Failure environment analysis tool applications
NASA Astrophysics Data System (ADS)
Pack, Ginger L.; Wadsworth, David B.
1993-02-01
Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.
Failure environment analysis tool applications
NASA Technical Reports Server (NTRS)
Pack, Ginger L.; Wadsworth, David B.
1993-01-01
Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.
Failure environment analysis tool applications
NASA Technical Reports Server (NTRS)
Pack, Ginger L.; Wadsworth, David B.
1994-01-01
Understanding risks and avoiding failure are daily concerns for the women and men of NASA. Although NASA's mission propels us to push the limits of technology, and though the risks are considerable, the NASA community has instilled within it, the determination to preserve the integrity of the systems upon which our mission and, our employees lives and well-being depend. One of the ways this is being done is by expanding and improving the tools used to perform risk assessment. The Failure Environment Analysis Tool (FEAT) was developed to help engineers and analysts more thoroughly and reliably conduct risk assessment and failure analysis. FEAT accomplishes this by providing answers to questions regarding what might have caused a particular failure; or, conversely, what effect the occurrence of a failure might have on an entire system. Additionally, FEAT can determine what common causes could have resulted in other combinations of failures. FEAT will even help determine the vulnerability of a system to failures, in light of reduced capability. FEAT also is useful in training personnel who must develop an understanding of particular systems. FEAT facilitates training on system behavior, by providing an automated environment in which to conduct 'what-if' evaluation. These types of analyses make FEAT a valuable tool for engineers and operations personnel in the design, analysis, and operation of NASA space systems.
Graphical Displays Assist In Analysis Of Failures
NASA Technical Reports Server (NTRS)
Pack, Ginger; Wadsworth, David; Razavipour, Reza
1995-01-01
Failure Environment Analysis Tool (FEAT) computer program enables people to see and better understand effects of failures in system. Uses digraph models to determine what will happen to system if set of failure events occurs and to identify possible causes of selected set of failures. Digraphs or engineering schematics used. Also used in operations to help identify causes of failures after they occur. Written in C language.
Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott
2008-01-01
A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.
33 CFR 154.804 - Review, certification, and initial inspection.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., property, and the environment if an accident were to occur; and (4) If a quantitative failure analysis is... quantitative failure analysis. (e) The certifying entity must conduct all initial inspections and witness all...
33 CFR 154.804 - Review, certification, and initial inspection.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., property, and the environment if an accident were to occur; and (4) If a quantitative failure analysis is... quantitative failure analysis. (e) The certifying entity must conduct all initial inspections and witness all...
33 CFR 154.804 - Review, certification, and initial inspection.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., property, and the environment if an accident were to occur; and (4) If a quantitative failure analysis is... quantitative failure analysis. (e) The certifying entity must conduct all initial inspections and witness all...
33 CFR 154.804 - Review, certification, and initial inspection.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., property, and the environment if an accident were to occur; and (4) If a quantitative failure analysis is... quantitative failure analysis. (e) The certifying entity must conduct all initial inspections and witness all...
NiCd cell reliability in the mission environment
NASA Technical Reports Server (NTRS)
Denson, William K.; Klein, Glenn C.
1993-01-01
This paper summarizes an effort by Gates Aerospace Batteries (GAB) and the Reliability Analysis Center (RAC) to analyze survivability data for both General Electric and GAB NiCd cells utilized in various spacecraft. For simplicity sake, all mission environments are described as either low Earth orbital (LEO) or geosynchronous Earth orbit (GEO). 'Extreme value statistical methods' are applied to this database because of the longevity of the numerous missions while encountering relatively few failures. Every attempt was made to include all known instances of cell-induced-failures of the battery and to exclude battery-induced-failures of the cell. While this distinction may be somewhat limited due to availability of in-flight data, we have accepted the learned opinion of the specific customer contacts to ensure integrity of the common databases. This paper advances the preliminary analysis reported upon at the 1991 NASA Battery Workshop. That prior analysis was concerned with an estimated 278 million cell-hours of operation encompassing 183 satellites. The paper also cited 'no reported failures to date.' This analysis reports on 428 million cell hours of operation emcompassing 212 satellites. This analysis also reports on seven 'cell-induced-failures.'
Independent Orbiter Assessment (IOA): Analysis of the purge, vent and drain subsystem
NASA Technical Reports Server (NTRS)
Bynum, M. C., III
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter PV and D (Purge, Vent and Drain) Subsystem hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET Disconnect. The subsystem is divided into six systems: Purge System (controls the environment of unpressurized structural compartments); Vent System (controls the pressure of unpressurized compartments); Drain System (removes water from unpressurized compartments); Hazardous Gas Detection System (HGDS) (monitors hazardous gas concentrations); Window Cavity Conditioning System (WCCS) (maintains clear windows and provides pressure control of the window cavities); and External Tank/Orbiter Disconnect Purge System (prevents cryo-pumping/icing of disconnect hardware). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Four of the sixty-two failure modes analyzed were determined as single failures which could result in the loss of crew or vehicle. A possible loss of mission could result if any of twelve single failures occurred. Two of the criticality 1/1 failures are in the Window Cavity Conditioning System (WCCS) outer window cavity, where leakage and/or restricted flow will cause failure to depressurize/repressurize the window cavity. Two criticality 1/1 failures represent leakage and/or restricted flow in the Orbiter/ET disconnect purge network which prevent cryopumping/icing of disconnect hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
DEPEND - A design environment for prediction and evaluation of system dependability
NASA Technical Reports Server (NTRS)
Goswami, Kumar K.; Iyer, Ravishankar K.
1990-01-01
The development of DEPEND, an integrated simulation environment for the design and dependability analysis of fault-tolerant systems, is described. DEPEND models both hardware and software components at a functional level, and allows automatic failure injection to assess system performance and reliability. It relieves the user of the work needed to inject failures, maintain statistics, and output reports. The automatic failure injection scheme is geared toward evaluating a system under high stress (workload) conditions. The failures that are injected can affect both hardware and software components. To illustrate the capability of the simulator, a distributed system which employs a prediction-based, dynamic load-balancing heuristic is evaluated. Experiments were conducted to determine the impact of failures on system performance and to identify the failures to which the system is especially susceptible.
Real-time automated failure analysis for on-orbit operations
NASA Technical Reports Server (NTRS)
Kirby, Sarah; Lauritsen, Janet; Pack, Ginger; Ha, Anhhoang; Jowers, Steven; Mcnenny, Robert; Truong, The; Dell, James
1993-01-01
A system which is to provide real-time failure analysis support to controllers at the NASA Johnson Space Center Control Center Complex (CCC) for both Space Station and Space Shuttle on-orbit operations is described. The system employs monitored systems' models of failure behavior and model evaluation algorithms which are domain-independent. These failure models are viewed as a stepping stone to more robust algorithms operating over models of intended function. The described system is designed to meet two sets of requirements. It must provide a useful failure analysis capability enhancement to the mission controller. It must satisfy CCC operational environment constraints such as cost, computer resource requirements, verification, and validation. The underlying technology and how it may be used to support operations is also discussed.
ERIC Educational Resources Information Center
Seyyedrezaie, Zari Sadat; Ghonsooly, Behzad; Shahriari, Hesamoddin; Fatemi, Hazar Hosseini
2016-01-01
This study investigated the effect of writing process in Google Docs environment on Iranian EFL learners' writing performance. It also examined students' perceptions towards the effects of Google Docs and their perceived causes of success or failure in writing performance. In this regard, 48 EFL students were chosen based on their IELTs writing…
Program Helps In Analysis Of Failures
NASA Technical Reports Server (NTRS)
Stevenson, R. W.; Austin, M. E.; Miller, J. G.
1993-01-01
Failure Environment Analysis Tool (FEAT) computer program developed to enable people to see and better understand effects of failures in system. User selects failures from either engineering schematic diagrams or digraph-model graphics, and effects or potential causes of failures highlighted in color on same schematic-diagram or digraph representation. Uses digraph models to answer two questions: What will happen to system if set of failure events occurs? and What are possible causes of set of selected failures? Helps design reviewers understand exactly what redundancies built into system and where there is need to protect weak parts of system or remove them by redesign. Program also useful in operations, where it helps identify causes of failure after they occur. FEAT reduces costs of evaluation of designs, training, and learning how failures propagate through system. Written using Macintosh Programmers Workshop C v3.1. Can be linked with CLIPS 5.0 (MSC-21927, available from COSMIC).
Dependent Lifelengths Induced by Dynamic Environments
1988-02-14
item has not failed at any time r, our assessment of the failure rate will increase since we expect that the dominant failure mechanism is governed ...of a dynamic environment on the system over a finite range [ 0, T’ ) can be captured through a polynomial environental factor function j7(r). We...Vol. 7, pp. 295- 306. Singpurwalla, N.D. (1988). Foundational issues in reliability and risk analysis. SIAM Review. To app.!ar. 85
Analysis of minimum rail size in heavy axle load environment
DOT National Transportation Integrated Search
2013-04-15
The effects of increasing axle loads on rail integrity are examined in this paper. In the present context, rail integrity refers to the prevention and control of rail failures. Rail failures usually occur because cracks or defects develop and grow fr...
Fault detection and fault tolerance in robotics
NASA Technical Reports Server (NTRS)
Visinsky, Monica; Walker, Ian D.; Cavallaro, Joseph R.
1992-01-01
Robots are used in inaccessible or hazardous environments in order to alleviate some of the time, cost and risk involved in preparing men to endure these conditions. In order to perform their expected tasks, the robots are often quite complex, thus increasing their potential for failures. If men must be sent into these environments to repair each component failure in the robot, the advantages of using the robot are quickly lost. Fault tolerant robots are needed which can effectively cope with failures and continue their tasks until repairs can be realistically scheduled. Before fault tolerant capabilities can be created, methods of detecting and pinpointing failures must be perfected. This paper develops a basic fault tree analysis of a robot in order to obtain a better understanding of where failures can occur and how they contribute to other failures in the robot. The resulting failure flow chart can also be used to analyze the resiliency of the robot in the presence of specific faults. By simulating robot failures and fault detection schemes, the problems involved in detecting failures for robots are explored in more depth.
CAPSULE REPORT: REVERSE OSMOSIS PROCESS
A failure analysis has been completed for the reverse osmosis (RO) process. The focus was on process failures that result in releases of liquids and vapors to the environment. The report includes the following: 1) A description of RO and coverage of the principles behind the proc...
Experimental and failure analysis of the prosthetic finger joint implants
NASA Astrophysics Data System (ADS)
Naidu, Sanjiv H.
Small joint replacement arthroplasty of the hand is a well accepted surgical procedure to restore function and cosmesis in an individual with a crippled hand. Silicone elastomers have been used as prosthetic material in various small hand joints for well over three decades. Although the clinical science aspects of silicone elastomer failure are well known, the physical science aspects of prosthetic failure are scant and vague. In the following thesis, using both an animal model, and actual retrieved specimens which have failed in human service, experimental and failure analysis of silicone finger joints are presented. Fractured surfaces of retrieved silicone trapezial implants, and silicone finger joint implants were studied with both FESEM and SEM; the mode of failure for silicone trapezium is by wear polishing, whereas the finger joint implants failed either by fatigue fracture or tearing of the elastomer, or a combination of both. Thermal analysis revealed that the retrieved elastomer implants maintained its viscoelastic properties throughout the service period. In order to provide for a more functional and physiologic arthroplasty a novel finger joint (Rolamite prosthesis) is proposed using more recently developed thermoplastic polymers. The following thesis also addresses the outcome of the experimental studies of the Rolamite prosthesis in a rabbit animal model, in addition to the failure analysis of the thermoplastic polymers while in service in an in vivo synovial environment. Results of retrieved Rolamite specimens suggest that the use for thermoplastic elastomers such as block copolymer based elastomers in a synovial environment such as a mammalian joint may very well be limited.
NASA Astrophysics Data System (ADS)
Mulyana, Cukup; Muhammad, Fajar; Saad, Aswad H.; Mariah, Riveli, Nowo
2017-03-01
Storage tank component is the most critical component in LNG regasification terminal. It has the risk of failure and accident which impacts to human health and environment. Risk assessment is conducted to detect and reduce the risk of failure in storage tank. The aim of this research is determining and calculating the probability of failure in regasification unit of LNG. In this case, the failure is caused by Boiling Liquid Expanding Vapor Explosion (BLEVE) and jet fire in LNG storage tank component. The failure probability can be determined by using Fault Tree Analysis (FTA). Besides that, the impact of heat radiation which is generated is calculated. Fault tree for BLEVE and jet fire on storage tank component has been determined and obtained with the value of failure probability for BLEVE of 5.63 × 10-19 and for jet fire of 9.57 × 10-3. The value of failure probability for jet fire is high enough and need to be reduced by customizing PID scheme of regasification LNG unit in pipeline number 1312 and unit 1. The value of failure probability after customization has been obtained of 4.22 × 10-6.
A Take Stock of Turbine Blades Failure Phenomenon
NASA Astrophysics Data System (ADS)
Roy, Abhijit
2018-02-01
Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.
2008-12-01
Transmission quality measurements start once the call is established which includes low voice volume, level of noise , echo, crosstalk, and garbling...to failure, and finally, there is restorability which is a measure of how easy the system is restored upon failure. To reduce frequency of failure...Silicon and Germanium. These systems are friendly for the environment, have low - noise , have no fuel consumption, are maintenance-free, and have no
Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment
NASA Technical Reports Server (NTRS)
Bedingfield, Keith, L.; Leach, Richard D.; Alexander, Margaret B. (Editor)
1996-01-01
The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. This primer provides a brief overview of the natural space environment - definition, related programmatic issues, and effects on various spacecraft subsystems. The primary focus, however, is to catalog, through representative case histories, spacecraft failures and anomalies attributed to the natural space environment. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA).
Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N.; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi
2015-01-01
The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis–mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. PMID:25525179
Stefaniak, Katarzyna; Wróżyńska, Magdalena
2018-02-01
Protection of common natural goods is one of the greatest challenges man faces every day. Extracting and processing natural resources such as mineral deposits contributes to the transformation of the natural environment. The number of activities designed to keep balance are undertaken in accordance with the concept of integrated order. One of them is the use of comprehensive systems of tailings storage facility monitoring. Despite the monitoring, system failures still occur. The quantitative aspect of the failures illustrates both the scale of the problem and the quantitative aspect of the consequences of tailings storage facility failures. The paper presents vast possibilities provided by the global monitoring in the effective prevention of these failures. Particular attention is drawn to the potential of using multidirectional monitoring, including technical and environmental monitoring by the example of one of the world's biggest hydrotechnical constructions-Żelazny Most Tailings Storage Facility (TSF), Poland. Analysis of monitoring data allows to take preventive action against construction failures of facility dams, which can have devastating effects on human life and the natural environment.
Measurements of Ground Acoustic Environments for Small Solid Rocket Motor Firings
NASA Technical Reports Server (NTRS)
Vu, Bruce; Plotkin, Ken
2011-01-01
Mobile launcher deck and tower are exposed to severe acoustic environments during launch. These environments, if not properly managed, can weaken ground support equipment and result in structure failure. The objectives of this study were: (1) Characterize the acoustic ground environment with and without water suppression systems. (2) Validate the ground acoustic prediction based on scaling of Saturn V data. and (3) Validate a semi-empirical acoustic analysis.
Reliability analysis of airship remote sensing system
NASA Astrophysics Data System (ADS)
Qin, Jun
1998-08-01
Airship Remote Sensing System (ARSS) for obtain the dynamic or real time images in the remote sensing of the catastrophe and the environment, is a mixed complex system. Its sensor platform is a remote control airship. The achievement of a remote sensing mission depends on a series of factors. For this reason, it is very important for us to analyze reliability of ARSS. In first place, the system model was simplified form multi-stage system to two-state system on the basis of the result of the failure mode and effect analysis and the failure tree failure mode effect and criticality analysis. The failure tree was created after analyzing all factors and their interrelations. This failure tree includes four branches, e.g. engine subsystem, remote control subsystem, airship construction subsystem, flying metrology and climate subsystem. By way of failure tree analysis and basic-events classing, the weak links were discovered. The result of test running shown no difference in comparison with theory analysis. In accordance with the above conclusions, a plan of the reliability growth and reliability maintenance were posed. System's reliability are raised from 89 percent to 92 percent with the reformation of the man-machine interactive interface, the augmentation of the secondary better-groupie and the secondary remote control equipment.
Multidisciplinary research leading to utilization of extraterrestrial resources
NASA Technical Reports Server (NTRS)
1972-01-01
Progress of the research accomplished during fiscal year 1972 is reported. The summaries presented include: (1) background analysis and coordination, (2) surface properties of rock in simulated lunar environment, (3) rock failure processes, strength and elastic properties in simulated lunar environment, (4) thermal fragmentation, and thermophysical and optical properties in simulated lunar environment, and (5) use of explosives on the moon.
Hyper-X Stage Separation: Simulation Development and Results
NASA Technical Reports Server (NTRS)
Reubush, David E.; Martin, John G.; Robinson, Jeffrey S.; Bose, David M.; Strovers, Brian K.
2001-01-01
This paper provides an overview of stage separation simulation development and results for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current 14 degree of freedom stage separation simulation tool (SepSim) and results from use of the tool in a Monte Carlo analysis to evaluate the risk of failure for the separation event. Results from use of the tool show that there is only a very small risk of failure in the separation event.
Damping treatment for an aircraft hard-mounted antenna system in a vibroacoustic environment
NASA Astrophysics Data System (ADS)
Tate, Ralph E.; Rupert, Carl L.
1990-10-01
This paper discusses the design, analysis, and testing of 'add-on' damping treatments for the Band 6, 7, 8 radar antenna packages that are hard-mounted on the B-1B Aft Equipment Bay (AEB) where equipment failures are routinely occurring during take-off maneuvers at maximum throttle settings. This damage results from the intense vibroacoustical environment generated by the three-stage afterburning engines. Failure rates have been sufficiently high to warrant a 'quick fix' involving damping treatments that can be installed in a short time with minimal modification to the existing structure.
Mishima, Eikan; Fukuda, Shinji; Shima, Hisato; Hirayama, Akiyoshi; Akiyama, Yasutoshi; Takeuchi, Yoichi; Fukuda, Noriko N; Suzuki, Takehiro; Suzuki, Chitose; Yuri, Akinori; Kikuchi, Koichi; Tomioka, Yoshihisa; Ito, Sadayoshi; Soga, Tomoyoshi; Abe, Takaaki
2015-08-01
The accumulation of uremic toxins is involved in the progression of CKD. Various uremic toxins are derived from gut microbiota, and an imbalance of gut microbiota or dysbiosis is related to renal failure. However, the pathophysiologic mechanisms underlying the relationship between the gut microbiota and renal failure are still obscure. Using an adenine-induced renal failure mouse model, we evaluated the effects of the ClC-2 chloride channel activator lubiprostone (commonly used for the treatment of constipation) on CKD. Oral administration of lubiprostone (500 µg/kg per day) changed the fecal and intestinal properties in mice with renal failure. Additionally, lubiprostone treatment reduced the elevated BUN and protected against tubulointerstitial damage, renal fibrosis, and inflammation. Gut microbiome analysis of 16S rRNA genes in the renal failure mice showed that lubiprostone treatment altered their microbial composition, especially the recovery of the levels of the Lactobacillaceae family and Prevotella genus, which were significantly reduced in the renal failure mice. Furthermore, capillary electrophoresis-mass spectrometry-based metabolome analysis showed that lubiprostone treatment decreased the plasma level of uremic toxins, such as indoxyl sulfate and hippurate, which are derived from gut microbiota, and a more recently discovered uremic toxin, trans-aconitate. These results suggest that lubiprostone ameliorates the progression of CKD and the accumulation of uremic toxins by improving the gut microbiota and intestinal environment. Copyright © 2015 by the American Society of Nephrology.
1989-11-01
environments that the inlet ring encounters and verifying the failure mechanisms through analysis and laboratory test. Due to the inlet ring’s proximity to the...these environments and duty cycles were further explored through finite element analysis and laboratory testing of the baseline structure. An MSC...Layer Damping Applications J. P. Coulter, T. G. Duclos and D. N. Acker CAA Analysis of a Modified Passive Hydraulic Damper with Variable Damping
Laonapakul, Teerawat; Rakngarm Nimkerdphol, Achariya; Otsuka, Yuichi; Mutoh, Yoshiharu
2012-11-01
Four point bending tests with acoustic emission (AE) monitoring were conducted for evaluating failure behavior of the plasma-sprayed hydroxyapatite (HAp) top coat on commercially pure titanium (cp-Ti) plate with and without mixed HAp/Ti bond coat. Effect of immersion in simulated body fluid (SBF) on failure behavior of the coated specimen was also investigated by immersing the specimen in SBF. The AE patterns obtained from the bending test of the HAp coating specimens after a week immersion in SBF clearly showed the earlier stage of delamination and spallation of the coating layer compared to those without immersion in SBF. It was also found that the bond coating improved failure resistance of the HAp coating specimen compared to that without the bond coat. Four point bend fatigue tests under ambient and SBF environments were also conducted with AE monitoring during the entire fatigue test for investigating the influence of SBF environment on fatigue failure behavior of the HAp coating specimen with the mixed HAp/Ti bond coat. The specimens tested at a stress amplitude of 120 MPa under both ambient and SBF environments could survive up to 10⁷ cycles without spallation of HAp coating layer. The specimens tested under SBF environment and those tested under ambient environment after immersion in SBF showed shorter fatigue life compared to those tested under ambient environment without SBF immersion. Micro-cracks nucleated in the coating layer in the early stage of fatigue life and then propagated into the cp-Ti substrate in the intermediate stage, which unstably propagated to failure in the final stage. It was found from the XRD analysis that the dissolution of the co-existing phases and the precipitation of the HAp phase were taken place during immersion in SBF. During this process, the co-existing phases disappeared from the coating layer and the HAp phase fully occupied the coating layer. The degradation of bending strength and fatigue life of the HAp coating specimens tested under SBF environment would be induced by dissolution of the co-existing phases from the coating layer during immersion in SBF. Copyright © 2012 Elsevier Ltd. All rights reserved.
Accelerated life assessment of coating on the radar structure components in coastal environment.
Liu, Zhe; Ming, ZhiMao
2016-07-04
This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.
Application of failure mode and effect analysis in a radiology department.
Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B
2011-01-01
With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010
Decomposition-Based Failure Mode Identification Method for Risk-Free Design of Large Systems
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Stone, Robert B.; Roberts, Rory A.; Clancy, Daniel (Technical Monitor)
2002-01-01
When designing products, it is crucial to assure failure and risk-free operation in the intended operating environment. Failures are typically studied and eliminated as much as possible during the early stages of design. The few failures that go undetected result in unacceptable damage and losses in high-risk applications where public safety is of concern. Published NASA and NTSB accident reports point to a variety of components identified as sources of failures in the reported cases. In previous work, data from these reports were processed and placed in matrix form for all the system components and failure modes encountered, and then manipulated using matrix methods to determine similarities between the different components and failure modes. In this paper, these matrices are represented in the form of a linear combination of failures modes, mathematically formed using Principal Components Analysis (PCA) decomposition. The PCA decomposition results in a low-dimensionality representation of all failure modes and components of interest, represented in a transformed coordinate system. Such a representation opens the way for efficient pattern analysis and prediction of failure modes with highest potential risks on the final product, rather than making decisions based on the large space of component and failure mode data. The mathematics of the proposed method are explained first using a simple example problem. The method is then applied to component failure data gathered from helicopter, accident reports to demonstrate its potential.
Operational modes, health, and status monitoring
NASA Astrophysics Data System (ADS)
Taljaard, Corrie
2016-08-01
System Engineers must fully understand the system, its support system and operational environment to optimise the design. Operations and Support Managers must also identify the correct metrics to measure the performance and to manage the operations and support organisation. Reliability Engineering and Support Analysis provide methods to design a Support System and to optimise the Availability of a complex system. Availability modelling and Failure Analysis during the design is intended to influence the design and to develop an optimum maintenance plan for a system. The remote site locations of the SKA Telescopes place emphasis on availability, failure identification and fault isolation. This paper discusses the use of Failure Analysis and a Support Database to design a Support and Maintenance plan for the SKA Telescopes. It also describes the use of modelling to develop an availability dashboard and performance metrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homce, G.T.; Thalimer, J.R.
1996-05-01
Most electric motor predictive maintenance methods have drawbacks that limit their effectiveness in the mining environment. The US Bureau of Miens (USBM) is developing an alternative approach to detect winding insulation breakdown in advance of complete motor failure. In order to evaluate the analysis algorithms necessary for this approach, the USBM has designed and installed a system to monitor 120 electric motors in a coal preparation plant. The computer-based experimental system continuously gathers, stores, and analyzes electrical parameters for each motor. The results are then correlated to data from conventional motor-maintenance methods and in-service failures to determine if the analysismore » algorithms can detect signs of insulation deterioration and impending failure. This paper explains the on-line testing approach used in this research, and describes monitoring system design and implementation. At this writing data analysis is underway, but conclusive results are not yet available.« less
Support design and practice for floor heave of deeply buried roadway
NASA Astrophysics Data System (ADS)
Liu, Chaoke; Ren, Jianxi; Gao, Bingli; Song, Yongjun
2017-05-01
Aiming at the severe floor heave of auxiliary haulage roadway in Jianzhuang Coal Mine, the paper analysed mechanical environment and failure characteristics of auxiliary haulage roadway surrounding rock with the combination of mechanical test, theoretical analysis, industrial test, etc. The mechanical mechanism for deformation and failure of weak rock roadway in Jianzhuang Coal Mine was disclosed by establishing a roadway mechanical model under the effect of even-distributed load, which provided a basis for the design of inverted concrete arch. Based on complex failure mechanism of the roadway, a support method with combined inverted concrete arch and anchor in floor was proposed. The result shows that the ground stress environment has extremely adverse influence on the roadway, and the practice indicates that the floor heave countermeasures can effectively control the floor heave. The obtained conclusion provides a reference for the research and design on control technology of roadway floor heave in the future.
Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller
NASA Astrophysics Data System (ADS)
Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng
2015-03-01
Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.
Failure probability analysis of optical grid
NASA Astrophysics Data System (ADS)
Zhong, Yaoquan; Guo, Wei; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng
2008-11-01
Optical grid, the integrated computing environment based on optical network, is expected to be an efficient infrastructure to support advanced data-intensive grid applications. In optical grid, the faults of both computational and network resources are inevitable due to the large scale and high complexity of the system. With the optical network based distributed computing systems extensive applied in the processing of data, the requirement of the application failure probability have been an important indicator of the quality of application and an important aspect the operators consider. This paper will present a task-based analysis method of the application failure probability in optical grid. Then the failure probability of the entire application can be quantified, and the performance of reducing application failure probability in different backup strategies can be compared, so that the different requirements of different clients can be satisfied according to the application failure probability respectively. In optical grid, when the application based DAG (directed acyclic graph) is executed in different backup strategies, the application failure probability and the application complete time is different. This paper will propose new multi-objective differentiated services algorithm (MDSA). New application scheduling algorithm can guarantee the requirement of the failure probability and improve the network resource utilization, realize a compromise between the network operator and the application submission. Then differentiated services can be achieved in optical grid.
Scanning electron microscope fractography in failure analysis of steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wouters, R.; Froyen, L.
1996-04-01
For many failure cases, macroscopic examination of the fracture surface permits discrimination of fatigue fractures from overload fractures. For clarifying fatigue fractures, the practical significance of microfractography is limited to an investigation of the crack initiation areas. Scanning electron microscopy is successfully used in tracing local material abnormalities that act as fatigue crack initiators. The task for the scanning electron microscope, however, is much more substantial in failure analysis of overload fractures, especially for steels. By revealing specific fractographic characteristics, complemented by information about the material and the loading conditions, scanning electron microscopy provides a strong indication of the probablemore » cause of failure. A complete dimple fracture is indicative of acceptable bulk material properties; overloading, by subdimensioning or excessive external loading, has to be verified. The presence of cleavage fracture makes the material properties questionable if external conditions causing embrittlement are absent. Intergranular brittle fracture requires verification of grain-boundary weakening conditions--a sensitized structure, whether or not combined with a local stress state or a specific environment. The role of scanning electron microscopy in failure analysis is illustrated by case histories of the aforementioned fracture types.« less
Reliability Analysis of a Green Roof Under Different Storm Scenarios
NASA Astrophysics Data System (ADS)
William, R. K.; Stillwell, A. S.
2015-12-01
Urban environments continue to face the challenges of localized flooding and decreased water quality brought on by the increasing amount of impervious area in the built environment. Green infrastructure provides an alternative to conventional storm sewer design by using natural processes to filter and store stormwater at its source. However, there are currently few consistent standards available in North America to ensure that installed green infrastructure is performing as expected. This analysis offers a method for characterizing green roof failure using a visual aid commonly used in earthquake engineering: fragility curves. We adapted the concept of the fragility curve based on the efficiency in runoff reduction provided by a green roof compared to a conventional roof under different storm scenarios. We then used the 2D distributed surface water-groundwater coupled model MIKE SHE to model the impact that a real green roof might have on runoff in different storm events. We then employed a multiple regression analysis to generate an algebraic demand model that was input into the Matlab-based reliability analysis model FERUM, which was then used to calculate the probability of failure. The use of reliability analysis as a part of green infrastructure design code can provide insights into green roof weaknesses and areas for improvement. It also supports the design of code that is more resilient than current standards and is easily testable for failure. Finally, the understanding of reliability of a single green roof module under different scenarios can support holistic testing of system reliability.
NASA Technical Reports Server (NTRS)
Morrell, Frederick R.; Bailey, Melvin L.
1987-01-01
A vector-based failure detection and isolation technique for a skewed array of two degree-of-freedom inertial sensors is developed. Failure detection is based on comparison of parity equations with a threshold, and isolation is based on comparison of logic variables which are keyed to pass/fail results of the parity test. A multi-level approach to failure detection is used to ensure adequate coverage for the flight control, display, and navigation avionics functions. Sensor error models are introduced to expose the susceptibility of the parity equations to sensor errors and physical separation effects. The algorithm is evaluated in a simulation of a commercial transport operating in a range of light to severe turbulence environments. A bias-jump failure level of 0.2 deg/hr was detected and isolated properly in the light and moderate turbulence environments, but not detected in the extreme turbulence environment. An accelerometer bias-jump failure level of 1.5 milli-g was detected over all turbulence environments. For both types of inertial sensor, hard-over, and null type failures were detected in all environments without incident. The algorithm functioned without false alarm or isolation over all turbulence environments for the runs tested.
Aging assessment of large electric motors in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villaran, M.; Subudhi, M.
1996-03-01
Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failuremore » in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.« less
Patel, Teresa; Fisher, Stanley P.
2016-01-01
Objective This study aimed to utilize failure modes and effects analysis (FMEA) to transform clinical insights into a risk mitigation plan for intrathecal (IT) drug delivery in pain management. Methods The FMEA methodology, which has been used for quality improvement, was adapted to assess risks (i.e., failure modes) associated with IT therapy. Ten experienced pain physicians scored 37 failure modes in the following categories: patient selection for therapy initiation (efficacy and safety concerns), patient safety during IT therapy, and product selection for IT therapy. Participants assigned severity, probability, and detection scores for each failure mode, from which a risk priority number (RPN) was calculated. Failure modes with the highest RPNs (i.e., most problematic) were discussed, and strategies were proposed to mitigate risks. Results Strategic discussions focused on 17 failure modes with the most severe outcomes, the highest probabilities of occurrence, and the most challenging detection. The topic of the highest‐ranked failure mode (RPN = 144) was manufactured monotherapy versus compounded combination products. Addressing failure modes associated with appropriate patient and product selection was predicted to be clinically important for the success of IT therapy. Conclusions The methodology of FMEA offers a systematic approach to prioritizing risks in a complex environment such as IT therapy. Unmet needs and information gaps are highlighted through the process. Risk mitigation and strategic planning to prevent and manage critical failure modes can contribute to therapeutic success. PMID:27477689
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.
1985-01-01
The performance analysis results of a fault inferring nonlinear detection system (FINDS) using sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment is presented. First, a statistical analysis of the flight recorded sensor data was made in order to determine the characteristics of sensor inaccuracies. Next, modifications were made to the detection and decision functions in the FINDS algorithm in order to improve false alarm and failure detection performance under real modelling errors present in the flight data. Finally, the failure detection and false alarm performance of the FINDS algorithm were analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minute flight data. In general, the detection speed, failure level estimation, and false alarm performance showed a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed was faster for filter measurement sensors soon as MLS than for filter input sensors such as flight control accelerometers.
Space Propulsion Hazards Analysis Manual (SPHAM). Volume 2. Appendices
1988-10-01
lb. RESTRICTIVE MARKINGS UNCLASSIFIED 2a. SECURITY CLASSIFICATION AUTHORITY 3 . DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release...Volume I Chapter 2 - Requirementb and the Hazards Analysis Process .... Volume I Chapter 3 - Accident Scenarios...list of the hazardous materials that are discussed; 3 ) description of the failure scenarios; 4) type of post-accident environment that is discussed
Effect of Environment on Creep Behavior of an Oxide/Oxide CFCC with 45 deg. Fiber Orientation
2006-06-01
MPa, the elastic modulus (E) was 45 GPa, and failure strain was 0.265%. The creep -rupture results showed a decrease in creep life with increasing...failure and increased creep life . A qualitative spectral analysis provided evidence of silicon species migration from the mullite phase of the...N720/AS in 0/90˚ and ±45˚ orientation at 1100°C. Shows that high creep rates generally correspond to a short creep life .................... 17
Magnezi, Racheli; Hemi, Asaf; Hemi, Rina
2016-01-01
Background Risk management in health care systems applies to all hospital employees and directors as they deal with human life and emergency routines. There is a constant need to decrease risk and increase patient safety in the hospital environment. The purpose of this article is to review the laboratory testing procedures for parathyroid hormone and adrenocorticotropic hormone (which are characterized by short half-lives) and to track failure modes and risks, and offer solutions to prevent them. During a routine quality improvement review at the Endocrine Laboratory in Tel Hashomer Hospital, we discovered these tests are frequently repeated unnecessarily due to multiple failures. The repetition of the tests inconveniences patients and leads to extra work for the laboratory and logistics personnel as well as the nurses and doctors who have to perform many tasks with limited resources. Methods A team of eight staff members accompanied by the Head of the Endocrine Laboratory formed the team for analysis. The failure mode and effects analysis model (FMEA) was used to analyze the laboratory testing procedure and was designed to simplify the process steps and indicate and rank possible failures. Results A total of 23 failure modes were found within the process, 19 of which were ranked by level of severity. The FMEA model prioritizes failures by their risk priority number (RPN). For example, the most serious failure was the delay after the samples were collected from the department (RPN =226.1). Conclusion This model helped us to visualize the process in a simple way. After analyzing the information, solutions were proposed to prevent failures, and a method to completely avoid the top four problems was also developed. PMID:27980440
Del Mazo-Barbara, Anna; Mirabel, Clémentine; Nieto, Valentín; Reyes, Blanca; García-López, Joan; Oliver-Vila, Irene; Vives, Joaquim
2016-09-01
Computerized systems (CS) are essential in the development and manufacture of cell-based medicines and must comply with good manufacturing practice, thus pushing academic developers to implement methods that are typically found within pharmaceutical industry environments. Qualitative and quantitative risk analyses were performed by Ishikawa and Failure Mode and Effects Analysis, respectively. A process for qualification of a CS that keeps track of environmental conditions was designed and executed. The simplicity of the Ishikawa analysis permitted to identify critical parameters that were subsequently quantified by Failure Mode Effects Analysis, resulting in a list of test included in the qualification protocols. The approach presented here contributes to simplify and streamline the qualification of CS in compliance with pharmaceutical quality standards.
NASA Technical Reports Server (NTRS)
Mccann, Robert S.; Spirkovska, Lilly; Smith, Irene
2013-01-01
Integrated System Health Management (ISHM) technologies have advanced to the point where they can provide significant automated assistance with real-time fault detection, diagnosis, guided troubleshooting, and failure consequence assessment. To exploit these capabilities in actual operational environments, however, ISHM information must be integrated into operational concepts and associated information displays in ways that enable human operators to process and understand the ISHM system information rapidly and effectively. In this paper, we explore these design issues in the context of an advanced caution and warning system (ACAWS) for next-generation crewed spacecraft missions. User interface concepts for depicting failure diagnoses, failure effects, redundancy loss, "what-if" failure analysis scenarios, and resolution of ambiguity groups are discussed and illustrated.
40 CFR 86.527-90 - Test procedures, overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 86.527-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... constant volume (variable dilution) sampler. (d) Except in cases of component malfunction or failure, all... emissions measurements are made. For exhaust testing, this requires sampling and analysis of the dilution...
Availability Performance Analysis of Thermal Power Plants
NASA Astrophysics Data System (ADS)
Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.
2018-03-01
This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.
All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis.
Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L; Terés, Lluís; Baumann, Reinhard R
2016-09-21
We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement.
Foreign Object Damage to Tires Operating in a Wartime Environment
1991-11-01
barriers were successfully overcome and the method of testing employed can now be confidently used for future test needs of this type. Data Analysis ...combined variable effects. Analysis consideration involved cut types, cut depths, number of cuts, cut/hit probabilities, tire failures, and aircraft...November 1988 with data reduction and analysis continuing into October 1989. All of the cutting tests reported in this report were conducted at the
40 CFR 93.120 - Consequences of control strategy implementation plan failures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Consequences of control strategy implementation plan failures. 93.120 Section 93.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Consequences of control strategy implementation plan failures. (a) Disapprovals. (1) If EPA disapproves any...
Evaluating the operational risks of biomedical waste using failure mode and effects analysis.
Chen, Ying-Chu; Tsai, Pei-Yi
2017-06-01
The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.
Identifying the latent failures underpinning medication administration errors: an exploratory study.
Lawton, Rebecca; Carruthers, Sam; Gardner, Peter; Wright, John; McEachan, Rosie R C
2012-08-01
The primary aim of this article was to identify the latent failures that are perceived to underpin medication errors. The study was conducted within three medical wards in a hospital in the United Kingdom. The study employed a cross-sectional qualitative design. Interviews were conducted with 12 nurses and eight managers. Interviews were transcribed and subject to thematic content analysis. A two-step inter-rater comparison tested the reliability of the themes. Ten latent failures were identified based on the analysis of the interviews. These were ward climate, local working environment, workload, human resources, team communication, routine procedures, bed management, written policies and procedures, supervision and leadership, and training. The discussion focuses on ward climate, the most prevalent theme, which is conceptualized here as interacting with failures in the nine other organizational structures and processes. This study is the first of its kind to identify the latent failures perceived to underpin medication errors in a systematic way. The findings can be used as a platform for researchers to test the impact of organization-level patient safety interventions and to design proactive error management tools and incident reporting systems in hospitals. © Health Research and Educational Trust.
Process membership in asynchronous environments
NASA Technical Reports Server (NTRS)
Ricciardi, Aleta M.; Birman, Kenneth P.
1993-01-01
The development of reliable distributed software is simplified by the ability to assume a fail-stop failure model. The emulation of such a model in an asynchronous distributed environment is discussed. The solution proposed, called Strong-GMP, can be supported through a highly efficient protocol, and was implemented as part of a distributed systems software project at Cornell University. The precise definition of the problem, the protocol, correctness proofs, and an analysis of costs are addressed.
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
40 CFR 700.49 - Failure to remit fees.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Failure to remit fees. 700.49 Section 700.49 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT GENERAL Fees § 700.49 Failure to remit fees. EPA will not consider a section 5 notice to be...
How oral environment simulation affects ceramic failure behavior.
Lodi, Ediléia; Weber, Kátia R; Benetti, Paula; Corazza, Pedro H; Della Bona, Álvaro; Borba, Márcia
2018-05-01
Investigating the mechanical behavior of ceramics in a clinically simulated scenario contributes to the development of new and tougher materials, improving the clinical performance of restorations. The optimal in vitro environment for testing is unclear. The purpose of this in vitro study was to investigate the failure behavior of a leucite-reinforced glass-ceramic under compression loading and fatigue in different simulated oral environment conditions. Fifty-three plate-shaped ceramic specimens were produced from computer-aided design and computer-aided manufactured (CAD-CAM) blocks and adhesively cemented onto a dentin analog substrate. For the monotonic test (n=23), a gradual compressive load (0.5 mm/min) was applied to the center of the specimens, immersed in 37ºC water, using a universal testing machine. The initial crack was detected with an acoustic system. The fatigue test was performed in a mechanical cycling machine (37ºC water, 2 Hz) using the boundary technique (n=30). Two lifetimes were evaluated (1×10 6 and 2×10 6 cycles). Failure analysis was performed using transillumination. Weibull distribution was used to evaluate compressive load data. A cumulative damage model with an inverse power law (IPL) lifetime-stress relationship was used to fit the fatigue data. A characteristic failure load of 1615 N and a Weibull modulus of 5 were obtained with the monotonic test. The estimated probability of failure (P f ) for 1×10 6 cycles at 100 N was 31%, at 150 N it was 55%, and at 200 N it was 75%. For 2×10 6 cycles, the P f increased approximately 20% in comparison with the values predicted for 1×10 6 cycles, which was not significant. The most frequent failure mode was a radial crack from the intaglio surface. For fatigue, combined failure modes were also found (radial crack combined with cone crack or chipping). Fatigue affects the fracture load and failure mode of leucite-reinforced glass-ceramic. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
How Analysis Informs Regulation:Success and Failure of ...
How Analysis Informs Regulation:Success and Failure of Evolving Approaches to Polyfluoroalkyl Acid Contamination The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.
McHugh, Matthew D.; Ma, Chenjuan
2013-01-01
Background Provisions of the Affordable Care Act that increase hospitals’ financial accountability for preventable readmissions have heightened interest in identifying system-level interventions to reduce readmissions. Objectives To determine the relationship between hospital nursing; i.e. nurse work environment, nurse staffing levels, and nurse education, and 30-day readmissions among Medicare patients with heart failure, acute myocardial infarction, and pneumonia. Method and Design Analysis of linked data from California, New Jersey, and Pennsylvania that included information on the organization of hospital nursing (i.e., work environment, patient-to-nurse ratios, and proportion of nurses holding a BSN degree) from a survey of nurses, as well as patient discharge data, and American Hospital Association Annual Survey data. Robust logistic regression was used to estimate the relationship between nursing factors and 30-day readmission. Results Nearly one-quarter of heart failure index admissions (23.3% [n=39,954]); 19.1% (n=12,131) of myocardial infarction admissions; and 17.8% (n=25,169) of pneumonia admissions were readmitted within 30-days. Each additional patient per nurse in the average nurse’s workload was associated with a 7% higher odds of readmission for heart failure (OR=1.07, [1.05–1.09]), 6% for pneumonia patients (OR=1.06, [1.03–1.09]), and 9% for myocardial infarction patients (OR=1.09, [1.05–1.13]). Care in a hospital with a good versus poor work environment was associated with odds of readmission that were 7% lower for heart failure (OR = 0.93, [0.89–0.97]); 6% lower for myocardial infarction (OR = 0.94, [0.88–0.98]); and 10% lower for pneumonia (OR = 0.90, [0.85–0.96]) patients. Conclusions Improving nurses’ work environments and staffing may be effective interventions for preventing readmissions. PMID:23151591
Independent Orbiter Assessment (IOA): Assessment of the purge, vent and drain subsystem
NASA Technical Reports Server (NTRS)
Bynum, M. C., III
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Purge, Vent and Drain (PV and D) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter PV and D hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET disconnect.
Medication management strategies used by older adults with heart failure: A systems-based analysis.
