10 highest RPN values, at least two physicists, irrespective of their length of experience had concordance but no general conclusions emerged. Conclusion: This study clearly shows that the risk-based assessment of a clinical process map requires great deal of preparation, group discussions, and participation by all stakeholders. One group albeit physicists cannot effectively implement risk-based methodology proposed by TG100. It should be a team effort in which the physicists can certainly play the leading role. This also corroborates TG100 recommendation that risk-based assessment of clinical processes is a multidisciplinary team effort.« less

  11. Schools and Students At Risk. Context and Framework for Positive Change.

    ERIC Educational Resources Information Center

    Rossi, Robert J., Ed.

    This book presents essays from educational reformers who examine efforts aimed at students at risk for failure in U.S. schools. It is divided into four parts. Part 1 considers the factors that place children at risk for educational failure. Part 2 describes the dangers for students of a system that fails to recognize and appreciate their…

  12. The Minimum Grading Controversy: Results of a Quantitative Study of Seven Years of Grading Data from an Urban High School

    ERIC Educational Resources Information Center

    Carey, Theodore; Carifio, James

    2012-01-01

    In an effort to reduce failure and drop-out rates, schools have been implementing minimum grading. One form involves raising catastrophically low student quarter grades to a predetermined minimum--typically a 50. Proponents argue it gives struggling students a reasonable chance to recover from failure. Critics contend the practice induces grade…

  13. Sensor failure detection for jet engines

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.

    1988-01-01

    The use of analytical redundancy to improve gas turbine engine control system reliability through sensor failure detection, isolation, and accommodation is surveyed. Both the theoretical and application papers that form the technology base of turbine engine analytical redundancy research are discussed. Also, several important application efforts are reviewed. An assessment of the state-of-the-art in analytical redundancy technology is given.

  14. Academic Self-Concept and Causal Attributions for Success and Failure Amongst Elementary School Children

    ERIC Educational Resources Information Center

    Lohbeck, Annette; Grube, Dietmar; Moschner, Barbara

    2017-01-01

    A great deal of research shows that the way in which children attribute causes to their successes and failures in school has implications for the development of their academic self-concept (ASC). The most common attributions are ability, effort, task difficulty, and luck. The present study asked 68 elementary school children aged seven to eight…

  15. Software Effort Estimation Accuracy: A Comparative Study of Estimations Based on Software Sizing and Development Methods

    ERIC Educational Resources Information Center

    Lafferty, Mark T.

    2010-01-01

    The number of project failures and those projects completed over cost and over schedule has been a significant issue for software project managers. Among the many reasons for failure, inaccuracy in software estimation--the basis for project bidding, budgeting, planning, and probability estimates--has been identified as a root cause of a high…

  16. Attributions to Success and Failure in English Language Learning: The Effects of Gender, Age and Perceived Success

    ERIC Educational Resources Information Center

    Genç, Gülten

    2016-01-01

    The main purpose of this study is to analyze Turkish tertiary level EFL learners' attributions to success and failure and the effects of gender, age, and perceived success on their attributions. The results indicated that EFL learners respectively attributed interest, ability, task difficulty, effort, luck and the influence of teacher and school…

  17. Specificity rates for non-clinical, bilingual, Mexican Americans on three popular performance validity measures.

    PubMed

    Gasquoine, Philip G; Weimer, Amy A; Amador, Arnoldo

    2017-04-01

    To measure specificity as failure rates for non-clinical, bilingual, Mexican Americans on three popular performance validity measures: (a) the language format Reliable Digit Span; (b) visual-perceptual format Test of Memory Malingering; and (c) visual-perceptual format Dot Counting, using optimal/suboptimal effort cut scores developed for monolingual, English-speakers. Participants were 61 consecutive referrals, aged between 18 and 65 years, with <16 years of education who were subjectively bilingual (confirmed via formal assessment) and chose the language of assessment, Spanish or English, for the performance validity tests. Failure rates were 38% for Reliable Digit Span, 3% for the Test of Memory Malingering, and 7% for Dot Counting. For Reliable Digit Span, the failure rates for Spanish (46%) and English (31%) languages of administration did not differ significantly. Optimal/suboptimal effort cut scores derived for monolingual English-speakers can be used with Spanish/English bilinguals when using the visual-perceptual format Test of Memory Malingering and Dot Counting. The high failure rate for Reliable Digit Span suggests it should not be used as a performance validity measure with Spanish/English bilinguals, irrespective of the language of test administration, Spanish or English.

  18. Developing U.S. oversight strategies for nanobiotechnology: learning from past oversight experiences.

    PubMed

    Paradise, Jordan; Wolf, Susan M; Kuzma, Jennifer; Kuzhabekova, Aliya; Tisdale, Alison W; Kokkoli, Efrosini; Ramachandran, Gurumurthy

    2009-01-01

    The emergence of nanotechnology, and specifically nanobiotechnology, raises major oversight challenges. In the United States, government, industry, and researchers are debating what oversight approaches are most appropriate. Among the federal agencies already embroiled in discussion of oversight approaches are the Food and Drug Administration (FDA), Environmental Protection Agency (EPA), Department of Agriculture (USDA), Occupational Safety and Health Administration (OSHA), and National Institutes of Health (NIH). All can learn from assessment of the successes and failures of past oversight efforts aimed at emerging technologies. This article reports on work funded by the National Science Foundation (NSF) aimed at learning the lessons of past oversight efforts. The article offers insights that emerge from comparing five oversight case studies that examine oversight of genetically engineered organisms (GEOs) in the food supply, pharmaceuticals, medical devices, chemicals in the workplace, and gene therapy. Using quantitative and qualitative analysis, the authors present a new way of evaluating oversight.

  19. Analytic gravitational waveforms for generic precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2017-01-01

    Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.

  20. International Space Station (ISS) S-Band Corona Discharge Anomaly Consultation

    NASA Technical Reports Server (NTRS)

    Kichak, Robert A.; Leidecker, Henning; Battel, Steven; Ruitberg, Arthur; Sank, Victor

    2008-01-01

    The Assembly and Contingency Radio Frequency Group (ACRFG) onboard the International Space Station (ISS) is used for command and control communications and transmits (45 dBm or 32 watts) and receives at S-band. The system is nominally pressurized with gaseous helium (He) and nitrogen (N2) at 8 pounds per square inch absolute (psia). MacDonald, Dettwiler and Associates Ltd. (MDA) was engaged to analyze the operational characteristics of this unit in an effort to determine if the anomalous behavior was a result of a corona event. Based on this analysis, MDA did not recommend continued use of this ACRFG. The NESC was requested to provide expert support in the area of high-voltage corona and multipactoring in an S-Band RF system and to assess the probability of corona occurring in the ACRFG during the planned EVA. The NESC recommended minimal continued use of S/N 002 ACRFG until a replacement unit can be installed. Following replacement, S/N 002 will be subjected to destructive failure analysis in an effort to determine the proximate and root cause(s) of the anomalous behavior.

  1. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  2. Geodetic Imaging and Tsunami Modeling of the 2017 Coupled Landslide-Tsunami Event in Karrat Fjord, West Greenland.

    NASA Astrophysics Data System (ADS)

    Barba, M.; Willis, M. J.; Tiampo, K. F.; Lynett, P. J.; Mätzler, E.; Thorsøe, K.; Higman, B. M.; Thompson, J. A.; Morin, P. J.

    2017-12-01

    We use a combination of geodetic imaging techniques and modelling efforts to examine the June 2017 Karrat Fjord, West Greenland, landslide and tsunami event. Our efforts include analysis of pre-cursor motions extracted from Sentinal SAR interferometry that we improved with high-resolution Digital Surface Models derived from commercial imagery and geo-coded Structure from Motion analyses. We produce well constrained estimates of landslide volume through DSM differencing by improving the ArcticDEM coverage of the region, and provide modeled tsunami run-up estimates at villages around the region, constrained with in-situ observations provided by the Greenlandic authorities. Estimates of run-up at unoccupied coasts are derived using a blend of high resolution imagery and elevation models. We further detail post-failure slope stability for areas of interest around the Karrat Fjord region. Warming trends in the region from model and satellite analysis are combined with optical imagery to ascertain whether the influence of melting permafrost and the formation of small springs on a slight bench on the mountainside that eventually failed can be used as indicators of future events.

  3. Feature combination analysis in smart grid based using SOM for Sudan national grid

    NASA Astrophysics Data System (ADS)

    Bohari, Z. H.; Yusof, M. A. M.; Jali, M. H.; Sulaima, M. F.; Nasir, M. N. M.

    2015-12-01

    In the investigation of power grid security, the cascading failure in multicontingency situations has been a test because of its topological unpredictability and computational expense. Both system investigations and burden positioning routines have their limits. In this project, in view of sorting toward Self Organizing Maps (SOM), incorporated methodology consolidating spatial feature (distance)-based grouping with electrical attributes (load) to evaluate the vulnerability and cascading impact of various part sets in the force lattice. Utilizing the grouping result from SOM, sets of overwhelming stacked beginning victimized people to perform assault conspires and asses the consequent falling impact of their failures, and this SOM-based approach viably distinguishes the more powerless sets of substations than those from the conventional burden positioning and other bunching strategies. The robustness of power grids is a central topic in the design of the so called "smart grid". In this paper, to analyze the measures of importance of the nodes in a power grid under cascading failure. With these efforts, we can distinguish the most vulnerable nodes and protect them, improving the safety of the power grid. Also we can measure if a structure is proper for power grids.

  4. Compression After Impact on Honeycomb Core Sandwich Panels With Thin Facesheets. Part 1; Experiments

    NASA Technical Reports Server (NTRS)

    McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2012-01-01

    A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part one, the subject of the current paper, is focused on the experimental testing. Of interest are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of specimens, which were identical with the exception of the density of the honeycomb core, were tested. Static indentation and low velocity impact using a drop tower are used to study damage formation in these materials. A series of highly instrumented CAI tests was then completed. New techniques used to observe CAI response and failure include high speed video photography, as well as digital image correlation (DIC) for full-field deformation measurement. Two CAI failure modes, indentation propagation, and crack propagation, were observed. From the results, it can be concluded that the CAI failure mode of these panels depends solely on the honeycomb core density.

  5. Avoiding Implementation Failure in Catchment Landscapes: A Case Study in Governance of the Great Barrier Reef.

    PubMed

    Dale, Allan P; Vella, Karen; Gooch, Margaret; Potts, Ruth; Pressey, Robert L; Brodie, Jon; Eberhard, Rachel

    2017-10-04

    Water quality outcomes affecting Australia's Great Barrier Reef (GBR) are governed by multi-level and multi-party decision-making that influences forested and agricultural landscapes. With international concern about the GBR's declining ecological health, this paper identifies and focuses on implementation failure (primarily at catchment scale) as a systemic risk within the overall GBR governance system. There has been limited integrated analysis of the full suite of governance subdomains that often envelop defined policies, programs and delivery activities that influence water quality in the GBR. We consider how the implementation of separate purpose-specific policies and programs at catchment scale operate against well-known, robust design concepts for integrated catchment governance. We find design concerns within ten important governance subdomains that operate within GBR catchments. At a whole-of-GBR scale, we find a weak policy focus on strengthening these delivery-oriented subdomains and on effort integration across these subdomains within catchments. These governance problems when combined may contribute to failure in the implementation of major national, state and local government policies focused on improving water quality in the GBR, a lesson relevant to landscapes globally.

  6. Developing and implementing a heart failure data mart for research and quality improvement.

    PubMed

    Abu-Rish Blakeney, Erin; Wolpin, Seth; Lavallee, Danielle C; Dardas, Todd; Cheng, Richard; Zierler, Brenda

    2018-04-19

    The purpose of this project was to build and formatively evaluate a near-real time heart failure (HF) data mart. Heart Failure (HF) is a leading cause of hospital readmissions. Increased efforts to use data meaningfully may enable healthcare organizations to better evaluate effectiveness of care pathways and quality improvements, and to prospectively identify risk among HF patients. We followed a modified version of the Systems Development Life Cycle: 1) Conceptualization, 2) Requirements Analysis, 3) Iterative Development, and 4) Application Release. This foundational work reflects the first of a two-phase project. Phase two (in process) involves the implementation and evaluation of predictive analytics for clinical decision support. We engaged stakeholders to build working definitions and established automated processes for creating an HF data mart containing actionable information for diverse audiences. As of December 2017, the data mart contains information from over 175,000 distinct patients and >100 variables from each of their nearly 300,000 visits. The HF data mart will be used to enhance care, assist in clinical decision-making, and improve overall quality of care. This model holds the potential to be scaled and generalized beyond the initial focus and setting.

  7. De-Arabization of the Bedouin: A Study of an Inevitable Failure

    ERIC Educational Resources Information Center

    Yonah, Yossi; Abu-Saad, Ismael; Kaplan, Avi

    2004-01-01

    This paper offers an assessment of the efforts to de-Arabize the Bedouin Arab youth of the Negev. We show that despite the extensive efforts to achieve this goal, they have become pronouncedly alienated from the State of Israel, and are increasingly perceiving themselves as an integral part of Israel's Palestinian Arab national minority. The…

  8. The Implications of Symptom Validity Test Failure for Ability-Based Test Performance in a Pediatric Sample

    ERIC Educational Resources Information Center

    Kirkwood, Michael W.; Yeates, Keith Owen; Randolph, Christopher; Kirk, John W.

    2012-01-01

    If an examinee exerts inadequate effort to perform well during a psychological or neuropsychological exam, the resulting data will represent an inaccurate representation of the individual's true abilities and difficulties. In adult populations, methodologies to identify noncredible effort have grown exponentially in the last 2 decades. Though a…

  9. Understanding the Role of Culture and Communication in Implementing Planned Organizational Change: The Case of Compstat in Police Organizations

    ERIC Educational Resources Information Center

    Yuksel, Yusuf

    2013-01-01

    Despite the popularity of planned change efforts, the failure rates of implementation are as high as 50 to 70 percent (Lewis & Seibold, 1998). While these efforts are affected by technical issues, the organizations' approach to change, structure, technological capabilities, and organizational culture and communication practices are…

  10. Attributional Gender Bias: Teachers' Ability and Effort Explanations for Students' Math Performance

    ERIC Educational Resources Information Center

    Espinoza, Penelope; Arêas da Luz Fontes, Ana B.; Arms-Chavez, Clarissa J.

    2014-01-01

    Research is presented on the attributional gender bias: the tendency to generate different attributions (explanations) for female versus male students' performance in math. Whereas boys' successes in math are attributed to ability, girls' successes are attributed to effort; conversely, boys' failures in math are attributed to a…

  11. Subcomponent tests for composite fuselage technology readiness

    NASA Technical Reports Server (NTRS)

    Madan, R. C.; Hawley, A. V.

    1989-01-01

    An account is given of a NASA research effort aimed at the development of an all-composite transport aircraft fuselage incorporating joints and cutouts which meets all design requirements. The design, construction, and analysis activities associated with the 30-ft-long fuselage section gave attention to critically important subcomponent specimens, including shear-tee pulloff specimens, stiffened and unstiffened cutout panels, longitudinal and transverse skin splices, longeron runouts, transverse skin-longerons, stiffened shear panels, and window belt panels. The analysis of large cutouts was conducted with coupling FEM analyses incorporating accurate failure criteria for tension and shear; the strategic application of S2 glass fiber plies around cutouts was demonstrated both analytically and experimentally to increase load capacity with virtually no weight penalty.

  12. Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.

    1999-01-01

    A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.

  13. Understanding palliative care on the heart failure care team: an innovative research methodology.

    PubMed

    Lingard, Lorelei A; McDougall, Allan; Schulz, Valerie; Shadd, Joshua; Marshall, Denise; Strachan, Patricia H; Tait, Glendon R; Arnold, J Malcolm; Kimel, Gil

    2013-05-01

    There is a growing call to integrate palliative care for patients with advanced heart failure (HF). However, the knowledge to inform integration efforts comes largely from interview and survey research with individual patients and providers. This work has been critically important in raising awareness of the need for integration, but it is insufficient to inform solutions that must be enacted not by isolated individuals but by complex care teams. Research methods are urgently required to support systematic exploration of the experiences of patients with HF, family caregivers, and health care providers as they interact as a care team. To design a research methodology that can support systematic exploration of the experiences of patients with HF, caregivers, and health care providers as they interact as a care team. This article describes in detail a methodology that we have piloted and are currently using in a multisite study of HF care teams. We describe three aspects of the methodology: the theoretical framework, an innovative sampling strategy, and an iterative system of data collection and analysis that incorporates four data sources and four analytical steps. We anticipate that this innovative methodology will support groundbreaking research in both HF care and other team settings in which palliative integration efforts are emerging for patients with advanced nonmalignant disease. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  14. The Effect of Positive Group Psychotherapy and Motivational Interviewing on Smoking Cessation: A Qualitative Descriptive Study.

    PubMed

    Lee, Eun Jin

    The purpose of this study was to describe the process and evaluate the effect of positive group psychotherapy and motivational interviewing as an intervention for smoking cessation. A qualitative descriptive study was conducted at a university in South Korea. Positive group psychotherapy and motivational interviewing were attended by 36 smokers for 1 hour once a week, for 6 hours. A recorded exit interview was conducted after the intervention. The resulting transcripts were analyzed with content analysis and thematic analysis. Among the 36 study participants, the importance of stopping smoking was rated higher in the successful cessation (defined as those who ceased smoking for at least 3 months; hereafter, success group) group (8.6 ± 0.4, n = 10) than in the failed cessation (defined as those who did not cease smoking for at least 3 months; hereafter, failure group) group (7.75 ± 0.3, n = 26; p < .01). The confidence to stop smoking was rated higher by the successes (8.4 ± 0.3) than by the failures (5.5 ± 0.4; p < .01). More successes wanted to stop smoking for the sake of their loved ones (60%) and health (50%), whereas more failures wanted to stop smoking for saving money (45.5%). Failures had more cross-addiction than successes (three to four addictions: 31.5% vs. 20%). When participants were asked to find 10 personality merits, 78% of the successes and 47% of the failures found their 10 merits. The therapeutic process was described as "sharing the smoking cessation process with others," "detailed guidance for stress management and smoking cessation," and "compliments about efforts for smoking cessation." The importance of and confidence in smoking cessation were predictors for successful cessation for 3-6 months. Motivational interviewing increased motivations, whereas positive group psychotherapy increased positive thoughts and confidence.

  15. Six Sigma arises from the ashes of TQM with a twist.

    PubMed

    Black, Ken; Revere, Lee

    2006-01-01

    This paper sets out to analyse the use of the Six Sigma methodology to improve quality in healthcare. It looks at how Six Sigma grew out of the concept of Total Quality Management (TQM). Six Sigma is a quality improvement methodology that has been widely adopted by companies since the early 1990s and has grown exponentially in the healthcare industry during the past five years. Some of the main tenets of Six Sigma have emerged from the principles of TQM, including the notion that the entire organization must support the quality effort; that there should be a vigorous education effort; and that a quality improvement process should emphasize root cause analysis. In spite of its early success, TQM "crashed and burned" for several reasons including the fact that financial benefits were difficult to assign to TQM efforts, root cause was not always determined resulting in recurring errors, there was no common metric to measure the level of quality attained, and quality efforts were sometimes aimed at processes or operations that were not critical to the customer. Six Sigma filled the vacuums created by these TQM failures in several ways. Under the Six Sigma methodology, quality improvement projects are carefully defined so that they can be successfully completed within a relatively short time frame. Financials are applied to each completed project so that management knows how much the project saves the institution. On each project, intense study is used to determine root cause analysis; and in the end, a metric known as "sigma level" can be assigned to signify the level of quality. Six Sigma has a "critical to quality" dimension that keeps the quality effort focused on improving only those things that really matter to the customer.

  16. Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.

    1997-01-01

    A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.

  17. The Rayleigh curve as a model for effort distribution over the life of medium scale software systems. M.S. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Picasso, G. O.; Basili, V. R.

    1982-01-01

    It is noted that previous investigations into the applicability of Rayleigh curve model to medium scale software development efforts have met with mixed results. The results of these investigations are confirmed by analyses of runs and smoothing. The reasons for the models' failure are found in the subcycle effort data. There are four contributing factors: uniqueness of the environment studied, the influence of holidays, varying management techniques and differences in the data studied.

  18. Recent advances in Ni-H2 technology at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Gonzalezsanabria, O. D.; Britton, D. L.; Smithrick, J. J.; Reid, M. A.

    1986-01-01

    The NASA Lewis Research Center has concentrated its efforts on advancing the Ni-H2 system technology for low Earth orbit applications. Component technology as well as the design principles were studied in an effort to understand the system behavior and failure mechanisms in order to increase performance and extend cycle life. The design principles were previously addressed. The component development is discussed, in particular the separator and nickel electrode and how these efforts will advance the Ni-H2 system technology.

  19. Reliability Analysis for AFTI-F16 SRFCS Using ASSIST and SURE

    NASA Technical Reports Server (NTRS)

    Wu, N. Eva

    2001-01-01

    This paper reports the results of a study on reliability analysis of an AFTI-16 Self-Repairing Flight Control System (SRFCS) using software tools SURE (Semi-Markov Unreliability Range Evaluator and ASSIST (Abstract Semi-Markov Specification Interface to the SURE Tool). The purpose of the study is to investigate the potential utility of the software tools in the ongoing effort of the NASA Aviation Safety Program, where the class of systems must be extended beyond the originally intended serving class of electronic digital processors. The study concludes that SURE and ASSIST are applicable to reliability, analysis of flight control systems. They are especially efficient for sensitivity analysis that quantifies the dependence of system reliability on model parameters. The study also confirms an earlier finding on the dominant role of a parameter called a failure coverage. The paper will remark on issues related to the improvement of coverage and the optimization of redundancy level.

  20. Development of BEM for ceramic composites

    NASA Technical Reports Server (NTRS)

    Henry, D. P.; Banerjee, P. K.; Dargush, G. F.

    1991-01-01

    It is evident that for proper micromechanical analysis of ceramic composites, one needs to use a numerical method that is capable of idealizing the individual fibers or individual bundles of fibers embedded within a three-dimensional ceramic matrix. The analysis must be able to account for high stress or temperature gradients from diffusion of stress or temperature from the fiber to the ceramic matrix and allow for interaction between the fibers through the ceramic matrix. The analysis must be sophisticated enough to deal with the failure of fibers described by a series of increasingly sophisticated constitutive models. Finally, the analysis must deal with micromechanical modeling of the composite under nonlinear thermal and dynamic loading. This report details progress made towards the development of a boundary element code designed for the micromechanical studies of an advanced ceramic composite. Additional effort has been made in generalizing the implementation to allow the program to be applicable to real problems in the aerospace industry.

  1. Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.

  2. Implementation of a Helicopter Flight Simulator with Individual Blade Control

    NASA Astrophysics Data System (ADS)

    Zinchiak, Andrew G.

    2011-12-01

    Nearly all modern helicopters are designed with a swashplate-based system for control of the main rotor blades. However, the swashplate-based approach does not provide the level of redundancy necessary to cope with abnormal actuator conditions. For example, if an actuator fails (becomes locked) on the main rotor, the cyclic inputs are consequently fixed and the helicopter may become stuck in a flight maneuver. This can obviously be seen as a catastrophic failure, and would likely lead to a crash. These types of failures can be overcome with the application of individual blade control (IBC). IBC is achieved using the blade pitch control method, which provides complete authority of the aerodynamic characteristics of each rotor blade at any given time by replacing the normally rigid pitch links between the swashplate and the pitch horn of the blade with hydraulic or electronic actuators. Thus, IBC can provide the redundancy necessary for subsystem failure accommodation. In this research effort, a simulation environment is developed to investigate the potential of the IBC main rotor configuration for fault-tolerant control. To examine the applications of IBC to failure scenarios and fault-tolerant controls, a conventional, swashplate-based linear model is first developed for hover and forward flight scenarios based on the UH-60 Black Hawk helicopter. The linear modeling techniques for the swashplate-based helicopter are then adapted and expanded to include IBC. Using these modified techniques, an IBC based mathematical model of the UH-60 helicopter is developed for the purposes of simulation and analysis. The methodology can be used to model and implement a different aircraft if geometric, gravimetric, and general aerodynamic data are available. Without the kinetic restrictions of the swashplate, the IBC model effectively decouples the cyclic control inputs between different blades. Simulations of the IBC model prove that the primary control functions can be manually reconfigured after local actuator failures are initiated, thus preventing a catastrophic failure or crash. Furthermore, this simulator promises to be a useful tool for the design, testing, and analysis of fault-tolerant control laws.

  3. The failure to fail underperforming trainees in health professions education: A BEME systematic review: BEME Guide No. 42.

    PubMed

    Yepes-Rios, Monica; Dudek, Nancy; Duboyce, Rita; Curtis, Jerri; Allard, Rhonda J; Varpio, Lara

    2016-11-01

    Many clinical educators feel unprepared and/or unwilling to report unsatisfactory trainee performance. This systematic review consolidates knowledge from medical, nursing, and dental literature on the experiences and perceptions of evaluators or assessors with this failure to fail phenomenon. We searched the English language literature in CINAHL, EMBASE, and MEDLINE from January 2005 to January 2015. Qualitative and quantitative studies were included. Following our review protocol, registered with BEME, reviewers worked in pairs to identify relevant articles. The investigators participated in thematic analysis of the qualitative data reported in these studies. Through several cycles of analysis, discussion and reflection, the team identified the barriers and enablers to failing a trainee. From 5330 articles, we included 28 publications in the review. The barriers identified were (1) assessor's professional considerations, (2) assessor's personal considerations, (3) trainee related considerations, (4) unsatisfactory evaluator development and evaluation tools, (5) institutional culture and (6) consideration of available remediation for the trainee. The enablers identified were: (1) duty to patients, to society, and to the profession, (2) institutional support such as backing a failing evaluation, support from colleagues, evaluator development, and strong assessment systems, and (3) opportunities for students after failing. The inhibiting and enabling factors to failing an underperforming trainee were common across the professions included in this study, across the 10 years of data, and across the educational continuum. We suggest that these results can inform efforts aimed at addressing the failure to fail problem.

  4. Insights into the Behavior of Potential Structural Failures Originating from Localized High Stress Regions in Configurations Relevant to Solid Rocket Motor Nozzles

    NASA Technical Reports Server (NTRS)

    McCutcheon, David Matthew

    2017-01-01

    During the structural certification effort for the Space Launch System solid rocket booster nozzle, it was identified that no consistent method for addressing local negative margins of safety in non-metallic materials had been developed. Relevant areas included bond-line terminations and geometric features in the composite nozzle liners. In order to gain understanding, analog test specimens were designed that very closely mimic the conditions in the actual full scale hardware. Different locations in the nozzle were represented by different analog specimen designs. This paper describes those tests and corresponding results. Finite element analysis results for the tests are presented. Strain gage correlation of the analysis to the test results is addressed. Furthermore, finite fracture mechanics (a coupled stress and energy failure criterion) is utilized to predict the observed crack pop-in loads for the different configurations. The finite fracture mechanics predictions are found to be within a 10% error relative to the average measured pop-in load for each of four configurations. Initiation locations, arrest behaviors, and resistances to further post-arrest crack propagation are also discussed.

