A Framework for Creating a Function-based Design Tool for Failure Mode Identification
NASA Technical Reports Server (NTRS)
Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Knowledge of potential failure modes during design is critical for prevention of failures. Currently industries use procedures such as Failure Modes and Effects Analysis (FMEA), Fault Tree analysis, or Failure Modes, Effects and Criticality analysis (FMECA), as well as knowledge and experience, to determine potential failure modes. When new products are being developed there is often a lack of sufficient knowledge of potential failure mode and/or a lack of sufficient experience to identify all failure modes. This gives rise to a situation in which engineers are unable to extract maximum benefits from the above procedures. This work describes a function-based failure identification methodology, which would act as a storehouse of information and experience, providing useful information about the potential failure modes for the design under consideration, as well as enhancing the usefulness of procedures like FMEA. As an example, the method is applied to fifteen products and the benefits are illustrated.
Risk Based Reliability Centered Maintenance of DOD Fire Protection Systems
1999-01-01
2.2.3 Failure Mode and Effect Analysis ( FMEA )............................ 2.2.4 Failure Mode Risk Characterization...Step 2 - System functions and functional failures definition Step 3 - Failure mode and effect analysis ( FMEA ) Step 4 - Failure mode risk...system). The Interface Location column identifies the location where the FMEA of the fire protection system began or stopped. For example, for the fire
Failure-Modes-And-Effects Analysis Of Software Logic
NASA Technical Reports Server (NTRS)
Garcia, Danny; Hartline, Thomas; Minor, Terry; Statum, David; Vice, David
1996-01-01
Rigorous analysis applied early in design effort. Method of identifying potential inadequacies and modes and effects of failures caused by inadequacies (failure-modes-and-effects analysis or "FMEA" for short) devised for application to software logic.
Failure Mode and Effects Analysis (FMEA) Introductory Overview
2012-06-14
Failure Mode and Effects Analysis ( FMEA ) Introductory Overview TARDEC Systems Engineering Risk Management Team POC: Kadry Rizk or Gregor Ratajczak...2. REPORT TYPE Briefing Charts 3. DATES COVERED 01-05-2012 to 23-05-2012 4. TITLE AND SUBTITLE Failure Mode and Effects Analysis ( FMEA ) 5a...18 WELCOME Welcome to “An introductory overview of Failure Mode and Effects Analysis ( FMEA )”, A brief concerning the use and benefits of FMEA
Failure Mode, Effects, and Criticality Analysis (FMECA)
1993-04-01
Preliminary Failure Modes, Effects and Criticality Analysis (FMECA) of the Brayton Isotope Power System Ground Demonstration System, Report No. TID 27301...No. TID/SNA - 3015, Aeroject Nuclear Systems Co., Sacramento, California: 1970. 95. Taylor , J.R. A Formalization of Failure Mode Analysis of Control...Roskilde, Denmark: 1973. 96. Taylor , J.R. A Semi-Automatic Method for Oualitative Failure Mode Analysis. Report No. RISO-M-1707. Available from a
Steinberger, Dina M; Douglas, Stephen V; Kirschbaum, Mark S
2009-09-01
A multidisciplinary team from the University of Wisconsin Hospital and Clinics transplant program used failure mode and effects analysis to proactively examine opportunities for communication and handoff failures across the continuum of care from organ procurement to transplantation. The team performed a modified failure mode and effects analysis that isolated the multiple linked, serial, and complex information exchanges occurring during the transplantation of one solid organ. Failure mode and effects analysis proved effective for engaging a diverse group of persons who had an investment in the outcome in analysis and discussion of opportunities to improve the system's resilience for avoiding errors during a time-pressured and complex process.
Detection of system failures in multi-axes tasks. [pilot monitored instrument approach
NASA Technical Reports Server (NTRS)
Ephrath, A. R.
1975-01-01
The effects of the pilot's participation mode in the control task on his workload level and failure detection performance were examined considering a low visibility landing approach. It is found that the participation mode had a strong effect on the pilot's workload, the induced workload being lowest when the pilot acted as a monitoring element during a coupled approach and highest when the pilot was an active element in the control loop. The effects of workload and participation mode on failure detection were separated. The participation mode was shown to have a dominant effect on the failure detection performance, with a failure in a monitored (coupled) axis being detected significantly faster than a comparable failure in a manually controlled axis.
Wong, Kam Cheong
2016-04-06
Clinicians use various clinical reasoning tools such as Ishikawa diagram to enhance their clinical experience and reasoning skills. Failure mode and effects analysis, which is an engineering methodology in origin, can be modified and applied to provide inputs into an Ishikawa diagram. The human biliary system is used to illustrate a modified failure mode and effects analysis. The anatomical and physiological processes of the biliary system are reviewed. Failure is defined as an abnormality caused by infective, inflammatory, obstructive, malignancy, autoimmune and other pathological processes. The potential failures, their effect(s), main clinical features, and investigation that can help a clinician to diagnose at each anatomical part and physiological process are reviewed and documented in a modified failure mode and effects analysis table. Relevant medical and surgical cases are retrieved from the medical literature and weaved into the table. A total of 80 clinical cases which are relevant to the modified failure mode and effects analysis for the human biliary system have been reviewed and weaved into a designated table. The table is the backbone and framework for further expansion. Reviewing and updating the table is an iterative and continual process. The relevant clinical features in the modified failure mode and effects analysis are then extracted and included in the relevant Ishikawa diagram. This article illustrates an application of engineering methodology in medicine, and it sows the seeds of potential cross-pollination between engineering and medicine. Establishing a modified failure mode and effects analysis can be a teamwork project or self-directed learning process, or a mix of both. Modified failure mode and effects analysis can be deployed to obtain inputs for an Ishikawa diagram which in turn can be used to enhance clinical experiences and clinical reasoning skills for clinicians, medical educators, and students.
Stingray Failure Mode, Effects and Criticality Analysis: WEC Risk Registers
Ken Rhinefrank
2016-07-25
Analysis method to systematically identify all potential failure modes and their effects on the Stingray WEC system. This analysis is incorporated early in the development cycle such that the mitigation of the identified failure modes can be achieved cost effectively and efficiently. The FMECA can begin once there is enough detail to functions and failure modes of a given system, and its interfaces with other systems. The FMECA occurs coincidently with the design process and is an iterative process which allows for design changes to overcome deficiencies in the analysis.Risk Registers for major subsystems completed according to the methodology described in "Failure Mode Effects and Criticality Analysis Risk Reduction Program Plan.pdf" document below, in compliance with the DOE Risk Management Framework developed by NREL.
Failure Mode Identification Through Clustering Analysis
NASA Technical Reports Server (NTRS)
Arunajadai, Srikesh G.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Research has shown that nearly 80% of the costs and problems are created in product development and that cost and quality are essentially designed into products in the conceptual stage. Currently, failure identification procedures (such as FMEA (Failure Modes and Effects Analysis), FMECA (Failure Modes, Effects and Criticality Analysis) and FTA (Fault Tree Analysis)) and design of experiments are being used for quality control and for the detection of potential failure modes during the detail design stage or post-product launch. Though all of these methods have their own advantages, they do not give information as to what are the predominant failures that a designer should focus on while designing a product. This work uses a functional approach to identify failure modes, which hypothesizes that similarities exist between different failure modes based on the functionality of the product/component. In this paper, a statistical clustering procedure is proposed to retrieve information on the set of predominant failures that a function experiences. The various stages of the methodology are illustrated using a hypothetical design example.
Berruyer, M; Atkinson, S; Lebel, D; Bussières, J-F
2016-01-01
Insulin is a high-alert drug. The main objective of this descriptive cross-sectional study was to evaluate the risks associated with insulin use in healthcare centers. The secondary objective was to propose corrective measures to reduce the main risks associated with the most critical failure modes in the analysis. We conducted a failure mode and effects analysis (FMEA) in obstetrics-gynecology, neonatology and pediatrics. Five multidisciplinary meetings occurred in August 2013. A total of 44 out of 49 failure modes were analyzed. Nine out of 44 (20%) failure modes were deemed critical, with a criticality score ranging from 540 to 720. Following the multidisciplinary meetings, everybody agreed that an FMEA was a useful tool to identify failure modes and their relative importance. This approach identified many corrective measures. This shared experience increased awareness of safety issues with insulin in our mother-child center. This study identified the main failure modes and associated corrective measures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Mod 1 wind turbine generator failure modes and effects analysis
NASA Technical Reports Server (NTRS)
1979-01-01
A failure modes and effects analysis (FMEA) was directed primarily at identifying those critical failure modes that would be hazardous to life or would result in major damage to the system. Each subsystem was approached from the top down, and broken down to successive lower levels where it appeared that the criticality of the failure mode warranted more detail analysis. The results were reviewed by specialists from outside the Mod 1 program, and corrective action taken wherever recommended.
Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct.
Lee, Howard; Lee, Heechan; Baik, Jungmi; Kim, Hyunjung; Kim, Rachel
2017-01-01
Failure mode and effects analysis (FMEA) is a risk management tool to proactively identify and assess the causes and effects of potential failures in a system, thereby preventing them from happening. The objective of this study was to evaluate effectiveness of FMEA applied to an academic clinical trial center in a tertiary care setting. A multidisciplinary FMEA focus group at the Seoul National University Hospital Clinical Trials Center selected 6 core clinical trial processes, for which potential failure modes were identified and their risk priority number (RPN) was assessed. Remedial action plans for high-risk failure modes (RPN >160) were devised and a follow-up RPN scoring was conducted a year later. A total of 114 failure modes were identified with an RPN score ranging 3-378, which was mainly driven by the severity score. Fourteen failure modes were of high risk, 11 of which were addressed by remedial actions. Rescoring showed a dramatic improvement attributed to reduction in the occurrence and detection scores by >3 and >2 points, respectively. FMEA is a powerful tool to improve quality in clinical trials. The Seoul National University Hospital Clinical Trials Center is expanding its FMEA capability to other core clinical trial processes.
Patel, Teresa; Fisher, Stanley P.
2016-01-01
Objective This study aimed to utilize failure modes and effects analysis (FMEA) to transform clinical insights into a risk mitigation plan for intrathecal (IT) drug delivery in pain management. Methods The FMEA methodology, which has been used for quality improvement, was adapted to assess risks (i.e., failure modes) associated with IT therapy. Ten experienced pain physicians scored 37 failure modes in the following categories: patient selection for therapy initiation (efficacy and safety concerns), patient safety during IT therapy, and product selection for IT therapy. Participants assigned severity, probability, and detection scores for each failure mode, from which a risk priority number (RPN) was calculated. Failure modes with the highest RPNs (i.e., most problematic) were discussed, and strategies were proposed to mitigate risks. Results Strategic discussions focused on 17 failure modes with the most severe outcomes, the highest probabilities of occurrence, and the most challenging detection. The topic of the highest‐ranked failure mode (RPN = 144) was manufactured monotherapy versus compounded combination products. Addressing failure modes associated with appropriate patient and product selection was predicted to be clinically important for the success of IT therapy. Conclusions The methodology of FMEA offers a systematic approach to prioritizing risks in a complex environment such as IT therapy. Unmet needs and information gaps are highlighted through the process. Risk mitigation and strategic planning to prevent and manage critical failure modes can contribute to therapeutic success. PMID:27477689
Failure mode and effects analysis: an empirical comparison of failure mode scoring procedures.
Ashley, Laura; Armitage, Gerry
2010-12-01
To empirically compare 2 different commonly used failure mode and effects analysis (FMEA) scoring procedures with respect to their resultant failure mode scores and prioritization: a mathematical procedure, where scores are assigned independently by FMEA team members and averaged, and a consensus procedure, where scores are agreed on by the FMEA team via discussion. A multidisciplinary team undertook a Healthcare FMEA of chemotherapy administration. This included mapping the chemotherapy process, identifying and scoring failure modes (potential errors) for each process step, and generating remedial strategies to counteract them. Failure modes were scored using both an independent mathematical procedure and a team consensus procedure. Almost three-fifths of the 30 failure modes generated were scored differently by the 2 procedures, and for just more than one-third of cases, the score discrepancy was substantial. Using the Healthcare FMEA prioritization cutoff score, almost twice as many failure modes were prioritized by the consensus procedure than by the mathematical procedure. This is the first study to empirically demonstrate that different FMEA scoring procedures can score and prioritize failure modes differently. It found considerable variability in individual team members' opinions on scores, which highlights the subjective and qualitative nature of failure mode scoring. A consensus scoring procedure may be most appropriate for FMEA as it allows variability in individuals' scores and rationales to become apparent and to be discussed and resolved by the team. It may also yield team learning and communication benefits unlikely to result from a mathematical procedure.
Independent Orbiter Assessment (IOA): Analysis of the crew equipment subsystem
NASA Technical Reports Server (NTRS)
Sinclair, Susan; Graham, L.; Richard, Bill; Saxon, H.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results coresponding to the Orbiter crew equipment hardware are documented. The IOA analysis process utilized available crew equipment hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 352 failure modes analyzed, 78 were determined to be PCIs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vile, D; Zhang, L; Cuttino, L
2016-06-15
Purpose: To create a quality assurance program based upon a risk-based assessment of a newly implemented SirSpheres Y-90 procedure. Methods: A process map was created for a newly implemented SirSpheres procedure at a community hospital. The process map documented each step of this collaborative procedure, as well as the roles and responsibilities of each member. From the process map, different potential failure modes were determined as well as any current controls in place. From this list, a full failure mode and effects analysis (FMEA) was performed by grading each failure mode’s likelihood of occurrence, likelihood of detection, and potential severity.more » These numbers were then multiplied to compute the risk priority number (RPN) for each potential failure mode. Failure modes were then ranked based on their RPN. Additional controls were then added, with failure modes corresponding to the highest RPNs taking priority. Results: A process map was created that succinctly outlined each step in the SirSpheres procedure in its current implementation. From this, 72 potential failure modes were identified and ranked according to their associated RPN. Quality assurance controls and safety barriers were then added for failure modes associated with the highest risk being addressed first. Conclusion: A quality assurance program was created from a risk-based assessment of the SirSpheres process. Process mapping and FMEA were effective in identifying potential high-risk failure modes for this new procedure, which were prioritized for new quality assurance controls. TG 100 recommends the fault tree analysis methodology to design a comprehensive and effective QC/QM program, yet we found that by simply introducing additional safety barriers to address high RPN failure modes makes the whole process simpler and safer.« less
Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study
NASA Technical Reports Server (NTRS)
Flores, Melissa; Malin, Jane T.
2013-01-01
An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component s functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.
Failure Modes and Effects Analysis (FMEA) Assistant Tool Feasibility Study
NASA Astrophysics Data System (ADS)
Flores, Melissa D.; Malin, Jane T.; Fleming, Land D.
2013-09-01
An effort to determine the feasibility of a software tool to assist in Failure Modes and Effects Analysis (FMEA) has been completed. This new and unique approach to FMEA uses model based systems engineering concepts to recommend failure modes, causes, and effects to the user after they have made several selections from pick lists about a component's functions and inputs/outputs. Recommendations are made based on a library using common failure modes identified over the course of several major human spaceflight programs. However, the tool could be adapted for use in a wide range of applications from NASA to the energy industry.
NASA Astrophysics Data System (ADS)
Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong
2014-06-01
Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural system under failure correlations.
Independent Orbiter Assessment (IOA): Analysis of the purge, vent and drain subsystem
NASA Technical Reports Server (NTRS)
Bynum, M. C., III
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter PV and D (Purge, Vent and Drain) Subsystem hardware. The PV and D Subsystem controls the environment of unpressurized compartments and window cavities, senses hazardous gases, and purges Orbiter/ET Disconnect. The subsystem is divided into six systems: Purge System (controls the environment of unpressurized structural compartments); Vent System (controls the pressure of unpressurized compartments); Drain System (removes water from unpressurized compartments); Hazardous Gas Detection System (HGDS) (monitors hazardous gas concentrations); Window Cavity Conditioning System (WCCS) (maintains clear windows and provides pressure control of the window cavities); and External Tank/Orbiter Disconnect Purge System (prevents cryo-pumping/icing of disconnect hardware). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Four of the sixty-two failure modes analyzed were determined as single failures which could result in the loss of crew or vehicle. A possible loss of mission could result if any of twelve single failures occurred. Two of the criticality 1/1 failures are in the Window Cavity Conditioning System (WCCS) outer window cavity, where leakage and/or restricted flow will cause failure to depressurize/repressurize the window cavity. Two criticality 1/1 failures represent leakage and/or restricted flow in the Orbiter/ET disconnect purge network which prevent cryopumping/icing of disconnect hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
SU-E-T-627: Failure Modes and Effect Analysis for Monthly Quality Assurance of Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J; Xiao, Y; Wang, J
2014-06-15
Purpose: To develop and implement a failure mode and effect analysis (FMEA) on routine monthly Quality Assurance (QA) tests (physical tests part) of linear accelerator. Methods: A systematic failure mode and effect analysis method was performed for monthly QA procedures. A detailed process tree of monthly QA was created and potential failure modes were defined. Each failure mode may have many influencing factors. For each factor, a risk probability number (RPN) was calculated from the product of probability of occurrence (O), the severity of effect (S), and detectability of the failure (D). The RPN scores are in a range ofmore » 1 to 1000, with higher scores indicating stronger correlation to a given influencing factor of a failure mode. Five medical physicists in our institution were responsible to discuss and to define the O, S, D values. Results: 15 possible failure modes were identified and all RPN scores of all influencing factors of these 15 failue modes were from 8 to 150, and the checklist of FMEA in monthly QA was drawn. The system showed consistent and accurate response to erroneous conditions. Conclusion: The influencing factors of RPN greater than 50 were considered as highly-correlated factors of a certain out-oftolerance monthly QA test. FMEA is a fast and flexible tool to develop an implement a quality management (QM) frame work of monthly QA, which improved the QA efficiency of our QA team. The FMEA work may incorporate more quantification and monitoring fuctions in future.« less
Improving the treatment planning and delivery process of Xoft electronic skin brachytherapy.