Mickelson, Robin S; Holden, Richard J
2017-09-01
Older adults with heart failure use strategies to cope with the constraining barriers impeding medication management. Strategies are behavioral adaptations that allow goal achievement despite these constraining conditions. When strategies do not exist, are ineffective or maladaptive, medication performance and health outcomes are at risk. While constraints to medication adherence are described in literature, strategies used by patients to manage medications are less well-described or understood. Guided by cognitive engineering concepts, the aim of this study was to describe and analyze the strategies used by older adults with heart failure to achieve their medication management goals. This mixed methods study employed an empirical strategies analysis method to elicit medication management strategies used by older adults with heart failure. Observation and interview data collected from 61 older adults with heart failure and 31 caregivers were analyzed using qualitative content analysis to derive categories, patterns and themes within and across cases. Data derived thematic sub-categories described planned and ad hoc methods of strategic adaptations. Stable strategies proactively adjusted the medication management process, environment, or the patients themselves. Patients applied situational strategies (planned or ad hoc) to irregular or unexpected situations. Medication non-adherence was a strategy employed when life goals conflicted with medication adherence. The health system was a source of constraints without providing commensurate strategies. Patients strived to control their medication system and achieve goals using adaptive strategies. Future patient self-mangement research can benefit from methods and theories used to study professional work, such as strategies analysis.
Worldwide attention has recently been focused on Per- and Polyfluorinated Alkyl Substances (PFAS) due to the growing body of evidence indicating that many of these compounds are toxic, bioaccumulative, and persistent in the environment. Advances in analytical chemistry have play...
Space transportation architecture: Reliability sensitivities
NASA Technical Reports Server (NTRS)
Williams, A. M.
1992-01-01
A sensitivity analysis is given of the benefits and drawbacks associated with a proposed Earth to orbit vehicle architecture. The architecture represents a fleet of six vehicles (two existing, four proposed) that would be responsible for performing various missions as mandated by NASA and the U.S. Air Force. Each vehicle has a prescribed flight rate per year for a period of 31 years. By exposing this fleet of vehicles to a probabilistic environment where the fleet experiences failures, downtimes, setbacks, etc., the analysis involves determining the resiliency and costs associated with the fleet of specific vehicle/subsystem reliabilities. The resources required were actual observed data on the failures and downtimes associated with existing vehicles, data based on engineering judgement for proposed vehicles, and the development of a sensitivity analysis program.
Rocket nozzle thermal shock tests in an arc heater facility
NASA Technical Reports Server (NTRS)
Painter, James H.; Williamson, Ronald A.
1986-01-01
A rocket motor nozzle thermal structural test technique that utilizes arc heated nitrogen to simulate a motor burn was developed. The technique was used to test four heavily instrumented full-scale Star 48 rocket motor 2D carbon/carbon segments at conditions simulating the predicted thermal-structural environment. All four nozzles survived the tests without catastrophic or other structural failures. The test technique demonstrated promise as a low cost, controllable alternative to rocket motor firing. The technique includes the capability of rapid termination in the event of failure, allowing post-test analysis.
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Godiwala, P. M.; Morrell, F. R.
1985-01-01
This paper presents the performance analysis results of a fault inferring nonlinear detection system (FINDS) using integrated avionics sensor flight data for the NASA ATOPS B-737 aircraft in a Microwave Landing System (MLS) environment. First, an overview of the FINDS algorithm structure is given. Then, aircraft state estimate time histories and statistics for the flight data sensors are discussed. This is followed by an explanation of modifications made to the detection and decision functions in FINDS to improve false alarm and failure detection performance. Next, the failure detection and false alarm performance of the FINDS algorithm are analyzed by injecting bias failures into fourteen sensor outputs over six repetitive runs of the five minutes of flight data. Results indicate that the detection speed, failure level estimation, and false alarm performance show a marked improvement over the previously reported simulation runs. In agreement with earlier results, detection speed is faster for filter measurement sensors such as MLS than for filter input sensors such as flight control accelerometers. Finally, the progress in modifications of the FINDS algorithm design to accommodate flight computer constraints is discussed.
Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk
NASA Technical Reports Server (NTRS)
Gee, Ken; Lawrence, Scott
2013-01-01
For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.
Study on environmental test technology of LiDAR used for vehicle
NASA Astrophysics Data System (ADS)
Wang, Yi; Yang, Jianfeng; Ou, Yong
2018-03-01
With the development of intelligent driving, the LiDAR used for vehicle plays an important role in it, in some extent LiDAR is the key factor of intelligent driving. And environmental adaptability is one critical factor of quality, it relates success or failure of LiDAR. This article discusses about the environment and its effects on LiDAR used for vehicle, it includes analysis of any possible environment that vehicle experiences, and environmental test design.
de Sousa, Maria
2011-04-01
Lymphoid cell and tumor cell migration share similarities: 1. migration to specific microenvironments; 2. increased microvasculature with increased growth; 3. cell division. At the same time, contrasting aspects between the two merit attention: 1. failure of tumors to return to microvasculature quiescence; 2. failure of malignant cells to stop dividing; 3. failure of tumor cells to re-enter the circulation after returning to a non-activated phenotype. Analysis of these contrasting aspects leads to the reviewing of unexpected roles of immune cells in the tumor environment, recent work on ferroportin expression with lack of iron export by tumor cells, iron export by M2 macrophages, and deficient dendritic cells (DCs) in the tumor environment. DCs in lymph nodes have recently been found to bring lymph node vasculature to quiescence after antigen stimulation. Contrary to current dogma, the evidence is that some immune system cells in the tumor environment may be favoring regulators instead of diminishing tumor growth. In addition, recent data herein reviewed will make it difficult not to consider iron and iron gene expression as relevant components of the tumor environment. Finally, I conclude with wondering how much longer what I call the 'Hunter Paradigm' will dominate cancer research and immunology and how timely it is to acknowledge in the first decade of a new century, Mina Bissell as a pioneer in the change of that paradigm in Cancer Research. "Suppose he'd listened to the erudite committee; He would have only found where not to look" WH Auden.
MIL-HDBK-338-Environmental Conversion Table Correction
NASA Technical Reports Server (NTRS)
Hark, Frank; Novack, Steve
2017-01-01
In reliability analysis for space launch vehicles, limited data is frequently a challenge due to the pure number of launches. A common solution is to use surrogate historical data of similar components from other industries (military data). The operating environment of the common data may be different from that of the necessary target analysis. The military electronic design handbook (MIL-HDBK-338) has a table for converting Mean Time Between Failure (MTBF) data from one environment to another. However, the table has some discrepancies and rounding of complementary conversions; namely going from environment A to B does not given the same result as going from B to A. This presentation will show the discrepancies in the original conversation table, the greater than expected magnitude, the problem with the updated published table and a suggested corrected table to reference when doing MTBF data environment conversion.
NASA Technical Reports Server (NTRS)
Yew, Calinda; Stephens, Matt
2015-01-01
The JWST IEC conformal shields are mounted onto a composite frame structure that must undergo qualification testing to satisfy mission assurance requirements. The composite frame segments are bonded together at the joints using epoxy, EA 9394. The development of a test method to verify the integrity of the bonded structure at its operating environment introduces challenges in terms of requirements definition and the attainment of success criteria. Even though protoflight thermal requirements were not achieved, the first attempt in exposing the structure to cryogenic operating conditions in a thermal vacuum environment resulted in approximately 1 bonded joints failure during mechanical pull tests performed at 1.25 times the flight loads. Failure analysis concluded that the failure mode was due to adhesive cracks that formed and propagated along stress concentrated fillets as a result of poor bond squeeze-out control during fabrication. Bond repairs were made and the structures successfully re-tested with an improved LN2 immersion test method to achieve protoflight thermal requirements.
Long-term reliability study and failure analysis of quantum cascade lasers
NASA Astrophysics Data System (ADS)
Xie, Feng; Nguyen, Hong-Ky; Leblanc, Herve; Hughes, Larry; Wang, Jie; Miller, Dean J.; Lascola, Kevin
2017-02-01
Here we present lifetime test results of 4 groups of quantum cascade lasers (QCL) under various aging conditions including an accelerated life test. The total accumulated life time exceeds 1.5 million device·hours, which is the largest QCL reliability study ever reported. The longest single device aging time was 46.5 thousand hours (without failure) in the room temperature test. Four failures were found in a group of 19 devices subjected to the accelerated life test with a heat-sink temperature of 60 °C and a continuous-wave current of 1 A. Visual inspection of the laser facets of failed devices revealed an astonishing phenomenon, which has never been reported before, which manifested as a dark belt of an unknown substance appearing on facets. Although initially assumed to be contamination from the environment, failure analysis revealed that the dark substance is a thermally induced oxide of InP in the buried heterostructure semiinsulating layer. When the oxidized material starts to cover the core and blocks the light emission, it begins to cause the failure of QCLs in the accelerated test. An activation energy of 1.2 eV is derived from the dependence of the failure rate on laser core temperature. With the activation energy, the mean time to failure of the quantum cascade lasers operating at a current density of 5 kA/cm2 and heat-sink temperature of 25°C is expected to be 809 thousand hours.
All-inkjet-printed thin-film transistors: manufacturing process reliability by root cause analysis
Sowade, Enrico; Ramon, Eloi; Mitra, Kalyan Yoti; Martínez-Domingo, Carme; Pedró, Marta; Pallarès, Jofre; Loffredo, Fausta; Villani, Fulvia; Gomes, Henrique L.; Terés, Lluís; Baumann, Reinhard R.
2016-01-01
We report on the detailed electrical investigation of all-inkjet-printed thin-film transistor (TFT) arrays focusing on TFT failures and their origins. The TFT arrays were manufactured on flexible polymer substrates in ambient condition without the need for cleanroom environment or inert atmosphere and at a maximum temperature of 150 °C. Alternative manufacturing processes for electronic devices such as inkjet printing suffer from lower accuracy compared to traditional microelectronic manufacturing methods. Furthermore, usually printing methods do not allow the manufacturing of electronic devices with high yield (high number of functional devices). In general, the manufacturing yield is much lower compared to the established conventional manufacturing methods based on lithography. Thus, the focus of this contribution is set on a comprehensive analysis of defective TFTs printed by inkjet technology. Based on root cause analysis, we present the defects by developing failure categories and discuss the reasons for the defects. This procedure identifies failure origins and allows the optimization of the manufacturing resulting finally to a yield improvement. PMID:27649784
NASA Technical Reports Server (NTRS)
Gupton, Lindsey; Hyde, Steve; Mckillip, Dan; Player, Bryan; Smith, Greg
1988-01-01
A catalog of fasteners is presented for a variety of applications to be used in a lunar environment. The fastening applications targeted include: covers, panels, hatches, bearings, wheels, gears, pulleys, anchors for the lunar surface and structural fasteners (general duty preloadable). The robotic installation and removal of each fastener is presented along with a discussion of failure modes. Structural performance data is tabulated for various configurations. Potential materials for the space environment are presented along with recommendations of appropriate solid film lubricants. Three original fastener designs were found suitable for the lunar environment. A structural analysis is presented for each original design.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Special notice for repeated failure to conduct monitoring of the source water for Cryptosporidium and for failure to determine bin classification or mean Cryptosporidium level. 141.211 Section 141.211 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS ...
Reliability, Safety and Error Recovery for Advanced Control Software
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2003-01-01
For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.
Computer-aided operations engineering with integrated models of systems and operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.
Failure analysis of fractured capscrews in centrifugal coolant compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witherell, C.E.
1985-03-25
This study was made to determine the cause of failure of capscrews that retain a baffle plate in a Freon 11 centrifugal compressor manufactured by the Trane Company. The affected unit is installed in Building 490 at LLNL. The capscrews failed through hydrogen embrittlement. The source for hydrogen appears to have been corrosion. In a dissimilar metal couple of aluminum and uncoated high strength, highly-stressed steel, corrosive environments would generate hydrogen at the the steel side of the couple and embrittle it. There is no evidence that the manufacturer took precautions to prevent such an occurrence.
Academic Failure and Child-to-Parent Violence: Family Protective Factors.
Ibabe, Izaskun
2016-01-01
A reduction in academic achievement over the course of adolescence has been observed. School failure is characterized by difficulties to teaching school goals. A variety of other behavioral problems are often associated with school failure. Child-to-parent violence has been associated with different school problems. The main objective of current study was to examine the contribution of family variables (parental education level, family cohesion, and positive family discipline) on academic failure and child-to-parent violence of adolescents from a community sample. Moreover, a goal was to explore if academic failure was a valid predictor of child-to-parent violence. To this end, it has been developed a comprehensive statistical model through Structural Equation Modeling (SEM). Participants were 584 children from eight secondary schools in the Basque Country (Spain) and aged between 12 and 18. Among other scales Conflict Tactics Scale and Family Environment Scale were administrated for measuring child-to-parent violence and family cohesion environment, respectively. The structural model revealed that parental education level is a relevant protective factor against academic failure. Positive family discipline (inductive discipline, supervision, and penalty) show a significant association with child-to-parent violence and academic failure. Disciplinary practices could be more efficient to prevent child-to-parent violence or school failure if children perceive a positive environment in their home. However, these findings could be explained by inverse causality, because some parents respond to child-to-parent violence or academic failure with disciplinary strategies. School failure had indirect effects on child-to-parent violence through family cohesion. For all that, education policies should focus on parental education courses for disadvantaged families in order to generate appropriate learning environments at home and to foster improvement of parent-child relationships.
Academic Failure and Child-to-Parent Violence: Family Protective Factors
Ibabe, Izaskun
2016-01-01
A reduction in academic achievement over the course of adolescence has been observed. School failure is characterized by difficulties to teaching school goals. A variety of other behavioral problems are often associated with school failure. Child-to-parent violence has been associated with different school problems. The main objective of current study was to examine the contribution of family variables (parental education level, family cohesion, and positive family discipline) on academic failure and child-to-parent violence of adolescents from a community sample. Moreover, a goal was to explore if academic failure was a valid predictor of child-to-parent violence. To this end, it has been developed a comprehensive statistical model through Structural Equation Modeling (SEM). Participants were 584 children from eight secondary schools in the Basque Country (Spain) and aged between 12 and 18. Among other scales Conflict Tactics Scale and Family Environment Scale were administrated for measuring child-to-parent violence and family cohesion environment, respectively. The structural model revealed that parental education level is a relevant protective factor against academic failure. Positive family discipline (inductive discipline, supervision, and penalty) show a significant association with child-to-parent violence and academic failure. Disciplinary practices could be more efficient to prevent child-to-parent violence or school failure if children perceive a positive environment in their home. However, these findings could be explained by inverse causality, because some parents respond to child-to-parent violence or academic failure with disciplinary strategies. School failure had indirect effects on child-to-parent violence through family cohesion. For all that, education policies should focus on parental education courses for disadvantaged families in order to generate appropriate learning environments at home and to foster improvement of parent-child relationships. PMID:27774076
An Analysis of Initial Global Citizenship in a Liberal Arts College in Northeastern Pennsylvania
ERIC Educational Resources Information Center
Anthony, Dorothy; Miller, Patricia Bederman; Yarrish, Karen K.
2014-01-01
There are an increasing number of organizations conducting business in the global environment (Hill, 2011). Expatriate employees are frequently used and are critical for success in these assignments (Carpenter, Sanders, & Gregersen, 2000). Adjusting to a foreign culture is one reason for high failure rates of expatriates (Garonzik, Brockner…
Measuring the Impact of Technology on Nurse Workflow: A Mixed Methods Approach
ERIC Educational Resources Information Center
Cady, Rhonda Guse
2012-01-01
Background. Investment in health information technology (HIT) is rapidly accelerating. The absence of contextual or situational analysis of the environment in which HIT is incorporated makes it difficult to measure success or failure. The methodology introduced in this paper combines observational research with time-motion study to measure the…
Code of Federal Regulations, 2013 CFR
2013-07-01
... the condition(s). (2) If the failure to meet any of the conditions may endanger human health or the... notification within five days. Failures that may endanger human health or the environment include, but are not... system of a storage area. If the failure may endanger human health or the environment, you must follow...
Conservatism implications of shock test tailoring for multiple design environments
NASA Technical Reports Server (NTRS)
Baca, Thomas J.; Bell, R. Glenn; Robbins, Susan A.
1987-01-01
A method for analyzing shock conservation in test specifications that have been tailored to qualify a structure for multiple design environments is discussed. Shock test conservation is qualified for shock response spectra, shock intensity spectra and ranked peak acceleration data in terms of an Index of Conservation (IOC) and an Overtest Factor (OTF). The multi-environment conservation analysis addresses the issue of both absolute and average conservation. The method is demonstrated in a case where four laboratory tests have been specified to qualify a component which must survive seven different field environments. Final judgment of the tailored test specification is shown to require an understanding of the predominant failure modes of the test item.
Looking good, but behaving badly: leader accountability and ethics failure.
Bruhn, John G
2005-01-01
Making the bottom line is a fact of life in the business and corporate world. However, when organizations and their leaders become fixated on the bottom line and ignore values, an environment conducive to ethics failure is nurtured. Ethics failure has focused almost exclusively on the behavior of organizational leaders. However, it is the interaction of the culture of organizations and the character of their leaders that create the environment and social situations conducive to ethics failure. Although ethics failure is not totally preventable, there are usually warning signs early in the recruitment process of prospective CEOs that predict ethics failure. The author suggests that specific up-front questions be asked to ascertain the ethical fitness of prospective CEOs.
Supporting secure programming in web applications through interactive static analysis.
Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill
2014-07-01
Many security incidents are caused by software developers' failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases.
Supporting secure programming in web applications through interactive static analysis
Zhu, Jun; Xie, Jing; Lipford, Heather Richter; Chu, Bill
2013-01-01
Many security incidents are caused by software developers’ failure to adhere to secure programming practices. Static analysis tools have been used to detect software vulnerabilities. However, their wide usage by developers is limited by the special training required to write rules customized to application-specific logic. Our approach is interactive static analysis, to integrate static analysis into Integrated Development Environment (IDE) and provide in-situ secure programming support to help developers prevent vulnerabilities during code construction. No additional training is required nor are there any assumptions on ways programs are built. Our work is motivated in part by the observation that many vulnerabilities are introduced due to failure to practice secure programming by knowledgeable developers. We implemented a prototype interactive static analysis tool as a plug-in for Java in Eclipse. Our technical evaluation of our prototype detected multiple zero-day vulnerabilities in a large open source project. Our evaluations also suggest that false positives may be limited to a very small class of use cases. PMID:25685513
Deficiencies in the uterine environment and failure to support embryo development
USDA-ARS?s Scientific Manuscript database
Pregnancy failure in livestock can result from failure to fertilize the oocyte or embryonic loss during gestation. Although fertilization failure occurs, embryonic mortality has a greater contribution to pregnancy failure. The focus of this review is on cattle and factors affecting, and mechanisms r...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchibori, Akihiro; Kurihara, Akikazu; Ohshima, Hiroyuki
A multiphysics analysis system for sodium-water reaction phenomena in a steam generator of sodium-cooled fast reactors was newly developed. The analysis system consists of the mechanistic numerical analysis codes, SERAPHIM, TACT, and RELAP5. The SERAPHIM code calculates the multicomponent multiphase flow and sodium-water chemical reaction caused by discharging of pressurized water vapor. Applicability of the SERAPHIM code was confirmed through the analyses of the experiment on water vapor discharging in liquid sodium. The TACT code was developed to calculate heat transfer from the reacting jet to the adjacent tube and to predict the tube failure occurrence. The numerical models integratedmore » into the TACT code were verified through some related experiments. The RELAP5 code evaluates thermal hydraulic behavior of water inside the tube. The original heat transfer correlations were corrected for the tube rapidly heated by the reacting jet. The developed system enables evaluation of the wastage environment and the possibility of the failure propagation.« less
NASA Technical Reports Server (NTRS)
Monaghan, Mark W.; Gillespie, Amanda M.
2013-01-01
During the shuttle era NASA utilized a failure reporting system called the Problem Reporting and Corrective Action (PRACA) it purpose was to identify and track system non-conformance. The PRACA system over the years evolved from a relatively nominal way to identify system problems to a very complex tracking and report generating data base. The PRACA system became the primary method to categorize any and all anomalies from corrosion to catastrophic failure. The systems documented in the PRACA system range from flight hardware to ground or facility support equipment. While the PRACA system is complex, it does possess all the failure modes, times of occurrence, length of system delay, parts repaired or replaced, and corrective action performed. The difficulty is mining the data then to utilize that data in order to estimate component, Line Replaceable Unit (LRU), and system reliability analysis metrics. In this paper, we identify a methodology to categorize qualitative data from the ground system PRACA data base for common ground or facility support equipment. Then utilizing a heuristic developed for review of the PRACA data determine what reports identify a credible failure. These data are the used to determine inter-arrival times to perform an estimation of a metric for repairable component-or LRU reliability. This analysis is used to determine failure modes of the equipment, determine the probability of the component failure mode, and support various quantitative differing techniques for performing repairable system analysis. The result is that an effective and concise estimate of components used in manned space flight operations. The advantage is the components or LRU's are evaluated in the same environment and condition that occurs during the launch process.
Development of GENOA Progressive Failure Parallel Processing Software Systems
NASA Technical Reports Server (NTRS)
Abdi, Frank; Minnetyan, Levon
1999-01-01
A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.
An Experimental Study of Launch Vehicle Propellant Tank Fragmentation
NASA Technical Reports Server (NTRS)
Richardson, Erin; Jackson, Austin; Hays, Michael; Bangham, Mike; Blackwood, James; Skinner, Troy; Richman, Ben
2014-01-01
In order to better understand launch vehicle abort environments, Bangham Engineering Inc. (BEi) built a test assembly that fails sample materials (steel and aluminum plates of various alloys and thicknesses) under quasi-realistic vehicle failure conditions. Samples are exposed to pressures similar to those expected in vehicle failure scenarios and filmed at high speed to increase understanding of complex fracture mechanics. After failure, the fragments of each test sample are collected, catalogued and reconstructed for further study. Post-test analysis shows that aluminum samples consistently produce fewer fragments than steel samples of similar thickness and at similar failure pressures. Video analysis shows that there are several failure 'patterns' that can be observed for all test samples based on configuration. Fragment velocities are also measured from high speed video data. Sample thickness and material are analyzed for trends in failure pressure. Testing is also done with cryogenic and noncryogenic liquid loading on the samples. It is determined that liquid loading and cryogenic temperatures can decrease material fragmentation for sub-flight thicknesses. A method is developed for capture and collection of fragments that is greater than 97 percent effective in recovering sample mass, addressing the generation of tiny fragments. Currently, samples tested do not match actual launch vehicle propellant tank material thicknesses because of size constraints on test assembly, but test findings are used to inform the design and build of another, larger test assembly with the purpose of testing actual vehicle flight materials that include structural components such as iso-grid and friction stir welds.
Lessons Learned From the Analysis of the SAFOD Downhole Instrument Package.
NASA Astrophysics Data System (ADS)
Johnson, Wade; Mencin, David; Mattioli, Glen
2013-04-01
In September of 2008 a downhole instrument package (DIP) consisting of a string of seismometers and tilt meters in isolated pressure vessels (PODs) was installed in the SAFOD main borehole. This package was designed to protect the sensors from the corrosive borehole environment and to operate for two years. The SAFOD borehole is not sealed at the bottom allowing borehole gasses and fluids infiltratration. Previous short-term installations of instruments in the SAFOD main borehole had also failed as a result of corrosion of the wireline cable head. The average failure time for these installations was two weeks. The use of stainless steel tubing connected to the pressure vessels through gas tight fittings was designed to block borehole fluid and gas infiltration of the individual instruments within the PODs. Unfortunately, the DIP completely failed within a month of its installation. In October of 2010, the DIP was removed from the borehole and a failure analysis was performed. This analysis involved to following steps: 1. Analysis of data to understand timeline of failure 2. Remove instrument safely, maintaining integrity of spliced section and documenting any external clues. Test instrument at surface 3. Open PODs in a way that allows for sampling and avoids damaging instruments. 4. Chemical analysis of fluids recovered from splices and PODs. 5. Instrument failure analysis by the instrument manufacturers. The analysis found that there were several design flaws in the DIP. This included the use of motor oil to take up air space in the individual PODs, use of a large number of gas tight seals, lack of internal seals, poorly done solder joints, use of non-temperature rated sensors, and lack of management oversight. The lessons learned from the attempts to instrument the SAFOD borehole are critical to the success of future deep borehole projects.
NASA Astrophysics Data System (ADS)
Sawant, M.; Christou, A.
2012-12-01
While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, AlGaInP-MQW-DC, GaN-DH-DC, and GaN-DH-DC. Although the reported testing was carried out at different temperature and current, the reported data was converted to the present application conditions of the medical environment. Comparisons between the model data and accelerated test results carried out in the present are reported. The use of accelerating agent modeling and regression analysis was also carried out. We have used the Inverse Power Law model with the current density J as the accelerating agent and the Arrhenius model with temperature as the accelerating agent. Finally, our reported methodology is presented as an approach for analyzing LED suitability for the target medical diagnostic applications.
ERIC Educational Resources Information Center
Huffman, Martisia Denise
2012-01-01
This qualitative research study looked at 13 students who because of their backgrounds and/or family environments were considered to be high risk of educational failure, but against the odds completed a 4-year degree with honors. Analysis of the open-ended interview protocol produced 5 emergent themes: (a) self-described individual attributes that…
Moshkivska, L V; Nastenko, E A; Golovenko, O S; Lazoryshynets, V V
2015-11-01
The risk factors of pulmonary complications occurrence were analyzed in children, operated on for inborn heart failures in atrificial blood circulation environment. Pulmonary complications rate and the risk factors of their occurrence were analyzed.
NASA Astrophysics Data System (ADS)
Wu, W.; Zhou, D. J.; Adamski, D. J.; Young, D.; Wang, Y. W.
2017-09-01
A study of die wear was performed using an uncoated dual phase, 1,180 MPa ultimate tensile strength steel (DP1180) in a progressive die. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for forming operations on uncoated DP1180 steel and update OEM’s die standards based on the experimental results in the real production environment. In total, 100,800 hits were performed in manufacturing production conditions, where 33 die inserts with the combination of 10 die materials and 9 coatings were investigated. The die inserts were evaluated for surface wear using scanning electron microscopy and characterized in terms of die material and/or coating defects, failure mode, failure initiation and propagation. Surface roughness of the formed parts was characterized using a WYKO NT110 machine. The analytical analysis of the die inserts and formed parts, combined with the failure mode and service life, provide a basis for die material and coating selection for forming AHSS components. The conclusions of this study will guide the selection of die material and coatings for high-volume production of AHSS components.
Experience with flexible pipe in sour service environment: A case study (the Arabian Gulf)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Maslamani, M.J.
The suitability of a flexible pipe was evaluated on a trial basis for a lift gas line in a sour oil field in the State of Qatar, in the Arabian Gulf. Flexible pipes have been successfully used in the oil and gas industries for transportation of methanol, benzene and gas condensates in wet sweet environment at temperatures of up to 80 C. However, there is little or no information available as to its corrosion resistance in sour service wells containing 6% CO{sub 2} with 3% mole H{sub 2}S and at moderate temperatures. The present experience with a flexible pipe inmore » the gas field of Qatar has shown that under sour service conditions, the layered, composite material can suffer severe degradation leading to failure. A detailed inspection and failure analysis of the flexible pipe forms the basis of this paper. The failure demonstrates the significant effects of stress level, environmental aggressiveness, and localized hard zones in promoting Sulfide Stress Cracking (SSC). Permeability of this sour gas through the composite layer of the flexible pipe resulted in varying degree of sulfide attack and hydrogen embrittlement depending on the susceptibility of the multi layered material.« less
UAV Swarm Behavior Modeling for Early Exposure of Failure Modes
2016-09-01
Systems Center Atlantic, for his patience with me through this two-year process. He worked with my schedule and was very understanding of the...emergence of new failure modes? The MP modeling environment provides a breakdown of all potential event traces. Given that the research questions call...for the revelation of potential failure modes, MP was selected as the modeling environment because it provides a substantial set of results and data
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
The implementation and use of Ada on distributed systems with high reliability requirements
NASA Technical Reports Server (NTRS)
Knight, J. C.
1984-01-01
The use and implementation of Ada in distributed environments in which reliability is the primary concern is investigated. Emphasis is placed on the possibility that a distributed system may be programmed entirely in ADA so that the individual tasks of the system are unconcerned with which processors they are executing on, and that failures may occur in the software or underlying hardware. The primary activities are: (1) Continued development and testing of our fault-tolerant Ada testbed; (2) consideration of desirable language changes to allow Ada to provide useful semantics for failure; (3) analysis of the inadequacies of existing software fault tolerance strategies.
NASA Astrophysics Data System (ADS)
Pantazopoulos, G.; Vazdirvanidis, A.
2014-03-01
Emphasis is placed on the evaluation of corrosion failures of copper and machineable brass alloys during service. Typical corrosion failures of the presented case histories mainly focussed on stress corrosion cracking and dezincification that acted as the major degradation mechanisms in components used in piping and water supply systems. SEM assessment, coupled with EDS spectroscopy, revealed the main cracking modes together with the root-source(s) that are responsible for the damage initiation and evolution. In addition, fracture surface observations contributed to the identification of the incurred fracture mechanisms and potential environmental issues that stimulated crack initiation and propagation. Very frequently, the detection of chlorides among the corrosion products served as a suggestive evidence of the influence of working environment on passive layer destabilisation and metal dissolution.
NASA Technical Reports Server (NTRS)
Al Hassan, Mohammad; Britton, Paul; Hatfield, Glen Spencer; Novack, Steven D.
2017-01-01
Field Programmable Gate Arrays (FPGAs) integrated circuits (IC) are one of the key electronic components in today's sophisticated launch and space vehicle complex avionic systems, largely due to their superb reprogrammable and reconfigurable capabilities combined with relatively low non-recurring engineering costs (NRE) and short design cycle. Consequently, FPGAs are prevalent ICs in communication protocols and control signal commands. This paper will identify reliability concerns and high level guidelines to estimate FPGA total failure rates in a launch vehicle application. The paper will discuss hardware, hardware description language, and radiation induced failures. The hardware contribution of the approach accounts for physical failures of the IC. The hardware description language portion will discuss the high level FPGA programming languages and software/code reliability growth. The radiation portion will discuss FPGA susceptibility to space environment radiation.
Performance evaluation of the croissant production line with reparable machines
NASA Astrophysics Data System (ADS)
Tsarouhas, Panagiotis H.
2015-03-01
In this study, the analytical probability models for an automated serial production system, bufferless that consists of n-machines in series with common transfer mechanism and control system was developed. Both time to failure and time to repair a failure are assumed to follow exponential distribution. Applying those models, the effect of system parameters on system performance in actual croissant production line was studied. The production line consists of six workstations with different numbers of reparable machines in series. Mathematical models of the croissant production line have been developed using Markov process. The strength of this study is in the classification of the whole system in states, representing failures of different machines. Failure and repair data from the actual production environment have been used to estimate reliability and maintainability for each machine, workstation, and the entire line is based on analytical models. The analysis provides a useful insight into the system's behaviour, helps to find design inherent faults and suggests optimal modifications to upgrade the system and improve its performance.
Independent Orbiter Assessment (IOA): Analysis of the instrumentation subsystem
NASA Technical Reports Server (NTRS)
Howard, B. S.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Instrumentation Subsystem are documented. The Instrumentation Subsystem (SS) consists of transducers, signal conditioning equipment, pulse code modulation (PCM) encoding equipment, tape recorders, frequency division multiplexers, and timing equipment. For this analysis, the SS is broken into two major groupings: Operational Instrumentation (OI) equipment and Modular Auxiliary Data System (MADS) equipment. The OI equipment is required to acquire, condition, scale, digitize, interleave/multiplex, format, and distribute operational Orbiter and payload data and voice for display, recording, telemetry, and checkout. It also must provide accurate timing for time critical functions for crew and payload specialist use. The MADS provides additional instrumentation to measure and record selected pressure, temperature, strain, vibration, and event data for post-flight playback and analysis. MADS data is used to assess vehicle responses to the flight environment and to permit correlation of such data from flight to flight. The IOA analysis utilized available SS hardware drawings and schematics for identifying hardware assemblies and components and their interfaces. Criticality for each item was assigned on the basis of the worst-case effect of the failure modes identified.
Make Program Failures Work for You.
ERIC Educational Resources Information Center
Keller, M. Jean; Mills, Helen H.
1984-01-01
Recreation program planners can learn from program failures. Failures should not be viewed as negative statements about personnel. Examining feelings in a supportive staff environment is suggested as a technique for developing competence. (DF)
Failure life determination of oilfield elastomer seals in sour gas/dimethyl disulfide environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennelley, K.J.; Abrams, P.I.; Vicic, J.C.
1989-01-01
Previous screening tests of various oilfield elastomers in sour gas/dimethyl disulfide environments indicated that hydrogenated nitrile (HNBR), tetrafluoroethylene-propylene (TFE/P), ethylene-propylene-diene (EPDM), and perfluorinated rubber (FFKM) elastomers may perform satisfactorily in these environments. This paper describes subsequent failure life tests conducted with the subject elastomers in the sour gas/dimethyl disulfide test environment at several elevated temperatures (> 135{degrees}C). The materials were tested in the form of O-rings (size 214), which were used to seal an autoclave containing the test environment at 14 MPa gas pressure. The results were used to extrapolate time to failure at a common reference temperature of 135{degrees}C.more » The performance of EPDM and HNBR in the sour gas/dimethyl disulfide mixture substantially exceeded a projected 20-year service life at 135{degrees}C, while FFKM and TFE/P did not.« less
NASA Technical Reports Server (NTRS)
Tapia, Moiez A.
1993-01-01
The study of a comparative analysis of distinct multiplex and fault-tolerant configurations for a PLC-based safety system from a reliability point of view is presented. It considers simplex, duplex and fault-tolerant triple redundancy configurations. The standby unit in case of a duplex configuration has a failure rate which is k times the failure rate of the standby unit, the value of k varying from 0 to 1. For distinct values of MTTR and MTTF of the main unit, MTBF and availability for these configurations are calculated. The effect of duplexing only the PLC module or only the sensors and the actuators module, on the MTBF of the configuration, is also presented. The results are summarized and merits and demerits of various configurations under distinct environments are discussed.
HEMP (high-altitude electromagnetic pulse) test and analysis of selected recloser-control units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T.K.; Sands, S.H.; Tesche, F.M.
A simulated HEMP test was performed on power line recloser-control units in the ARES facility during the month of October 1988. Two types of recloser-control units were tested: an electronic control unit presently in wide use in electric power distribution systems and a new microprocessor based unit presently being introduced to electric utilities. It was found that the ARES fields did not cause reproducible disruptive failure of the equipment. Minor upsets, which were considered to be non-disruptive to the recloser operation, were observed. The test results were compared to the results of an analysis from a previous study and itmore » is concluded that the probability of disruptive failure of field operating recloser-control units subjected to a nominal unclassified HEMP environment is small. 3 refs., 30 figs., 1 tab.« less
Materials, processes, and environmental engineering network
NASA Technical Reports Server (NTRS)
White, Margo M.
1993-01-01
The Materials, Processes, and Environmental Engineering Network (MPEEN) was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. Environmental replacement materials information is a newly developed focus of MPEEN. This database is the NASA Environmental Information System, NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team, NOET, to be hazardous to the environment. An environmental replacement technology database is contained within NEIS. Environmental concerns about materials are identified by NOET, and control or replacement strategies are formed. This database also contains the usage and performance characteristics of these hazardous materials. In addition to addressing environmental concerns, MPEEN contains one of the largest materials databases in the world. Over 600 users access this network on a daily basis. There is information available on failure analysis, metals and nonmetals testing, materials properties, standard and commercial parts, foreign alloy cross-reference, Long Duration Exposure Facility (LDEF) data, and Materials and Processes Selection List data.
Intelligent on-line fault tolerant control for unanticipated catastrophic failures.
Yen, Gary G; Ho, Liang-Wei
2004-10-01
As dynamic systems become increasingly complex, experience rapidly changing environments, and encounter a greater variety of unexpected component failures, solving the control problems of such systems is a grand challenge for control engineers. Traditional control design techniques are not adequate to cope with these systems, which may suffer from unanticipated dynamic failures. In this research work, we investigate the on-line fault tolerant control problem and propose an intelligent on-line control strategy to handle the desired trajectories tracking problem for systems suffering from various unanticipated catastrophic faults. Through theoretical analysis, the sufficient condition of system stability has been derived and two different on-line control laws have been developed. The approach of the proposed intelligent control strategy is to continuously monitor the system performance and identify what the system's current state is by using a fault detection method based upon our best knowledge of the nominal system and nominal controller. Once a fault is detected, the proposed intelligent controller will adjust its control signal to compensate for the unknown system failure dynamics by using an artificial neural network as an on-line estimator to approximate the unexpected and unknown failure dynamics. The first control law is derived directly from the Lyapunov stability theory, while the second control law is derived based upon the discrete-time sliding mode control technique. Both control laws have been implemented in a variety of failure scenarios to validate the proposed intelligent control scheme. The simulation results, including a three-tank benchmark problem, comply with theoretical analysis and demonstrate a significant improvement in trajectory following performance based upon the proposed intelligent control strategy.
NASA Astrophysics Data System (ADS)
Massmann, Joel; Freeze, R. Allan
1987-02-01
This paper puts in place a risk-cost-benefit analysis for waste management facilities that explicitly recognizes the adversarial relationship that exists in a regulated market economy between the owner/operator of a waste management facility and the government regulatory agency under whose terms the facility must be licensed. The risk-cost-benefit analysis is set up from the perspective of the owner/operator. It can be used directly by the owner/operator to assess alternative design strategies. It can also be used by the regulatory agency to assess alternative regulatory policy, but only in an indirect manner, by examining the response of an owner/operator to the stimuli of various policies. The objective function is couched in terms of a discounted stream of benefits, costs, and risks over an engineering time horizon. Benefits are in the form of revenues for services provided; costs are those of construction and operation of the facility. Risk is defined as the cost associated with the probability of failure, with failure defined as the occurrence of a groundwater contamination event that violates the licensing requirements established for the facility. Failure requires a breach of the containment structure and contaminant migration through the hydrogeological environment to a compliance surface. The probability of failure can be estimated on the basis of reliability theory for the breach of containment and with a Monte-Carlo finite-element simulation for the advective contaminant transport. In the hydrogeological environment the hydraulic conductivity values are defined stochastically. The probability of failure is reduced by the presence of a monitoring network operated by the owner/operator and located between the source and the regulatory compliance surface. The level of reduction in the probability of failure depends on the probability of detection of the monitoring network, which can be calculated from the stochastic contaminant transport simulations. While the framework is quite general, the development in this paper is specifically suited for a landfill in which the primary design feature is one or more synthetic liners in parallel. Contamination is brought about by the release of a single, inorganic nonradioactive species into a saturated, high-permeability, advective, steady state horizontal flow system which can be analyzed with a two-dimensional analysis. It is possible to carry out sensitivity analyses for a wide variety of influences on this system, including landfill size, liner design, hydrogeological parameters, amount of exploration, extent of monitoring network, nature of remedial schemes, economic factors, and regulatory policy.
Environment assisted degradation mechanisms in advanced light metals
NASA Technical Reports Server (NTRS)
Gangloff, R. P.; Stoner, G. E.; Swanson, R. E.
1989-01-01
A multifaceted research program on the performance of advanced light metallic alloys in aggressive aerospace environments, and associated environmental failure mechanisms was initiated. The general goal is to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.
Failure detection and isolation analysis of a redundant strapdown inertial measurement unit
NASA Technical Reports Server (NTRS)
Motyka, P.; Landey, M.; Mckern, R.
1981-01-01
The objective of this study was to define and develop techniques for failure detection and isolation (FDI) algorithms for a dual fail/operational redundant strapdown inertial navigation system are defined and developed. The FDI techniques chosen include provisions for hard and soft failure detection in the context of flight control and navigation. Analyses were done to determine error detection and switching levels for the inertial navigation system, which is intended for a conventional takeoff or landing (CTOL) operating environment. In addition, investigations of false alarms and missed alarms were included for the FDI techniques developed, along with the analyses of filters to be used in conjunction with FDI processing. Two specific FDI algorithms were compared: the generalized likelihood test and the edge vector test. A deterministic digital computer simulation was used to compare and evaluate the algorithms and FDI systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, S.A.
This study was carried out to investigate the elevated temperature behavior of the SiC-MAS5 cross- ply (O/9O)4S ceramic matrix composite manufactured by Corning Inc. to fatigue with loading waveforms that combine the characteristics of stress rupture and high cycle fatigue. The test results were compiled in the form of S-N (cycles to failure), S-T (exposure time versus cycles to failure), S-S (energy exposure versus cycles to failure), normalized modulus degradation, strain progression, and hysteresis loop progression. From the mechanical behavior demonstrated by these curves, relationships between the effect of the environment and loading waveform were developed. In addition, a post-mortemmore » SEM analysis of the fracture surface was conducted and the results compared to the mechanical behavior.« less
The application of probabilistic design theory to high temperature low cycle fatigue
NASA Technical Reports Server (NTRS)
Wirsching, P. H.
1981-01-01
Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.
Could Acoustic Emission Testing Show a Pipe Failure in Advance?
NASA Astrophysics Data System (ADS)
Soares, S. D.; Teixeira, J. C. G.
2004-02-01
During the last 20 years PETROBRAS has been attempting to use Acoustic Emission (AE) as an inspection tool. In this period the AE concept has changed from a revolutionary method to a way of finding areas to make a complete inspection. PETROBRAS has a lot of pressure vessels inspected by AE and with other NDTs techniques to establish their relationship. In other hand, PETROBRAS R&D Center has conducted destructive hydrostatic tests in pipelines samples with artificial defects made by milling. Those tests were monitored by acoustic emission and manual ultrasonic until the complete failure of pipe sample. This article shows the results obtained and a brief proposal of analysis criteria for this environment of test.
Materials, Processes, and Environmental Engineering Network
NASA Technical Reports Server (NTRS)
White, Margo M.
1993-01-01
Attention is given to the Materials, Processes, and Environmental Engineering Network (MPEEN), which was developed as a central holding facility for materials testing information generated by the Materials and Processes Laboratory of NASA-Marshall. It contains information from other NASA centers and outside agencies, and also includes the NASA Environmental Information System (NEIS) and Failure Analysis Information System (FAIS) data. The data base is NEIS, which is accessible through MPEEN. Environmental concerns are addressed regarding materials identified by the NASA Operational Environment Team (NOET) to be hazardous to the environment. The data base also contains the usage and performance characteristics of these materials.
Importance Sampling in the Evaluation and Optimization of Buffered Failure Probability
2015-07-01
12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12 Vancouver, Canada, July 12-15, 2015...Importance Sampling in the Evaluation and Optimization of Buffered Failure Probability Marwan M. Harajli Graduate Student, Dept. of Civil and Environ...criterion is usually the failure probability . In this paper, we examine the buffered failure probability as an attractive alternative to the failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Huang, Zhenyu; Chavarría-Miranda, Daniel
Contingency analysis is a key function in the Energy Management System (EMS) to assess the impact of various combinations of power system component failures based on state estimation. Contingency analysis is also extensively used in power market operation for feasibility test of market solutions. High performance computing holds the promise of faster analysis of more contingency cases for the purpose of safe and reliable operation of today’s power grids with less operating margin and more intermittent renewable energy sources. This paper evaluates the performance of counter-based dynamic load balancing schemes for massive contingency analysis under different computing environments. Insights frommore » the performance evaluation can be used as guidance for users to select suitable schemes in the application of massive contingency analysis. Case studies, as well as MATLAB simulations, of massive contingency cases using the Western Electricity Coordinating Council power grid model are presented to illustrate the application of high performance computing with counter-based dynamic load balancing schemes.« less
ERIC Educational Resources Information Center
McDonald, Tom; Jackling, Beverley
2005-01-01
In the five years leading up to 2002 there were many significant changes in the insurance industry in Australia that brought about a range of training needs. These training needs arose from matters as diverse as mergers, increased competition, corporate failures, and legislative changes. This study includes findings from a survey of the insurance…
Mordecai, Yaniv; Dori, Dov
2017-07-17
The cyber-physical gap (CPG) is the difference between the 'real' state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer's ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015-Object Process Methodology as our conceptual modeling framework.