  5. A narrative analysis of helplessness in depression.

    PubMed

    Vanheule, Stijn; Hauser, Stuart T

    2008-12-01

    The transcripts of semistructured clinical interviews with forty psychiatrically hospitalized adolescents were subjected to narrative analysis in an effort to map the logic of their explanations as they spontaneously talked about helplessness experiences, and to determine how helplessness is embedded in broader story lines. Three types of narrative composition were discerned, and are discussed by means of excerpts from the interviews. In a first and predominant type of narrative, a disturbing confrontation with another is pivotal: the other's intentions are obscure; this frightens the narrator, who does not know what to do. Helplessness arises as a direct result of not knowing how to manage the "unbearable riddle" of the other's intentions. In the second, more marginal type of narrative, helplessness is embedded in an account of emptiness and boredom. The protagonist relates enduring experiences of emptiness due to loss and the suffering consequent on it. In the third, also more marginal type of narrative, helplessness is framed in a context of failure: the protagonist adheres to strict standards, feels he or she has fallen short, and concludes that he or she is a failure. Only the first type of narrative is significantly related to the psychiatric diagnoses of mood disorder and major depression.

  6. Revisiting (Some of) the Lasting Impacts of the Liberty Ships via a Metallurgical Analysis of Rivets from the SS "John W. Brown"

    NASA Astrophysics Data System (ADS)

    Harris, M. D.; Grogg, W. J.; Akoma, A.; Hayes, B. J.; Reidy, R. F.; Imhoff, E. F.; Collins, P. C.

    2015-12-01

    During World War II, 2710 Liberty ships were built in the United States across 18 ship yards. The rate of production of these ships was at a scale not previously witnessed, reflecting a strategic marshaling of national assets critical to the war effort. For the metallurgist, metallurgical engineer, or materials scientist, these ships also struck commanding images regarding their catastrophic failures. The study of these failures led to increased understanding of brittle fracture, fracture mechanics, and ductile-to-brittle transition temperatures. The post-mortem studies of Liberty ships highlighted the importance of composition and microstructure in controlling the properties of steel in fracture-critical applications. This study examines a rivet from the SS "John W. Brown", which was assembled in Baltimore, Maryland, and launched in September 1942, The "John W. Brown" was restored between 1988 and 1991. Classical metallurgical analysis of a rivet from the original 1942 vessel is compared with modern rivets used during its restoration. The rivets provide an analogue to the plate material used in these ships. A comparison of these materials is presented along with a discussion of the importance of composition-microstructure-property relationships that concomitantly evolved.

  7. Overview of a Systematic Effort to Engineer and Monitor Curriculum Change: Emerging Guidelines and Encouraging Findings for Curriculum Installers.

    ERIC Educational Resources Information Center

    Mahan, James M.

    This paper (1) describes 4-year efforts of the Eastern Regional Institute for Education (ERIE) to promote use of various process-oriented curricula in over 50 New York State and Pennsylvania school districts; and (2) presents guidelines for curriculum installers based on documented successes and failures in participating schools. (Author/LLR)

  8. Perspectives on a Policy That Never Was: Trying To Enhance Multiculturalism in a University Setting.

    ERIC Educational Resources Information Center

    Greenwald, Beatrice

    This paper discusses the failure of the University of Washington to formulate a policy regarding the establishment of a Cultural and Ethnic Diversity (CED) course requirement for undergraduates despite nine years of efforts to do so, tracing the efforts to establish a CED requirement, along with the arguments for and against such a requirement. It…

  9. Addressing Drop-Out and Sustained Effort Issues with Large Practical Groups Using an Automated Delivery and Assessment System

    ERIC Educational Resources Information Center

    de-la-Fuente-Valentin, Luis; Pardo, Abelardo; Kloos, Carlos Delgado

    2013-01-01

    The acquisition of programming skills specially in introductory programming courses poses an important challenge for freshmen students of engineering programs. These courses require students to devote a sustained effort during the whole course and a failure to do so may contribute to not passing the course. However, it is difficult for the…

  10. "Feeling Bad" or "Being Bad?" The Trapping Effect of Effort in Academic Failure in a Confucian Cultural Context

    ERIC Educational Resources Information Center

    Fwu, Bih-Jen; Wang, Hsiou-Huai; Chen, Shun-Wen; Wei, Chih-Fen

    2017-01-01

    A predicament faced by students who fail academically in East Asian Confucian societies, such as Taiwan, is being obscured by students' outstanding performances in international academic assessments. This article proposes that there is a trapping effect of effort for these students. They are trapped in a dilemma between "feeling bad"…

  11. Developing Ultra Reliable Life Support for the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2009-01-01

    Recycling life support systems can achieve ultra reliability by using spares to replace failed components. The added mass for spares is approximately equal to the original system mass, provided the original system reliability is not very low. Acceptable reliability can be achieved for the space shuttle and space station by preventive maintenance and by replacing failed units, However, this maintenance and repair depends on a logistics supply chain that provides the needed spares. The Mars mission must take all the needed spares at launch. The Mars mission also must achieve ultra reliability, a very low failure rate per hour, since it requires years rather than weeks and cannot be cut short if a failure occurs. Also, the Mars mission has a much higher mass launch cost per kilogram than shuttle or station. Achieving ultra reliable space life support with acceptable mass will require a well-planned and extensive development effort. Analysis must define the reliability requirement and allocate it to subsystems and components. Technologies, components, and materials must be designed and selected for high reliability. Extensive testing is needed to ascertain very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The systems must be designed, produced, integrated, and tested without impairing system reliability. Maintenance and failed unit replacement should not introduce any additional probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass must start soon if it is to produce timely results for the moon and Mars.

  12. Resolute efforts to cure hepatitis C: Understanding patients' reasons for completing antiviral treatment.

    PubMed

    Clark, Jack A; Gifford, Allen L

    2015-09-01

    Antiviral treatment for hepatitis C is usually difficult, demanding, and debilitating and has long offered modest prospects of successful cure. Most people who may need treatment have faced stigma of an illness associated with drug and alcohol misuse and thus may be deemed poor candidates for treatment, while completing a course of treatment typically calls for resolve and responsibility. Patients' efforts and their reasons for completing treatment have received scant attention in hepatitis C clinical policy discourse that instead focuses on problems of adherence and patients' expected failures. Thus, we conducted qualitative interviews with patients who had recently undertaken treatment to explore their reasons for completing antiviral treatment. Analysis of their narrative accounts identified four principal reasons: cure the infection, avoid a bad end, demonstrate the virtue of perseverance through a personal trial, and achieve personal rehabilitation. Their reasons reflect moral rationales that mark the social discredit ascribed to the infection and may represent efforts to restore creditable social membership. Their reasons may also reflect the selection processes that render some of the infected as good candidates for treatment, while excluding others. Explication of the moral context of treatment may identify opportunities to support patients' efforts in completing treatment, as well as illuminate the choices people with hepatitis C make about engaging in care. © US Government 2014.

  13. Functional differences in bi-level pressure preset ventilators.

    PubMed

    Highcock, M P; Shneerson, J M; Smith, I E

    2001-02-01

    The performance of four bilevel positive pressure preset ventilators was compared. The ventilators tested were; BiPAP ST30 (Respironics); Nippy2 (B + D Electrical); Quantum PSV (Healthdyne); and Sullivan VPAP H ST (Resmed). A patient simulator was used to determine the sensitivity of the triggering mechanisms and the responses to a leak within the patient circuit, and to changes in patient effort. Significant differences (p <0.05) between the devices were seen in the trigger delay time and inspiratory trigger pressure. When a leak was introduced into the patient circuit, the fall in tidal volume (VT) was less than ten per cent for each ventilator. The addition of patient effort produced a number of changes in the ventilation delivered. Patient efforts of 0.25 s induced a variable fall in VT. An increase in VT was seen with some ventilators with patient efforts of 1 s but the effect was variable. Trigger failures and subsequent falls in minute volume were seen with the BiPAP and the Nippy2 at the highest respiratory frequency. Differences in the responses of the ventilators are demonstrated that may influence the selection of a ventilator, particularly in the treatment of breathless patients with ventilatory failure.

  14. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data.

    PubMed

    Golas, Sara Bersche; Shibahara, Takuma; Agboola, Stephen; Otaki, Hiroko; Sato, Jumpei; Nakae, Tatsuya; Hisamitsu, Toru; Kojima, Go; Felsted, Jennifer; Kakarmath, Sujay; Kvedar, Joseph; Jethwani, Kamal

    2018-06-22

    Heart failure is one of the leading causes of hospitalization in the United States. Advances in big data solutions allow for storage, management, and mining of large volumes of structured and semi-structured data, such as complex healthcare data. Applying these advances to complex healthcare data has led to the development of risk prediction models to help identify patients who would benefit most from disease management programs in an effort to reduce readmissions and healthcare cost, but the results of these efforts have been varied. The primary aim of this study was to develop a 30-day readmission risk prediction model for heart failure patients discharged from a hospital admission. We used longitudinal electronic medical record data of heart failure patients admitted within a large healthcare system. Feature vectors included structured demographic, utilization, and clinical data, as well as selected extracts of un-structured data from clinician-authored notes. The risk prediction model was developed using deep unified networks (DUNs), a new mesh-like network structure of deep learning designed to avoid over-fitting. The model was validated with 10-fold cross-validation and results compared to models based on logistic regression, gradient boosting, and maxout networks. Overall model performance was assessed using concordance statistic. We also selected a discrimination threshold based on maximum projected cost saving to the Partners Healthcare system. Data from 11,510 patients with 27,334 admissions and 6369 30-day readmissions were used to train the model. After data processing, the final model included 3512 variables. The DUNs model had the best performance after 10-fold cross-validation. AUCs for prediction models were 0.664 ± 0.015, 0.650 ± 0.011, 0.695 ± 0.016 and 0.705 ± 0.015 for logistic regression, gradient boosting, maxout networks, and DUNs respectively. The DUNs model had an accuracy of 76.4% at the classification threshold that corresponded with maximum cost saving to the hospital. Deep learning techniques performed better than other traditional techniques in developing this EMR-based prediction model for 30-day readmissions in heart failure patients. Such models can be used to identify heart failure patients with impending hospitalization, enabling care teams to target interventions at their most high-risk patients and improving overall clinical outcomes.

  15. Brain natriuretic peptide-guided therapy in the inpatient management of decompensated heart failure.

    PubMed

    Saremi, Adonis; Gopal, Dipika; Maisel, Alan S

    2012-02-01

    Heart failure is extremely prevalent and is associated with significant mortality, morbidity and cost. Studies have already established mortality benefit with the use of neurohormonal blockade therapy in systolic failure. Unfortunately, physical signs and symptoms of heart failure lack diagnostic sensitivity and specificity, and medication doses proven to improve mortality in clinical trials are often not achieved. Brain natriuretic peptide (BNP) has proven to be of clinical use in the diagnosis and prognosis of heart failure, and recent efforts have been taken to further elucidate its role in guiding heart failure management. Multiple studies have been conducted on outpatient guided management, and although still controversial, there is a trend towards improved outcomes. Inpatient studies are lacking, but preliminary data suggest various BNP cut-off values, as well as percentage changes in BNP, that could be useful in predicting outcomes and improving mortality. In the future, heart failure management will probably involve an algorithm using clinical assessment and a multibiomarker-guided approach.

  16. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  17. Ceramics in Restorative and Prosthetic DENTISTRY1

    NASA Astrophysics Data System (ADS)

    Kelly, J. Robert

    1997-08-01

    This review is intended to provide the ceramic engineer with information about the history and current use of ceramics in dentistry, contemporary research topics, and potential research agenda. Background material includes intra-oral design considerations, descriptions of ceramic dental components, and the origin, composition, and microstructure of current dental ceramics. Attention is paid to efforts involving net-shape processing, machining as a forming method, and the analysis of clinical failure. A rationale is presented for the further development of all-ceramic restorative systems. Current research topics receiving attention include microstructure/processing/property relationships, clinical failure mechanisms and in vitro testing, wear damage and wear testing, surface treatments, and microstructural modifications. The status of the field is critically reviewed with an eye toward future work. Significant improvements seem possible in the clinical use of ceramics based on engineering solutions derived from the study of clinically failed restorations, on the incorporation of higher levels of "biomimicry" in new systems, and on the synergistic developments in dental cements and adhesive dentin bonding.

  18. Three-Dimensional Geometric Nonlinear Contact Stress Analysis of Riveted Joints

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.; Ramanujapuram, Vivek

    1998-01-01

    The problems associated with fatigue were brought into the forefront of research by the explosive decompression and structural failure of the Aloha Airlines Flight 243 in 1988. The structural failure of this airplane has been attributed to debonding and multiple cracking along the longitudinal lap splice riveted joint in the fuselage. This crash created what may be termed as a minor "Structural Integrity Revolution" in the commercial transport industry. Major steps have been taken by the manufacturers, operators and authorities to improve the structural airworthiness of the aging fleet of airplanes. Notwithstanding, this considerable effort there are still outstanding issues and concerns related to the formulation of Widespread Fatigue Damage which is believed to have been a contributing factor in the probable cause of the Aloha accident. The lesson from this accident was that Multiple-Site Damage (MSD) in "aging" aircraft can lead to extensive aircraft damage. A strong candidate in which MSD is highly probable to occur is the riveted lap joint.

  19. Simplified Models for the Study of Postbuckled Hat-Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Vescovini, Riccardo; Davila, Carlos G.; Bisagni, Chiara

    2012-01-01

    The postbuckling response and failure of multistringer stiffened panels is analyzed using models with three levels of approximation. The first model uses a relatively coarse mesh to capture the global postbuckling response of a five-stringer panel. The second model can predict the nonlinear response as well as the debonding and crippling failure mechanisms in a single stringer compression specimen (SSCS). The third model consists of a simplified version of the SSCS that is designed to minimize the computational effort. The simplified model is well-suited to perform sensitivity analyses for studying the phenomena that lead to structural collapse. In particular, the simplified model is used to obtain a deeper understanding of the role played by geometric and material modeling parameters such as mesh size, inter-laminar strength, fracture toughness, and fracture mode mixity. Finally, a global/local damage analysis method is proposed in which a detailed local model is used to scan the global model to identify the locations that are most critical for damage tolerance.

  20. Characterization of delamination and transverse cracking in graphite/epoxy laminates by acoustic emission

    NASA Technical Reports Server (NTRS)

    Garg, A.; Ishaei, O.

    1983-01-01

    Efforts to characterize and differentiate between two major failure processes in graphite/epoxy composites - transverse cracking and Mode I delamination are described. Representative laminates were tested in uniaxial tension and flexure. The failure processes were monitored and identified by acoustic emission (AE). The effect of moisture on AE was also investigated. Each damage process was found to have a distinctive AE output that is significantly affected by moisture conditions. It is concluded that AE can serve as a useful tool for detecting and identifying failure modes in composite structures in laboratory and in service environments.

  1. Learning from Failures: Archiving and Designing with Failure and Risk

    NASA Technical Reports Server (NTRS)

    VanWie, Michael; Bohm, Matt; Barrientos, Francesca; Turner, Irem; Stone, Robert

    2005-01-01

    Identifying and mitigating risks during conceptual design remains an ongoing challenge. This work presents the results of collaborative efforts between The University of Missouri-Rolla and NASA Ames Research Center to examine how an early stage mission design team at NASA addresses risk, and, how a computational support tool can assist these designers in their tasks. Results of our observations are given in addition to a brief example of our implementation of a repository based computational tool that allows users to browse and search through archived failure and risk data as related to either physical artifacts or functionality.

  2. Catastrophic Fault Recovery with Self-Reconfigurable Chips

    NASA Technical Reports Server (NTRS)

    Zheng, Will Hua; Marzwell, Neville I.; Chau, Savio N.

    2006-01-01

    Mission critical systems typically employ multi-string redundancy to cope with possible hardware failure. Such systems are only as fault tolerant as there are many redundant strings. Once a particular critical component exhausts its redundant spares, the multi-string architecture cannot tolerate any further hardware failure. This paper aims at addressing such catastrophic faults through the use of 'Self-Reconfigurable Chips' as a last resort effort to 'repair' a faulty critical component.

  3. Reliability issues in active control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Vandervelde, W. E.

    1986-01-01

    Efforts in this reporting period were centered on four research tasks: design of failure detection filters for robust performance in the presence of modeling errors, design of generalized parity relations for robust performance in the presence of modeling errors, design of failure sensitive observers using the geometric system theory of Wonham, and computational techniques for evaluation of the performance of control systems with fault tolerance and redundancy management

  4. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard

    1991-01-01

    Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.

  5. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.

    1992-01-01

    Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.

  6. SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis Smith; James Knudsen

    As part of a series of papers on the topic of advance probabilistic methods, a benchmark phased-mission problem has been suggested. This problem consists of modeling a space mission using an ion propulsion system, where the mission consists of seven mission phases. The mission requires that the propulsion operate for several phases, where the configuration changes as a function of phase. The ion propulsion system itself consists of five thruster assemblies and a single propellant supply, where each thruster assembly has one propulsion power unit and two ion engines. In this paper, we evaluate the probability of mission failure usingmore » the conventional methodology of event tree/fault tree analysis. The event tree and fault trees are developed and analyzed using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). While the benchmark problem is nominally a "dynamic" problem, in our analysis the mission phases are modeled in a single event tree to show the progression from one phase to the next. The propulsion system is modeled in fault trees to account for the operation; or in this case, the failure of the system. Specifically, the propulsion system is decomposed into each of the five thruster assemblies and fed into the appropriate N-out-of-M gate to evaluate mission failure. A separate fault tree for the propulsion system is developed to account for the different success criteria of each mission phase. Common-cause failure modeling is treated using traditional (i.e., parametrically) methods. As part of this paper, we discuss the overall results in addition to the positive and negative aspects of modeling dynamic situations with non-dynamic modeling techniques. One insight from the use of this conventional method for analyzing the benchmark problem is that it requires significant manual manipulation to the fault trees and how they are linked into the event tree. The conventional method also requires editing the resultant cut sets to obtain the correct results. While conventional methods may be used to evaluate a dynamic system like that in the benchmark, the level of effort required may preclude its use on real-world problems.« less

  7. Evidence of an Emerging Disturbance of Earthen Levees Causing Disastrous Floods in Italy

    NASA Astrophysics Data System (ADS)

    Orlandini, S.; Moretti, G.; Albertson, J. D.

    2015-12-01

    A levee failure occurred along the Secchia River, Northern Italy, on January 19, 2014, resulting in flood damage in excess of $500 Million (Figure). In response to this failure, immediate surveillance of other levees in the region led to the identification of a second breach developing on the neighboring Panaro River, where rapid mitigation efforts were successful in averting a full levee failure. The paired breach events that occurred along the Secchia and Panaro Rivers provided an excellent window on an emerging disturbance of levees and related failure mechanism. In the Secchia River, by combining the information content of photographs taken from helicopters in the early stage of breach development and 10-cm resolution aerial photographs taken in 2010 and 2012, animal burrows were found to exist in the precise levee location where the breach originated. In the Panaro River, internal erosion was observed to occur at a location where a crested porcupine den was known to exist and this erosion led to the collapse of the levee top. Evidence collected suggested that it is quite likely that the levee failure of the Secchia River was of a similar mechanism as the observed failure of the Panaro River. Detailed numerical modeling of rainfall, river flow, and variably saturated flow occurring in disturbed levees in response to complex hydroclimatic forcing indicated that the levee failure of the Secchia River may have been triggered by direct river inflow into the den system or collapse of a hypothetical den separated by a 1-m earthen wall from the levee riverside, which saturated during the hydroclimatic event. It is important to bring these processes to the attention of hydrologists and geotechnical engineers as well as to trigger an interdisciplinary discussion on habitat fragmentation and wildlife shifts due to development and climate pressures. These disturbances come together with changes in extreme events to inform the broader concern of risk analysis due to floods.

  8. Investigation of advanced fault insertion and simulator methods

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.; Cottrell, D.

    1986-01-01

    The cooperative agreement partly supported research leading to the open-literature publication cited. Additional efforts under the agreement included research into fault modeling of semiconductor devices. Results of this research are presented in this report which is summarized in the following paragraphs. As a result of the cited research, it appears that semiconductor failure mechanism data is abundant but of little use in developing pin-level device models. Failure mode data on the other hand does exist but is too sparse to be of any statistical use in developing fault models. What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than 'stuck-at' and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple-pin failures. The report discusses methods of developing composite pin-level models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of temperature stress testing and functional modeling. Limitations of this model particularly with regard to determination of fault detection coverage and latency time measurement are discussed. Indicated research directions are presented.

  9. 48 CFR 19.701 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-based system for small business subcontracting program reporting. Failure to make a good faith effort to... planned subcontracting in support of the specific contract, except that indirect costs incurred for common...

  10. Undocumented Migration from Latin America in an Era of Rising U.S. Enforcement.

    PubMed

    Massey, Douglas S; Riosmena, Fernando

    2010-07-01

    Available data have consistently pointed up the failure of U.S. policies to reduce undocumented migration from Latin America. To shed light on the reasons for this failure, we estimated a series of dynamic models of undocumented entry into and exit from the United States. Our estimates suggest that undocumented migration is grounded more in mechanisms posited by social capital theory and the new economics of labor migration rather than neoclassical economics. As a result, U.S. efforts to increase the costs of undocumented entry and reduce the benefits of undocumented labor have proven unsuccessful given the widespread access of Latin Americans to migrant networks. The main effect of U.S. enforcement efforts has been to reduce the circularity of Latin American migration.

  11. Undocumented Migration from Latin America in an Era of Rising U.S. Enforcement

    PubMed Central

    MASSEY, DOUGLAS S.; RIOSMENA, FERNANDO

    2010-01-01

    Available data have consistently pointed up the failure of U.S. policies to reduce undocumented migration from Latin America. To shed light on the reasons for this failure, we estimated a series of dynamic models of undocumented entry into and exit from the United States. Our estimates suggest that undocumented migration is grounded more in mechanisms posited by social capital theory and the new economics of labor migration rather than neoclassical economics. As a result, U.S. efforts to increase the costs of undocumented entry and reduce the benefits of undocumented labor have proven unsuccessful given the widespread access of Latin Americans to migrant networks. The main effect of U.S. enforcement efforts has been to reduce the circularity of Latin American migration. PMID:20824109

  12. Right heart failure: toward a common language.

    PubMed

    Mehra, Mandeep R; Park, Myung H; Landzberg, Michael J; Lala, Anuradha; Waxman, Aaron B

    2014-02-01

    In this perspective, the International Right Heart Foundation Working Group moves a step forward to develop a common language to describe the development and defects that exemplify the common syndrome of right heart failure. We first propose fundamental definitions of the distinctive components of the right heart circulation and provide consensus on a universal definition of right heart failure. These definitions will form the foundation for describing a uniform nomenclature for right heart circulatory failure with a view to foster collaborative research initiatives and conjoint education in an effort to provide insight into echanisms of disease unique to the right heart. © 2014 Published by International Society for the Heart and Lung Transplantation on behalf of International Society for Heart and Lung Transplantation.

  13. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.

    2009-01-01

    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  14. Cultural Clash and Educational Diversity: Immigrant Teachers' Efforts To Rescue the Education of Immigrant Children in Israel.

    ERIC Educational Resources Information Center

    Epstein, Alek D.; Kheimets, Nina G.

    2000-01-01

    Presents the results of a study on the Mofet system (Israel), founded by immigrant teachers in 1991 as an effort to educate Russian immigrant children. Argues that although the success of the system is linked to the general education system's failure to meet immigrants' needs, it does not express Russian immigrant's desire for socio-cultural…

  15. NASA trend analysis procedures

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication is primarily intended for use by NASA personnel engaged in managing or implementing trend analysis programs. 'Trend analysis' refers to the observation of current activity in the context of the past in order to infer the expected level of future activity. NASA trend analysis was divided into 5 categories: problem, performance, supportability, programmatic, and reliability. Problem trend analysis uncovers multiple occurrences of historical hardware or software problems or failures in order to focus future corrective action. Performance trend analysis observes changing levels of real-time or historical flight vehicle performance parameters such as temperatures, pressures, and flow rates as compared to specification or 'safe' limits. Supportability trend analysis assesses the adequacy of the spaceflight logistics system; example indicators are repair-turn-around time and parts stockage levels. Programmatic trend analysis uses quantitative indicators to evaluate the 'health' of NASA programs of all types. Finally, reliability trend analysis attempts to evaluate the growth of system reliability based on a decreasing rate of occurrence of hardware problems over time. Procedures for conducting all five types of trend analysis are provided in this publication, prepared through the joint efforts of the NASA Trend Analysis Working Group.

  16. Chemical hazards database and detection system for Microgravity and Materials Processing Facility (MMPF)

    NASA Technical Reports Server (NTRS)

    Steele, Jimmy; Smith, Robert E.

    1991-01-01

    The ability to identify contaminants associated with experiments and facilities is directly related to the safety of the Space Station. A means of identifying these contaminants has been developed through this contracting effort. The delivered system provides a listing of the materials and/or chemicals associated with each facility, information as to the contaminant's physical state, a list of the quantity and/or volume of each suspected contaminant, a database of the toxicological hazards associated with each contaminant, a recommended means of rapid identification of the contaminants under operational conditions, a method of identifying possible failure modes and effects analysis associated with each facility, and a fault tree-type analysis that will provide a means of identifying potential hazardous conditions related to future planned missions.

  17. Automated power management and control

    NASA Technical Reports Server (NTRS)

    Dolce, James L.

    1991-01-01

    A comprehensive automation design is being developed for Space Station Freedom's electric power system. A joint effort between NASA's Office of Aeronautics and Exploration Technology and NASA's Office of Space Station Freedom, it strives to increase station productivity by applying expert systems and conventional algorithms to automate power system operation. The initial station operation will use ground-based dispatches to perform the necessary command and control tasks. These tasks constitute planning and decision-making activities that strive to eliminate unplanned outages. We perceive an opportunity to help these dispatchers make fast and consistent on-line decisions by automating three key tasks: failure detection and diagnosis, resource scheduling, and security analysis. Expert systems will be used for the diagnostics and for the security analysis; conventional algorithms will be used for the resource scheduling.

  18. Reexamining the Underrepresentation of Indigenous Peoples in Astronomy: A Hawaiian Case Study

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie J.; Slater, Timothy F.