Manger, Ryan; Rahn, Douglas; Hoisak, Jeremy; Dragojević, Irena
2018-05-14
To develop an improved Xoft electronic skin brachytherapy process and identify areas of further improvement. A multidisciplinary team conducted a failure modes and effects analysis (FMEA) by developing a process map and a corresponding list of failure modes. The failure modes were scored for their occurrence, severity, and detectability, and a risk priority number (RPN) was calculated for each failure mode as the product of occurrence, severity, and detectability. Corrective actions were implemented to address the higher risk failure modes, and a revised process was generated. The RPNs of the failure modes were compared between the initial process and final process to assess the perceived benefits of the corrective actions. The final treatment process consists of 100 steps and 114 failure modes. The FMEA took approximately 20 person-hours (one physician, three physicists, and two therapists) to complete. The 10 most dangerous failure modes had RPNs ranging from 336 to 630. Corrective actions were effective at addressing most failure modes (10 riskiest RPNs ranging from 189 to 310), yet the RPNs were higher than those published for alternative systems. Many of these high-risk failure modes remained due to hardware design limitations. FMEA helps guide process improvement efforts by emphasizing the riskiest steps. Significant risks are apparent when using a Xoft treatment unit for skin brachytherapy due to hardware limitations such as the lack of several interlocks, a short source lifespan, and variability in source output. The process presented in this article is expected to reduce but not eliminate these risks. Copyright © 2018 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
[Failure mode effect analysis applied to preparation of intravenous cytostatics].
Santos-Rubio, M D; Marín-Gil, R; Muñoz-de la Corte, R; Velázquez-López, M D; Gil-Navarro, M V; Bautista-Paloma, F J
2016-01-01
To proactively identify risks in the preparation of intravenous cytostatic drugs, and to prioritise and establish measures to improve safety procedures. Failure Mode Effect Analysis methodology was used. A multidisciplinary team identified potential failure modes of the procedure through a brainstorming session. The impact associated with each failure mode was assessed with the Risk Priority Number (RPN), which involves three variables: occurrence, severity, and detectability. Improvement measures were established for all identified failure modes, with those with RPN>100 considered critical. The final RPN (theoretical) that would result from the proposed measures was also calculated and the process was redesigned. A total of 34 failure modes were identified. The initial accumulated RPN was 3022 (range: 3-252), and after recommended actions the final RPN was 1292 (range: 3-189). RPN scores >100 were obtained in 13 failure modes; only the dispensing sub-process was free of critical points (RPN>100). A final reduction of RPN>50% was achieved in 9 failure modes. This prospective risk analysis methodology allows the weaknesses of the procedure to be prioritised, optimize use of resources, and a substantial improvement in the safety of the preparation of cytostatic drugs through the introduction of double checking and intermediate product labelling. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.
Application of failure mode and effect analysis in an assisted reproduction technology laboratory.
Intra, Giulia; Alteri, Alessandra; Corti, Laura; Rabellotti, Elisa; Papaleo, Enrico; Restelli, Liliana; Biondo, Stefania; Garancini, Maria Paola; Candiani, Massimo; Viganò, Paola
2016-08-01
Assisted reproduction technology laboratories have a very high degree of complexity. Mismatches of gametes or embryos can occur, with catastrophic consequences for patients. To minimize the risk of error, a multi-institutional working group applied failure mode and effects analysis (FMEA) to each critical activity/step as a method of risk assessment. This analysis led to the identification of the potential failure modes, together with their causes and effects, using the risk priority number (RPN) scoring system. In total, 11 individual steps and 68 different potential failure modes were identified. The highest ranked failure modes, with an RPN score of 25, encompassed 17 failures and pertained to "patient mismatch" and "biological sample mismatch". The maximum reduction in risk, with RPN reduced from 25 to 5, was mostly related to the introduction of witnessing. The critical failure modes in sample processing were improved by 50% in the RPN by focusing on staff training. Three indicators of FMEA success, based on technical skill, competence and traceability, have been evaluated after FMEA implementation. Witnessing by a second human operator should be introduced in the laboratory to avoid sample mix-ups. These findings confirm that FMEA can effectively reduce errors in assisted reproduction technology laboratories. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Failure mode and effects analysis drastically reduced potential risks in clinical trial conduct
Baik, Jungmi; Kim, Hyunjung; Kim, Rachel
2017-01-01
Background Failure mode and effects analysis (FMEA) is a risk management tool to proactively identify and assess the causes and effects of potential failures in a system, thereby preventing them from happening. The objective of this study was to evaluate effectiveness of FMEA applied to an academic clinical trial center in a tertiary care setting. Methods A multidisciplinary FMEA focus group at the Seoul National University Hospital Clinical Trials Center selected 6 core clinical trial processes, for which potential failure modes were identified and their risk priority number (RPN) was assessed. Remedial action plans for high-risk failure modes (RPN >160) were devised and a follow-up RPN scoring was conducted a year later. Results A total of 114 failure modes were identified with an RPN score ranging 3–378, which was mainly driven by the severity score. Fourteen failure modes were of high risk, 11 of which were addressed by remedial actions. Rescoring showed a dramatic improvement attributed to reduction in the occurrence and detection scores by >3 and >2 points, respectively. Conclusions FMEA is a powerful tool to improve quality in clinical trials. The Seoul National University Hospital Clinical Trials Center is expanding its FMEA capability to other core clinical trial processes. PMID:29089745
Clinical risk analysis with failure mode and effect analysis (FMEA) model in a dialysis unit.
Bonfant, Giovanna; Belfanti, Pietro; Paternoster, Giuseppe; Gabrielli, Danila; Gaiter, Alberto M; Manes, Massimo; Molino, Andrea; Pellu, Valentina; Ponzetti, Clemente; Farina, Massimo; Nebiolo, Pier E
2010-01-01
The aim of clinical risk management is to improve the quality of care provided by health care organizations and to assure patients' safety. Failure mode and effect analysis (FMEA) is a tool employed for clinical risk reduction. We applied FMEA to chronic hemodialysis outpatients. FMEA steps: (i) process study: we recorded phases and activities. (ii) Hazard analysis: we listed activity-related failure modes and their effects; described control measures; assigned severity, occurrence and detection scores for each failure mode and calculated the risk priority numbers (RPNs) by multiplying the 3 scores. Total RPN is calculated by adding single failure mode RPN. (iii) Planning: we performed a RPNs prioritization on a priority matrix taking into account the 3 scores, and we analyzed failure modes causes, made recommendations and planned new control measures. (iv) Monitoring: after failure mode elimination or reduction, we compared the resulting RPN with the previous one. Our failure modes with the highest RPN came from communication and organization problems. Two tools have been created to ameliorate information flow: "dialysis agenda" software and nursing datasheets. We scheduled nephrological examinations, and we changed both medical and nursing organization. Total RPN value decreased from 892 to 815 (8.6%) after reorganization. Employing FMEA, we worked on a few critical activities, and we reduced patients' clinical risk. A priority matrix also takes into account the weight of the control measures: we believe this evaluation is quick, because of simple priority selection, and that it decreases action times.
Tensile failure criteria for fiber composite materials
NASA Technical Reports Server (NTRS)
Rosen, B. W.; Zweben, C. H.
1972-01-01
The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schubert, L; Westerly, D; Vinogradskiy, Y
Purpose: Collisions between treatment equipment and patients are potentially catastrophic. Modern technology now commonly involves automated remote motion during imaging and treatment, yet a systematic assessment to identify and mitigate collision risks has yet to be performed. Failure modes and effects analysis (FMEA) is a method of risk assessment that has been increasingly used in healthcare, yet can be resource intensive. This work presents an efficient approach to FMEA to identify collision risks and implement practical interventions within a modern radiation therapy department. Methods: Potential collisions (e.g. failure modes) were assessed for all treatment and simulation rooms by teams consistingmore » of physicists, therapists, and radiation oncologists. Failure modes were grouped into classes according to similar characteristics. A single group meeting was held to identify implementable interventions for the highest priority classes of failure modes. Results: A total of 60 unique failure modes were identified by 6 different teams of physicists, therapists, and radiation oncologists. Failure modes were grouped into four main classes: specific patient setups, automated equipment motion, manual equipment motion, and actions in QA or service mode. Two of these classes, unusual patient setups and automated machine motion, were identified as being high priority in terms severity of consequence and addressability by interventions. The two highest risk classes consisted of 33 failure modes (55% of the total). In a single one hour group meeting, 6 interventions were identified. Those interventions addressed 100% of the high risk classes of failure modes (55% of all failure modes identified). Conclusion: A class-based approach to FMEA was developed to efficiently identify collision risks and implement interventions in a modern radiation oncology department. Failure modes and interventions will be listed, and a comparison of this approach against traditional FMEA methods will be presented.« less
[Failure modes and effects analysis in the prescription, validation and dispensing process].
Delgado Silveira, E; Alvarez Díaz, A; Pérez Menéndez-Conde, C; Serna Pérez, J; Rodríguez Sagrado, M A; Bermejo Vicedo, T
2012-01-01
To apply a failure modes and effects analysis to the prescription, validation and dispensing process for hospitalised patients. A work group analysed all of the stages included in the process from prescription to dispensing, identifying the most critical errors and establishing potential failure modes which could produce a mistake. The possible causes, their potential effects, and the existing control systems were analysed to try and stop them from developing. The Hazard Score was calculated, choosing those that were ≥ 8, and a Severity Index = 4 was selected independently of the hazard Score value. Corrective measures and an implementation plan were proposed. A flow diagram that describes the whole process was obtained. A risk analysis was conducted of the chosen critical points, indicating: failure mode, cause, effect, severity, probability, Hazard Score, suggested preventative measure and strategy to achieve so. Failure modes chosen: Prescription on the nurse's form; progress or treatment order (paper); Prescription to incorrect patient; Transcription error by nursing staff and pharmacist; Error preparing the trolley. By applying a failure modes and effects analysis to the prescription, validation and dispensing process, we have been able to identify critical aspects, the stages in which errors may occur and the causes. It has allowed us to analyse the effects on the safety of the process, and establish measures to prevent or reduce them. Copyright © 2010 SEFH. Published by Elsevier Espana. All rights reserved.
Application of Function-Failure Similarity Method to Rotorcraft Component Design
NASA Technical Reports Server (NTRS)
Roberts, Rory A.; Stone, Robert E.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the designs that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. During the design of aircraft, a general technique is needed to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to specific components, which are described by their functionality. The failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using this technique, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. The fundamentals of this method were previously introduced for a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.
SU-F-T-246: Evaluation of Healthcare Failure Mode And Effect Analysis For Risk Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harry, T; University of California, San Diego, La Jolla, CA; Manger, R
Purpose: To evaluate the differences between the Veteran Affairs Healthcare Failure Modes and Effect Analysis (HFMEA) and the AAPM Task Group 100 Failure and Effect Analysis (FMEA) risk assessment techniques in the setting of a stereotactic radiosurgery (SRS) procedure were compared respectively. Understanding the differences in the techniques methodologies and outcomes will provide further insight into the applicability and utility of risk assessments exercises in radiation therapy. Methods: HFMEA risk assessment analysis was performed on a stereotactic radiosurgery procedure. A previous study from our institution completed a FMEA of our SRS procedure and the process map generated from this workmore » was used for the HFMEA. The process of performing the HFMEA scoring was analyzed, and the results from both analyses were compared. Results: The key differences between the two risk assessments are the scoring criteria for failure modes and identifying critical failure modes for potential hazards. The general consensus among the team performing the analyses was that scoring for the HFMEA was simpler and more intuitive then the FMEA. The FMEA identified 25 critical failure modes while the HFMEA identified 39. Seven of the FMEA critical failure modes were not identified by the HFMEA and 21 of the HFMEA critical failure modes were not identified by the FMEA. HFMEA as described by the Veteran Affairs provides guidelines on which failure modes to address first. Conclusion: HFMEA is a more efficient model for identifying gross risks in a process than FMEA. Clinics with minimal staff, time and resources can benefit from this type of risk assessment to eliminate or mitigate high risk hazards with nominal effort. FMEA can provide more in depth details but at the cost of elevated effort.« less
NASA Technical Reports Server (NTRS)
1996-01-01
This Failure Modes and Effects Analysis (FMEA) is for the Advanced Microwave Sounding Unit-A (AMSU-A) instruments that are being designed and manufactured for the Meteorological Satellites Project (METSAT) and the Earth Observing System (EOS) integrated programs. The FMEA analyzes the design of the METSAT and EOS instruments as they currently exist. This FMEA is intended to identify METSAT and EOS failure modes and their effect on spacecraft-instrument and instrument-component interfaces. The prime objective of this FMEA is to identify potential catastrophic and critical failures so that susceptibility to the failures and their effects can be eliminated from the METSAT/EOS instruments.
Analytical Method to Evaluate Failure Potential During High-Risk Component Development
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Stone, Robert B.; Clancy, Daniel (Technical Monitor)
2001-01-01
Communicating failure mode information during design and manufacturing is a crucial task for failure prevention. Most processes use Failure Modes and Effects types of analyses, as well as prior knowledge and experience, to determine the potential modes of failures a product might encounter during its lifetime. When new products are being considered and designed, this knowledge and information is expanded upon to help designers extrapolate based on their similarity with existing products and the potential design tradeoffs. This paper makes use of similarities and tradeoffs that exist between different failure modes based on the functionality of each component/product. In this light, a function-failure method is developed to help the design of new products with solutions for functions that eliminate or reduce the potential of a failure mode. The method is applied to a simplified rotating machinery example in this paper, and is proposed as a means to account for helicopter failure modes during design and production, addressing stringent safety and performance requirements for NASA applications.