Reliability-based management of buried pipelines considering external corrosion defects
NASA Astrophysics Data System (ADS)
Miran, Seyedeh Azadeh
Corrosion is one of the main deteriorating mechanisms that degrade the energy pipeline integrity, due to transferring corrosive fluid or gas and interacting with corrosive environment. Corrosion defects are usually detected by periodical inspections using in-line inspection (ILI) methods. In order to ensure pipeline safety, this study develops a cost-effective maintenance strategy that consists of three aspects: corrosion growth model development using ILI data, time-dependent performance evaluation, and optimal inspection interval determination. In particular, the proposed study is applied to a cathodic protected buried steel pipeline located in Mexico. First, time-dependent power-law formulation is adopted to probabilistically characterize growth of the maximum depth and length of the external corrosion defects. Dependency between defect depth and length are considered in the model development and generation of the corrosion defects over time is characterized by the homogenous Poisson process. The growth models unknown parameters are evaluated based on the ILI data through the Bayesian updating method with Markov Chain Monte Carlo (MCMC) simulation technique. The proposed corrosion growth models can be used when either matched or non-matched defects are available, and have ability to consider newly generated defects since last inspection. Results of this part of study show that both depth and length growth models can predict damage quantities reasonably well and a strong correlation between defect depth and length is found. Next, time-dependent system failure probabilities are evaluated using developed corrosion growth models considering prevailing uncertainties where three failure modes, namely small leak, large leak and rupture are considered. Performance of the pipeline is evaluated through failure probability per km (or called a sub-system) where each subsystem is considered as a series system of detected and newly generated defects within that sub-system. Sensitivity analysis is also performed to determine to which incorporated parameter(s) in the growth models reliability of the studied pipeline is most sensitive. The reliability analysis results suggest that newly generated defects should be considered in calculating failure probability, especially for prediction of long-term performance of the pipeline and also, impact of the statistical uncertainty in the model parameters is significant that should be considered in the reliability analysis. Finally, with the evaluated time-dependent failure probabilities, a life cycle-cost analysis is conducted to determine optimal inspection interval of studied pipeline. The expected total life-cycle costs consists construction cost and expected costs of inspections, repair, and failure. The repair is conducted when failure probability from any described failure mode exceeds pre-defined probability threshold after each inspection. Moreover, this study also investigates impact of repair threshold values and unit costs of inspection and failure on the expected total life-cycle cost and optimal inspection interval through a parametric study. The analysis suggests that a smaller inspection interval leads to higher inspection costs, but can lower failure cost and also repair cost is less significant compared to inspection and failure costs.
NASA Astrophysics Data System (ADS)
Lamkin, T.; Whitney, Brian
1995-09-01
This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.
(abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder
NASA Technical Reports Server (NTRS)
Winslow, J. W.; Silveira, C. de
1993-01-01
This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.
40 CFR 195.30 - Failure to remit fee.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Failure to remit fee. 195.30 Section... PROGRAMS RADON PROFICIENCY PROGRAMS Fees § 195.30 Failure to remit fee. EPA will not process an application... appropriate remittance provided in § 195.20(a) has been received by EPA. Failure by a currently EPA-listed...
40 CFR 195.30 - Failure to remit fee.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Failure to remit fee. 195.30 Section... PROGRAMS RADON PROFICIENCY PROGRAMS Fees § 195.30 Failure to remit fee. EPA will not process an application... appropriate remittance provided in § 195.20(a) has been received by EPA. Failure by a currently EPA-listed...
40 CFR 195.30 - Failure to remit fee.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Failure to remit fee. 195.30 Section... PROGRAMS RADON PROFICIENCY PROGRAMS Fees § 195.30 Failure to remit fee. EPA will not process an application... appropriate remittance provided in § 195.20(a) has been received by EPA. Failure by a currently EPA-listed...
Multiphysics Nuclear Thermal Rocket Thrust Chamber Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
The objective of this effort is t o develop an efficient and accurate thermo-fluid computational methodology to predict environments for hypothetical thrust chamber design and analysis. The current task scope is to perform multidimensional, multiphysics analysis of thrust performance and heat transfer analysis for a hypothetical solid-core, nuclear thermal engine including thrust chamber and nozzle. The multiphysics aspects of the model include: real fluid dynamics, chemical reactivity, turbulent flow, and conjugate heat transfer. The model will be designed to identify thermal, fluid, and hydrogen environments in all flow paths and materials. This model would then be used to perform non- nuclear reproduction of the flow element failures demonstrated in the Rover/NERVA testing, investigate performance of specific configurations and assess potential issues and enhancements. A two-pronged approach will be employed in this effort: a detailed analysis of a multi-channel, flow-element, and global modeling of the entire thrust chamber assembly with a porosity modeling technique. It is expected that the detailed analysis of a single flow element would provide detailed fluid, thermal, and hydrogen environments for stress analysis, while the global thrust chamber assembly analysis would promote understanding of the effects of hydrogen dissociation and heat transfer on thrust performance. These modeling activities will be validated as much as possible by testing performed by other related efforts.
Effect of Board Thickness on Sn-Ag-Cu Joint Interconnect Mechanical Shock Performance
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Xie, Weidong
2014-12-01
The mechanical stability of solder joints with Sn-Ag-Cu alloy joints on various board thicknesses was investigated with a high G level shock environment. A test vehicle with three different board thicknesses was used for board drop shock performance tests. These vehicles have three different strain and shock level condition couples per board, and are used to identify the joint stability and failure modes based on the board responses. The results revealed that joint stability is sensitive to board thickness. The board drop shock test showed that the first failure location shifts from the corner location near the standoff to the center with increased board thickness due to the shock wave response. From analysis of the thickness variation and failure cycle number, the strain rate during the pulse strain cycle is the dominant factor, which defines the life cycle number per board thickness, and not the maximum strain value. The failure location shift and the shock performance differentiation are discussed from the perspective of maximum principal strain, cycle frequency and strain rate per cycle.
Failure to Manage Constant Change
ERIC Educational Resources Information Center
McDonald, Ann
2010-01-01
This study examines patterns of system failure (communication, typographic, material, economic, maintenance) and the resulting workarounds in signs that are intended to communicate frequently changing information in the built environment. The observed failures and workarounds in the communication of ephemeral data and the accompanying narratives…
Radiation and Plasma Environments for Lunar Missions
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.
2006-01-01
Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.
The Importance of Engine External's Health
NASA Technical Reports Server (NTRS)
Stoner, Barry L.
2006-01-01
Engine external components include all the fluid carrying, electron carrying, and support devices that are needed to operate the propulsion system. These components are varied and include: pumps, valves, actuators, solenoids, sensors, switches, heat exchangers, electrical generators, electrical harnesses, tubes, ducts, clamps and brackets. The failure of any component to perform its intended function will result in a maintenance action, a dispatch delay, or an engine in flight shutdown. The life of each component, in addition to its basic functional design, is closely tied to its thermal and dynamic environment .Therefore, to reach a mature design life, the component's thermal and dynamic environment must be understood and controlled, which can only be accomplished by attention to design analysis and testing. The purpose of this paper is to review analysis and test techniques toward achieving good component health.
Cabin Environment Physics Risk Model
NASA Technical Reports Server (NTRS)
Mattenberger, Christopher J.; Mathias, Donovan Leigh
2014-01-01
This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.
Thermal modal analysis of novel non-pneumatic mechanical elastic wheel based on FEM and EMA
NASA Astrophysics Data System (ADS)
Zhao, Youqun; Zhu, Mingmin; Lin, Fen; Xiao, Zhen; Li, Haiqing; Deng, Yaoji
2018-01-01
A combination of Finite Element Method (FEM) and Experiment Modal Analysis (EMA) have been employed here to characterize the structural dynamic response of mechanical elastic wheel (ME-Wheel) operating under a specific thermal environment. The influence of high thermal condition on the structural dynamic response of ME-Wheel is investigated. The obtained results indicate that the EMA results are in accordance with those obtained using the proposed Finite Element (FE) model, indicting the high reliability of this FE model applied in analyzing the modal of ME-Wheel working under practical thermal environment. It demonstrates that the structural dynamic response of ME-Wheel operating under a specific thermal condition can be predicted and evaluated using the proposed analysis method, which is beneficial for the dynamic optimization design of the wheel structure to avoid tire temperature related vibration failure and improve safety of tire.
Defense Standardization Program Journal. October/December 2011
2011-12-01
34 tends to yield a negative con - notation, because some people may believe that a mistake or failure has occurred. But, in fact, lessons learned are...to further refine processes or pro - cedures. In order for coalition partners and al- lies to meet the demands of a changing global environment...other things, those stakeholders conducted a SWOT (strengths, weak- nesses, opportunities, threats) analysis to help identify practicable options. The
A quantitative analysis of rock cliff erosion environments
NASA Astrophysics Data System (ADS)
Lim, M.; Rosser, N.; Petley, D. N.; Norman, E. C.; Barlow, J.
2009-12-01
The spatial patterns and temporal sequencing of failures from coastal rock cliffs are complex and typically generate weak correlations with environmental variables such as tidal inundation, wave energy, wind and rain. Consequently, understanding of rock cliff behaviour, its response to predicted changes in environmental forcing and, more specifically, the interaction between marine and climatic factors in influencing failure processes has remained limited. This work presents the results from the first attempt to characterise and quantify the conditions on coastal cliffs that lead to accelerated rates of material detachment. The rate of change in an 80 m high section of coastal rock cliffs has been surveyed annually with high-resolution terrestrial laser scanning (TLS). The rockfall data have been analysed according to a simplified source geology that exhibit distinct magnitude-frequency distributions relating to the dominance of particular failure types. An integrated network of sensors and instrumentation designed to reflect the lithological control on failure has been installed to examine both the distinction between prevailing conditions and those affecting the local cliff environment and the physical response of different rock types to micro-climatic processes. The monitoring system records near-surface rock strain, temperature, moisture and micro-seismic displacement in addition to air temperature, humidity, radiation, precipitation, water-level and three-dimensional wind characteristics. A characteristic environmental signal, unique to the cliff face material, has been identified that differs substantially from that experienced by the surrounding area; suggesting that established methods of meteorological and tidal data collection are insufficient and inappropriate to represent erosive processes. The interaction between thermo- and hydro-dynamics of the cliff environment and the physical response of the rock highlights the composite environmental effects acting on the rock mass and provides a new interpretation on the dominant controls on the behaviour of coastal rock cliffs that challenges the almost universal application of undercutting and cantilever collapse as the primary driver of rock cliff erosion.
Correlation study between vibrational environmental and failure rates of civil helicopter components
NASA Technical Reports Server (NTRS)
Alaniz, O.
1979-01-01
An investigation of two selected helicopter types, namely, the Models 206A/B and 212, is reported. An analysis of the available vibration and reliability data for these two helicopter types resulted in the selection of ten components located in five different areas of the helicopter and consisting primarily of instruments, electrical components, and other noncritical flight hardware. The potential for advanced technology in suppressing vibration in helicopters was assessed. The are still several unknowns concerning both the vibration environment and the reliability of helicopter noncritical flight components. Vibration data for the selected components were either insufficient or inappropriate. The maintenance data examined for the selected components were inappropriate due to variations in failure mode identification, inconsistent reporting, or inaccurate informaton.
Commercial Aircraft Maintenance Experience Relating to Engine External Hardware
NASA Technical Reports Server (NTRS)
Soditus, Sharon M.
2006-01-01
Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.
Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.
1999-01-01
A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.
Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System
NASA Astrophysics Data System (ADS)
Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei
2018-01-01
Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
40 CFR 86.430-78 - Vehicle failure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Vehicle failure. 86.430-78 Section 86...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.430-78 Vehicle failure. Any test vehicle which incurs...
Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.
1997-01-01
A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.
Identification of Modeling Approaches To Support Common-Cause Failure Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Wood, Richard Thomas
2015-06-01
Experience with applying current guidance and practices for common-cause failure (CCF) mitigation to digital instrumentation and control (I&C) systems has proven problematic, and the regulatory environment has been unpredictable. The impact of CCF vulnerability is to inhibit I&C modernization and, thereby, challenge the long-term sustainability of existing plants. For new plants and advanced reactor concepts, the issue of CCF vulnerability for highly integrated digital I&C systems imposes a design burden resulting in higher costs and increased complexity. The regulatory uncertainty regarding which mitigation strategies are acceptable (e.g., what diversity is needed and how much is sufficient) drives designers to adoptmore » complicated, costly solutions devised for existing plants. The conditions that constrain the transition to digital I&C technology by the U.S. nuclear industry require crosscutting research to resolve uncertainty, demonstrate necessary characteristics, and establish an objective basis for qualification of digital technology for usage in Nuclear Power Plant (NPP) I&C applications. To fulfill this research need, Oak Ridge National Laboratory is conducting an investigation into mitigation of CCF vulnerability for nuclear-qualified applications. The outcome of this research is expected to contribute to a fundamentally sound, comprehensive technical basis for establishing the qualification of digital technology for nuclear power applications. This report documents the investigation of modeling approaches for representing failure of I&C systems. Failure models are used when there is a need to analyze how the probability of success (or failure) of a system depends on the success (or failure) of individual elements. If these failure models are extensible to represent CCF, then they can be employed to support analysis of CCF vulnerabilities and mitigation strategies. Specifically, the research findings documented in this report identify modeling approaches that can be adapted to contribute to the basis for developing systematic methods, quantifiable measures, and objective criteria for evaluating CCF vulnerabilities and mitigation strategies.« less
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas
2002-01-01
Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.
Mechanical Properties of Recycled Concrete in Marine Environment
Wang, Jianxiu; Huang, Tianrong; Liu, Xiaotian; Wu, Pengcheng; Guo, Zhiying
2013-01-01
Experimental work was carried out to develop information about mechanical properties of recycled concrete (RC) in marine environment. By using the seawater and dry-wet circulation to simulate the marine environment, specimens of RC were tested with different replacement percentages of 0%, 30%, and 60% after immersing in seawater for 4, 8, 12, and 16 months, respectively. Based on the analysis of the stress-strain curves (SSCs) and compressive strength, it is revealed that RC' peak value and elastic modulus decreased with the increase of replacement percentage and corroding time in marine environment. And the failure of recycled concrete was speeded up with more obvious cracks and larger angles of 65° to 85° in the surface when compared with normal concrete. Finally, the grey model (GM) with equal time intervals was constructed to investigate the law of compressive strength of recycled concrete in marine environment, and it is found that the GM is accurate and feasible for the prediction of RC compressive strength in marine environment. PMID:23766707
Environmental protection in Italy: the emerging concept of a right to a healthful environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patti, S.
1984-07-01
Italy's concepts of private law limit the possibilities for environmental protection. The failure to use available public law effectively and the failure of other governments to solve the problem with constitutional changes, emphasizes the need to establish an effective legal means within the existing constitutional structure. A recent approach draws on the right of the individual to a healthful environment, but whether this succeeds in protecting the environment depends, to a large degree, on the ability of Italians to overcome a system characterized by economic individualism. 40 references.
An Adaptive Failure Detector Based on Quality of Service in Peer-to-Peer Networks
Dong, Jian; Ren, Xiao; Zuo, Decheng; Liu, Hongwei
2014-01-01
The failure detector is one of the fundamental components that maintain high availability of Peer-to-Peer (P2P) networks. Under different network conditions, the adaptive failure detector based on quality of service (QoS) can achieve the detection time and accuracy required by upper applications with lower detection overhead. In P2P systems, complexity of network and high churn lead to high message loss rate. To reduce the impact on detection accuracy, baseline detection strategy based on retransmission mechanism has been employed widely in many P2P applications; however, Chen's classic adaptive model cannot describe this kind of detection strategy. In order to provide an efficient service of failure detection in P2P systems, this paper establishes a novel QoS evaluation model for the baseline detection strategy. The relationship between the detection period and the QoS is discussed and on this basis, an adaptive failure detector (B-AFD) is proposed, which can meet the quantitative QoS metrics under changing network environment. Meanwhile, it is observed from the experimental analysis that B-AFD achieves better detection accuracy and time with lower detection overhead compared to the traditional baseline strategy and the adaptive detectors based on Chen's model. Moreover, B-AFD has better adaptability to P2P network. PMID:25198005
Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2008-01-01
Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.
An Energy-Based Limit State Function for Estimation of Structural Reliability in Shock Environments
Guthrie, Michael A.
2013-01-01
limit state function is developed for the estimation of structural reliability in shock environments. This limit state function uses peak modal strain energies to characterize environmental severity and modal strain energies at failure to characterize the structural capacity. The Hasofer-Lind reliability index is briefly reviewed and its computation for the energy-based limit state function is discussed. Applications to two degree of freedom mass-spring systems and to a simple finite element model are considered. For these examples, computation of the reliability index requires little effort beyond a modal analysis, but still accounts for relevant uncertainties in both the structure and environment.more » For both examples, the reliability index is observed to agree well with the results of Monte Carlo analysis. In situations where fast, qualitative comparison of several candidate designs is required, the reliability index based on the proposed limit state function provides an attractive metric which can be used to compare and control reliability.« less
Improving the durability of the optical fiber sensor based on strain transfer analysis
NASA Astrophysics Data System (ADS)
Wang, Huaping; Jiang, Lizhong; Xiang, Ping
2018-05-01
To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.
[Application of root cause analysis in healthcare].
Hsu, Tsung-Fu
2007-12-01
The main purpose of this study was to explore various aspects of root cause analysis (RCA), including its definition, rationale concept, main objective, implementation procedures, most common analysis methodology (fault tree analysis, FTA), and advantages and methodologic limitations in regard to healthcare. Several adverse events that occurred at a certain hospital were also analyzed by the author using FTA as part of this study. RCA is a process employed to identify basic and contributing causal factors underlying performance variations associated with adverse events. The rationale concept of RCA offers a systemic approach to improving patient safety that does not assign blame or liability to individuals. The four-step process involved in conducting an RCA includes: RCA preparation, proximate cause identification, root cause identification, and recommendation generation and implementation. FTA is a logical, structured process that can help identify potential causes of system failure before actual failures occur. Some advantages and significant methodologic limitations of RCA were discussed. Finally, we emphasized that errors stem principally from faults attributable to system design, practice guidelines, work conditions, and other human factors, which induce health professionals to make negligence or mistakes with regard to healthcare. We must explore the root causes of medical errors to eliminate potential RCA system failure factors. Also, a systemic approach is needed to resolve medical errors and move beyond a current culture centered on assigning fault to individuals. In constructing a real environment of patient-centered safety healthcare, we can help encourage clients to accept state-of-the-art healthcare services.
Rosen, M. A.; Sampson, J. B.; Jackson, E. V.; Koka, R.; Chima, A. M.; Ogbuagu, O. U.; Marx, M. K.; Koroma, M.; Lee, B. H.
2014-01-01
Background Anaesthesia care in developed countries involves sophisticated technology and experienced providers. However, advanced machines may be inoperable or fail frequently when placed into the austere medical environment of a developing country. Failure mode and effects analysis (FMEA) is a method for engaging local staff in identifying real or potential breakdowns in processes or work systems and to develop strategies to mitigate risks. Methods Nurse anaesthetists from the two tertiary care hospitals in Freetown, Sierra Leone, participated in three sessions moderated by a human factors specialist and an anaesthesiologist. Sessions were audio recorded, and group discussion graphically mapped by the session facilitator for analysis and commentary. These sessions sought to identify potential barriers to implementing an anaesthesia machine designed for austere medical environments—the universal anaesthesia machine (UAM)—and also engaging local nurse anaesthetists in identifying potential solutions to these barriers. Results Participating Sierra Leonean clinicians identified five main categories of failure modes (resource availability, environmental issues, staff knowledge and attitudes, and workload and staffing issues) and four categories of mitigation strategies (resource management plans, engaging and educating stakeholders, peer support for new machine use, and collectively advocating for needed resources). Conclusions We identified factors that may limit the impact of a UAM and devised likely effective strategies for mitigating those risks. PMID:24833727
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua
2014-11-01
Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper representsmore » an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation environment such as RELAP-7. • Identify the risk-significant passive components, their failure modes and anticipated rates of degradation • Incorporate surveillance and maintenance activities and their effects into the plant state and into component aging progress. • Asses aging affects in a dynamic simulation environment 1. C. L. SMITH, V. N. SHAH, T. KAO, G. APOSTOLAKIS, “Incorporating Ageing Effects into Probabilistic Risk Assessment –A Feasibility Study Utilizing Reliability Physics Models,” NUREG/CR-5632, USNRC, (2001). 2. T. ALDEMIR, “A Survey of Dynamic Methodologies for Probabilistic Safety Assessment of Nuclear Power Plants, Annals of Nuclear Energy, 52, 113-124, (2013). 3. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI and R. KINOSHITA “Reactor Analysis and Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351, (2012). 4. D. ANDERS et.al, "RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7," INL/EXT-12-25924, (2012).« less
Taheriyoun, Masoud; Moradinejad, Saber
2015-01-01
The reliability of a wastewater treatment plant is a critical issue when the effluent is reused or discharged to water resources. Main factors affecting the performance of the wastewater treatment plant are the variation of the influent, inherent variability in the treatment processes, deficiencies in design, mechanical equipment, and operational failures. Thus, meeting the established reuse/discharge criteria requires assessment of plant reliability. Among many techniques developed in system reliability analysis, fault tree analysis (FTA) is one of the popular and efficient methods. FTA is a top down, deductive failure analysis in which an undesired state of a system is analyzed. In this study, the problem of reliability was studied on Tehran West Town wastewater treatment plant. This plant is a conventional activated sludge process, and the effluent is reused in landscape irrigation. The fault tree diagram was established with the violation of allowable effluent BOD as the top event in the diagram, and the deficiencies of the system were identified based on the developed model. Some basic events are operator's mistake, physical damage, and design problems. The analytical method is minimal cut sets (based on numerical probability) and Monte Carlo simulation. Basic event probabilities were calculated according to available data and experts' opinions. The results showed that human factors, especially human error had a great effect on top event occurrence. The mechanical, climate, and sewer system factors were in subsequent tier. Literature shows applying FTA has been seldom used in the past wastewater treatment plant (WWTP) risk analysis studies. Thus, the developed FTA model in this study considerably improves the insight into causal failure analysis of a WWTP. It provides an efficient tool for WWTP operators and decision makers to achieve the standard limits in wastewater reuse and discharge to the environment.
Probabilistic inspection strategies for minimizing service failures
NASA Technical Reports Server (NTRS)
Brot, Abraham
1994-01-01
The INSIM computer program is described which simulates the 'limited fatigue life' environment in which aircraft structures generally operate. The use of INSIM to develop inspection strategies which aim to minimize service failures is demonstrated. Damage-tolerance methodology, inspection thresholds and customized inspections are simulated using the probability of failure as the driving parameter.
2017-01-01
The cyber-physical gap (CPG) is the difference between the ‘real’ state of the world and the way the system perceives it. This discrepancy often stems from the limitations of sensing and data collection technologies and capabilities, and is inevitable at some degree in any cyber-physical system (CPS). Ignoring or misrepresenting such limitations during system modeling, specification, design, and analysis can potentially result in systemic misconceptions, disrupted functionality and performance, system failure, severe damage, and potential detrimental impacts on the system and its environment. We propose CPG-Aware Modeling & Engineering (CPGAME), a conceptual model-based approach to capturing, explaining, and mitigating the CPG. CPGAME enhances the systems engineer’s ability to cope with CPGs, mitigate them by design, and prevent erroneous decisions and actions. We demonstrate CPGAME by applying it for modeling and analysis of the 1979 Three Miles Island 2 nuclear accident, and show how its meltdown could be mitigated. We use ISO-19450:2015—Object Process Methodology as our conceptual modeling framework. PMID:28714910
Optimizing Likelihood Models for Particle Trajectory Segmentation in Multi-State Systems.
Young, Dylan Christopher; Scrimgeour, Jan
2018-06-19
Particle tracking offers significant insight into the molecular mechanics that govern the behav- ior of living cells. The analysis of molecular trajectories that transition between different motive states, such as diffusive, driven and tethered modes, is of considerable importance, with even single trajectories containing significant amounts of information about a molecule's environment and its interactions with cellular structures. Hidden Markov models (HMM) have been widely adopted to perform the segmentation of such complex tracks. In this paper, we show that extensive analysis of hidden Markov model outputs using data derived from multi-state Brownian dynamics simulations can be used both for the optimization of the likelihood models used to describe the states of the system and for characterization of the technique's failure mechanisms. This analysis was made pos- sible by the implementation of parallelized adaptive direct search algorithm on a Nvidia graphics processing unit. This approach provides critical information for the visualization of HMM failure and successful design of particle tracking experiments where trajectories contain multiple mobile states. © 2018 IOP Publishing Ltd.
Najimi, Arash; Sharifirad, Gholamreza; Amini, Mehdi Mohammad; Meftagh, Sayyed Davood
2013-01-01
Educational failure is one of the most important problems in higher education institutes in Iran. This study was performed to investigate the factors affecting students' academic failure in Isfahan University of Medical Sciences. In this cross-sectional descriptive study, 280 students of Isfahan University of Medical Sciences were studied in 2009. They were chosen using multiple cluster sampling. The students' demographic characteristics and study information were collected by a valid and reliable questionnaire. Data were analyzed with SPSS (15) software. The most important factors affecting educational failure from students' point of view were: curriculum (4.23 ± 0.63), factors related to educator (3.88 ± 0.55), learning environment (3.63 ± 0.62), family factors (3.53 ± 0.6), socioeconomic factors (3.45 ± 0.69). There is a significant relationship between attitudes of students in two sexes and educator (P = 0.03) and socioeconomic environment (P = 0.003). In addition, the results did not show a significant difference between attitudes of students with age, marital status and employment status (P > 0.05). More attention to curriculum, factors related to educator and learning environment can prevent students' educational failure, in addition to preventing loss of resources and contribute to develop a more effective educational system.
Bohnhoff, Marco; Dresen, Georg; Ellsworth, William L.; Ito, Hisao; Cloetingh, Sierd; Negendank, Jörg
2010-01-01
An important discovery in crustal mechanics has been that the Earth’s crust is commonly stressed close to failure, even in tectonically quiet areas. As a result, small natural or man-made perturbations to the local stress field may trigger earthquakes. To understand these processes, Passive Seismic Monitoring (PSM) with seismometer arrays is a widely used technique that has been successfully applied to study seismicity at different magnitude levels ranging from acoustic emissions generated in the laboratory under controlled conditions, to seismicity induced by hydraulic stimulations in geological reservoirs, and up to great earthquakes occurring along plate boundaries. In all these environments the appropriate deployment of seismic sensors, i.e., directly on the rock sample, at the earth’s surface or in boreholes close to the seismic sources allows for the detection and location of brittle failure processes at sufficiently low magnitude-detection threshold and with adequate spatial resolution for further analysis. One principal aim is to develop an improved understanding of the physical processes occurring at the seismic source and their relationship to the host geologic environment. In this paper we review selected case studies and future directions of PSM efforts across a wide range of scales and environments. These include induced failure within small rock samples, hydrocarbon reservoirs, and natural seismicity at convergent and transform plate boundaries. Each example represents a milestone with regard to bridging the gap between laboratory-scale experiments under controlled boundary conditions and large-scale field studies. The common motivation for all studies is to refine the understanding of how earthquakes nucleate, how they proceed and how they interact in space and time. This is of special relevance at the larger end of the magnitude scale, i.e., for large devastating earthquakes due to their severe socio-economic impact.
Effects of hospital care environment on patient mortality and nurse outcomes.
Aiken, Linda H; Clarke, Sean P; Sloane, Douglas M; Lake, Eileen T; Cheney, Timothy
2009-01-01
The objective of this study was to analyze the net effects of nurse practice environments on nurse and patient outcomes after accounting for nurse staffing and education. Staffing and education have well-documented associations with patient outcomes, but evidence on the effect of care environments on outcomes has been more limited. Data from 10,184 nurses and 232,342 surgical patients in 168 Pennsylvania hospitals were analyzed. Care environments were measured using the practice environment scales of the Nursing Work Index. Outcomes included nurse job satisfaction, burnout, intent to leave, and reports of quality of care, as well as mortality and failure to rescue in patients. Nurses reported more positive job experiences and fewer concerns with care quality, and patients had significantly lower risks of death and failure to rescue in hospitals with better care environments. Care environment elements must be optimized alongside nurse staffing and education to achieve high quality of care.
Effects of hospital care environment on patient mortality and nurse outcomes.
Aiken, Linda H; Clarke, Sean P; Sloane, Douglas M; Lake, Eileen T; Cheney, Timothy
2008-05-01
The objective of this study was to analyze the net effects of nurse practice environments on nurse and patient outcomes after accounting for nurse staffing and education. Staffing and education have well-documented associations with patient outcomes, but evidence on the effect of care environments on outcomes has been more limited. Data from 10,184 nurses and 232,342 surgical patients in 168 Pennsylvania hospitals were analyzed. Care environments were measured using the practice environment scales of the Nursing Work Index. Outcomes included nurse job satisfaction, burnout, intent to leave, and reports of quality of care, as well as mortality and failure to rescue in patients. Nurses reported more positive job experiences and fewer concerns with care quality, and patients had significantly lower risks of death and failure to rescue in hospitals with better care environments. Care environment elements must be optimized alongside nurse staffing and education to achieve high quality of care.
Fatigue of restorative materials.
Baran, G; Boberick, K; McCool, J
2001-01-01
Failure due to fatigue manifests itself in dental prostheses and restorations as wear, fractured margins, delaminated coatings, and bulk fracture. Mechanisms responsible for fatigue-induced failure depend on material ductility: Brittle materials are susceptible to catastrophic failure, while ductile materials utilize their plasticity to reduce stress concentrations at the crack tip. Because of the expense associated with the replacement of failed restorations, there is a strong desire on the part of basic scientists and clinicians to evaluate the resistance of materials to fatigue in laboratory tests. Test variables include fatigue-loading mode and test environment, such as soaking in water. The outcome variable is typically fracture strength, and these data typically fit the Weibull distribution. Analysis of fatigue data permits predictive inferences to be made concerning the survival of structures fabricated from restorative materials under specified loading conditions. Although many dental-restorative materials are routinely evaluated, only limited use has been made of fatigue data collected in vitro: Wear of materials and the survival of porcelain restorations has been modeled by both fracture mechanics and probabilistic approaches. A need still exists for a clinical failure database and for the development of valid test methods for the evaluation of composite materials.
A Critical Analysis of the Conventionally Employed Creep Lifing Methods
Abdallah, Zakaria; Gray, Veronica; Whittaker, Mark; Perkins, Karen
2014-01-01
The deformation of structural alloys presents problems for power plants and aerospace applications due to the demand for elevated temperatures for higher efficiencies and reductions in greenhouse gas emissions. The materials used in such applications experience harsh environments which may lead to deformation and failure of critical components. To avoid such catastrophic failures and also increase efficiency, future designs must utilise novel/improved alloy systems with enhanced temperature capability. In recognising this issue, a detailed understanding of creep is essential for the success of these designs by ensuring components do not experience excessive deformation which may ultimately lead to failure. To achieve this, a variety of parametric methods have been developed to quantify creep and creep fracture in high temperature applications. This study reviews a number of well-known traditionally employed creep lifing methods with some more recent approaches also included. The first section of this paper focuses on predicting the long-term creep rupture properties which is an area of interest for the power generation sector. The second section looks at pre-defined strains and the re-production of full creep curves based on available data which is pertinent to the aerospace industry where components are replaced before failure. PMID:28788623
NASA Astrophysics Data System (ADS)
Jules, Kenol; Lin, Paul P.
2007-06-01
With the International Space Station currently operational, a significant amount of acceleration data is being down-linked, processed and analyzed daily on the ground on a continuous basis for the space station reduced gravity environment characterization, the vehicle design requirements verification and science data collection. To help understand the impact of the unique spacecraft environment on the science data, an artificial intelligence monitoring system was developed, which detects in near real time any change in the reduced gravity environment susceptible to affect the on-going experiments. Using a dynamic graphical display, the monitoring system allows science teams, at any time and any location, to see the active vibration disturbances, such as pumps, fans, compressor, crew exercise, re-boost and extra-vehicular activities that might impact the reduced gravity environment the experiments are exposed to. The monitoring system can detect both known and unknown vibratory disturbance activities. It can also perform trend analysis and prediction by analyzing past data over many increments (an increment usually lasts 6 months) collected onboard the station for selected disturbances. This feature can be used to monitor the health of onboard mechanical systems to detect and prevent potential systems failures. The monitoring system has two operating modes: online and offline. Both near real-time on-line vibratory disturbance detection and off-line detection and trend analysis are discussed in this paper.
NASA Astrophysics Data System (ADS)
Hangx, Suzanne; Brantut, Nicolas
2016-04-01
Mechanisms such as grain rearrangement, coupled with elastic deformation, grain breakage, grain rearrangement, grain rotation, and intergranular sliding, play a key role in determining porosity and permeability reduction during burial of clastic sediments. Similarly, in poorly consolidated, highly porous sands and sandstones, grain rotation, intergranular sliding, grain failure, and pore collapse often lead to significant reduction in porosity through the development of compaction bands, with the reduced porosity and permeability of such bands producing natural barriers to flow within reservoir rocks. Such time-independent compaction processes operating in highly porous water- and hydrocarbon-bearing clastic reservoirs can exert important controls on production-related reservoir deformation, subsidence, and induced seismicity. We performed triaxial compression experiments on sand aggregates consisting of well-rounded Ottawa sand (d = 300-400 μm; φ = 36.1-36.4%) at room temperature, to systematically investigate the effect of confining pressure (Pceff = 5-100 MPa), strain rate (10-6-10-4 s-1) and chemical environment (decane vs. water; Pf = 5 MPa) on compaction. For a limited number of experiments grain size distribution (d = 180-500 μm) and grain shape (subangular Beaujean sand; d = 180-300 μm) were varied to study their effect. Acoustic emission statistics and location, combined with microstructural and grain size analysis, were used to verify the operating microphysical compaction mechanisms. All tests showed significant pre-compaction during the initial hydrostatic (set-up) phase, with quasi-elastic loading behaviour accompanied by permanent deformation during the differential loading stage. This permanent volumetric strain involved elastic grain contact distortion, particle rearrangement, and grain failure. From the acoustic data and grain size analysis, it was evident that at low confining pressure grain rearrangement controlled compaction, with grain failure being present but occurring to a relatively limited extent. Acoustic emission localization showed that failure was focussed along a broad shear plane. At higher confining pressure pervasive grain failure clearly accommodated compaction, though no strain localization was observed and failure appeared to be through cataclastic flow. Chemical environment, i.e. chemically inert decane vs. water as a pore fluid, had no significant effect on compaction in the strain rate range tested. Grain size distribution or grain shape also appeared to not affect the observed mechanical behaviour. Our results can be used to better understand the compaction behaviour of poorly consolidated sandstones. Future research will focus on understanding the effect of cementation on strain localization in deforming artificial Ottawa sandstone.
Causal attribution for success and failure in mathematics among MDAB pre-diploma students
NASA Astrophysics Data System (ADS)
Maidinsah, Hamidah; Embong, Rokiah; Wahab, Zubaidah Abd
2014-07-01
The Program Mengubah Destini Anak Bangsa (MDAB) is a pre-diploma programme catering to SPM school leavers who do not meet the minimum requirement to enter any of UiTM diploma programmes. The study aims to evaluate the perceptions of MDAB students toward the main causal attribution factors underlying students' success and failure in mathematics. Research sample comprised of 482 students from five UiTM branch campuses. Research instrument used was a set of GALUS questionnaire consisting of 36 items based on the Weiner Attribution Theory. Four causal attributions factors for success and failures evaluated are ability, effort, question difficulty and environment. GALUS reliability index was 0.93. The research found that effort appears to be the main causal attribution factor in students' success and failure in mathematics, followed by environment, question difficulty and ability. High achiever students strongly agree that the ability factor influenced their success while low achiever students strongly agree that all attributing factors influenced their failures in mathematics.
Clinical models of cardiovascular regulation after weightlessness
NASA Technical Reports Server (NTRS)
Robertson, D.; Jacob, G.; Ertl, A.; Shannon, J.; Mosqueda-Garcia, R.; Robertson, R. M.; Biaggioni, I.
1996-01-01
After several days in microgravity, return to earth is attended by alterations in cardiovascular function. The mechanisms underlying these effects are inadequately understood. Three clinical disorders of autonomic function represent possible models of this abnormal cardiovascular function after spaceflight. They are pure autonomic failure, baroreflex failure, and orthostatic intolerance. In pure autonomic failure, virtually complete loss of sympathetic and parasympathetic function occurs along with profound and immediate orthostatic hypotension. In baroreflex failure, various degrees of debuffering of blood pressure occur. In acute and complete baroreflex failure, there is usually severe hypertension and tachycardia, while with less complete and more chronic baroreflex impairment, orthostatic abnormalities may be more apparent. In orthostatic intolerance, blood pressure fall is minor, but orthostatic symptoms are prominent and tachycardia frequently occurs. Only careful autonomic studies of human subjects in the microgravity environment will permit us to determine which of these models most closely reflects the pathophysiology brought on by a period of time in the microgravity environment.
Unified continuum damage model for matrix cracking in composite rotor blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollayi, Hemaraju; Harursampath, Dineshkumar
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less
Probabilistic sizing of laminates with uncertainties
NASA Technical Reports Server (NTRS)
Shah, A. R.; Liaw, D. G.; Chamis, C. C.
1993-01-01
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.
NASA Technical Reports Server (NTRS)
Biesiadny, T. J.; Mcdonald, G. E.; Hendricks, R. C.; Little, J. K.; Robinson, R. A.; Klann, G. A.; Lassow, E. S.
1985-01-01
The results of an experimental and analytical evaluation of ceramic turbine tip shrouds within a small turbine engine operating environment are presented. The ceramic shrouds were subjected to 1001 cycles between idle and high power and steady-state conditions for a total of 57.8 engine hr. Posttest engine inspection revealed mud-flat surface cracking, which was attributed to microcracking under tension with crack penetration to the ceramic and bond coat interface. Sections and micrographs tend to corroborate the thesis. The engine test data provided input to a thermomechanical analysis to predict temperature and stress profiles throughout the ceramic gas-path seal. The analysis predicts cyclic thermal stresses large enough to cause the seal to fail. These stresses are, however, mitigated by inelastic behavior of the shroud materials and by the microfracturing that tensile stresses produce. Microfracturing enhances shroud longevity during early life but provides the failure mechanism during life but provides the failure mechanism during extended life when coupled with the time dependent inelastic materials effects.
Comments on "Failures in detecting volcanic ash from a satellite-based technique"
Prata, F.; Bluth, G.; Rose, B.; Schneider, D.; Tupper, A.
2001-01-01
The recent paper by Simpson et al. [Remote Sens. Environ. 72 (2000) 191.] on failures to detect volcanic ash using the 'reverse' absorption technique provides a timely reminder of the danger that volcanic ash presents to aviation and the urgent need for some form of effective remote detection. The paper unfortunately suffers from a fundamental flaw in its methodology and numerous errors of fact and interpretation. For the moment, the 'reverse' absorption technique provides the best means for discriminating volcanic ash clouds from meteorological clouds. The purpose of our comment is not to defend any particular algorithm; rather, we point out some problems with Simpson et al.'s analysis and re-state the conditions under which the 'reverse' absorption algorithm is likely to succeed. ?? 2001 Elsevier Science Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sumery, N. F. Mohd; Lo, S. Z.; Salim, A. M. A.
2017-10-01
The contribution of lacustrine environment as the hydrocarbon reservoir has been widely known. However, despite its growing importance, the lacustrine petroleum geology has received far less attention than marine due to its sedimentological complexity. This study therefore aims in developing an understanding of the unique aspects of lacustrine reservoirs which eventually impacts the future exploration decisions. Hydrocarbon production in Doba Basin, particularly the northern boundary, for instance, has not yet succeeded due to the unawareness of its depositional environment. The drilling results show that the problems were due to the: radioactive sand and waxy oil/formation damage, which all are related to the lacustrine depositional environment. Detailed study of geological and petrophysical integration on wireline logs and petrographic thin sections analysis of this environment helps in distinguishing reservoir and non-reservoir areas and determining the possible mechanism causing the failed DST results. The interpretations show that the correlation of all types> of logs and rho matrix analysis are capable in identifying sand and shale bed despite of the radioactive sand present. The failure of DST results were due to the presence of arkose in sand and waxy oil in reservoir bed. This had been confirmed by the petrographic thin section analysis where the arkose has mineral twinning effect indicate feldspar and waxy oil showing bright colour under fluorescent light. Understanding these special lacustrine environment characteristics and features will lead to a better interpretation of hydrocarbon prospectivity for future exploration.
Enhancing the Reliability of Head Nodes in Underwater Sensor Networks
Min, Hong; Cho, Yookun; Heo, Junyoung
2012-01-01
Underwater environments are quite different from terrestrial environments in terms of the communication media and operating conditions associated with those environments. In underwater sensor networks, the probability of node failure is high because sensor nodes are deployed in harsher environments than ground-based networks. The sensor nodes are surrounded by salt water and moved around by waves and currents. Many studies have focused on underwater communication environments in an effort to improve the data transmission throughput. In this paper, we present a checkpointing scheme for the head nodes to quickly recover from a head node failure. Experimental results show that the proposed scheme enhances the reliability of the networks and makes them more efficient in terms of energy consumption and the recovery latency compared to the previous scheme without checkpointing. PMID:22438707
School Liability: Student to Student Injuries Involving Students with Disabilities.
ERIC Educational Resources Information Center
Bettenhausen, Sherrie
In the absence of immunity, courts have held schools and school personnel liable for personal injury by a student with a disability that resulted from negligent failure to provide a reasonable safe environment, failure to warn of known hazards, or failure to provide adequate supervision. Case law is presented to demonstrate the extent that school…
Failure-Avoidance: Parenting, the Achievement Environment of the Home and Strategies for Reduction
ERIC Educational Resources Information Center
Thompson, Ted
2004-01-01
This paper draws together the as yet nascent literature on the development of failure-avoidant patterns of behaviour. These are behaviours intended to minimise risk to self-worth in the event of failure, thereby avoiding the negative impact of poor performance in terms of damage to self-worth. Self-worth protection, self-handicapping, impostor…
Orbital debris hazard insights from spacecraft anomalies studies
NASA Astrophysics Data System (ADS)
McKnight, Darren S.
2016-09-01
Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.
NASA Technical Reports Server (NTRS)
1995-01-01
This report summarizes past corrosion issues experienced by the NASA space shuttle orbiter fleet. Design considerations for corrosion prevention and inspection methods are reviewed. Significant corrosion issues involving structures and subsystems are analyzed, including corrective actions taken. Notable successes and failures of corrosion mitigation systems and procedures are discussed. The projected operating environment used for design is contrasted with current conditions in flight and conditions during ground processing.
Aiken, Linda H.; Cimiotti, Jeannie P.; Sloane, Douglas M.; Smith, Herbert L.; Flynn, Linda; Neff, Donna F.
2011-01-01
Context Better hospital nurse staffing, more educated nurses, and improved nurse work environments have been shown to be associated with lower hospital mortality. Little is known about whether and under what conditions each type of investment works better to improve outcomes. Objective To determine the conditions under which the impact of hospital nurse staffing, nurse education, and work environment are associated with patient outcomes. Design, Setting, and Participants Outcomes of 665 hospitals in four large states were studied through linked data from hospital discharge abstracts for 1,262,120 general, orthopedic, and vascular surgery patients, a random sample of 39,038 hospital staff nurses, and American Hospital Association data. Main outcome measures 30-day inpatient mortality and failure-to-rescue. Results The effect of decreasing workloads by one patient/nurse on deaths and failure-to-rescue is virtually nil in hospitals with poor work environments, but decreases the odds on both deaths and failures in hospitals with average environments by 4%, and in hospitals with the best environments by 9 and 10% respectively. The effect of 10% more BSN nurses decreases the odds on both outcomes in all hospitals, regardless of their work environment, by roughly 4%. Conclusions While the positive effect of increasing percentages of BSN nurses is consistent across all hospitals, lowering the patient-to-nurse ratios markedly improves patient outcomes in hospitals with good work environments, slightly improves them in hospitals with average environments, and has no effect in hospitals with poor environments. PMID:21945978
Fracture Mechanics Testing of Titanium 6AL-4V in AF-M315E
NASA Technical Reports Server (NTRS)
Sampson, J. W.; Martinez, J.; McLean, C.