    2015-08-01

    As we look toward a future of ever increasing challenges in astronomy, there is widespread consensus that solutions depend on expanding human capitol. While we contemplate pathways to increase astronomy/STEM capacity across multinational settings, we are theoretically hindered by our failure to fully develop the capacity of ethnic and racial groups. Indigenous peoples continue to be underrepresented in astronomy at one-sixth of their share of the total U.S. population, despite investment of substantial resources from the public and private sectors. At the extreme, Native Hawaiians participate in astronomy at rates that are almost incalculably low. This 14-year case study of astronomy in the Hawaiian context suggests that national efforts (e.g. standards-based reform and agency-funded education and public outreach) have been, and are likely to continue to be, ineffective, as these efforts do not address the source of the problem. An examination of K-12, informal science, and "broader impacts" settings in Hawai'i, suggest that the disparity is ultimately rooted in a failure of relationships. Research across these settings indicates that many current common-sense efforts fail to transmit across cultures, and that effective efforts must primarily foster authentic trust and respect between Western and Indigenous perspective-holders. Specifically, findings suggest that much of our failure has been a result of human resource decisions. Although extensive research on effective practices at the indigenous/mainstream culture interface suggests that appropriate “bridge” persons are essential to creating authentic trust and respect between groups, in the Hawaiian context, we have often failed to do the work required to employ and empower “bridge” people. With critical examination of best- and worst-practices, this session focuses on immediate actions that can be taken to positively impact diverse participation in astronomy.

  19. The Blazhko Effect

    NASA Astrophysics Data System (ADS)

    Kovács, G.

    2009-09-01

    Current status of (the lack of) understanding Blazhko effect is reviewed. We focus mostly on the various components of the failure of the models and touch upon the observational issues only at a degree needed for the theoretical background. Attention is to be paid to models based on radial mode resonances, since they seem to be not fully explored yet, especially if we consider possible non-standard effects (e.g., heavy element enhancement). To aid further modeling efforts, we stress the need for accurate time-series spectral line analysis to reveal any possible non-radial component(s) and thereby let to include (or exclude) non-radial modes in explaining the Blazhko phenomenon.

  20. Affordable MMICs for Air Force systems

    NASA Astrophysics Data System (ADS)

    Kemerley, Robert T.; Fayette, Daniel F.

    1991-05-01

    The paper deals with a program directed at demonstrating affordable MMIC chips - the microwave/mm-wave monolithic integrated circuit (MIMIC) program. Focus is placed on experiments involving the growth and characterization of III-V materials, and the design, fabrication, and evaluation of ICs in the 1 to 60 GHz frequency range, as well as efforts related to the reliability testing, failure analysis, and generation of qualified manufacture's list procedures for GaAs MMICs and modules. Attributes associated with GaAs-technology devices, quality, reliability, and performance in select environments are discussed, including the dependence of these structures over temperature ranges, electrostatic discharge sensitivity, and susceptibility to environmental stresses.

  1. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions.

  2. Composable Framework Support for Software-FMEA Through Model Execution

    NASA Astrophysics Data System (ADS)

    Kocsis, Imre; Patricia, Andras; Brancati, Francesco; Rossi, Francesco

    2016-08-01

    Performing Failure Modes and Effect Analysis (FMEA) during software architecture design is becoming a basic requirement in an increasing number of domains; however, due to the lack of standardized early design phase model execution, classic SW-FMEA approaches carry significant risks and are human effort-intensive even in processes that use Model-Driven Engineering.Recently, modelling languages with standardized executable semantics have emerged. Building on earlier results, this paper describes framework support for generating executable error propagation models from such models during software architecture design. The approach carries the promise of increased precision, decreased risk and more automated execution for SW-FMEA during dependability- critical system development.

  3. Epidemiology of invasive pulmonary aspergillosis in patients with liver failure: Clinical presentation, risk factors, and outcomes.

    PubMed

    Zhang, Xuan; Yang, Meifang; Hu, Jianhua; Zhao, Hong; Li, Lanjuan

    2018-02-01

    Objective Invasive pulmonary aspergillosis (IPA) is a severe and often lethal infection. The possible risk factors, clinical presentation, and treatment of patients with simultaneous liver failure and IPA have received little attention in previous studies. The aim of this study was to investigate the epidemiology of IPA in patients with liver failure in an effort to reduce patient mortality. Methods The patients with liver failure (including acute liver failure , sub-acute liver failure , acute-on-chronic liver failure and chronic liver failure) were recruited from 2011 to 2016. The clinical data of these patients were retrieved for the study. Results In total, 1077 patients with liver failure were included in this study. Of the 1077 patients, 53 (4.9%) had IPA. Forty-four (83%) patients with IPA died. Independent risk factors for IPA were male sex (hazard ratio [HR] = 2.542), hepatorenal syndrome (HR = 2.463), antibiotic use (HR = 4.631), and steroid exposure (HR = 18.615). Conclusions IPA is a fatal complication in patients with liver failure. Male sex, hepatorenal syndrome, antibiotic use, and steroid exposure were independent risk factors for IPA. When patients with liver failure have these risk factors and symptoms of pneumonia such as cough or hemoptysis, clinicians should be cautious about the possibility of IPA.

  4. Materials Analysis: A Key to Unlocking the Mystery of the Columbia Tragedy

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian M.; Collins, Thomas E.; Piascik, Robert S.; Russel, Richard W.; Jerman, Gregory A.; Shah, Sandeep R.; McDanels, Steven J.

    2004-01-01

    Materials analyses of key forensic evidence helped unlock the mystery of the loss of space shuttle Columbia that disintegrated February 1, 2003 while returning from a 16-day research mission. Following an intensive four-month recovery effort by federal, state, and local emergency management and law officials, Columbia debris was collected, catalogued, and reassembled at the Kennedy Space Center. Engineers and scientists from the Materials and Processes (M&P) team formed by NASA supported Columbia reconstruction efforts, provided factual data through analysis, and conducted experiments to validate the root cause of the accident. Fracture surfaces and thermal effects of selected airframe debris were assessed, and process flows for both nondestructive and destructive sampling and evaluation of debris were developed. The team also assessed left hand (LH) airframe components that were believed to be associated with a structural breach of Columbia. Analytical data collected by the M&P team showed that a significant thermal event occurred at the left wing leading edge in the proximity of LH reinforced carbon carbon (RCC) panels 8 and 9. The analysis also showed exposure to temperatures in excess of 1,649 C, which would severely degrade the support structure, tiles, and RCC panel materials. The integrated failure analysis of wing leading edge debris and deposits strongly supported the hypothesis that a breach occurred at LH RCC panel 8.

  5. A personal perspective: 100-year history of the humoral theory of transplantation.

    PubMed

    Terasaki, Paul I

    2012-04-27

    The humoral theory states that antibodies cause the rejection of allografts. From 1917 to 1929, extensive efforts were made to produce antibodies against tumors. It was finally realized that the antibodies were produced against the transplant antigens present on transplantable tumors, not against the tumor-specific antigens. To get around this problem, inbred mouse strains were developed, leading to identification of the transplant antigens determined by the H-2 locus of mice. The antibodies were hemagglutinating and cytotoxic antibodies. The analogous human leukocyte antigen system was established by analysis of lymphocytotoxic alloantibodies that were made by pregnant women, directed against mismatched antigens of the fetus. The human leukocyte antigen antibodies were then found to cause hyperacute rejection, acute rejection, and chronic rejection of kidneys. Antibodies appeared in almost all patients after rejection of kidneys. With Luminex single antigen bead technology, donor-specific antibodies could be identified before rise in serum creatinine and graft failure. Antibodies were shown to be predictive of subsequent graft failure in kidney, heart, and lung transplants: patients without antibodies had superior 4-year graft survival compared with those who did have antibodies. New evidence that antibodies are also associated with chronic failure has appeared for liver and islet transplants. Four studies have now shown that removal or reduction of antibodies result in higher graft survival. If removal of antibodies prevents chronic graft failure, final validation of the humoral theory can be achieved.

  6. Numerical Analysis of AHSS Fracture in a Stretch-bending Test

    NASA Astrophysics Data System (ADS)

    Luo, Meng; Chen, Xiaoming; Shi, Ming F.; Shih, Hua-Chu

    2010-06-01

    Advanced High Strength Steels (AHSS) are increasingly used in the automotive industry due to their superior strength and substantial weight reduction advantage. However, their limited ductility gives rise to numerous manufacturing issues. One of them is the so-called `shear fracture' often observed on tight radii during stamping processes. Since traditional approaches, such as the Forming Limit Diagram (FLD), are unable to predict this type of fracture, efforts have been made to develop failure criteria that can predict shear fractures. In this paper, a recently developed Modified Mohr-Coulomb (MMC) ductile fracture criterion[1] is adopted to analyze the failure behavior of a Dual Phase (DP) steel sheet during stretch bending operations. The plasticity and ductile fracture of the present sheet are fully characterized by the Hill'48 orthotropic model and the MMC fracture model respectively. Finite Element models with three different element types (3D, shell and plane strain) were built for a Stretch Forming Simulator (SFS) test and numerical simulations with four different R/t ratios (die radius normalized by sheet thickness) were performed. It has been shown that the 3D and shell element models can accurately predict the failure location/mode, the upper die load-displacement responses as well as the wall stress and wrap angle at the onset of fracture for all R/t ratios. Furthermore, a series of parametric studies were conducted on the 3D element model, and the effects of tension level (clamping distance) and tooling friction on the failure modes/locations were investigated.

  7. New Approach For Prediction Groundwater Depletion

    NASA Astrophysics Data System (ADS)

    Moustafa, Mahmoud

    2017-01-01

    Current approaches to quantify groundwater depletion involve water balance and satellite gravity. However, the water balance technique includes uncertain estimation of parameters such as evapotranspiration and runoff. The satellite method consumes time and effort. The work reported in this paper proposes using failure theory in a novel way to predict groundwater saturated thickness depletion. An important issue in the failure theory proposed is to determine the failure point (depletion case). The proposed technique uses depth of water as the net result of recharge/discharge processes in the aquifer to calculate remaining saturated thickness resulting from the applied pumping rates in an area to evaluate the groundwater depletion. Two parameters, the Weibull function and Bayes analysis were used to model and analyze collected data from 1962 to 2009. The proposed methodology was tested in a nonrenewable aquifer, with no recharge. Consequently, the continuous decline in water depth has been the main criterion used to estimate the depletion. The value of the proposed approach is to predict the probable effect of the current applied pumping rates on the saturated thickness based on the remaining saturated thickness data. The limitation of the suggested approach is that it assumes the applied management practices are constant during the prediction period. The study predicted that after 300 years there would be an 80% probability of the saturated aquifer which would be expected to be depleted. Lifetime or failure theory can give a simple alternative way to predict the remaining saturated thickness depletion with no time-consuming processes such as the sophisticated software required.

  8. Your Drinking Water Source | Drinking Water in New England ...

    EPA Pesticide Factsheets

    2017-07-06

    Local communities are responsible for protecting their community's drinking water, and as a citizen, you can directly affect the success or failure of your community's drinking water protection efforts.

  9. Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.

    2018-01-01

    Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.

  10. Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Dang, Chao; Kong, Fan

    2017-10-01

    This paper presents a new method for efficient structural reliability analysis. In this method, a rotational quasi-symmetric point method (RQ-SPM) is proposed for evaluating the fractional moments of the performance function. Then, the derivation of the performance function's probability density function (PDF) is carried out based on the maximum entropy method in which constraints are specified in terms of fractional moments. In this regard, the probability of failure can be obtained by a simple integral over the performance function's PDF. Six examples, including a finite element-based reliability analysis and a dynamic system with strong nonlinearity, are used to illustrate the efficacy of the proposed method. All the computed results are compared with those by Monte Carlo simulation (MCS). It is found that the proposed method can provide very accurate results with low computational effort.

  11. Identifying Contingency Requirements using Obstacle Analysis on an Unpiloted Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.; Nelson, Stacy; Patterson-Hine, Ann; Frost, Chad R.; Tal, Doron

    2005-01-01

    This paper describes experience using Obstacle Analysis to identify contingency requirements on an unpiloted aerial vehicle. A contingency is an operational anomaly, and may or may not involve component failure. The challenges to this effort were: ( I ) rapid evolution of the system while operational, (2) incremental autonomy as capabilities were transferred from ground control to software control and (3) the eventual safety-criticality of such systems as they begin to fly over populated areas. The results reported here are preliminary but show that Obstacle Analysis helped (1) identify new contingencies that appeared as autonomy increased; (2) identify new alternatives for handling both previously known and new contingencies; and (3) investigate the continued validity of existing software requirements for contingency handling. Since many mobile, intelligent systems are built using a development process that poses the same challenges, the results appear to have applicability to other similar systems.

  12. Emerging hemodynamic signatures of the right heart (Third International Right Heart Failure Summit, part 2).

    PubMed

    Maron, Bradley A

    2014-12-01

    Despite the importance of preserved right ventricular structure and function with respect to outcome across the spectrum of lung, cardiac, and pulmonary vascular diseases, only recently have organized efforts developed to consider the pulmonary vascular-right ventricular apparatus as a specific unit within the larger context of cardiopulmonary pathophysiology. The Third International Right Heart Failure Summit (Boston, MA) was a multidisciplinary event dedicated to promoting a dialogue about the scientific and clinical basis of right heart disease. The current review provides a synopsis of key discussions presented during the section of the summit titled "Emerging Hemodynamic Signatures of the Right Heart." Specifically, topics emphasized in this element of the symposium included (1) the effects of pulmonary vascular dysfunction at rest or provoked by exercise on the right ventricular pressure-volume relationship, (2) the role of pressure-volume loop analysis as a method to characterize right ventricular inefficiency and predict right heart failure, and (3) the importance of a systems biology approach to identifying novel factors that contribute to pathophenotypes associated with pulmonary arterial hypertension and/or right ventricular dysfunction. Collectively, these concepts frame a forward-thinking paradigm shift in the approach to right heart disease by emphasizing factors that regulate the transition from adaptive to maladaptive right ventricular-pulmonary vascular (patho)physiology.

  13. Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel, N.

    2013-01-01

    Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.

  14. Model-Based Method for Sensor Validation

    NASA Technical Reports Server (NTRS)

    Vatan, Farrokh

    2012-01-01

    Fault detection, diagnosis, and prognosis are essential tasks in the operation of autonomous spacecraft, instruments, and in situ platforms. One of NASA s key mission requirements is robust state estimation. Sensing, using a wide range of sensors and sensor fusion approaches, plays a central role in robust state estimation, and there is a need to diagnose sensor failure as well as component failure. Sensor validation can be considered to be part of the larger effort of improving reliability and safety. The standard methods for solving the sensor validation problem are based on probabilistic analysis of the system, from which the method based on Bayesian networks is most popular. Therefore, these methods can only predict the most probable faulty sensors, which are subject to the initial probabilities defined for the failures. The method developed in this work is based on a model-based approach and provides the faulty sensors (if any), which can be logically inferred from the model of the system and the sensor readings (observations). The method is also more suitable for the systems when it is hard, or even impossible, to find the probability functions of the system. The method starts by a new mathematical description of the problem and develops a very efficient and systematic algorithm for its solution. The method builds on the concepts of analytical redundant relations (ARRs).

  15. Cycles till failure of silver-zinc cells with competing failure modes - Preliminary data analysis

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.

    1980-01-01

    The data analysis of cycles to failure of silver-zinc electrochemical cells with competing failure modes is presented. The test ran 129 cells through charge-discharge cycles until failure; preliminary data analysis consisted of response surface estimate of life. Batteries fail through low voltage condition and an internal shorting condition; a competing failure modes analysis was made using maximum likelihood estimation for the extreme value life distribution. Extensive residual plotting and probability plotting were used to verify data quality and selection of model.

  16. Full Envelope Reconfigurable Control Design for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Burken, John J.; Lee, Seung-Hee (Technical Monitor)

    2001-01-01

    In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. An Off-line Nonlinear General Constrained Optimization (ONCO) approach was used for the reconfigurable X-33 control design method. Three example failures are shown using a high fidelity 6 DOF simulation (case I ascent with a left body flap jammed at 25 deg.; case 2 entry with a right inboard elevon jam at 25 deg.; and case 3, landing (TAEM) with a left rudder jam at -30 deg.) Failure comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.

  17. Reliable Communication Models in Interdependent Critical Infrastructure Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun

    Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructuremore » networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.« less

  18. The evolving landscape of quality measurement for heart failure

    PubMed Central

    Fitzgerald, Ashley A.; Allen, Larry A.; Masoudi, Frederick A.

    2013-01-01

    Heart failure (HF) is a major cause of mortality and morbidity, representing a leading cause of death and hospitalization among U.S. Medicare beneficiaries. Advances in science have generated effective interventions to reduce adverse outcomes in HF, particularly in patients with reduced left ventricular ejection fraction. Unfortunately, effective therapies for heart failure are often not utilized in an effective, safe, timely, equitable, patient-centered, and efficient manner. Further, the risk of adverse outcomes for HF remains high. The last decades have witnessed the growth of efforts to measure and improve the care and outcomes of patients with HF. This paper will review the evolution of quality measurement for HF, including a brief history of quality measurement in medicine; the measures that have been employed to characterize quality in heart failure; how the measures are obtained; how measures are employed; and present and future challenges surrounding quality measurement in heart failure. PMID:22548579

  19. Surgical management of early pregnancy failure: history, politics, and safe, cost-effective care.

    PubMed

    Harris, Lisa H; Dalton, Vanessa K; Johnson, Timothy R B

    2007-05-01

    Early pregnancy failure and induced abortion are often managed differently, even though safe uterine evacuation is the goal in both. Early pregnancy failure is commonly treated by curettage in operating room settings in anesthetized patients. Induced abortion is most commonly managed by office vacuum aspiration in awake or sedated patients. Medical evidence does not support routine operating room management of early pregnancy failure. This commentary reviews historical origins of these different care standards, explores political factors responsible for their perpetuation, and uses experience at University of Michigan to dramatize the ways in which history, politics, and biomedicine intersect to produce patient care. The University of Michigan initiated office uterine evacuations for early pregnancy failure treatment. Patients previously went to the operating room. These changes required faculty, staff, and resident education. Our efforts blurred the lines between spontaneous and induced abortion management, improved patient care and better utilized hospital resources.

  20. The cleanroom case study in the Software Engineering Laboratory: Project description and early analysis

    NASA Technical Reports Server (NTRS)

    Green, Scott; Kouchakdjian, Ara; Basili, Victor; Weidow, David

    1990-01-01

    This case study analyzes the application of the cleanroom software development methodology to the development of production software at the NASA/Goddard Space Flight Center. The cleanroom methodology emphasizes human discipline in program verification to produce reliable software products that are right the first time. Preliminary analysis of the cleanroom case study shows that the method can be applied successfully in the FDD environment and may increase staff productivity and product quality. Compared to typical Software Engineering Laboratory (SEL) activities, there is evidence of lower failure rates, a more complete and consistent set of inline code documentation, a different distribution of phase effort activity, and a different growth profile in terms of lines of code developed. The major goals of the study were to: (1) assess the process used in the SEL cleanroom model with respect to team structure, team activities, and effort distribution; (2) analyze the products of the SEL cleanroom model and determine the impact on measures of interest, including reliability, productivity, overall life-cycle cost, and software quality; and (3) analyze the residual products in the application of the SEL cleanroom model, such as fault distribution, error characteristics, system growth, and computer usage.

  1. Going South: Lessons from an Historic Project Failure

    NASA Technical Reports Server (NTRS)

    Scott, John H.

    2009-01-01

    NASA's successful conduct of the Apollo Program greatly enhanced the prestige of the United States and remains broadly accepted as America's gift to all Mankind. NASA's accomplishments continue to amaze the world. With the Vision for Space Exploration (VSE) Americans once again tasked NASA to carry out a project that is expected to provide inspiration and economic stimulus to the United States and to the world. In preparation NASA has thoroughly examined space program precedents. There is, however, another precedent which has not been examined in this context but whose scope and environment in many ways parallel the VSE. This project was initiated by a team that had, ten years before, successfully completed an effort that, at a cost of $151 billion (2008 values), had pushed the envelope of technology, brought economic growth, established their country as the world leader in engineering, and been broadly accepted as their country s gift to Mankind. The new project was again inspired by popular desire to enhance national prestige and make yet another major contribution to Humanity. The new effort was predicted to require eight years and $156 billion (2008 values). However, after eight years and expenditures of 80% beyond the baseline, the project collapsed amid bankruptcy, political scandal, and criminal prosecution. This paper applies current aerospace project metrics, such as earned value analysis, to review the strategic decisions in this historic failure and describe its ultimate collapse. Key mistakes are identified, and lessons are drawn which may prove useful in guiding the VSE.

  2. Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

  3. Addiction as a market failure: using rational addiction results to justify tobacco regulation.

    PubMed

    Laux, F L

    2000-07-01

    Tobacco regulation efforts have been criticized by some academic economists for failing to provide adequate welfare-analytic justification. This paper attempts to address these criticisms. Unlike previous research that has discussed second-hand smoke and health care financing externalities, this paper develops the logic for identifying the much larger market failures attributable to the failure of smokers to fully internalize the costs of their addictive behavior. The focus is on teen addiction as a form of "intrapersonal" externality and observed adult consumption behavior consistent with partial myopia. The importance of peer effects, in the consideration of welfare impacts, is also emphasized.

  4. Effect of Component Failures on Economics of Distributed Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubin, Barry T.

    2012-02-02

    This report describes an applied research program to assess the realistic costs of grid connected photovoltaic (PV) installations. A Board of Advisors was assembled that included management from the regional electric power utilities, as well as other participants from companies that work in the electric power industry. Although the program started with the intention of addressing effective load carrying capacity (ELCC) for utility-owned photovoltaic installations, results from the literature study and recommendations from the Board of Advisors led investigators to the conclusion that obtaining effective data for this analysis would be difficult, if not impossible. The effort was then re-focusedmore » on assessing the realistic costs and economic valuations of grid-connected PV installations. The 17 kW PV installation on the University of Hartford's Lincoln Theater was used as one source of actual data. The change in objective required a more technically oriented group. The re-organized working group (changes made due to the need for more technically oriented participants) made site visits to medium-sized PV installations in Connecticut with the objective of developing sources of operating histories. An extensive literature review helped to focus efforts in several technical and economic subjects. The objective of determining the consequences of component failures on both generation and economic returns required three analyses. The first was a Monte-Carlo-based simulation model for failure occurrences and the resulting downtime. Published failure data, though limited, was used to verify the results. A second model was developed to predict the reduction in or loss of electrical generation related to the downtime due to these failures. Finally, a comprehensive economic analysis, including these failures, was developed to determine realistic net present values of installed PV arrays. Two types of societal benefits were explored, with quantitative valuations developed for both. Some societal benefits associated with financial benefits to the utility of having a distributed generation capacity that is not fossil-fuel based have been included into the economic models. Also included and quantified in the models are several benefits to society more generally: job creation and some estimates of benefits from avoiding greenhouse emissions. PV system failures result in a lowering of the economic values of a grid-connected system, but this turned out to be a surprisingly small effect on the overall economics. The most significant benefit noted resulted from including the societal benefits accrued to the utility. This provided a marked increase in the valuations of the array and made the overall value proposition a financially attractive one, in that net present values exceeded installation costs. These results indicate that the Department of Energy and state regulatory bodies should consider focusing on societal benefits that create economic value for the utility, confirm these quantitative values, and work to have them accepted by the utilities and reflected in the rate structures for power obtained from grid-connected arrays. Understanding and applying the economic benefits evident in this work can significantly improve the business case for grid-connected PV installations. This work also indicates that the societal benefits to the population are real and defensible, but not nearly as easy to justify in a business case as are the benefits that accrue directly to the utility.« less

  5. Plasma torch testing for thermostructural evaluation of rocket motor nozzle materials

    NASA Technical Reports Server (NTRS)

    Prince, Andrew S.; Bunker, Robert C.; Lawrence, Tim

    1989-01-01

    This paper presents data from the thermostructural testing of tape-wrapped carbon phenolic. This work has been performed with the use of a plasma torch and loading device in an effort to study the anomalous erosion characteristicfs of that seen in the Space Shuttle Solid Rocket Motor Nozzle STS-8A. Testing is conducted in an effort to determine conditions or parameters involved in this mode of failure.

  6. WE-B-BRC-02: Risk Analysis and Incident Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraass, B.

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. Wemore » therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology-specific risk assessment strategies and issues Evaluation of risk in the context of medical imaging and image quality E. Samei: Research grants from Siemens and GE.« less

  7. Terrestrial Lidar Datasets of New Orleans, Louisiana, Levee Failures from Hurricane Katrina, August 29, 2005

    USGS Publications Warehouse

    Collins, Brian D.; Kayen, Robert; Minasian, Diane L.; Reiss, Thomas

    2009-01-01

    Hurricane Katrina made landfall with the northern Gulf Coast on August 29, 2005, as one of the strongest hurricanes on record. The storm damage incurred in Louisiana included a number of levee failures that led to the inundation of approximately 85 percent of the metropolitan New Orleans area. Whereas extreme levels of storm damage were expected from such an event, the catastrophic failure of the New Orleans levees prompted a quick mobilization of engineering experts to assess why and how particular levees failed. As part of this mobilization, civil engineering members of the United States Geological Survey (USGS) performed terrestrial lidar topographic surveys at major levee failures in the New Orleans area. The focus of the terrestrial lidar effort was to obtain precise measurements of the ground surface to map soil displacements at each levee site, the nonuniformity of levee height freeboard, depth of erosion where scour occurred, and distress in structures at incipient failure. In total, we investigated eight sites in the New Orleans region, including both earth and concrete floodwall levee breaks. The datasets extend from the 17th Street Canal in the Orleans East Bank area to the intersection of the Gulf Intracoastal Waterway (GIWW) with the Mississippi River Gulf Outlet (MRGO) in the New Orleans East area. The lidar scan data consists of electronic files containing millions of surveyed points. These points characterize the topography of each levee's postfailure or incipient condition and are available for download through online hyperlinks. The data serve as a permanent archive of the catastrophic damage of Hurricane Katrina on the levee systems of New Orleans. Complete details of the data collection, processing, and georeferencing methodologies are provided in this report to assist in the visualization and analysis of the data by future users.