Independent Orbiter Assessment (IOA): Analysis of the pyrotechnics subsystem
NASA Technical Reports Server (NTRS)
Robinson, W. W.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Pyrotechnics hardware. The IOA analysis process utilized available pyrotechnics hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Failure mode and effect analysis-based quality assurance for dynamic MLC tracking systems
Sawant, Amit; Dieterich, Sonja; Svatos, Michelle; Keall, Paul
2010-01-01
Purpose: To develop and implement a failure mode and effect analysis (FMEA)-based commissioning and quality assurance framework for dynamic multileaf collimator (DMLC) tumor tracking systems. Methods: A systematic failure mode and effect analysis was performed for a prototype real-time tumor tracking system that uses implanted electromagnetic transponders for tumor position monitoring and a DMLC for real-time beam adaptation. A detailed process tree of DMLC tracking delivery was created and potential tracking-specific failure modes were identified. For each failure mode, a risk probability number (RPN) was calculated from the product of the probability of occurrence, the severity of effect, and the detectibility of the failure. Based on the insights obtained from the FMEA, commissioning and QA procedures were developed to check (i) the accuracy of coordinate system transformation, (ii) system latency, (iii) spatial and dosimetric delivery accuracy, (iv) delivery efficiency, and (v) accuracy and consistency of system response to error conditions. The frequency of testing for each failure mode was determined from the RPN value. Results: Failures modes with RPN≥125 were recommended to be tested monthly. Failure modes with RPN<125 were assigned to be tested during comprehensive evaluations, e.g., during commissioning, annual quality assurance, and after major software∕hardware upgrades. System latency was determined to be ∼193 ms. The system showed consistent and accurate response to erroneous conditions. Tracking accuracy was within 3%–3 mm gamma (100% pass rate) for sinusoidal as well as a wide variety of patient-derived respiratory motions. The total time taken for monthly QA was ∼35 min, while that taken for comprehensive testing was ∼3.5 h. Conclusions: FMEA proved to be a powerful and flexible tool to develop and implement a quality management (QM) framework for DMLC tracking. The authors conclude that the use of FMEA-based QM ensures efficient allocation of clinical resources because the most critical failure modes receive the most attention. It is expected that the set of guidelines proposed here will serve as a living document that is updated with the accumulation of progressively more intrainstitutional and interinstitutional experience with DMLC tracking. PMID:21302802
Deriving Function-failure Similarity Information for Failure-free Rotorcraft Component Design
NASA Technical Reports Server (NTRS)
Roberts, Rory A.; Stone, Robert B.; Tumer, Irem Y.; Clancy, Daniel (Technical Monitor)
2002-01-01
Performance and safety are the top concerns of high-risk aerospace applications at NASA. Eliminating or reducing performance and safety problems can be achieved with a thorough understanding of potential failure modes in the design that lead to these problems. The majority of techniques use prior knowledge and experience as well as Failure Modes and Effects as methods to determine potential failure modes of aircraft. The aircraft design needs to be passed through a general technique to ensure that every potential failure mode is considered, while avoiding spending time on improbable failure modes. In this work, this is accomplished by mapping failure modes to certain components, which are described by their functionality. In turn, the failure modes are then linked to the basic functions that are carried within the components of the aircraft. Using the technique proposed in this paper, designers can examine the basic functions, and select appropriate analyses to eliminate or design out the potential failure modes. This method was previously applied to a simple rotating machine test rig with basic functions that are common to a rotorcraft. In this paper, this technique is applied to the engine and power train of a rotorcraft, using failures and functions obtained from accident reports and engineering drawings.
Failure Modes and Effects Analysis (FMEA): A Bibliography
NASA Technical Reports Server (NTRS)
2000-01-01
Failure modes and effects analysis (FMEA) is a bottom-up analytical process that identifies process hazards, which helps managers understand vulnerabilities of systems, as well as assess and mitigate risk. It is one of several engineering tools and techniques available to program and project managers aimed at increasing the likelihood of safe and successful NASA programs and missions. This bibliography references 465 documents in the NASA STI Database that contain the major concepts, failure modes or failure analysis, in either the basic index of the major subject terms.
Risk analysis of analytical validations by probabilistic modification of FMEA.
Barends, D M; Oldenhof, M T; Vredenbregt, M J; Nauta, M J
2012-05-01
Risk analysis is a valuable addition to validation of an analytical chemistry process, enabling not only detecting technical risks, but also risks related to human failures. Failure Mode and Effect Analysis (FMEA) can be applied, using a categorical risk scoring of the occurrence, detection and severity of failure modes, and calculating the Risk Priority Number (RPN) to select failure modes for correction. We propose a probabilistic modification of FMEA, replacing the categorical scoring of occurrence and detection by their estimated relative frequency and maintaining the categorical scoring of severity. In an example, the results of traditional FMEA of a Near Infrared (NIR) analytical procedure used for the screening of suspected counterfeited tablets are re-interpretated by this probabilistic modification of FMEA. Using this probabilistic modification of FMEA, the frequency of occurrence of undetected failure mode(s) can be estimated quantitatively, for each individual failure mode, for a set of failure modes, and the full analytical procedure. Copyright © 2012 Elsevier B.V. All rights reserved.
Masini, Laura; Donis, Laura; Loi, Gianfranco; Mones, Eleonora; Molina, Elisa; Bolchini, Cesare; Krengli, Marco
2014-01-01
The aim of this study was to analyze the application of the failure modes and effects analysis (FMEA) to intracranial stereotactic radiation surgery (SRS) by linear accelerator in order to identify the potential failure modes in the process tree and adopt appropriate safety measures to prevent adverse events (AEs) and near-misses, thus improving the process quality. A working group was set up to perform FMEA for intracranial SRS in the framework of a quality assurance program. FMEA was performed in 4 consecutive tasks: (1) creation of a visual map of the process; (2) identification of possible failure modes; (3) assignment of a risk probability number (RPN) to each failure mode based on tabulated scores of severity, frequency of occurrence and detectability; and (4) identification of preventive measures to minimize the risk of occurrence. The whole SRS procedure was subdivided into 73 single steps; 116 total possible failure modes were identified and a score of severity, occurrence, and detectability was assigned to each. Based on these scores, RPN was calculated for each failure mode thus obtaining values from 1 to 180. In our analysis, 112/116 (96.6%) RPN values were <60, 2 (1.7%) between 60 and 125 (63, 70), and 2 (1.7%) >125 (135, 180). The 2 highest RPN scores were assigned to the risk of using the wrong collimator's size and incorrect coordinates on the laser target localizer frame. Failure modes and effects analysis is a simple and practical proactive tool for systematic analysis of risks in radiation therapy. In our experience of SRS, FMEA led to the adoption of major changes in various steps of the SRS procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younge, Kelly Cooper, E-mail: kyounge@med.umich.edu; Wang, Yizhen; Thompson, John
2015-04-01
Purpose: To improve the safety and efficiency of a new stereotactic radiosurgery program with the application of failure mode and effects analysis (FMEA) performed by a multidisciplinary team of health care professionals. Methods and Materials: Representatives included physicists, therapists, dosimetrists, oncologists, and administrators. A detailed process tree was created from an initial high-level process tree to facilitate the identification of possible failure modes. Group members were asked to determine failure modes that they considered to be the highest risk before scoring failure modes. Risk priority numbers (RPNs) were determined by each group member individually and then averaged. Results: A totalmore » of 99 failure modes were identified. The 5 failure modes with an RPN above 150 were further analyzed to attempt to reduce these RPNs. Only 1 of the initial items that the group presumed to be high-risk (magnetic resonance imaging laterality reversed) was ranked in these top 5 items. New process controls were put in place to reduce the severity, occurrence, and detectability scores for all of the top 5 failure modes. Conclusions: FMEA is a valuable team activity that can assist in the creation or restructuring of a quality assurance program with the aim of improved safety, quality, and efficiency. Performing the FMEA helped group members to see how they fit into the bigger picture of the program, and it served to reduce biases and preconceived notions about which elements of the program were the riskiest.« less
A streamlined failure mode and effects analysis.
Ford, Eric C; Smith, Koren; Terezakis, Stephanie; Croog, Victoria; Gollamudi, Smitha; Gage, Irene; Keck, Jordie; DeWeese, Theodore; Sibley, Greg
2014-06-01
Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and used to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes had RPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.
EVALUATION OF SAFETY IN A RADIATION ONCOLOGY SETTING USING FAILURE MODE AND EFFECTS ANALYSIS
Ford, Eric C.; Gaudette, Ray; Myers, Lee; Vanderver, Bruce; Engineer, Lilly; Zellars, Richard; Song, Danny Y.; Wong, John; DeWeese, Theodore L.
2013-01-01
Purpose Failure mode and effects analysis (FMEA) is a widely used tool for prospectively evaluating safety and reliability. We report our experiences in applying FMEA in the setting of radiation oncology. Methods and Materials We performed an FMEA analysis for our external beam radiation therapy service, which consisted of the following tasks: (1) create a visual map of the process, (2) identify possible failure modes; assign risk probability numbers (RPN) to each failure mode based on tabulated scores for the severity, frequency of occurrence, and detectability, each on a scale of 1 to 10; and (3) identify improvements that are both feasible and effective. The RPN scores can span a range of 1 to 1000, with higher scores indicating the relative importance of a given failure mode. Results Our process map consisted of 269 different nodes. We identified 127 possible failure modes with RPN scores ranging from 2 to 160. Fifteen of the top-ranked failure modes were considered for process improvements, representing RPN scores of 75 and more. These specific improvement suggestions were incorporated into our practice with a review and implementation by each department team responsible for the process. Conclusions The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error. The FMEA framework can naturally incorporate further quantification and monitoring. A general-use system for incident and near miss reporting would be useful in this regard. PMID:19409731
Independent Orbiter Assessment (IOA): Analysis of the communication and tracking subsystem
NASA Technical Reports Server (NTRS)
Gardner, J. R.; Robinson, W. M.; Trahan, W. H.; Daley, E. S.; Long, W. C.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Communication and Tracking hardware. The IOA analysis process utilized available Communication and Tracking hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
NASA Astrophysics Data System (ADS)
Sawant, M.; Christou, A.
2012-12-01
While use of LEDs in Fiber Optics and lighting applications is common, their use in medical diagnostic applications is not very extensive. Since the precise value of light intensity will be used to interpret patient results, understanding failure modes [1-4] is very important. We used the Failure Modes and Effects Criticality Analysis (FMECA) tool to identify the critical failure modes of the LEDs. FMECA involves identification of various failure modes, their effects on the system (LED optical output in this context), their frequency of occurrence, severity and the criticality of the failure modes. The competing failure modes/mechanisms were degradation of: active layer (where electron-hole recombination occurs to emit light), electrodes (provides electrical contact to the semiconductor chip), Indium Tin Oxide (ITO) surface layer (used to improve current spreading and light extraction), plastic encapsulation (protective polymer layer) and packaging failures (bond wires, heat sink separation). A FMECA table is constructed and the criticality is calculated by estimating the failure effect probability (β), failure mode ratio (α), failure rate (λ) and the operating time. Once the critical failure modes were identified, the next steps were generation of prior time to failure distribution and comparing with our accelerated life test data. To generate the prior distributions, data and results from previous investigations were utilized [5-33] where reliability test results of similar LEDs were reported. From the graphs or tabular data, we extracted the time required for the optical power output to reach 80% of its initial value. This is our failure criterion for the medical diagnostic application. Analysis of published data for different LED materials (AlGaInP, GaN, AlGaAs), the Semiconductor Structures (DH, MQW) and the mode of testing (DC, Pulsed) was carried out. The data was categorized according to the materials system and LED structure such as AlGaInP-DH-DC, AlGaInP-MQW-DC, GaN-DH-DC, and GaN-DH-DC. Although the reported testing was carried out at different temperature and current, the reported data was converted to the present application conditions of the medical environment. Comparisons between the model data and accelerated test results carried out in the present are reported. The use of accelerating agent modeling and regression analysis was also carried out. We have used the Inverse Power Law model with the current density J as the accelerating agent and the Arrhenius model with temperature as the accelerating agent. Finally, our reported methodology is presented as an approach for analyzing LED suitability for the target medical diagnostic applications.
WE-G-BRA-08: Failure Modes and Effects Analysis (FMEA) for Gamma Knife Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y; Bhatnagar, J; Bednarz, G
2015-06-15
Purpose: To perform a failure modes and effects analysis (FMEA) study for Gamma Knife (GK) radiosurgery processes at our institution based on our experience with the treatment of more than 13,000 patients. Methods: A team consisting of medical physicists, nurses, radiation oncologists, neurosurgeons at the University of Pittsburgh Medical Center and an external physicist expert was formed for the FMEA study. A process tree and a failure mode table were created for the GK procedures using the Leksell GK Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detectionmore » (D) for failure modes were assigned to each failure mode by each professional on a scale from 1 to 10. The risk priority number (RPN) for each failure mode was then calculated (RPN = OxSxD) as the average scores from all data sets collected. Results: The established process tree for GK radiosurgery consists of 10 sub-processes and 53 steps, including a sub-process for frame placement and 11 steps that are directly related to the frame-based nature of the GK radiosurgery. Out of the 86 failure modes identified, 40 failure modes are GK specific, caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the GK helmets and plugs, and the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, overlooked target areas, inaccurate previous treatment information and excessive patient movement during MRI scan. Conclusion: The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential weaknesses in the overall process.« less
NASA Technical Reports Server (NTRS)
Packard, Michael H.
2002-01-01
Probabilistic Structural Analysis (PSA) is now commonly used for predicting the distribution of time/cycles to failure of turbine blades and other engine components. These distributions are typically based on fatigue/fracture and creep failure modes of these components. Additionally, reliability analysis is used for taking test data related to particular failure modes and calculating failure rate distributions of electronic and electromechanical components. How can these individual failure time distributions of structural, electronic and electromechanical component failure modes be effectively combined into a top level model for overall system evaluation of component upgrades, changes in maintenance intervals, or line replaceable unit (LRU) redesign? This paper shows an example of how various probabilistic failure predictions for turbine engine components can be evaluated and combined to show their effect on overall engine performance. A generic model of a turbofan engine was modeled using various Probabilistic Risk Assessment (PRA) tools (Quantitative Risk Assessment Software (QRAS) etc.). Hypothetical PSA results for a number of structural components along with mitigation factors that would restrict the failure mode from propagating to a Loss of Mission (LOM) failure were used in the models. The output of this program includes an overall failure distribution for LOM of the system. The rank and contribution to the overall Mission Success (MS) is also given for each failure mode and each subsystem. This application methodology demonstrates the effectiveness of PRA for assessing the performance of large turbine engines. Additionally, the effects of system changes and upgrades, the application of different maintenance intervals, inclusion of new sensor detection of faults and other upgrades were evaluated in determining overall turbine engine reliability.
Risk assessment of failure modes of gas diffuser liner of V94.2 siemens gas turbine by FMEA method
NASA Astrophysics Data System (ADS)
Mirzaei Rafsanjani, H.; Rezaei Nasab, A.
2012-05-01
Failure of welding connection of gas diffuser liner and exhaust casing is one of the failure modes of V94.2 gas turbines which are happened in some power plants. This defect is one of the uncertainties of customers when they want to accept the final commissioning of this product. According to this, the risk priority of this failure evaluated by failure modes and effect analysis (FMEA) method to find out whether this failure is catastrophic for turbine performance and is harmful for humans. By using history of 110 gas turbines of this model which are used in some power plants, the severity number, occurrence number and detection number of failure determined and consequently the Risk Priority Number (RPN) of failure determined. Finally, critically matrix of potential failures is created and illustrated that failure modes are located in safe zone.
Availability Estimate of a Conceptual ESM System.
1979-06-01
affect mission operation.t A functional block level failure modes and effects analysis ( FMEA ) performed on the filter resulted in an assessed failure rate...is based on an FMEA of failures that disable the function (see Appendix A). A further 29 examination of the filter piece-parts reveals that the driver...Digital-to-analog converter DC Direct current DF Direction finding ESM Electronic Support Measures FMEA Failure modes and effects analysis FMPO
Optoelectronic Devices with Complex Failure Modes
NASA Technical Reports Server (NTRS)
Johnston, A.
2000-01-01
This part of the NSREC-2000 Short Course discusses radiation effects in basic photonic devices along with effects in more complex optoelectronic devices where the overall radiation response depends on several factors, with the possibility of multiple failure modes.