2016-01-01
The Green Propellant Infusion Mission (GPIM) will demonstrate the performance of AF-M315E monopropellant on orbit. Flight certification requires a safe-life analysis of the titanium alloy fuel tank to ensure inherent processing flaws will not cause failure during the design life of the tank. Material property inputs for this analysis require testing to determine the stress intensity factor for environment-assisted cracking (KEAC) of Ti 6Al-4V in combination with the AF-M315E monopropellant. Testing of single-edge notched, or SE(B), specimens representing the bulk tank membrane and weld material were performed in accordance with ASTM E1681. Specimens with fatigue pre-cracks were loaded into test fixtures so that the crack tips were exposed to AF-M315E at 50 C for a duration of 1,000 hours. Specimens that did not fail during exposure were opened to inspect the crack surfaces for evidence of crack growth. The threshold stress intensity value, KEAC, is the highest applied stress intensity that produced neither a failure of the specimen during the exposure nor showed evidence of crack growth. The threshold stress intensity factor for environment-assisted cracking of the Ti 6Al-4V forged tank material was found to be at least 22 ksivin and at least 31 ksivin for the weld material when exposed to AF-M315E monopropellant.
Model Based Mission Assurance: Emerging Opportunities for Robotic Systems
NASA Technical Reports Server (NTRS)
Evans, John W.; DiVenti, Tony
2016-01-01
The emergence of Model Based Systems Engineering (MBSE) in a Model Based Engineering framework has created new opportunities to improve effectiveness and efficiencies across the assurance functions. The MBSE environment supports not only system architecture development, but provides for support of Systems Safety, Reliability and Risk Analysis concurrently in the same framework. Linking to detailed design will further improve assurance capabilities to support failures avoidance and mitigation in flight systems. This also is leading new assurance functions including model assurance and management of uncertainty in the modeling environment. Further, the assurance cases, a structured hierarchal argument or model, are emerging as a basis for supporting a comprehensive viewpoint in which to support Model Based Mission Assurance (MBMA).
NASA Technical Reports Server (NTRS)
Suh, Jong-ook
2013-01-01
The Xilinx Virtex 4QV and 5QV (V4 and V5) are next-generation field-programmable gate arrays (FPGAs) for space applications. However, there have been concerns within the space community regarding the non-hermeticity of V4/V5 packages; polymeric materials such as the underfill and lid adhesive will be directly exposed to the space environment. In this study, reliability concerns associated with the non-hermeticity of V4/V5 packages were investigated by studying properties and behavior of the underfill and the lid adhesvie materials used in V4/V5 packages.
NASA Astrophysics Data System (ADS)
Alsem, D. H.; Timmerman, R.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.
2007-01-01
Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up to 1012cycles), there is still an on-going debate on the precise mechanisms involved. We show here that for devices fabricated in the multiuser microelectromechanical system process (MUMPs) foundry and Sandia Ultra-planar, Multi-level MEMS Technology (SUMMiT V™) process and tested under equi-tension/compression loading at ˜40kHz in different environments, stress-lifetime data exhibit similar trends in fatigue behavior in ambient room air, shorter lifetimes in higher relative humidity environments, and no fatigue failure at all in high vacuum. The transmission electron microscopy of the surface oxides in the test samples shows a four- to sixfold thickening of the surface oxide at stress concentrations after fatigue failure, but no thickening after overload fracture in air or after fatigue cycling in vacuo. We find that such oxide thickening and premature fatigue failure (in air) occur in devices with initial oxide thicknesses of ˜4nm (SUMMiT V™) as well as in devices with much thicker initial oxides ˜20nm (MUMPs). Such results are interpreted and explained by a reaction-layer fatigue mechanism. Specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure of the entire device. The entirety of the evidence presented here strongly indicates that the reaction-layer fatigue mechanism is the governing mechanism for fatigue failure in micron-scale polycrystalline silicon thin films.
NASA Technical Reports Server (NTRS)
Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.
2014-01-01
The theory of System Health Management (SHM) and of its operational subset Fault Management (FM) states that FM is implemented as a "meta" control loop, known as an FM Control Loop (FMCL). The FMCL detects that all or part of a system is now failed, or in the future will fail (that is, cannot be controlled within acceptable limits to achieve its objectives), and takes a control action (a response) to return the system to a controllable state. In terms of control theory, the effectiveness of each FMCL is estimated based on its ability to correctly estimate the system state, and on the speed of its response to the current or impending failure effects. This paper describes how this theory has been successfully applied on the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program to quantitatively estimate the effectiveness of proposed abort triggers so as to select the most effective suite to protect the astronauts from catastrophic failure of the SLS. The premise behind this process is to be able to quantitatively provide the value versus risk trade-off for any given abort trigger, allowing decision makers to make more informed decisions. All current and planned crewed launch vehicles have some form of vehicle health management system integrated with an emergency launch abort system to ensure crew safety. While the design can vary, the underlying principle is the same: detect imminent catastrophic vehicle failure, initiate launch abort, and extract the crew to safety. Abort triggers are the detection mechanisms that identify that a catastrophic launch vehicle failure is occurring or is imminent and cause the initiation of a notification to the crew vehicle that the escape system must be activated. While ensuring that the abort triggers provide this function, designers must also ensure that the abort triggers do not signal that a catastrophic failure is imminent when in fact the launch vehicle can successfully achieve orbit. That is, the abort triggers must have low false negative rates to be sure that real crew-threatening failures are detected, and also low false positive rates to ensure that the crew does not abort from non-crew-threatening launch vehicle behaviors. The analysis process described in this paper is a compilation of over six years of lessons learned and refinements from experiences developing abort triggers for NASA's Constellation Program (Ares I Project) and the SLS Program, as well as the simultaneous development of SHM/FM theory. The paper will describe the abort analysis concepts and process, developed in conjunction with SLS Safety and Mission Assurance (S&MA) to define a common set of mission phase, failure scenario, and Loss of Mission Environment (LOME) combinations upon which the SLS Loss of Mission (LOM) Probabilistic Risk Assessment (PRA) models are built. This abort analysis also requires strong coordination with the Multi-Purpose Crew Vehicle (MPCV) and SLS Structures and Environments (STE) to formulate a series of abortability tables that encapsulate explosion dynamics over the ascent mission phase. The design and assessment of abort conditions and triggers to estimate their Loss of Crew (LOC) Benefits also requires in-depth integration with other groups, including Avionics, Guidance, Navigation and Control(GN&C), the Crew Office, Mission Operations, and Ground Systems. The outputs of this analysis are a critical input to SLS S&MA's LOC PRA models. The process described here may well be the first full quantitative application of SHM/FM theory to the selection of a sensor suite for any aerospace system.
Cycles till failure of silver-zinc cells with competing failure modes - Preliminary data analysis
NASA Technical Reports Server (NTRS)
Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.
1980-01-01
The data analysis of cycles to failure of silver-zinc electrochemical cells with competing failure modes is presented. The test ran 129 cells through charge-discharge cycles until failure; preliminary data analysis consisted of response surface estimate of life. Batteries fail through low voltage condition and an internal shorting condition; a competing failure modes analysis was made using maximum likelihood estimation for the extreme value life distribution. Extensive residual plotting and probability plotting were used to verify data quality and selection of model.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Sheffler, K. D.; Demasi, J. T.
1985-01-01
A methodology was established to predict thermal barrier coating life in an environment simulative of that experienced by gas turbine airfoils. Specifically, work is being conducted to determine failure modes of thermal barrier coatings in the aircraft engine environment. Analytical studies coupled with appropriate physical and mechanical property determinations are being employed to derive coating life prediction model(s) on the important failure mode(s). An initial review of experimental and flight service components indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the metal-ceramic interface. Initial results from a laboratory test program designed to study the influence of various driving forces such as temperature, thermal cycle frequency, environment, and coating thickness, on ceramic coating spalling life suggest that bond coat oxidation damage at the metal-ceramic interface contributes significantly to thermomechanical cracking in the ceramic layer. Low cycle rate furnace testing in air and in argon clearly shows a dramatic increase of spalling life in the non-oxidizing environments.
Daker-White, Gavin; Hays, Rebecca; Esmail, Aneez; Minor, Brian; Barlow, Wendy; Brown, Benjamin; Blakeman, Thomas; Bower, Peter
2014-01-01
Introduction Increasing numbers of older people are living with multiple long-term health conditions but global healthcare systems and clinical guidelines have traditionally focused on the management of single conditions. Having two or more long-term conditions, or ‘multimorbidity’, is associated with a range of adverse consequences and poor outcomes and could put patients at increased risk of safety failures. Traditionally, most research into patient safety failures has explored hospital or inpatient settings. Much less is known about patient safety failures in primary care. Our core aims are to understand the mechanisms by which multimorbidity leads to safety failures, to explore the different ways in which patients and services respond (or fail to respond), and to identify opportunities for intervention. Methods and analysis We plan to undertake an applied ethnographic study of patients with multimorbidity. Patients’ interactions and environments, relevant to their healthcare, will be studied through observations, diary methods and semistructured interviews. A framework, based on previous studies, will be used to organise the collection and analysis of field notes, observations and other qualitative data. This framework includes the domains: access breakdowns, communication breakdowns, continuity of care errors, relationship breakdowns and technical errors. Ethics and dissemination Ethical approval was received from the National Health Service Research Ethics Committee for Wales. An individual case study approach is likely to be most fruitful for exploring the mechanisms by which multimorbidity leads to safety failures. A longitudinal and multiperspective approach will allow for the constant comparison of patient, carer and healthcare worker expectations and experiences related to the provision, integration and management of complex care. This data will be used to explore ways of engaging patients and carers more in their own care using shared decision-making, patient empowerment or other relevant models. PMID:25138807
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younge, K C; Lee, C I; Feng, M
2015-06-15
Purpose: To improve the safety and quality of a dual-vendor microsphere brachytherapy program with failure mode and effects analysis (FMEA). Methods: A multidisciplinary team including physicists, dosimetrists, a radiation oncologist, an interventional radiologist, and radiation safety personnel performed an FMEA for our dual-vendor microsphere brachytherapy program employing SIR-Spheres (Sirtex Medical Limited, Australia) and Theraspheres (BTG, England). We developed a program process tree and step-by-step instructions which were used to generate a comprehensive list of failure modes. These modes were then ranked according to severity, occurrence rate, and detectability. Risk priority numbers (RPNs) were calculated by multiplying these three scores together.more » Three different severity scales were created: one each for harmful effects to the patient, staff, or the institution. Each failure mode was ranked on one or more of these scales. Results: The group identified 164 failure modes for the microsphere program. 113 of these were ranked using the patient severity scale, 52 using the staff severity scale, and 50 using the institution severity scale. The highest ranked items on the patient severity scale were an error in the automated dosimetry worksheet (RPN = 297.5), and the incorrect target specified on the planning study (RPN = 135). Some failure modes ranked differently between vendors, especially those corresponding to dose vial preparation because of the different methods used. Based on our findings, we made several improvements to our QA program, including documentation to easily identify which product is being used, an additional hand calculation during planning, and reorganization of QA steps before treatment delivery. We will continue to periodically review and revise the FMEA. Conclusion: We have applied FMEA to our dual-vendor microsphere brachytherapy program to identify potential key weaknesses in the treatment chain. Our FMEA results were used to improve the effectiveness of our overall microsphere program.« less
Space operations and the human factor
NASA Astrophysics Data System (ADS)
Brody, Adam R.
1993-10-01
Although space flight does not put the public at high risk, billions of dollars in hardware are destroyed and the space program halted when an accident occurs. Researchers are therefore applying human-factors techniques similar to those used in the aircraft industry, albeit at a greatly reduced level, to the spacecraft environment. The intent is to reduce the likelihood of catastrophic failure. To increase safety and efficiency, space human factors researchers have simulated spacecraft docking and extravehicular activity rescue. Engineers have also studied EVA suit mobility and aids. Other basic human-factors issues that have been applied to the space environment include antropometry, biomechanics, and ergonomics. Workstation design, workload, and task analysis currently receive much attention, as do habitability and other aspects of confined environments. Much work also focuses on individual payloads, as each presents its own complexities.
Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model
Iverson, Richard M.; Reid, Mark E.
1992-01-01
Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.
Thermal changes of the environment and their influence on reinforced concrete structures
NASA Astrophysics Data System (ADS)
Fojtik, R.; Cajka, R.
2018-04-01
The thermal expansion of concrete elements concerns both monolithic and prefabricated structures. Inappropriate design of dilation segments may cause minor but even larger failures. Critical environment factors are temperature-changing operations, such as unheated underground garages, where temperature fluctuations may occur depending on the exterior conditions. This paper numerically and experimentally analyses the thermal deformation of selected girders in the underground garages and the consequent structure failures, their causes, possible prevention and appropriate remediation.
CONFIG: Integrated engineering of systems and their operation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.
A Mixed Methods Explanatory Study of the Failure/Drop Rate for Freshman STEM Calculus Students
ERIC Educational Resources Information Center
Worthley, Mary
2013-01-01
In a national context of high failure rates in freshman calculus courses, the purpose of this study was to understand who is struggling, and why. High failure rates are especially alarming given a local environment where students have access to a variety of academic, and personal, assistance. The sample consists of students at Colorado State…
Bae, Sungwoo; Kim, Myungchin
2016-01-01
In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020
Failure Analysis of Discrete Damaged Tailored Extension-Shear-Coupled Stiffened Composite Panels
NASA Technical Reports Server (NTRS)
Baker, Donald J.
2005-01-01
The results of an analytical and experimental investigation of the failure of composite is tiffener panels with extension-shear coupling are presented. This tailored concept, when used in the cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced 45 plies in the skin. The failure analysis of two tailored panel configurations that have the center stringer and adjacent skin severed is presented. Finite element analysis of the damaged panels was conducted using STAGS (STructural Analysis of General Shells) general purpose finite element program that includes a progressive failure capability for laminated composite structures that is based on point-stress analysis, traditional failure criteria, and ply discounting for material degradation. The progressive failure predicted the path of the failure and maximum load capability. There is less than 12 percent difference between the predicted failure load and experimental failure load. There is a good match of the panel stiffness and strength between the progressive failure analysis and the experimental results. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft.
Khan, Usman; Nicell, Jim A.
2014-01-01
This work explores the relationships between a user's choice of a given contraceptive option and the load of steroidal estrogens that can be associated with that choice. Family planning data for the USA served as a basis for the analysis. The results showed that collectively the use of contraception in the USA conservatively averts the release of approximately 4.8 tonnes of estradiol equivalents to the environment. 35% of the estrogenic load released over the course of all experienced pregnancies events and 34% the estrogenic load represented by all resultant legacies are a result of contraception failure and the non-use of contraception. A scenario analysis conducted to explore the impacts of discontinuing the use of ethinylestradiol-based oral contraceptives revealed that this would not only result in a 1.7-fold increase in the estrogenic loading of the users, but the users would also be expected to experience undesired family planning outcomes at a rate that is 3.3 times higher. Additional scenario analyses in which ethinylestradiol-based oral contraceptive users were modeled as having switched entirely to the use of male condoms, diaphragms or copper IUDs suggested that whether a higher or lower estrogenic load can be associated with the switching population depends on the typical failure rates of the options adopted following discontinuation. And, finally, it was estimated that, in the USA, at most 13% of the annual estrogenic load can be averted by fully meeting the contraceptive needs of the population. Therefore, while the issue of estrogen impacts on the environment cannot be addressed solely by meeting the population's contraceptive needs, a significant fraction of the estrogenic mass released to environment can be averted by improving the level with which their contraceptive needs are met. PMID:24670973
Nursing and midwifery students' perceptions of instructors' unethical behaviors.
Rafiee, Ghazanfar; Moattari, Marzieh
2013-05-01
Although nursing faculties may believe that they possess a core of knowledge about ethical interactions with students, they may unwittingly risk crossing an ethical boundary in the learning environment. The ethical dimension in education exists because the instructor has authority to contribute to or impede the students' acquisition of knowledge. Therefore, this study aimed to determine the views of Iranian baccalaureate nursing and midwifery students regarding the occurrence rate of their faculties' unethical behaviors. In this study, 115 subjects, including 61 nursing and 54 midwifery students, completed a questionnaire (response rate = 67.6%). The questionnaire consisted of demographic data and 27 short statements which described the faculties' unethical behaviors. Reliability of instrument was confirmed (0.92) using Cronbach-Alpha. Delaying in announcing the exam results (40%), lack of a positive learning environment (35.7%), failure to keep regularly scheduled office appointments (35.7%), and failure to update lecture notes when teaching a course (31.3%) were reported by the students as the main faculties' unethical behaviors. Data analysis confirmed that there were no statistically significant differences between nursing and midwifery students' responses (the two-tailed t-test was not significant at alpha 0.05 levels; P > 0.05). The study findings suggest that more emphasis should be put on faculties being accessible for consultation out of class time, announcing the exam results in a timely manner, and creating a positive learning environment.
Probing Earth's State of Stress
NASA Astrophysics Data System (ADS)
Delorey, A. A.; Maceira, M.; Johnson, P. A.; Coblentz, D. D.
2016-12-01
The state of stress in the Earth's crust is a fundamental physical property that controls both engineered and natural systems. Engineered environments including those for hydrocarbon, geothermal energy, and mineral extraction, as well those for storage of wastewater, carbon dioxide, and nuclear fuel are as important as ever to our economy and environment. Yet, it is at spatial scales relevant to these activities where stress is least understood. Additionally, in engineered environments the rate of change in the stress field can be much higher than that of natural systems. In order to use subsurface resources more safely and effectively, we need to understand stress at the relevant temporal and spatial scales. We will present our latest results characterizing the state of stress in the Earth at scales relevant to engineered environments. Two important components of the state of stress are the orientation and magnitude of the stress tensor, and a measure of how close faults are to failure. The stress tensor at any point in a reservoir or repository has contributions from both far-field tectonic stress and local density heterogeneity. We jointly invert seismic (body and surface waves) and gravity data for a self-consistent model of elastic moduli and density and use the model to calculate the contribution of local heterogeneity to the total stress field. We then combine local and plate-scale contributions, using local indicators for calibration and ground-truth. In addition, we will present results from an analysis of the quantity and pattern of microseismicity as an indicator of critically stressed faults. Faults are triggered by transient stresses only when critically stressed (near failure). We show that tidal stresses can trigger earthquakes in both tectonic and reservoir environments and can reveal both stress and poroelastic conditions.
2009-05-01
No. 15796 50 Comparisons with Impact Failure Experimental results from the edge-on impact of steel projectiles onto soda - lime silica glass ...fracture front at successive times in the edge-on impact of soda - lime silica glass subject to steel projectile impact at comparable velocities...criterion. When fit to experimental data an exponent m close to two is frequently observed. Impact breach tests on plates of soda - lime glass of Sun et
2004-06-13
antiquity. Plutarch is credited for saying in Morals--Against Colotes the Epicurean, "For to err in opinion, though it be not the part of wise men, it is at...least human" ( Plutarch , AD 110). Of the 5 definitions for error given in Merriam-Webster’s Collegiate Dictionary, the third one listed "an act that...Identifying and managing inappropriate hospital utilization: A policy synthesis. Health Services Research, 22(5), 710-57. Plutarch . (AD 110) . Worldofquotes
1988-09-01
applies to a one Air Transport Rack (ATR) volume LRU in an airborne, uninhabited, fighter environment.) The goal is to have a 2000 hour mean time between...benefits of applying reliability and 11 maintainability improvements to these weapon systems or components. Examples will be given in this research of...where the Pareto Principle applies . The Pareto analysis applies 25 to field failure types as well as to shop defect types. In the following automotive
Subscale Test Methods for Combustion Devices
NASA Technical Reports Server (NTRS)
Anderson, W. E.; Sisco, J. C.; Long, M. R.; Sung, I.-K.
2005-01-01
Stated goals for long-life LRE s have been between 100 and 500 cycles: 1) Inherent technical difficulty of accurately defining the transient and steady state thermochemical environments and structural response (strain); 2) Limited statistical basis on failure mechanisms and effects of design and operational variability; and 3) Very high test costs and budget-driven need to protect test hardware (aversion to test-to-failure). Ambitious goals will require development of new databases: a) Advanced materials, e.g., tailored composites with virtually unlimited property variations; b) Innovative functional designs to exploit full capabilities of advanced materials; and c) Different cycles/operations. Subscale testing is one way to address technical and budget challenges: 1) Prototype subscale combustors exposed to controlled simulated conditions; 2) Complementary to conventional laboratory specimen database development; 3) Instrumented with sensors to measure thermostructural response; and 4) Coupled with analysis
Humidity Testing of PME and BME Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.; Herzberger, Jaemi
2014-01-01
Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.
Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft
NASA Technical Reports Server (NTRS)
Genova, A. L.
2014-01-01
This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.
User-Defined Material Model for Progressive Failure Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)
2006-01-01
An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.
An efficient scan diagnosis methodology according to scan failure mode for yield enhancement
NASA Astrophysics Data System (ADS)
Kim, Jung-Tae; Seo, Nam-Sik; Oh, Ghil-Geun; Kim, Dae-Gue; Lee, Kyu-Taek; Choi, Chi-Young; Kim, InSoo; Min, Hyoung Bok
2008-12-01
Yield has always been a driving consideration during fabrication of modern semiconductor industry. Statistically, the largest portion of wafer yield loss is defective scan failure. This paper presents efficient failure analysis methods for initial yield ramp up and ongoing product with scan diagnosis. Result of our analysis shows that more than 60% of the scan failure dies fall into the category of shift mode in the very deep submicron (VDSM) devices. However, localization of scan shift mode failure is very difficult in comparison to capture mode failure because it is caused by the malfunction of scan chain. Addressing the biggest challenge, we propose the most suitable analysis method according to scan failure mode (capture / shift) for yield enhancement. In the event of capture failure mode, this paper describes the method that integrates scan diagnosis flow and backside probing technology to obtain more accurate candidates. We also describe several unique techniques, such as bulk back-grinding solution, efficient backside probing and signal analysis method. Lastly, we introduce blocked chain analysis algorithm for efficient analysis of shift failure mode. In this paper, we contribute to enhancement of the yield as a result of the combination of two methods. We confirm the failure candidates with physical failure analysis (PFA) method. The direct feedback of the defective visualization is useful to mass-produce devices in a shorter time. The experimental data on mass products show that our method produces average reduction by 13.7% in defective SCAN & SRAM-BIST failure rates and by 18.2% in wafer yield rates.
NASA Technical Reports Server (NTRS)
1974-01-01
Future operational concepts for the space transportation system were studied in terms of space shuttle upper stage failure contingencies possible during deployment, retrieval, or space servicing of automated satellite programs. Problems anticipated during mission planning were isolated using a modified 'fault tree' technique, normally used in safety analyses. A comprehensive space servicing hazard analysis is presented which classifies possible failure modes under the catagories of catastrophic collision, failure to rendezvous and dock, servicing failure, and failure to undock. The failure contingencies defined are to be taken into account during design of the upper stage.
Development of automotive battery systems capable of surviving modern underhood environments
NASA Astrophysics Data System (ADS)
Pierson, John R.; Johnson, Richard T.
The starting, lighting, and ignition (SLI) battery in today's automobile typically finds itself in an engine compartment that is jammed with mechanical, electrical, and electronic devices. The spacing of these devices precludes air movement and, thus, heat transfer out of the compartment. Furthermore, many of the devices, in addition to the internal combustion engine, actually generate heat. The resulting underhood environment is extremely hostile to thermally-sensitive components, especially the battery. All indications point to a continuation of this trend towards higher engine-compartment temperatures as future vehicles evolve. The impact of ambient temperature on battery life is clearly demonstrated in the failure-mode analysis conducted by the Battery Council International in 1990. This study, when combined with additional failure-mode analyses, vehicle systems simulation, and elevated temperature life testing, provides insight into the potential for extension of life of batteries. Controlled fleet and field tests are used to document and quantify improvements in product design. Three approaches to battery life extension under adverse thermal conditions are assessed, namely: (i) battery design; (ii) thermal management, and (iii) alternative battery locations. The advantages and disadvantages of these approaches (both individually and in combination) for original equipment and aftermarket applications are explored.
Stock, Greg M.; Martel, Stephen J.; Collins, Brian D.; Harp, Edwin L.
2012-01-01
Progressive rock-fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high-resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15-month-long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock-fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls.
Multi-Dimensional Simulation of LWR Fuel Behavior in the BISON Fuel Performance Code
NASA Astrophysics Data System (ADS)
Williamson, R. L.; Capps, N. A.; Liu, W.; Rashid, Y. R.; Wirth, B. D.
2016-11-01
Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. To simulate this behavior requires a wide variety of material models that are often complex and nonlinear. The recently developed BISON code represents a powerful fuel performance simulation tool based on its material and physical behavior capabilities, finite-element versatility of spatial representation, and use of parallel computing. The code can operate in full three dimensional (3D) mode, as well as in reduced two dimensional (2D) modes, e.g., axisymmetric radial-axial ( R- Z) or plane radial-circumferential ( R- θ), to suit the application and to allow treatment of global and local effects. A BISON case study was used to illustrate analysis of Pellet Clad Mechanical Interaction failures from manufacturing defects using combined 2D and 3D analyses. The analysis involved commercial fuel rods and demonstrated successful computation of metrics of interest to fuel failures, including cladding peak hoop stress and strain energy density. In comparison with a failure threshold derived from power ramp tests, results corroborate industry analyses of the root cause of the pellet-clad interaction failures and illustrate the importance of modeling 3D local effects around fuel pellet defects, which can produce complex effects including cold spots in the cladding, stress concentrations, and hot spots in the fuel that can lead to enhanced cladding degradation such as hydriding, oxidation, CRUD formation, and stress corrosion cracking.
Multi-Dimensional Simulation of LWR Fuel Behavior in the BISON Fuel Performance Code
Williamson, R. L.; Capps, N. A.; Liu, W.; ...
2016-09-27
Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. To simulate this behavior requires a wide variety of material models that are often complex and nonlinear. The recently developed BISON code represents a powerful fuel performance simulation tool based on its material and physical behavior capabilities, finite-element versatility of spatial representation, and use of parallel computing. The code can operate in full three dimensional (3D) mode, as well as in reduced two dimensional (2D) modes, e.g., axisymmetric radial-axial (R-Z) ormore » plane radial-circumferential (R-θ), to suit the application and to allow treatment of global and local effects. A BISON case study was used in this paper to illustrate analysis of Pellet Clad Mechanical Interaction failures from manufacturing defects using combined 2D and 3D analyses. The analysis involved commercial fuel rods and demonstrated successful computation of metrics of interest to fuel failures, including cladding peak hoop stress and strain energy density. Finally, in comparison with a failure threshold derived from power ramp tests, results corroborate industry analyses of the root cause of the pellet-clad interaction failures and illustrate the importance of modeling 3D local effects around fuel pellet defects, which can produce complex effects including cold spots in the cladding, stress concentrations, and hot spots in the fuel that can lead to enhanced cladding degradation such as hydriding, oxidation, CRUD formation, and stress corrosion cracking.« less
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2006-01-01
Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.
Steinberger, Dina M; Douglas, Stephen V; Kirschbaum, Mark S
2009-09-01
A multidisciplinary team from the University of Wisconsin Hospital and Clinics transplant program used failure mode and effects analysis to proactively examine opportunities for communication and handoff failures across the continuum of care from organ procurement to transplantation. The team performed a modified failure mode and effects analysis that isolated the multiple linked, serial, and complex information exchanges occurring during the transplantation of one solid organ. Failure mode and effects analysis proved effective for engaging a diverse group of persons who had an investment in the outcome in analysis and discussion of opportunities to improve the system's resilience for avoiding errors during a time-pressured and complex process.
Failure Mode, Effects, and Criticality Analysis (FMECA)
1993-04-01
Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System Ground Demonstration System, Report No. TID 27301...No. TID/SNA - 3015, Aeroject Nuclear Systems Co., Sacramento, California: 1970. 95. Taylor , J.R. A Formalization of Failure Mode Analysis of Control...Roskilde, Denmark: 1973. 96. Taylor , J.R. A Semi-Automatic Method for Oualitative Failure Mode Analysis. Report No. RISO-M-1707. Available from a
Comprehension and retrieval of failure cases in airborne observatories
NASA Technical Reports Server (NTRS)
Alvarado, Sergio J.; Mock, Kenrick J.
1995-01-01
This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.
Comprehension and retrieval of failure cases in airborne observatories
NASA Astrophysics Data System (ADS)
Alvarado, Sergio J.; Mock, Kenrick J.
1995-05-01
This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.
Booth, J.S.; Sangrey, D.A.; Fugate, J.K.
1985-01-01
This nomogram was designed to aid in interpreting the causes of mass movement in modern and ancient settings, to provide a basis for evaluating and predicting slope stability under given conditions and to further the understanding of the relationships among the several key factors that control slope stability. Design of the nomogram is based on effective stress and combines consolidation theory as applicable to depositional environments with the infinite-slope model of slope-stability analysis. If infinite-slope conditions are assumed to exist, the effective overburden stress can be used to derive a factor of safety against static slope failure by using the angle of internal friction and the slope angle. -from Authors
NASA Technical Reports Server (NTRS)
Clem, Michelle M.; Abdul-Aziz, Ali; Woike, Mark R.; Fralick, Gustave C.
2015-01-01
The modern turbine engine operates in a harsh environment at high speeds and is repeatedly exposed to combined high mechanical and thermal loads. The cumulative effects of these external forces lead to high stresses and strains on the engine components, such as the rotating turbine disks, which may eventually lead to a catastrophic failure if left undetected. The operating environment makes it difficult to use conventional strain gauges, therefore, non-contact strain measurement techniques is of interest to NASA and the turbine engine community. This presentation describes one such approach; the use of cross correlation analysis to measure strain experienced by the engine turbine disk with the goal of assessing potential faults and damage.
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
A Weibull distribution accrual failure detector for cloud computing.
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.
Derailment-based Fault Tree Analysis on Risk Management of Railway Turnout Systems
NASA Astrophysics Data System (ADS)
Dindar, Serdar; Kaewunruen, Sakdirat; An, Min; Gigante-Barrera, Ángel
2017-10-01
Railway turnouts are fundamental mechanical infrastructures, which allow a rolling stock to divert one direction to another. As those are of a large number of engineering subsystems, e.g. track, signalling, earthworks, these particular sub-systems are expected to induce high potential through various kind of failure mechanisms. This could be a cause of any catastrophic event. A derailment, one of undesirable events in railway operation, often results, albeit rare occurs, in damaging to rolling stock, railway infrastructure and disrupt service, and has the potential to cause casualties and even loss of lives. As a result, it is quite significant that a well-designed risk analysis is performed to create awareness of hazards and to identify what parts of the systems may be at risk. This study will focus on all types of environment based failures as a result of numerous contributing factors noted officially as accident reports. This risk analysis is designed to help industry to minimise the occurrence of accidents at railway turnouts. The methodology of the study relies on accurate assessment of derailment likelihood, and is based on statistical multiple factors-integrated accident rate analysis. The study is prepared in the way of establishing product risks and faults, and showing the impact of potential process by Boolean algebra.
Failure mode analysis to predict product reliability.
NASA Technical Reports Server (NTRS)
Zemanick, P. P.
1972-01-01
The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.
Failure Analysis at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Salazar, Victoria L.; Wright, M. Clara
2010-01-01
History has shown that failures occur in every engineering endeavor, and what we learn from those failures contributes to the knowledge base to safely complete future missions. The necessity of failure analysis is at its apex at the end of one aged program and at the beginning of a new and untested program. The information that we gain through failure analysis corrects the deficiencies in the current vehicle to make the next generation of vehicles more efficient and safe. The Failure Analysis and Materials Evaluation Branch in the Materials Science Division at the Kennedy Space Center performs metallurgical, mechanical, electrical, and non-metallic materials failure analyses and accident investigations on both flight hardware and ground support equipment for the Space Shuttle, International Space Station, Constellation, and Launch Services Programs. This paper will explore a variety of failure case studies at the Kennedy Space Center and the lessons learned that can be applied in future programs.
CRANS - CONFIGURABLE REAL-TIME ANALYSIS SYSTEM
NASA Technical Reports Server (NTRS)
Mccluney, K.
1994-01-01
In a real-time environment, the results of changes or failures in a complex, interconnected system need evaluation quickly. Tabulations showing the effects of changes and/or failures of a given item in the system are generally only useful for a single input, and only with regard to that item. Subsequent changes become harder to evaluate as combinations of failures produce a cascade effect. When confronted by multiple indicated failures in the system, it becomes necessary to determine a single cause. In this case, failure tables are not very helpful. CRANS, the Configurable Real-time ANalysis System, can interpret a logic tree, constructed by the user, describing a complex system and determine the effects of changes and failures in it. Items in the tree are related to each other by Boolean operators. The user is then able to change the state of these items (ON/OFF FAILED/UNFAILED). The program then evaluates the logic tree based on these changes and determines any resultant changes to other items in the tree. CRANS can also search for a common cause for multiple item failures, and allow the user to explore the logic tree from within the program. A "help" mode and a reference check provide the user with a means of exploring an item's underlying logic from within the program. A commonality check determines single point failures for an item or group of items. Output is in the form of a user-defined matrix or matrices of colored boxes, each box representing an item or set of items from the logic tree. Input is via mouse selection of the matrix boxes, using the mouse buttons to toggle the state of the item. CRANS is written in C-language and requires the MIT X Window System, Version 11 Revision 4 or Revision 5. It requires 78K of RAM for execution and a three button mouse. It has been successfully implemented on Sun4 workstations running SunOS, HP9000 workstations running HP-UX, and DECstations running ULTRIX. No executable is provided on the distribution medium; however, a sample makefile is included. Sample input files are also included. The standard distribution medium is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. Alternate distribution media and formats are available upon request. This program was developed in 1992.
Dent, Daniel L; Al Fayyadh, Mohammed J; Rawlings, Jeremy A; Hassan, Ramy A; Kempenich, Jason W; Willis, Ross E; Stewart, Ronald M
2018-03-01
It has been suggested that in environments where there is greater fear of litigation, resident autonomy and education is compromised. Our aim was to examine failure rates on American Board of Surgery (ABS) examinations in comparison with medical malpractice payments in 47 US states/territories that have general surgery residency programs. We hypothesized higher ABS examination failure rates for general surgery residents who graduate from residencies in states with higher malpractice risk. We conducted a retrospective review of five-year (2010-2014) pass rates of first-time examinees of the ABS examinations. States' malpractice data were adjusted based on population. ABS examinations failure rates for programs in states with above and below median malpractice payments per capita were 31 and 24 per cent (P < 0.01) respectively. This difference was seen in university and independent programs regardless of size. Pearson correlation confirmed a significant positive correlation between board failure rates and malpractice payments per capita for Qualifying Examination (P < 0.02), Certifying Examination (P < 0.02), and Qualifying and Certifying combined index (P < 0.01). Malpractice risk correlates positively with graduates' failure rates on ABS examinations regardless of program size or type. We encourage further examination of training environments and their relationship to surgical residency graduate performance.
Failure Mode Identification Through Clustering Analysis
NASA Technical Reports Server (NTRS)
Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.
Constructing the "Best" Reliability Data for the Job
NASA Technical Reports Server (NTRS)
DeMott, D. L.; Kleinhammer, R. K.
2014-01-01
Modern business and technical decisions are based on the results of analyses. When considering assessments using "reliability data", the concern is how long a system will continue to operate as designed. Generally, the results are only as good as the data used. Ideally, a large set of pass/fail tests or observations to estimate the probability of failure of the item under test would produce the best data. However, this is a costly endeavor if used for every analysis and design. Developing specific data is costly and time consuming. Instead, analysts rely on available data to assess reliability. Finding data relevant to the specific use and environment for any project is difficult, if not impossible. Instead, we attempt to develop the "best" or composite analog data to support our assessments. One method used incorporates processes for reviewing existing data sources and identifying the available information based on similar equipment, then using that generic data to derive an analog composite. Dissimilarities in equipment descriptions, environment of intended use, quality and even failure modes impact the "best" data incorporated in an analog composite. Once developed, this composite analog data provides a "better" representation of the reliability of the equipment or component can be used to support early risk or reliability trade studies, or analytical models to establish the predicted reliability data points. Data that is more representative of reality and more project specific would provide more accurate analysis, and hopefully a better final decision.
Constructing the Best Reliability Data for the Job
NASA Technical Reports Server (NTRS)
Kleinhammer, R. K.; Kahn, J. C.
2014-01-01
Modern business and technical decisions are based on the results of analyses. When considering assessments using "reliability data", the concern is how long a system will continue to operate as designed. Generally, the results are only as good as the data used. Ideally, a large set of pass/fail tests or observations to estimate the probability of failure of the item under test would produce the best data. However, this is a costly endeavor if used for every analysis and design. Developing specific data is costly and time consuming. Instead, analysts rely on available data to assess reliability. Finding data relevant to the specific use and environment for any project is difficult, if not impossible. Instead, we attempt to develop the "best" or composite analog data to support our assessments. One method used incorporates processes for reviewing existing data sources and identifying the available information based on similar equipment, then using that generic data to derive an analog composite. Dissimilarities in equipment descriptions, environment of intended use, quality and even failure modes impact the "best" data incorporated in an analog composite. Once developed, this composite analog data provides a "better" representation of the reliability of the equipment or component can be used to support early risk or reliability trade studies, or analytical models to establish the predicted reliability data points. Data that is more representative of reality and more project specific would provide more accurate analysis, and hopefully a better final decision.
A Framework for Creating a Function-based Design Tool for Failure Mode Identification
NASA Technical Reports Server (NTRS)
Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Knowledge of potential failure modes during design is critical for prevention of failures. Currently industries use procedures such as Failure Modes and Effects Analysis (FMEA), Fault Tree analysis, or Failure Modes, Effects and Criticality analysis (FMECA), as well as knowledge and experience, to determine potential failure modes. When new products are being developed there is often a lack of sufficient knowledge of potential failure mode and/or a lack of sufficient experience to identify all failure modes. This gives rise to a situation in which engineers are unable to extract maximum benefits from the above procedures. This work describes a function-based failure identification methodology, which would act as a storehouse of information and experience, providing useful information about the potential failure modes for the design under consideration, as well as enhancing the usefulness of procedures like FMEA. As an example, the method is applied to fifteen products and the benefits are illustrated.
Modeling and Hazard Analysis Using STPA
NASA Astrophysics Data System (ADS)
Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka
2010-09-01
A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis and following the NASA standards for safety-critical systems, the results of our experimental application of STPA can be compared with these more traditional safety engineering approaches in terms of the problems identified and the resources required to use it.
Failure-Modes-And-Effects Analysis Of Software Logic
NASA Technical Reports Server (NTRS)
Garcia, Danny; Hartline, Thomas; Minor, Terry; Statum, David; Vice, David
1996-01-01
Rigorous analysis applied early in design effort. Method of identifying potential inadequacies and modes and effects of failures caused by inadequacies (failure-modes-and-effects analysis or "FMEA" for short) devised for application to software logic.
Failure Mode and Effects Analysis (FMEA) Introductory Overview
2012-06-14
Failure Mode and Effects Analysis ( FMEA ) Introductory Overview TARDEC Systems Engineering Risk Management Team POC: Kadry Rizk or Gregor Ratajczak...2. REPORT TYPE Briefing Charts 3. DATES COVERED 01-05-2012 to 23-05-2012 4. TITLE AND SUBTITLE Failure Mode and Effects Analysis ( FMEA ) 5a...18 WELCOME Welcome to “An introductory overview of Failure Mode and Effects Analysis ( FMEA )”, A brief concerning the use and benefits of FMEA
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes, These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.
Myers, T J; Kytömaa, H K; Smith, T R
2007-04-11
Fiberglass reinforced plastic (FRP) composite materials are often used to construct tanks, piping, scrubbers, beams, grating, and other components for use in corrosive environments. While FRP typically offers superior and cost effective corrosion resistance relative to other construction materials, the glass fibers traditionally used to provide the structural strength of the FRP can be susceptible to attack by the corrosive environment. The structural integrity of traditional FRP components in corrosive environments is usually dependent on the integrity of a corrosion-resistant barrier, such as a resin-rich layer containing corrosion resistant glass fibers. Without adequate protection, FRP components can fail under loads well below their design by an environmental stress-corrosion cracking (ESCC) mechanism when simultaneously exposed to mechanical stress and a corrosive chemical environment. Failure of these components can result in significant releases of hazardous substances into plants and the environment. In this paper, we present two case studies where fiberglass components failed due to ESCC at small chemical manufacturing facilities. As is often typical, the small chemical manufacturing facilities relied largely on FRP component suppliers to determine materials appropriate for the specific process environment and to repair damaged in-service components. We discuss the lessons learned from these incidents and precautions companies should take when interfacing with suppliers and other parties during the specification, design, construction, and repair of FRP components in order to prevent similar failures and chemical releases from occurring in the future.
Elementary students' engagement in failure-prone engineering design tasks
NASA Astrophysics Data System (ADS)
Andrews, Chelsea Joy
Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in elementary schools, current studies are still filling in basic research on how best to design and implement elementary engineering activities. One area in need of investigation is how students engage with physical failure in design tasks. In this dissertation, I explore how upper elementary students engage in failure-prone engineering design tasks in an out-of-school environment. In a series of three empirical case studies, I look closely at how students evaluate failed tests and decide on changes to their design constructions, how their reasoning evolves as they repeatedly encounter physical failure, and how students and facilitators co-construct testing norms where repetitive failure is manageable. I also briefly investigate how students' engagement differs in a task that features near-immediate success. By closely examining student groups' discourse and their interactions with their design constructions, I found that these students: are able to engage in iteration and see failure-as-feedback with minimal externally-imposed structure; seem to be designing in a more sophisticated manner, attending to multiple causal factors, after experiencing repetitive failure; and are able to manage the stress and frustration of repetitive failure, provided the co-constructed testing norms of the workshop environment are supportive of failure management. These results have both pedagogical implications, in terms of how to create and facilitate design tasks, and methodological implications--namely, I highlight the particular insights afforded by a case study approach for analyzing engagement in design tasks.
Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment
NASA Technical Reports Server (NTRS)
Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.
2009-01-01
An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.
A Weibull distribution accrual failure detector for cloud computing
Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229
NASA Astrophysics Data System (ADS)
Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong
2014-06-01
Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural system under failure correlations.
Development of wheelchair caster testing equipment and preliminary testing of caster models
Mhatre, Anand; Ott, Joseph
2017-01-01
Background Because of the adverse environmental conditions present in less-resourced environments (LREs), the World Health Organization (WHO) has recommended that specialised wheelchair test methods may need to be developed to support product quality standards in these environments. A group of experts identified caster test methods as a high priority because of their common failure in LREs, and the insufficiency of existing test methods described in the International Organization for Standardization (ISO) Wheelchair Testing Standards (ISO 7176). Objectives To develop and demonstrate the feasibility of a caster system test method. Method Background literature and expert opinions were collected to identify existing caster test methods, caster failures common in LREs and environmental conditions present in LREs. Several conceptual designs for the caster testing method were developed, and through an iterative process using expert feedback, a final concept and a design were developed and a prototype was fabricated. Feasibility tests were conducted by testing a series of caster systems from wheelchairs used in LREs, and failure modes were recorded and compared to anecdotal reports about field failures. Results The new caster testing system was developed and it provides the flexibility to expose caster systems to typical conditions in LREs. Caster failures such as stem bolt fractures, fork fractures, bearing failures and tire cracking occurred during testing trials and are consistent with field failures. Conclusion The new caster test system has the capability to incorporate necessary test factors that degrade caster quality in LREs. Future work includes developing and validating a testing protocol that results in failure modes common during wheelchair use in LRE. PMID:29062762
Patient safety and nursing: interface with stress and Burnout Syndrome.