  8. Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Danny H; Elwood Jr, Robert H

    2011-01-01

    Analysis of the material protection, control, and accountability (MPC&A) system is necessary to understand the limits and vulnerabilities of the system to internal threats. A self-appraisal helps the facility be prepared to respond to internal threats and reduce the risk of theft or diversion of nuclear material. The material control and accountability (MC&A) system effectiveness tool (MSET) fault tree was developed to depict the failure of the MPC&A system as a result of poor practices and random failures in the MC&A system. It can also be employed as a basis for assessing deliberate threats against a facility. MSET uses faultmore » tree analysis, which is a top-down approach to examining system failure. The analysis starts with identifying a potential undesirable event called a 'top event' and then determining the ways it can occur (e.g., 'Fail To Maintain Nuclear Materials Under The Purview Of The MC&A System'). The analysis proceeds by determining how the top event can be caused by individual or combined lower level faults or failures. These faults, which are the causes of the top event, are 'connected' through logic gates. The MSET model uses AND-gates and OR-gates and propagates the effect of event failure using Boolean algebra. To enable the fault tree analysis calculations, the basic events in the fault tree are populated with probability risk values derived by conversion of questionnaire data to numeric values. The basic events are treated as independent variables. This assumption affects the Boolean algebraic calculations used to calculate results. All the necessary calculations are built into the fault tree codes, but it is often useful to estimate the probabilities manually as a check on code functioning. The probability of failure of a given basic event is the probability that the basic event primary question fails to meet the performance metric for that question. The failure probability is related to how well the facility performs the task identified in that basic event over time (not just one performance or exercise). Fault tree calculations provide a failure probability for the top event in the fault tree. The basic fault tree calculations establish a baseline relative risk value for the system. This probability depicts relative risk, not absolute risk. Subsequent calculations are made to evaluate the change in relative risk that would occur if system performance is improved or degraded. During the development effort of MSET, the fault tree analysis program used was SAPHIRE. SAPHIRE is an acronym for 'Systems Analysis Programs for Hands-on Integrated Reliability Evaluations.' Version 1 of the SAPHIRE code was sponsored by the Nuclear Regulatory Commission in 1987 as an innovative way to draw, edit, and analyze graphical fault trees primarily for safe operation of nuclear power reactors. When the fault tree calculations are performed, the fault tree analysis program will produce several reports that can be used to analyze the MPC&A system. SAPHIRE produces reports showing risk importance factors for all basic events in the operational MC&A system. The risk importance information is used to examine the potential impacts when performance of certain basic events increases or decreases. The initial results produced by the SAPHIRE program are considered relative risk values. None of the results can be interpreted as absolute risk values since the basic event probability values represent estimates of risk associated with the performance of MPC&A tasks throughout the material balance area (MBA). The RRR for a basic event represents the decrease in total system risk that would result from improvement of that one event to a perfect performance level. Improvement of the basic event with the greatest RRR value produces a greater decrease in total system risk than improvement of any other basic event. Basic events with the greatest potential for system risk reduction are assigned performance improvement values, and new fault tree calculations show the improvement in total system risk. The operational impact or cost-effectiveness from implementing the performance improvements can then be evaluated. The improvements being evaluated can be system performance improvements, or they can be potential, or actual, upgrades to the system. The RIR for a basic event represents the increase in total system risk that would result from failure of that one event. Failure of the basic event with the greatest RIR value produces a greater increase in total system risk than failure of any other basic event. Basic events with the greatest potential for system risk increase are assigned failure performance values, and new fault tree calculations show the increase in total system risk. This evaluation shows the importance of preventing performance degradation of the basic events. SAPHIRE identifies combinations of basic events where concurrent failure of the events results in failure of the top event.« less

  9. Failure Analysis of Discrete Damaged Tailored Extension-Shear-Coupled Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2005-01-01

    The results of an analytical and experimental investigation of the failure of composite is tiffener panels with extension-shear coupling are presented. This tailored concept, when used in the cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced 45 plies in the skin. The failure analysis of two tailored panel configurations that have the center stringer and adjacent skin severed is presented. Finite element analysis of the damaged panels was conducted using STAGS (STructural Analysis of General Shells) general purpose finite element program that includes a progressive failure capability for laminated composite structures that is based on point-stress analysis, traditional failure criteria, and ply discounting for material degradation. The progressive failure predicted the path of the failure and maximum load capability. There is less than 12 percent difference between the predicted failure load and experimental failure load. There is a good match of the panel stiffness and strength between the progressive failure analysis and the experimental results. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft.

  10. Environmental DNA illuminates the dark diversity of sharks

    PubMed Central

    Boussarie, Germain; Bonnin, Lucas; Kulbicki, Michel; Vigliola, Laurent

    2018-01-01

    In the era of “Anthropocene defaunation,” large species are often no longer detected in habitats where they formerly occurred. However, it is unclear whether this apparent missing, or “dark,” diversity of megafauna results from local species extirpations or from failure to detect elusive remaining individuals. We find that despite two orders of magnitude less sampling effort, environmental DNA (eDNA) detects 44% more shark species than traditional underwater visual censuses and baited videos across the New Caledonian archipelago (south-western Pacific). Furthermore, eDNA analysis reveals the presence of previously unobserved shark species in human-impacted areas. Overall, our results highlight a greater prevalence of sharks than described by traditional survey methods in both impacted and wilderness areas. This indicates an urgent need for large-scale eDNA assessments to improve monitoring of threatened and elusive megafauna. Finally, our findings emphasize the need for conservation efforts specifically geared toward the protection of elusive, residual populations. PMID:29732403

  11. Independent Review Support for Phoenix Mars Mission Robotic Arm Brush Motor Failure

    NASA Technical Reports Server (NTRS)

    McManamen, John P.; Pellicciotti, Joseph; DeKramer, Cornelis; Dube, Michael J.; Peeler, Deborah; Muirhead, Brian K.; Sevilla, Donald R.; Sabahi, Dara; Knopp, Michael D.

    2007-01-01

    The Phoenix Project requested the NASA Engineering and Safety Center (NESC) perform an independent peer review of the Robotic Arm (RA) Direct Current (DC) motor brush anomalies that originated during the Mars Exploration Rover (MER) Project and recurred during the Phoenix Project. The request was to evaluate the Phoenix Project investigation efforts and provide an independent risk assessment. This includes a recommendation for additional work and assessment of the flight worthiness of the RA DC motors. Based on the investigation and findings contained within this report, the IRT concurs with the risk assessment Failure Cause / Corrective Action (FC/CA) by the project, "Failure Effect Rating "3"; Major Degradation or Total Loss of Function, Failure Cause/Corrective Action Rating Currently "4"; Unknown Cause, Uncertainty in Corrective Action."

  12. Detection of suboptimal effort with symbol span: development of a new embedded index.

    PubMed

    Young, J Christopher; Caron, Joshua E; Baughman, Brandon C; Sawyer, R John

    2012-03-01

    Developing embedded indicators of suboptimal effort on objective neurocognitive testing is essential for detecting increasingly sophisticated forms of symptom feigning. The current study explored whether Symbol Span, a novel Wechsler Memory Scale-fourth edition measure of supraspan visual attention, could be used to discriminate adequate effort from suboptimal effort. Archival data were collected from 136 veterans classified into Poor Effort (n = 42) and Good Effort (n = 94) groups based on symptom validity test (SVT) performance. The Poor Effort group had significantly lower raw scores (p < .001) and age-corrected scaled scores (p < .001) than the Good Effort group on the Symbol Span test. A raw score cutoff of <14 produced 83% specificity and 50% sensitivity for detection of Poor Effort. Similarly, sensitivity was 52% and specificity was 84% when employing a cutoff of <7 for Age-Corrected Scale Score. Collectively, present results suggest that Symbol Span can effectively differentiate veterans with multiple failures on established free-standing and embedded SVTs.

  13. Statistical process control methods allow the analysis and improvement of anesthesia care.

    PubMed

    Fasting, Sigurd; Gisvold, Sven E

    2003-10-01

    Quality aspects of the anesthetic process are reflected in the rate of intraoperative adverse events. The purpose of this report is to illustrate how the quality of the anesthesia process can be analyzed using statistical process control methods, and exemplify how this analysis can be used for quality improvement. We prospectively recorded anesthesia-related data from all anesthetics for five years. The data included intraoperative adverse events, which were graded into four levels, according to severity. We selected four adverse events, representing important quality and safety aspects, for statistical process control analysis. These were: inadequate regional anesthesia, difficult emergence from general anesthesia, intubation difficulties and drug errors. We analyzed the underlying process using 'p-charts' for statistical process control. In 65,170 anesthetics we recorded adverse events in 18.3%; mostly of lesser severity. Control charts were used to define statistically the predictable normal variation in problem rate, and then used as a basis for analysis of the selected problems with the following results: Inadequate plexus anesthesia: stable process, but unacceptably high failure rate; Difficult emergence: unstable process, because of quality improvement efforts; Intubation difficulties: stable process, rate acceptable; Medication errors: methodology not suited because of low rate of errors. By applying statistical process control methods to the analysis of adverse events, we have exemplified how this allows us to determine if a process is stable, whether an intervention is required, and if quality improvement efforts have the desired effect.

  14. MEMS based shock pulse detection sensor for improved rotary Stirling cooler end of life prediction

    NASA Astrophysics Data System (ADS)

    Hübner, M.; Münzberg, M.

    2018-05-01

    The widespread use of rotary Stirling coolers in high performance thermal imagers used for critical 24/7 surveillance tasks justifies any effort to significantly enhance the reliability and predictable uptime of those coolers. Typically the lifetime of the whole imaging device is limited due to continuous wear and finally failure of the rotary compressor of the Stirling cooler, especially due to failure of the comprised bearings. MTTF based lifetime predictions, even based on refined MTTF models taking operational scenario dependent scaling factors into account, still lack in precision to forecast accurately the end of life (EOL) of individual coolers. Consequently preventive maintenance of individual coolers to avoid failures of the main sensor in critical operational scenarios are very costly or even useless. We have developed an integrated test method based on `Micro Electromechanical Systems', so called MEMS sensors, which significantly improves the cooler EOL prediction. The recently commercially available MEMS acceleration sensors have mechanical resonance frequencies up to 50 kHz. They are able to detect solid borne shock pulses in the cooler structure, originating from e.g. metal on metal impacts driven by periodical forces acting on moving inner parts of the rotary compressor within wear dependent slack and play. The impact driven transient shock pulse analyses uses only the high frequency signal <10kHz and differs therefore from the commonly used broadband low frequencies vibrational analysis of reciprocating machines. It offers a direct indicator of the individual state of wear. The predictive cooler lifetime model based on the shock pulse analysis is presented and results are discussed.

  15. Heart Rate Dynamics During A Treadmill Cardiopulmonary Exercise Test in Optimized Beta-Blocked Heart Failure Patients

    PubMed Central

    Carvalho, Vitor Oliveira; Guimarães, Guilherme Veiga; Ciolac, Emmanuel Gomes; Bocchi, Edimar Alcides

    2008-01-01

    BACKGROUND Calculating the maximum heart rate for age is one method to characterize the maximum effort of an individual. Although this method is commonly used, little is known about heart rate dynamics in optimized beta-blocked heart failure patients. AIM The aim of this study was to evaluate heart rate dynamics (basal, peak and % heart rate increase) in optimized beta-blocked heart failure patients compared to sedentary, normal individuals (controls) during a treadmill cardiopulmonary exercise test. METHODS Twenty-five heart failure patients (49±11 years, 76% male), with an average LVEF of 30±7%, and fourteen controls were included in the study. Patients with atrial fibrillation, a pacemaker or noncardiovascular functional limitations or whose drug therapy was not optimized were excluded. Optimization was considered to be 50 mg/day or more of carvedilol, with a basal heart rate between 50 to 60 bpm that was maintained for 3 months. RESULTS Basal heart rate was lower in heart failure patients (57±3 bpm) compared to controls (89±14 bpm; p<0.0001). Similarly, the peak heart rate (% maximum predicted for age) was lower in HF patients (65.4±11.1%) compared to controls (98.6±2.2; p<0.0001). Maximum respiratory exchange ratio did not differ between the groups (1.2±0.5 for controls and 1.15±1 for heart failure patients; p=0.42). All controls reached the maximum heart rate for their age, while no patients in the heart failure group reached the maximum. Moreover, the % increase of heart rate from rest to peak exercise between heart failure (48±9%) and control (53±8%) was not different (p=0.157). CONCLUSION No patient in the heart failure group reached the maximum heart rate for their age during a treadmill cardiopulmonary exercise test, despite the fact that the percentage increase of heart rate was similar to sedentary normal subjects. A heart rate increase in optimized beta-blocked heart failure patients during cardiopulmonary exercise test over 65% of the maximum age-adjusted value should be considered an effort near the maximum. This information may be useful in rehabilitation programs and ischemic tests, although further studies are required. PMID:18719758

  16. ACIS Door Failure Investigation and Mitigation Procedures

    NASA Technical Reports Server (NTRS)

    Podgorski, William A.; Tice, Neil W.; Plucinsky, Paul P.

    2000-01-01

    NASA's Chandra X-ray Observatory (formerly AXAF) was launched on July 23, 1999 and is currently in orbit performing scientific studies. Chandra is the third of NASA's Great Observatories to be launched, following the Hubble Space Telescope and the Compton Gamma Ray Observatory. One of four primary science instruments on Chandra, and one of only two focal plane instruments, is the Advanced CCD Imaging Spectrometer, or ACIS. The ACIS focal plane and Optical Blocking Filter (OBF) must be launched under vacuum, so a tightly sealed, functioning door and venting subsystem were implemented. The door was opened two and one-half weeks after launch (after most out-gassing of composite materials) and allowed X-rays to be imaged by the ACIS CCD's in the focal plane. A failure of this door to open on-orbit would have eliminated all ACIS capabilities, severely degrading mission science. During the final pre-flight thermal-vacuum test of the fully integrated Chandra Observatory at TRW, the ACIS door failed to open when commanded to do so. This paper describes the efforts, under considerable time pressure, by NASA, its contractors and outside review teams to investigate the failure and to develop modified hardware and procedures which would correct the problem. Of interest is the fact that the root cause of the test failure was never clearly identified despite massive effort. We ultimately focussed on hardware and procedures designed to mitigate the effects of potential, but unproven, failure modes. We describe a frequent real-world engineering situation in which one must proceed on the best basis possible in the absence of the complete set of facts.

  17. Bibliography of information on mechanics of structural failure (hydrogen embrittlement, protective coatings, composite materials, NDE)

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.

    1976-01-01

    This bibliography is comprised of approximately 1,600 reference citations related to four problem areas in the mechanics of failure in aerospace structures. The bibliography represents a search of the literature published in the period 1962-1976, the effort being largely limited to documents published in the United States. Listings are subdivided into the four problem areas: Hydrogen Embrittlement; Protective Coatings; Composite Materials; and Nondestructive Evaluation. An author index is included.

  18. The Predictable Failure of Educational Reform: Can We Change Course before It's Too Late? The Jossey-Bass Education Series and the Jossey-Bass Social and Behavioral Science Series.

    ERIC Educational Resources Information Center

    Sarason, Seymour B.

    Schools have been intractable to change and the attainment of goals set by reformers. A major failure has been the inability of reformers to confront this intractability. As a result, each new wave of reform learns nothing from earlier efforts and comes up with recommendations that have failed in the past. Nine chapters explore why reform efforts…

  19. Higher levels of salivary alpha-amylase predict failure of cessation efforts in male smokers.

    PubMed

    Dušková, M; Simůnková, K; Hill, M; Hruškovičová, H; Hoskovcová, P; Králíková, E; Stárka, L

    2010-01-01

    The ability to predict the success or failure of smoking cessation efforts will be useful for clinical practice. Stress response is regulated by two primary neuroendocrine systems. Salivary cortisol has been used as a marker for the hypothalamus-pituitary-adrenocortical axis and salivary alpha-amylase as a marker for the sympathetic adrenomedullary system. We studied 62 chronic smokers (34 women and 28 men with an average age of 45.2+/-12.9 years). The levels of salivary cortisol and salivary alpha-amylase were measured during the period of active smoking, and 6 weeks and 24 weeks after quitting. We analyzed the men separately from the women. The men who were unsuccessful in cessation showed significantly higher levels of salivary alpha-amylase over the entire course of the cessation attempt. Before stopping smoking, salivary cortisol levels were higher among the men who were unsuccessful in smoking cessation. After quitting, there were no differences between this group and the men who were successful in cessation. In women we found no differences between groups of successful and unsuccessful ex-smokers during cessation. In conclusions, increased levels of salivary alpha-amylase before and during smoking cessation may predict failure to quit in men. On the other hand, no advantage was found in predicting the failure to quit in women. The results of our study support previously described gender differences in smoking cessation.

  20. SU-F-T-243: Major Risks in Radiotherapy. A Review Based On Risk Analysis Literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Tarjuelo, J; Guasp-Tortajada, M; Iglesias-Montenegro, N

    Purpose: We present a literature review of risk analyses in radiotherapy to highlight the most reported risks and facilitate the spread of this valuable information so that professionals can be aware of these major threats before performing their own studies. Methods: We considered studies with at least an estimation of the probability of occurrence of an adverse event (O) and its associated severity (S). They cover external beam radiotherapy, brachytherapy, intraoperative radiotherapy, and stereotactic techniques. We selected only the works containing a detailed ranked series of elements or failure modes and focused on the first fully reported quartile as much.more » Afterward, we sorted the risk elements according to a regular radiotherapy procedure so that the resulting groups were cited in several works and be ranked in this way. Results: 29 references published between 2007 and February 2016 were studied. Publication trend has been generally rising. The most employed analysis has been the Failure mode and effect analysis (FMEA). Among references, we selected 20 works listing 258 ranked risk elements. They were sorted into 31 groups appearing at least in two different works. 11 groups appeared in at least 5 references and 5 groups did it in 7 or more papers. These last sets of risks where choosing another set of images or plan for planning or treating, errors related with contours, errors in patient positioning for treatment, human mistakes when programming treatments, and planning errors. Conclusion: There is a sufficient amount and variety of references for identifying which failure modes or elements should be addressed in a radiotherapy department before attempting a specific analysis. FMEA prevailed, but other studies such as “risk matrix” or “occurrence × severity” analyses can also lead professionals’ efforts. Risk associated with human actions ranks very high; therefore, they should be automated or at least peer-reviewed.« less

  1. New Medications for Heart Failure

    PubMed Central

    Gordin, Jonathan S.; Fonarow, Gregg C.

    2016-01-01

    Heart failure is common and results in substantial morbidity and mortality. Current guideline-based therapies for heart failure with reduced ejection fraction, including beta-blockers, angiotensin converting enzyme (ACE) inhibitors, and aldosterone antagonists aim to interrupt deleterious neurohormonal pathways and have shown significant success in reducing morbidity and mortality associated with heart failure. Continued efforts to further improve outcomes in patients with heart failure with reduced ejection fraction have led to the first new-in-class medications approved for heart failure since 2005, ivabradine and sacubitril/valsartan. Ivabradine targets the If channels in the sinoatrial node of the heart, decreasing heart rate. Sacubitril/valsartan combines a neprilysin inhibitor that increases levels of beneficial vasodilatory peptides with an angiotensin receptor antagonist. On a background of previously approved, guideline-directed medical therapies for heart failure, these medications have shown improved clinical outcomes ranging from decreased hospitalizations in a select group of patients to a reduction in all-cause mortality across all pre-specified subgroups. In this review, we will discuss the previously established guideline-directed medical therapies for heart failure with reduced ejection fraction, the translational research that led to the development of these new therapies, and the results from the major clinical trials of ivabradine and sacubitril/valsartan. PMID:27038558

  2. An Investigation of Reliability Models for Ceramic Matrix Composites and their Implementation into Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.

    1998-01-01

    The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural design protocols.

  3. User-Defined Material Model for Progressive Failure Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)

    2006-01-01

    An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.

  4. An empirical test of evolutionary theories for reproductive senescence and reproductive effort in the garter snake Thamnophis elegans.

    PubMed

    Sparkman, Amanda M; Arnold, Stevan J; Bronikowski, Anne M

    2007-04-07

    Evolutionary theory predicts that differential reproductive effort and rate of reproductive senescence will evolve under different rates of external mortality. We examine the evolutionary divergence of age-specific reproduction in two life-history ecotypes of the western terrestrial garter snake, Thamnophis elegans. We test for the signature of reproductive senescence (decreasing fecundity with age) and increasing reproductive effort with age (increasing reproductive productivity per gram female) in replicate populations of two life-history ecotypes: snakes that grow fast, mature young and have shorter lifespans, and snakes that grow slow, mature late and have long lives. The difference between life-history ecotypes is due to genetic divergence in growth rate. We find (i) reproductive success (live litter mass) increases with age in both ecotypes, but does so more rapidly in the fast-growth ecotype, (ii) reproductive failure increases with age in both ecotypes, but the proportion of reproductive failure to total reproductive output remains invariant, and (iii) reproductive effort remains constant in fast-growth individuals with age, but declines in slow-growth individuals. This illustration of increasing fecundity with age, even at the latest ages, deviates from standard expectations for reproductive senescence, as does the lack of increases in reproductive effort. We discuss our findings in light of recent theories regarding the phenomenon of increased reproduction throughout life in organisms with indeterminate growth and its potential to offset theoretical expectations for the ubiquity of senescence.

  5. An empirical test of evolutionary theories for reproductive senescence and reproductive effort in the garter snake Thamnophis elegans

    PubMed Central

    Sparkman, Amanda M; Arnold, Stevan J; Bronikowski, Anne M

    2007-01-01

    Evolutionary theory predicts that differential reproductive effort and rate of reproductive senescence will evolve under different rates of external mortality. We examine the evolutionary divergence of age-specific reproduction in two life-history ecotypes of the western terrestrial garter snake, Thamnophis elegans. We test for the signature of reproductive senescence (decreasing fecundity with age) and increasing reproductive effort with age (increasing reproductive productivity per gram female) in replicate populations of two life-history ecotypes: snakes that grow fast, mature young and have shorter lifespans, and snakes that grow slow, mature late and have long lives. The difference between life-history ecotypes is due to genetic divergence in growth rate. We find (i) reproductive success (live litter mass) increases with age in both ecotypes, but does so more rapidly in the fast-growth ecotype, (ii) reproductive failure increases with age in both ecotypes, but the proportion of reproductive failure to total reproductive output remains invariant, and (iii) reproductive effort remains constant in fast-growth individuals with age, but declines in slow-growth individuals. This illustration of increasing fecundity with age, even at the latest ages, deviates from standard expectations for reproductive senescence, as does the lack of increases in reproductive effort. We discuss our findings in light of recent theories regarding the phenomenon of increased reproduction throughout life in organisms with indeterminate growth and its potential to offset theoretical expectations for the ubiquity of senescence. PMID:17251099

  6. An efficient scan diagnosis methodology according to scan failure mode for yield enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Tae; Seo, Nam-Sik; Oh, Ghil-Geun; Kim, Dae-Gue; Lee, Kyu-Taek; Choi, Chi-Young; Kim, InSoo; Min, Hyoung Bok

    2008-12-01

    Yield has always been a driving consideration during fabrication of modern semiconductor industry. Statistically, the largest portion of wafer yield loss is defective scan failure. This paper presents efficient failure analysis methods for initial yield ramp up and ongoing product with scan diagnosis. Result of our analysis shows that more than 60% of the scan failure dies fall into the category of shift mode in the very deep submicron (VDSM) devices. However, localization of scan shift mode failure is very difficult in comparison to capture mode failure because it is caused by the malfunction of scan chain. Addressing the biggest challenge, we propose the most suitable analysis method according to scan failure mode (capture / shift) for yield enhancement. In the event of capture failure mode, this paper describes the method that integrates scan diagnosis flow and backside probing technology to obtain more accurate candidates. We also describe several unique techniques, such as bulk back-grinding solution, efficient backside probing and signal analysis method. Lastly, we introduce blocked chain analysis algorithm for efficient analysis of shift failure mode. In this paper, we contribute to enhancement of the yield as a result of the combination of two methods. We confirm the failure candidates with physical failure analysis (PFA) method. The direct feedback of the defective visualization is useful to mass-produce devices in a shorter time. The experimental data on mass products show that our method produces average reduction by 13.7% in defective SCAN & SRAM-BIST failure rates and by 18.2% in wafer yield rates.

  7. Operations analysis (study 2.1). Contingency analysis. [of failure modes anticipated during space shuttle upper stage planning

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Future operational concepts for the space transportation system were studied in terms of space shuttle upper stage failure contingencies possible during deployment, retrieval, or space servicing of automated satellite programs. Problems anticipated during mission planning were isolated using a modified 'fault tree' technique, normally used in safety analyses. A comprehensive space servicing hazard analysis is presented which classifies possible failure modes under the catagories of catastrophic collision, failure to rendezvous and dock, servicing failure, and failure to undock. The failure contingencies defined are to be taken into account during design of the upper stage.

  8. Use of Probabilistic Engineering Methods in the Detailed Design and Development Phases of the NASA Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Fayssal, Safie; Weldon, Danny

    2008-01-01

    The United States National Aeronautics and Space Administration (NASA) is in the midst of a space exploration program called Constellation to send crew and cargo to the international Space Station, to the moon, and beyond. As part of the Constellation program, a new launch vehicle, Ares I, is being developed by NASA Marshall Space Flight Center. Designing a launch vehicle with high reliability and increased safety requires a significant effort in understanding design variability and design uncertainty at the various levels of the design (system, element, subsystem, component, etc.) and throughout the various design phases (conceptual, preliminary design, etc.). In a previous paper [1] we discussed a probabilistic functional failure analysis approach intended mainly to support system requirements definition, system design, and element design during the early design phases. This paper provides an overview of the application of probabilistic engineering methods to support the detailed subsystem/component design and development as part of the "Design for Reliability and Safety" approach for the new Ares I Launch Vehicle. Specifically, the paper discusses probabilistic engineering design analysis cases that had major impact on the design and manufacturing of the Space Shuttle hardware. The cases represent important lessons learned from the Space Shuttle Program and clearly demonstrate the significance of probabilistic engineering analysis in better understanding design deficiencies and identifying potential design improvement for Ares I. The paper also discusses the probabilistic functional failure analysis approach applied during the early design phases of Ares I and the forward plans for probabilistic design analysis in the detailed design and development phases.

  9. Bridging Human Reliability Analysis and Psychology, Part 2: A Cognitive Framework to Support HRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    April M. Whaley; Stacey M. L. Hendrickson; Ronald L. Boring

    This is the second of two papers that discuss the literature review conducted as part of the U.S. Nuclear Regulatory Commission (NRC) effort to develop a hybrid human reliability analysis (HRA) method in response to Staff Requirements Memorandum (SRM) SRM-M061020. This review was conducted with the goal of strengthening the technical basis within psychology, cognitive science and human factors for the hybrid HRA method being proposed. An overview of the literature review approach and high-level structure is provided in the first paper, whereas this paper presents the results of the review. The psychological literature review encompassed research spanning the entiretymore » of human cognition and performance, and consequently produced an extensive list of psychological processes, mechanisms, and factors that contribute to human performance. To make sense of this large amount of information, the results of the literature review were organized into a cognitive framework that identifies causes of failure of macrocognition in humans, and connects those proximate causes to psychological mechanisms and performance influencing factors (PIFs) that can lead to the failure. This cognitive framework can serve as a tool to inform HRA. Beyond this, however, the cognitive framework has the potential to also support addressing human performance issues identified in Human Factors applications.« less

  10. [MODIS Investigation

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.