A streamlined failure mode and effects analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Eric C., E-mail: eford@uw.edu; Smith, Koren; Terezakis, Stephanie
Purpose: Explore the feasibility and impact of a streamlined failure mode and effects analysis (FMEA) using a structured process that is designed to minimize staff effort. Methods: FMEA for the external beam process was conducted at an affiliate radiation oncology center that treats approximately 60 patients per day. A structured FMEA process was developed which included clearly defined roles and goals for each phase. A core group of seven people was identified and a facilitator was chosen to lead the effort. Failure modes were identified and scored according to the FMEA formalism. A risk priority number,RPN, was calculated and usedmore » to rank failure modes. Failure modes with RPN > 150 received safety improvement interventions. Staff effort was carefully tracked throughout the project. Results: Fifty-two failure modes were identified, 22 collected during meetings, and 30 from take-home worksheets. The four top-ranked failure modes were: delay in film check, missing pacemaker protocol/consent, critical structures not contoured, and pregnant patient simulated without the team's knowledge of the pregnancy. These four failure modes hadRPN > 150 and received safety interventions. The FMEA was completed in one month in four 1-h meetings. A total of 55 staff hours were required and, additionally, 20 h by the facilitator. Conclusions: Streamlined FMEA provides a means of accomplishing a relatively large-scale analysis with modest effort. One potential value of FMEA is that it potentially provides a means of measuring the impact of quality improvement efforts through a reduction in risk scores. Future study of this possibility is needed.« less
Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya
2015-05-01
Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth. Mitigation strategies for the top failure mode decreased the RPN from 288 to 72. Based on the FMEA performed in this work, the use of surface imaging for monitoring intrafraction position in Linac-based stereotactic radiosurgery (SRS) did not greatly increase the risk of the Linac-based SRS process. In some cases, SIG helped to reduce the risk of Linac-based RS. The FMEA was augmented by the use of FTA since it divided the failure modes into their fundamental components, which simplified the task of developing mitigation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoisak, J; Manger, R; Dragojevic, I
Purpose: To perform a failure mode and effects analysis (FMEA) of the process for treating superficial skin cancers with the Xoft Axxent electronic brachytherapy (eBx) system, given the recent introduction of expanded quality control (QC) initiatives at our institution. Methods: A process map was developed listing all steps in superficial treatments with Xoft eBx, from the initial patient consult to the completion of the treatment course. The process map guided the FMEA to identify the failure modes for each step in the treatment workflow and assign Risk Priority Numbers (RPN), calculated as the product of the failure mode’s probability ofmore » occurrence (O), severity (S) and lack of detectability (D). FMEA was done with and without the inclusion of recent QC initiatives such as increased staffing, physics oversight, standardized source calibration, treatment planning and documentation. The failure modes with the highest RPNs were identified and contrasted before and after introduction of the QC initiatives. Results: Based on the FMEA, the failure modes with the highest RPN were related to source calibration, treatment planning, and patient setup/treatment delivery (Fig. 1). The introduction of additional physics oversight, standardized planning and safety initiatives such as checklists and time-outs reduced the RPNs of these failure modes. High-risk failure modes that could be mitigated with improved hardware and software interlocks were identified. Conclusion: The FMEA analysis identified the steps in the treatment process presenting the highest risk. The introduction of enhanced QC initiatives mitigated the risk of some of these failure modes by decreasing their probability of occurrence and increasing their detectability. This analysis demonstrates the importance of well-designed QC policies, procedures and oversight in a Xoft eBx programme for treatment of superficial skin cancers. Unresolved high risk failure modes highlight the need for non-procedural quality initiatives such as improved planning software and more robust hardware interlock systems.« less
Risk analysis by FMEA as an element of analytical validation.
van Leeuwen, J F; Nauta, M J; de Kaste, D; Odekerken-Rombouts, Y M C F; Oldenhof, M T; Vredenbregt, M J; Barends, D M
2009-12-05
We subjected a Near-Infrared (NIR) analytical procedure used for screening drugs on authenticity to a Failure Mode and Effects Analysis (FMEA), including technical risks as well as risks related to human failure. An FMEA team broke down the NIR analytical method into process steps and identified possible failure modes for each step. Each failure mode was ranked on estimated frequency of occurrence (O), probability that the failure would remain undetected later in the process (D) and severity (S), each on a scale of 1-10. Human errors turned out to be the most common cause of failure modes. Failure risks were calculated by Risk Priority Numbers (RPNs)=O x D x S. Failure modes with the highest RPN scores were subjected to corrective actions and the FMEA was repeated, showing reductions in RPN scores and resulting in improvement indices up to 5.0. We recommend risk analysis as an addition to the usual analytical validation, as the FMEA enabled us to detect previously unidentified risks.
Independent Orbiter Assessment (IOA): Analysis of the auxiliary power unit
NASA Technical Reports Server (NTRS)
Barnes, J. E.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Auxiliary Power Unit (APU). The APUs are required to provide power to the Orbiter hydraulics systems during ascent and entry flight phases for aerosurface actuation, main engine gimballing, landing gear extension, and other vital functions. For analysis purposes, the APU system was broken down into ten functional subsystems. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. A preponderance of 1/1 criticality items were related to failures that allowed the hydrazine fuel to escape into the Orbiter aft compartment, creating a severe fire hazard, and failures that caused loss of the gas generator injector cooling system.
Extended Testability Analysis Tool
NASA Technical Reports Server (NTRS)
Melcher, Kevin; Maul, William A.; Fulton, Christopher
2012-01-01
The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.
Health management system for rocket engines
NASA Technical Reports Server (NTRS)
Nemeth, Edward
1990-01-01
The functional framework of a failure detection algorithm for the Space Shuttle Main Engine (SSME) is developed. The basic algorithm is based only on existing SSME measurements. Supplemental measurements, expected to enhance failure detection effectiveness, are identified. To support the algorithm development, a figure of merit is defined to estimate the likelihood of SSME criticality 1 failure modes and the failure modes are ranked in order of likelihood of occurrence. Nine classes of failure detection strategies are evaluated and promising features are extracted as the basis for the failure detection algorithm. The failure detection algorithm provides early warning capabilities for a wide variety of SSME failure modes. Preliminary algorithm evaluation, using data from three SSME failures representing three different failure types, demonstrated indications of imminent catastrophic failure well in advance of redline cutoff in all three cases.
Failure mode and effect analysis in blood transfusion: a proactive tool to reduce risks.
Lu, Yao; Teng, Fang; Zhou, Jie; Wen, Aiqing; Bi, Yutian
2013-12-01
The aim of blood transfusion risk management is to improve the quality of blood products and to assure patient safety. We utilize failure mode and effect analysis (FMEA), a tool employed for evaluating risks and identifying preventive measures to reduce the risks in blood transfusion. The failure modes and effects occurring throughout the whole process of blood transfusion were studied. Each failure mode was evaluated using three scores: severity of effect (S), likelihood of occurrence (O), and probability of detection (D). Risk priority numbers (RPNs) were calculated by multiplying the S, O, and D scores. The plan-do-check-act cycle was also used for continuous improvement. Analysis has showed that failure modes with the highest RPNs, and therefore the greatest risk, were insufficient preoperative assessment of the blood product requirement (RPN, 245), preparation time before infusion of more than 30 minutes (RPN, 240), blood transfusion reaction occurring during the transfusion process (RPN, 224), blood plasma abuse (RPN, 180), and insufficient and/or incorrect clinical information on request form (RPN, 126). After implementation of preventative measures and reassessment, a reduction in RPN was detected with each risk. The failure mode with the second highest RPN, namely, preparation time before infusion of more than 30 minutes, was shown in detail to prove the efficiency of this tool. FMEA evaluation model is a useful tool in proactively analyzing and reducing the risks associated with the blood transfusion procedure. © 2013 American Association of Blood Banks.
NASA Astrophysics Data System (ADS)
Liu, Hu-Chen; Liu, Long; Li, Ping
2014-10-01
Failure mode and effects analysis (FMEA) has shown its effectiveness in examining potential failures in products, process, designs or services and has been extensively used for safety and reliability analysis in a wide range of industries. However, its approach to prioritise failure modes through a crisp risk priority number (RPN) has been criticised as having several shortcomings. The aim of this paper is to develop an efficient and comprehensive risk assessment methodology using intuitionistic fuzzy hybrid weighted Euclidean distance (IFHWED) operator to overcome the limitations and improve the effectiveness of the traditional FMEA. The diversified and uncertain assessments given by FMEA team members are treated as linguistic terms expressed in intuitionistic fuzzy numbers (IFNs). Intuitionistic fuzzy weighted averaging (IFWA) operator is used to aggregate the FMEA team members' individual assessments into a group assessment. IFHWED operator is applied thereafter to the prioritisation and selection of failure modes. Particularly, both subjective and objective weights of risk factors are considered during the risk evaluation process. A numerical example for risk assessment is given to illustrate the proposed method finally.
Independent Orbiter Assessment (IOA): Analysis of the life support and airlock support subsystems
NASA Technical Reports Server (NTRS)
Arbet, Jim; Duffy, R.; Barickman, K.; Saiidi, Mo J.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Life Support System (LSS) and Airlock Support System (ALSS). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The LSS provides for the management of the supply water, collection of metabolic waste, management of waste water, smoke detection, and fire suppression. The ALSS provides water, oxygen, and electricity to support an extravehicular activity in the airlock.
Jones, Ryan T; Handsfield, Lydia; Read, Paul W; Wilson, David D; Van Ausdal, Ray; Schlesinger, David J; Siebers, Jeffrey V; Chen, Quan
2015-01-01
The clinical challenge of radiation therapy (RT) for painful bone metastases requires clinicians to consider both treatment efficacy and patient prognosis when selecting a radiation therapy regimen. The traditional RT workflow requires several weeks for common palliative RT schedules of 30 Gy in 10 fractions or 20 Gy in 5 fractions. At our institution, we have created a new RT workflow termed "STAT RAD" that allows clinicians to perform computed tomographic (CT) simulation, planning, and highly conformal single fraction treatment delivery within 2 hours. In this study, we evaluate the safety and feasibility of the STAT RAD workflow. A failure mode and effects analysis (FMEA) was performed on the STAT RAD workflow, including development of a process map, identification of potential failure modes, description of the cause and effect, temporal occurrence, and team member involvement in each failure mode, and examination of existing safety controls. A risk probability number (RPN) was calculated for each failure mode. As necessary, workflow adjustments were then made to safeguard failure modes of significant RPN values. After workflow alterations, RPN numbers were again recomputed. A total of 72 potential failure modes were identified in the pre-FMEA STAT RAD workflow, of which 22 met the RPN threshold for clinical significance. Workflow adjustments included the addition of a team member checklist, changing simulation from megavoltage CT to kilovoltage CT, alteration of patient-specific quality assurance testing, and allocating increased time for critical workflow steps. After these modifications, only 1 failure mode maintained RPN significance; patient motion after alignment or during treatment. Performing the FMEA for the STAT RAD workflow before clinical implementation has significantly strengthened the safety and feasibility of STAT RAD. The FMEA proved a valuable evaluation tool, identifying potential problem areas so that we could create a safer workflow. Copyright © 2015 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
Modes of failure in disordered solids
NASA Astrophysics Data System (ADS)
Roy, Subhadeep; Biswas, Soumyajyoti; Ray, Purusattam
2017-12-01
The two principal ingredients determining the failure modes of disordered solids are the strength of heterogeneity and the length scale of the region affected in the solid following a local failure. While the latter facilitates damage nucleation, the former leads to diffused damage—the two extreme natures of the failure modes. In this study, using the random fiber bundle model as a prototype for disordered solids, we classify all failure modes that are the results of interplay between these two effects. We obtain scaling criteria for the different modes and propose a general phase diagram that provides a framework for understanding previous theoretical and experimental attempts of interpolation between these modes. As the fiber bundle model is a long-standing model for interpreting various features of stressed disordered solids, the general phase diagram can serve as a guiding principle in anticipating the responses of disordered solids in general.
Procedure for Failure Mode, Effects, and Criticality Analysis (FMECA)
NASA Technical Reports Server (NTRS)
1966-01-01
This document provides guidelines for the accomplishment of Failure Mode, Effects, and Criticality Analysis (FMECA) on the Apollo program. It is a procedure for analysis of hardware items to determine those items contributing most to system unreliability and crew safety problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mossahebi, S; Feigenberg, S; Nichols, E
Purpose: GammaPod™, the first stereotactic radiotherapy device for early stage breast cancer treatment, has been recently installed and commissioned at our institution. A multidisciplinary working group applied the failure mode and effects analysis (FMEA) approach to perform a risk analysis. Methods: FMEA was applied to the GammaPod™ treatment process by: 1) generating process maps for each stage of treatment; 2) identifying potential failure modes and outlining their causes and effects; 3) scoring the potential failure modes using the risk priority number (RPN) system based on the product of severity, frequency of occurrence, and detectability (ranging 1–10). An RPN of highermore » than 150 was set as the threshold for minimal concern of risk. For these high-risk failure modes, potential quality assurance procedures and risk control techniques have been proposed. A new set of severity, occurrence, and detectability values were re-assessed in presence of the suggested mitigation strategies. Results: In the single-day image-and-treat workflow, 19, 22, and 27 sub-processes were identified for the stages of simulation, treatment planning, and delivery processes, respectively. During the simulation stage, 38 potential failure modes were found and scored, in terms of RPN, in the range of 9-392. 34 potential failure modes were analyzed in treatment planning with a score range of 16-200. For the treatment delivery stage, 47 potential failure modes were found with an RPN score range of 16-392. The most critical failure modes consisted of breast-cup pressure loss and incorrect target localization due to patient upper-body alignment inaccuracies. The final RPN score of these failure modes based on recommended actions were assessed to be below 150. Conclusion: FMEA risk analysis technique was applied to the treatment process of GammaPod™, a new stereotactic radiotherapy technology. Application of systematic risk analysis methods is projected to lead to improved quality of GammaPod™ treatments. Ying Niu and Cedric Yu are affiliated with Xcision Medical Systems.« less
Independent Orbiter Assessment (IOA): Analysis of the active thermal control subsystem
NASA Technical Reports Server (NTRS)
Sinclair, S. K.; Parkman, W. E.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical (PCIs) items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Active Thermal Control Subsystem (ATCS) are documented. The major purpose of the ATCS is to remove the heat, generated during normal Shuttle operations from the Orbiter systems and subsystems. The four major components of the ATCS contributing to the heat removal are: Freon Coolant Loops; Radiator and Flow Control Assembly; Flash Evaporator System; and Ammonia Boiler System. In order to perform the analysis, the IOA process utilized available ATCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 310 failure modes analyzed, 101 were determined to be PCIs.
Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem
NASA Technical Reports Server (NTRS)
Duval, J. D.; Davidson, W. R.; Parkman, William E.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs.
Independent Orbiter Assessment (IOA): Analysis of the remote manipulator system
NASA Technical Reports Server (NTRS)
Tangorra, F.; Grasmeder, R. F.; Montgomery, A. D.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Remote Manipulator System (RMS) are documented. The RMS hardware and software are primarily required for deploying and/or retrieving up to five payloads during a single mission, capture and retrieve free-flying payloads, and for performing Manipulator Foot Restraint operations. Specifically, the RMS hardware consists of the following components: end effector; displays and controls; manipulator controller interface unit; arm based electronics; and the arm. The IOA analysis process utilized available RMS hardware drawings, schematics and documents for defining hardware assemblies, components and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 574 failure modes analyzed, 413 were determined to be PCIs.
Orbiter subsystem hardware/software interaction analysis. Volume 8: Forward reaction control system
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The results of the orbiter hardware/software interaction analysis for the AFT reaction control system are presented. The interaction between hardware failure modes and software are examined in order to identify associated issues and risks. All orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are discussed.
Evaluating the operational risks of biomedical waste using failure mode and effects analysis.
Chen, Ying-Chu; Tsai, Pei-Yi
2017-06-01
The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.
Independent Orbiter Assessment (IOA): Analysis of the guidance, navigation, and control subsystem
NASA Technical Reports Server (NTRS)
Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Hiott, J. M.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Guidance, Navigation, and Control (GNC) Subsystem hardware are documented. The function of the GNC hardware is to respond to guidance, navigation, and control software commands to effect vehicle control and to provide sensor and controller data to GNC software. Some of the GNC hardware for which failure modes analysis was performed includes: hand controllers; Rudder Pedal Transducer Assembly (RPTA); Speed Brake Thrust Controller (SBTC); Inertial Measurement Unit (IMU); Star Tracker (ST); Crew Optical Alignment Site (COAS); Air Data Transducer Assembly (ADTA); Rate Gyro Assemblies; Accelerometer Assembly (AA); Aerosurface Servo Amplifier (ASA); and Ascent Thrust Vector Control (ATVC). The IOA analysis process utilized available GNC hardware drawings, workbooks, specifications, schematics, and systems briefs for defining hardware assemblies, components, and circuits. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee C. Cadwallader
2010-06-01
This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.
Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee C. Cadwallader
2007-08-01
This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.
Compression failure of composite laminates
NASA Technical Reports Server (NTRS)
Pipes, R. B.
1983-01-01
This presentation attempts to characterize the compressive behavior of Hercules AS-1/3501-6 graphite-epoxy composite. The effect of varying specimen geometry on test results is examined. The transition region is determined between buckling and compressive failure. Failure modes are defined and analytical models to describe these modes are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheong, S-K; Kim, J
Purpose: The aim of the study is the application of a Failure Modes and Effects Analysis (FMEA) to access the risks for patients undergoing a Low Dose Rate (LDR) Prostate Brachytherapy Treatment. Methods: FMEA was applied to identify all the sub processes involved in the stages of identifying patient, source handling, treatment preparation, treatment delivery, and post treatment. These processes characterize the radiation treatment associated with LDR Prostate Brachytherapy. The potential failure modes together with their causes and effects were identified and ranked in order of their importance. Three indexes were assigned for each failure mode: the occurrence rating (O),more » the severity rating (S), and the detection rating (D). A ten-point scale was used to score each category, ten being the number indicating most severe, most frequent, and least detectable failure mode, respectively. The risk probability number (RPN) was calculated as a product of the three attributes: RPN = O X S x D. The analysis was carried out by a working group (WG) at UPMC. Results: The total of 56 failure modes were identified including 32 modes before the treatment, 13 modes during the treatment, and 11 modes after the treatment. In addition to the protocols already adopted in the clinical practice, the prioritized risk management will be implanted to the high risk procedures on the basis of RPN score. Conclusion: The effectiveness of the FMEA method was established. The FMEA methodology provides a structured and detailed assessment method for the risk analysis of the LDR Prostate Brachytherapy Procedure and can be applied to other radiation treatment modes.« less
NASA Technical Reports Server (NTRS)
Schmeckpeper, K. R.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C) hardware. The EPD and C hardware performs the functions of distributing, sensing, and controlling 28 volt DC power and of inverting, distributing, sensing, and controlling 117 volt 400 Hz AC power to all Orbiter subsystems from the three fuel cells in the Electrical Power Generation (EPG) subsystem. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 1671 failure modes analyzed, 9 single failures were determined to result in loss of crew or vehicle. Three single failures unique to intact abort were determined to result in possible loss of the crew or vehicle. A possible loss of mission could result if any of 136 single failures occurred. Six of the criticality 1/1 failures are in two rotary and two pushbutton switches that control External Tank and Solid Rocket Booster separation. The other 6 criticality 1/1 failures are fuses, one each per Aft Power Control Assembly (APCA) 4, 5, and 6 and one each per Forward Power Control Assembly (FPCA) 1, 2, and 3, that supply power to certain Main Propulsion System (MPS) valves and Forward Reaction Control System (RCS) circuits.