Rodrigues, Cláudia Cristiane Filgueira Martins; Santos, Viviane Euzébia Pereira; Sousa, Paulo
2017-01-01
To analyze studies on stress, Burnout Syndrome, and patient safety in the scope of nursing care in the hospital environment. This was an integrative literature review. Data collection was performed in February 2016 in the following databases: Medical Literature Analysis and Retrieval System Online - PubMed/MEDLINE, Latin American and Caribbean Literature in Health Sciences - LILACS. Ten scientific productions were selected, which listed that factors contributing to stress and Burnout Syndrome of nursing professionals are the work environment as a source of stress, and excessive workload as a source of failures. The analysis found that the stress and Burnout Syndrome experienced by these professionals lead to greater vulnerability and development of unsafe care, and factors such as lack of organizational support can contribute to prevent these failures. Analisar estudos que versam sobre o estresse e Síndrome de Burnout, bem como a segurança do paciente no âmbito da assistência de enfermagem no ambiente hospitalar. Tratou-se de uma revisão integrativa de literatura. O levantamento dos dados foi efetuado nas bases de dados Medical Literature Analysis and Retrieval System Online - PubMed / MEDLINE, Literatura Latino-Americana e do Caribe em Ciências da Saúde -LILACS em fevereiro de 2016. Foram selecionadas10 produções científicas que apontaram que os fatores que contribuem para o estresse e a Síndrome de Burnout dos profissionais de enfermagem são o ambiente de trabalho como fonte de estresse e a carga de trabalho excessiva como geradora de falhas. A análise apontou que o estresse e a Síndrome de Burnout vivenciada por esses profissionais acarretam maior vulnerabilidade ao desenvolvimento de uma assistência insegura e que fatores como a falta de apoio organizacional podem contribuir para dirimir essas falhas.
Nursing and midwifery students’ perceptions of instructors’ unethical behaviors
Rafiee, Ghazanfar; Moattari, Marzieh
2013-01-01
Background: Although nursing faculties may believe that they possess a core of knowledge about ethical interactions with students, they may unwittingly risk crossing an ethical boundary in the learning environment. The ethical dimension in education exists because the instructor has authority to contribute to or impede the students’ acquisition of knowledge. Therefore, this study aimed to determine the views of Iranian baccalaureate nursing and midwifery students regarding the occurrence rate of their faculties’ unethical behaviors. Materials and Methods: In this study, 115 subjects, including 61 nursing and 54 midwifery students, completed a questionnaire (response rate = 67.6%). The questionnaire consisted of demographic data and 27 short statements which described the faculties’ unethical behaviors. Reliability of instrument was confirmed (0.92) using Cronbach-Alpha. Results: Delaying in announcing the exam results (40%), lack of a positive learning environment (35.7%), failure to keep regularly scheduled office appointments (35.7%), and failure to update lecture notes when teaching a course (31.3%) were reported by the students as the main faculties’ unethical behaviors. Data analysis confirmed that there were no statistically significant differences between nursing and midwifery students’ responses (the two-tailed t-test was not significant at alpha 0.05 levels; P > 0.05). Conclusion: The study findings suggest that more emphasis should be put on faculties being accessible for consultation out of class time, announcing the exam results in a timely manner, and creating a positive learning environment. PMID:23983757
Progressive Failure Analysis of Composite Stiffened Panels
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Yarrington, Phillip W.; Collier, Craig S.; Arnold, Steven M.
2006-01-01
A new progressive failure analysis capability for stiffened composite panels has been developed based on the combination of the HyperSizer stiffened panel design/analysis/optimization software with the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). MAC/GMC discretizes a composite material s microstructure into a number of subvolumes and solves for the stress and strain state in each while providing the homogenized composite properties as well. As a result, local failure criteria may be employed to predict local subvolume failure and the effects of these local failures on the overall composite response. When combined with HyperSizer, MAC/GMC is employed to represent the ply level composite material response within the laminates that constitute a stiffened panel. The effects of local subvolume failures can then be tracked as loading on the stiffened panel progresses. Sample progressive failure results are presented at both the composite laminate and the composite stiffened panel levels. Deformation and failure model predictions are compared with experimental data from the World Wide Failure Exercise for AS4/3501-6 graphite/epoxy laminates.
Risk Based Reliability Centered Maintenance of DOD Fire Protection Systems
1999-01-01
2.2.3 Failure Mode and Effect Analysis ( FMEA )............................ 2.2.4 Failure Mode Risk Characterization...Step 2 - System functions and functional failures definition Step 3 - Failure mode and effect analysis ( FMEA ) Step 4 - Failure mode risk...system). The Interface Location column identifies the location where the FMEA of the fire protection system began or stopped. For example, for the fire
Commercial opportunities utilizing the International Space Station
NASA Astrophysics Data System (ADS)
Kearney, Michael E.; Mongan, Phil; Overmyer, Carolyn M.; Jackson, Kenneth
1998-01-01
The International Space Station (ISS) has the unique capability of providing a low-g environment for both short- and long-duration experimentation. This environment can provide a unique and competitive research capability to industry; but until recently, utilization of this environment by the private sector has been limited if not totally unavailable. NASA has recently expressed an interest in the commercial development of space and this is now an integral part of the Agency's enabling legislation through the Space Act. NASA's objective is to foster the use of the space environment for the development of commercial products and processes. Through alliances and agreements with several commercial companies and universities, SPACEHAB, Inc., has built a comprehensive package of services designed to provide low-cost reliable access to space for experimenters. These services provide opportunities to support engineering test beds for materials exposure analysis, to mitigate structural failures as observed on the Hubble Space Telescope; materials processing, remote sensing; space environment definition; and electronic experiments. The intent of this paper is to identify commercial opportunities for utilizing the International Space Station and provide examples of several facilities currently being designed and manufactured by commercial companies with the purpose of providing access to the space environment for commercial users.
1979-07-01
44 a. One-sided level ................................. 44 b. Two-sided level .......................................... 44 H. Testing...successively higher levels of severity must be used until failure is obtained, as in the applications of successively greater loads until failure is...severe than that applied at comparable levels of severity in the laboratory. Further- _ . more, interactions among environments and among components
The BGR Contingency Model for Leading Change
ERIC Educational Resources Information Center
Brown, Derek R.; Gordon, Raymond; Rose, Dennis Michael
2012-01-01
The continuing failure rates of change initiatives, combined with an increasingly complex business environment, have created significant challenges for the practice of change management. High failure rates suggest that existing change models are not working, or are being incorrectly used. A different mindset to change is required. The BGR…
The Shock and Vibration Bulletin. Part 3: Structure Medium Interaction, Case Studies in Dynamics
NASA Technical Reports Server (NTRS)
1979-01-01
Structure and medium interactions topics are addressed. Topics include: a failure analysis of underground concrete structures subjected to blast loadings, an optimization design procedure for concrete slabs, and a discussion of the transient response of a cylindrical shell submerged in a fluid. Case studies in dynamics are presented which include an examination of a shock isolation platform for a seasparrow launcher, a discussion of hydrofoil fatigue load environments, and an investigation of the dynamic characteristics of turbine generators and low tuned foundations.
Space Shuttle Stiffener Ring Foam Failure Analysis, a Non-Conventional Approach
NASA Technical Reports Server (NTRS)
Howard, Philip M.
2015-01-01
The Space Shuttle Program made use of the excellent properties of rigid polyurethane foam for cryogenic tank insulation and as structural protection on the solid rocket boosters. When foam applications de-bond, classical methods of failure analysis did not provide root cause of the failure of the foam. Realizing that foam is the ideal media to document and preserve its own mode of failure, thin sectioning was seen as a logical approach for foam failure analysis to observe the three dimensional morphology of the foam cells. The cell foam morphology provided a much greater understanding of the failure modes than previously achieved.
Space Environmental Effects Testing Capability at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason
2012-01-01
Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.
Microcircuit failure analysis using the SEM. [Scanning Electron Microscopes
NASA Technical Reports Server (NTRS)
Nicolas, D. P.
1974-01-01
The scanning electron microscope adds a new dimension to the knowledge that can be obtained from a failed microcircuit. When used with conventional techniques, SEM assists and clarifies the analysis, but it does not replace light microscopy. The most advantageous features for microcircuit analysis are long working distances and great depth of field. Manufacturer related failure modes of microcircuits are metallization defects, poor bonding, surface and particle contamination, and design and fabrication faults. User related failure modes are caused by abuse, such as overstress. The Physics of Failure Procedure followed by the Astrionics Laboratory in failure analysis is described, which is designed to obtain maximum information available from each step.
A case study in nonconformance and performance trend analysis
NASA Technical Reports Server (NTRS)
Maloy, Joseph E.; Newton, Coy P.
1990-01-01
As part of NASA's effort to develop an agency-wide approach to trend analysis, a pilot nonconformance and performance trending analysis study was conducted on the Space Shuttle auxiliary power unit (APU). The purpose of the study was to (1) demonstrate that nonconformance analysis can be used to identify repeating failures of a specific item (and the associated failure modes and causes) and (2) determine whether performance parameters could be analyzed and monitored to provide an indication of component or system degradation prior to failure. The nonconformance analysis of the APU did identify repeating component failures, which possibly could be reduced if key performance parameters were monitored and analyzed. The performance-trending analysis verified that the characteristics of hardware parameters can be effective in detecting degradation of hardware performance prior to failure.
Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method
Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan
2018-01-01
Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824
Failure Analysis of Main Flame Deflector Nelson Studs
NASA Technical Reports Server (NTRS)
Long, Victoria
2009-01-01
NASA Structures engineers submitted two Nelson refractory studs from the main flame deflector at Launch Complex (LC) 39 A for analysis when they were observed to be missing a significant amount of material after launch. The damaged stud and an unused comparative stud were analyzed by macroscopic and microscopic examination along with metallographic evaluation of the microstructure. The stud lost material due to a combination of erosion and corrosion. Plain carbon steel readily forms an oxide layer in the coastal launch environment at Kennedy Space Center. The blast during a launch removes this brittle oxide layer, which then forms again post-launch, thereby further removing material. No indications of melting were observed.
The strength study of the rotating device driver indexing spatial mechanism
NASA Astrophysics Data System (ADS)
Zakharenkov, N. V.; Kvasov, I. N.
2018-04-01
The indexing spatial mechanisms are widely used in automatic machines. The mechanisms maximum load-bearing capacity measurement is possible based on both the physical and numerical models tests results. The paper deals with the driven disk indexing spatial cam mechanism numerical model at the constant angular cam velocity. The presented mechanism kinematics and geometry parameters and finite element model are analyzed in the SolidWorks design environment. The calculation initial data and missing parameters having been found from the structure analysis were identified. The structure and kinematics analysis revealed the mechanism failures possible reasons. The numerical calculations results showing the structure performance at the contact and bending stresses are represented.
NASA Technical Reports Server (NTRS)
Hasselman, D. P. H.; Singh, J. P.; Satyamurthy, K.
1980-01-01
An analysis was conducted of the possible modes of thermal stress failure of brittle ceramics for potential use in point-focussing solar receivers. The pertinent materials properties which control thermal stress resistance were identified for conditions of steady-state and transient heat flow, convective and radiative heat transfer, thermal buckling and thermal fatigue as well as catastrophic crack propagation. Selection rules for materials with optimum thermal stress resistance for a particular thermal environment were identified. Recommendations for materials for particular components were made. The general requirements for a thermal shock testing program quantitatively meaningful for point-focussing solar receivers were outlined. Recommendations for follow-on theoretical analyses were made.
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with engineering analysis to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in engineering analyses of failure phenomena, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which engineering analysis models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. Conventional engineering analysis models currently employed for design of failure prediction are used in this methodology. The PFA methodology is described and examples of its application are presented. Conventional approaches to failure risk evaluation for spaceflight systems are discussed, and the rationale for the approach taken in the PFA methodology is presented. The statistical methods, engineering models, and computer software used in fatigue failure mode applications are thoroughly documented.
Implementation of a Helicopter Flight Simulator with Individual Blade Control
NASA Astrophysics Data System (ADS)
Zinchiak, Andrew G.
2011-12-01
Nearly all modern helicopters are designed with a swashplate-based system for control of the main rotor blades. However, the swashplate-based approach does not provide the level of redundancy necessary to cope with abnormal actuator conditions. For example, if an actuator fails (becomes locked) on the main rotor, the cyclic inputs are consequently fixed and the helicopter may become stuck in a flight maneuver. This can obviously be seen as a catastrophic failure, and would likely lead to a crash. These types of failures can be overcome with the application of individual blade control (IBC). IBC is achieved using the blade pitch control method, which provides complete authority of the aerodynamic characteristics of each rotor blade at any given time by replacing the normally rigid pitch links between the swashplate and the pitch horn of the blade with hydraulic or electronic actuators. Thus, IBC can provide the redundancy necessary for subsystem failure accommodation. In this research effort, a simulation environment is developed to investigate the potential of the IBC main rotor configuration for fault-tolerant control. To examine the applications of IBC to failure scenarios and fault-tolerant controls, a conventional, swashplate-based linear model is first developed for hover and forward flight scenarios based on the UH-60 Black Hawk helicopter. The linear modeling techniques for the swashplate-based helicopter are then adapted and expanded to include IBC. Using these modified techniques, an IBC based mathematical model of the UH-60 helicopter is developed for the purposes of simulation and analysis. The methodology can be used to model and implement a different aircraft if geometric, gravimetric, and general aerodynamic data are available. Without the kinetic restrictions of the swashplate, the IBC model effectively decouples the cyclic control inputs between different blades. Simulations of the IBC model prove that the primary control functions can be manually reconfigured after local actuator failures are initiated, thus preventing a catastrophic failure or crash. Furthermore, this simulator promises to be a useful tool for the design, testing, and analysis of fault-tolerant control laws.
Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism
NASA Technical Reports Server (NTRS)
Dervan, Jared; Robertson, Brandan; Staab, Lucas; Culberson, Michael; Pellicciotti, Joseph
2014-01-01
The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report [1] including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.
Development Testing and Subsequent Failure Investigation of a Spring Strut Mechanism
NASA Technical Reports Server (NTRS)
Dervan, Jared; Robertson, Brandon; Staab, Lucas; Culberson, Michael; Pellicciotti, Joseph
2014-01-01
The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.
NASA Astrophysics Data System (ADS)
Dong, Xia; Iacocca, Ronald G.; Bustard, Bethany L.; Kemp, Craig A. J.
2010-02-01
Stainless steel pipes with different degrees of rouging and a Teflon®-coated rupture disc with severe corrosion were thoroughly investigated by combining multiple surface analytical techniques. The surface roughness and iron oxide layer thickness increase with increasing rouge severity, and the chromium oxide layer coexists with the iron oxide layer in samples with various degrees of rouging. Unlike the rouging observed for stainless steel pipes, the fast degradation of the rupture disc was caused by a crevice corrosion environment created by perforations in the protective Teflon coating. This failure analysis clearly shows the highly corrosive nature of ultrapure water used in the manufacture of pharmaceutical products, and demonstrates some of the unexpected corrosion mechanisms that can be encountered in these environments.
NASA Technical Reports Server (NTRS)
Behbehani, K.
1980-01-01
A new sensor/actuator failure analysis technique for turbofan jet engines was developed. Three phases of failure analysis, namely detection, isolation, and accommodation are considered. Failure detection and isolation techniques are developed by utilizing the concept of Generalized Likelihood Ratio (GLR) tests. These techniques are applicable to both time varying and time invariant systems. Three GLR detectors are developed for: (1) hard-over sensor failure; (2) hard-over actuator failure; and (3) brief disturbances in the actuators. The probability distribution of the GLR detectors and the detectability of sensor/actuator failures are established. Failure type is determined by the maximum of the GLR detectors. Failure accommodation is accomplished by extending the Multivariable Nyquest Array (MNA) control design techniques to nonsquare system designs. The performance and effectiveness of the failure analysis technique are studied by applying the technique to a turbofan jet engine, namely the Quiet Clean Short Haul Experimental Engine (QCSEE). Single and multiple sensor/actuator failures in the QCSEE are simulated and analyzed and the effects of model degradation are studied.
Experimental analysis of computer system dependability
NASA Technical Reports Server (NTRS)
Iyer, Ravishankar, K.; Tang, Dong
1993-01-01
This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance.
A theoretical basis for the analysis of redundant software subject to coincident errors
NASA Technical Reports Server (NTRS)
Eckhardt, D. E., Jr.; Lee, L. D.
1985-01-01
Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists.
NASA Technical Reports Server (NTRS)
Haakensen, Erik Edward
1998-01-01
The desire for low-cost reliable computing is increasing. Most current fault tolerant computing solutions are not very flexible, i.e., they cannot adapt to reliability requirements of newly emerging applications in business, commerce, and manufacturing. It is important that users have a flexible, reliable platform to support both critical and noncritical applications. Chameleon, under development at the Center for Reliable and High-Performance Computing at the University of Illinois, is a software framework. for supporting cost-effective adaptable networked fault tolerant service. This thesis details a simulation of fault injection, detection, and recovery in Chameleon. The simulation was written in C++ using the DEPEND simulation library. The results obtained from the simulation included the amount of overhead incurred by the fault detection and recovery mechanisms supported by Chameleon. In addition, information about fault scenarios from which Chameleon cannot recover was gained. The results of the simulation showed that both critical and noncritical applications can be executed in the Chameleon environment with a fairly small amount of overhead. No single point of failure from which Chameleon could not recover was found. Chameleon was also found to be capable of recovering from several multiple failure scenarios.
Fault-Tolerant and Elastic Streaming MapReduce with Decentralized Coordination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumbhare, Alok; Frincu, Marc; Simmhan, Yogesh
2015-06-29
The MapReduce programming model, due to its simplicity and scalability, has become an essential tool for processing large data volumes in distributed environments. Recent Stream Processing Systems (SPS) extend this model to provide low-latency analysis of high-velocity continuous data streams. However, integrating MapReduce with streaming poses challenges: first, the runtime variations in data characteristics such as data-rates and key-distribution cause resource overload, that inturn leads to fluctuations in the Quality of the Service (QoS); and second, the stateful reducers, whose state depends on the complete tuple history, necessitates efficient fault-recovery mechanisms to maintain the desired QoS in the presence ofmore » resource failures. We propose an integrated streaming MapReduce architecture leveraging the concept of consistent hashing to support runtime elasticity along with locality-aware data and state replication to provide efficient load-balancing with low-overhead fault-tolerance and parallel fault-recovery from multiple simultaneous failures. Our evaluation on a private cloud shows up to 2:8 improvement in peak throughput compared to Apache Storm SPS, and a low recovery latency of 700 -1500 ms from multiple failures.« less
A Framework for Debugging Geoscience Projects in a High Performance Computing Environment
NASA Astrophysics Data System (ADS)
Baxter, C.; Matott, L.
2012-12-01
High performance computing (HPC) infrastructure has become ubiquitous in today's world with the emergence of commercial cloud computing and academic supercomputing centers. Teams of geoscientists, hydrologists and engineers can take advantage of this infrastructure to undertake large research projects - for example, linking one or more site-specific environmental models with soft computing algorithms, such as heuristic global search procedures, to perform parameter estimation and predictive uncertainty analysis, and/or design least-cost remediation systems. However, the size, complexity and distributed nature of these projects can make identifying failures in the associated numerical experiments using conventional ad-hoc approaches both time- consuming and ineffective. To address these problems a multi-tiered debugging framework has been developed. The framework allows for quickly isolating and remedying a number of potential experimental failures, including: failures in the HPC scheduler; bugs in the soft computing code; bugs in the modeling code; and permissions and access control errors. The utility of the framework is demonstrated via application to a series of over 200,000 numerical experiments involving a suite of 5 heuristic global search algorithms and 15 mathematical test functions serving as cheap analogues for the simulation-based optimization of pump-and-treat subsurface remediation systems.
Physics-based Entry, Descent and Landing Risk Model
NASA Technical Reports Server (NTRS)
Gee, Ken; Huynh, Loc C.; Manning, Ted
2014-01-01
A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.
A Bivariate return period for levee failure monitoring
NASA Astrophysics Data System (ADS)
Isola, M.; Caporali, E.
2017-12-01
Levee breaches are strongly linked with the interaction processes among water, soil and structure, thus many are the factors that affect the breach development. One of the main is the hydraulic load, characterized by intensity and duration, i.e. by the flood event hydrograph. On the magnitude of the hydraulic load is based the levee design, generally without considering the fatigue failure due to the load duration. Moreover, many are the cases in which the levee breach are characterized by flood of magnitude lower than the design one. In order to implement the strategies of flood risk management, we built here a procedure based on a multivariate statistical analysis of flood peak and volume together with the analysis of the past levee failure events. Particularly, in order to define the probability of occurrence of the hydraulic load on a levee, a bivariate copula model is used to obtain the bivariate joint distribution of flood peak and volume. Flood peak is the expression of the load magnitude, while the volume is the expression of the stress over time. We consider the annual flood peak and the relative volume. The volume is given by the hydrograph area between the beginning and the end of event. The beginning of the event is identified as an abrupt rise of the discharge by more than 20%. The end is identified as the point from which the receding limb is characterized by the baseflow, using a nonlinear reservoir algorithm as baseflow separation technique. By this, with the aim to define warning thresholds we consider the past levee failure events and the relative bivariate return period (BTr) compared with the estimation of a traditional univariate model. The discharge data of 30 hydrometric stations of Arno River in Tuscany, Italy, in the period 1995-2016 are analysed. The database of levee failure events, considering for each event the location as well as the failure mode, is also created. The events were registered in the period 2000-2014 by EEA-Europe Environment Agency, the Italian Civil Protection and ISPRA (the Italian National Institute for Environmental Protection and Research). Only two levee failures events occurred in the sub-basin of Era River have been detected and analysed. The estimated return period with the univariate model of flood peak is greater than 2 and 5 years while the BTr is greater of 25 and 30 years respectively.
Independent Orbiter Assessment (IOA): Analysis of the crew equipment subsystem
NASA Technical Reports Server (NTRS)
Sinclair, Susan; Graham, L.; Richard, Bill; Saxon, H.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results coresponding to the Orbiter crew equipment hardware are documented. The IOA analysis process utilized available crew equipment hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 352 failure modes analyzed, 78 were determined to be PCIs.
Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.
2015-01-01
Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the design margin concept with one of failure probability.
Characterization of cracking behavior using posttest fractographic analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T.; Shockey, D.A.
A determination of time to initiation of stress corrosion cracking in structures and test specimens is important for performing structural failure analysis and for setting inspection intervals. Yet it is seldom possible to establish how much of a component's lifetime represents the time to initiation of fracture and how much represents postinitiation crack growth. This exploratory research project was undertaken to examine the feasibility of determining crack initiation times and crack growth rates from posttest examination of fracture surfaces of constant-extension-rate-test (CERT) specimens by using the fracture reconstruction applying surface topography analysis (FRASTA) technique. The specimens used in this studymore » were Type 304 stainless steel fractured in several boiling water reactor (BWR) aqueous environments. 2 refs., 25 figs., 2 tabs.« less
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Nemeth, Michael P.; Hilburger, Mark W.
2004-01-01
A technology review and assessment of modeling and analysis efforts underway in support of a safe return to flight of the thermal protection system (TPS) for the Space Shuttle external tank (ET) are summarized. This review and assessment effort focuses on the structural modeling and analysis practices employed for ET TPS foam design and analysis and on identifying analysis capabilities needed in the short-term and long-term. The current understanding of the relationship between complex flight environments and ET TPS foam failure modes are reviewed as they relate to modeling and analysis. A literature review on modeling and analysis of TPS foam material systems is also presented. Finally, a review of modeling and analysis tools employed in the Space Shuttle Program is presented for the ET TPS acreage and close-out foam regions. This review includes existing simplified engineering analysis tools are well as finite element analysis procedures.
NASA Astrophysics Data System (ADS)
Saleh, Joseph Homer; Geng, Fan; Ku, Michelle; Walker, Mitchell L. R.
2017-10-01
With a few hundred spacecraft launched to date with electric propulsion (EP), it is possible to conduct an epidemiological study of EP's on orbit reliability. The first objective of the present work was to undertake such a study and analyze EP's track record of on orbit anomalies and failures by different covariates. The second objective was to provide a comparative analysis of EP's failure rates with those of chemical propulsion. Satellite operators, manufacturers, and insurers will make reliability- and risk-informed decisions regarding the adoption and promotion of EP on board spacecraft. This work provides evidence-based support for such decisions. After a thorough data collection, 162 EP-equipped satellites launched between January 1997 and December 2015 were included in our dataset for analysis. Several statistical analyses were conducted, at the aggregate level and then with the data stratified by severity of the anomaly, by orbit type, and by EP technology. Mean Time To Anomaly (MTTA) and the distribution of the time to (minor/major) anomaly were investigated, as well as anomaly rates. The important findings in this work include the following: (1) Post-2005, EP's reliability has outperformed that of chemical propulsion; (2) Hall thrusters have robustly outperformed chemical propulsion, and they maintain a small but shrinking reliability advantage over gridded ion engines. Other results were also provided, for example the differentials in MTTA of minor and major anomalies for gridded ion engines and Hall thrusters. It was shown that: (3) Hall thrusters exhibit minor anomalies very early on orbit, which might be indicative of infant anomalies, and thus would benefit from better ground testing and acceptance procedures; (4) Strong evidence exists that EP anomalies (onset and likelihood) and orbit type are dependent, a dependence likely mediated by either the space environment or differences in thrusters duty cycles; (5) Gridded ion thrusters exhibit both infant and wear-out failures, and thus would benefit from a reliability growth program that addresses both these types of problems.
NASA Astrophysics Data System (ADS)
Li, N.; Cheng, Y. M.
2015-01-01
Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.
Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge
NASA Astrophysics Data System (ADS)
Li, N.; Cheng, Y. M.
2014-09-01
Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.
Metallurgical failure analysis of MH-1A reactor core hold-down bolts. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, J.R.; Watson, H.E.
1976-11-01
The Naval Research Laboratory has performed a failure analysis on two MH-1A reactor core hold-down bolts that broke in service. Adherence to fabrication specifications, post-service properties and possible causes of bolt failure were investigated. The bolt material was verified as 17-4PH precipitation hardening stainless steel. Measured bolt dimensions also were in accordance with fabrication drawing specifications. Bolt failure occurred in the region of a locking pin hole which reduced the bolt net section by 47 percent. The failure analysis indicates that the probable cause of failure was net section overloading resulting from a lateral bending force on the bolt. Themore » analysis indicates that net section overloading could also have resulted from combined tensile stresses (bolt preloading plus differential thermal expansion). Recommendations are made for improved bolting.« less
Validation of Computerized Automatic Calculation of the Sequential Organ Failure Assessment Score
Harrison, Andrew M.; Pickering, Brian W.; Herasevich, Vitaly
2013-01-01
Purpose. To validate the use of a computer program for the automatic calculation of the sequential organ failure assessment (SOFA) score, as compared to the gold standard of manual chart review. Materials and Methods. Adult admissions (age > 18 years) to the medical ICU with a length of stay greater than 24 hours were studied in the setting of an academic tertiary referral center. A retrospective cross-sectional analysis was performed using a derivation cohort to compare automatic calculation of the SOFA score to the gold standard of manual chart review. After critical appraisal of sources of disagreement, another analysis was performed using an independent validation cohort. Then, a prospective observational analysis was performed using an implementation of this computer program in AWARE Dashboard, which is an existing real-time patient EMR system for use in the ICU. Results. Good agreement between the manual and automatic SOFA calculations was observed for both the derivation (N=94) and validation (N=268) cohorts: 0.02 ± 2.33 and 0.29 ± 1.75 points, respectively. These results were validated in AWARE (N=60). Conclusion. This EMR-based automatic tool accurately calculates SOFA scores and can facilitate ICU decisions without the need for manual data collection. This tool can also be employed in a real-time electronic environment. PMID:23936639
Failure mechanism characterization of platinum alloy
NASA Technical Reports Server (NTRS)
Rosen, J. M.; Mcfarlen, W. T.
1986-01-01
This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.
Failure Analysis of CCD Image Sensors Using SQUID and GMR Magnetic Current Imaging
NASA Technical Reports Server (NTRS)
Felt, Frederick S.
2005-01-01
During electrical testing of a Full Field CCD Image Senor, electrical shorts were detected on three of six devices. These failures occurred after the parts were soldered to the PCB. Failure analysis was performed to determine the cause and locations of these failures on the devices. After removing the fiber optic faceplate, optical inspection was performed on the CCDs to understand the design and package layout. Optical inspection revealed that the device had a light shield ringing the CCD array. This structure complicated the failure analysis. Alternate methods of analysis were considered, including liquid crystal, light and thermal emission, LT/A, TT/A SQUID, and MP. Of these, SQUID and MP techniques were pursued for further analysis. Also magnetoresistive current imaging technology is discussed and compared to SQUID.
Stingray Failure Mode, Effects and Criticality Analysis: WEC Risk Registers
Ken Rhinefrank
2016-07-25
Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficiently. The FMECA can begin once there is enough detail to functions and failure modes of a given system, and its interfaces with other systems. The FMECA occurs coincidently with the design process and is an iterative process which allows for design changes to overcome deficiencies in the analysis.Risk Registers for major subsystems completed according to the methodology described in "Failure Mode Effects and Criticality Analysis Risk Reduction Program Plan.pdf" document below, in compliance with the DOE Risk Management Framework developed by NREL.
NASA Astrophysics Data System (ADS)
Aprilia, Ayu Rizky; Santoso, Imam; Ekasari, Dhita Murita
2017-05-01
Yogurt is a product based on milk, which has beneficial effects for health. The process for the production of yogurt is very susceptible to failure because it involves bacteria and fermentation. For an industry, the risks may cause harm and have a negative impact. In order for a product to be successful and profitable, it requires the analysis of risks that may occur during the production process. Risk analysis can identify the risks in detail and prevent as well as determine its handling, so that the risks can be minimized. Therefore, this study will analyze the risks of the production process with a case study in CV.XYZ. The method used in this research is the Fuzzy Failure Mode and Effect Analysis (fuzzy FMEA) and Fault Tree Analysis (FTA). The results showed that there are 6 risks from equipment variables, raw material variables, and process variables. Those risks include the critical risk, which is the risk of a lack of an aseptic process, more specifically if starter yogurt is damaged due to contamination by fungus or other bacteria and a lack of sanitation equipment. The results of quantitative analysis of FTA showed that the highest probability is the probability of the lack of an aseptic process, with a risk of 3.902%. The recommendations for improvement include establishing SOPs (Standard Operating Procedures), which include the process, workers, and environment, controlling the starter of yogurt and improving the production planning and sanitation equipment using hot water immersion.
Cautionary tales for reduced-gravity particle research
NASA Technical Reports Server (NTRS)
Marshall, John R.; Greeley, Ronald; Tucker, D. W.
1987-01-01
Failure of experiments conducted on the KC-135 aircraft in zero gravity are discussed. Tests that were a total failure are reported. Why the failure occurred and the sort of questions that potential researchers should ask in order to avoid the appearance of abstracts such as this are discussed. Many types of aggregation studies were proposed for the Space Station, and it is hoped that the following synopsis of events will add a touch of reality to experimentation proposed for this zero-gravity environment.
Wong, Kam Cheong
2016-04-06
Clinicians use various clinical reasoning tools such as Ishikawa diagram to enhance their clinical experience and reasoning skills. Failure mode and effects analysis, which is an engineering methodology in origin, can be modified and applied to provide inputs into an Ishikawa diagram. The human biliary system is used to illustrate a modified failure mode and effects analysis. The anatomical and physiological processes of the biliary system are reviewed. Failure is defined as an abnormality caused by infective, inflammatory, obstructive, malignancy, autoimmune and other pathological processes. The potential failures, their effect(s), main clinical features, and investigation that can help a clinician to diagnose at each anatomical part and physiological process are reviewed and documented in a modified failure mode and effects analysis table. Relevant medical and surgical cases are retrieved from the medical literature and weaved into the table. A total of 80 clinical cases which are relevant to the modified failure mode and effects analysis for the human biliary system have been reviewed and weaved into a designated table. The table is the backbone and framework for further expansion. Reviewing and updating the table is an iterative and continual process. The relevant clinical features in the modified failure mode and effects analysis are then extracted and included in the relevant Ishikawa diagram. This article illustrates an application of engineering methodology in medicine, and it sows the seeds of potential cross-pollination between engineering and medicine. Establishing a modified failure mode and effects analysis can be a teamwork project or self-directed learning process, or a mix of both. Modified failure mode and effects analysis can be deployed to obtain inputs for an Ishikawa diagram which in turn can be used to enhance clinical experiences and clinical reasoning skills for clinicians, medical educators, and students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iver E.; Boesenberg, Adam; Harringa, Joel
2011-09-28
Pb-free solder alloys based on the Sn-Ag-Cu (SAC) ternary eutectic have promise for widespread adoption across assembly conditions and operating environments, but enhanced microstructural control is needed. Micro-alloying with elements such as Zn was demonstrated for promoting a preferred solidification path and joint microstructure earlier in simple (Cu/Cu) solder joints studies for different cooling rates. This beneficial behavior now has been verified in reworked ball grid array (BGA) joints, using dissimilar SAC305 (Sn-3.0Ag-0.5Cu, wt.%) solder paste. After industrial assembly, BGA components joined with Sn-3.5Ag-0.74Cu-0.21Zn solder were tested in thermal cycling (-55 C/+125 C) along with baseline SAC305 BGA joints beyondmore » 3000 cycles with continuous failure monitoring. Weibull analysis of the results demonstrated that BGA components joined with SAC + Zn/SAC305 have less joint integrity than SAC305 joints, but their lifetime is sufficient for severe applications in consumer, defense, and avionics electronic product field environments. Failure analysis of the BGA joints revealed that cracking did not deviate from the typical top area (BGA component side) of each joint, in spite of different Ag3Sn blade content. Thus, SAC + Zn solder has not shown any advantage over SAC305 solder in these thermal cycling trials, but other characteristics of SAC + Zn solder may make it more attractive for use across the full range of harsh conditions of avionics or defense applications.« less
NASA Technical Reports Server (NTRS)
Bundick, W. Thomas
1990-01-01
A methodology for designing a failure detection and identification (FDI) system to detect and isolate control element failures in aircraft control systems is reviewed. An FDI system design for a modified B-737 aircraft resulting from this methodology is also reviewed, and the results of evaluating this system via simulation are presented. The FDI system performed well in a no-turbulence environment, but it experienced an unacceptable number of false alarms in atmospheric turbulence. An adaptive FDI system, which adjusts thresholds and other system parameters based on the estimated turbulence level, was developed and evaluated. The adaptive system performed well over all turbulence levels simulated, reliably detecting all but the smallest magnitude partially-missing-surface failures.
Less than severe worst case accidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, G.A.
1996-08-01
Many systems can provide tremendous benefit if operating correctly, produce only an inconvenience if they fail to operate, but have extreme consequences if they are only partially disabled such that they operate erratically or prematurely. In order to assure safety, systems are often tested against the most severe environments and accidents that are considered possible to ensure either safe operation or safe failure. However, it is often the less severe environments which result in the ``worst case accident`` since these are the conditions in which part of the system may be exposed or rendered unpredictable prior to total system failure.more » Some examples of less severe mechanical, thermal, and electrical environments which may actually be worst case are described as cautions for others in industries with high consequence operations or products.« less
Fault Injection Techniques and Tools
NASA Technical Reports Server (NTRS)
Hsueh, Mei-Chen; Tsai, Timothy K.; Iyer, Ravishankar K.
1997-01-01
Dependability evaluation involves the study of failures and errors. The destructive nature of a crash and long error latency make it difficult to identify the causes of failures in the operational environment. It is particularly hard to recreate a failure scenario for a large, complex system. To identify and understand potential failures, we use an experiment-based approach for studying the dependability of a system. Such an approach is applied not only during the conception and design phases, but also during the prototype and operational phases. To take an experiment-based approach, we must first understand a system's architecture, structure, and behavior. Specifically, we need to know its tolerance for faults and failures, including its built-in detection and recovery mechanisms, and we need specific instruments and tools to inject faults, create failures or errors, and monitor their effects.
Güleçyüz, Mehmet F; Mazur, Alexandra; Schröder, Christian; Braun, Christian; Ficklscherer, Andreas; Roßbach, Björn P; Müller, Peter E; Pietschmann, Matthias F
2015-06-01
The purpose of this study was to analyze the biomechanical integrity of suture anchors of different materials (titanium, PEEK [polyether ether ketone], poly-L-lactic acid [PLLA], and β-tricalcium phosphate PLLA) and almost identical design for rotator cuff repair in human humeri positioned in a water bath at room and body temperature undergoing cyclic loading rather than single-pull or static tests. Four different anchor models (n = 6) were tested using healthy human cadaveric humeri in a water bath thermostatically regulated at 20°C and 37°C. A cyclic testing protocol was used. The maximum failure load, the system displacement, and the respective mode of failure were recorded. There were no significant differences regarding the maximum failure load values between the 20°C groups and 37°C groups for the 4 different anchor materials. The displacement values for the 20°C groups and 37°C groups also were not statistically significant. Anchor and suture dislocations were the predominant modes of failure; suture ruptures were observed in few cases. This study shows that there are no significantly relevant differences regarding the maximum failure loads and the displacement values of the tested suture anchor systems in a wet environment at 20°C or 37°C. The temperature differences do not seem to affect the modes of failure either. Titanium, PEEK, PLLA, and β-tricalcium phosphate PLLA suture anchors for rotator cuff repair can be expected-on the basis of this investigation comparing laboratory temperature with body temperature and a wet environment-to perform in vivo similar to in vitro testing. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Risk management of key issues of FPSO
NASA Astrophysics Data System (ADS)
Sun, Liping; Sun, Hai
2012-12-01
Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offloading system and fire accidents were analyzed based on the floating production, storage and offloading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offloading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.
NOW: A Workflow Language for Orchestration in Nomadic Networks
NASA Astrophysics Data System (ADS)
Philips, Eline; van der Straeten, Ragnhild; Jonckers, Viviane
Existing workflow languages for nomadic or mobile ad hoc networks do not offer adequate support for dealing with the volatile connections inherent to these environments. Services residing on mobile devices are exposed to (temporary) network failures, which should be considered the rule rather than the exception. This paper proposes a nomadic workflow language built on top of an ambient-oriented programming language which supports dynamic service discovery and communication primitives resilient to network failures. Our proposed language provides high level workflow abstractions for control flow and supports rich network and service failure detection and handling through compensating actions. Moreover, we introduce a powerful variable binding mechanism which enables dynamic data flow between services in a nomadic environment. By adding this extra layer of abstraction on top of an ambient-oriented programming language, the application programmer is offered a flexible way to develop applications for nomadic networks.
Analysis of Emergency Diesel Generators Failure Incidents in Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Hunt, Ronderio LaDavis
In early years of operation, emergency diesel generators have had a minimal rate of demand failures. Emergency diesel generators are designed to operate as a backup when the main source of electricity has been disrupted. As of late, EDGs (emergency diesel generators) have been failing at NPPs (nuclear power plants) around the United States causing either station blackouts or loss of onsite and offsite power. These failures occurred from a specific type called demand failures. This thesis evaluated the current problem that raised concern in the nuclear industry which was averaging 1 EDG demand failure/year in 1997 to having an excessive event of 4 EDG demand failure year which occurred in 2011. To determine the next occurrence of the extreme event and possible cause to an event of such happening, two analyses were conducted, the statistical and root cause analysis. Considering the statistical analysis in which an extreme event probability approach was applied to determine the next occurrence year of an excessive event as well as, the probability of that excessive event occurring. Using the root cause analysis in which the potential causes of the excessive event occurred by evaluating, the EDG manufacturers, aging, policy changes/ maintenance practices and failure components. The root cause analysis investigated the correlation between demand failure data and historical data. Final results from the statistical analysis showed expectations of an excessive event occurring in a fixed range of probability and a wider range of probability from the extreme event probability approach. The root-cause analysis of the demand failure data followed historical statistics for the EDG manufacturer, aging and policy changes/ maintenance practices but, indicated a possible cause regarding the excessive event with the failure components. Conclusions showed the next excessive demand failure year, prediction of the probability and the next occurrence year of such failures, with an acceptable confidence level, was difficult but, it was likely that this type of failure will not be a 100 year event. It was noticeable to see that the majority of the EDG demand failures occurred within the main components as of 2005. The overall analysis of this study provided from percentages, indicated that it would be appropriate to make the statement that the excessive event was caused by the overall age (wear and tear) of the Emergency Diesel Generators in Nuclear Power Plants. Future Work will be to better determine the return period of the excessive event once the occurrence has happened for a second time by implementing the extreme event probability approach.
Extended Testability Analysis Tool
NASA Technical Reports Server (NTRS)
Melcher, Kevin; Maul, William A.; Fulton, Christopher
2012-01-01
The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA's program requirements.
Meteoroid and Orbital Debris Threats to NASA's Docking Seals: Initial Assessment and Methodology
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Gallo, Christopher A.; Nahra, Henry K.
2009-01-01
The Crew Exploration Vehicle (CEV) will be exposed to the Micrometeoroid Orbital Debris (MMOD) environment in Low Earth Orbit (LEO) during missions to the International Space Station (ISS) and to the micrometeoroid environment during lunar missions. The CEV will be equipped with a docking system which enables it to connect to ISS and the lunar module known as Altair; this docking system includes a hatch that opens so crew and supplies can pass between the spacecrafts. This docking system is known as the Low Impact Docking System (LIDS) and uses a silicone rubber seal to seal in cabin air. The rubber seal on LIDS presses against a metal flange on ISS (or Altair). All of these mating surfaces are exposed to the space environment prior to docking. The effects of atomic oxygen, ultraviolet and ionizing radiation, and MMOD have been estimated using ground based facilities. This work presents an initial methodology to predict meteoroid and orbital debris threats to candidate docking seals being considered for LIDS. The methodology integrates the results of ground based hypervelocity impacts on silicone rubber seals and aluminum sheets, risk assessments of the MMOD environment for a variety of mission scenarios, and candidate failure criteria. The experimental effort that addressed the effects of projectile incidence angle, speed, mass, and density, relations between projectile size and resulting crater size, and relations between crater size and the leak rate of candidate seals has culminated in a definition of the seal/flange failure criteria. The risk assessment performed with the BUMPER code used the failure criteria to determine the probability of failure of the seal/flange system and compared the risk to the allotted risk dictated by NASA s program requirements.
Pennell, William E.; Sutton, Jr., Harry G.
1981-01-01
Method and apparatus for detecting failure in a welded connection, particrly applicable to not readily accessible welds such as those joining components within the reactor vessel of a nuclear reactor system. A preselected tag gas is sealed within a chamber which extends through selected portions of the base metal and weld deposit. In the event of a failure, such as development of a crack extending from the chamber to an outer surface, the tag gas is released. The environment about the welded area is directed to an analyzer which, in the event of presence of the tag gas, evidences the failure. A trigger gas can be included with the tag gas to actuate the analyzer.
Failures in large gas turbines due to liquid-metal embrittlement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, D.W.
1994-07-01
The failures of three gas turbine components, attributed to liquid-metal embrittlement or solid-metal-induced embrittlement, are described. High temperatures inherent in the gas turbine can aggravate these phenomenon if the necessary conditions are present. Examples chosen include a power transmission shaft, flange bolts from a cooling steam line, and a turbine rotor bolt. The respective material couples involved are 17-4PH stainless steel-copper, AISI 4130-cadmium, and IN 718-cadmium. Each case includes information on the source of the aggressive material and relevant operating environment. The implications of the failures with regard to the general failure mechanism are briefly discussed.