    1998-01-01

    The objectives of the last six months were: Continue analysis of Hawaii Ocean Time-series (HOT) bio-optical mooring data, Recover instrumentation from JGOFS cruises in the Southern Ocean and analyze data Maintain documentation of MOCEAN algorithms and software for use by MOCEAN and GLI teams Continue chemostat experiments on the relationship of fluorescence quantum yield to environmental factors. Continue to develop and expand browser-based information system for in situ bio-optical data Work Analysis of Field Data from Hawaii We are continuing to analyze bio-optical data collected at the Hawaii Ocean Time Series mooring. The HOT bio-optical mooring was recovered in May 1998. After retrieving the data, the sensor package was serviced and redeployed. We now have over 18 months of data. These are being analyzed as part of a larger study of mesoscale processes at this JGOFS time series site. We have had some failures in the data logger which have affected the fluorescence channels. These are being repaired. We also had an instrument housing failure, and minor modifications have been made to avoid subsequent problems. In addition, Ricardo Letelier is funded as part of the SeaWiFS calibrator/validation effort (through a subcontract from the University of Hawaii, Dr. John Porter), and he is collecting bio-optical and fluorescence data as part of the HOT activity.

  11. Increasing value and reducing waste in research design, conduct, and analysis.

    PubMed

    Ioannidis, John P A; Greenland, Sander; Hlatky, Mark A; Khoury, Muin J; Macleod, Malcolm R; Moher, David; Schulz, Kenneth F; Tibshirani, Robert

    2014-01-11

    Correctable weaknesses in the design, conduct, and analysis of biomedical and public health research studies can produce misleading results and waste valuable resources. Small effects can be difficult to distinguish from bias introduced by study design and analyses. An absence of detailed written protocols and poor documentation of research is common. Information obtained might not be useful or important, and statistical precision or power is often too low or used in a misleading way. Insufficient consideration might be given to both previous and continuing studies. Arbitrary choice of analyses and an overemphasis on random extremes might affect the reported findings. Several problems relate to the research workforce, including failure to involve experienced statisticians and methodologists, failure to train clinical researchers and laboratory scientists in research methods and design, and the involvement of stakeholders with conflicts of interest. Inadequate emphasis is placed on recording of research decisions and on reproducibility of research. Finally, reward systems incentivise quantity more than quality, and novelty more than reliability. We propose potential solutions for these problems, including improvements in protocols and documentation, consideration of evidence from studies in progress, standardisation of research efforts, optimisation and training of an experienced and non-conflicted scientific workforce, and reconsideration of scientific reward systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Peripheral T-cell lymphoma, not otherwise specified: a report of 340 cases from the International Peripheral T-cell Lymphoma Project.

    PubMed

    Weisenburger, Dennis D; Savage, Kerry J; Harris, Nancy Lee; Gascoyne, Randy D; Jaffe, Elaine S; MacLennan, Kenneth A; Rüdiger, Thomas; Pileri, Stefano; Nakamura, Shigeo; Nathwani, Bharat; Campo, Elias; Berger, Francoise; Coiffier, Bertrand; Kim, Won-Seog; Holte, Harald; Federico, Massimo; Au, Wing Y; Tobinai, Kensei; Armitage, James O; Vose, Julie M

    2011-03-24

    The International Peripheral T-cell Lymphoma Project is a collaborative effort to better understand peripheral T-cell lymphoma (PTCL). A total of 22 institutions submitted clinical and pathologic material on 1314 cases. One objective was to analyze the clinical and pathologic features of 340 cases of PTCL, not otherwise specified. The median age of the patients was 60 years, and the majority (69%) presented with advanced stage disease. Most patients (87%) presented with nodal disease, but extranodal disease was present in 62%. The 5-year overall survival was 32%, and the 5-year failure-free survival was only 20%. The majority of patients (80%) were treated with combination chemotherapy that included an anthracycline, but there was no survival advantage. The International Prognostic Index (IPI) was predictive of both overall survival and failure-free survival (P < .001). Multivariate analysis of clinical and pathologic prognostic factors, respectively, when controlling for the IPI, identified bulky disease (≥ 10 cm), thrombocytopenia (< 150 × 10(9)/L), and a high number of transformed tumor cells (> 70%) as adverse predictors of survival, but only the latter was significant in final analysis. Thus, the IPI and a single pathologic feature could be used to stratify patients with PTCL-not otherwise specified for novel and risk-adapted therapies.

  13. Station Blackout at Browns Ferry Unit One - accident sequence analysis. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.H.; Harrington, R.M.; Greene, S.R.

    1981-11-01

    This study describes the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to Station Blackout, defined as a loss of offsite power combined with failure of all onsite emergency diesel-generators to start and load. Every effort has been made to employ the most realistic assumptions during the process of defining the sequence of events for this hypothetical accident. DC power is assumed to remain available from the unit batteries during the initial phase and the operator actions and corresponding events during this period are described using results provided by an analysis code developed specifically for this purpose.more » The Station Blackout is assumed to persist beyond the point of battery exhaustion and the events during this second phase of the accident in which dc power would be unavailable were determined through use of the MARCH code. Without dc power, cooling water could no longer be injected into the reactor vessel and the events of the second phase include core meltdown and subsequent containment failure. An estimate of the magnitude and timing of the concomitant release of the noble gas, cesium, and iodine-based fission products to the environment is provided in Volume 2 of this report. 58 refs., 75 figs., 8 tabs.« less

  14. Failure Atlas for Rolling Bearings in Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallian, T. E.

    2006-01-01

    This Atlas is structured as a supplement to the book: T.E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2nd edition, ASME Press New York, (1999). The content of the atlas comprises plate pages from the book that contain bearing failure images, application data, and descriptions of failure mode, image, and suspected failure causes. Rolling bearings are a critical component of the mainshaft system, gearbox and generator in the rapidly developing technology of power generating wind turbines. The demands for long service life are stringent; the design load, speed and temperature regimes are demanding and the environmental conditions including weather,more » contamination, impediments to monitoring and maintenance are often unfavorable. As a result, experience has shown that the rolling bearings are prone to a variety of failure modes that may prevent achievement of design lives. Morphological failure diagnosis is extensively used in the failure analysis and improvement of bearing operation. Accumulated experience shows that the failure appearance and mode of failure causation in wind turbine bearings has many distinguishing features. The present Atlas is a first effort to collect an interpreted database of specifically wind turbine related rolling bearing failures and make it widely available. This Atlas is structured as a supplement to the book: T. E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2d edition, ASME Press New York, (1999). The main body of that book is a comprehensive collection of self-contained pages called Plates, containing failure images, bearing and application data, and three descriptions: failure mode, image and suspected failure causes. The Plates are sorted by main failure mode into chapters. Each chapter is preceded by a general technical discussion of the failure mode, its appearance and causes. The Plates part is supplemented by an introductory part, describing the appearance classification and failure classification systems used, and by several indexes. The present Atlas is intended as a supplement to the book. It has the same structure but contains only Plate pages, arranged in chapters, each with a chapter heading page giving a short definition of the failure mode illustrated. Each Plate page is self contained, with images, bearing and application data, and descriptions of the failure mode, the images and the suspected causes. Images are provided in two resolutions: The text page includes 6 by 9 cm images. In addition, high resolution image files are attached, to be retrieved by clicking on their 'push pin' icon. While the material in the present Atlas is self-contained, it is nonetheless a supplement to the book and the complete interpretation of the terse image descriptions and of the system underlying the failure code presupposes familiarity with the book. Since this Atlas is a supplement to the book, its chapter numbering follows that of the book. Not all failure modes covered in the book have been found among the observed wind turbines. For that reason, and because of the omission of introductory matter, the chapter numbers in this Atlas are not a continuous sequence.« less

  15. 42 CFR 495.330 - Termination of FFP for failure to provide access to information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... RECORD TECHNOLOGY INCENTIVE PROGRAM Requirements Specific to the Medicaid Program § 495.330 Termination... HIT planning and implementation efforts, and the systems used to interoperate with electronic HIT...

  16. 20 CFR 327.15 - Reasonable efforts to obtain work.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... claimant. (b) Failure to comply with requirement. When the office of the Board which is adjudicating claims...) Responding to appropriate “want ads” for work which appears suitable for him; (5) Actively prosecuting his...

  17. 20 CFR 327.15 - Reasonable efforts to obtain work.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... claimant. (b) Failure to comply with requirement. When the office of the Board which is adjudicating claims...) Responding to appropriate “want ads” for work which appears suitable for him; (5) Actively prosecuting his...

  18. 20 CFR 327.15 - Reasonable efforts to obtain work.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... claimant. (b) Failure to comply with requirement. When the office of the Board which is adjudicating claims...) Responding to appropriate “want ads” for work which appears suitable for him; (5) Actively prosecuting his...

  19. 20 CFR 327.15 - Reasonable efforts to obtain work.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... claimant. (b) Failure to comply with requirement. When the office of the Board which is adjudicating claims...) Responding to appropriate “want ads” for work which appears suitable for him; (5) Actively prosecuting his...

  20. 20 CFR 327.15 - Reasonable efforts to obtain work.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... claimant. (b) Failure to comply with requirement. When the office of the Board which is adjudicating claims...) Responding to appropriate “want ads” for work which appears suitable for him; (5) Actively prosecuting his...

  1. Identification of novel biomarker candidates for hypertrophic cardiomyopathy and other cardiovascular diseases leading to heart failure.

    PubMed

    Rehulkova, H; Rehulka, P; Myslivcova Fucikova, A; Stulik, J; Pudil, R

    2016-11-23

    In-depth proteome discovery analysis represents new strategy in an effort to identify novel reliable specific protein markers for hypertrophic cardiomyopathy and other life threatening cardiovascular diseases. To systematically identify novel protein biomarkers of cardiovascular diseases with high mortality we employed an isobaric tag for relative and absolute quantitation (iTRAQ) proteome technology to make comparative analysis of plasma samples obtained from patients suffering from non-obstructive hypertrophic cardiomyopathy, stable dilated cardiomyopathy, aortic valve stenosis, chronic stable coronary artery disease and stable arterial hypertension. We found 128 plasma proteins whose abundances were uniquely regulated among the analyzed cardiovascular pathologies. 49 of them have not been described yet. Additionally, application of statistical exploratory analyses of the measured protein profiles indicated the relationship in pathophysiology of the examined cardiovascular pathologies.

  2. Analysis of Critical Infrastructure Dependencies and Interdependencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petit, Frederic; Verner, Duane; Brannegan, David

    2015-06-01

    The report begins by defining dependencies and interdependencies and exploring basic concepts of dependencies in order to facilitate a common understanding and consistent analytical approaches. Key concepts covered include; Characteristics of dependencies: upstream dependencies, internal dependencies, and downstream dependencies; Classes of dependencies: physical, cyber, geographic, and logical; and Dimensions of dependencies: operating environment, coupling and response behavior, type of failure, infrastructure characteristics, and state of operations From there, the report proposes a multi-phase roadmap to support dependency and interdependency assessment activities nationwide, identifying a range of data inputs, analysis activities, and potential products for each phase, as well as keymore » steps needed to progress from one phase to the next. The report concludes by outlining a comprehensive, iterative, and scalable framework for analyzing dependencies and interdependencies that stakeholders can integrate into existing risk and resilience assessment efforts.« less

  3. The Relationship Between Heart Rate Reserve and Oxygen Uptake Reserve in Heart Failure Patients on Optimized and Non-Optimized Beta-Blocker Therapy

    PubMed Central

    Carvalho, Vitor Oliveira; Guimarães, Guilherme Veiga; Bocchi, Edimar Alcides

    2008-01-01

    BACKGROUND The relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in heart failure patients either on non-optimized or off beta-blocker therapy is known to be unreliable. The aim of this study was to evaluate the relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in heart failure patients receiving optimized and non-optimized beta-blocker treatment during a treadmill cardiopulmonary exercise test. METHODS A total of 27 sedentary heart failure patients (86% male, 50±12 years) on optimized beta-blocker therapy with a left ventricle ejection fraction of 33±8% and 35 sedentary non-optimized heart failure patients (75% male, 47±10 years) with a left ventricle ejection fraction of 30±10% underwent the treadmill cardiopulmonary exercise test (Naughton protocol). Resting and peak effort values of both the percentage of oxygen consumption reserve and percentage of heart rate reserve were, by definition, 0 and 100, respectively. RESULTS The heart rate slope for the non-optimized group was derived from the points 0.949±0.088 (0 intercept) and 1.055±0.128 (1 intercept), p<0.0001. The heart rate slope for the optimized group was derived from the points 1.026±0.108 (0 intercept) and 1.012±0.108 (1 intercept), p=0.47. Regression linear plots for the heart rate slope for each patient in the non-optimized and optimized groups revealed a slope of 0.986 (almost perfect) for the optimized group, but the regression analysis for the non-optimized group was 0.030 (far from perfect, which occurs at 1). CONCLUSION The relationship between the percentage of oxygen consumption reserve and percentage of heart rate reserve in patients on optimized beta-blocker therapy was reliable, but this relationship was unreliable in non-optimized heart failure patients. PMID:19060991

  4. Creating and evaluating a data-driven curriculum for central venous catheter placement.

    PubMed

    Duncan, James R; Henderson, Katherine; Street, Mandie; Richmond, Amy; Klingensmith, Mary; Beta, Elio; Vannucci, Andrea; Murray, David

    2010-09-01

    Central venous catheter placement is a common procedure with a high incidence of error. Other fields requiring high reliability have used Failure Mode and Effects Analysis (FMEA) to prioritize quality and safety improvement efforts. To use FMEA in the development of a formal, standardized curriculum for central venous catheter training. We surveyed interns regarding their prior experience with central venous catheter placement. A multidisciplinary team used FMEA to identify high-priority failure modes and to develop online and hands-on training modules to decrease the frequency, diminish the severity, and improve the early detection of these failure modes. We required new interns to complete the modules and tracked their progress using multiple assessments. Survey results showed new interns had little prior experience with central venous catheter placement. Using FMEA, we created a curriculum that focused on planning and execution skills and identified 3 priority topics: (1) retained guidewires, which led to training on handling catheters and guidewires; (2) improved needle access, which prompted the development of an ultrasound training module; and (3) catheter-associated bloodstream infections, which were addressed through training on maximum sterile barriers. Each module included assessments that measured progress toward recognition and avoidance of common failure modes. Since introducing this curriculum, the number of retained guidewires has fallen more than 4-fold. Rates of catheter-associated infections have not yet declined, and it will take time before ultrasound training will have a measurable effect. The FMEA provided a process for curriculum development. Precise definitions of failure modes for retained guidewires facilitated development of a curriculum that contributed to a dramatic decrease in the frequency of this complication. Although infections and access complications have not yet declined, failure mode identification, curriculum development, and monitored implementation show substantial promise for improving patient safety during placement of central venous catheters.

  5. Scenario-based risk analysis of winter snowstorms in the German lowlands

    NASA Astrophysics Data System (ADS)

    von Wulffen, Anja

    2014-05-01

    The northern German lowlands are not especially known for a high frequency of snowfall events. Nevertheless under certain synoptic conditions Lake-Effect-like phenomena caused by the proximity especially of the Baltic Sea can lead to significantly reinforced snowfall intensities that are often accompanied by rather high wind speeds. This makes for infrequent but potentially disastrous snowstorms in a region less accustomed to snow impacts. One possible consequence of an infrastructure failure cascade resulting from severe and longer-lasting snowstorms is a regional disruption of the food supply chain. In the context of "just-in-time"-logistics and the accompanying decrease of storage capabilities, this poses a significant threat to the population's food security. Within the project NeuENV ("New strategies to ensure sufficient food supply in case of crisis in Germany") a snowstorm in the German lowlands involving widespread disruptions of the transportation infrastructure as well as power failures is therefore used as one model for future food supply chain disruptions. In order to obtain a reliable evaluation of the supply chain and crisis management resilience, a detailed snowstorm scenario is being developed. For this purpose, a database of impact reports of past snowstorm events is assembled and analysed to obtain a comprehensive overview of potential infrastructure impairments and failures. Examples of events analysed in this context include the winter 1978/79 with its disastrous snow drifts that commonly attained heights of 3m to 5m leading to a transportation infrastructure collapse across a wide area, the wet snow event in November 2005 in the Münsterland region that caused power failures for up to 250.000 homes, and more recent snowstorms such as Daisy in January 2010. A catalogue of thresholds for relevant parameters indicating when significant failures can be expected is then compiled through a comparison of impact reports with the detailed meteorological conditions. Based on these findings, an exemplary synoptic evolution of a snowstorm leading to representative infrastructure failure cascades is constructed. In a next step, an extrapolation of this obtained scenario to future climate and societal conditions as well as plausible more extreme but not yet observed meteorological conditions is planned in order to obtain a thorough analysis of possible threats to the German food distribution system and a strong foundation for future disaster mitigation planning efforts.

  6. Use of failure mode effect analysis (FMEA) to improve medication management process.

    PubMed

    Jain, Khushboo

    2017-03-13

    Purpose Medication management is a complex process, at high risk of error with life threatening consequences. The focus should be on devising strategies to avoid errors and make the process self-reliable by ensuring prevention of errors and/or error detection at subsequent stages. The purpose of this paper is to use failure mode effect analysis (FMEA), a systematic proactive tool, to identify the likelihood and the causes for the process to fail at various steps and prioritise them to devise risk reduction strategies to improve patient safety. Design/methodology/approach The study was designed as an observational analytical study of medication management process in the inpatient area of a multi-speciality hospital in Gurgaon, Haryana, India. A team was made to study the complex process of medication management in the hospital. FMEA tool was used. Corrective actions were developed based on the prioritised failure modes which were implemented and monitored. Findings The percentage distribution of medication errors as per the observation made by the team was found to be maximum of transcription errors (37 per cent) followed by administration errors (29 per cent) indicating the need to identify the causes and effects of their occurrence. In all, 11 failure modes were identified out of which major five were prioritised based on the risk priority number (RPN). The process was repeated after corrective actions were taken which resulted in about 40 per cent (average) and around 60 per cent reduction in the RPN of prioritised failure modes. Research limitations/implications FMEA is a time consuming process and requires a multidisciplinary team which has good understanding of the process being analysed. FMEA only helps in identifying the possibilities of a process to fail, it does not eliminate them, additional efforts are required to develop action plans and implement them. Frank discussion and agreement among the team members is required not only for successfully conducing FMEA but also for implementing the corrective actions. Practical implications FMEA is an effective proactive risk-assessment tool and is a continuous process which can be continued in phases. The corrective actions taken resulted in reduction in RPN, subjected to further evaluation and usage by others depending on the facility type. Originality/value The application of the tool helped the hospital in identifying failures in medication management process, thereby prioritising and correcting them leading to improvement.

  7. Use of failure mode and effects analysis for proactive identification of communication and handoff failures from organ procurement to transplantation.

    PubMed

    Steinberger, Dina M; Douglas, Stephen V; Kirschbaum, Mark S

    2009-09-01

    A multidisciplinary team from the University of Wisconsin Hospital and Clinics transplant program used failure mode and effects analysis to proactively examine opportunities for communication and handoff failures across the continuum of care from organ procurement to transplantation. The team performed a modified failure mode and effects analysis that isolated the multiple linked, serial, and complex information exchanges occurring during the transplantation of one solid organ. Failure mode and effects analysis proved effective for engaging a diverse group of persons who had an investment in the outcome in analysis and discussion of opportunities to improve the system's resilience for avoiding errors during a time-pressured and complex process.

  8. Failure Mode, Effects, and Criticality Analysis (FMECA)

    DTIC Science & Technology

    1993-04-01

    Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System Ground Demonstration System, Report No. TID 27301...No. TID/SNA - 3015, Aeroject Nuclear Systems Co., Sacramento, California: 1970. 95. Taylor , J.R. A Formalization of Failure Mode Analysis of Control...Roskilde, Denmark: 1973. 96. Taylor , J.R. A Semi-Automatic Method for Oualitative Failure Mode Analysis. Report No. RISO-M-1707. Available from a

  9. Comprehension and retrieval of failure cases in airborne observatories

    NASA Technical Reports Server (NTRS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-01-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  10. Comprehension and retrieval of failure cases in airborne observatories

    NASA Astrophysics Data System (ADS)

    Alvarado, Sergio J.; Mock, Kenrick J.

    1995-05-01

    This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.

  11. Damage tolerance modeling and validation of a wireless sensory composite panel for a structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Talagani, Mohamad R.; Abdi, Frank; Saravanos, Dimitris; Chrysohoidis, Nikos; Nikbin, Kamran; Ragalini, Rose; Rodov, Irena

    2013-05-01

    The paper proposes the diagnostic and prognostic modeling and test validation of a Wireless Integrated Strain Monitoring and Simulation System (WISMOS). The effort verifies a hardware and web based software tool that is able to evaluate and optimize sensorized aerospace composite structures for the purpose of Structural Health Monitoring (SHM). The tool is an extension of an existing suite of an SHM system, based on a diagnostic-prognostic system (DPS) methodology. The goal of the extended SHM-DPS is to apply multi-scale nonlinear physics-based Progressive Failure analyses to the "as-is" structural configuration to determine residual strength, remaining service life, and future inspection intervals and maintenance procedures. The DPS solution meets the JTI Green Regional Aircraft (GRA) goals towards low weight, durable and reliable commercial aircraft. It will take advantage of the currently developed methodologies within the European Clean sky JTI project WISMOS, with the capability to transmit, store and process strain data from a network of wireless sensors (e.g. strain gages, FBGA) and utilize a DPS-based methodology, based on multi scale progressive failure analysis (MS-PFA), to determine structural health and to advice with respect to condition based inspection and maintenance. As part of the validation of the Diagnostic and prognostic system, Carbon/Epoxy ASTM coupons were fabricated and tested to extract the mechanical properties. Subsequently two composite stiffened panels were manufactured, instrumented and tested under compressive loading: 1) an undamaged stiffened buckling panel; and 2) a damaged stiffened buckling panel including an initial diamond cut. Next numerical Finite element models of the two panels were developed and analyzed under test conditions using Multi-Scale Progressive Failure Analysis (an extension of FEM) to evaluate the damage/fracture evolution process, as well as the identification of contributing failure modes. The comparisons between predictions and test results were within 10% accuracy.

  12. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  13. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  14. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  15. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  16. 14 CFR 417.309 - Flight safety system analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...

  17. Real-time sensor data validation

    NASA Technical Reports Server (NTRS)

    Bickmore, Timothy W.

    1994-01-01

    This report describes the status of an on-going effort to develop software capable of detecting sensor failures on rocket engines in real time. This software could be used in a rocket engine controller to prevent the erroneous shutdown of an engine due to sensor failures which would otherwise be interpreted as engine failures by the control software. The approach taken combines analytical redundancy with Bayesian belief networks to provide a solution which has well defined real-time characteristics and well-defined error rates. Analytical redundancy is a technique in which a sensor's value is predicted by using values from other sensors and known or empirically derived mathematical relations. A set of sensors and a set of relations among them form a network of cross-checks which can be used to periodically validate all of the sensors in the network. Bayesian belief networks provide a method of determining if each of the sensors in the network is valid, given the results of the cross-checks. This approach has been successfully demonstrated on the Technology Test Bed Engine at the NASA Marshall Space Flight Center. Current efforts are focused on extending the system to provide a validation capability for 100 sensors on the Space Shuttle Main Engine.

  18. Failure mode analysis to predict product reliability.

    NASA Technical Reports Server (NTRS)

    Zemanick, P. P.

    1972-01-01

    The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.

  19. Predicting remaining life by fusing the physics of failure modeling with diagnostics

    NASA Astrophysics Data System (ADS)

    Kacprzynski, G. J.; Sarlashkar, A.; Roemer, M. J.; Hess, A.; Hardman, B.

    2004-03-01

    Technology that enables failure prediction of critical machine components (prognostics) has the potential to significantly reduce maintenance costs and increase availability and safety. This article summarizes a research effort funded through the U.S. Defense Advanced Research Projects Agency and Naval Air System Command aimed at enhancing prognostic accuracy through more advanced physics-of-failure modeling and intelligent utilization of relevant diagnostic information. H-60 helicopter gear is used as a case study to introduce both stochastic sub-zone crack initiation and three-dimensional fracture mechanics lifing models along with adaptive model updating techniques for tuning key failure mode variables at a local material/damage site based on fused vibration features. The overall prognostic scheme is aimed at minimizing inherent modeling and operational uncertainties via sensed system measurements that evolve as damage progresses.

  20. DEALING WITH DENTAL IMPLANT FAILURES

    PubMed Central

    Levin, Liran

    2008-01-01

    An implant-supported restoration offers a predictable treatment for tooth replacement. Reported success rates for dental implants are high. Nevertheless, failures that mandate immediate implant removal do occur. The consequences of implant removal jeopardize the clinician's efforts to accomplish satisfactory function and esthetics. For the patient, this usually involves further cost and additional procedures. The aim of this paper is to describe different methods and treatment modalities to deal with dental implant failure. The main topics for discussion include identifying the failing implant, implants replacing failed implants at the exact site, and the use of other restorative options. When an implant fails, a tailor made treatment plan should be provided to each patient according to all relevant variables. Patients should be informed regarding all possible treatment modalities following implant failure and give their consent to the most appropriate treatment option for them. PMID:19089213

  1. Failure Analysis at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Salazar, Victoria L.; Wright, M. Clara

    2010-01-01

    History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.