Use of Failure Mode and Effects Analysis to Improve Emergency Department Handoff Processes.
Sorrentino, Patricia
2016-01-01
The purpose of this article is to describe a quality improvement process using failure mode and effects analysis (FMEA) to evaluate systems handoff communication processes, improve emergency department (ED) throughput and reduce crowding through development of a standardized handoff, and, ultimately, improve patient safety. Risk of patient harm through ineffective communication during handoff transitions is a major reason for breakdown of systems. Complexities of ED processes put patient safety at risk. An increased incidence of submitted patient safety event reports for handoff communication failures between the ED and inpatient units solidified a decision to implement the use of FMEA to identify handoff failures to mitigate patient harm through redesign. The clinical nurse specialist implemented an FMEA. Handoff failure themes were created from deidentified retrospective reviews. Weekly meetings were held over a 3-month period to identify failure modes and determine cause and effect on the process. A functional block diagram process map tool was used to illustrate handoff processes. An FMEA grid was used to list failure modes and assign a risk priority number to quantify results. Multiple areas with actionable failures were identified. A majority of causes for high-priority failure modes were specific to communications. Findings demonstrate the complexity of transition and handoff processes. The FMEA served to identify and evaluate risk of handoff failures and provide a framework for process improvement. A focus on mentoring nurses to quality handoff processes so that it becomes habitual practice is crucial to safe patient transitions. Standardizing content and hardwiring within the system are best practice. The clinical nurse specialist is prepared to provide strong leadership to drive and implement system-wide quality projects.
Medication Safety of Five Oral Chemotherapies: A Proactive Risk Assessment
Weingart, Saul N.; Spencer, Justin; Buia, Stephanie; Duncombe, Deborah; Singh, Prabhjyot; Gadkari, Mrinalini; Connor, Maureen
2011-01-01
Purpose: Oral chemotherapies represent an emerging risk area in ambulatory oncology practice. To examine the hazards associated with five oral chemotherapies, we performed a proactive risk assessment. Methods: We convened interdisciplinary teams and conducted failure mode and effects analyses (FMEAs) for five oral chemotherapy agents: capecitabine, imatinib, temozolomide, 6-mercaptopurine, and an investigational agent. This involved the creation of process maps for each medication, identification of failure modes, selection of high-risk failure modes, and development of recommendations to mitigate these risks. We analyzed the number of steps and types of failure modes and compared this information across the study drugs. Results: Key vulnerabilities include patient education about drug handling and adverse effects, prescription writing, patient self-administration and medication adherence, and failure to monitor and manage toxicities. Many of these failure modes were common across the five oral chemotherapies, suggesting the presence of common targets for improvement. Streamlining the FMEA itself may promote the dissemination of this method. Conclusion: Each stage of the medication process poses risks to the safe use of oral chemotherapies. FMEAs may identify opportunities to improve medication safety and reduce the risk of patient harm. PMID:21532801
Teixeira, Flavia C; de Almeida, Carlos E; Saiful Huq, M
2016-01-01
The goal of this study was to evaluate the safety and quality management program for stereotactic radiosurgery (SRS) treatment processes at three radiotherapy centers in Brazil by using three industrial engineering tools (1) process mapping, (2) failure modes and effects analysis (FMEA), and (3) fault tree analysis. The recommendations of Task Group 100 of American Association of Physicists in Medicine were followed to apply the three tools described above to create a process tree for SRS procedure for each radiotherapy center and then FMEA was performed. Failure modes were identified for all process steps and values of risk priority number (RPN) were calculated from O, S, and D (RPN = O × S × D) values assigned by a professional team responsible for patient care. The subprocess treatment planning was presented with the highest number of failure modes for all centers. The total number of failure modes were 135, 104, and 131 for centers I, II, and III, respectively. The highest RPN value for each center is as follows: center I (204), center II (372), and center III (370). Failure modes with RPN ≥ 100: center I (22), center II (115), and center III (110). Failure modes characterized by S ≥ 7, represented 68% of the failure modes for center III, 62% for center II, and 45% for center I. Failure modes with RPNs values ≥100 and S ≥ 7, D ≥ 5, and O ≥ 5 were considered as high priority in this study. The results of the present study show that the safety risk profiles for the same stereotactic radiotherapy process are different at three radiotherapy centers in Brazil. Although this is the same treatment process, this present study showed that the risk priority is different and it will lead to implementation of different safety interventions among the centers. Therefore, the current practice of applying universal device-centric QA is not adequate to address all possible failures in clinical processes at different radiotherapy centers. Integrated approaches to device-centric and process specific quality management program specific to each radiotherapy center are the key to a safe quality management program.
Lago, Paola; Bizzarri, Giancarlo; Scalzotto, Francesca; Parpaiola, Antonella; Amigoni, Angela; Putoto, Giovanni; Perilongo, Giorgio
2012-01-01
Objective Administering medication to hospitalised infants and children is a complex process at high risk of error. Failure mode and effect analysis (FMEA) is a proactive tool used to analyse risks, identify failures before they happen and prioritise remedial measures. To examine the hazards associated with the process of drug delivery to children, we performed a proactive risk-assessment analysis. Design and setting Five multidisciplinary teams, representing different divisions of the paediatric department at Padua University Hospital, were trained to analyse the drug-delivery process, to identify possible causes of failures and their potential effects, to calculate a risk priority number (RPN) for each failure and plan changes in practices. Primary outcome To identify higher-priority potential failure modes as defined by RPNs and planning changes in clinical practice to reduce the risk of patients harm and improve safety in the process of medication use in children. Results In all, 37 higher-priority potential failure modes and 71 associated causes and effects were identified. The highest RPNs related (>48) mainly to errors in calculating drug doses and concentrations. Many of these failure modes were found in all the five units, suggesting the presence of common targets for improvement, particularly in enhancing the safety of prescription and preparation of endovenous drugs. The introductions of new activities in the revised process of administering drugs allowed reducing the high-risk failure modes of 60%. Conclusions FMEA is an effective proactive risk-assessment tool useful to aid multidisciplinary groups in understanding a process care and identifying errors that may occur, prioritising remedial interventions and possibly enhancing the safety of drug delivery in children. PMID:23253870
Lago, Paola; Bizzarri, Giancarlo; Scalzotto, Francesca; Parpaiola, Antonella; Amigoni, Angela; Putoto, Giovanni; Perilongo, Giorgio
2012-01-01
Administering medication to hospitalised infants and children is a complex process at high risk of error. Failure mode and effect analysis (FMEA) is a proactive tool used to analyse risks, identify failures before they happen and prioritise remedial measures. To examine the hazards associated with the process of drug delivery to children, we performed a proactive risk-assessment analysis. Five multidisciplinary teams, representing different divisions of the paediatric department at Padua University Hospital, were trained to analyse the drug-delivery process, to identify possible causes of failures and their potential effects, to calculate a risk priority number (RPN) for each failure and plan changes in practices. To identify higher-priority potential failure modes as defined by RPNs and planning changes in clinical practice to reduce the risk of patients harm and improve safety in the process of medication use in children. In all, 37 higher-priority potential failure modes and 71 associated causes and effects were identified. The highest RPNs related (>48) mainly to errors in calculating drug doses and concentrations. Many of these failure modes were found in all the five units, suggesting the presence of common targets for improvement, particularly in enhancing the safety of prescription and preparation of endovenous drugs. The introductions of new activities in the revised process of administering drugs allowed reducing the high-risk failure modes of 60%. FMEA is an effective proactive risk-assessment tool useful to aid multidisciplinary groups in understanding a process care and identifying errors that may occur, prioritising remedial interventions and possibly enhancing the safety of drug delivery in children.
Deng, Xinyang; Jiang, Wen
2017-09-12
Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model.
Deng, Xinyang
2017-01-01
Failure mode and effect analysis (FMEA) is a useful tool to define, identify, and eliminate potential failures or errors so as to improve the reliability of systems, designs, and products. Risk evaluation is an important issue in FMEA to determine the risk priorities of failure modes. There are some shortcomings in the traditional risk priority number (RPN) approach for risk evaluation in FMEA, and fuzzy risk evaluation has become an important research direction that attracts increasing attention. In this paper, the fuzzy risk evaluation in FMEA is studied from a perspective of multi-sensor information fusion. By considering the non-exclusiveness between the evaluations of fuzzy linguistic variables to failure modes, a novel model called D numbers is used to model the non-exclusive fuzzy evaluations. A D numbers based multi-sensor information fusion method is proposed to establish a new model for fuzzy risk evaluation in FMEA. An illustrative example is provided and examined using the proposed model and other existing method to show the effectiveness of the proposed model. PMID:28895905
Failure mode and effects analysis of witnessing protocols for ensuring traceability during IVF.
Rienzi, Laura; Bariani, Fiorenza; Dalla Zorza, Michela; Romano, Stefania; Scarica, Catello; Maggiulli, Roberta; Nanni Costa, Alessandro; Ubaldi, Filippo Maria
2015-10-01
Traceability of cells during IVF is a fundamental aspect of treatment, and involves witnessing protocols. Failure mode and effects analysis (FMEA) is a method of identifying real or potential breakdowns in processes, and allows strategies to mitigate risks to be developed. To examine the risks associated with witnessing protocols, an FMEA was carried out in a busy IVF centre, before and after implementation of an electronic witnessing system (EWS). A multidisciplinary team was formed and moderated by human factors specialists. Possible causes of failures, and their potential effects, were identified and risk priority number (RPN) for each failure calculated. A second FMEA analysis was carried out after implementation of an EWS. The IVF team identified seven main process phases, 19 associated process steps and 32 possible failure modes. The highest RPN was 30, confirming the relatively low risk that mismatches may occur in IVF when a manual witnessing system is used. The introduction of the EWS allowed a reduction in the moderate-risk failure mode by two-thirds (highest RPN = 10). In our experience, FMEA is effective in supporting multidisciplinary IVF groups to understand the witnessing process, identifying critical steps and planning changes in practice to enable safety to be enhanced. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahn, Junkeon; Noh, Yeelyong; Park, Sung Ho; Choi, Byung Il; Chang, Daejun
2017-10-01
This study proposes a fuzzy-based FMEA (failure mode and effect analysis) for a hybrid molten carbonate fuel cell and gas turbine system for liquefied hydrogen tankers. An FMEA-based regulatory framework is adopted to analyze the non-conventional propulsion system and to understand the risk picture of the system. Since the participants of the FMEA rely on their subjective and qualitative experiences, the conventional FMEA used for identifying failures that affect system performance inevitably involves inherent uncertainties. A fuzzy-based FMEA is introduced to express such uncertainties appropriately and to provide flexible access to a risk picture for a new system using fuzzy modeling. The hybrid system has 35 components and has 70 potential failure modes, respectively. Significant failure modes occur in the fuel cell stack and rotary machine. The fuzzy risk priority number is used to validate the crisp risk priority number in the FMEA.
Utility of Failure Mode and Effect Analysis to Improve Safety in Suctioning by Orotracheal Tube.
Vázquez-Valencia, Agustín; Santiago-Sáez, Andrés; Perea-Pérez, Bernardo; Labajo-González, Elena; Albarrán-Juan, Maria Elena
2017-02-01
The objective of the study was to use the Failure Mode and Effect Analysis (FMEA) tool to analyze the technique of secretion suctioning on patients with an endotracheal tube who were admitted into an intensive care unit. Brainstorming was carried out within the service to determine the potential errors most frequent in the process. After this, the FMEA was applied, including its stages, prioritizing risk in accordance with the risk prioritization number (RPN), selecting improvement actions in which they have an RPN of more than 300. We obtained 32 failure modes, of which 13 surpassed an RPN of 300. After our result, 21 improvement actions were proposed for those failure modes with RPN scores above 300. FMEA allows us to ascertain possible failures so as to later propose improvement actions for those which have an RPN of more than 300. Copyright © 2016 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Saiidi, M. J.; Duffy, R. E.; Mclaughlin, T. D.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Atmospheric Revitalization and Pressure Control Subsystem (ARPCS) are documented. The ARPCS hardware was categorized into the following subdivisions: (1) Atmospheric Make-up and Control (including the Auxiliary Oxygen Assembly, Oxygen Assembly, and Nitrogen Assembly); and (2) Atmospheric Vent and Control (including the Positive Relief Vent Assembly, Negative Relief Vent Assembly, and Cabin Vent Assembly). The IOA analysis process utilized available ARPCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Independent Orbiter Assessment (IOA): Analysis of the mechanical actuation subsystem
NASA Technical Reports Server (NTRS)
Bacher, J. L.; Montgomery, A. D.; Bradway, M. W.; Slaughter, W. T.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Mechanical Actuation System (MAS) hardware. Specifically, the MAS hardware consists of the following components: Air Data Probe (ADP); Elevon Seal Panel (ESP); External Tank Umbilical (ETU); Ku-Band Deploy (KBD); Payload Bay Doors (PBD); Payload Bay Radiators (PBR); Personnel Hatches (PH); Vent Door Mechanism (VDM); and Startracker Door Mechanism (SDM). The IOA analysis process utilized available MAS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
An improved method for risk evaluation in failure modes and effects analysis of CNC lathe
NASA Astrophysics Data System (ADS)
Rachieru, N.; Belu, N.; Anghel, D. C.
2015-11-01
Failure mode and effects analysis (FMEA) is one of the most popular reliability analysis tools for identifying, assessing and eliminating potential failure modes in a wide range of industries. In general, failure modes in FMEA are evaluated and ranked through the risk priority number (RPN), which is obtained by the multiplication of crisp values of the risk factors, such as the occurrence (O), severity (S), and detection (D) of each failure mode. However, the crisp RPN method has been criticized to have several deficiencies. In this paper, linguistic variables, expressed in Gaussian, trapezoidal or triangular fuzzy numbers, are used to assess the ratings and weights for the risk factors S, O and D. A new risk assessment system based on the fuzzy set theory and fuzzy rule base theory is to be applied to assess and rank risks associated to failure modes that could appear in the functioning of Turn 55 Lathe CNC. Two case studies have been shown to demonstrate the methodology thus developed. It is illustrated a parallel between the results obtained by the traditional method and fuzzy logic for determining the RPNs. The results show that the proposed approach can reduce duplicated RPN numbers and get a more accurate, reasonable risk assessment. As a result, the stability of product and process can be assured.
[Failure mode and effects analysis to improve quality in clinical trials].
Mañes-Sevilla, M; Marzal-Alfaro, M B; Romero Jiménez, R; Herranz-Alonso, A; Sanchez Fresneda, M N; Benedi Gonzalez, J; Sanjurjo-Sáez, M
The failure mode and effects analysis (FMEA) has been used as a tool in risk management and quality improvement. The objective of this study is to identify the weaknesses in processes in the clinical trials area, of a Pharmacy Department (PD) with great research activity, in order to improve the safety of the usual procedures. A multidisciplinary team was created to analyse each of the critical points, identified as possible failure modes, in the development of clinical trial in the PD. For each failure mode, the possible cause and effect were identified, criticality was calculated using the risk priority number and the possible corrective actions were discussed. Six sub-processes were defined in the development of the clinical trials in PD. The FMEA identified 67 failure modes, being the dispensing and prescription/validation sub-processes the most likely to generate errors. All the improvement actions established in the AMFE were implemented in the Clinical Trials area. The FMEA is a useful tool in proactive risk management because it allows us to identify where we are making mistakes and analyze the causes that originate them, to prioritize and to adopt solutions to risk reduction. The FMEA improves process safety and quality in PD. Copyright © 2018 SECA. Publicado por Elsevier España, S.L.U. All rights reserved.