First Stage Solid Propellant Multi Debris Thermal Analysis
NASA Technical Reports Server (NTRS)
Toleman, Benjamin M.
2011-01-01
The crew launch vehicle considered for the Constellation (Cx) Program utilizes a first stage solid rocket motor. If an abort is initiated in first stage flight the Crew Module (CM) will separate and be pulled away from the launch vehicle via a Launch Abort System (LAS) in order to safely and quickly carry the crew away from the malfunction launch vehicle. Having aborted the mission, the launch vehicle will likely be destroyed via a Flight Termination System (FTS) in order to prevent it from errantly traversing back over land and posing a risk to the public. The resulting launch vehicle debris field, composed primarily of first stage solid propellant, poses a threat to the CM. The harsh radiative thermal environment induced by surrounding burning propellant debris may lead to CM parachute failure. A methodology, detailed herein, has been developed to address this concern and quantify the risk of first stage propellant debris leading to radiative thermal demise of the CM parachutes. Utilizing basic thermal radiation principles, a software program was developed to calculate parachute temperature as a function of time for a given abort trajectory and debris piece trajectory set. Two test cases, considered worst-case aborts with regard to launch vehicle debris environments, were analyzed using the simulation: an abort declared at Mach 1 and an abort declared at maximum dynamic pressure (Max Q). For both cases, the resulting temperature profiles indicated that thermal limits for the parachutes were not exceeded. However, short duration close encounters by single debris pieces did have a significant effect on parachute temperature, with magnitudes on the order of 10 s of degrees Fahrenheit. Therefore while these two test cases did not indicate exceedance of thermal limits, in order to quantify the risk of parachute failure due to radiative effects from the abort environment, a more thorough probability-based analysis using the methodology demonstrated herein must be performed.
First Stage Solid Propellant Multiply Debris Thermal Analysis
NASA Technical Reports Server (NTRS)
Toleman, Benjamin M.
2011-01-01
Destruction of a solid rocket stage of a launch vehicle can create a thermal radiation hazard for an aborting crew module. This hazard was assessed for the Constellation Program (Cx) crew and launch vehicle concept. For this concept, if an abort was initiated in first stage flight, the Crew Module (CM) will separate and be pulled away from the malfunctioning launch vehicle via a Launch Abort System (LAS). Having aborted the mission, the launch vehicle will likely be destroyed via a Flight Termination System (FTS) in order to prevent it from errantly traversing back over land and posing a risk to the public. The resulting launch vehicle debris field, composed primarily of first stage solid propellant, poses a threat to the CM. The harsh radiative thermal environment, caused by surrounding burning propellant debris, may lead to CM parachute failure. A methodology, detailed herein, has been developed to address this concern and to quantify the risk of first stage propellant debris leading to the thermal demise of the CM parachutes. Utilizing basic thermal radiation principles, a software program was developed to calculate parachute temperature as a function of time for a given abort trajectory and debris piece trajectory set. Two test cases, considered worst case aborts with regard to launch vehicle debris environments, were analyzed using the simulation: an abort declared at Mach 1 and an abort declared at maximum dynamic pressure (Max Q). For both cases, the resulting temperature profiles indicated that thermal limits for the parachutes were not exceeded. However, short duration close encounters by single debris pieces did have a significant effect on parachute temperature. Therefore while these two test cases did not indicate exceedance of thermal limits, in order to quantify the risk of parachute failure due to radiative effects from the abort environment, a more thorough probability-based analysis using the methodology demonstrated herein must be performed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Compliance. 725.70 Section 725.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Administrative Procedures § 725.70 Compliance. (a) Failure...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Compliance. 725.70 Section 725.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Administrative Procedures § 725.70 Compliance. (a) Failure...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Compliance. 720.120 Section 720.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT PREMANUFACTURE NOTIFICATION Compliance and Inspections § 720.120 Compliance. (a) Failure to comply with any...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Compliance. 720.120 Section 720.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT PREMANUFACTURE NOTIFICATION Compliance and Inspections § 720.120 Compliance. (a) Failure to comply with any...
Strain corrosion cracking in rpm sewer piping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, S.W.; Wachob, H.F.; Duffner, D.H.
1993-12-31
Long term, aggressive environmental exposure can result in localized failure of large diameter, glass reinforced plastic mortar (RPM) piping. In order to evaluate the performance of the liner and glass reinforced matrix polyester resin, accelerated strain corrosion tests were performed on samples of RPM piping that had already experienced almost 15 years of service. To assess the sensitivity of RPM pipe to acidic environments and to correlate the fractography of the laboratory produced failures with the excavated crack, short segments of 8-inch and 48-inch diameter piping were statically loaded to produce various known surface strains. After preloading the specimens tomore » fixed strain levels, these samples were then exposed to sulfuric acid solutions having pH values of 2.7 and 4.7 and monitored as a function of time until failure. The resulting lifetimes were related to initial surface strains and showed a decreasing logarithmic relationship. Fractographic examination of the excavated crack revealed the typical strain corrosion fractography of glass fibers after almost a 1000 hour exposure at 1.3 % strain; similar fractographic observations were obtained from failed laboratory samples. At shorter times, failure appeared to be overload in nature and exhibited little, if any, timedependent fracture features. Fractographic examination of the excavated crack strongly indicated that the crack had been present for a significant time. The extremely aggressive environment had totally dissolved the exposed glass reinforcement. Based on the laboratory strain corrosion performance, the nature of the contained cracking, and fractography of the failed surface, cracking of the excavated RPM pipe was believed to be the result of an early overload failure that subsequently propagated slowly via strain corrosion in an extremely aggressive environment.« less
NASA Technical Reports Server (NTRS)
Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.
2006-01-01
Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.
Quantitative method of medication system interface evaluation.
Pingenot, Alleene Anne; Shanteau, James; Pingenot, James D F
2007-01-01
The objective of this study was to develop a quantitative method of evaluating the user interface for medication system software. A detailed task analysis provided a description of user goals and essential activity. A structural fault analysis was used to develop a detailed description of the system interface. Nurses experienced with use of the system under evaluation provided estimates of failure rates for each point in this simplified fault tree. Means of estimated failure rates provided quantitative data for fault analysis. Authors note that, although failures of steps in the program were frequent, participants reported numerous methods of working around these failures so that overall system failure was rare. However, frequent process failure can affect the time required for processing medications, making a system inefficient. This method of interface analysis, called Software Efficiency Evaluation and Fault Identification Method, provides quantitative information with which prototypes can be compared and problems within an interface identified.
Probabilistic safety analysis of earth retaining structures during earthquakes
NASA Astrophysics Data System (ADS)
Grivas, D. A.; Souflis, C.
1982-07-01
A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.
Independent Orbiter Assessment (IOA): Analysis of the auxiliary power unit
NASA Technical Reports Server (NTRS)
Barnes, J. E.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Auxiliary Power Unit (APU). The APUs are required to provide power to the Orbiter hydraulics systems during ascent and entry flight phases for aerosurface actuation, main engine gimballing, landing gear extension, and other vital functions. For analysis purposes, the APU system was broken down into ten functional subsystems. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. A preponderance of 1/1 criticality items were related to failures that allowed the hydrazine fuel to escape into the Orbiter aft compartment, creating a severe fire hazard, and failures that caused loss of the gas generator injector cooling system.
Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.
2016-01-01
Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.
The SAM framework: modeling the effects of management factors on human behavior in risk analysis.
Murphy, D M; Paté-Cornell, M E
1996-08-01
Complex engineered systems, such as nuclear reactors and chemical plants, have the potential for catastrophic failure with disastrous consequences. In recent years, human and management factors have been recognized as frequent root causes of major failures in such systems. However, classical probabilistic risk analysis (PRA) techniques do not account for the underlying causes of these errors because they focus on the physical system and do not explicitly address the link between components' performance and organizational factors. This paper describes a general approach for addressing the human and management causes of system failure, called the SAM (System-Action-Management) framework. Beginning with a quantitative risk model of the physical system, SAM expands the scope of analysis to incorporate first the decisions and actions of individuals that affect the physical system. SAM then links management factors (incentives, training, policies and procedures, selection criteria, etc.) to those decisions and actions. The focus of this paper is on four quantitative models of action that describe this last relationship. These models address the formation of intentions for action and their execution as a function of the organizational environment. Intention formation is described by three alternative models: a rational model, a bounded rationality model, and a rule-based model. The execution of intentions is then modeled separately. These four models are designed to assess the probabilities of individual actions from the perspective of management, thus reflecting the uncertainties inherent to human behavior. The SAM framework is illustrated for a hypothetical case of hazardous materials transportation. This framework can be used as a tool to increase the safety and reliability of complex technical systems by modifying the organization, rather than, or in addition to, re-designing the physical system.
Mod 1 wind turbine generator failure modes and effects analysis
NASA Technical Reports Server (NTRS)
1979-01-01
A failure modes and effects analysis (FMEA) was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. Each subsystem was approached from the top down, and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.
Tourkmani, Abdo Karim; Sánchez-Huerta, Valeria; De Wit, Guillermo; Martínez, Jaime D; Mingo, David; Mahillo-Fernández, Ignacio; Jiménez-Alfaro, Ignacio
2017-01-01
To analyze the relationship between the score obtained in the Risk Score System (RSS) proposed by Hicks et al with penetrating keratoplasty (PKP) graft failure at 1y postoperatively and among each factor in the RSS with the risk of PKP graft failure using univariate and multivariate analysis. The retrospective cohort study had 152 PKPs from 152 patients. Eighteen cases were excluded from our study due to primary failure (10 cases), incomplete medical notes (5 cases) and follow-up less than 1y (3 cases). We included 134 PKPs from 134 patients stratified by preoperative risk score. Spearman coefficient was calculated for the relationship between the score obtained and risk of failure at 1y. Univariate and multivariate analysis were calculated for the impact of every single risk factor included in the RSS over graft failure at 1y. Spearman coefficient showed statistically significant correlation between the score in the RSS and graft failure ( P <0.05). Multivariate logistic regression analysis showed no statistically significant relationship ( P >0.05) between diagnosis and lens status with graft failure. The relationship between the other risk factors studied and graft failure was significant ( P <0.05), although the results for previous grafts and graft failure was unreliable. None of our patients had previous blood transfusion, thus, it had no impact. After the application of multivariate analysis techniques, some risk factors do not show the expected impact over graft failure at 1y.
Tourkmani, Abdo Karim; Sánchez-Huerta, Valeria; De Wit, Guillermo; Martínez, Jaime D.; Mingo, David; Mahillo-Fernández, Ignacio; Jiménez-Alfaro, Ignacio
2017-01-01
AIM To analyze the relationship between the score obtained in the Risk Score System (RSS) proposed by Hicks et al with penetrating keratoplasty (PKP) graft failure at 1y postoperatively and among each factor in the RSS with the risk of PKP graft failure using univariate and multivariate analysis. METHODS The retrospective cohort study had 152 PKPs from 152 patients. Eighteen cases were excluded from our study due to primary failure (10 cases), incomplete medical notes (5 cases) and follow-up less than 1y (3 cases). We included 134 PKPs from 134 patients stratified by preoperative risk score. Spearman coefficient was calculated for the relationship between the score obtained and risk of failure at 1y. Univariate and multivariate analysis were calculated for the impact of every single risk factor included in the RSS over graft failure at 1y. RESULTS Spearman coefficient showed statistically significant correlation between the score in the RSS and graft failure (P<0.05). Multivariate logistic regression analysis showed no statistically significant relationship (P>0.05) between diagnosis and lens status with graft failure. The relationship between the other risk factors studied and graft failure was significant (P<0.05), although the results for previous grafts and graft failure was unreliable. None of our patients had previous blood transfusion, thus, it had no impact. CONCLUSION After the application of multivariate analysis techniques, some risk factors do not show the expected impact over graft failure at 1y. PMID:28393027
Mechanisms, predictors, and trends of electrical failure of Riata leads.
Cheung, Jim W; Al-Kazaz, Mohamed; Thomas, George; Liu, Christopher F; Ip, James E; Bender, Seth R; Siddiqi, Faisal K; Markowitz, Steven M; Lerman, Bruce B
2013-10-01
Riata and Riata ST implantable cardioverter-defibrillator leads have been shown to be prone to structural and electrical failure. To determine predictors, mechanisms, and temporal patterns of Riata/ST lead electrical failure. All 314 patients who underwent Riata/ST lead implantation at our institution with greater than or equal to 90 days of follow-up were studied. The Kaplan-Meier analysis of lead survival was performed. Results from the returned product analysis of explanted leads with electrical lead failure were recorded. During a median follow-up of 4.1 years, the Riata lead electrical failure rate was 6.6%. The rate of externalized conductors among failed leads was 57%. The engineering analysis of 10 explanted leads revealed 5 (50%) leads with electrical failure owing to breach of ethylene tetrafluoroethylene conductor coating. Female gender (hazard ratio 2.7; 95% confidence interval 1.1-6.7; P = .04) and age (hazard ratio 0.95; 95% confidence interval 0.92-0.97; P < .001) were multivariate predictors of lead failure. By using log-log analysis, we noted that the rate of Riata lead failure initially increased exponentially with a power of 2.1 but leads surviving past 4 years had a linear pattern of lead failure with a power of 1.0. Younger age and female gender are independent predictors of Riata lead failure. Loss of integrity of conductor cables with ethylene tetrafluoroethylene coating is an important mode of electrical failure of the Riata lead. Further study of Riata lead failure trends is warranted to guide lead management. © 2013 Heart Rhythm Society. All rights reserved.
Nasir, Hina; Javaid, Nadeem; Sher, Muhammad; Qasim, Umar; Khan, Zahoor Ali; Alrajeh, Nabil; Niaz, Iftikhar Azim
2016-01-01
This paper embeds a bi-fold contribution for Underwater Wireless Sensor Networks (UWSNs); performance analysis of incremental relaying in terms of outage and error probability, and based on the analysis proposition of two new cooperative routing protocols. Subject to the first contribution, a three step procedure is carried out; a system model is presented, the number of available relays are determined, and based on cooperative incremental retransmission methodology, closed-form expressions for outage and error probability are derived. Subject to the second contribution, Adaptive Cooperation in Energy (ACE) efficient depth based routing and Enhanced-ACE (E-ACE) are presented. In the proposed model, feedback mechanism indicates success or failure of data transmission. If direct transmission is successful, there is no need for relaying by cooperative relay nodes. In case of failure, all the available relays retransmit the data one by one till the desired signal quality is achieved at destination. Simulation results show that the ACE and E-ACE significantly improves network performance, i.e., throughput, when compared with other incremental relaying protocols like Cooperative Automatic Repeat reQuest (CARQ). E-ACE and ACE achieve 69% and 63% more throughput respectively as compared to CARQ in hard underwater environment. PMID:27420061
NASA Astrophysics Data System (ADS)
Longdon, Norman; Dauphin, J.; Dunn, B. D.; Judd, M. D.; Levadou, F. G.; Zwaal, A.
1992-04-01
This booklet is addressed to the users of the Materials and Processes Laboratories of the European Space Research and Technology Centre (ESTEC). The revised edition updates the July 1988 edition featuring the enhancement of existing laboratories and the establishment of a ceramics laboratory. Information on three ESTEC laboratories is presented as well as a look into the future. The three laboratories are the Environmental Effects Laboratory, the Metallic Materials Laboratory, and the Non-metallic Laboratory. The booklet reports on the effects of the space environment on radiation effects (UV and particles), outgassing and contamination, charging-up and discharges, particulate contaminants, atomic oxygen and debris/impacts. Applications of metallic materials to space hardware are covered in the areas of mechanical properties, corrosion/stress corrosion, fracture testing and interpretation, metallurgical processes and failure analysis. Particular applications of non metallic materials to space hardware that are covered are advanced and reinforced polymers, advanced ceramics, thermal properties, manned ambiance, polymer processing, non-destructive tests (NDT), and failure analysis. Future emphasis will be on the measurement of thermo-optical properties for the Infrared Space Observatory (ISO) and other infrared telescopes, support of the Columbus program, Hermes related problems such as 'warm' composites and 'hot' reinforced ceramics for thermal insulation, materials for extravehicular activity (EVA), and NDT.
A dynamical system that describes vein graft adaptation and failure.
Garbey, Marc; Berceli, Scott A
2013-11-07
Adaptation of vein bypass grafts to the mechanical stresses imposed by the arterial circulation is thought to be the primary determinant for lesion development, yet an understanding of how the various forces dictate local wall remodeling is lacking. We develop a dynamical system that summarizes the complex interplay between the mechanical environment and cell/matrix kinetics, ultimately dictating changes in the vein graft architecture. Based on a systematic mapping of the parameter space, three general remodeling response patterns are observed: (1) shear stabilized intimal thickening, (2) tension induced wall thinning and lumen expansion, and (3) tension stabilized wall thickening. Notable is our observation that the integration of multiple feedback mechanisms leads to a variety of non-linear responses that would be unanticipated by an analysis of each system component independently. This dynamic analysis supports the clinical observation that the majority of vein grafts proceed along an adaptive trajectory, where grafts dilate and mildly thicken in response to the increased tension and shear, but a small portion of the grafts demonstrate a maladaptive phenotype, where progressive inward remodeling and accentuated wall thickening lead to graft failure. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Risk analysis by FMEA as an element of analytical validation.
van Leeuwen, J F; Nauta, M J; de Kaste, D; Odekerken-Rombouts, Y M C F; Oldenhof, M T; Vredenbregt, M J; Barends, D M
2009-12-05
We subjected a Near-Infrared (NIR) analytical procedure used for screening drugs on authenticity to a Failure Mode and Effects Analysis (FMEA), including technical risks as well as risks related to human failure. An FMEA team broke down the NIR analytical method into process steps and identified possible failure modes for each step. Each failure mode was ranked on estimated frequency of occurrence (O), probability that the failure would remain undetected later in the process (D) and severity (S), each on a scale of 1-10. Human errors turned out to be the most common cause of failure modes. Failure risks were calculated by Risk Priority Numbers (RPNs)=O x D x S. Failure modes with the highest RPN scores were subjected to corrective actions and the FMEA was repeated, showing reductions in RPN scores and resulting in improvement indices up to 5.0. We recommend risk analysis as an addition to the usual analytical validation, as the FMEA enabled us to detect previously unidentified risks.
Radiation effects in spacecraft electronics
NASA Technical Reports Server (NTRS)
Raymond, James P.
1989-01-01
Effects on the internal spacecraft electronics due to exposure to the natural and enhanced space radiation environment will be reviewed. The emphasis will be placed on the description of the nature of both the exposure environment and failure mechanisms in semiconductors. Understanding both the system environment and device effects is critical in the use of laboratory simulation environments to obtain the data necessary to design and qualify components for successful application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... classification or mean Cryptosporidium level must contain the following language: We are required to monitor the... or mean Cryptosporidium level. 141.211 Section 141.211 Protection of Environment ENVIRONMENTAL... Cryptosporidium level. (a) When is the special notice for repeated failure to monitor to be given? The owner or...
ERIC Educational Resources Information Center
Frelin, Anneli
2015-01-01
Relational features of the educational environment, such as positive teacher-student relationships, are important for students' academic success. This case study explores the relational practices of a teacher who negotiates educational relationships with students who have a history of school failure. "Gunilla", a secondary school teacher…
Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis
NASA Astrophysics Data System (ADS)
Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang
2017-07-01
In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.
Train integrity detection risk analysis based on PRISM
NASA Astrophysics Data System (ADS)
Wen, Yuan
2018-04-01
GNSS based Train Integrity Monitoring System (TIMS) is an effective and low-cost detection scheme for train integrity detection. However, as an external auxiliary system of CTCS, GNSS may be influenced by external environments, such as uncertainty of wireless communication channels, which may lead to the failure of communication and positioning. In order to guarantee the reliability and safety of train operation, a risk analysis method of train integrity detection based on PRISM is proposed in this article. First, we analyze the risk factors (in GNSS communication process and the on-board communication process) and model them. Then, we evaluate the performance of the model in PRISM based on the field data. Finally, we discuss how these risk factors influence the train integrity detection process.
Independent Orbiter Assessment (IOA): Analysis of the pyrotechnics subsystem
NASA Technical Reports Server (NTRS)
Robinson, W. W.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Pyrotechnics hardware. The IOA analysis process utilized available pyrotechnics hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
High-Temperature Graphitization Failure of Primary Superheater Tube
NASA Astrophysics Data System (ADS)
Ghosh, D.; Ray, S.; Roy, H.; Mandal, N.; Shukla, A. K.
2015-12-01
Failure of boiler tubes is the main cause of unit outages of the plant, which further affects the reliability, availability and safety of the unit. So failure analysis of boiler tubes is absolutely essential to predict the root cause of the failure and the steps are taken for future remedial action to prevent the failure in near future. This paper investigates the probable cause/causes of failure of the primary superheater tube in a thermal power plant boiler. Visual inspection, dimensional measurement, chemical analysis, metallographic examination and hardness measurement are conducted as the part of the investigative studies. Apart from these tests, mechanical testing and fractographic analysis are also conducted as supplements. Finally, it is concluded that the superheater tube is failed due to graphitization for prolonged exposure of the tube at higher temperature.
Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures
NASA Technical Reports Server (NTRS)
Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)
1983-01-01
The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.
[Hazard function and life table: an introduction to the failure time analysis].
Matsushita, K; Inaba, H
1987-04-01
Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.
Solder Reflow Failures in Electronic Components During Manual Soldering
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander; Greenwell, Chris; Felt, Frederick
2008-01-01
This viewgraph presentation reviews the solder reflow failures in electronic components that occur during manual soldering. It discusses the specifics of manual-soldering-induced failures in plastic devices with internal solder joints. The failure analysis turned up that molten solder had squeezed up to the die surface along the die molding compound interface, and the dice were not protected with glassivation allowing solder to short gate and source to the drain contact. The failure analysis concluded that the parts failed due to overheating during manual soldering.
Efficient 3-D finite element failure analysis of compression loaded angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Burns, S. W.; Herakovich, C. T.; Williams, J. G.
1987-01-01
Finite element stress analysis and the tensor polynomial failure criterion predict that failure always initiates at the interface between layers on the hole edge for notched angle-ply laminates loaded in compression. The angular location of initial failure is a function of the fiber orientation in the laminate. The dominant stress components initiating failure are shear. It is shown that approximate symmetry can be used to reduce the computer resources required for the case of unaxial loading.
High-throughput sequencing: a failure mode analysis.
Yang, George S; Stott, Jeffery M; Smailus, Duane; Barber, Sarah A; Balasundaram, Miruna; Marra, Marco A; Holt, Robert A
2005-01-04
Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.
Application of Interface Technology in Progressive Failure Analysis of Composite Panels
NASA Technical Reports Server (NTRS)
Sleight, D. W.; Lotts, C. G.
2002-01-01
A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.
Develop advanced nonlinear signal analysis topographical mapping system
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.
Develop advanced nonlinear signal analysis topographical mapping system
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1993-01-01
The SSME has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) Develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system. (2) Develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amounts of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. A high compression ratio can be achieved to allow the minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities. (3) Integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for a quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. The final result of this program will yield an ATMS system of nonlinear and nonstationary spectral analysis software package integrated with the Compressed SSME TOPO Data Base (CSTDB) on the same platform. This system will allow NASA engineers to retrieve any unique defect signatures and trends associated with different failure modes and anomalous phenomena over the entire SSME test history across turbo pump families.
Software For Computing Reliability Of Other Software
NASA Technical Reports Server (NTRS)
Nikora, Allen; Antczak, Thomas M.; Lyu, Michael
1995-01-01
Computer Aided Software Reliability Estimation (CASRE) computer program developed for use in measuring reliability of other software. Easier for non-specialists in reliability to use than many other currently available programs developed for same purpose. CASRE incorporates mathematical modeling capabilities of public-domain Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS) computer program and runs in Windows software environment. Provides menu-driven command interface; enabling and disabling of menu options guides user through (1) selection of set of failure data, (2) execution of mathematical model, and (3) analysis of results from model. Written in C language.
Auger analysis of a fiber/matrix interface in a ceramic matrix composite
NASA Technical Reports Server (NTRS)
Honecy, Frank S.; Pepper, Stephen V.
1988-01-01
Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.
Development of the Vibration Isolation System for the Advanced Resistive Exercise Device
NASA Technical Reports Server (NTRS)
Niebuhr, Jason H.; Hagen, Richard A.
2011-01-01
This paper describes the development of the Vibration Isolation System for the Advanced Resistive Exercise Device from conceptual design to lessons learned. Maintaining a micro-g environment on the International Space Station requires that experiment racks and major vibration sources be isolated. The challenge in characterizing exercise loads and testing the system in the presence of gravity led to a decision to qualify the system by analysis. Available data suggests that the system is successful in attenuating loads, yet there has been a major component failure and several procedural issues during its 3 years of operational use.
Investigation of electrical noise in selenium-immersed thermistor bolometers
NASA Technical Reports Server (NTRS)
Tarpley, J. L.; Sarmiento, P. D.
1980-01-01
The selenium immersed, thermistor bolometer, IR detector failed due to spurious and escalating electrical noise outburst as a function of time at elevated temperatures during routine ground based testing in a space simulated environment. Spectrographic analysis of failed bolometers revealed selenium pure zones in the insulating selenium arsenic (Se-As) glass film which surrounds the active sintered Mn, Ni, Co oxide flake. The selenium pure film was identified as a potentially serious failure mechanism. Significant changes were instituted in the manufacturing techniques along with more stringent process controls which eliminated the selenium pure film and successfully produced 22study bolometers.
NASA Astrophysics Data System (ADS)
Wang, Qiang
2017-09-01
As an important part of software engineering, the software process decides the success or failure of software product. The design and development feature of security software process is discussed, so is the necessity and the present significance of using such process. Coordinating the function software, the process for security software and its testing are deeply discussed. The process includes requirement analysis, design, coding, debug and testing, submission and maintenance. In each process, the paper proposed the subprocesses to support software security. As an example, the paper introduces the above process into the power information platform.
New advances in non-dispersive IR technology for CO2 detection
NASA Technical Reports Server (NTRS)
Small, John W.; Odegard, Wayne L.
1988-01-01
This paper discusses new technology developments in CO2 detection using Non-Dispersive Infrared (NDIR) techniques. The method described has successfully been used in various applications and environments. It has exhibited extremely reliable long-term stability without the need of routine calibration. The analysis employs a dual wavelength, differential detection approach with compensating circuitry for component aging and dirt accumulation on optical surfaces. The instrument fails 'safe' and provides the operator with a 'fault' alarm in the event of a system failure. The NDIR analyzer described has been adapted to NASA Space Station requirements.
A New Modular Approach for Tightly Coupled Fluid/Structure Analysis
NASA Technical Reports Server (NTRS)
Guruswamy, Guru
2003-01-01
Static aeroelastic computations are made using a C++ executive suitable for closely coupled fluid/structure interaction studies. The fluid flow is modeled using the Euler/Navier Stokes equations and the structure is modeled using finite elements. FORTRAN based fluids and structures codes are integrated under C++ environment. The flow and structural solvers are treated as separate object files. The data flow between fluids and structures is accomplished using I/O. Results are demonstrated for transonic flow over partially flexible surface that is important for aerospace vehicles. Use of this development to accurately predict flow induced structural failure will be demonstrated.
Safety considerations in the design and operation of large wind turbines
NASA Technical Reports Server (NTRS)
Reilly, D. H.
1979-01-01
The engineering and safety techniques used to assure the reliable and safe operation of large wind turbine generators utilizing the Mod 2 Wind Turbine System Program as an example is described. The techniques involve a careful definition of the wind turbine's natural and operating environments, use of proven structural design criteria and analysis techniques, an evaluation of potential failure modes and hazards, and use of a fail safe and redundant component engineering philosophy. The role of an effective quality assurance program, tailored to specific hardware criticality, and the checkout and validation program developed to assure system integrity are described.
Space Shuttle Main Propulsion System Gaseous Hydrogen Flow Control Valve Poppet Failure
NASA Technical Reports Server (NTRS)
Zeitler, Rick
2010-01-01
The presentation provides background information pertinent to the MPS GH2 Flow Control Valve Poppet failure which occurred on the Space Shuttle Endeavour during STS-126 flight. The presentation provides general MPS system operating information which is pertinent to understanding the failure causes and affects. The presentation provides additional background information on the operating environment in which the FCV functions and basic design history of the flow control valve. The presentation provides an overview of the possible flight failure modes and a brief summary of the flight rationale which was developed for this failure event. This presentation is an introductory presentation to 3 other speakers at the conference who will be speaking on M&P aspects of the investigation, non destructive inspection techniques development, and particle impact testing.
Reliability and Confidence Interval Analysis of a CMC Turbine Stator Vane
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Gyekenyesi, John P.; Mital, Subodh K.
2008-01-01
High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight, enable higher operating temperatures requiring less cooling and thus leading to increased engine efficiencies. However, these materials are brittle and show degradation with time at high operating temperatures due to creep as well as cyclic mechanical and thermal loads. In addition, these materials are heterogeneous in their make-up and various factors affect their properties in a specific design environment. Most of these advanced composites involve two- and three-dimensional fiber architectures and require a complex multi-step high temperature processing. Since there are uncertainties associated with each of these in addition to the variability in the constituent material properties, the observed behavior of composite materials exhibits scatter. Traditional material failure analyses employing a deterministic approach, where failure is assumed to occur when some allowable stress level or equivalent stress is exceeded, are not adequate for brittle material component design. Such phenomenological failure theories are reasonably successful when applied to ductile materials such as metals. Analysis of failure in structural components is governed by the observed scatter in strength, stiffness and loading conditions. In such situations, statistical design approaches must be used. Accounting for these phenomena requires a change in philosophy on the design engineer s part that leads to a reduced focus on the use of safety factors in favor of reliability analyses. The reliability approach demands that the design engineer must tolerate a finite risk of unacceptable performance. This risk of unacceptable performance is identified as a component's probability of failure (or alternatively, component reliability). The primary concern of the engineer is minimizing this risk in an economical manner. The methods to accurately determine the service life of an engine component with associated variability have become increasingly difficult. This results, in part, from the complex missions which are now routinely considered during the design process. These missions include large variations of multi-axial stresses and temperatures experienced by critical engine parts. There is a need for a convenient design tool that can accommodate various loading conditions induced by engine operating environments, and material data with their associated uncertainties to estimate the minimum predicted life of a structural component. A probabilistic composite micromechanics technique in combination with woven composite micromechanics, structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Furthermore, input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Since the measured data for the ceramic matrix composite properties is very limited, obtaining a probabilistic distribution with their corresponding parameters is difficult. In case of limited data, confidence bounds are essential to quantify the uncertainty associated with the distribution. Usually 90 and 95% confidence intervals are computed for material properties. Failure properties are then computed with the confidence bounds. Best estimates and the confidence bounds on the best estimate of the cumulative probability function for R-S (strength - stress) are plotted. The methodologies and the results from these analyses will be discussed in the presentation.
Chambers, David W
2010-01-01
Every plan contains risk. To proceed without planning some means of managing that risk is to court failure. The basic logic of risk is explained. It consists in identifying a threshold where some corrective action is necessary, the probability of exceeding that threshold, and the attendant cost should the undesired outcome occur. This is the probable cost of failure. Various risk categories in dentistry are identified, including lack of liquidity; poor quality; equipment or procedure failures; employee slips; competitive environments; new regulations; unreliable suppliers, partners, and patients; and threats to one's reputation. It is prudent to make investments in risk management to the extent that the cost of managing the risk is less than the probable loss due to risk failure and when risk management strategies can be matched to type of risk. Four risk management strategies are discussed: insurance, reducing the probability of failure, reducing the costs of failure, and learning. A risk management accounting of the financial meltdown of October 2008 is provided.
Fatigue of notched fiber composite laminates. Part 1: Analytical model
NASA Technical Reports Server (NTRS)
Mclaughlin, P. V., Jr.; Kulkarni, S. V.; Huang, S. N.; Rosen, B. W.
1975-01-01
A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given.
Rodríguez, Alejandro; Ferri, Cristina; Martin-Loeches, Ignacio; Díaz, Emili; Masclans, Joan R; Gordo, Federico; Sole-Violán, Jordi; Bodí, María; Avilés-Jurado, Francesc X; Trefler, Sandra; Magret, Monica; Moreno, Gerard; Reyes, Luis F; Marin-Corral, Judith; Yebenes, Juan C; Esteban, Andres; Anzueto, Antonio; Aliberti, Stefano; Restrepo, Marcos I
2017-10-01
Despite wide use of noninvasive ventilation (NIV) in several clinical settings, the beneficial effects of NIV in patients with hypoxemic acute respiratory failure (ARF) due to influenza infection remain controversial. The aim of this study was to identify the profile of patients with risk factors for NIV failure using chi-square automatic interaction detection (CHAID) analysis and to determine whether NIV failure is associated with ICU mortality. This work was a secondary analysis from prospective and observational multi-center analysis in critically ill subjects admitted to the ICU with ARF due to influenza infection requiring mechanical ventilation. Three groups of subjects were compared: (1) subjects who received NIV immediately after ICU admission for ARF and then failed (NIV failure group); (2) subjects who received NIV immediately after ICU admission for ARF and then succeeded (NIV success group); and (3) subjects who received invasive mechanical ventilation immediately after ICU admission for ARF (invasive mechanical ventilation group). Profiles of subjects with risk factors for NIV failure were obtained using CHAID analysis. Of 1,898 subjects, 806 underwent NIV, and 56.8% of them failed. Acute Physiology and Chronic Health Evaluation II (APACHE II) score, Sequential Organ Failure Assessment (SOFA) score, infiltrates in chest radiograph, and ICU mortality (38.4% vs 6.3%) were higher ( P < .001) in the NIV failure than in the NIV success group. SOFA score was the variable most associated with NIV failure, and 2 cutoffs were determined. Subjects with SOFA ≥ 5 had a higher risk of NIV failure (odds ratio = 3.3, 95% CI 2.4-4.5). ICU mortality was higher in subjects with NIV failure (38.4%) compared with invasive mechanical ventilation subjects (31.3%, P = .018), and NIV failure was associated with increased ICU mortality (odds ratio = 11.4, 95% CI 6.5-20.1). An automatic and non-subjective algorithm based on CHAID decision-tree analysis can help to define the profile of patients with different risks of NIV failure, which might be a promising tool to assist in clinical decision making to avoid the possible complications associated with NIV failure. Copyright © 2017 by Daedalus Enterprises.
Strategies of learning from failure.
Edmondson, Amy C
2011-04-01
Many executives believe that all failure is bad (although it usually provides Lessons) and that Learning from it is pretty straightforward. The author, a professor at Harvard Business School, thinks both beliefs are misguided. In organizational life, she says, some failures are inevitable and some are even good. And successful learning from failure is not simple: It requires context-specific strategies. But first leaders must understand how the blame game gets in the way and work to create an organizational culture in which employees feel safe admitting or reporting on failure. Failures fall into three categories: preventable ones in predictable operations, which usually involve deviations from spec; unavoidable ones in complex systems, which may arise from unique combinations of needs, people, and problems; and intelligent ones at the frontier, where "good" failures occur quickly and on a small scale, providing the most valuable information. Strong leadership can build a learning culture-one in which failures large and small are consistently reported and deeply analyzed, and opportunities to experiment are proactively sought. Executives commonly and understandably worry that taking a sympathetic stance toward failure will create an "anything goes" work environment. They should instead recognize that failure is inevitable in today's complex work organizations.
Solder joint aging characteristics from the MC2918 firing set of a B61 accelerated aging unit (AAU)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianco, P.T.; Rejent, J.A.
1997-10-01
The B61 accelerated aging unit (AAU) provided a unique opportunity to document the effects of a controlled, long-term thermal cycling environment on the aging of materials used in the device. This experiment was of particular interest to solder technologists because thermal cycling environments are a predominant source of solder joint failures in electronic assemblies. Observations of through hole solder joints in the MC2918 Firing Set from the B61 AAU did not reveal signs of catastrophic failure. Quantitative analyses of the microstructural metrics of intermetallic compound layer thickness and Pb-rich phase particle distributions indicated solder joint aging that was commensurate withmore » the accelerated aging environment. The effects of stress-enhanced coarsening of the Pb-rich phase were also documented.« less
Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology
Xapsos, M.A.; Stauffer, C.; Phan, A.; McClure, S.S.; Ladbury, R.L.; Pellish, J.A.; Campola, M.J.; LaBel, K.A.
2017-01-01
Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission. PMID:28804156
British Military Mission (BMM) to Greece, 1942-44
2009-05-21
Terrorism. Failure to take into account and accurately assess political and military actions in such environments can lead to unintended consequences ...such environments can lead to unintended consequences (potential civil war) affecting the stability of a country. Accurate assessment of the political...take into account and accurately assess political and military actions in such environments can lead to unintended consequences (potential civil war
Probabilistic analysis on the failure of reactivity control for the PWR
NASA Astrophysics Data System (ADS)
Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.
2018-02-01
The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.
Development of STS/Centaur failure probabilities liftoff to Centaur separation
NASA Technical Reports Server (NTRS)
Hudson, J. M.
1982-01-01
The results of an analysis to determine STS/Centaur catastrophic vehicle response probabilities for the phases of vehicle flight from STS liftoff to Centaur separation from the Orbiter are presented. The analysis considers only category one component failure modes as contributors to the vehicle response mode probabilities. The relevant component failure modes are grouped into one of fourteen categories of potential vehicle behavior. By assigning failure rates to each component, for each of its failure modes, the STS/Centaur vehicle response probabilities in each phase of flight can be calculated. The results of this study will be used in a DOE analysis to ascertain the hazard from carrying a nuclear payload on the STS.
Cycles till failure of silver-zinc cells with completing failures modes: Preliminary data analysis
NASA Technical Reports Server (NTRS)
Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.
1980-01-01
One hundred and twenty nine cells were run through charge-discharge cycles until failure. The experiment design was a variant of a central composite factorial in five factors. Preliminary data analysis consisted of response surface estimation of life. Batteries fail under two basic modes; a low voltage condition and an internal shorting condition. A competing failure modes analysis using maximum likelihood estimation for the extreme value life distribution was performed. Extensive diagnostics such as residual plotting and probability plotting were employed to verify data quality and choice of model.
Failure Modes and Effects Analysis (FMEA): A Bibliography
NASA Technical Reports Server (NTRS)
2000-01-01
Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.
Analysis of Discrete-Source Damage Progression in a Tensile Stiffened Composite Panel
NASA Technical Reports Server (NTRS)
Wang, John T.; Lotts, Christine G.; Sleight, David W.
1999-01-01
This paper demonstrates the progressive failure analysis capability in NASA Langley s COMET-AR finite element analysis code on a large-scale built-up composite structure. A large-scale five stringer composite panel with a 7-in. long discrete source damage was analyzed from initial loading to final failure including the geometric and material nonlinearities. Predictions using different mesh sizes, different saw cut modeling approaches, and different failure criteria were performed and assessed. All failure predictions have a reasonably good correlation with the test result.
Failure modes and effects analysis automation
NASA Technical Reports Server (NTRS)
Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron
1988-01-01
A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.
NASA Astrophysics Data System (ADS)
Hu, Q.; Li, Y.; Pan, H. L.; Liu, J. T.; Zhuang, B. T.
2015-01-01
Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment.
NASA Technical Reports Server (NTRS)
Koczo, Stefan, Jr.
2013-01-01
Safety analyses of the Traffic Aware Strategic Aircrew Requests (TASAR) Electronic Flight Bag (EFB) application are provided to establish its Failure Effects Classification which affects certification and operational approval requirements. TASAR was developed by NASA Langley Research Center to offer flight path improvement opportunities to the pilot during flight for operational benefits (e.g., reduced fuel, flight time). TASAR, using own-ship and network-enabled information concerning the flight and its environment, including weather and Air Traffic Control (ATC) system constraints, provides recommended improvements to the flight trajectory that the pilot can choose to request via Change Requests to ATC for revised clearance. This study reviews the Change Request process of requesting updates to the current clearance, examines the intended function of TASAR, and utilizes two safety assessment methods to establish the Failure Effects Classification of TASAR. Considerable attention has been given in this report to the identification of operational hazards potentially associated with TASAR.
Fault detection and analysis in nuclear research facility using artificial intelligence methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghazali, Abu Bakar, E-mail: Abakar@uniten.edu.my; Ibrahim, Maslina Mohd
In this article, an online detection of transducer and actuator condition is discussed. A case study is on the reading of area radiation monitor (ARM) installed at the chimney of PUSPATI TRIGA nuclear reactor building, located at Bangi, Malaysia. There are at least five categories of abnormal ARM reading that could happen during the transducer failure, namely either the reading becomes very high, or very low/ zero, or with high fluctuation and noise. Moreover, the reading may be significantly higher or significantly lower as compared to the normal reading. An artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)more » are good methods for modeling this plant dynamics. The failure of equipment is based on ARM reading so it is then to compare with the estimated ARM data from ANN/ ANFIS function. The failure categories in either ‘yes’ or ‘no’ state are obtained from a comparison between the actual online data and the estimated output from ANN/ ANFIS function. It is found that this system design can correctly report the condition of ARM equipment in a simulated environment and later be implemented for online monitoring. This approach can also be extended to other transducers, such as the temperature profile of reactor core and also to include other critical actuator conditions such as the valves and pumps in the reactor facility provided that the failure symptoms are clearly defined.« less
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, Diana
2014-01-01
Most businesses recognize that people will make mistakes and assume errors are just part of the cost of doing business, but does it need to be? Companies with high risk, or major consequences, should consider the effect of human error. In a variety of industries, Human Errors have caused costly failures and workplace injuries. These have included: airline mishaps, medical malpractice, administration of medication and major oil spills have all been blamed on human error. A technique to mitigate or even eliminate some of these costly human errors is the use of Human Reliability Analysis (HRA). Various methodologies are available to perform Human Reliability Assessments that range from identifying the most likely areas for concern to detailed assessments with human error failure probabilities calculated. Which methodology to use would be based on a variety of factors that would include: 1) how people react and act in different industries, and differing expectations based on industries standards, 2) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 3) type and availability of data and 4) how the industry views risk & reliability influences ( types of emergencies, contingencies and routine tasks versus cost based concerns). The Human Reliability Assessments should be the first step to reduce, mitigate or eliminate the costly mistakes or catastrophic failures. Using Human Reliability techniques to identify and classify human error risks allows a company more opportunities to mitigate or eliminate these risks and prevent costly failures.
NASA Technical Reports Server (NTRS)
Schmeckpeper, K. R.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C) hardware. The EPD and C hardware performs the functions of distributing, sensing, and controlling 28 volt DC power and of inverting, distributing, sensing, and controlling 117 volt 400 Hz AC power to all Orbiter subsystems from the three fuel cells in the Electrical Power Generation (EPG) subsystem. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 1671 failure modes analyzed, 9 single failures were determined to result in loss of crew or vehicle. Three single failures unique to intact abort were determined to result in possible loss of the crew or vehicle. A possible loss of mission could result if any of 136 single failures occurred. Six of the criticality 1/1 failures are in two rotary and two pushbutton switches that control External Tank and Solid Rocket Booster separation. The other 6 criticality 1/1 failures are fuses, one each per Aft Power Control Assembly (APCA) 4, 5, and 6 and one each per Forward Power Control Assembly (FPCA) 1, 2, and 3, that supply power to certain Main Propulsion System (MPS) valves and Forward Reaction Control System (RCS) circuits.