  2. Status of the Redesign of the Extravehicular Mobility Unit Airlock Cooling Loop Recovery Assembly

    NASA Technical Reports Server (NTRS)

    Steele, John; Arnold, Dane; Peyton, Barbara; Rector, Tony; Jennings, Mallory

    2017-01-01

    During EVA (Extravehicular Activity) 23 aboard the ISS (International Space Station) on 07/16/2013 an episode of water in the EMU (Extravehicular Mobility Unit) helmet occurred, necessitating a termination of the EVA (Extravehicular Activity) shortly after it began. The root cause of the failure was determined to be ground-processing short-comings of the ALCLR Ion Beds which led to various levels of contaminants being introduced into the Ion Beds before they left the ground. The Ion Beds were thereafter used to perform on-orbit routine scrubbing operations for the EMU cooling water loop which led to the failure. The root cause investigation identified several areas for improvement of the ALCLR Assembly which have since been initiated. Enhanced washing techniques for the ALCLR Ion Bed have been developed and implemented. On-orbit cooling water conductivity and pH analysis capability to allow the astronauts to monitor proper operation of the ALCLR Ion Bed during scrubbing operation have been investigated and are being incorporated. A simplified means to acquire on-orbit EMU cooling water samples has been designed as well. Finally, an inherently cleaner organic adsorbent to replace the current lignite-based activated carbon, and a non-separable replacement for the separable mixed ion exchange resin have been selected. These efforts are being undertaken to enhance the performance and reduce the risk associated with operations to ensure the long-term health of the EMU cooling water circuit. The intent of this paper is to provide an update of the effort to re-design the ALCLR (Airlock Cooling Loop Recovery) hardware. Last year, this effort was in the early stages of concept development and test which was reported in ICES Paper ICES-2016-221. Those phases are now complete and the final outcomes, as well as plans to build and field the hardware, are being reported on.

  3. Failure Mode Identification Through Clustering Analysis

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.

  4. How disease prevention fails without good communication.

    PubMed

    Ekunwe, E O; Taylor, P; Macauley, R; Ayodele, O

    1994-01-01

    Even where resources are plentiful, efforts to achieve full immunization coverage fail if staff and users are misinformed and unmotivated. A highly practical study in Lagos pinpoints some of these failures and suggests ways of overcoming them.

  5. Parental attributions for success in managing the behavior of children with ADHD.

    PubMed

    Coles, Erika K; Pelham, William E; Gnagy, Elizabeth M

    2010-09-01

    The current study evaluated the effects of differing intensities of behavior modification and medication on parents' self-reported success in managing their child's misbehavior and the attributions parents gave for success or failure. Children were randomized to receive in counterbalanced orders different levels of behavior modification, each for 3-week cycles. In addition, medication was manipulated using a medication assessment procedure. Parents reported daily how successful they were in managing their child's misbehavior and the attributions for either their success or failure. Parents of children with ADHD generally felt successful in managing their child's behavior, regardless of treatment condition. In the high behavior modification condition, they were more likely to endorse items that attributed their success to their own effort. In conditions in which parents were given more intensive tools to manage misbehavior they were more likely to attribute their success to their own effort.

  6. Divergent consequences of success and failure in japan and north america: an investigation of self-improving motivations and malleable selves.

    PubMed

    Heine, S J; Lehman, D R; Ide, E; Leung, C; Kitayama, S; Takata, T; Matsumoto, H

    2001-10-01

    Self-enhancing and self-improving motivations were investigated across cultures. Replicating past research, North Americans who failed on a task persisted less on a follow-up task than those who succeeded. In contrast, Japanese who failed persisted more than those who succeeded. The Japanese pattern is evidence for a self-improving orientation: Failures highlight where corrective efforts are needed. Japanese who failed also enhanced the importance and the diagnosticity of the task compared with those who succeeded, whereas North Americans did the opposite. Study 2 revealed that self-improving motivations are specific to the tasks on which one receives feedback. Study 3 unpackaged the cultural differences by demonstrating that they are due, at least in part, to divergent lay theories regarding the utility of effort. Study 4 addressed the problem of comparing cultures on subjective Likert scales and replicated the findings with a different measure.

  7. NASA-DoD Lower Process Temperature Lead-Free Solder Project Overview

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2014-01-01

    This project is a follow-on effort to the Joint Council on Aging AircraftJoint Group on Pollution Prevention (JCAAJG-PP) Pb-free Solder Project and NASA-DoD Lead-Free Electronics Project which were the first projects to test the reliability of Pb-free solder joints against the requirements of the aerospace and military community. This effort would continue to build on the results from the JCAAJG-PP Lead-Free Solder Project and NASA-DoD Lead-Free Electronics Project while focusing on a particular failure mechanism currently plaguing Pb-free assemblies, pad cratering.The NASA-DoD Lead-Free Electronics Project confirmed that pad cratering is one of the dominant failure modes that occur in various board level reliability tests, especially under dynamic loading. Pad Cratering is a latent defect that may occur during assembly, rework, and post assembly handling and testing.

  8. Strategy For Yield Control And Enhancement In VLSI Wafer Manufacturing

    NASA Astrophysics Data System (ADS)

    Neilson, B.; Rickey, D.; Bane, R. P.

    1988-01-01

    In most fully utilized integrated circuit (IC) production facilities, profit is very closely linked with yield. In even the most controlled manufacturing environments, defects due to foreign material are a still major contributor to yield loss. Ideally, an IC manufacturer will have ample engineering resources to address any problem that arises. In the real world, staffing limitations require that some tasks must be left undone and potential benefits left unrealized. Therefore, it is important to prioritize problems in a manner that will give the maximum benefit to the manufacturer. When offered a smorgasbord of problems to solve, most people (engineers included) will start with what is most interesting or the most comfortable to work on. By providing a system that accurately predicts the impact of a wide variety of defect types, a rational method of prioritizing engineering effort can be made. To that effect, a program was developed to determine and rank the major yield detractors in a mixed analog/digital FET manufacturing line. The two classical methods of determining yield detractors are chip failure analysis and defect monitoring on drop in test die. Both of these methods have short comings: 1) Chip failure analysis is painstaking and very time consuming. As a result, the sample size is very small. 2) Drop in test die are usually designed for device parametric analysis rather than defect analysis. To provide enough wafer real estate to do meaningful defect analysis would render the wafer worthless for production. To avoid these problems, a defect monitor was designed that provided enough area to detect defects at the same rate or better than the NMOS product die whose yield was to be optimized. The defect monitor was comprehensive and electrically testable using such equipment as the Prometrix LM25 and other digital testers. This enabled the quick accumulation of data which could be handled statistically and mapped individually. By scaling the defect densities found on the monitors to the known sensitivities of the product wafer, the defect types were ranked by defect limiting yield. (Limiting yield is the resultant product yield if there were no other failure mechanisms other than the type being considered.) These results were then compared to the product failure analysis results to verify that the monitor was finding the same types of defects in the same proportion which were troubling our product. Finally, the major defect types were isolated and reduced using the short loop capability of the monitor.

  9. Graphical Displays Assist In Analysis Of Failures

    NASA Technical Reports Server (NTRS)

    Pack, Ginger; Wadsworth, David; Razavipour, Reza

    1995-01-01

    Failure Environment Analysis Tool (FEAT) computer program enables people to see and better understand effects of failures in system. Uses digraph models to determine what will happen to system if set of failure events occurs and to identify possible causes of selected set of failures. Digraphs or engineering schematics used. Also used in operations to help identify causes of failures after they occur. Written in C language.

  10. A Framework for Creating a Function-based Design Tool for Failure Mode Identification

    NASA Technical Reports Server (NTRS)

    Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Knowledge of potential failure modes during design is critical for prevention of failures. Currently industries use procedures such as Failure Modes and Effects Analysis (FMEA), Fault Tree analysis, or Failure Modes, Effects and Criticality analysis (FMECA), as well as knowledge and experience, to determine potential failure modes. When new products are being developed there is often a lack of sufficient knowledge of potential failure mode and/or a lack of sufficient experience to identify all failure modes. This gives rise to a situation in which engineers are unable to extract maximum benefits from the above procedures. This work describes a function-based failure identification methodology, which would act as a storehouse of information and experience, providing useful information about the potential failure modes for the design under consideration, as well as enhancing the usefulness of procedures like FMEA. As an example, the method is applied to fifteen products and the benefits are illustrated.

  11. Deterministic Reconfigurable Control Design for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Wagner, Elaine A.; Burken, John J.; Hanson, Curtis E.; Wohletz, Jerry M.

    1998-01-01

    In the event of a control surface failure, the purpose of a reconfigurable control system is to redistribute the control effort among the remaining working surfaces such that satisfactory stability and performance are retained. Four reconfigurable control design methods were investigated for the X-33 vehicle: Redistributed Pseudo-Inverse, General Constrained Optimization, Automated Failure Dependent Gain Schedule, and an Off-line Nonlinear General Constrained Optimization. The Off-line Nonlinear General Constrained Optimization approach was chosen for implementation on the X-33. Two example failures are shown, a right outboard elevon jam at 25 deg. at a Mach 3 entry condition, and a left rudder jam at 30 degrees. Note however, that reconfigurable control laws have been designed for the entire flight envelope. Comparisons between responses with the nominal controller and reconfigurable controllers show the benefits of reconfiguration. Single jam aerosurface failures were considered, and failure detection and identification is considered accomplished in the actuator controller. The X-33 flight control system will incorporate reconfigurable flight control in the baseline system.

  12. Factors Related to Self-Care in Heart Failure Patients According to the Middle-Range Theory of Self-Care of Chronic Illness: a Literature Update.

    PubMed

    Jaarsma, Tiny; Cameron, Jan; Riegel, Barbara; Stromberg, Anna

    2017-04-01

    As described in the theory of self-care in chronic illness, there is a wide range of factors that can influence self-care behavior. The purpose of this paper is to summarize the recent heart failure literature on these related factors in order to provide an overview on which factors might be suitable to be considered to make self-care interventions more successful. Recent studies in heart failure patients confirm that factors described in the theory of self-care of chronic illness are relevant for heart failure patients. Experiences and skills, motivation, habits, cultural beliefs and values, functional and cognitive abilities, confidence, and support and access to care are all important to consider when developing or improving interventions for patients with heart failure and their families. Additional personal and contextual factors that might influence self-care need to be explored and included in future studies and theory development efforts.

  13. Failure Mode and Effects Analysis (FMEA) Introductory Overview

    DTIC Science & Technology

    2012-06-14

    Failure Mode and Effects Analysis ( FMEA ) Introductory Overview TARDEC Systems Engineering Risk Management Team POC: Kadry Rizk or Gregor Ratajczak...2. REPORT TYPE Briefing Charts 3. DATES COVERED 01-05-2012 to 23-05-2012 4. TITLE AND SUBTITLE Failure Mode and Effects Analysis ( FMEA ) 5a...18 WELCOME Welcome to “An introductory overview of Failure Mode and Effects Analysis ( FMEA )”, A brief concerning the use and benefits of FMEA

  14. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 2: Software documentation

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  15. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples, volume 1

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  16. Understanding HMIS Implementation in a Developing Country Ministry of Health Context - an Institutional Logics Perspective

    PubMed Central

    Asangansi, Ime

    2012-01-01

    Globally, health management information systems (HMIS) have been hailed as important tools for health reform (1). However, their implementation has become a major challenge for researchers and practitioners because of the significant proportion of failure of implementation efforts (2; 3). Researchers have attributed this significant failure of HMIS implementation, in part, to the complexity of meeting with and satisfying multiple (poorly understood) logics in the implementation process. This paper focuses on exploring the multiple logics, including how they may conflict and affect the HMIS implementation process. Particularly, I draw on an institutional logics perspective to analyze empirical findings from an action research project, which involved HMIS implementation in a state government Ministry of Health in (Northern) Nigeria. The analysis highlights the important HMIS institutional logics, where they conflict and how they are resolved. I argue for an expanded understanding of HMIS implementation that recognizes various institutional logics that participants bring to the implementation process, and how these are inscribed in the decision making process in ways that may be conflicting, and increasing the risk of failure. Furthermore, I propose that the resolution of conflicting logics can be conceptualized as involving deinstitutionalization, changeover resolution or dialectical resolution mechanisms. I conclude by suggesting that HMIS implementation can be improved by implementation strategies that are made based on an understanding of these conflicting logics. PMID:23569646

  17. Modeling Composite Laminate Crushing for Crash Analysis

    NASA Technical Reports Server (NTRS)

    Fleming, David C.; Jones, Lisa (Technical Monitor)

    2002-01-01

    Crash modeling of composite structures remains limited in application and has not been effectively demonstrated as a predictive tool. While the global response of composite structures may be well modeled, when composite structures act as energy-absorbing members through direct laminate crushing the modeling accuracy is greatly reduced. The most efficient composite energy absorbing structures, in terms of energy absorbed per unit mass, are those that absorb energy through a complex progressive crushing response in which fiber and matrix fractures on a small scale dominate the behavior. Such failure modes simultaneously include delamination of plies, failure of the matrix to produce fiber bundles, and subsequent failure of fiber bundles either in bending or in shear. In addition, the response may include the significant action of friction, both internally (between delaminated plies or fiber bundles) or externally (between the laminate and the crushing surface). A figure shows the crushing damage observed in a fiberglass composite tube specimen, illustrating the complexity of the response. To achieve a finite element model of such complex behavior is an extremely challenging problem. A practical crushing model based on detailed modeling of the physical mechanisms of crushing behavior is not expected in the foreseeable future. The present research describes attempts to model composite crushing behavior using a novel hybrid modeling procedure. Experimental testing is done is support of the modeling efforts, and a test specimen is developed to provide data for validating laminate crushing models.

  18. Understanding HMIS Implementation in a Developing Country Ministry of Health Context - an Institutional Logics Perspective.

    PubMed

    Asangansi, Ime

    2012-01-01

    Globally, health management information systems (HMIS) have been hailed as important tools for health reform (1). However, their implementation has become a major challenge for researchers and practitioners because of the significant proportion of failure of implementation efforts (2; 3). Researchers have attributed this significant failure of HMIS implementation, in part, to the complexity of meeting with and satisfying multiple (poorly understood) logics in the implementation process. This paper focuses on exploring the multiple logics, including how they may conflict and affect the HMIS implementation process. Particularly, I draw on an institutional logics perspective to analyze empirical findings from an action research project, which involved HMIS implementation in a state government Ministry of Health in (Northern) Nigeria. The analysis highlights the important HMIS institutional logics, where they conflict and how they are resolved. I argue for an expanded understanding of HMIS implementation that recognizes various institutional logics that participants bring to the implementation process, and how these are inscribed in the decision making process in ways that may be conflicting, and increasing the risk of failure. Furthermore, I propose that the resolution of conflicting logics can be conceptualized as involving deinstitutionalization, changeover resolution or dialectical resolution mechanisms. I conclude by suggesting that HMIS implementation can be improved by implementation strategies that are made based on an understanding of these conflicting logics.

  19. Usefulness of Iron Deficiency Correction in Management of Patients With Heart Failure [from the Registry Analysis of Iron Deficiency-Heart Failure (RAID-HF) Registry].

    PubMed

    Wienbergen, Harm; Pfister, Otmar; Hochadel, Matthias; Michel, Stephan; Bruder, Oliver; Remppis, Björn Andrew; Maeder, Micha Tobias; Strasser, Ruth; von Scheidt, Wolfgang; Pauschinger, Matthias; Senges, Jochen; Hambrecht, Rainer

    2016-12-15

    Iron deficiency (ID) has been identified as an important co-morbidity in patients with heart failure (HF). Intravenous iron therapy reduced symptoms and rehospitalizations of iron-deficient patients with HF in randomized trials. The present multicenter study investigated the "real-world" management of iron status in patients with HF. Consecutive patients with HF and ejection fraction ≤40% were recruited and analyzed from December 2010 to October 2015 by 11 centers in Germany and Switzerland. Of 1,484 patients with HF, iron status was determined in only 923 patients (62.2%), despite participation of the centers in a registry focusing on ID and despite guideline recommendation to determine iron status. In patients with determined iron status, a prevalence of 54.7% (505 patients) for ID was observed. Iron therapy was performed in only 8.5% of the iron-deficient patients with HF; 2.6% were treated with intravenous iron therapy. The patients with iron therapy were characterized by a high rate of symptomatic HF and anemia. In conclusion, despite strong evidence of beneficial effects of iron therapy on symptoms and rehospitalizations, diagnostic and therapeutic efforts on ID in HF are low in the actual clinical practice, and the awareness to diagnose and treat ID in HF should be strongly enforced. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Re-examining the effects of noncontingent success on self-handicapping behaviour.

    PubMed

    Thompson, Ted

    2004-06-01

    Self-handicapping refers to the practice on the part of certain individuals to handicap their performance when poor performance is likely to reveal low ability. Noncontingent success (feedback that is inflated relative to performance) is more likely to promote self-handicapping behaviour than noncontingent failure (failure feedback based on false or misleading information). However, the reasons for the differing effects of these forms of performance feedback on self-handicapping behaviour remain obscure. The present study sought an explanation for the differing effects of these forms of performance feedback, testing the assumption that students high in self-handicapping behaviour would react more negatively following noncontingent success, reporting more unstable and external attributions, higher anxiety, and a greater propensity to claim handicaps than those low in self-handicapping behaviour. No differences were expected on any of these measures for high relative to low self-handicappers following either noncontingent failure or success. Participants were 72 undergraduate students, divided equally between high and low self-handicapping groups. High and low self-handicappers were assigned to one of three performance feedback conditions: noncontingent failure, success and noncontingent success. High and low self-handicappers were then given an opportunity to claim handicaps prior to completing measures of attributions and state anxiety. Subsequently, they completed 12 remote associate tasks, serving as an assessment of performance, and 16 unicursal tasks, assessing practice effort. Following noncontingent success, high self-handicappers reported greater anxiety, more unproductive attributions and claimed more handicaps than low self-handicappers. However no differences were evident for high and low self-handicappers following either noncontingent failure or success. High self-handicappers also performed poorly on the remote associates tasks and reduced practice effort on the unicursal tasks. These findings confirm the adverse effects of noncontingent success for high self-handicappers, while failing to provide evidence that noncontingent failure has any more adverse effects on high relative to low self-handicappers.

  1. Demographic processes limiting seedling recruitment in arid grassland restoration

    Treesearch

    Jeremy J. James; Tony J. Svejcar; Matthew J. Rinella

    2011-01-01

    Seeding is an important management tool in aridland restoration, but seeded species often fail to establish. Previous research has largely focused on the technical aspects of seeding with little effort directed at identifying demographic processes driving recruitment failures.

  2. Investigation of subsidence along segment of Missouri Route 65, Springfield, Missouri.

    DOT National Transportation Integrated Search

    2010-02-01

    Electrical Resistivity Tomography (ERT) data were acquired on the ground surface across an underground limestone mine access tunnel in an effort to characterize the roof rock. This investigation was conducted because simultaneous localized failure oc...

  3. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    NASA Astrophysics Data System (ADS)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural system under failure correlations.

  4. Toward a Rational and Mechanistic Account of Mental Effort.

    PubMed

    Shenhav, Amitai; Musslick, Sebastian; Lieder, Falk; Kool, Wouter; Griffiths, Thomas L; Cohen, Jonathan D; Botvinick, Matthew M

    2017-07-25

    In spite of its familiar phenomenology, the mechanistic basis for mental effort remains poorly understood. Although most researchers agree that mental effort is aversive and stems from limitations in our capacity to exercise cognitive control, it is unclear what gives rise to those limitations and why they result in an experience of control as costly. The presence of these control costs also raises further questions regarding how best to allocate mental effort to minimize those costs and maximize the attendant benefits. This review explores recent advances in computational modeling and empirical research aimed at addressing these questions at the level of psychological process and neural mechanism, examining both the limitations to mental effort exertion and how we manage those limited cognitive resources. We conclude by identifying remaining challenges for theoretical accounts of mental effort as well as possible applications of the available findings to understanding the causes of and potential solutions for apparent failures to exert the mental effort required of us.

  5. Three-Dimensional Analysis of Voids in AM60B Magnesium Tensile Bars Using Computed Tomography Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A M

    2001-05-01

    In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less

  6. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the ablation of the NASA sample, could be applied to an atmospheric reentry body, reentering at a ballistic trajectory at hypersonic velocities.

  7. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  8. The diagnostic and prognostic importance of oxidative stress biomarkers and acute phase proteins in Urinary Tract Infection (UTI) in camels.

    PubMed

    El-Deeb, Wael M; Buczinski, Sébastien

    2015-01-01

    The present study aimed to investigate the diagnostic and prognostic importance of oxidative stress biomarkers and acute phase proteins in urinary tract infection (UTI) in camels. We describe the clinical, bacteriological and biochemical findings in 89 camels. Blood and urine samples from diseased (n = 74) and control camels (n = 15) were submitted to laboratory investigations. The urine analysis revealed high number of RBCS and pus cells. The concentrations of serum and erythrocytic malondialdehyde (sMDA & eMDA), Haptoglobin (Hp), serum amyloid A (SAA), Ceruloplasmin (Cp), fibrinogen (Fb), albumin, globulin and interleukin 6 (IL-6) were higher in diseased camels when compared to healthy ones. Catalase, super oxide dismutase and glutathione levels were lower in diseased camels when compared with control group. Forty one of 74 camels with UTI were successfully treated. The levels of malondialdehyde, catalase, super oxide dismutase, glutathione, Hp, SAA, Fb, total protein, globulin and IL-6 were associated with the odds of treatment failure. The MDA showed a great sensitivity (Se) and specificity (Sp) in predicting treatment failure (Se 85%/Sp 100%) as well as the SAA (Se 92%/Sp 87%) and globulin levels (Se 85%/Sp 100%) when using the cutoffs that maximizes the sum of Se + Sp. Multivariate logistic regression analysis revealed that two models had a high accuracy to predict failure with the first model including sex, sMDA and Hp as covariates (area under the receiver operating characteristic curve (AUC) = 0.92) and a second model using sex, SAA and Hp (AUC = 0.89). Conclusively, the oxidative stress biomarkers and acute phase proteins could be used as diagnostic and prognostic biomarkers in camel UTI management. Efforts should be forced to investigate such biomarkers in other species with UTI.

  9. Progressive Failure Analysis of Composite Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Collier, Craig S.; Arnold, Steven M.

    2006-01-01

    A new progressive failure analysis capability for stiffened composite panels has been developed based on the combination of the HyperSizer stiffened panel design/analysis/optimization software with the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). MAC/GMC discretizes a composite material s microstructure into a number of subvolumes and solves for the stress and strain state in each while providing the homogenized composite properties as well. As a result, local failure criteria may be employed to predict local subvolume failure and the effects of these local failures on the overall composite response. When combined with HyperSizer, MAC/GMC is employed to represent the ply level composite material response within the laminates that constitute a stiffened panel. The effects of local subvolume failures can then be tracked as loading on the stiffened panel progresses. Sample progressive failure results are presented at both the composite laminate and the composite stiffened panel levels. Deformation and failure model predictions are compared with experimental data from the World Wide Failure Exercise for AS4/3501-6 graphite/epoxy laminates.

  10. WE-B-BRC-01: Current Methodologies in Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rath, F.

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. Wemore » therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology-specific risk assessment strategies and issues Evaluation of risk in the context of medical imaging and image quality E. Samei: Research grants from Siemens and GE.« less

  11. WE-B-BRC-03: Risk in the Context of Medical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, E.

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. Wemore » therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology-specific risk assessment strategies and issues Evaluation of risk in the context of medical imaging and image quality E. Samei: Research grants from Siemens and GE.« less

  12. WE-B-BRC-00: Concepts in Risk-Based Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Prospective quality management techniques, long used by engineering and industry, have become a growing aspect of efforts to improve quality management and safety in healthcare. These techniques are of particular interest to medical physics as scope and complexity of clinical practice continue to grow, thus making the prescriptive methods we have used harder to apply and potentially less effective for our interconnected and highly complex healthcare enterprise, especially in imaging and radiation oncology. An essential part of most prospective methods is the need to assess the various risks associated with problems, failures, errors, and design flaws in our systems. Wemore » therefore begin with an overview of risk assessment methodologies used in healthcare and industry and discuss their strengths and weaknesses. The rationale for use of process mapping, failure modes and effects analysis (FMEA) and fault tree analysis (FTA) by TG-100 will be described, as well as suggestions for the way forward. This is followed by discussion of radiation oncology specific risk assessment strategies and issues, including the TG-100 effort to evaluate IMRT and other ways to think about risk in the context of radiotherapy. Incident learning systems, local as well as the ASTRO/AAPM ROILS system, can also be useful in the risk assessment process. Finally, risk in the context of medical imaging will be discussed. Radiation (and other) safety considerations, as well as lack of quality and certainty all contribute to the potential risks associated with suboptimal imaging. The goal of this session is to summarize a wide variety of risk analysis methods and issues to give the medical physicist access to tools which can better define risks (and their importance) which we work to mitigate with both prescriptive and prospective risk-based quality management methods. Learning Objectives: Description of risk assessment methodologies used in healthcare and industry Discussion of radiation oncology-specific risk assessment strategies and issues Evaluation of risk in the context of medical imaging and image quality E. Samei: Research grants from Siemens and GE.« less

  13. Risk Based Reliability Centered Maintenance of DOD Fire Protection Systems

    DTIC Science & Technology

    1999-01-01

    2.2.3 Failure Mode and Effect Analysis ( FMEA )............................ 2.2.4 Failure Mode Risk Characterization...Step 2 - System functions and functional failures definition Step 3 - Failure mode and effect analysis ( FMEA ) Step 4 - Failure mode risk...system). The Interface Location column identifies the location where the FMEA of the fire protection system began or stopped. For example, for the fire

  14. Chlamydia vaccine candidates and tools for chlamydial antigen discovery.

    PubMed

    Rockey, Daniel D; Wang, Jie; Lei, Lei; Zhong, Guangming

    2009-10-01

    The failure of the inactivated Chlamydia-based vaccine trials in the 1960s has led researchers studying Chlamydia to take cautious and rational approaches to develop safe and effective chlamydial vaccines. Subsequent research efforts focused on three areas. The first is the analysis of the immunobiology of chlamydial infection in animal models, with supporting clinical studies, to identify the immune correlates of both protective immunity and pathological responses. Second, recent radical improvements in genomics, proteomics and associated technologies have assisted in the implementation of creative approaches to search for suitable vaccine candidates. Third, progress in the analysis of host response and adjuvanticity regulating both innate and adaptive immunity at the mucosal site of infection has led to progress in the design of optimal delivery and adjuvant systems for enhancing protective immunity. Considerable progress has been made in the first two areas but research efforts to better define the factors that regulate immunity at mucosal sites of infection and to develop strategies to boost protective immunity via immunomodulation, effective delivery systems and potent adjuvants, have remained elusive. In this article, we will summarize progress in these areas with a focus on chlamydial vaccine antigen discovery, and discuss future directions towards the development of a safe and effective chlamydial vaccine.

  15. Beyond the cold hit: measuring the impact of the national DNA data bank on public safety at the city and county level.