Independent Orbiter Assessment (IOA): Analysis of the displays and controls subsystem
NASA Technical Reports Server (NTRS)
Trahan, W. H.; Prust, E. E.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Displays and Controls (D and C) subsystem hardware. The function of the D and C hardware is to provide the crew with the monitor, command, and control capabilities required for management of all normal and contingency mission and flight operations. The D and C hardware for which failure modes analysis was performed consists of the following: Acceleration Indicator (G-METER); Head Up Display (HUD); Display Driver Unit (DDU); Alpha/Mach Indicator (AMI); Horizontal Situation Indicator (HSI); Attitude Director Indicator (ADI); Propellant Quantity Indicator (PQI); Surface Position Indicator (SPI); Altitude/Vertical Velocity Indicator (AVVI); Caution and Warning Assembly (CWA); Annunciator Control Assembly (ACA); Event Timer (ET); Mission Timer (MT); Interior Lighting; and Exterior Lighting. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Independent Orbiter Assessment (IOA): Analysis of the elevon subsystem
NASA Technical Reports Server (NTRS)
Wilson, R. E.; Riccio, J. R.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Elevon system hardware. The elevon actuators are located at the trailing edge of the wing surface. The proper function of the elevons is essential during the dynamic flight phases of ascent and entry. In the ascent phase of flight, the elevons are used for relieving high wing loads. For entry, the elevons are used to pitch and roll the vehicle. Specifically, the elevon system hardware comprises the following components: flow cutoff valve; switching valve; electro-hydraulic (EH) servoactuator; secondary delta pressure transducer; bypass valve; power valve; power valve check valve; primary actuator; primary delta pressure transducer; and primary actuator position transducer. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 25 failure modes analyzed, 18 were determined to be PCIs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusu, I; Thomas, T; Roeske, J
Purpose: To identify areas of improvement in our liver stereotactic body radiation therapy (SBRT) program, using failure mode and effect analysis (FMEA). Methods: A multidisciplinary group consisting of one physician, three physicists, one dosimetrist and two therapists was formed. A process map covering 10 major stages of the liver SBRT program from the initial diagnosis to post treatment follow-up was generated. A total of 102 failure modes, together with their causes and effects, were identified. The occurrence (O), severity (S) and lack of detectability (D) were independently scored. The ranking was done using the risk probability number (RPN) defined asmore » the product of average O, S and D numbers for each mode. The scores were normalized to remove inter-observer variability, while preserving individual ranking order. Further, a correlation analysis on the overall agreement on rank order of all failure modes resulted in positive values for successive pairs of evaluators. The failure modes with the highest RPN value were considered for further investigation. Results: The average normalized RPN values for all modes were 39 with a range of 9 to 103. The FMEA analysis resulted in the identification of the top 10 critical failures modes as: Incorrect CT-MR registration, MR scan not performed in treatment position, patient movement between CBCT acquisition and treatment, daily IGRT QA not verified, incorrect or incomplete ITV delineation, OAR contours not verified, inaccurate normal liver effective dose (Veff) calculation, failure of bolus tracking for 4D CT scan, setup instructions not followed for treatment and plan evaluation metrics missed. Conclusion: The application of FMEA to our liver SBRT program led to the identification and possible improvement of areas affecting patient safety.« less
Dehnavieh, Reza; Ebrahimipour, Hossein; Molavi-Taleghani, Yasamin; Vafaee-Najar, Ali; Noori Hekmat, Somayeh; Esmailzdeh, Hamid
2014-12-25
Pediatric emergency has been considered as a high risk area, and blood transfusion is known as a unique clinical measure, therefore this study was conducted with the purpose of assessing the proactive risk assessment of blood transfusion process in Pediatric Emergency of Qaem education- treatment center in Mashhad, by the Healthcare Failure Mode and Effects Analysis (HFMEA) methodology. This cross-sectional study analyzed the failure mode and effects of blood transfusion process by a mixture of quantitative-qualitative method. The proactive HFMEA was used to identify and analyze the potential failures of the process. The information of the items in HFMEA forms was collected after obtaining a consensus of experts' panel views via the interview and focus group discussion sessions. The Number of 77 failure modes were identified for 24 sub-processes enlisted in 8 processes of blood transfusion. Totally 13 failure modes were identified as non-acceptable risk (a hazard score above 8) in the blood transfusion process and were transferred to the decision tree. Root causes of high risk modes were discussed in cause-effect meetings and were classified based on the UK national health system (NHS) approved classifications model. Action types were classified in the form of acceptance (11.6%), control (74.2%) and elimination (14.2%). Recommendations were placed in 7 categories using TRIZ ("Theory of Inventive Problem Solving.") The re-engineering process for the required changes, standardizing and updating the blood transfusion procedure, root cause analysis of blood transfusion catastrophic events, patient identification bracelet, training classes and educational pamphlets for raising awareness of personnel, and monthly gathering of transfusion medicine committee have all been considered as executive strategies in work agenda in pediatric emergency.
Dehnavieh, Reza; Ebrahimipour, Hossein; Molavi-Taleghani, Yasamin; Vafaee-Najar, Ali; Hekmat, Somayeh Noori; Esmailzdeh, Hamid
2015-01-01
Introduction: Pediatric emergency has been considered as a high risk area, and blood transfusion is known as a unique clinical measure, therefore this study was conducted with the purpose of assessing the proactive risk assessment of blood transfusion process in Pediatric Emergency of Qaem education- treatment center in Mashhad, by the Healthcare Failure Mode and Effects Analysis (HFMEA) methodology. Methodology: This cross-sectional study analyzed the failure mode and effects of blood transfusion process by a mixture of quantitative-qualitative method. The proactive HFMEA was used to identify and analyze the potential failures of the process. The information of the items in HFMEA forms was collected after obtaining a consensus of experts’ panel views via the interview and focus group discussion sessions. Results: The Number of 77 failure modes were identified for 24 sub-processes enlisted in 8 processes of blood transfusion. Totally 13 failure modes were identified as non-acceptable risk (a hazard score above 8) in the blood transfusion process and were transferred to the decision tree. Root causes of high risk modes were discussed in cause-effect meetings and were classified based on the UK national health system (NHS) approved classifications model. Action types were classified in the form of acceptance (11.6%), control (74.2%) and elimination (14.2%). Recommendations were placed in 7 categories using TRIZ (“Theory of Inventive Problem Solving.”) Conclusion: The re-engineering process for the required changes, standardizing and updating the blood transfusion procedure, root cause analysis of blood transfusion catastrophic events, patient identification bracelet, training classes and educational pamphlets for raising awareness of personnel, and monthly gathering of transfusion medicine committee have all been considered as executive strategies in work agenda in pediatric emergency. PMID:25560332
NASA Astrophysics Data System (ADS)
Cao, Ri-hong; Cao, Ping; Lin, Hang; Pu, Cheng-zhi; Ou, Ke
2016-03-01
Joints and fissures with similar orientation or characteristics are common in natural rocks; the inclination and density of the fissures affect the mechanical properties and failure mechanism of the rock mass. However, the strength, crack coalescence pattern, and failure mode of rock specimens containing multi-fissures have not been studied comprehensively. In this paper, combining similar material testing and discrete element numerical method (PFC2D), the peak strength and failure characteristics of rock-like materials with multi-fissures are explored. Rock-like specimens were made of cement and sand and pre-existing fissures created by inserting steel shims into cement mortar paste and removing them during curing. The peak strength of multi-fissure specimens depends on the fissure angle α (which is measured counterclockwise from horizontal) and fissure number ( N f). Under uniaxial compressional loading, the peak strength increased with increasing α. The material strength was lowest for α = 25°, and highest for α = 90°. The influence of N f on the peak strength depended on α. For α = 25° and 45°, N f had a strong effect on the peak strength, while for higher α values, especially for the 90° sample, there were no obvious changes in peak strength with different N f. Under uniaxial compression, the coalescence modes between the fissures can be classified into three categories: S-mode, T-mode, and M-mode. Moreover, the failure mode can be classified into four categories: mixed failure, shear failure, stepped path failure, and intact failure. The failure mode of the specimen depends on α and N f. The peak strength and failure modes in the numerically simulated and experimental results are in good agreement.
Product Support Manager Guidebook
2011-04-01
package is being developed using supportability analysis concepts such as Failure Mode, Effects and Criticality Analysis (FMECA), Fault Tree Analysis ( FTA ...Analysis (LORA) Condition Based Maintenance + (CBM+) Fault Tree Analysis ( FTA ) Failure Mode, Effects, and Criticality Analysis (FMECA) Maintenance Task...Reporting and Corrective Action System (FRACAS), Fault Tree Analysis ( FTA ), Level of Repair Analysis (LORA), Maintenance Task Analysis (MTA
Application of failure mode and effect analysis in a radiology department.
Thornton, Eavan; Brook, Olga R; Mendiratta-Lala, Mishal; Hallett, Donna T; Kruskal, Jonathan B
2011-01-01
With increasing deployment, complexity, and sophistication of equipment and related processes within the clinical imaging environment, system failures are more likely to occur. These failures may have varying effects on the patient, ranging from no harm to devastating harm. Failure mode and effect analysis (FMEA) is a tool that permits the proactive identification of possible failures in complex processes and provides a basis for continuous improvement. This overview of the basic principles and methodology of FMEA provides an explanation of how FMEA can be applied to clinical operations in a radiology department to reduce, predict, or prevent errors. The six sequential steps in the FMEA process are explained, and clinical magnetic resonance imaging services are used as an example for which FMEA is particularly applicable. A modified version of traditional FMEA called Healthcare Failure Mode and Effect Analysis, which was introduced by the U.S. Department of Veterans Affairs National Center for Patient Safety, is briefly reviewed. In conclusion, FMEA is an effective and reliable method to proactively examine complex processes in the radiology department. FMEA can be used to highlight the high-risk subprocesses and allows these to be targeted to minimize the future occurrence of failures, thus improving patient safety and streamlining the efficiency of the radiology department. RSNA, 2010
NASA Technical Reports Server (NTRS)
Wilson, R. E.; Riccio, J. R.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Ascent Thrust Vector Control (ATVC) Actuator hardware are documented. The function of the Ascent Thrust Vector Control Actuators (ATVC) is to gimbal the main engines to provide for attitude and flight path control during ascent. During first stage flight, the SRB nozzles provide nearly all the steering. After SRB separation, the Orbiter is steered by gimbaling of its main engines. There are six electrohydraulic servoactuators, one pitch and one yaw for each of the three main engines. Each servoactuator is composed of four electrohydraulic servovalve assemblies, one second stage power spool valve assembly, one primary piston assembly and a switching valve. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Critical failures resulting in loss of ATVC were mainly due to loss of hydraulic fluid, fluid contamination and mechanical failures.
Model-OA wind turbine generator - Failure modes and effects analysis
NASA Technical Reports Server (NTRS)
Klein, William E.; Lali, Vincent R.
1990-01-01
The results failure modes and effects analysis (FMEA) conducted for wind-turbine generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems, which are also reflected in this FMEA.
Failure modes and effects analysis (FMEA) for Gamma Knife radiosurgery.
Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Flickinger, John; Arai, Yoshio; Vacsulka, Jonet; Feng, Wenzheng; Monaco, Edward; Niranjan, Ajay; Lunsford, L Dade; Huq, M Saiful
2017-11-01
Gamma Knife radiosurgery is a highly precise and accurate treatment technique for treating brain diseases with low risk of serious error that nevertheless could potentially be reduced. We applied the AAPM Task Group 100 recommended failure modes and effects analysis (FMEA) tool to develop a risk-based quality management program for Gamma Knife radiosurgery. A team consisting of medical physicists, radiation oncologists, neurosurgeons, radiation safety officers, nurses, operating room technologists, and schedulers at our institution and an external physicist expert on Gamma Knife was formed for the FMEA study. A process tree and a failure mode table were created for the Gamma Knife radiosurgery procedures using the Leksell Gamma Knife Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection for failure mode (D) were assigned to each failure mode by 8 professionals on a scale from 1 to 10. An overall risk priority number (RPN) for each failure mode was then calculated from the averaged O, S, and D scores. The coefficient of variation for each O, S, or D score was also calculated. The failure modes identified were prioritized in terms of both the RPN scores and the severity scores. The established process tree for Gamma Knife radiosurgery consists of 10 subprocesses and 53 steps, including a subprocess for frame placement and 11 steps that are directly related to the frame-based nature of the Gamma Knife radiosurgery. Out of the 86 failure modes identified, 40 Gamma Knife specific failure modes were caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the Gamma Knife helmets and plugs, the skull definition tools as well as other features of the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all external beam radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, unsecured plugs/inserts, overlooked target areas, and undetected machine mechanical failure during the morning QA process. The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential weaknesses in the overall process. The results of the present study give us a basis for the development of a risk based quality management program for Gamma Knife radiosurgery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younge, K C; Lee, C I; Feng, M
2015-06-15
Purpose: To improve the safety and quality of a dual-vendor microsphere brachytherapy program with failure mode and effects analysis (FMEA). Methods: A multidisciplinary team including physicists, dosimetrists, a radiation oncologist, an interventional radiologist, and radiation safety personnel performed an FMEA for our dual-vendor microsphere brachytherapy program employing SIR-Spheres (Sirtex Medical Limited, Australia) and Theraspheres (BTG, England). We developed a program process tree and step-by-step instructions which were used to generate a comprehensive list of failure modes. These modes were then ranked according to severity, occurrence rate, and detectability. Risk priority numbers (RPNs) were calculated by multiplying these three scores together.more » Three different severity scales were created: one each for harmful effects to the patient, staff, or the institution. Each failure mode was ranked on one or more of these scales. Results: The group identified 164 failure modes for the microsphere program. 113 of these were ranked using the patient severity scale, 52 using the staff severity scale, and 50 using the institution severity scale. The highest ranked items on the patient severity scale were an error in the automated dosimetry worksheet (RPN = 297.5), and the incorrect target specified on the planning study (RPN = 135). Some failure modes ranked differently between vendors, especially those corresponding to dose vial preparation because of the different methods used. Based on our findings, we made several improvements to our QA program, including documentation to easily identify which product is being used, an additional hand calculation during planning, and reorganization of QA steps before treatment delivery. We will continue to periodically review and revise the FMEA. Conclusion: We have applied FMEA to our dual-vendor microsphere brachytherapy program to identify potential key weaknesses in the treatment chain. Our FMEA results were used to improve the effectiveness of our overall microsphere program.« less
Independent Orbiter Assessment (IOA): Analysis of the nose wheel steering subsystem
NASA Technical Reports Server (NTRS)
Mediavilla, Anthony Scott
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Nose Wheel Steering (NWS) hardware are documented. The NWS hardware provides primary directional control for the Orbiter vehicle during landing rollout. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The original NWS design was envisioned as a backup system to differential braking for directional control of the Orbiter during landing rollout. No real effort was made to design the NWS system as fail operational. The brakes have much redundancy built into their design but the poor brake/tire performance has forced the NSTS to upgrade NWS to the primary mode of directional control during rollout. As a result, a large percentage of the NWS system components have become Potential Critical Items (PCI).
Consistency of FMEA used in the validation of analytical procedures.
Oldenhof, M T; van Leeuwen, J F; Nauta, M J; de Kaste, D; Odekerken-Rombouts, Y M C F; Vredenbregt, M J; Weda, M; Barends, D M
2011-02-20
In order to explore the consistency of the outcome of a Failure Mode and Effects Analysis (FMEA) in the validation of analytical procedures, an FMEA was carried out by two different teams. The two teams applied two separate FMEAs to a High Performance Liquid Chromatography-Diode Array Detection-Mass Spectrometry (HPLC-DAD-MS) analytical procedure used in the quality control of medicines. Each team was free to define their own ranking scales for the probability of severity (S), occurrence (O), and detection (D) of failure modes. We calculated Risk Priority Numbers (RPNs) and we identified the failure modes above the 90th percentile of RPN values as failure modes needing urgent corrective action; failure modes falling between the 75th and 90th percentile of RPN values were identified as failure modes needing necessary corrective action, respectively. Team 1 and Team 2 identified five and six failure modes needing urgent corrective action respectively, with two being commonly identified. Of the failure modes needing necessary corrective actions, about a third were commonly identified by both teams. These results show inconsistency in the outcome of the FMEA. To improve consistency, we recommend that FMEA is always carried out under the supervision of an experienced FMEA-facilitator and that the FMEA team has at least two members with competence in the analytical method to be validated. However, the FMEAs of both teams contained valuable information that was not identified by the other team, indicating that this inconsistency is not always a drawback. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, L.B.