Risk-based planning analysis for a single levee
NASA Astrophysics Data System (ADS)
Hui, Rui; Jachens, Elizabeth; Lund, Jay
2016-04-01
Traditional risk-based analysis for levee planning focuses primarily on overtopping failure. Although many levees fail before overtopping, few planning studies explicitly include intermediate geotechnical failures in flood risk analysis. This study develops a risk-based model for two simplified levee failure modes: overtopping failure and overall intermediate geotechnical failure from through-seepage, determined by the levee cross section represented by levee height and crown width. Overtopping failure is based only on water level and levee height, while through-seepage failure depends on many geotechnical factors as well, mathematically represented here as a function of levee crown width using levee fragility curves developed from professional judgment or analysis. These levee planning decisions are optimized to minimize the annual expected total cost, which sums expected (residual) annual flood damage and annualized construction costs. Applicability of this optimization approach to planning new levees or upgrading existing levees is demonstrated preliminarily for a levee on a small river protecting agricultural land, and a major levee on a large river protecting a more valuable urban area. Optimized results show higher likelihood of intermediate geotechnical failure than overtopping failure. The effects of uncertainty in levee fragility curves, economic damage potential, construction costs, and hydrology (changing climate) are explored. Optimal levee crown width is more sensitive to these uncertainties than height, while the derived general principles and guidelines for risk-based optimal levee planning remain the same.
Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Mohr, W. C.
2015-11-01
Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.
Independent Orbiter Assessment (IOA): Analysis of the communication and tracking subsystem
NASA Technical Reports Server (NTRS)
Gardner, J. R.; Robinson, W. M.; Trahan, W. H.; Daley, E. S.; Long, W. C.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Communication and Tracking hardware. The IOA analysis process utilized available Communication and Tracking hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Nouri.Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad
2014-01-01
Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed. PMID:26779433
Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components
NASA Technical Reports Server (NTRS)
Ko, William L.
2005-01-01
The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.
Nouri Gharahasanlou, Ali; Mokhtarei, Ashkan; Khodayarei, Aliasqar; Ataei, Mohammad
2014-04-01
Evaluating and analyzing the risk in the mining industry is a new approach for improving the machinery performance. Reliability, safety, and maintenance management based on the risk analysis can enhance the overall availability and utilization of the mining technological systems. This study investigates the failure occurrence probability of the crushing and mixing bed hall department at Azarabadegan Khoy cement plant by using fault tree analysis (FTA) method. The results of the analysis in 200 h operating interval show that the probability of failure occurrence for crushing, conveyor systems, crushing and mixing bed hall department is 73, 64, and 95 percent respectively and the conveyor belt subsystem found as the most probable system for failure. Finally, maintenance as a method of control and prevent the occurrence of failure is proposed.
Risk Analysis using Corrosion Rate Parameter on Gas Transmission Pipeline
NASA Astrophysics Data System (ADS)
Sasikirono, B.; Kim, S. J.; Haryadi, G. D.; Huda, A.
2017-05-01
In the oil and gas industry, the pipeline is a major component in the transmission and distribution process of oil and gas. Oil and gas distribution process sometimes performed past the pipeline across the various types of environmental conditions. Therefore, in the transmission and distribution process of oil and gas, a pipeline should operate safely so that it does not harm the surrounding environment. Corrosion is still a major cause of failure in some components of the equipment in a production facility. In pipeline systems, corrosion can cause failures in the wall and damage to the pipeline. Therefore it takes care and periodic inspections or checks on the pipeline system. Every production facility in an industry has a level of risk for damage which is a result of the opportunities and consequences of damage caused. The purpose of this research is to analyze the level of risk of 20-inch Natural Gas Transmission Pipeline using Risk-based inspection semi-quantitative based on API 581 associated with the likelihood of failure and the consequences of the failure of a component of the equipment. Then the result is used to determine the next inspection plans. Nine pipeline components were observed, such as a straight pipes inlet, connection tee, and straight pipes outlet. The risk assessment level of the nine pipeline’s components is presented in a risk matrix. The risk level of components is examined at medium risk levels. The failure mechanism that is used in this research is the mechanism of thinning. Based on the results of corrosion rate calculation, remaining pipeline components age can be obtained, so the remaining lifetime of pipeline components are known. The calculation of remaining lifetime obtained and the results vary for each component. Next step is planning the inspection of pipeline components by NDT external methods.
Availability Estimate of a Conceptual ESM System.
1979-06-01
affect mission operation.t A functional block level failure modes and effects analysis ( FMEA ) performed on the filter resulted in an assessed failure rate...is based on an FMEA of failures that disable the function (see Appendix A). A further 29 examination of the filter piece-parts reveals that the driver...Digital-to-analog converter DC Direct current DF Direction finding ESM Electronic Support Measures FMEA Failure modes and effects analysis FMPO
Product Support Manager Guidebook
2011-04-01
package is being developed using supportability analysis concepts such as Failure Mode, Effects and Criticality Analysis (FMECA), Fault Tree Analysis ( FTA ...Analysis (LORA) Condition Based Maintenance + (CBM+) Fault Tree Analysis ( FTA ) Failure Mode, Effects, and Criticality Analysis (FMECA) Maintenance Task...Reporting and Corrective Action System (FRACAS), Fault Tree Analysis ( FTA ), Level of Repair Analysis (LORA), Maintenance Task Analysis (MTA
Reliability Analysis of Systems Subject to First-Passage Failure
NASA Technical Reports Server (NTRS)
Lutes, Loren D.; Sarkani, Shahram
2009-01-01
An obvious goal of reliability analysis is the avoidance of system failure. However, it is generally recognized that it is often not feasible to design a practical or useful system for which failure is impossible. Thus it is necessary to use techniques that estimate the likelihood of failure based on modeling the uncertainty about such items as the demands on and capacities of various elements in the system. This usually involves the use of probability theory, and a design is considered acceptable if it has a sufficiently small probability of failure. This report contains findings of analyses of systems subject to first-passage failure.
NASA Astrophysics Data System (ADS)
Mahmood, Faleh H.; Kadhim, Hussein T.; Resen, Ali K.; Shaban, Auday H.
2018-05-01
The failure such as air gap weirdness, rubbing, and scrapping between stator and rotor generator arise unavoidably and may cause extremely terrible results for a wind turbine. Therefore, we should pay more attention to detect and identify its cause-bearing failure in wind turbine to improve the operational reliability. The current paper tends to use of power spectral density analysis method of detecting internal race and external race bearing failure in micro wind turbine by estimation stator current signal of the generator. The failure detector method shows that it is well suited and effective for bearing failure detection.
DOT National Transportation Integrated Search
2015-08-01
A series of tests, aimed at assessing the structural integrity of joint bars under differing service conditions, were conducted to address concerns regarding joint bar failures in the revenue service environment. Data collected through the course of ...
Practical, transparent prospective risk analysis for the clinical laboratory.
Janssens, Pim Mw
2014-11-01
Prospective risk analysis (PRA) is an essential element in quality assurance for clinical laboratories. Practical approaches to conducting PRA in laboratories, however, are scarce. On the basis of the classical Failure Mode and Effect Analysis method, an approach to PRA was developed for application to key laboratory processes. First, the separate, major steps of the process under investigation are identified. Scores are then given for the Probability (P) and Consequence (C) of predefined types of failures and the chances of Detecting (D) these failures. Based on the P and C scores (on a 10-point scale), an overall Risk score (R) is calculated. The scores for each process were recorded in a matrix table. Based on predetermined criteria for R and D, it was determined whether a more detailed analysis was required for potential failures and, ultimately, where risk-reducing measures were necessary, if any. As an illustration, this paper presents the results of the application of PRA to our pre-analytical and analytical activities. The highest R scores were obtained in the stat processes, the most common failure type in the collective process steps was 'delayed processing or analysis', the failure type with the highest mean R score was 'inappropriate analysis' and the failure type most frequently rated as suboptimal was 'identification error'. The PRA designed is a useful semi-objective tool to identify process steps with potential failures rated as risky. Its systematic design and convenient output in matrix tables makes it easy to perform, practical and transparent. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Nymmik, Rikho
Space environment models are intended for fairly describing the quantitative behavior of nature space environment. Usually, they are constructed on the basis of some experimental data set generalization, which is characteristic of the conditions that were taking place during measurement period. It is often to see that such models state and postulate realities of the past. The typical example of this point of view is the situation around extremely SEP events. During dozens of years models of such events have been based on the largest occurrences observed, which features were measured by some instruments with the reliability that was not always analyzed. It is obvious, that this way does not agree with reality, because any new extreme event conflicts with it. From this follow that space environment models can not be created by using numerical observed data only, when such data are changing in time, or have the probability nature. The model's goal is not only describing the average environment characteristics, but the predicting of extreme ones too. Such a prediction can only be result of analyzing the causes that stimulate environment change and taking them into account in model parameters. In this report we present the analysis of radiation environment formed by solar-generated high energy particles. A progresses and failures of SEP event modeling attempts are also shown and analyzed.
NASA Technical Reports Server (NTRS)
Gibbel, Mark; Larson, Timothy
2000-01-01
An Engineering-of-Failure approach to designing and executing an accelerated product qualification test was performed to support a risk assessment of a "work-around" necessitated by an on-orbit failure of another piece of hardware on the Mars Global Surveyor spacecraft. The proposed work-around involved exceeding the previous qualification experience both in terms of extreme cold exposure level and in terms of demonstrated low cycle fatigue life for the power shunt assemblies. An analysis was performed to identify potential failure sites, modes and associated failure mechanisms consistent with the new use conditions. A test was then designed and executed which accelerated the failure mechanisms identified by analysis. Verification of the resulting failure mechanism concluded the effort.
Risk analysis of analytical validations by probabilistic modification of FMEA.
Barends, D M; Oldenhof, M T; Vredenbregt, M J; Nauta, M J
2012-05-01
Risk analysis is a valuable addition to validation of an analytical chemistry process, enabling not only detecting technical risks, but also risks related to human failures. Failure Mode and Effect Analysis (FMEA) can be applied, using a categorical risk scoring of the occurrence, detection and severity of failure modes, and calculating the Risk Priority Number (RPN) to select failure modes for correction. We propose a probabilistic modification of FMEA, replacing the categorical scoring of occurrence and detection by their estimated relative frequency and maintaining the categorical scoring of severity. In an example, the results of traditional FMEA of a Near Infrared (NIR) analytical procedure used for the screening of suspected counterfeited tablets are re-interpretated by this probabilistic modification of FMEA. Using this probabilistic modification of FMEA, the frequency of occurrence of undetected failure mode(s) can be estimated quantitatively, for each individual failure mode, for a set of failure modes, and the full analytical procedure. Copyright © 2012 Elsevier B.V. All rights reserved.
Berruyer, M; Atkinson, S; Lebel, D; Bussières, J-F
2016-01-01
Insulin is a high-alert drug. The main objective of this descriptive cross-sectional study was to evaluate the risks associated with insulin use in healthcare centers. The secondary objective was to propose corrective measures to reduce the main risks associated with the most critical failure modes in the analysis. We conducted a failure mode and effects analysis (FMEA) in obstetrics-gynecology, neonatology and pediatrics. Five multidisciplinary meetings occurred in August 2013. A total of 44 out of 49 failure modes were analyzed. Nine out of 44 (20%) failure modes were deemed critical, with a criticality score ranging from 540 to 720. Following the multidisciplinary meetings, everybody agreed that an FMEA was a useful tool to identify failure modes and their relative importance. This approach identified many corrective measures. This shared experience increased awareness of safety issues with insulin in our mother-child center. This study identified the main failure modes and associated corrective measures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.
Bayesian Inference for Time Trends in Parameter Values using Weighted Evidence Sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. L. Kelly; A. Malkhasyan
2010-09-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “in-dustry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an applica-tion of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates an approach to incorporating multiple sources of data via applicability weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dana L. Kelly; Albert Malkhasyan
2010-06-01
There is a nearly ubiquitous assumption in PSA that parameter values are at least piecewise-constant in time. As a result, Bayesian inference tends to incorporate many years of plant operation, over which there have been significant changes in plant operational and maintenance practices, plant management, etc. These changes can cause significant changes in parameter values over time; however, failure to perform Bayesian inference in the proper time-dependent framework can mask these changes. Failure to question the assumption of constant parameter values, and failure to perform Bayesian inference in the proper time-dependent framework were noted as important issues in NUREG/CR-6813, performedmore » for the U. S. Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards in 2003. That report noted that “industry lacks tools to perform time-trend analysis with Bayesian updating.” This paper describes an application of time-dependent Bayesian inference methods developed for the European Commission Ageing PSA Network. These methods utilize open-source software, implementing Markov chain Monte Carlo sampling. The paper also illustrates the development of a generic prior distribution, which incorporates multiple sources of generic data via weighting factors that address differences in key influences, such as vendor, component boundaries, conditions of the operating environment, etc.« less
Gamell, Marc; Teranishi, Keita; Mayo, Jackson; ...
2017-04-24
By obtaining multi-process hard failure resilience at the application level is a key challenge that must be overcome before the promise of exascale can be fully realized. Some previous work has shown that online global recovery can dramatically reduce the overhead of failures when compared to the more traditional approach of terminating the job and restarting it from the last stored checkpoint. If online recovery is performed in a local manner further scalability is enabled, not only due to the intrinsic lower costs of recovering locally, but also due to derived effects when using some application types. In this papermore » we model one such effect, namely multiple failure masking, that manifests when running Stencil parallel computations on an environment when failures are recovered locally. First, the delay propagation shape of one or multiple failures recovered locally is modeled to enable several analyses of the probability of different levels of failure masking under certain Stencil application behaviors. These results indicate that failure masking is an extremely desirable effect at scale which manifestation is more evident and beneficial as the machine size or the failure rate increase.« less
Requirements: Towards an understanding on why software projects fail
NASA Astrophysics Data System (ADS)
Hussain, Azham; Mkpojiogu, Emmanuel O. C.
2016-08-01
Requirement engineering is at the foundation of every successful software project. There are many reasons for software project failures; however, poorly engineered requirements process contributes immensely to the reason why software projects fail. Software project failure is usually costly and risky and could also be life threatening. Projects that undermine requirements engineering suffer or are likely to suffer from failures, challenges and other attending risks. The cost of project failures and overruns when estimated is very huge. Furthermore, software project failures or overruns pose a challenge in today's competitive market environment. It affects the company's image, goodwill, and revenue drive and decreases the perceived satisfaction of customers and clients. In this paper, requirements engineering was discussed. Its role in software projects success was elaborated. The place of software requirements process in relation to software project failure was explored and examined. Also, project success and failure factors were also discussed with emphasis placed on requirements factors as they play a major role in software projects' challenges, successes and failures. The paper relied on secondary data and empirical statistics to explore and examine factors responsible for the successes, challenges and failures of software projects in large, medium and small scaled software companies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamell, Marc; Teranishi, Keita; Mayo, Jackson
By obtaining multi-process hard failure resilience at the application level is a key challenge that must be overcome before the promise of exascale can be fully realized. Some previous work has shown that online global recovery can dramatically reduce the overhead of failures when compared to the more traditional approach of terminating the job and restarting it from the last stored checkpoint. If online recovery is performed in a local manner further scalability is enabled, not only due to the intrinsic lower costs of recovering locally, but also due to derived effects when using some application types. In this papermore » we model one such effect, namely multiple failure masking, that manifests when running Stencil parallel computations on an environment when failures are recovered locally. First, the delay propagation shape of one or multiple failures recovered locally is modeled to enable several analyses of the probability of different levels of failure masking under certain Stencil application behaviors. These results indicate that failure masking is an extremely desirable effect at scale which manifestation is more evident and beneficial as the machine size or the failure rate increase.« less
Cell and gene therapy for severe heart failure patients: The time and place for Pim-1 Kinase
Siddiqi, Sailay; Sussman, Mark A
2014-01-01
Regenerative therapy in severe heart failure patients presents a challenging set of circumstances including a damaged myocardial environment that accelerates senescence in myocytes and cardiac progenitor cells. Failing myocardium suffers from deterioration of contractile function coupled with impaired regenerative potential that drives the heart toward decompensation. Efficacious regenerative cell therapy for severe heart failure requires disruption of this vicious circle that can be accomplished by alteration of the compromised myocyte phenotype and rejuvenation of progenitor cells. This review focuses upon potential for Pim-1 kinase to mitigate chronic heart failure by improving myocyte quality through preservation of mitochondrial integrity, prevention of hypertrophy and inhibition of apoptosis. In addition, cardiac progenitors engineered with Pim-1 possess enhanced regenerative potential, making Pim-1 an important player in future treatment of severe heart failure. PMID:23984924
Association Rule-based Predictive Model for Machine Failure in Industrial Internet of Things
NASA Astrophysics Data System (ADS)
Kwon, Jung-Hyok; Lee, Sol-Bee; Park, Jaehoon; Kim, Eui-Jik
2017-09-01
This paper proposes an association rule-based predictive model for machine failure in industrial Internet of things (IIoT), which can accurately predict the machine failure in real manufacturing environment by investigating the relationship between the cause and type of machine failure. To develop the predictive model, we consider three major steps: 1) binarization, 2) rule creation, 3) visualization. The binarization step translates item values in a dataset into one or zero, then the rule creation step creates association rules as IF-THEN structures using the Lattice model and Apriori algorithm. Finally, the created rules are visualized in various ways for users’ understanding. An experimental implementation was conducted using R Studio version 3.3.2. The results show that the proposed predictive model realistically predicts machine failure based on association rules.
NASA Astrophysics Data System (ADS)
Nemeth, Noel N.; Jadaan, Osama M.; Palfi, Tamas; Baker, Eric H.
Brittle materials today are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts, thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing brittle material components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The NASA CARES/Life 1 (Ceramic Analysis and Reliability Evaluation of Structure/Life) code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. This capability includes predicting the time-dependent failure probability of ceramic components against catastrophic rupture when subjected to transient thermomechanical loads (including cyclic loads). The developed methodology allows for changes in material response that can occur with temperature or time (i.e. changing fatigue and Weibull parameters with temperature or time). For this article an overview of the transient reliability methodology and how this methodology is extended to account for proof testing is described. The CARES/Life code has been modified to have the ability to interface with commercially available finite element analysis (FEA) codes executed for transient load histories. Examples are provided to demonstrate the features of the methodology as implemented in the CARES/Life program.
Risk analysis of urban gas pipeline network based on improved bow-tie model
NASA Astrophysics Data System (ADS)
Hao, M. J.; You, Q. J.; Yue, Z.
2017-11-01
Gas pipeline network is a major hazard source in urban areas. In the event of an accident, there could be grave consequences. In order to understand more clearly the causes and consequences of gas pipeline network accidents, and to develop prevention and mitigation measures, the author puts forward the application of improved bow-tie model to analyze risks of urban gas pipeline network. The improved bow-tie model analyzes accident causes from four aspects: human, materials, environment and management; it also analyzes the consequences from four aspects: casualty, property loss, environment and society. Then it quantifies the causes and consequences. Risk identification, risk analysis, risk assessment, risk control, and risk management will be clearly shown in the model figures. Then it can suggest prevention and mitigation measures accordingly to help reduce accident rate of gas pipeline network. The results show that the whole process of an accident can be visually investigated using the bow-tie model. It can also provide reasons for and predict consequences of an unfortunate event. It is of great significance in order to analyze leakage failure of gas pipeline network.
Analysis of Data in Accordance with Space Flight Mission Environmental Requirements
NASA Technical Reports Server (NTRS)
Shei, Monica
2011-01-01
The Environmental Assurance Program sets forth standards to ensure that all flight hardware is compatible with the environments that will be encountered during a spacecraft mission. It outlines the design, test and analysis, and risk control standards for the mission and certifies that it will survive in any external or self-induced environments that the spacecraft may experience. The Environmental Requirements Document (ERD) is the most important document in the Environmental Assurance Program, providing the design and test requirements for the project's flight system, subsystems, assemblies, and instruments. This summer's project was to assist Environmental Requirements Engineers (ERE's) in completing the Environmental Assurance Program Summary Report for both the Juno Project and Mars Science Laboratory (MSL) Project. The Summary Report is a document summarizing the environmental tests and analyses of each spacecraft at both the assembly and system level. It compiles a source of all relevant information such as waivers and Problem/Failure Reports (PFRs) into a single report for easy reference of how well the spacecraft met the requirements of the project.
Fault management for the Space Station Freedom control center
NASA Technical Reports Server (NTRS)
Clark, Colin; Jowers, Steven; Mcnenny, Robert; Culbert, Chris; Kirby, Sarah; Lauritsen, Janet
1992-01-01
This paper describes model based reasoning fault isolation in complex systems using automated digraph analysis. It discusses the use of the digraph representation as the paradigm for modeling physical systems and a method for executing these failure models to provide real-time failure analysis. It also discusses the generality, ease of development and maintenance, complexity management, and susceptibility to verification and validation of digraph failure models. It specifically describes how a NASA-developed digraph evaluation tool and an automated process working with that tool can identify failures in a monitored system when supplied with one or more fault indications. This approach is well suited to commercial applications of real-time failure analysis in complex systems because it is both powerful and cost effective.
Strategy For Yield Control And Enhancement In VLSI Wafer Manufacturing
NASA Astrophysics Data System (ADS)
Neilson, B.; Rickey, D.; Bane, R. P.
1988-01-01
In most fully utilized integrated circuit (IC) production facilities, profit is very closely linked with yield. In even the most controlled manufacturing environments, defects due to foreign material are a still major contributor to yield loss. Ideally, an IC manufacturer will have ample engineering resources to address any problem that arises. In the real world, staffing limitations require that some tasks must be left undone and potential benefits left unrealized. Therefore, it is important to prioritize problems in a manner that will give the maximum benefit to the manufacturer. When offered a smorgasbord of problems to solve, most people (engineers included) will start with what is most interesting or the most comfortable to work on. By providing a system that accurately predicts the impact of a wide variety of defect types, a rational method of prioritizing engineering effort can be made. To that effect, a program was developed to determine and rank the major yield detractors in a mixed analog/digital FET manufacturing line. The two classical methods of determining yield detractors are chip failure analysis and defect monitoring on drop in test die. Both of these methods have short comings: 1) Chip failure analysis is painstaking and very time consuming. As a result, the sample size is very small. 2) Drop in test die are usually designed for device parametric analysis rather than defect analysis. To provide enough wafer real estate to do meaningful defect analysis would render the wafer worthless for production. To avoid these problems, a defect monitor was designed that provided enough area to detect defects at the same rate or better than the NMOS product die whose yield was to be optimized. The defect monitor was comprehensive and electrically testable using such equipment as the Prometrix LM25 and other digital testers. This enabled the quick accumulation of data which could be handled statistically and mapped individually. By scaling the defect densities found on the monitors to the known sensitivities of the product wafer, the defect types were ranked by defect limiting yield. (Limiting yield is the resultant product yield if there were no other failure mechanisms other than the type being considered.) These results were then compared to the product failure analysis results to verify that the monitor was finding the same types of defects in the same proportion which were troubling our product. Finally, the major defect types were isolated and reduced using the short loop capability of the monitor.
Failure analysis of aluminum alloy components
NASA Technical Reports Server (NTRS)
Johari, O.; Corvin, I.; Staschke, J.
1973-01-01
Analysis of six service failures in aluminum alloy components which failed in aerospace applications is reported. Identification of fracture surface features from fatigue and overload modes was straightforward, though the specimens were not always in a clean, smear-free condition most suitable for failure analysis. The presence of corrosion products and of chemically attacked or mechanically rubbed areas here hindered precise determination of the cause of crack initiation, which was then indirectly inferred from the scanning electron fractography results. In five failures the crack propagation was by fatigue, though in each case the fatigue crack initiated from a different cause. Some of these causes could be eliminated in future components by better process control. In one failure, the cause was determined to be impact during a crash; the features of impact fracture were distinguished from overload fractures by direct comparisons of the received specimens with laboratory-generated failures.
Flea control failure? Myths and realities.
Halos, Lénaïg; Beugnet, Frédéric; Cardoso, Luís; Farkas, Robert; Franc, Michel; Guillot, Jacques; Pfister, Kurt; Wall, Richard
2014-05-01
Why is it that, despite the proliferation of research on their biology and control, fleas remain such a burden for companion animals and their owners? This review highlights a range of reasons for persistence and apparent treatment failures. It argues that a sustainable approach will require integrated pest management based upon a detailed understanding of the flea life cycle, targeting not only adult fleas but also the immature stages in the environment, combining several modes of control and limiting the risk of chemoresistance. Individual characteristics of the pet and its environment need to be considered. Control of fleas can be achieved, over a timescale of several months, if basic rules are respected. Copyright © 2014 Elsevier Ltd. All rights reserved.
A systems approach to solder joint fatigue in spacecraft electronic packaging
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1991-01-01
Differential expansion induced fatigue resulting from temperature cycling is a leading cause of solder joint failures in spacecraft. Achieving high reliability flight hardware requires that each element of the fatigue issue be addressed carefully. This includes defining the complete thermal-cycle environment to be experienced by the hardware, developing electronic packaging concepts that are consistent with the defined environments, and validating the completed designs with a thorough qualification and acceptance test program. This paper describes a useful systems approach to solder fatigue based principally on the fundamental log-strain versus log-cycles-to-failure behavior of fatigue. This fundamental behavior has been useful to integrate diverse ground test and flight operational thermal-cycle environments into a unified electronics design approach. Each element of the approach reflects both the mechanism physics that control solder fatigue, as well as the practical realities of the hardware build, test, delivery, and application cycle.
49 CFR 190.233 - Corrective action orders.
Code of Federal Regulations, 2011 CFR
2011-10-01
... facility to be hazardous to life, property, or the environment, the Associate Administrator, OPS shall... the failure to do so would result in the likelihood of serious harm to life, property, or the... Administrator, OPS finds the facility is or would be hazardous to life, property, or the environment, the...
49 CFR 190.233 - Corrective action orders.
Code of Federal Regulations, 2010 CFR
2010-10-01
... facility to be hazardous to life, property, or the environment, the Associate Administrator, OPS shall... the failure to do so would result in the likelihood of serious harm to life, property, or the... Administrator, OPS finds the facility is or would be hazardous to life, property, or the environment, the...
Studies have shown correlations between in utero and early life environments and diseases later in life, including hypertension, coronary heart disease, diabetes, obesity, schizophrenia, early onset chronic renal failure, cancer and compromised repro-duction. Current development...
Evaluation of high-strength Cu-Ni-Mn-Al bolting used in oil and gas service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, O.; Joosten, M.W.; Murali, J.
1996-08-01
High strength bolts, nuts, studs and screws manufactured from a precipitation hardening Cu-Ni-Mn-Al alloy have experienced several failures in recent years in oilfield installations with varying degrees of severity and consequence. Such failures have been broadly attributed to Stress Corrosion Cracking (SCC) and Liquid Metal Embrittlement (LME) phenomena. A detailed test program using the Slow Strain Rate Testing (SSRT) method has been conducted to identify the various parameters which could contribute to SCC. Results indicate that the Cu-Ni-Mn-Al alloy is susceptible to SCC in a variety of environments commonly found in oilfield equipment manufacturing and field installations such as amine-containingmore » additives, sulfides and even natural seawater at elevated temperatures. SSRT testing indicated, however, that, in seawater environments, low service temperatures and cathodic protection did not adversely affect the alloy`s performance. Discussion of test program results and qualitative correlations with field failures are presented.« less
Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts
NASA Technical Reports Server (NTRS)
Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.
2017-01-01
Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar arrays meet their sunlit power demands and supply excess power to battery packs for power delivery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are exposed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.
Dubben, H H; Beck-Bornholdt, H P
2000-12-01
The statistical quality of the contributions to "Strahlentherapie und Onkologie" is assessed, aiming for improvement of the journal and consequently its impact factor. All 181 articles published during 1998 and 1999 in the categories "review", "original contribution", and "short communication" were analyzed concerning actuarial analysis of time-failure data. One hundred and twenty-three publications without time-failure data were excluded from analysis. Forty-five of the remaining 58 publications with time-failure data were evaluated actuarially. This corresponds to 78% (95% confidence interval: 64 to 88%) of papers, in which data were adequately analyzed. Complications were reported in 16 of 58 papers, but in only 3 cases actuarially. The number of patients at risk during the course of follow-up was documented adequately in 22 of the 45 publications with actuarial analysis. Authors, peer reviewers, and editors could contribute to improve the quality of the journal by setting value on acturial analysis of time-failure data.
NASA Technical Reports Server (NTRS)
Berry, David M.; Stansberry, Mark
1989-01-01
Using the ANSYS finite element program, a global model of the aft skirt and a detailed nonlinear model of the failure region was made. The analysis confirmed the area of failure in both STA-2B and STA-3 tests as the forging heat affected zone (HAZ) at the aft ring centerline. The highest hoop strain in the HAZ occurs in this area. However, the analysis does not predict failure as defined by ultimate elongation of the material equal to 3.5 percent total strain. The analysis correlates well with the strain gage data from both the Wyle influence test of the original design aft sjirt and the STA-3 test of the redesigned aft skirt. it is suggested that the sensitivity of the failure area material strength and stress/strain state to material properties and therefore to small manufacturing or processing variables is the most likely cause of failure below the expected material ultimate properties.
Specifying design conservatism: Worst case versus probabilistic analysis
NASA Technical Reports Server (NTRS)
Miles, Ralph F., Jr.
1993-01-01
Design conservatism is the difference between specified and required performance, and is introduced when uncertainty is present. The classical approach of worst-case analysis for specifying design conservatism is presented, along with the modern approach of probabilistic analysis. The appropriate degree of design conservatism is a tradeoff between the required resources and the probability and consequences of a failure. A probabilistic analysis properly models this tradeoff, while a worst-case analysis reveals nothing about the probability of failure, and can significantly overstate the consequences of failure. Two aerospace examples will be presented that illustrate problems that can arise with a worst-case analysis.
Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.
Coelli, Fernando C; Almeida, Renan M V R; Pereira, Wagner C A
2010-12-01
This work develops a cost analysis estimation for a mammography clinic, taking into account resource utilization and equipment failure rates. Two standard clinic models were simulated, the first with one mammography equipment, two technicians and one doctor, and the second (based on an actually functioning clinic) with two equipments, three technicians and one doctor. Cost data and model parameters were obtained by direct measurements, literature reviews and other hospital data. A discrete-event simulation model was developed, in order to estimate the unit cost (total costs/number of examinations in a defined period) of mammography examinations at those clinics. The cost analysis considered simulated changes in resource utilization rates and in examination failure probabilities (failures on the image acquisition system). In addition, a sensitivity analysis was performed, taking into account changes in the probabilities of equipment failure types. For the two clinic configurations, the estimated mammography unit costs were, respectively, US$ 41.31 and US$ 53.46 in the absence of examination failures. As the examination failures increased up to 10% of total examinations, unit costs approached US$ 54.53 and US$ 53.95, respectively. The sensitivity analysis showed that type 3 (the most serious) failure increases had a very large impact on the patient attendance, up to the point of actually making attendance unfeasible. Discrete-event simulation allowed for the definition of the more efficient clinic, contingent on the expected prevalence of resource utilization and equipment failures. © 2010 Blackwell Publishing Ltd.
2016-12-01
administrations, Abe’s unrivaled political performance within the Liberal Democratic Party (LDP), the weakness of opposition parties, and an economic...political success and failure, domestic policy, security policy, pragmatism, political environment, normalization, Liberal Democratic Party (LDP) 15...level, political influence from former administrations, Abe’s unrivaled political performance within the Liberal Democratic Party (LDP), the weakness
2005-08-01
precautionary savings that were accumulated in preparation for an attempt at entrepreneurship . It suggests that although some households undoubtedly do...environment. This behavior has implications for how we interpret liquidity constraints to entrepreneurship , as well as for government policy in...employment 22 Wealth accumulation 24 Life cycle / Permanent income hypothesis 25 Buffer stock saving 27 Entrepreneurship and
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Loucks, Michael; Carrico, John
2014-01-01
The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).
Forest-fire model as a supercritical dynamic model in financial systems
NASA Astrophysics Data System (ADS)
Lee, Deokjae; Kim, Jae-Young; Lee, Jeho; Kahng, B.
2015-02-01
Recently large-scale cascading failures in complex systems have garnered substantial attention. Such extreme events have been treated as an integral part of self-organized criticality (SOC). Recent empirical work has suggested that some extreme events systematically deviate from the SOC paradigm, requiring a different theoretical framework. We shed additional theoretical light on this possibility by studying financial crisis. We build our model of financial crisis on the well-known forest fire model in scale-free networks. Our analysis shows a nontrivial scaling feature indicating supercritical behavior, which is independent of system size. Extreme events in the supercritical state result from bursting of a fat bubble, seeds of which are sown by a protracted period of a benign financial environment with few shocks. Our findings suggest that policymakers can control the magnitude of financial meltdowns by keeping the economy operating within reasonable duration of a benign environment.
Breastfeeding and employment: an assessment of employer attitudes.
Libbus, M Kay; Bullock, Linda F C
2002-08-01
Both research and anecdotal reports suggest that maternal employment is associated with failure to initiate breastfeeding and early breastfeeding attrition. The objective of this study was to describe the experience with and attitudes toward breastfeeding of a sample of employers in a small Midwestern city in the United States. Based on an analysis of 85 mail-out questionnaires, we found that less than half of the employers had personal experience with breastfeeding. A large percentage of the sample, however, indicated that they would be willing to facilitate women who wished to breastfeed or express milk in the workplace. However, these employers also stated that they saw little value to their business of supporting breastfeeding in the work environment. Thus, enhancement of breastfeeding opportunity in the work environment may come as a result of public and employer education but, more likely, will require some type of directive from official sources.
NASA Astrophysics Data System (ADS)
Velazquez, Antonio; Swartz, R. Andrew
2012-04-01
Wind energy is an increasingly important component of this nation's renewable energy portfolio, however safe and economical wind turbine operation is a critical need to ensure continued adoption. Safe operation of wind turbine structures requires not only information regarding their condition, but their operational environment. Given the difficulty inherent in SHM processes for wind turbines (damage detection, location, and characterization), some uncertainty in conditional assessment is expected. Furthermore, given the stochastic nature of the loading on turbine structures, a probabilistic framework is appropriate to characterize their risk of failure at a given time. Such information will be invaluable to turbine controllers, allowing them to operate the structures within acceptable risk profiles. This study explores the characterization of the turbine loading and response envelopes for critical failure modes of the turbine blade structures. A framework is presented to develop an analytical estimation of the loading environment (including loading effects) based on the dynamic behavior of the blades. This is influenced by behaviors including along and across-wind aero-elastic effects, wind shear gradient, tower shadow effects, and centrifugal stiffening effects. The proposed solution includes methods that are based on modal decomposition of the blades and require frequent updates to the estimated modal properties to account for the time-varying nature of the turbine and its environment. The estimated demand statistics are compared to a code-based resistance curve to determine a probabilistic estimate of the risk of blade failure given the loading environment.
Memory Circuit Fault Simulator
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.; McClure, Tucker
2013-01-01
Spacecraft are known to experience significant memory part-related failures and problems, both pre- and postlaunch. These memory parts include both static and dynamic memories (SRAM and DRAM). These failures manifest themselves in a variety of ways, such as pattern-sensitive failures, timingsensitive failures, etc. Because of the mission critical nature memory devices play in spacecraft architecture and operation, understanding their failure modes is vital to successful mission operation. To support this need, a generic simulation tool that can model different data patterns in conjunction with variable write and read conditions was developed. This tool is a mathematical and graphical way to embed pattern, electrical, and physical information to perform what-if analysis as part of a root cause failure analysis effort.
NASA Astrophysics Data System (ADS)
Iskandar, Ismed; Satria Gondokaryono, Yudi
2016-02-01
In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range between the true value and the maximum likelihood estimated value lines.
NASA Astrophysics Data System (ADS)
Zhao, Yong; Yang, Tianhong; Bohnhoff, Marco; Zhang, Penghai; Yu, Qinglei; Zhou, Jingren; Liu, Feiyue
2018-05-01
To quantitatively understand the failure process and failure mechanism of a rock mass during the transformation from open-pit mining to underground mining, the Shirengou Iron Mine was selected as an engineering project case study. The study area was determined using the rock mass basic quality classification method and the kinematic analysis method. Based on the analysis of the variations in apparent stress and apparent volume over time, the rock mass failure process was analyzed. According to the recent research on the temporal and spatial change of microseismic events in location, energy, apparent stress, and displacement, the migration characteristics of rock mass damage were studied. A hybrid moment tensor inversion method was used to determine the rock mass fracture source mechanisms, the fracture orientations, and fracture scales. The fracture area can be divided into three zones: Zone A, Zone B, and Zone C. A statistical analysis of the orientation information of the fracture planes orientations was carried out, and four dominant fracture planes were obtained. Finally, the slip tendency analysis method was employed, and the unstable fracture planes were obtained. The results show: (1) The microseismic monitoring and hybrid moment tensor analysis can effectively analyze the failure process and failure mechanism of rock mass, (2) during the transformation from open-pit to underground mining, the failure type of rock mass is mainly shear failure and the tensile failure is mostly concentrated in the roof of goafs, and (3) the rock mass of the pit bottom and the upper of goaf No. 18 have the possibility of further damage.
The implementation and use of Ada on distributed systems with reliability requirements
NASA Technical Reports Server (NTRS)
Reynolds, P. F.; Knight, J. C.; Urquhart, J. I. A.
1983-01-01
The issues involved in the use of the programming language Ada on distributed systems are discussed. The effects of Ada programs on hardware failures such as loss of a processor are emphasized. It is shown that many Ada language elements are not well suited to this environment. Processor failure can easily lead to difficulties on those processors which remain. As an example, the calling task in a rendezvous may be suspended forever if the processor executing the serving task fails. A mechanism for detecting failure is proposed and changes to the Ada run time support system are suggested which avoid most of the difficulties. Ada program structures are defined which allow programs to reconfigure and continue to provide service following processor failure.
Stephenson, W
1993-08-01
This paper is a critique of NIH guidelines for the care and protection of laboratory animals. It exposes four serious deficiencies in these guidelines: (1) failure to make it clear that the mere pursuit of knowledge does not justify using animals; (2) failure to give any guidance concerning what constitutes human benefit or well-being; (3) failure to countenance trade-offs between human benefit or well-being and animal well-being; (4) failure to clearly specify what constitutes keeping animals in an 'environment appropriate to the species and its life history.' It concludes with the suggestion that the construction and revision of these guidelines is too important to be left to the professionals.
Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach
NASA Technical Reports Server (NTRS)
Shi, John J.
2005-01-01
At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.
Compression After Impact on Honeycomb Core Sandwich Panels with Thin Facesheets, Part 2: Analysis
NASA Technical Reports Server (NTRS)
Mcquigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.
2012-01-01
A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part 2, the subject of the current paper, is focused on the analysis, which corresponds to the CAI testings described in Part 1. Of interest, are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of materials, which were identical with the exception of the density of the honeycomb core, were tested in Part 1. The results highlighted the need for analysis methods which taken into account multiple failure modes. A finite element model (FEM) is developed here, in Part 2. A commercial implementation of the Multicontinuum Failure Theory (MCT) for progressive failure analysis (PFA) in composite laminates, Helius:MCT, is included in this model. The inclusion of PFA in the present model provided a new, unique ability to account for multiple failure modes. In addition, significant impact damage detail is included in the model. A sensitivity study, used to assess the effect of each damage parameter on overall analysis results, is included in an appendix. Analysis results are compared to the experimental results for each of the 32 CAI sandwich panel specimens tested to failure. The failure of each specimen is predicted using the high-fidelity, physicsbased analysis model developed here, and the results highlight key improvements in the understanding of honeycomb core sandwich panel CAI failure. Finally, a parametric study highlights the strength benefits compared to mass penalty for various core densities.
MOD-0A 200 kW wind turbine generator design and analysis report
NASA Astrophysics Data System (ADS)
Anderson, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-08-01
The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented.
MOD-0A 200 kW wind turbine generator design and analysis report
NASA Technical Reports Server (NTRS)
Anderson, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-01-01
The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented.
On developing the local research environment of the 1990s - The Space Station era
NASA Technical Reports Server (NTRS)
Chase, Robert; Ziel, Fred
1989-01-01
A requirements analysis for the Space Station's polar platform data system has been performed. Based upon this analysis, a cluster, layered cluster, and layered-modular implementation of one specific module within the Eos Data and Information System (EosDIS), an active data base for satellite remote sensing research has been developed. It is found that a distributed system based on a layered-modular architecture and employing current generation work station technologies has the requisite attributes ascribed by the remote sensing research community. Although, based on benchmark testing, probabilistic analysis, failure analysis and user-survey technique analysis, it is found that this architecture presents some operational shortcomings that will not be alleviated with new hardware or software developments. Consequently, the potential of a fully-modular layered architectural design for meeting the needs of Eos researchers has also been evaluated, concluding that it would be well suited to the evolving requirements of this multidisciplinary research community.
NASA Technical Reports Server (NTRS)
Garg, A.; Ishaei, O.
1983-01-01
Efforts to characterize and differentiate between two major failure processes in graphite/epoxy composites - transverse cracking and Mode I delamination are described. Representative laminates were tested in uniaxial tension and flexure. The failure processes were monitored and identified by acoustic emission (AE). The effect of moisture on AE was also investigated. Each damage process was found to have a distinctive AE output that is significantly affected by moisture conditions. It is concluded that AE can serve as a useful tool for detecting and identifying failure modes in composite structures in laboratory and in service environments.
TSS-1R Failure Mode Evaluation
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; McCollum, Matthew B.; Kamenetzky, Rachel R.
1997-01-01
Soon after the break of the tether during the Tethered Satellite System (TSS-1R) mission in February, 1996, a Tiger Team was assembled at the George C. Marshall Space Flight Center to determine the tether failure mode. One possible failure scenario was the Kevlar' strength member of the tether failed because of degradation due to electrical discharge or electrical arcing. During the next several weeks, extensive electrical discharge testing in low vacuum and plasma environments was conducted in an attempt to reproduce the electrical activity recorded by on-board science instruments during the mission. The results of these tests are presented in this paper.
Mechanisms of Diagonal-Shear Failure in Reinforced Concrete Beams analyzed by AE-SiGMA
NASA Astrophysics Data System (ADS)
Ohno, Kentaro; Shimozono, Shinichiro; Sawada, Yosuke; Ohtsu, Masayasu
Serious shear failures in reinforced concrete (RC) structures were reported in the Hanshin-Awaji Earthquake. In particular, it was demonstrated that a diagonal-shear failure could lead to disastrous damage. However, mechanisms of the diagonal-shear failure in RC beams have not been completely clarified yet. In this study, the diagonal-shear failure in RC beams is investigated, applying acoustic emission (AE) method. To identify source mechanisms of AE signals, SiGMA (Simplified Green's functions for Moment tensor Analysis) procedure was applied. Prior to four-point bending tests of RC beams, theoretical waveforms were calculated to determine the optimal arrangement of AE sensors. Then, cracking mechanisms in experiments were investigated by applying the SiGMA procedure to AE waveforms. From results of the SiGMA analysis, dominant motions of micro-cracks are found to be of shear crack in all the loading stages. As the load increased, the number of tensile cracks increased and eventually the diagonal-shear failure occurred in the shear span. Prior to final failure, AE cluster of micro-cracks was intensely observed in the shear span. To classify AE sources into tensile and shear cracks, AE parameter analysis was also applied. As a result, most of AE hits are classified into tensile cracks. The difference between results obtained by the AE parameter analysis and by the SiGMA analysis is investigated and discussed.
Failure Investigation of Radiant Platen Superheater Tube of Thermal Power Plant Boiler
NASA Astrophysics Data System (ADS)
Ghosh, D.; Ray, S.; Mandal, A.; Roy, H.
2015-04-01
This paper highlights a case study of typical premature failure of a radiant platen superheater tube of 210 MW thermal power plant boiler. Visual examination, dimensional measurement and chemical analysis, are conducted as part of the investigations. Apart from these, metallographic analysis and fractography are also conducted to ascertain the probable cause of failure. Finally it has been concluded that the premature failure of the super heater tube can be attributed to localized creep at high temperature. The corrective actions has also been suggested to avoid this type of failure in near future.
Evolution of social learning when high expected payoffs are associated with high risk of failure.
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W; Lotem, Arnon
2011-11-07
In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals.