    PubMed

    Gabriel, Matthew; Boland, Cherisse; Holt, Cydne

    2010-01-01

    Over the past decade, the Combined DNA Index System (CODIS) has increased solvability of violent crimes by linking evidence DNA profiles to known offenders. At present, an in-depth analysis of the United States National DNA Data Bank effort has not assessed the success of this national public safety endeavor. Critics of this effort often focus on laboratory and police investigators unable to provide timely investigative support as a root cause(s) of CODIS' failure to increase public safety. By studying a group of nearly 200 DNA cold hits obtained in SFPD criminal investigations from 2001-2006, three key performance metrics (Significance of Cold Hits, Case Progression & Judicial Resolution, and Potential Reduction of Future Criminal Activity) provide a proper context in which to define the impact of CODIS at the City and County level. Further, the analysis of a recidivist group of cold hit offenders and their past interaction with law enforcement established five noteworthy criminal case resolution trends; these trends signify challenges to CODIS in achieving meaningful case resolutions. CODIS' effectiveness and critical activities to support case resolutions are the responsibility of all criminal justice partners in order to achieve long-lasting public safety within the United States.

  16. Importance of joint efforts for balanced process of designing and education

    NASA Astrophysics Data System (ADS)

    Mayorova, V. I.; Bannova, O. K.; Kristiansen, T.-H.; Igritsky, V. A.

    2015-06-01

    This paper discusses importance of a strategic planning and design process when developing long-term space exploration missions both robotic and manned. The discussion begins with reviewing current and/or traditional international perspectives on space development at the American, Russian and European space agencies. Some analogies and comparisons will be drawn upon analysis of several international student collaborative programs: Summer International workshops at the Bauman Moscow State Technical University, International European Summer Space School "Future Space Technologies and Experiments in Space", Summer school at Stuttgart University in Germany. The paper will focus on discussion about optimization of design and planning processes for successful space exploration missions and will highlight importance of the following: understanding connectivity between different levels of human being and machinery; simultaneous mission planning approach; reflections and correlations between disciplines involved in planning and executing space exploration missions; knowledge gained from different disciplines and through cross-applying and re-applying design approaches between variable space related fields of study and research. The conclusions will summarize benefits and complications of applying balanced design approach at all levels of the design process. Analysis of successes and failures of organizational efforts in space endeavors is used as a methodological approach to identify key questions to be researched as they often cause many planning and design processing problems.

  17. Numerical simulation of actuation behavior of active fiber composites in helicopter rotor blade application

    NASA Astrophysics Data System (ADS)

    Paik, Seung Hoon; Kim, Ji Yeon; Shin, Sang Joon; Kim, Seung Jo

    2004-07-01

    Smart structures incorporating active materials have been designed and analyzed to improve aerospace vehicle performance and its vibration/noise characteristics. Helicopter integral blade actuation is one example of those efforts using embedded anisotropic piezoelectric actuators. To design and analyze such integrally-actuated blades, beam approach based on homogenization methodology has been traditionally used. Using this approach, the global behavior of the structures is predicted in an averaged sense. However, this approach has intrinsic limitations in describing the local behaviors in the level of the constituents. For example, the failure analysis of the individual active fibers requires the knowledge of the local behaviors. Microscopic approach for the analysis of integrally-actuated structures is established in this paper. Piezoelectric fibers and matrices are modeled individually and finite element method using three-dimensional solid elements is adopted. Due to huge size of the resulting finite element meshes, high performance computing technology is required in its solution process. The present methodology is quoted as Direct Numerical Simulation (DNS) of the smart structure. As an initial validation effort, present analytical results are correlated with the experiments from a small-scaled integrally-actuated blade, Active Twist Rotor (ATR). Through DNS, local stress distribution around the interface of fiber and matrix can be analyzed.

  18. Complex Failure Forewarning System - DHS Conference Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain, aging bridges, is used to explain the Complex Structure Failure Forewarning System. We discuss the workings ofmore » such a system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less

  19. Forewarning of Failure in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain is failure in critical equipment. A second is aging bridges. We discuss the workings of such amore » system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less

  20. Flight Validation of a Metrics Driven L(sub 1) Adaptive Control

    NASA Technical Reports Server (NTRS)

    Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.

    2008-01-01

    The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.

  1. On-Board Particulate Filter Failure Prevention and Failure Diagnostics Using Radio Frequency Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alex; Ragaller, Paul; Herman, Andrew

    The increasing use of diesel and gasoline particulate filters requires advanced on-board diagnostics (OBD) to prevent and detect filter failures and malfunctions. Early detection of upstream (engine-out) malfunctions is paramount to preventing irreversible damage to downstream aftertreatment system components. Such early detection can mitigate the failure of the particulate filter resulting in the escape of emissions exceeding permissible limits and extend the component life. However, despite best efforts at early detection and filter failure prevention, the OBD system must also be able to detect filter failures when they occur. In this study, radio frequency (RF) sensors were used to directlymore » monitor the particulate filter state of health for both gasoline particulate filter (GPF) and diesel particulate filter (DPF) applications. The testing included controlled engine dynamometer evaluations, which characterized soot slip from various filter failure modes, as well as on-road fleet vehicle tests. The results show a high sensitivity to detect conditions resulting in soot leakage from the particulate filter, as well as potential for direct detection of structural failures including internal cracks and melted regions within the filter media itself. Furthermore, the measurements demonstrate, for the first time, the capability to employ a direct and continuous monitor of particulate filter diagnostics to both prevent and detect potential failure conditions in the field.« less

  2. What Can We Apply to Manage Acute Exacerbation of Chronic Obstructive Pulmonary Disease with Acute Respiratory Failure?

    PubMed

    Kim, Deog Kyeom; Lee, Jungsil; Park, Ju Hee; Yoo, Kwang Ha

    2018-04-01

    Acute exacerbation(s) of chronic obstructive pulmonary disease (AECOPD) tend to be critical and debilitating events leading to poorer outcomes in relation to chronic obstructive pulmonary disease (COPD) treatment modalities, and contribute to a higher and earlier mortality rate in COPD patients. Besides pro-active preventative measures intended to obviate acquisition of AECOPD, early recovery from severe AECOPD is an important issue in determining the long-term prognosis of patients diagnosed with COPD. Updated GOLD guidelines and recently published American Thoracic Society/European Respiratory Society clinical recommendations emphasize the importance of use of pharmacologic treatment including bronchodilators, systemic steroids and/or antibiotics. As a non-pharmacologic strategy to combat the effects of AECOPD, noninvasive ventilation (NIV) is recommended as the treatment of choice as this therapy is thought to be most effective in reducing intubation risk in patients diagnosed with AECOPD with acute respiratory failure. Recently, a few adjunctive modalities, including NIV with helmet and helium-oxygen mixture, have been tried in cases of AECOPD with respiratory failure. As yet, insufficient documentation exists to permit recommendation of this therapy without qualification. Although there are too few findings, as yet, to allow for regular andr routine application of those modalities in AECOPD, there is anecdotal evidence to indicate both mechanical and physiological benefits connected with this therapy. High-flow nasal cannula oxygen therapy is another supportive strategy which serves to improve the symptoms of hypoxic respiratory failure. The therapy also produced improvement in ventilatory variables, and it may be successfully applied in cases of hypercapnic respiratory failure. Extracorporeal carbon dioxide removal has been successfully attempted in cases of adult respiratory distress syndrome, with protective hypercapnic ventilatory strategy. Nowadays, it is reported that it was also effective in reducing intubation in AECOPD with hypercapnic respiratory failure. Despite the apparent need for more supporting evidence, efforts to improve efficacy of NIV have continued unabated. It is anticipated that these efforts will, over time, serve toprogressively decrease the risk of intubation and invasive mechanical ventilation in cases of AECOPD with acute respiratory failure. Copyright©2018. The Korean Academy of Tuberculosis and Respiratory Diseases.

  3. Space Shuttle Stiffener Ring Foam Failure Analysis, a Non-Conventional Approach

    NASA Technical Reports Server (NTRS)

    Howard, Philip M.

    2015-01-01

    The Space Shuttle Program made use of the excellent properties of rigid polyurethane foam for cryogenic tank insulation and as structural protection on the solid rocket boosters. When foam applications de-bond, classical methods of failure analysis did not provide root cause of the failure of the foam. Realizing that foam is the ideal media to document and preserve its own mode of failure, thin sectioning was seen as a logical approach for foam failure analysis to observe the three dimensional morphology of the foam cells. The cell foam morphology provided a much greater understanding of the failure modes than previously achieved.

  4. Microcircuit failure analysis using the SEM. [Scanning Electron Microscopes

    NASA Technical Reports Server (NTRS)

    Nicolas, D. P.

    1974-01-01

    The scanning electron microscope adds a new dimension to the knowledge that can be obtained from a failed microcircuit. When used with conventional techniques, SEM assists and clarifies the analysis, but it does not replace light microscopy. The most advantageous features for microcircuit analysis are long working distances and great depth of field. Manufacturer related failure modes of microcircuits are metallization defects, poor bonding, surface and particle contamination, and design and fabrication faults. User related failure modes are caused by abuse, such as overstress. The Physics of Failure Procedure followed by the Astrionics Laboratory in failure analysis is described, which is designed to obtain maximum information available from each step.

  5. A health economic model of breakthrough pain.

    PubMed

    Abernethy, Amy P; Wheeler, Jane L; Fortner, Barry V

    2008-05-01

    Although the literature adequately addresses the biologic basis, epidemiology, and management of breakthrough pain (BTP), it does not yet describe the full impact of this troubling, widespread phenomenon. The risks of a scanty understanding of BTP impact are failure to take preventive measures, underdiagnosis, undertreatment, and inappropriate management. Studies to date of the impact of BTP have followed pharmacoeconomic approaches. Building on prior efforts, this paper develops a more comprehensive health economic model that encompasses the full spectrum of costs, outcomes, risks and benefits associated with BTP and its management. The authors provide a rubric within which stakeholders--including providers, institutional leaders, administrators, and policymakers--can systematically balance the myriad potential effects of different treatment scenarios to guide decision-making. The paper then extends this model to the population level, providing a template for health economic analysis of alternate strategies for managing BTP, and delineating steps for accomplishing the analysis.

  6. Helios1A EoL: A Success. For the first Time a Long Final Thrust Scenario, Respecting the French Law on Space Operations

    NASA Astrophysics Data System (ADS)

    Guerry, Agnes; Moussi, Aurelie; Sartine, Christian; Beaumet, Gregory

    2013-09-01

    HELIOS1A End Of Live (EOL) operations occurred in the early 2012. Through this EOL operation, CNES wanted to make an example of French Space Act compliance. Because the satellite wasn't natively designed for such an EOL phase, the operation was touchy and risky. It was organized as a real full project in order to assess every scenario details with dedicated Mission Analysis, to secure the operations through detailed risk analysis at system level and to consider the major failures that could occur during the EOL. A short scenario allowing to reach several objectives with benefits was eventually selected. The main objective of this project was to preserve space environment. The operations were led on a "best effort" basis. The French Space Operations Act (FSOA) requirements were met: HELIOS-1A EOL operations had been led successfully.

  7. Psychology, Science, and Knowledge Construction: Broadening Perspectives from the Replication Crisis.

    PubMed

    Shrout, Patrick E; Rodgers, Joseph L

    2018-01-04

    Psychology advances knowledge by testing statistical hypotheses using empirical observations and data. The expectation is that most statistically significant findings can be replicated in new data and in new laboratories, but in practice many findings have replicated less often than expected, leading to claims of a replication crisis. We review recent methodological literature on questionable research practices, meta-analysis, and power analysis to explain the apparently high rates of failure to replicate. Psychologists can improve research practices to advance knowledge in ways that improve replicability. We recommend that researchers adopt open science conventions of preregi-stration and full disclosure and that replication efforts be based on multiple studies rather than on a single replication attempt. We call for more sophisticated power analyses, careful consideration of the various influences on effect sizes, and more complete disclosure of nonsignificant as well as statistically significant findings.

  8. Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method

    PubMed Central

    Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan

    2018-01-01

    Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824

  9. POLICY CONUNDRUM: RESTORING WILD SALMON TO THE PACIFIC NORTHWEST

    EPA Science Inventory

    Restoring wild salmon runs to the Pacific Northwest is technically challenging, politically nasty, and socially divisive. Past restoration efforts have been largely unsuccessful. Society's failure to reverse the continuing decline of wild salmon has the characteristics of a pol...

  10. Risky Business.

    ERIC Educational Resources Information Center

    Izumi, Ronald

    1992-01-01

    Widespread efforts by colleges and universities to reduce expenses and raise revenues can increase the institution's exposure to risk. Common risks arise from neglect of physical plant, government regulation, financial burdens, campus security and crime, sexual harassment, third-party contracts, staff reduction, failure to educate, and…

  11. Dyslexia: Neuroanatomical/Neurolinguistic Perspectives.

    ERIC Educational Resources Information Center

    Hynd, George W.; Hynd, Cynthia R.

    1984-01-01

    Reviews attempts to adequately define dyslexia with a focus on recent efforts at developing a nosology of dyslexia and discusses the neurological basis of reading and severe reading failure with an emphasis on validating evidence provided through brain-mapping procedures and postmortem studies. (HOD)

  12. Small Portable Analyzer Diagnostic Equipment (SPADE) Program -- Diagnostic Software Validation

    DTIC Science & Technology

    1984-07-01

    Electronic Equipment Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference Electromagnetic...ONLY. ORIENTATION OF DEFECT LOOKING HHO QIlILL: t -ed’-o· Significant efforts were expended to simulate spalling failures associated with naturally

  13. Seismic Signals of the 2014 Landslide near Oso, Washington

    NASA Astrophysics Data System (ADS)

    Allstadt, K.; Moran, S. C.; Malone, S. D.; Iverson, R. M.; George, D. L.

    2014-12-01

    The 22 March 2014 landslide near Oso, Washington rapidly moved a large volume of material (~8 million m^3), resulting in the efficient generation of seismic waves that were recorded over 350 km away. Analysis of these seismic signals significantly improves our understanding of the dynamics and timing of events. In contrast to the double couple mechanism of earthquakes, at long periods, the equivalent mechanism of a landslide is a single force. Inversion of the long-period waves for the forces exerted on the earth by the landslide yields a time-series that peaks at nearly 10^10 N and lasts ~1.5 minutes. This result, when combined with higher-frequency wave analysis, eyewitness reports, and field observations, implies a complex failure sequence. The earliest force pulses begin before the buildup in high-frequency energy, suggesting the slide began coherently before transitioning within a minute into the highly disrupted and destructive debris-avalanche flow that killed 43 people. This transition may have been due to a collapse of additional material that loaded the material downslope. Seismically observable "aftershock" landslides continued for weeks. The first and largest occurred a few minutes after the main failure sequence, and was followed by 15 more over the next ~4 hours that were observable at the closest seismic station (11 km away). Three USGS "spiders" equipped with GPS and seismic sensors were deployed by helicopter 10 days later as part of a monitoring effort. Due to their proximity, these seismometers detected signals from even minor collapses, some visually identified by human observers. This augmented network revealed interesting temporal patterns in the post-slide activity, which was dominated by sloughing of material from the headscarp, but also creep of the upper block of the failure mass at a rate of about 1 cm/day. This study shows the value of seismic analysis in landslide investigations to provide timing constraints and help improve our understanding of landslide dynamics.

  14. An improved approach for flight readiness certification: Methodology for failure risk assessment and application examples. Volume 3: Structure and listing of programs

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.

    1992-01-01

    An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.

  15. Satellite failures revisited

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-12-01

    In January 1994, the two geostationary satellites known as Anik-E1 and Anik-E2, operated by Telesat Canada, failed one after the other within 9 hours, leaving many northern Canadian communities without television and data services. The outage, which shut down much of the country's broadcast television for hours and cost Telesat Canada more than $15 million, generated significant media attention. Lam et al. used publicly available records to revisit the event; they looked at failure details, media coverage, recovery effort, and cost. They also used satellite and ground data to determine the precise causes of those satellite failures. The researchers traced the entire space weather event from conditions on the Sun through the interplanetary medium to the particle environment in geostationary orbit.

  16. Fatigue resistance criteria for fiber-reinforced composite structures. Final report, 1 Apr 1971-30 Sep 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvorak, G.J.

    1974-10-01

    The research effort was concentrated on metal matrix composites, such as the Al--B, Al--Be, Cu--W, and similar systems. It was found that in as- fabricated composites with soft matrices fatigue failure can be prevented if the composite shakes down during cyclic loading. The fatigue strength of heat- treated composites is affected by residual microstresses, but failure can be prevented if the total microstresses are kept within the respective fatigue limits (at 10 to the 7th power cycles) of the constituents. These criteria for prevention of fatigue failure in metal matrix composite systems were verified by extensive comparisons of theoretical predictionsmore » with available experimental results. (GRA)« less

  17. Relative risk analysis in regulating the use of radiation-emitting medical devices. A preliminary application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E.D.; Banks, W.W.; Altenbach, T.J.

    1995-09-01

    This report describes a preliminary application of an analysis approach for assessing relative risks in the use of radiation- emitting medical devices. Results are presented on human-initiated actions and failure modes that are most likely to occur in the use of the Gamma Knife, a gamma irradiation therapy device. This effort represents an initial step in a US Nuclear Regulatory Commission (NRC) plan to evaluate the potential role of risk analysis in regulating the use of nuclear medical devices. For this preliminary application of risk assessment, the focus was to develop a basic process using existing techniques for identifying themore » most likely risk contributors and their relative importance. The approach taken developed relative risk rankings and profiles that incorporated the type and quality of data available and could present results in an easily understood form. This work was performed by the Lawrence Livermore National Laboratory for the NRC.« less

  18. Impact analysis of side door of a car and bullet proof vest with material ‘SAM2X5-630’ using finite element analysis

    NASA Astrophysics Data System (ADS)

    Dhode, Trushant; Patil, Girish; Rajkumar, E.

    2017-11-01

    The components which are bound to impact are subjected to deformation even though it may be for a small scale. The efforts are always on for finding the best material to take impact that has no failure or moreover, less plastic deformation. A newly found material which is glass matrix steel named as ‘SAM2X5-630’ has astounding high elastic limit of 12.5GPa. Thus it can take powerful impact & regain its original shape avoiding the deformation of component under impact. The paper is focused on performing the Finite element analysis to assess the behaviour of ‘SAM2X5-630’ steel under impact loading of side door of car as well as impact of bullet on bulletproof jacket on which the material is assigned. The displacement or deformation occurred during impact is found to be lesser than known materials like Kevlar in bulletproof vest and Aluminium alloy in car door.

  19. Sensor failure and multivariable control for airbreathing propulsion systems. Ph.D. Thesis - Dec. 1979 Final Report

    NASA Technical Reports Server (NTRS)

    Behbehani, K.

    1980-01-01

    A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.

  20. Comparative analysis of positive and negative attitudes toward statistics

    NASA Astrophysics Data System (ADS)

    Ghulami, Hassan Rahnaward; Ab Hamid, Mohd Rashid; Zakaria, Roslinazairimah

    2015-02-01

    Many statistics lecturers and statistics education researchers are interested to know the perception of their students' attitudes toward statistics during the statistics course. In statistics course, positive attitude toward statistics is a vital because it will be encourage students to get interested in the statistics course and in order to master the core content of the subject matters under study. Although, students who have negative attitudes toward statistics they will feel depressed especially in the given group assignment, at risk for failure, are often highly emotional, and could not move forward. Therefore, this study investigates the students' attitude towards learning statistics. Six latent constructs have been the measurement of students' attitudes toward learning statistic such as affect, cognitive competence, value, difficulty, interest, and effort. The questionnaire was adopted and adapted from the reliable and validate instrument of Survey of Attitudes towards Statistics (SATS). This study is conducted among engineering undergraduate engineering students in the university Malaysia Pahang (UMP). The respondents consist of students who were taking the applied statistics course from different faculties. From the analysis, it is found that the questionnaire is acceptable and the relationships among the constructs has been proposed and investigated. In this case, students show full effort to master the statistics course, feel statistics course enjoyable, have confidence that they have intellectual capacity, and they have more positive attitudes then negative attitudes towards statistics learning. In conclusion in terms of affect, cognitive competence, value, interest and effort construct the positive attitude towards statistics was mostly exhibited. While negative attitudes mostly exhibited by difficulty construct.

  1. Concept Development for Software Health Management

    NASA Technical Reports Server (NTRS)

    Riecks, Jung; Storm, Walter; Hollingsworth, Mark

    2011-01-01

    This report documents the work performed by Lockheed Martin Aeronautics (LM Aero) under NASA contract NNL06AA08B, delivery order NNL07AB06T. The Concept Development for Software Health Management (CDSHM) program was a NASA funded effort sponsored by the Integrated Vehicle Health Management Project, one of the four pillars of the NASA Aviation Safety Program. The CD-SHM program focused on defining a structured approach to software health management (SHM) through the development of a comprehensive failure taxonomy that is used to characterize the fundamental failure modes of safety-critical software.

  2. Micromechanics of composite laminate compression failures

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1988-01-01

    The purpose of this annual progress report is to summarize the work effort and results accomplished from July 1987 through July 1988 on NASA Research Grant NAG1-659 entitled Micromechanics of Composite Laminate Compressive Failure. The report contains: (1) the objective of the proposed research, (2) the summary of accomplishments, (3) a more extensive review of compression literature, (4) the planned material (and corresponding properties) received to date, (5) the results for three possible specimen geometries, experimental procedures planned, and current status of the experiments, and (6) the work planned for the next contract year.

  3. Understanding and Resolving Failures in Human-Robot Interaction: Literature Review and Model Development

    PubMed Central

    Honig, Shanee; Oron-Gilad, Tal

    2018-01-01

    While substantial effort has been invested in making robots more reliable, experience demonstrates that robots operating in unstructured environments are often challenged by frequent failures. Despite this, robots have not yet reached a level of design that allows effective management of faulty or unexpected behavior by untrained users. To understand why this may be the case, an in-depth literature review was done to explore when people perceive and resolve robot failures, how robots communicate failure, how failures influence people's perceptions and feelings toward robots, and how these effects can be mitigated. Fifty-two studies were identified relating to communicating failures and their causes, the influence of failures on human-robot interaction (HRI), and mitigating failures. Since little research has been done on these topics within the HRI community, insights from the fields of human computer interaction (HCI), human factors engineering, cognitive engineering and experimental psychology are presented and discussed. Based on the literature, we developed a model of information processing for robotic failures (Robot Failure Human Information Processing, RF-HIP), that guides the discussion of our findings. The model describes the way people perceive, process, and act on failures in human robot interaction. The model includes three main parts: (1) communicating failures, (2) perception and comprehension of failures, and (3) solving failures. Each part contains several stages, all influenced by contextual considerations and mitigation strategies. Several gaps in the literature have become evident as a result of this evaluation. More focus has been given to technical failures than interaction failures. Few studies focused on human errors, on communicating failures, or the cognitive, psychological, and social determinants that impact the design of mitigation strategies. By providing the stages of human information processing, RF-HIP can be used as a tool to promote the development of user-centered failure-handling strategies for HRIs.

  4. Life Modeling and Design Analysis for Ceramic Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The primary research efforts focused on characterizing and modeling static failure, environmental durability, and creep-rupture behavior of two classes of ceramic matrix composites (CMC), silicon carbide fibers in a silicon carbide matrix (SiC/SiC) and carbon fibers in a silicon carbide matrix (C/SiC). An engineering life prediction model (Probabilistic Residual Strength model) has been developed specifically for CMCs. The model uses residual strength as the damage metric for evaluating remaining life and is posed probabilistically in order to account for the stochastic nature of the material s response. In support of the modeling effort, extensive testing of C/SiC in partial pressures of oxygen has been performed. This includes creep testing, tensile testing, half life and residual tensile strength testing. C/SiC is proposed for airframe and propulsion applications in advanced reusable launch vehicles. Figures 1 and 2 illustrate the models predictive capabilities as well as the manner in which experimental tests are being selected in such a manner as to ensure sufficient data is available to aid in model validation.

  5. The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ): Materials & Processes (M&P) Lessons Learned for a Large, Rotating Spacecraft Mechanism

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    2016-01-01

    The International Space Station (ISS) utilizes two large rotating mechanisms, the solar alpha rotary joints (SARJs), as part of the solar arrays' alignment system for more efficient power generation. Each SARJ is a 10.3m circumference, nitrided 15-5PH steel race ring of triangular cross-section, with 12 sets of trundle bearing assemblies transferring load across the rolling joint. The SARJ mechanism rotates continuously and slowly - once every orbit, or every 90 minutes. In 2007, the starboard SARJ suffered a lubrication failure, resulting in severe damage (spalling) to one of the race ring surfaces. Extensive effort was conducted to prevent the port SARJ from suffering the same failure, and fortunately that effort was ultimately successful in also recovering the functionality of the starboard SARJ. The M&P engineering function was key in determining the cause of failure and the means for mechanism recovery. From a M&P lessons-learned perspective, observations are made concerning the original SARJ design parameters (boundary conditions), the perceived need for nitriding the race ring, the test conditions employed during qualification, the environmental controls used for the hardware preflight, and the lubrication robustness necessary for complex kinematic mechanisms expecting high-reliability and long-life.

  6. Flight data analysis and further development of variable-conductance heat pipes. [for aircraft control

    NASA Technical Reports Server (NTRS)

    Enginer, J. E.; Luedke, E. E.; Wanous, D. J.

    1976-01-01

    Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.

  7. Electrophoretic separation of cells and particles from rat pituitary. [analysis of pituitary cell electrophoresis experiment done on IML-2 (7/94)

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1995-01-01

    In spite of the fact that a vast majority of the electrophoresis effort (approximately 90%) could not be done on this mission (IML-2) due to failure of FFEU hardware, we find some interesting differences in flight samples obtained from other parts of the experiment. These differences are entirely novel and sometimes unexpected. This report is organized into 4 parts. Each part describes the data collected thus far from each of the 4 cell culture kits (CCK) which flew in space. Each CCK was loaded with 40x10(exp 6) fresh pituitary cells; all CCK's were identical at the start of the experiment because we prepared one pool of cells.

  8. Independent Orbiter Assessment (IOA): Analysis of the crew equipment subsystem

    NASA Technical Reports Server (NTRS)

    Sinclair, Susan; Graham, L.; Richard, Bill; Saxon, H.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results coresponding to the Orbiter crew equipment hardware are documented. The IOA analysis process utilized available crew equipment hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 352 failure modes analyzed, 78 were determined to be PCIs.

  9. The folly of PURPA repeal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, J.R.; Karp, J.M.

    This article discusses efforts to repeal the Public Utilities Regulatory Policy Act. The justification for PURPA`s existence is given, and its successes and failures are noted. The pros and cons of PURPA repeal are discussed, as are follow-on actions both with and without repeal.

  10. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  11. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  12. Metallurgical failure analysis of MH-1A reactor core hold-down bolts. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, J.R.; Watson, H.E.