1994-12-01
This research extends the existing knowledge of cross-ply metal matrix composites (MMC) to include fatigue behavior under strain-controlled fully reversed loading. This study investigated fatigue life, failure modes and damage mechanisms of the SCS-6/Ti-15-3, (O/9O)2s, MMC. The laminate was subjected to fully reversed fatigue at elevated temperature (427 deg C) at various strain levels. Stress, strain and modulus data were analyzed to characterize the macro-mechanical behavior of the composite. Microscopy and fractography were accomplished to identify and characterize the damage mechanisms at the microscopic level. Failure modes varied according to the maximum applied strain level showing either mixed mode (i.e.more » combination of both fiber and matrix dominated modes) or matrix dominated fatigue failures. As expected, higher strain loadings resulted in more ductility of the matrix at failure, evidenced by fracture surface features. For testing of the same composite laminate, the fatigue life under strain controlled mode slightly increased, compared to its load-controlled mode counterpart, using the effective strain range comparison basis. However, the respective fatigue life curves converged in the high cycle region, suggesting that the matrix dominated failure mode produces equivalent predicted fatigue lives for both control modes.« less
Research on Application of FMECA in Missile Equipment Maintenance Decision
NASA Astrophysics Data System (ADS)
Kun, Wang
2018-03-01
Fault mode effects and criticality analysis (FMECA) is a method widely used in engineering. Studying the application of FMEA technology in military equipment maintenance decision-making, can help us build a better equipment maintenance support system, and increase the using efficiency of weapons and equipment. Through Failure Modes, Effects and Criticality Analysis (FMECA) of equipment, known and potential failure modes and their causes are found out, and the influence on the equipment performance, operation success, personnel security are determined. Furthermore, according to the synthetical effects of the severity of effects and the failure probability, possible measures for prevention and correction are put forward. Through replacing or adjusting the corresponding parts, corresponding maintenance strategy is decided for preventive maintenance of equipment, which helps improve the equipment reliability.
2012-06-01
Visa Investigate Data Breach March 30, 2012 Visa and MasterCard are investigating whether a data security breach at one of the main companies that...30). MasterCard and Visa Investigate Data Breach . New York Times . Stamatis, D. (2003). Failure Mode Effect Analysis: FMEA from Theory to Execution
NASA Astrophysics Data System (ADS)
Zhu, Qi-Zhi
2017-02-01
A proper criterion describing when material fails is essential for deep understanding and constitutive modeling of rock damage and failure by microcracking. Physically, such a criterion should be the global effect of local mechanical response and microstructure evolution inside the material. This paper aims at deriving a new mechanisms-based failure criterion for brittle rocks, based on micromechanical unilateral damage-friction coupling analyses rather than on the basic results from the classical linear elastic fracture mechanics. The failure functions respectively describing three failure modes (purely tensile mode, tensile-shear mode as well as compressive-shear mode) are achieved in a unified upscaling framework and illustrated in the Mohr plane and also in the plane of principal stresses. The strength envelope is proved to be continuous and smooth with a compressive to tensile strength ratio dependent on material properties. Comparisons with experimental data are finally carried out. By this work, we also provide a theoretical evidence on the hybrid failure and the smooth transition from tensile failure to compressive-shear failure.
Yang, F; Cao, N; Young, L; Howard, J; Logan, W; Arbuckle, T; Sponseller, P; Korssjoen, T; Meyer, J; Ford, E
2015-06-01
Though failure mode and effects analysis (FMEA) is becoming more widely adopted for risk assessment in radiation therapy, to our knowledge, its output has never been validated against data on errors that actually occur. The objective of this study was to perform FMEA of a stereotactic body radiation therapy (SBRT) treatment planning process and validate the results against data recorded within an incident learning system. FMEA on the SBRT treatment planning process was carried out by a multidisciplinary group including radiation oncologists, medical physicists, dosimetrists, and IT technologists. Potential failure modes were identified through a systematic review of the process map. Failure modes were rated for severity, occurrence, and detectability on a scale of one to ten and risk priority number (RPN) was computed. Failure modes were then compared with historical reports identified as relevant to SBRT planning within a departmental incident learning system that has been active for two and a half years. Differences between FMEA anticipated failure modes and existing incidents were identified. FMEA identified 63 failure modes. RPN values for the top 25% of failure modes ranged from 60 to 336. Analysis of the incident learning database identified 33 reported near-miss events related to SBRT planning. Combining both methods yielded a total of 76 possible process failures, of which 13 (17%) were missed by FMEA while 43 (57%) identified by FMEA only. When scored for RPN, the 13 events missed by FMEA ranked within the lower half of all failure modes and exhibited significantly lower severity relative to those identified by FMEA (p = 0.02). FMEA, though valuable, is subject to certain limitations. In this study, FMEA failed to identify 17% of actual failure modes, though these were of lower risk. Similarly, an incident learning system alone fails to identify a large number of potentially high-severity process errors. Using FMEA in combination with incident learning may render an improved overview of risks within a process.
Independent Orbiter Assessment (IOA): Analysis of the body flap subsystem
NASA Technical Reports Server (NTRS)
Wilson, R. E.; Riccio, J. R.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Body Flap (BF) subsystem hardware are documented. The BF is a large aerosurface located at the trailing edge of the lower aft fuselage of the Orbiter. The proper function of the BF is essential during the dynamic flight phases of ascent and entry. During the ascent phase of flight, the BF trails in a fixed position. For entry, the BF provides elevon load relief, trim control, and acts as a heat shield for the main engines. Specifically, the BF hardware comprises the following components: Power Drive Unit (PDU), rotary actuators, and torque tubes. The IOA analysis process utilized available BF hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 35 failure modes analyzed, 19 were determined to be PCIs.
Independent Orbiter Assessment (IOA): Analysis of the orbiter main propulsion system
NASA Technical Reports Server (NTRS)
Mcnicoll, W. J.; Mcneely, M.; Holden, K. A.; Emmons, T. E.; Lowery, H. J.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Main Propulsion System (MPS) hardware are documented. The Orbiter MPS consists of two subsystems: the Propellant Management Subsystem (PMS) and the Helium Subsystem. The PMS is a system of manifolds, distribution lines and valves by which the liquid propellants pass from the External Tank (ET) to the Space Shuttle Main Engines (SSMEs) and gaseous propellants pass from the SSMEs to the ET. The Helium Subsystem consists of a series of helium supply tanks and their associated regulators, check valves, distribution lines, and control valves. The Helium Subsystem supplies helium that is used within the SSMEs for inflight purges and provides pressure for actuation of SSME valves during emergency pneumatic shutdowns. The balance of the helium is used to provide pressure to operate the pneumatically actuated valves within the PMS. Each component was evaluated and analyzed for possible failure modes and effects. Criticalities were assigned based on the worst possible effect of each failure mode. Of the 690 failure modes analyzed, 349 were determined to be PCIs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciocca, Mario, E-mail: mario.ciocca@cnao.it; Cantone, Marie-Claire; Veronese, Ivan
2012-02-01
Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system,more » based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42-216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy. The application of this method to IORT lead to identify three safety measures for risk mitigation.« less
Babiker, Amir; Amer, Yasser S; Osman, Mohamed E; Al-Eyadhy, Ayman; Fatani, Solafa; Mohamed, Sarar; Alnemri, Abdulrahman; Titi, Maher A; Shaikh, Farheen; Alswat, Khalid A; Wahabi, Hayfaa A; Al-Ansary, Lubna A
2018-02-01
Implementation of clinical practice guidelines (CPGs) has been shown to reduce variation in practice and improve health care quality and patients' safety. There is a limited experience of CPG implementation (CPGI) in the Middle East. The CPG program in our institution was launched in 2009. The Quality Management department conducted a Failure Mode and Effect Analysis (FMEA) for further improvement of CPGI. This is a prospective study of a qualitative/quantitative design. Our FMEA included (1) process review and recording of the steps and activities of CPGI; (2) hazard analysis by recording activity-related failure modes and their effects, identification of actions required, assigned severity, occurrence, and detection scores for each failure mode and calculated the risk priority number (RPN) by using an online interactive FMEA tool; (3) planning: RPNs were prioritized, recommendations, and further planning for new interventions were identified; and (4) monitoring: after reduction or elimination of the failure mode. The calculated RPN will be compared with subsequent analysis in post-implementation phase. The data were scrutinized from a feedback of quality team members using a FMEA framework to enhance the implementation of 29 adapted CPGs. The identified potential common failure modes with the highest RPN (≥ 80) included awareness/training activities, accessibility of CPGs, fewer advocates from clinical champions, and CPGs auditing. Actions included (1) organizing regular awareness activities, (2) making CPGs printed and electronic copies accessible, (3) encouraging senior practitioners to get involved in CPGI, and (4) enhancing CPGs auditing as part of the quality sustainability plan. In our experience, FMEA could be a useful tool to enhance CPGI. It helped us to identify potential barriers and prepare relevant solutions. © 2017 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Brown, K. L.; Bertsch, P. J.
1986-01-01
Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Fuel Cell Powerplant (FCP) hardware. The EPG/FCP hardware is required for performing functions of electrical power generation and product water distribution in the Orbiter. Specifically, the EPG/FCP hardware consists of the following divisions: (1) Power Section Assembly (PSA); (2) Reactant Control Subsystem (RCS); (3) Thermal Control Subsystem (TCS); and (4) Water Removal Subsystem (WRS). The IOA analysis process utilized available EPG/FCP hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
Independent Orbiter Assessment (IOA): Analysis of the orbital maneuvering system
NASA Technical Reports Server (NTRS)
Prust, C. D.; Paul, D. J.; Burkemper, V. J.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbital Maneuvering System (OMS) hardware are documented. The OMS provides the thrust to perform orbit insertion, orbit circularization, orbit transfer, rendezvous, and deorbit. The OMS is housed in two independent pods located one on each side of the tail and consists of the following subsystems: Helium Pressurization; Propellant Storage and Distribution; Orbital Maneuvering Engine; and Electrical Power Distribution and Control. The IOA analysis process utilized available OMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluted and analyzed for possible failure modes and effects. Criticality was asigned based upon the severity of the effect for each failure mode.
Fokkinga, Wietske A; Kreulen, Cees M; Vallittu, Pekka K; Creugers, Nico H J
2004-01-01
This study sought to aggregate literature data on in vitro failure loads and failure modes of prefabricated fiber-reinforced composite (FRC) post systems and to compare them to those of prefabricated metal, custom-cast, and ceramic post systems. The literature was searched using MEDLINE from 1984 to 2003 for dental articles in English. Keywords used were (post or core or buildup or dowel) and (teeth or tooth). Additional inclusion/exclusion steps were conducted, each step by two independent readers: (1) Abstracts describing post-and-core techniques to reconstruct endodontically treated teeth and their mechanical and physical characteristics were included (descriptive studies or reviews were excluded); (2) articles that included FRC post systems were selected; (3) in vitro studies, single-rooted human teeth, prefabricated FRC posts, and composite as the core material were the selection criteria; and (4) failure loads and modes were extracted from the selected papers, and failure modes were dichotomized (distinction was made between "favorable failures," defined as reparable failures, and "unfavorable failures,"defined as irreparable [root] fractures). The literature search revealed 1,984 abstracts. Included were 244, 42, and 12 articles in the first, second, and third selection steps, respectively. Custom-cast post systems showed higher failure loads than prefabricated FRC post systems, whereas ceramic showed lower failure loads. Significantly more favorable failures occurred with prefabricated FRC post systems than with prefabricated and custom-cast metal post systems. The variable "post system" had a significant effect on mean failure loads. FRC post systems more frequently showed favorable failure modes than did metal post systems.
Independent Orbiter Assessment (IOA): FMEA/CIL assessment
NASA Technical Reports Server (NTRS)
Saiidi, Mo J.; Swain, L. J.; Compton, J. M.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. Direction was given by the Orbiter and GFE Projects Office to perform the hardware analysis and assessment using the instructions and ground rules defined in NSTS 22206. The IOA analysis features a top-down approach to determine hardware failure modes, criticality, and potential critical items. To preserve independence, the anlaysis was accomplished without reliance upon the results contained within the NASA and prime contractor FMEA/CIL documentation. The assessment process compares the independently derived failure modes and criticality assignments to the proposed NASA Post 51-L FMEA/CIL documentation. When possible, assessment issues are discussed and resolved with the NASA subsystem managers. The assessment results for each subsystem are summarized. The most important Orbiter assessment finding was the previously unknown stuck autopilot push-button criticality 1/1 failure mode, having a worst case effect of loss of crew/vehicle when a microwave landing system is not active.
Yousefinezhadi, Taraneh; Jannesar Nobari, Farnaz Attar; Goodari, Faranak Behzadi; Arab, Mohammad
2016-01-01
Introduction: In any complex human system, human error is inevitable and shows that can’t be eliminated by blaming wrong doers. So with the aim of improving Intensive Care Units (ICU) reliability in hospitals, this research tries to identify and analyze ICU’s process failure modes at the point of systematic approach to errors. Methods: In this descriptive research, data was gathered qualitatively by observations, document reviews, and Focus Group Discussions (FGDs) with the process owners in two selected ICUs in Tehran in 2014. But, data analysis was quantitative, based on failures’ Risk Priority Number (RPN) at the base of Failure Modes and Effects Analysis (FMEA) method used. Besides, some causes of failures were analyzed by qualitative Eindhoven Classification Model (ECM). Results: Through FMEA methodology, 378 potential failure modes from 180 ICU activities in hospital A and 184 potential failures from 99 ICU activities in hospital B were identified and evaluated. Then with 90% reliability (RPN≥100), totally 18 failures in hospital A and 42 ones in hospital B were identified as non-acceptable risks and then their causes were analyzed by ECM. Conclusions: Applying of modified PFMEA for improving two selected ICUs’ processes reliability in two different kinds of hospitals shows that this method empowers staff to identify, evaluate, prioritize and analyze all potential failure modes and also make them eager to identify their causes, recommend corrective actions and even participate in improving process without feeling blamed by top management. Moreover, by combining FMEA and ECM, team members can easily identify failure causes at the point of health care perspectives. PMID:27157162
Veronese, Ivan; De Martin, Elena; Martinotti, Anna Stefania; Fumagalli, Maria Luisa; Vite, Cristina; Redaelli, Irene; Malatesta, Tiziana; Mancosu, Pietro; Beltramo, Giancarlo; Fariselli, Laura; Cantone, Marie Claire
2015-06-13
A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to assess the risks for patients undergoing Stereotactic Body Radiation Therapy (SBRT) treatments for lesions located in spine and liver in two CyberKnife® Centres. The various sub-processes characterizing the SBRT treatment were identified to generate the process trees of both the treatment planning and delivery phases. This analysis drove to the identification and subsequent scoring of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system. Novel solutions aimed to increase patient safety were accordingly considered. The process-tree characterising the SBRT treatment planning stage was composed with a total of 48 sub-processes. Similarly, 42 sub-processes were identified in the stage of delivery to liver tumours and 30 in the stage of delivery to spine lesions. All the sub-processes were judged to be potentially prone to one or more failure modes. Nineteen failures (i.e. 5 in treatment planning stage, 5 in the delivery to liver lesions and 9 in the delivery to spine lesions) were considered of high concern in view of the high RPN and/or severity index value. The analysis of the potential failures, their causes and effects allowed to improve the safety strategies already adopted in the clinical practice with additional measures for optimizing quality management workflow and increasing patient safety.
FMEA of manual and automated methods for commissioning a radiotherapy treatment planning system.
Wexler, Amy; Gu, Bruce; Goddu, Sreekrishna; Mutic, Maya; Yaddanapudi, Sridhar; Olsen, Lindsey; Harry, Taylor; Noel, Camille; Pawlicki, Todd; Mutic, Sasa; Cai, Bin
2017-09-01
To evaluate the level of risk involved in treatment planning system (TPS) commissioning using a manual test procedure, and to compare the associated process-based risk to that of an automated commissioning process (ACP) by performing an in-depth failure modes and effects analysis (FMEA). The authors collaborated to determine the potential failure modes of the TPS commissioning process using (a) approaches involving manual data measurement, modeling, and validation tests and (b) an automated process utilizing application programming interface (API) scripting, preloaded, and premodeled standard radiation beam data, digital heterogeneous phantom, and an automated commissioning test suite (ACTS). The severity (S), occurrence (O), and detectability (D) were scored for each failure mode and the risk priority numbers (RPN) were derived based on TG-100 scale. Failure modes were then analyzed and ranked based on RPN. The total number of failure modes, RPN scores and the top 10 failure modes with highest risk were described and cross-compared between the two approaches. RPN reduction analysis is also presented and used as another quantifiable metric to evaluate the proposed approach. The FMEA of a MTP resulted in 47 failure modes with an RPN ave of 161 and S ave of 6.7. The highest risk process of "Measurement Equipment Selection" resulted in an RPN max of 640. The FMEA of an ACP resulted in 36 failure modes with an RPN ave of 73 and S ave of 6.7. The highest risk process of "EPID Calibration" resulted in an RPN max of 576. An FMEA of treatment planning commissioning tests using automation and standardization via API scripting, preloaded, and pre-modeled standard beam data, and digital phantoms suggests that errors and risks may be reduced through the use of an ACP. © 2017 American Association of Physicists in Medicine.