Evolution of social learning when high expected payoffs are associated with high risk of failure
Arbilly, Michal; Motro, Uzi; Feldman, Marcus W.; Lotem, Arnon
2011-01-01
In an environment where the availability of resources sought by a forager varies greatly, individual foraging is likely to be associated with a high risk of failure. Foragers that learn where the best sources of food are located are likely to develop risk aversion, causing them to avoid the patches that are in fact the best; the result is sub-optimal behaviour. Yet, foragers living in a group may not only learn by themselves, but also by observing others. Using evolutionary agent-based computer simulations of a social foraging game, we show that in an environment where the most productive resources occur with the lowest probability, socially acquired information is strongly favoured over individual experience. While social learning is usually regarded as beneficial because it filters out maladaptive behaviours, the advantage of social learning in a risky environment stems from the fact that it allows risk aversion to be circumvented and the best food source to be revisited despite repeated failures. Our results demonstrate that the consequences of individual risk aversion may be better understood within a social context and suggest one possible explanation for the strong preference for social information over individual experience often observed in both humans and animals. PMID:21508013
Failure analysis of stainless steel femur fixation plate.
Hussain, P B; Mohammad, M
2004-05-01
Failure analysis was performed to investigate the failure of the femur fixation plate which was previously fixed on the femur of a girl. Radiography, metallography, fractography and mechanical testing were conducted in this study. The results show that the failure was due to the formation of notches on the femur plate. These notches act as stress raisers from where the cracks start to propagate. Finally fracture occurred on the femur plate and subsequently, the plate failed.
The role of shear and tensile failure in dynamically triggered landslides
Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.
2008-01-01
Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
1982-08-23
LUBRICATION, FAILURE PROGRESSION WNITORING OIL-ANALYSIS, FAILURE ANALYSIS, TRIBOLOGY WEAR DEBRIS ANALYSIS, WEAR REGIMS DIAGNOSTICS, BENCH TESTING, FERROGRApHy ...Spectrometric Oil Analysis . ............... 400 G. Analytical Ferrography ............................. 411 3 NAEC-92-153 TABLE OF CONTENTS (Continued...of ferrography entry deposit mnicrographs of these sequences, which can be directly related to sample debris concentration levels. These micrographs
Simulation Assisted Risk Assessment: Blast Overpressure Modeling
NASA Technical Reports Server (NTRS)
Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael
2006-01-01
A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.
A Fault Tolerant System for an Integrated Avionics Sensor Configuration
NASA Technical Reports Server (NTRS)
Caglayan, A. K.; Lancraft, R. E.
1984-01-01
An aircraft sensor fault tolerant system methodology for the Transport Systems Research Vehicle in a Microwave Landing System (MLS) environment is described. The fault tolerant system provides reliable estimates in the presence of possible failures both in ground-based navigation aids, and in on-board flight control and inertial sensors. Sensor failures are identified by utilizing the analytic relationships between the various sensors arising from the aircraft point mass equations of motion. The estimation and failure detection performance of the software implementation (called FINDS) of the developed system was analyzed on a nonlinear digital simulation of the research aircraft. Simulation results showing the detection performance of FINDS, using a dual redundant sensor compliment, are presented for bias, hardover, null, ramp, increased noise and scale factor failures. In general, the results show that FINDS can distinguish between normal operating sensor errors and failures while providing an excellent detection speed for bias failures in the MLS, indicated airspeed, attitude and radar altimeter sensors.
Support of LAVA Integration and Testing
NASA Technical Reports Server (NTRS)
Jackson, Marcus Algernon
2014-01-01
The Lunar Advanced Volatile Analysis (LAVA) subsystem is a part of the Regolith and Environment Science & Oxygen and Lunar Volatile Analysis (RESOLVE) Payload that will fly to the lunar pole on the Resource Prospector Mission (RPM) in 2019. The purpose of the mission is to characterize the water on the surface and subsurface of the moon in various locations in order to map the distribution. This characterization of water will help to understand how feasible water is as a resource that can be used for drinking water, breathable air, and propellants in future missions. This paper describes the key support activities performed during a 10 week internship; specifically, troubleshooting the Near Infrared Spectrometer for the Surge Tank (NIRST) instrument count loss, contributing to a clamp to be used in the installation of Resistive Temperature Detectors (RTDs) to tubing, performing a failure analysis of the LAVA Fluid Subsystem (FSS), and finalizing trade studies for release.
The Identification of Software Failure Regions
1990-06-01
be used to detect non-obviously redundant test cases. A preliminary examination of the manual analysis method is performed with a set of programs ...failure regions are defined and a method of failure region analysis is described in detail. The thesis describes how this analysis may be used to detect...is the termination of the ability of a functional unit to perform its required function. (Glossary, 1983) The presence of faults in program code
Failure analysis on optical fiber on swarm flight payload
NASA Astrophysics Data System (ADS)
Bourcier, Frédéric; Fratter, Isabelle; Teyssandier, Florent; Barenes, Magali; Dhenin, Jérémie; Peyriguer, Marie; Petre-Bordenave, Romain
2017-11-01
Failure analysis on optical components is usually carried-out, on standard testing devices such as optical/electronic microscopes and spectrometers, on isolated but representative samples. Such analyses are not contactless and not totally non-invasive, so they cannot be used easily on flight models. Furthermore, for late payload or satellite integration/validation phases with tight schedule issues, it could be necessary to carry out a failure analysis directly on the flight hardware, in cleanroom.
NASA Astrophysics Data System (ADS)
Ke, Jyh-Bin; Lee, Wen-Chiung; Wang, Kuo-Hsiung
2007-07-01
This paper presents the reliability and sensitivity analysis of a system with M primary units, W warm standby units, and R unreliable service stations where warm standby units switching to the primary state might fail. Failure times of primary and warm standby units are assumed to have exponential distributions, and service times of the failed units are exponentially distributed. In addition, breakdown times and repair times of the service stations also follow exponential distributions. Expressions for system reliability, RY(t), and mean time to system failure, MTTF are derived. Sensitivity analysis, relative sensitivity analysis of the system reliability and the mean time to failure, with respect to system parameters are also investigated.
X-framework: Space system failure analysis framework
NASA Astrophysics Data System (ADS)
Newman, John Steven
Space program and space systems failures result in financial losses in the multi-hundred million dollar range every year. In addition to financial loss, space system failures may also represent the loss of opportunity, loss of critical scientific, commercial and/or national defense capabilities, as well as loss of public confidence. The need exists to improve learning and expand the scope of lessons documented and offered to the space industry project team. One of the barriers to incorporating lessons learned include the way in which space system failures are documented. Multiple classes of space system failure information are identified, ranging from "sound bite" summaries in space insurance compendia, to articles in journals, lengthy data-oriented (what happened) reports, and in some rare cases, reports that treat not only the what, but also the why. In addition there are periodically published "corporate crisis" reports, typically issued after multiple or highly visible failures that explore management roles in the failure, often within a politically oriented context. Given the general lack of consistency, it is clear that a good multi-level space system/program failure framework with analytical and predictive capability is needed. This research effort set out to develop such a model. The X-Framework (x-fw) is proposed as an innovative forensic failure analysis approach, providing a multi-level understanding of the space system failure event beginning with the proximate cause, extending to the directly related work or operational processes and upward through successive management layers. The x-fw focus is on capability and control at the process level and examines: (1) management accountability and control, (2) resource and requirement allocation, and (3) planning, analysis, and risk management at each level of management. The x-fw model provides an innovative failure analysis approach for acquiring a multi-level perspective, direct and indirect causation of failures, and generating better and more consistent reports. Through this approach failures can be more fully understood, existing programs can be evaluated and future failures avoided. The x-fw development involved a review of the historical failure analysis and prevention literature, coupled with examination of numerous failure case studies. Analytical approaches included use of a relational failure "knowledge base" for classification and sorting of x-fw elements and attributes for each case. In addition a novel "management mapping" technique was developed as a means of displaying an integrated snapshot of indirect causes within the management chain. Further research opportunities will extend the depth of knowledge available for many of the component level cases. In addition, the x-fw has the potential to expand the scope of space sector lessons learned, and contribute to knowledge management and organizational learning.
Determination of UAV pre-flight Checklist for flight test purpose using qualitative failure analysis
NASA Astrophysics Data System (ADS)
Hendarko; Indriyanto, T.; Syardianto; Maulana, F. A.
2018-05-01
Safety aspects are of paramount importance in flight, especially in flight test phase. Before performing any flight tests of either manned or unmanned aircraft, one should include pre-flight checklists as a required safety document in the flight test plan. This paper reports on the development of a new approach for determination of pre-flight checklists for UAV flight test based on aircraft’s failure analysis. The Lapan’s LSA (Light Surveillance Aircraft) is used as a study case, assuming this aircraft has been transformed into the unmanned version. Failure analysis is performed on LSA using fault tree analysis (FTA) method. Analysis is focused on propulsion system and flight control system, which fail of these systems will lead to catastrophic events. Pre-flight checklist of the UAV is then constructed based on the basic causes obtained from failure analysis.
Ares I-X Ascent Base Environments
NASA Technical Reports Server (NTRS)
Mobley, B. L.; Bender, R. L.; Canabal, F.; Smith, Sheldon D.
2011-01-01
Plume induced base heating environments were measured during the flight of the NASA Constellation Ares I-X developmental launch vehicle, successfully flown on October 28, 2009. The Ares IX first stage is a four segment Space Shuttle derived booster with base consisting of a flared aft skirt, deceleration and tumble motors, and a thermal curtain surrounding the first stage 7.2 area ratio nozzle. Developmental Flight Instrumentation (DFI) consisted of radiometers, calorimeters, pressure transducers and gas temperature probes installed on the aft skirt and nozzle to measure the base environments. In addition, thermocouples were also installed between the layers of the flexible thermal curtain to provide insight into the curtain response to the base environments and to assist in understanding curtain failure during reentry. Plume radiation environment predictions were generated by the Reverse Monte Carlo (RMC) code and the convective base heating predictions utilized heritage MSFC empirical methods. These predictions were compared to the DFI data and results from the flight videography. Radiation predictions agreed with the flight measured data early in flight but gauge failures prevented high altitude comparisons. The convective environment comparisons demonstrated the need to improve the prediction methodology; particularly for low altitude, local plume recirculation. The convective comparisons showed relatively good agreement at altitudes greater than 50,000 feet.
Failure analysis and modeling of a VAXcluster system
NASA Technical Reports Server (NTRS)
Tang, Dong; Iyer, Ravishankar K.; Subramani, Sujatha S.
1990-01-01
This paper discusses the results of a measurement-based analysis of real error data collected from a DEC VAXcluster multicomputer system. In addition to evaluating basic system dependability characteristics such as error and failure distributions and hazard rates for both individual machines and for the VAXcluster, reward models were developed to analyze the impact of failures on the system as a whole. The results show that more than 46 percent of all failures were due to errors in shared resources. This is despite the fact that these errors have a recovery probability greater than 0.99. The hazard rate calculations show that not only errors, but also failures occur in bursts. Approximately 40 percent of all failures occur in bursts and involved multiple machines. This result indicates that correlated failures are significant. Analysis of rewards shows that software errors have the lowest reward (0.05 vs 0.74 for disk errors). The expected reward rate (reliability measure) of the VAXcluster drops to 0.5 in 18 hours for the 7-out-of-7 model and in 80 days for the 3-out-of-7 model.
A Comparison of Functional Models for Use in the Function-Failure Design Method
NASA Technical Reports Server (NTRS)
Stock, Michael E.; Stone, Robert B.; Tumer, Irem Y.
2006-01-01
When failure analysis and prevention, guided by historical design knowledge, are coupled with product design at its conception, shorter design cycles are possible. By decreasing the design time of a product in this manner, design costs are reduced and the product will better suit the customer s needs. Prior work indicates that similar failure modes occur with products (or components) with similar functionality. To capitalize on this finding, a knowledge base of historical failure information linked to functionality is assembled for use by designers. One possible use for this knowledge base is within the Elemental Function-Failure Design Method (EFDM). This design methodology and failure analysis tool begins at conceptual design and keeps the designer cognizant of failures that are likely to occur based on the product s functionality. The EFDM offers potential improvement over current failure analysis methods, such as FMEA, FMECA, and Fault Tree Analysis, because it can be implemented hand in hand with other conceptual design steps and carried throughout a product s design cycle. These other failure analysis methods can only truly be effective after a physical design has been completed. The EFDM however is only as good as the knowledge base that it draws from, and therefore it is of utmost importance to develop a knowledge base that will be suitable for use across a wide spectrum of products. One fundamental question that arises in using the EFDM is: At what level of detail should functional descriptions of components be encoded? This paper explores two approaches to populating a knowledge base with actual failure occurrence information from Bell 206 helicopters. Functional models expressed at various levels of detail are investigated to determine the necessary detail for an applicable knowledge base that can be used by designers in both new designs as well as redesigns. High level and more detailed functional descriptions are derived for each failed component based on NTSB accident reports. To best record this data, standardized functional and failure mode vocabularies are used. Two separate function-failure knowledge bases are then created aid compared. Results indicate that encoding failure data using more detailed functional models allows for a more robust knowledge base. Interestingly however, when applying the EFDM, high level descriptions continue to produce useful results when using the knowledge base generated from the detailed functional models.
Mergers and acquisitions: director and consultant liability exposure.
Waxman, J M
1995-02-01
Corporate directors and their consultants must make decisions in an uncertain and changing health care environment. The losses each may face as a result of an incomplete analysis of the true value of the entities involved in mergers or acquisitions may extend beyond the failure of the transaction to the creation of personal liability as well. Accordingly, objective, careful, detailed, and fair decision-making based upon adequate information is more critical than ever for directors if they are to be able to take advantage of the business judgment rule, and also for consultants to avoid their own liability when transactions fail to deliver the values they have estimated.
Slow crack growth in spinel in water
NASA Technical Reports Server (NTRS)
Schwantes, S.; Elber, W.
1983-01-01
Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.
Affordable MMICs for Air Force systems
NASA Astrophysics Data System (ADS)
Kemerley, Robert T.; Fayette, Daniel F.
1991-05-01
The paper deals with a program directed at demonstrating affordable MMIC chips - the microwave/mm-wave monolithic integrated circuit (MIMIC) program. Focus is placed on experiments involving the growth and characterization of III-V materials, and the design, fabrication, and evaluation of ICs in the 1 to 60 GHz frequency range, as well as efforts related to the reliability testing, failure analysis, and generation of qualified manufacture's list procedures for GaAs MMICs and modules. Attributes associated with GaAs-technology devices, quality, reliability, and performance in select environments are discussed, including the dependence of these structures over temperature ranges, electrostatic discharge sensitivity, and susceptibility to environmental stresses.
NASA Technical Reports Server (NTRS)
Morey, W. W.
1983-01-01
The objective of the hot section viewing program is to develop a prototype optical system for viewing the interior of a gas turbine combustor during high temperature, high pressure operation in order to produce a visual record of some causes of premature hot section failures. The program began by identifying and analyzing system designs that would provide clearest images while being able to survive the hostile environment inside the combustion chamber. Different illumination methods and computer techniques for image enhancement and analysis were examined during a preliminary test phase. In the final phase of the program the prototype system was designed and fabricated and is currently being tested on a high pressure combustor rig.
Fluctuating Pressure Analysis of a 2-D SSME Nozzle Air Flow Test
NASA Technical Reports Server (NTRS)
Reed, Darren; Hidalgo, Homero
1996-01-01
To better understand the Space Shuttle Main Engine (SSME) startup/shutdown tansients, an airflow test of a two dimensional nozzle was conducted at Marshall Space Flight Center's trisonic wind tunnel. Photographic and other instrumentation show during an SSME start large nozzle shell distortions occur as the Mach disk is passing through the nozzle. During earlier develop of the SSME, this startup transient resulted in low cycle fatigue failure of one of the LH2 feedlines. The two dimensional SSME nozzle test was designed to measure the static and fluctuating pressure environment and color Schlieren video during the startup and shutdown phases of the run profile.
NASA Technical Reports Server (NTRS)
Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl
2017-01-01
The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.
Lall, Pradeep; Sakalaukus, Peter; Davis, Lynn
2015-02-19
An investigation of an off-the-shelf solid-state lighting device with the primary focus on the accompanied light-emitting diode (LED) electrical driver (ED) has been conducted. A set of 10 EDs were exposed to temperature humidity life testing of 85% RH and 85 C (85/85) without an electrical bias per the JEDEC standard JESD22-A101C in order to accelerate the ingress of moisture into the aluminum electrolytic capacitor (AEC) and the EDs in order to assess the reliability of the LED drivers for harsh environment applications. The capacitance and equivalent series resistance for each AEC inside the ED were measured using a handheldmore » LCR meter as possible leading indications of failure. The photometric quantities of a single pristine light engine were monitored in order to investigate the interaction between the light engine and the EDs. These parameters were used in assessing the overall reliability of the EDs. In addition, a comparative analysis has been conducted between the 85/85 accelerated test data and a previously published high-temperature storage life accelerated test of 135°C. The results of the 85/85 acceleration test and the comparative analysis are presented in this paper.« less
Station Blackout at Browns Ferry Unit One - accident sequence analysis. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, D.H.; Harrington, R.M.; Greene, S.R.
1981-11-01
This study describes the predicted response of Unit 1 at the Browns Ferry Nuclear Plant to Station Blackout, defined as a loss of offsite power combined with failure of all onsite emergency diesel-generators to start and load. Every effort has been made to employ the most realistic assumptions during the process of defining the sequence of events for this hypothetical accident. DC power is assumed to remain available from the unit batteries during the initial phase and the operator actions and corresponding events during this period are described using results provided by an analysis code developed specifically for this purpose.more » The Station Blackout is assumed to persist beyond the point of battery exhaustion and the events during this second phase of the accident in which dc power would be unavailable were determined through use of the MARCH code. Without dc power, cooling water could no longer be injected into the reactor vessel and the events of the second phase include core meltdown and subsequent containment failure. An estimate of the magnitude and timing of the concomitant release of the noble gas, cesium, and iodine-based fission products to the environment is provided in Volume 2 of this report. 58 refs., 75 figs., 8 tabs.« less
Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee C. Cadwallader
2010-06-01
This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.
Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee C. Cadwallader
2007-08-01
This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.
Ferrographic and spectrographic analysis of oil sampled before and after failure of a jet engine
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1980-01-01
An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph as well as plasma, atomic absorption, and emission spectrometers. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism, nor a high level of wear debris was detected in the oil sample from the engine just prior to the test in which the failure occurred. However, low concentrations of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure.
An overview of computational simulation methods for composite structures failure and life analysis
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1993-01-01
Three parallel computational simulation methods are being developed at the LeRC Structural Mechanics Branch (SMB) for composite structures failure and life analysis: progressive fracture CODSTRAN; hierarchical methods for high-temperature composites; and probabilistic evaluation. Results to date demonstrate that these methods are effective in simulating composite structures failure/life/reliability.
ERIC Educational Resources Information Center
Dante, Angelo; Fabris, Stefano; Palese, Alvisa
2013-01-01
Empirical studies and conceptual frameworks presented in the extant literature offer a static imagining of academic failure. Time-to-event analysis, which captures the dynamism of individual factors, as when they determine the failure to properly tailor timely strategies, impose longitudinal studies which are still lacking within the field. The…
40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...
40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...
40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...
40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous...
Creating a Positive Classroom Environment to Meet the Needs of the Foster Child
ERIC Educational Resources Information Center
LaCour, Misty; McGlawn, Penny; Dees, Laura
2016-01-01
Foster children often struggle socially, emotionally, and academically in the school setting leading to school failure. By establishing a positive classroom environment, teachers can provide for the needs of the foster child while encouraging academic achievement. This study seeks to determine teacher best practices for meeting the needs of foster…
A Profile of the Multiple Evaluating Environments within a College.
ERIC Educational Resources Information Center
Hackman, Judith D.; Taber, Thomas D.
The paper demonstrates an approach for describing educational organizations in terms of their multiple evaluating environments. A college profile is drawn based on the diverse criteria that students, faculty, administrators, admissions staff, and athletics staff use to assess the success or failure of undergraduates. The relative values that 377…
Environment assisted degradation mechanisms in advanced light metals
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Stoner, Glenn E.; Swanson, Robert E.
1988-01-01
The general goals of the research program are to characterize alloy behavior quantitatively and to develop predictive mechanisms for environmental failure modes. Successes in this regard will provide the basis for metallurgical optimization of alloy performance, for chemical control of aggressive environments, and for engineering life prediction with damage tolerance and long term reliability.
Corrosion Evaluation of Tank 40 Leak Detection Box
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickalonis, J.I.
1999-07-29
'Leak detection from the transfer lines in the tank farm has been a concern for many years because of the need to minimize exposure of personnel and contamination of the environment. The leak detection box (LDB) is one line of defense, which must be maintained to meet this objective. The evaluation of a failed LDB was one item from an action plan aimed at minimizing the degradation of LDBs. The Tank 40 LDB, which failed in service, was dug up and shipped to SRTC for evaluation. During a video inspection while in service, this LDB was found to have blackmore » tubercles on the interior, which suggested possible microbial involvement. The failure point, however, was believed to have occurred in the drain line from the transfer line jacket. Visual, metallurgical, and biological analyses were performed on the LDB. The analysis results showed that there was not any adverse microbiological growth or significant localized corrosion. The corrosion of the LDB was caused by exposure to aqueous environments and was typical of carbon steel pipes in soil environments.'« less
Effect of environment on low-cycle fatigue of a nickel-titanium instrument.
Cheung, Gary S P; Shen, Ya; Darvell, Brian W
2007-12-01
This study examined the low-cycle fatigue (LCF) behavior of a nickel-titanium (NiTi) engine-file under various environmental conditions. One brand of NiTi instrument was subjected to rotational-bending fatigue in air, deionized water, sodium hypochlorite, or silicone oil. The curvature of each instrument, diameter of the fracture cross-section, and the number of rotations to failure were determined. The strain-life relationship in the LCF region was examined by using one-way analysis of variance, and the number of crack origins with chi2, for differences between groups. The results showed a linear relationship, on logarithmic scales, between the LCF life and the surface strain amplitude; regression line slopes were significantly different between noncorrosive (air, silicone oil) and corrosive (water, hypochlorite) environments (P < .05), as well as number of crack origins (P < .05). Hypochlorite was more detrimental to fatigue life than water. In conclusion, environmental conditions significantly affect the LCF behavior of NiTi rotary instruments. Fatigue testing of NiTi engine-files should be in a service-like environment.
Fractography of ceramic and metal failures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
STP 827 is organized into the two broad areas of ceramics and metals. The ceramics section covers fracture analysis techniques, surface analysis techniques, and applied fractography. The metals section covers failure analysis techniques, and latest approaches to fractography, and applied fractography.
Global resilience analysis of water distribution systems.
Diao, Kegong; Sweetapple, Chris; Farmani, Raziyeh; Fu, Guangtao; Ward, Sarah; Butler, David
2016-12-01
Evaluating and enhancing resilience in water infrastructure is a crucial step towards more sustainable urban water management. As a prerequisite to enhancing resilience, a detailed understanding is required of the inherent resilience of the underlying system. Differing from traditional risk analysis, here we propose a global resilience analysis (GRA) approach that shifts the objective from analysing multiple and unknown threats to analysing the more identifiable and measurable system responses to extreme conditions, i.e. potential failure modes. GRA aims to evaluate a system's resilience to a possible failure mode regardless of the causal threat(s) (known or unknown, external or internal). The method is applied to test the resilience of four water distribution systems (WDSs) with various features to three typical failure modes (pipe failure, excess demand, and substance intrusion). The study reveals GRA provides an overview of a water system's resilience to various failure modes. For each failure mode, it identifies the range of corresponding failure impacts and reveals extreme scenarios (e.g. the complete loss of water supply with only 5% pipe failure, or still meeting 80% of demand despite over 70% of pipes failing). GRA also reveals that increased resilience to one failure mode may decrease resilience to another and increasing system capacity may delay the system's recovery in some situations. It is also shown that selecting an appropriate level of detail for hydraulic models is of great importance in resilience analysis. The method can be used as a comprehensive diagnostic framework to evaluate a range of interventions for improving system resilience in future studies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
1998-12-01
failure detection, monitoring, and decision making.) moderator function. Originally, the output from these One of the best known OCM implementations, the...imposed by the tasks themselves, the information and equipment provided, the task environment, operator skills and experience, operator strategies , the...problem-solving situation, including the toward failure.) knowledge necessary to generate the right problem- solving strategies , the attention that
General test plan redundant sensor strapdown IMU evaluation program
NASA Technical Reports Server (NTRS)
Hartwell, T.; Irwin, H. A.; Miyatake, Y.; Wedekind, D. E.
1971-01-01
The general test plan for a redundant sensor strapdown inertial measuring unit evaluation program is presented. The inertial unit contains six gyros and three orthogonal accelerometers. The software incorporates failure detection and correction logic and a land vehicle navigation program. The principal objective of the test is a demonstration of the practicability, reliability, and performance of the inertial measuring unit with failure detection and correction in operational environments.
Guerlain, Stephanie; Adams, Reid B; Turrentine, F Beth; Shin, Thomas; Guo, Hui; Collins, Stephen R; Calland, J Forrest
2005-01-01
The objective of this research was to develop a digital system to archive the complete operative environment along with the assessment tools for analysis of this data, allowing prospective studies of operative performance, intraoperative errors, team performance, and communication. Ability to study this environment will yield new insights, allowing design of systems to avoid preventable errors that contribute to perioperative complications. A multitrack, synchronized, digital audio-visual recording system (RATE tool) was developed to monitor intraoperative performance, including software to synchronize data and allow assignment of independent observational scores. Cases were scored for technical performance, participants' situational awareness (knowledge of critical information), and their comfort and satisfaction with the conduct of the procedure. Laparoscopic cholecystectomy (n = 10) was studied. Technical performance of the RATE tool was excellent. The RATE tool allowed real time, multitrack data collection of all aspects of the operative environment, while permitting digital recording of the objective assessment data in a time synchronized and annotated fashion during the procedure. The mean technical performance score was 73% +/- 28% of maximum (perfect) performance. Situational awareness varied widely among team members, with the attending surgeon typically the only team member having comprehensive knowledge of critical case information. The RATE tool allows prospective analysis of performance measures such as technical judgments, team performance, and communication patterns, offers the opportunity to conduct prospective intraoperative studies of human performance, and allows for postoperative discussion, review, and teaching. This study also suggests that gaps in situational awareness might be an underappreciated source of operative adverse events. Future uses of this system will aid teaching, failure or adverse event analysis, and intervention research.
2017-03-30
Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics 5b. GRANT NUMBER NOOO 14-16-1-21 73 5c. PROGRAM...ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Texas A&M Engineering Experiment Station (TEES) 400 Harvey Mitchell Parkway, Suite 300 M160 1473 I...Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics Award Number N00014-16-1-2173 DOD-NAVY- Office of Naval Research PI: Ramesh
Fan, Ruoxun; Liu, Jie; Jia, Zhengbin; Deng, Ying; Liu, Jun
2018-01-01
Macro-level failure in bone structure could be diagnosed by pain or physical examination. However, diagnosing tissue-level failure in a timely manner is challenging due to the difficulty in observing the interior mechanical environment of bone tissue. Because most fractures begin with tissue-level failure in bone tissue caused by continually applied loading, people attempt to monitor the tissue-level failure of bone and provide corresponding measures to prevent fracture. Many tissue-level mechanical parameters of bone could be predicted or measured; however, the value of the parameter may vary among different specimens belonging to a kind of bone structure even at the same age and anatomical site. These variations cause difficulty in representing tissue-level bone failure. Therefore, determining an appropriate tissue-level failure evaluation standard is necessary to represent tissue-level bone failure. In this study, the yield and failure processes of rat femoral cortical bones were primarily simulated through a hybrid computational-experimental method. Subsequently, the tissue-level strains and the ratio between tissue-level failure and yield strains in cortical bones were predicted. The results indicated that certain differences existed in tissue-level strains; however, slight variations in the ratio were observed among different cortical bones. Therefore, the ratio between tissue-level failure and yield strains for a kind of bone structure could be determined. This ratio may then be regarded as an appropriate tissue-level failure evaluation standard to represent the mechanical status of bone tissue.
Using diagnostic experiences in experience-based innovative design
NASA Astrophysics Data System (ADS)
Prabhakar, Sattiraju; Goel, Ashok K.
1992-03-01
Designing a novel class of devices requires innovation. Often, the design knowledge of these devices does not identify and address the constraints that are required for their performance in the real world operating environment. So any new design adapted from these devices tend to be similarly sketchy. In order to address this problem, we propose a case-based reasoning method called performance driven innovation (PDI). We model the design as a dynamic process, arrive at a design by adaptation from the known designs, generate failures for this design for some new constraints, and then use this failure knowledge to generate the required design knowledge for the new constraints. In this paper, we discuss two aspects of PDI: the representation of PDI cases and the translation of the failure knowledge into design knowledge for a constraint. Each case in PDI has two components: design and failure knowledge. Both of them are represented using a substance-behavior-function model. Failure knowledge has internal device failure behaviors and external environmental behaviors. The environmental behavior, for a constraint, interacting with the design behaviors, results in the failure internal behavior. The failure adaptation strategy generates functions, from the failure knowledge, which can be addressed using the routine design methods. These ideas are illustrated using a coffee-maker example.
On-board fault management for autonomous spacecraft
NASA Technical Reports Server (NTRS)
Fesq, Lorraine M.; Stephan, Amy; Doyle, Susan C.; Martin, Eric; Sellers, Suzanne
1991-01-01
The dynamic nature of the Cargo Transfer Vehicle's (CTV) mission and the high level of autonomy required mandate a complete fault management system capable of operating under uncertain conditions. Such a fault management system must take into account the current mission phase and the environment (including the target vehicle), as well as the CTV's state of health. This level of capability is beyond the scope of current on-board fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems. This presentation will discuss work in progress at TRW to apply artificial intelligence to the problem of on-board fault management. The goal of this work is to develop fault management systems that can meet the needs of spacecraft that have long-range autonomy requirements. We have implemented a model-based approach to fault detection and isolation that does not require explicit characterization of failures prior to launch. It is thus able to detect failures that were not considered in the failure and effects analysis. We have applied this technique to several different subsystems and tested our approach against both simulations and an electrical power system hardware testbed. We present findings from simulation and hardware tests which demonstrate the ability of our model-based system to detect and isolate failures, and describe our work in porting the Ada version of this system to a flight-qualified processor. We also discuss current research aimed at expanding our system to monitor the entire spacecraft.
Humidity sensor failure: a problem that should not be neglected
NASA Astrophysics Data System (ADS)
Liu, Y.; Tang, N.
2014-11-01
The problem of abnormally dry bias induced by radiosonde humidity sensor failure in the low and mid-troposphere is studied based on the global operational radiosonde relative humidity observations from December 2008 to November 2009. The concurrent humidity retrievals from the FORMOSAT-3/COSMIC radio occultation mission are also used to assess the quality of the radiosonde humidity observations. It is found that extremely dry relative humidity are common in the low and mid-troposphere, with an annual globally averaged occurrence of 4.2%. These low-humidity observations usually exist between 20 and 40° latitude in both the Northern Hemisphere and Southern Hemisphere, and from heights of 700 to 450 hPa. Winter and spring are the favored seasons for their occurrence, with a maximum fraction of 9.53 % in the Northern Hemisphere and 16.82% in the Southern Hemisphere. The phenomenon does not result from natural atmospheric variability, but rather humidity sensor failure. If the performance of humidity sensors is not good, low-humidity observations occur easily, particularly when the radiosonde ascends through stratiform clouds with high moisture content. The humidity sensor cannot adapt to the huge change of the atmospheric environment inside and outside stratiform clouds, resulting in sensor failure and no response to atmospheric change. These extremely dry relative humidity observations are erroneous. However, they have been archived as formal data and applied in many research studies. This may seriously undermine the reliability of numerical weather prediction and the analysis of weather and climate if quality control is not applied before using these data.
Time-elapsed screw insertion with microCT imaging.
Ryan, M K; Mohtar, A A; Cleek, T M; Reynolds, K J
2016-01-25
Time-elapsed analysis of bone is an innovative technique that uses sequential image data to analyze bone mechanics under a given loading regime. This paper presents the development of a novel device capable of performing step-wise screw insertion into excised bone specimens, within the microCT environment, whilst simultaneously recording insertion torque, compression under the screw head and rotation angle. The system is computer controlled and screw insertion is performed in incremental steps of insertion torque. A series of screw insertion tests to failure were performed (n=21) to establish a relationship between the torque at head contact and stripping torque (R(2)=0.89). The test-device was then used to perform step-wise screw insertion, stopping at intervals of 20%, 40%, 60% and 80% between screw head contact and screw stripping. Image data-sets were acquired at each of these time-points as well as at head contact and post-failure. Examination of the image data revealed the trabecular deformation as a result of increased insertion torque was restricted to within 1mm of the outer diameter of the screw thread. Minimal deformation occurred prior to the step between the 80% time-point and post-failure. The device presented has allowed, for the first time, visualization of the micro-mechanical response in the peri-implant bone with increased tightening torque. Further testing on more samples is expected to increase our understanding of the effects of increased tightening torque at the micro-structural level, and the failure mechanisms of trabeculae. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wilson, R. E.; Riccio, J. R.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures.
Failure analysis of energy storage spring in automobile composite brake chamber
NASA Astrophysics Data System (ADS)
Luo, Zai; Wei, Qing; Hu, Xiaofeng
2015-02-01
This paper set energy storage spring of parking brake cavity, part of automobile composite brake chamber, as the research object. And constructed the fault tree model of energy storage spring which caused parking brake failure based on the fault tree analysis method. Next, the parking brake failure model of energy storage spring was established by analyzing the working principle of composite brake chamber. Finally, the data of working load and the push rod stroke measured by comprehensive test-bed valve was used to validate the failure model above. The experimental result shows that the failure model can distinguish whether the energy storage spring is faulted.
Meltzer, Andrew J; Graham, Ashley; Connolly, Peter H; Karwowski, John K; Bush, Harry L; Frazier, Peter I; Schneider, Darren B
2013-01-01
We apply an innovative and novel analytic approach, based on reliability engineering (RE) principles frequently used to characterize the behavior of manufactured products, to examine outcomes after peripheral endovascular intervention. We hypothesized that this would allow for improved prediction of outcome after peripheral endovascular intervention, specifically with regard to identification of risk factors for early failure. Patients undergoing infrainguinal endovascular intervention for chronic lower-extremity ischemia from 2005 to 2010 were identified in a prospectively maintained database. The primary outcome of failure was defined as patency loss detected by duplex ultrasonography, with or without clinical failure. Analysis included univariate and multivariate Cox regression models, as well as RE-based analysis including product life-cycle models and Weibull failure plots. Early failures were distinguished using the RE principle of "basic rating life," and multivariate models identified independent risk factors for early failure. From 2005 to 2010, 434 primary endovascular peripheral interventions were performed for claudication (51.8%), rest pain (16.8%), or tissue loss (31.3%). Fifty-five percent of patients were aged ≥75 years; 57% were men. Failure was noted after 159 (36.6%) interventions during a mean follow-up of 18 months (range, 0-71 months). Using multivariate (Cox) regression analysis, rest pain and tissue loss were independent predictors of patency loss, with hazard ratios of 2.5 (95% confidence interval, 1.6-4.1; P < 0.001) and 3.2 (95% confidence interval, 2.0-5.2, P < 0.001), respectively. The distribution of failure times for both claudication and critical limb ischemia fit distinct Weibull plots, with different characteristics: interventions for claudication demonstrated an increasing failure rate (β = 1.22, θ = 13.46, mean time to failure = 12.603 months, index of fit = 0.99037, R(2) = 0.98084), whereas interventions for critical limb ischemia demonstrated a decreasing failure rate, suggesting the predominance of early failures (β = 0.7395, θ = 6.8, mean time to failure = 8.2, index of fit = 0.99391, R(2) = 0.98786). By 3.1 months, 10% of interventions failed. This point (90% reliability) was identified as the basic rating life. Using multivariate analysis of failure data, independent predictors of early failure (before 3.1 months) included tissue loss, long lesion length, chronic total occlusions, heart failure, and end-stage renal disease. Application of a RE framework to the assessment of clinical outcomes after peripheral interventions is feasible, and potentially more informative than traditional techniques. Conceptualization of interventions as "products" permits application of product life-cycle models that allow for empiric definition of "early failure" may facilitate comparative effectiveness analysis and enable the development of individualized surveillance programs after endovascular interventions. Copyright © 2013 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.
[Retrieval and failure analysis of surgical implants in Brazil: the need for proper regulation].
Azevedo, Cesar R de Farias; Hippert, Eduardo
2002-01-01
This paper summarizes several cases of metallurgical failure analysis of surgical implants conducted at the Laboratory of Failure Analysis, Instituto de Pesquisas Tecnológicas (IPT), in Brazil. Failures with two stainless steel femoral compression plates, one stainless steel femoral nail plate, one Ti-6Al-4V alloy maxillary reconstruction plate, and five Nitinol wires were investigated. The results showed that the implants were not in accordance with ISO standards and presented evidence of corrosion-assisted fracture. Furthermore, some of the implants presented manufacturing/processing defects which also contributed to their premature failure. Implantation of materials that are not biocompatible may cause several types of adverse effects in the human body and lead to premature implant failure. A review of prevailing health legislation is needed in Brazil, along with the adoption of regulatory mechanisms to assure the quality of surgical implants on the market, providing for compulsory procedures in the reporting and investigation of surgical implants which have failed in service.
Ouyang, Min; Tian, Hui; Wang, Zhenghua; Hong, Liu; Mao, Zijun
2017-01-17
This article studies a general type of initiating events in critical infrastructures, called spatially localized failures (SLFs), which are defined as the failure of a set of infrastructure components distributed in a spatially localized area due to damage sustained, while other components outside the area do not directly fail. These failures can be regarded as a special type of intentional attack, such as bomb or explosive assault, or a generalized modeling of the impact of localized natural hazards on large-scale systems. This article introduces three SLFs models: node centered SLFs, district-based SLFs, and circle-shaped SLFs, and proposes a SLFs-induced vulnerability analysis method from three aspects: identification of critical locations, comparisons of infrastructure vulnerability to random failures, topologically localized failures and SLFs, and quantification of infrastructure information value. The proposed SLFs-induced vulnerability analysis method is finally applied to the Chinese railway system and can be also easily adapted to analyze other critical infrastructures for valuable protection suggestions. © 2017 Society for Risk Analysis.
Structural Analysis for the American Airlines Flight 587 Accident Investigation: Global Analysis
NASA Technical Reports Server (NTRS)
Young, Richard D.; Lovejoy, Andrew E.; Hilburger, Mark W.; Moore, David F.
2005-01-01
NASA Langley Research Center (LaRC) supported the National Transportation Safety Board (NTSB) in the American Airlines Flight 587 accident investigation due to LaRC's expertise in high-fidelity structural analysis and testing of composite structures and materials. A Global Analysis Team from LaRC reviewed the manufacturer s design and certification procedures, developed finite element models and conducted structural analyses, and participated jointly with the NTSB and Airbus in subcomponent tests conducted at Airbus in Hamburg, Germany. The Global Analysis Team identified no significant or obvious deficiencies in the Airbus certification and design methods. Analysis results from the LaRC team indicated that the most-likely failure scenario was failure initiation at the right rear main attachment fitting (lug), followed by an unstable progression of failure of all fin-to-fuselage attachments and separation of the VTP from the aircraft. Additionally, analysis results indicated that failure initiates at the final observed maximum fin loading condition in the accident, when the VTP was subjected to loads that were at minimum 1.92 times the design limit load condition for certification. For certification, the VTP is only required to support loads of 1.5 times design limit load without catastrophic failure. The maximum loading during the accident was shown to significantly exceed the certification requirement. Thus, the structure appeared to perform in a manner consistent with its design and certification, and failure is attributed to VTP loads greater than expected.
A comparative critical study between FMEA and FTA risk analysis methods
NASA Astrophysics Data System (ADS)
Cristea, G.; Constantinescu, DM
2017-10-01
Today there is used an overwhelming number of different risk analyses techniques with acronyms such as: FMEA (Failure Modes and Effects Analysis) and its extension FMECA (Failure Mode, Effects, and Criticality Analysis), DRBFM (Design Review by Failure Mode), FTA (Fault Tree Analysis) and and its extension ETA (Event Tree Analysis), HAZOP (Hazard & Operability Studies), HACCP (Hazard Analysis and Critical Control Points) and What-if/Checklist. However, the most used analysis techniques in the mechanical and electrical industry are FMEA and FTA. In FMEA, which is an inductive method, information about the consequences and effects of the failures is usually collected through interviews with experienced people, and with different knowledge i.e., cross-functional groups. The FMEA is used to capture potential failures/risks & impacts and prioritize them on a numeric scale called Risk Priority Number (RPN) which ranges from 1 to 1000. FTA is a deductive method i.e., a general system state is decomposed into chains of more basic events of components. The logical interrelationship of how such basic events depend on and affect each other is often described analytically in a reliability structure which can be visualized as a tree. Both methods are very time-consuming to be applied thoroughly, and this is why it is oftenly not done so. As a consequence possible failure modes may not be identified. To address these shortcomings, it is proposed to use a combination of FTA and FMEA.
NASA Technical Reports Server (NTRS)
Raju, Ivatury S; Glaessgen, Edward H.; Mason, Brian H; Krishnamurthy, Thiagarajan; Davila, Carlos G
2005-01-01
A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. From the analyses conducted and presented in this paper, the following conclusions were drawn. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985-certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003- subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug from the PFA is greater than 1.98 times the limit load of the lugs. I.
Clinical risk analysis with failure mode and effect analysis (FMEA) model in a dialysis unit.
Bonfant, Giovanna; Belfanti, Pietro; Paternoster, Giuseppe; Gabrielli, Danila; Gaiter, Alberto M; Manes, Massimo; Molino, Andrea; Pellu, Valentina; Ponzetti, Clemente; Farina, Massimo; Nebiolo, Pier E
2010-01-01
The aim of clinical risk management is to improve the quality of care provided by health care organizations and to assure patients' safety. Failure mode and effect analysis (FMEA) is a tool employed for clinical risk reduction. We applied FMEA to chronic hemodialysis outpatients. FMEA steps: (i) process study: we recorded phases and activities. (ii) Hazard analysis: we listed activity-related failure modes and their effects; described control measures; assigned severity, occurrence and detection scores for each failure mode and calculated the risk priority numbers (RPNs) by multiplying the 3 scores. Total RPN is calculated by adding single failure mode RPN. (iii) Planning: we performed a RPNs prioritization on a priority matrix taking into account the 3 scores, and we analyzed failure modes causes, made recommendations and planned new control measures. (iv) Monitoring: after failure mode elimination or reduction, we compared the resulting RPN with the previous one. Our failure modes with the highest RPN came from communication and organization problems. Two tools have been created to ameliorate information flow: "dialysis agenda" software and nursing datasheets. We scheduled nephrological examinations, and we changed both medical and nursing organization. Total RPN value decreased from 892 to 815 (8.6%) after reorganization. Employing FMEA, we worked on a few critical activities, and we reduced patients' clinical risk. A priority matrix also takes into account the weight of the control measures: we believe this evaluation is quick, because of simple priority selection, and that it decreases action times.
Independent Orbiter Assessment (IOA): Analysis of the active thermal control subsystem
NASA Technical Reports Server (NTRS)
Sinclair, S. K.; Parkman, W. E.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Active Thermal Control Subsystem (ATCS) are documented. The major purpose of the ATCS is to remove the heat, generated during normal Shuttle operations from the Orbiter systems and subsystems. The four major components of the ATCS contributing to the heat removal are: Freon Coolant Loops; Radiator and Flow Control Assembly; Flash Evaporator System; and Ammonia Boiler System. In order to perform the analysis, the IOA process utilized available ATCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 310 failure modes analyzed, 101 were determined to be PCIs.