    1976-11-01

    The Naval Research Laboratory has performed a failure analysis on two MH-1A reactor core hold-down bolts that broke in service. Adherence to fabrication specifications, post-service properties and possible causes of bolt failure were investigated. The bolt material was verified as 17-4PH precipitation hardening stainless steel. Measured bolt dimensions also were in accordance with fabrication drawing specifications. Bolt failure occurred in the region of a locking pin hole which reduced the bolt net section by 47 percent. The failure analysis indicates that the probable cause of failure was net section overloading resulting from a lateral bending force on the bolt. Themore » analysis indicates that net section overloading could also have resulted from combined tensile stresses (bolt preloading plus differential thermal expansion). Recommendations are made for improved bolting.« less

  13. Lessons Learned from Application of System and Software Level RAMS Analysis to a Space Control System

    NASA Astrophysics Data System (ADS)

    Silva, N.; Esper, A.

    2012-01-01

    The work presented in this article represents the results of applying RAMS analysis to a critical space control system, both at system and software levels. The system level RAMS analysis allowed the assignment of criticalities to the high level components, which was further refined by a tailored software level RAMS analysis. The importance of the software level RAMS analysis in the identification of new failure modes and its impact on the system level RAMS analysis is discussed. Recommendations of changes in the software architecture have also been proposed in order to reduce the criticality of the SW components to an acceptable minimum. The dependability analysis was performed in accordance to ECSS-Q-ST-80, which had to be tailored and complemented in some aspects. This tailoring will also be detailed in the article and lessons learned from the application of this tailoring will be shared, stating the importance to space systems safety evaluations. The paper presents the applied techniques, the relevant results obtained, the effort required for performing the tasks and the planned strategy for ROI estimation, as well as the soft skills required and acquired during these activities.

  14. Failure Analysis of CCD Image Sensors Using SQUID and GMR Magnetic Current Imaging

    NASA Technical Reports Server (NTRS)

    Felt, Frederick S.

    2005-01-01

    During electrical testing of a Full Field CCD Image Senor, electrical shorts were detected on three of six devices. These failures occurred after the parts were soldered to the PCB. Failure analysis was performed to determine the cause and locations of these failures on the devices. After removing the fiber optic faceplate, optical inspection was performed on the CCDs to understand the design and package layout. Optical inspection revealed that the device had a light shield ringing the CCD array. This structure complicated the failure analysis. Alternate methods of analysis were considered, including liquid crystal, light and thermal emission, LT/A, TT/A SQUID, and MP. Of these, SQUID and MP techniques were pursued for further analysis. Also magnetoresistive current imaging technology is discussed and compared to SQUID.

  15. Stingray Failure Mode, Effects and Criticality Analysis: WEC Risk Registers

    DOE Data Explorer

    Ken Rhinefrank

    2016-07-25

    Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficiently. The FMECA can begin once there is enough detail to functions and failure modes of a given system, and its interfaces with other systems. The FMECA occurs coincidently with the design process and is an iterative process which allows for design changes to overcome deficiencies in the analysis.Risk Registers for major subsystems completed according to the methodology described in "Failure Mode Effects and Criticality Analysis Risk Reduction Program Plan.pdf" document below, in compliance with the DOE Risk Management Framework developed by NREL.

  16. Multiple goals, motivation and academic learning.

    PubMed

    Valle, Antonio; Cabanach, Ramón G; Núnez, José C; González-Pienda, Julio; Rodríguez, Susana; Piñeiro, Isabel

    2003-03-01

    The type of academic goals pursued by students is one of the most important variables in motivational research in educational contexts. Although motivational theory and research have emphasised the somewhat exclusive nature of two types of goal orientation (learning goals versus performance goals), some studies (Meece, 1994; Seifert, 1995, 1996) have shown that the two kinds of goals are relatively complementary and that it is possible for students to have multiple goals simultaneously, which guarantees some flexibility to adapt more efficaciously to various contexts and learning situations. The principal aim of this study is to determine the academic goals pursued by university students and to analyse the differences in several very significant variables related to motivation and academic learning. Participants were 609 university students (74% women and 26% men) who filled in several questionnaires about the variables under study. We used cluster analysis ('quick cluster analysis' method) to establish the different groups or clusters of individuals as a function of the three types of goals (learning goals, performance goals, and social reinforcement goals). By means of MANOVA, we determined whether the groups or clusters identified were significantly different in the variables that are relevant to motivation and academic learning. Lastly, we performed ANOVA on the variables that revealed significant effects in the previous analysis. Using cluster analysis, three groups of students with different motivational orientations were identified: a group with predominance of performance goals (Group PG: n = 230), a group with predominance of multiple goals (Group MG: n = 238), and a group with predominance of learning goals (Group LG: n = 141). Groups MG and LG attributed their success more to ability, they had higher perceived ability, they took task characteristics into account when planning which strategies to use in the learning process, they showed higher persistence, and used more deep learning strategies than did the students with predominance of performance goals (Group PG). On the other hand, Groups MG and PG took the evaluation criteria more into account when deciding which strategies to use in order to learn, and they attributed their failures more to luck than did Group LG. Students from Group MG attributed their success more to effort than did the other two groups and they attained higher achievement than Group PG. Group LG tended to attribute their failures more to lack of effort than did the other two groups.

  17. Remote Structural Health Monitoring and Advanced Prognostics of Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Brown; Bernard Laskowski

    The prospect of substantial investment in wind energy generation represents a significant capital investment strategy. In order to maximize the life-cycle of wind turbines, associated rotors, gears, and structural towers, a capability to detect and predict (prognostics) the onset of mechanical faults at a sufficiently early stage for maintenance actions to be planned would significantly reduce both maintenance and operational costs. Advancement towards this effort has been made through the development of anomaly detection, fault detection and fault diagnosis routines to identify selected fault modes of a wind turbine based on available sensor data preceding an unscheduled emergency shutdown. Themore » anomaly detection approach employs spectral techniques to find an approximation of the data using a combination of attributes that capture the bulk of variability in the data. Fault detection and diagnosis (FDD) is performed using a neural network-based classifier trained from baseline and fault data recorded during known failure conditions. The approach has been evaluated for known baseline conditions and three selected failure modes: pitch rate failure, low oil pressure failure and a gearbox gear-tooth failure. Experimental results demonstrate the approach can distinguish between these failure modes and normal baseline behavior within a specified statistical accuracy.« less

  18. Patient journey in decompensated heart failure: An analysis in departments of cardiology and geriatrics in the Greater Paris University Hospitals.

    PubMed

    Laveau, Florent; Hammoudi, Nadjib; Berthelot, Emmanuelle; Belmin, Joël; Assayag, Patrick; Cohen, Ariel; Damy, Thibaud; Duboc, Denis; Dubourg, Olivier; Hagege, Albert; Hanon, Olivier; Isnard, Richard; Jondeau, Guillaume; Labouree, Florian; Logeart, Damien; Mansencal, Nicolas; Meune, Christophe; Pautas, Eric; Wolmark, Yves; Komajda, Michel

    2017-01-01

    Hospitalization for worsening/acute heart failure is increasing in France, and limited data are available on referral/discharge modalities. To evaluate patients' journeys before and after hospitalization for this condition. On 1 day per week, between October 2014 and February 2015, this observational study enrolled 260 consecutive patients with acute/worsening heart failure in all 10 departments of cardiology and four of the departments of geriatrics in the Greater Paris University Hospitals. First medical contact was an emergency unit in 45% of cases, a general practitioner in 16% of cases, an emergency medical ambulance in 13% of cases and a cardiologist in 13% of cases; 78% of patients were admitted directly after first medical contact. In-hospital stay was 13.2±11.3 days; intensive care unit stay (38% of the population) was 6.4±5 days. In-hospital mortality was 2.7%. Overall, 63% of patients were discharged home, whereas 21% were transferred to rehabilitation units. A post-discharge outpatient visit was made by only 72% of patients within 3 months (after a mean of 45±28 days). Only 53% of outpatient appointments were with a cardiologist. Emergency departments, ambulances and general practitioners are the main points of entry before hospitalization for acute/worsening heart failure. Home discharge occurs in two of three cases. Time to first patient post-discharge visit is delayed. Therefore, actions to improve the patient journey should target primary care physicians and emergency structures, and efforts should be made to reduce the time to the first visit after discharge. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. A numerical approach to model and predict the energy absorption and crush mechanics within a long-fiber composite crush tube

    NASA Astrophysics Data System (ADS)

    Pickett, Leon, Jr.

    Past research has conclusively shown that long fiber structural composites possess superior specific energy absorption characteristics as compared to steel and aluminum structures. However, destructive physical testing of composites is very costly and time consuming. As a result, numerical solutions are desirable as an alternative to experimental testing. Up until this point, very little numerical work has been successful in predicting the energy absorption of composite crush structures. This research investigates the ability to use commercially available numerical modeling tools to approximate the energy absorption capability of long-fiber composite crush tubes. This study is significant because it provides a preliminary analysis of the suitability of LS-DYNA to numerically characterize the crushing behavior of a dynamic axial impact crushing event. Composite crushing theory suggests that there are several crushing mechanisms occurring during a composite crush event. This research evaluates the capability and suitability of employing, LS-DYNA, to simulate the dynamic crush event of an E-glass/epoxy cylindrical tube. The model employed is the composite "progressive failure model", a much more limited failure model when compared to the experimental failure events which naturally occur. This numerical model employs (1) matrix cracking, (2) compression, and (3) fiber breakage failure modes only. The motivation for the work comes from the need to reduce the significant cost associated with experimental trials. This research chronicles some preliminary efforts to better understand the mechanics essential in pursuit of this goal. The immediate goal is to begin to provide deeper understanding of a composite crush event and ultimately create a viable alternative to destructive testing of composite crush tubes.

  20. How to apply clinical cases and medical literature in the framework of a modified "failure mode and effects analysis" as a clinical reasoning tool--an illustration using the human biliary system.

    PubMed

    Wong, Kam Cheong

    2016-04-06

    Clinicians use various clinical reasoning tools such as Ishikawa diagram to enhance their clinical experience and reasoning skills. Failure mode and effects analysis, which is an engineering methodology in origin, can be modified and applied to provide inputs into an Ishikawa diagram. The human biliary system is used to illustrate a modified failure mode and effects analysis. The anatomical and physiological processes of the biliary system are reviewed. Failure is defined as an abnormality caused by infective, inflammatory, obstructive, malignancy, autoimmune and other pathological processes. The potential failures, their effect(s), main clinical features, and investigation that can help a clinician to diagnose at each anatomical part and physiological process are reviewed and documented in a modified failure mode and effects analysis table. Relevant medical and surgical cases are retrieved from the medical literature and weaved into the table. A total of 80 clinical cases which are relevant to the modified failure mode and effects analysis for the human biliary system have been reviewed and weaved into a designated table. The table is the backbone and framework for further expansion. Reviewing and updating the table is an iterative and continual process. The relevant clinical features in the modified failure mode and effects analysis are then extracted and included in the relevant Ishikawa diagram. This article illustrates an application of engineering methodology in medicine, and it sows the seeds of potential cross-pollination between engineering and medicine. Establishing a modified failure mode and effects analysis can be a teamwork project or self-directed learning process, or a mix of both. Modified failure mode and effects analysis can be deployed to obtain inputs for an Ishikawa diagram which in turn can be used to enhance clinical experiences and clinical reasoning skills for clinicians, medical educators, and students.

  1. Stem Cells Transplantation in the Treatment of Patients with Liver Failure.

    PubMed

    Tao, Ya-Chao; Wang, Meng-Lan; Chen, En-Qiang; Tang, Hong

    2018-02-23

    Liver failure is a life-threatening liver disease encompassing severe acute deterioration of liver function. Emergency liver transplantation is the only curative treatment for liver failure, but is restricted by the severe shortage of organ donors. Stem cell, including embroyonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells and hepatic progenitor cells, have capacity to proliferate and differentiate and could be used in a variety of liver diseases including hereditary liver diseases, cirrhosis and liver failure. We summarized the basic experimental and clinical advances of stem cell transplantation in liver failure treatment, and also discussed the advantages and disadvantage of different stem cells subtype in this field, aiming to provide a perspective on the stem cell-based therapy for liver failure. Stem cells, especially mesenchymal stem cells (mainly low immunogenicity and paracrine characteristics) and induced pluripotent stem cells (generation of desired cell type from somatic cell), are feasible candidates for cell therapy in the treatment of liver failure, but there are some drawbacks remaining to be resolved, such as low engraftment, cryotpreservation methods and tumorigenesis. Stem cell transplantation is a promising but challenging strategy and paves a new way for curing liver failure. But more efforts need to be made to overcome problems before this new strategy could be safely and effectively applied to humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Spacecraft Parachute Recovery System Testing from a Failure Rate Perspective

    NASA Technical Reports Server (NTRS)

    Stewart, Christine E.

    2013-01-01

    Spacecraft parachute recovery systems, especially those with a parachute cluster, require testing to identify and reduce failures. This is especially important when the spacecraft in question is human-rated. Due to the recent effort to make spaceflight affordable, the importance of determining a minimum requirement for testing has increased. The number of tests required to achieve a mature design, with a relatively constant failure rate, can be estimated from a review of previous complex spacecraft recovery systems. Examination of the Apollo parachute testing and the Shuttle Solid Rocket Booster recovery chute system operation will clarify at which point in those programs the system reached maturity. This examination will also clarify the risks inherent in not performing a sufficient number of tests prior to operation with humans on-board. When looking at complex parachute systems used in spaceflight landing systems, a pattern begins to emerge regarding the need for a minimum amount of testing required to wring out the failure modes and reduce the failure rate of the parachute system to an acceptable level for human spaceflight. Not only a sufficient number of system level testing, but also the ability to update the design as failure modes are found is required to drive the failure rate of the system down to an acceptable level. In addition, sufficient data and images are necessary to identify incipient failure modes or to identify failure causes when a system failure occurs. In order to demonstrate the need for sufficient system level testing prior to an acceptable failure rate, the Apollo Earth Landing System (ELS) test program and the Shuttle Solid Rocket Booster Recovery System failure history will be examined, as well as some experiences in the Orion Capsule Parachute Assembly System will be noted.

  3. Minimum weight design of rectangular and tapered helicopter rotor blades with frequency constraints

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Walsh, Joanne L.

    1988-01-01

    The minimum weight design of a helicopter rotor blade subject to constraints on coupled flap-lag natural frequencies has been studied. A constraint has also been imposed on the minimum value of the autorotational inertia of the blade in order to ensure that it has sufficient inertia to autorotate in the case of engine failure. The program CAMRAD is used for the blade modal analysis and CONMIN is used for the optimization. In addition, a linear approximation analysis involving Taylor series expansion has been used to reduce the analysis effort. The procedure contains a sensitivity analysis which consists of analytical derivatives of the objective function and the autorotational inertia constraint and central finite difference derivatives of the frequency constraints. Optimum designs have been obtained for both rectangular and tapered blades. Design variables include taper ratio, segment weights, and box beam dimensions. It is shown that even when starting with an acceptable baseline design, a significant amount of weight reduction is possible while satisfying all the constraints for both rectangular and tapered blades.

  4. Minimum weight design of rectangular and tapered helicopter rotor blades with frequency constraints

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Walsh, Joanne L.

    1988-01-01

    The minimum weight design of a helicopter rotor blade subject to constraints on coupled flap-lag natural frequencies has been studied. A constraint has also been imposed on the minimum value of the autorotational inertia of the blade in order to ensure that it has sufficient inertia to aurorotate in the case of engine failure. The program CAMRAD is used for the blade modal analysis and CONMIN is used for the optimization. In addition, a linear approximation analysis involving Taylor series expansion has been used to reduce the analysis effort. The procedure contains a sensitivity analysis which consists of analytical derivatives of the objective function and the autorotational inertia constraint and central finite difference derivatives of the frequency constraints. Optimum designs have been obtained for both rectangular and tapered blades. Design variables include taper ratio, segment weights, and box beam dimensions. It is shown that even when starting with an acceptable baseline design, a significant amount of weight reduction is possible while satisfying all the constraints for both rectangular and tapered blades.

  5. Minimum weight design of helicopter rotor blades with frequency constraints

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Walsh, Joanne L.

    1989-01-01

    The minimum weight design of helicopter rotor blades subject to constraints on fundamental coupled flap-lag natural frequencies has been studied in this paper. A constraint has also been imposed on the minimum value of the blade autorotational inertia to ensure that the blade has sufficient inertia to autorotate in case of an engine failure. The program CAMRAD has been used for the blade modal analysis and the program CONMIN has been used for the optimization. In addition, a linear approximation analysis involving Taylor series expansion has been used to reduce the analysis effort. The procedure contains a sensitivity analysis which consists of analytical derivatives of the objective function and the autorotational inertia constraint and central finite difference derivatives of the frequency constraints. Optimum designs have been obtained for blades in vacuum with both rectangular and tapered box beam structures. Design variables include taper ratio, nonstructural segment weights and box beam dimensions. The paper shows that even when starting with an acceptable baseline design, a significant amount of weight reduction is possible while satisfying all the constraints for blades with rectangular and tapered box beams.

  6. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, exceptmore » for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.« less

  7. Auxiliary feedwater system risk-based inspection guide for the Salem Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugh, R.; Gore, B.F. Vo, T.V.

    In a study by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW systemmore » at the selected plants. Salem was selected as the fifth plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Salem plant. 23 refs., 1 fig., 1 tab.« less

  8. Risk management of key issues of FPSO

    NASA Astrophysics Data System (ADS)

    Sun, Liping; Sun, Hai

    2012-12-01

    Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offloading system and fire accidents were analyzed based on the floating production, storage and offloading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offloading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.

  9. Analysis of Emergency Diesel Generators Failure Incidents in Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Hunt, Ronderio LaDavis

    In early years of operation, emergency diesel generators have had a minimal rate of demand failures. Emergency diesel generators are designed to operate as a backup when the main source of electricity has been disrupted. As of late, EDGs (emergency diesel generators) have been failing at NPPs (nuclear power plants) around the United States causing either station blackouts or loss of onsite and offsite power. These failures occurred from a specific type called demand failures. This thesis evaluated the current problem that raised concern in the nuclear industry which was averaging 1 EDG demand failure/year in 1997 to having an excessive event of 4 EDG demand failure year which occurred in 2011. To determine the next occurrence of the extreme event and possible cause to an event of such happening, two analyses were conducted, the statistical and root cause analysis. Considering the statistical analysis in which an extreme event probability approach was applied to determine the next occurrence year of an excessive event as well as, the probability of that excessive event occurring. Using the root cause analysis in which the potential causes of the excessive event occurred by evaluating, the EDG manufacturers, aging, policy changes/ maintenance practices and failure components. The root cause analysis investigated the correlation between demand failure data and historical data. Final results from the statistical analysis showed expectations of an excessive event occurring in a fixed range of probability and a wider range of probability from the extreme event probability approach. The root-cause analysis of the demand failure data followed historical statistics for the EDG manufacturer, aging and policy changes/ maintenance practices but, indicated a possible cause regarding the excessive event with the failure components. Conclusions showed the next excessive demand failure year, prediction of the probability and the next occurrence year of such failures, with an acceptable confidence level, was difficult but, it was likely that this type of failure will not be a 100 year event. It was noticeable to see that the majority of the EDG demand failures occurred within the main components as of 2005. The overall analysis of this study provided from percentages, indicated that it would be appropriate to make the statement that the excessive event was caused by the overall age (wear and tear) of the Emergency Diesel Generators in Nuclear Power Plants. Future Work will be to better determine the return period of the excessive event once the occurrence has happened for a second time by implementing the extreme event probability approach.

  10. Extended Testability Analysis Tool

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin; Maul, William A.; Fulton, Christopher

    2012-01-01

    The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.

  11. Improving Software Engineering on NASA Projects

    NASA Technical Reports Server (NTRS)

    Crumbley, Tim; Kelly, John C.

    2010-01-01

    Software Engineering Initiative: Reduces risk of software failure -Increases mission safety. More predictable software cost estimates and delivery schedules. Smarter buyer of contracted out software. More defects found and removed earlier. Reduces duplication of efforts between projects. Increases ability to meet the challenges of evolving software technology.

  12. Review of Literature.

    ERIC Educational Resources Information Center

    Armstrong, Robert L.

    1992-01-01

    Offers a critical review of eight articles and two journal issues dealing with school indicators of student success or failure; state models for school improvement and accountability; teacher burnout as an outcome of paperwork burdens; the impact of reform efforts; class size; trends in educational evaluation; mastery testing; departmentalization…

  13. Fiber reinforced sandy slopes under groundwater return flow

    USDA-ARS?s Scientific Manuscript database

    The instability of natural hillslopes, riverbanks and engineered embankments due to seepage has been a major concern. In an effort to prevent failures, tension resisting synthetic fibers may be an effective additive to increase the mechanical properties of engineered soils. In this study, triaxial c...

  14. Evaluating Collaboration for Effectiveness: Conceptualization and Measurement

    ERIC Educational Resources Information Center

    Marek, Lydia I.; Brock, Donna-Jean P.; Savla, Jyoti

    2015-01-01

    Although collaboration is recognized as an effective means to address multifaceted community issues, successful collaboration is difficult to achieve and failure is prevalent. To effectively collaborate, collaborators must recognize the strengths and weaknesses within their own efforts. Using Mattessich and colleagues' work as a springboard, a…

  15. A Bishop Reflects on Religious Education.

    ERIC Educational Resources Information Center

    O'Connor, John

    1989-01-01

    Uses the Archdiocese of New York to illustrate the Catholic Church's successes and failures in religious education. Discusses the archdiocese's efforts to reduce widespread ignorance of the teachings of the Second Vatican Council, including a community needs assessment and a weekend Synod. Highlights religious education needs. (DMM)

  16. How "Crawford" Began.

    ERIC Educational Resources Information Center

    Smith, Mary Tinglof

    1982-01-01

    A member of the Los Angeles board of education describes her experiences in the attempt to enforce school desegregation in the district between 1962 and 1965, discusses the board's "color blind" policy and its resistance to integration efforts, and examines integrationists' limited successes and eventual failure in the desegregation…

  17. Breeding ecology of the Puaiohi (Myadestes palmeri)

    USGS Publications Warehouse

    Snetsinger, T.J.; Herrmann, C.M.; Holmes, D.E.; Hayward, C.D.; Fancy, S.G.

    2005-01-01

    We studied the breeding ecology of the critically endangered Puaiohi (Myadestes palmeri), a poorly known Hawaiian thrush endemic to the island of Kauai. From 1996 through 1998, we monitored 96 active nests over the course of three breeding seasons. Mean clutch size was 2.0, and pairs produced an average of 1.5 fledglings/successful nest. Pairs renested after failure and some raised multiple broods. The mean annual reproductive effort was 2.1 nesting attempts/territory, and pairs produced a mean 1.1 fledglings/attempt. Large differences in nesting effort and productivity occurred among years, with mean number of fledglings/territory ranging from 0.4 to 4.9. Predation by owls (probably Short-eared Owls, Asia flammeus) and introduced rats (probably black rats, Rattus rattus) accounted for most nest failures. The presence of non-breeding floaters in the population and their largely unsuccessful attempts to gain territories in the study area suggest that the population is near carrying capacity. The high reproductive potential of the Puaiohi may help explain its persistence despite the species' historical rarity.

  18. Effectiveness of symptom validity measures in identifying cognitive and behavioral symptom exaggeration in adult attention deficit hyperactivity disorder.

    PubMed

    Marshall, Paul; Schroeder, Ryan; O'Brien, Jeffrey; Fischer, Rebecca; Ries, Adam; Blesi, Brita; Barker, Jessica

    2010-10-01

    This study examines the effectiveness of symptom validity measures to detect suspect effort in cognitive testing and invalid completion of ADHD behavior rating scales in 268 adults referred for ADHD assessment. Patients were diagnosed with ADHD based on cognitive testing, behavior rating scales, and clinical interview. Suspect effort was diagnosed by at least two of the following: failure on embedded and free-standing SVT measures, a score > 2 SD below the ADD population average on tests, failure on an ADHD behavior rating scale validity scale, or a major discrepancy between reported and observed ADHD behaviors. A total of 22% of patients engaged in symptom exaggeration. The Word Memory test immediate recall and consistency score (both 64%), TOVA omission errors (63%) and reaction time variability (54%), CAT-A infrequency scale (58%), and b Test (47%) had good sensitivity as well as at least 90% specificity. Clearly, such measures should be used to help avoid making false positive diagnoses of ADHD.

  19. Investigation of Severe Craniomaxillofacial Battle Injuries Sustained by U.S. Service Members: A Case Series

    PubMed Central

    Brown Baer, Pamela R.; Wenke, Joseph C.; Thomas, Steven J.; Hale, Colonel Robert G.

    2012-01-01

    This case series describes craniomaxillofacial battle injuries, currently available surgical techniques, and the compromised outcomes of four service members who sustained severe craniomaxillofacial battle injuries in Iraq or Afghanistan. Demographic information, diagnostic evaluation, surgical procedures, and outcomes were collected and detailed with a follow-up of over 2 years. Reconstructive efforts with advanced, multidisciplinary, and multiple revision procedures were indicated; the full scope of conventional surgical options and resources were utilized. Patients experienced surgical complications, including postoperative wound dehiscence, infection, flap failure, inadequate mandibular healing, and failure of fixation. These complications required multiple revisions and salvage interventions. In addition, facial burns complicated reconstructive efforts by delaying treatment, decreasing surgical options, and increasing procedural numbers. All patients, despite multiple surgeries, continue to have functional and aesthetic deficits as a result of their injuries. Currently, no conventional treatments are available to satisfactorily reconstruct the face severely ravaged by explosive devices to an acceptable level, much less to natural form and function. PMID:24294409

  20. Perceptions of seniors with heart failure regarding autonomous zero-effort monitoring of physiological parameters in the smart-home environment.

    PubMed

    Grace, Sherry L; Taherzadeh, Golnoush; Jae Chang, Isaac Sung; Boger, Jennifer; Arcelus, Amaya; Mak, Susanna; Chessex, Caroline; Mihailidis, Alex

    Technological advances are leading to the ability to autonomously monitor patient's health status in their own homes, to enable aging-in-place. To understand the perceptions of seniors with heart failure (HF) regarding smart-home systems to monitor their physiological parameters. In this qualitative study, HF outpatients were invited to a smart-home lab, where they completed a sequence of activities, during which the capacity of 5 autonomous sensing modalities was compared to gold standard measures. Afterwards, a semi-structured interview was undertaken. These were transcribed and analyzed using an interpretive-descriptive approach. Five themes emerged from the 26 interviews: (1) perceptions of technology, (2) perceived benefits of autonomous health monitoring, (3) disadvantages of autonomous monitoring, (4) lack of perceived need for continuous health monitoring, and (5) preferences for autonomous monitoring. Patient perception towards autonomous monitoring devices was positive, lending credence to zero-effort technology as a viable and promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.

Top