Li, Xixi; He, Mei; Wang, Haiyan
2017-01-01
Abstract In this study, failure mode and effect analysis (FMEA), a proactive tool, was applied to reduce errors associated with the process which begins with assessment of patient and ends with treatment of complications. The aim of this study is to assess whether FMEA implementation will significantly reduce the incidence of catheter-related bloodstream infections (CRBSIs) in intensive care unit. The FMEA team was constructed. A team of 15 medical staff from different departments were recruited and trained. Their main responsibility was to analyze and score all possible processes of central venous catheterization failures. Failure modes with risk priority number (RPN) ≥100 (top 10 RPN scores) were deemed as high-priority-risks, meaning that they needed immediate corrective action. After modifications were put, the resulting RPN was compared with the previous one. A centralized nursing care system was designed. A total of 25 failure modes were identified. High-priority risks were “Unqualified medical device sterilization” (RPN, 337), “leukopenia, very low immunity” (RPN, 222), and “Poor hand hygiene Basic diseases” (RPN, 160). The corrective measures that we took allowed a decrease in the RPNs, especially for the high-priority risks. The maximum reduction was approximately 80%, as observed for the failure mode “Not creating the maximal barrier for patient.” The averaged incidence of CRBSIs was reduced from 5.19% to 1.45%, with 3 months of 0 infection rate. The FMEA can effectively reduce incidence of CRBSIs, improve the security of central venous catheterization technology, decrease overall medical expenses, and improve nursing quality. PMID:29390515
Pérez-González, A; González-Lluch, C; Sancho-Bru, J L; Rodríguez-Cervantes, P J; Barjau-Escribano, A; Forner-Navarro, L
2012-03-01
The aim of this study was to analyse the strength and failure mode of teeth restored with fibre posts under retention and flexural-compressive loads at different stages of the restoration and to analyse whether including a simulated ligament in the experimental setup has any effect on the strength or the failure mode. Thirty human maxillary central incisors were distributed in three different groups to be restored with simulation of different restoration stages (1: only post, 2: post and core, 3: post-core and crown), using Rebilda fibre posts. The specimens were inserted in resin blocks and loaded by means of a universal testing machine until failure under tension (stage 1) and 50º flexion (stages 2-3). Half the specimens in each group were restored using a simulated ligament between root dentine and resin block and the other half did not use this element. Failure in stage 1 always occurred at the post-dentine interface, with a mean failure load of 191·2 N. Failure in stage 2 was located mainly in the core or coronal dentine (mean failure load of 505·9 N). Failure in stage 3 was observed in the coronal dentine (mean failure load 397·4 N). Failure loads registered were greater than expected masticatory loads. Fracture modes were mostly reparable, thus indicating that this post is clinically valid at the different stages of restoration studied. The inclusion of the simulated ligament in the experimental system did not show a statistically significant effect on the failure load or the failure mode. © 2011 Blackwell Publishing Ltd.
Independent Orbiter Assessment (IOA): Analysis of the manned maneuvering unit
NASA Technical Reports Server (NTRS)
Bailey, P. S.
1986-01-01
Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve indepedence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Manned Maneuvering Unit (MMU) hardware. The MMU is a propulsive backpack, operated through separate hand controllers that input the pilot's translational and rotational maneuvering commands to the control electronics and then to the thrusters. The IOA analysis process utilized available MMU hardware drawings and schematics for defining hardware subsystems, assemblies, components, and hardware items. Final levels of detail were evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the worst case severity of the effect for each identified failure mode. The IOA analysis of the MMU found that the majority of the PCIs identified are resultant from the loss of either the propulsion or control functions, or are resultant from inability to perform an immediate or future mission. The five most severe criticalities identified are all resultant from failures imposed on the MMU hand controllers which have no redundancy within the MMU.
Failure modes and effects analysis automation
NASA Technical Reports Server (NTRS)
Kamhieh, Cynthia H.; Cutts, Dannie E.; Purves, R. Byron
1988-01-01
A failure modes and effects analysis (FMEA) assistant was implemented as a knowledge based system and will be used during design of the Space Station to aid engineers in performing the complex task of tracking failures throughout the entire design effort. The three major directions in which automation was pursued were the clerical components of the FMEA process, the knowledge acquisition aspects of FMEA, and the failure propagation/analysis portions of the FMEA task. The system is accessible to design, safety, and reliability engineers at single user workstations and, although not designed to replace conventional FMEA, it is expected to decrease by many man years the time required to perform the analysis.
CONFIG: Qualitative simulation tool for analyzing behavior of engineering devices
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Basham, Bryan D.; Harris, Richard A.
1987-01-01
To design failure management expert systems, engineers mentally analyze the effects of failures and procedures as they propagate through device configurations. CONFIG is a generic device modeling tool for use in discrete event simulation, to support such analyses. CONFIG permits graphical modeling of device configurations and qualitative specification of local operating modes of device components. Computation requirements are reduced by focussing the level of component description on operating modes and failure modes, and specifying qualitative ranges of variables relative to mode transition boundaries. Simulation processing occurs only when modes change or variables cross qualitative boundaries. Device models are built graphically, using components from libraries. Components are connected at ports by graphical relations that define data flow. The core of a component model is its state transition diagram, which specifies modes of operation and transitions among them.
Simulation Assisted Risk Assessment: Blast Overpressure Modeling
NASA Technical Reports Server (NTRS)
Lawrence, Scott L.; Gee, Ken; Mathias, Donovan; Olsen, Michael
2006-01-01
A probabilistic risk assessment (PRA) approach has been developed and applied to the risk analysis of capsule abort during ascent. The PRA is used to assist in the identification of modeling and simulation applications that can significantly impact the understanding of crew risk during this potentially dangerous maneuver. The PRA approach is also being used to identify the appropriate level of fidelity for the modeling of those critical failure modes. The Apollo launch escape system (LES) was chosen as a test problem for application of this approach. Failure modes that have been modeled and/or simulated to date include explosive overpressure-based failure, explosive fragment-based failure, land landing failures (range limits exceeded either near launch or Mode III trajectories ending on the African continent), capsule-booster re-contact during separation, and failure due to plume-induced instability. These failure modes have been investigated using analysis tools in a variety of technical disciplines at various levels of fidelity. The current paper focuses on the development and application of a blast overpressure model for the prediction of structural failure due to overpressure, including the application of high-fidelity analysis to predict near-field and headwinds effects.
NASA Astrophysics Data System (ADS)
Varzakas, Theodoros H.; Arvanitoyannis, Ioannis S.
Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of poultry slaughtering and manufacturing. In this work comparison of ISO22000 analysis with HACCP is carried out over poultry slaughtering, processing and packaging. Critical Control points and Prerequisite programs (PrPs) have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram).
Life Cycle Costing: A Working Level Approach
1981-06-01
Effects Analysis ( FMEA ) ...... ................ .. 59 Logistics Performance Factors (LPFs) 60 Planning the Use of Life Cycle Cost in the Demonstration...form. Failure Mode and Effects Analysis ( FMEA ). Description. FMEA is a technique that attempts to improve the design of any particular unit. The FMEA ...failure modes and also eliminate extra parts or ones that are used to achieve more performance than is necessary (16:5-14]. Advantages. FMEA forces
Space tug propulsion system failure mode, effects and criticality analysis
NASA Technical Reports Server (NTRS)
Boyd, J. W.; Hardison, E. P.; Heard, C. B.; Orourke, J. C.; Osborne, F.; Wakefield, L. T.
1972-01-01
For purposes of the study, the propulsion system was considered as consisting of the following: (1) main engine system, (2) auxiliary propulsion system, (3) pneumatic system, (4) hydrogen feed, fill, drain and vent system, (5) oxygen feed, fill, drain and vent system, and (6) helium reentry purge system. Each component was critically examined to identify possible failure modes and the subsequent effect on mission success. Each space tug mission consists of three phases: launch to separation from shuttle, separation to redocking, and redocking to landing. The analysis considered the results of failure of a component during each phase of the mission. After the failure modes of each component were tabulated, those components whose failure would result in possible or certain loss of mission or inability to return the Tug to ground were identified as critical components and a criticality number determined for each. The criticality number of a component denotes the number of mission failures in one million missions due to the loss of that component. A total of 68 components were identified as critical with criticality numbers ranging from 1 to 2990.
Lamey, M; Carlone, M; Alasti, H; Bissonnette, J P; Borg, J; Breen, S; Coolens, C; Heaton, R; Islam, M; van Proojen, M; Sharpe, M; Stanescu, T; Jaffray, D
2012-07-01
An online Magnetic Resonance guided Radiation Therapy (MRgRT) system is under development. The system is comprised of an MRI with the capability of travel between and into HDR brachytherapy and external beam radiation therapy vaults. The system will provide on-line MR images immediately prior to radiation therapy. The MR images will be registered to a planning image and used for image guidance. With the intention of system safety we have performed a failure modes and effects analysis. A process tree of the facility function was developed. Using the process tree as well as an initial design of the facility as guidelines possible failure modes were identified, for each of these failure modes root causes were identified. For each possible failure the assignment of severity, detectability and occurrence scores was performed. Finally suggestions were developed to reduce the possibility of an event. The process tree consists of nine main inputs and each of these main inputs consisted of 5 - 10 sub inputs and tertiary inputs were also defined. The process tree ensures that the overall safety of the system has been considered. Several possible failure modes were identified and were relevant to the design, construction, commissioning and operating phases of the facility. The utility of the analysis can be seen in that it has spawned projects prior to installation and has lead to suggestions in the design of the facility. © 2012 American Association of Physicists in Medicine.
Independent Orbiter Assessment (IOA): Analysis of the DPS subsystem
NASA Technical Reports Server (NTRS)
Lowery, H. J.; Haufler, W. A.; Pietz, K. C.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) is presented. The IOA approach features a top-down analysis of the hardware to independently determine failure modes, criticality, and potential critical items. The independent analysis results corresponding to the Orbiter Data Processing System (DPS) hardware are documented. The DPS hardware is required for performing critical functions of data acquisition, data manipulation, data display, and data transfer throughout the Orbiter. Specifically, the DPS hardware consists of the following components: Multiplexer/Demultiplexer (MDM); General Purpose Computer (GPC); Multifunction CRT Display System (MCDS); Data Buses and Data Bus Couplers (DBC); Data Bus Isolation Amplifiers (DBIA); Mass Memory Unit (MMU); and Engine Interface Unit (EIU). The IOA analysis process utilized available DPS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the extensive redundancy built into the DPS the number of critical items are few. Those identified resulted from premature operation and erroneous output of the GPCs.
NASA Technical Reports Server (NTRS)
Patton, Jeff A.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C)/Electrical Power Generation (EPG) hardware. The EPD and C/EPG hardware is required for performing critical functions of cryogenic reactant storage, electrical power generation and product water distribution in the Orbiter. Specifically, the EPD and C/EPG hardware consists of the following components: Power Section Assembly (PSA); Reactant Control Subsystem (RCS); Thermal Control Subsystem (TCS); Water Removal Subsystem (WRS); and Power Reactant Storage and Distribution System (PRSDS). The IOA analysis process utilized available EPD and C/EPG hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.
NASA Technical Reports Server (NTRS)
Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.
2017-01-01
An investigation of high temperature cyclic fatigue crack growth (FCG) threshold behavior of two advanced nickel disk alloys was conducted. The focus of the study was the unusual crossover effect in the near-threshold region of these type of alloys where conditions which produce higher crack growth rates in the Paris regime, produce higher resistance to crack growth in the near threshold regime. It was shown that this crossover effect is associated with a sudden change in the fatigue failure mode from a predominant transgranular mode in the Paris regime to fully intergranular mode in the threshold fatigue crack growth region. This type of a sudden change in the fracture mechanisms has not been previously reported and is surprising considering that intergranular failure is typically associated with faster crack growth rates and not the slow FCG rates of the near-threshold regime. By characterizing this behavior as a function of test temperature, environment and cyclic frequency, it was determined that both the crossover effect and the onset of intergranular failure are caused by environmentally driven mechanisms which have not as yet been fully identified. A plausible explanation for the observed behavior is proposed.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1989-01-01
Results of a series of tests to determine the effects of adhesive interleaving and discontinuous plies (plies with end-to-end gaps) on the displacements, failure loads and failure modes of graphite-epoxy laminates subjected to transverse normal loads are presented. Adhesive interleaving can be used to contain local damage within a group of plies, i.e., to arrest crack propagation on the interlaminate level, and it can increase the amount of normal displacement the laminate can withstand before failure. However, the addition of adhesive interleaving to a laminate does not significantly increase its load carrying capability. A few discontinuous plies in a laminate can reduce the normal displacement and load at failure by 10 to 40 percent compared to a laminate with no discontinuous plies, but the presence of the ply discontinuities does not generally change the failure location or the failure mode of the laminate.
NASA Technical Reports Server (NTRS)
Satyanarayana, Arunkumar; Bogert, Philip B.; Chunchu, Prasad B.
2007-01-01
The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations.
Failure mode and effect analysis: improving intensive care unit risk management processes.
Askari, Roohollah; Shafii, Milad; Rafiei, Sima; Abolhassani, Mohammad Sadegh; Salarikhah, Elaheh
2017-04-18
Purpose Failure modes and effects analysis (FMEA) is a practical tool to evaluate risks, discover failures in a proactive manner and propose corrective actions to reduce or eliminate potential risks. The purpose of this paper is to apply FMEA technique to examine the hazards associated with the process of service delivery in intensive care unit (ICU) of a tertiary hospital in Yazd, Iran. Design/methodology/approach This was a before-after study conducted between March 2013 and December 2014. By forming a FMEA team, all potential hazards associated with ICU services - their frequency and severity - were identified. Then risk priority number was calculated for each activity as an indicator representing high priority areas that need special attention and resource allocation. Findings Eight failure modes with highest priority scores including endotracheal tube defect, wrong placement of endotracheal tube, EVD interface, aspiration failure during suctioning, chest tube failure, tissue injury and deep vein thrombosis were selected for improvement. Findings affirmed that improvement strategies were generally satisfying and significantly decreased total failures. Practical implications Application of FMEA in ICUs proved to be effective in proactively decreasing the risk of failures and corrected the control measures up to acceptable levels in all eight areas of function. Originality/value Using a prospective risk assessment approach, such as FMEA, could be beneficial in dealing with potential failures through proposing preventive actions in a proactive manner. The method could be used as a tool for healthcare continuous quality improvement so that the method identifies both systemic and human errors, and offers practical advice to deal effectively with them.
Investigation of precipitate refinement in Mg alloys by an analytical composite failure model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabei, Ali; Li, Dongsheng; Lavender, Curt A.
2015-10-01
An analytical model is developed to simulate precipitate refinement in second phase strengthened magnesium alloys. The model is developed based on determination of the stress fields inside elliptical precipitates embedded in a rate dependent inelastic matrix. The stress fields are utilized to determine the failure mode that governs the refinement behavior. Using an AZ31 Mg alloy as an example, the effects the applied load, aspect ratio and orientation of the particle is studied on the macroscopic failure of a single α-Mg17Al12 precipitate. Additionally, a temperature dependent version of the corresponding constitutive law is used to incorporate the effects of temperature.more » In plane strain compression, an extensional failure mode always fragments the precipitates. The critical strain rate at which the precipitates start to fail strongly depends on the orientation of the precipitate with respect to loading direction. The results show that the higher the aspect ratio is, the easier the precipitate fractures. Precipitate shape is another factor influencing the failure response. In contrast to elliptical precipitates with high aspect ratio, spherical precipitates are strongly resistant to sectioning. In pure shear loading, in addition to the extensional mode of precipitate failure, a shearing mode may get activated depending on orientation and aspect ratio of the precipitate. The effect of temperature in relation to strain rate was also verified for plane strain compression and pure shear loading cases.« less
A comparative critical study between FMEA and FTA risk analysis methods
NASA Astrophysics Data System (ADS)
Cristea, G.; Constantinescu, DM
2017-10-01
Today there is used an overwhelming number of different risk analyses techniques with acronyms such as: FMEA (Failure Modes and Effects Analysis) and its extension FMECA (Failure Mode, Effects, and Criticality Analysis), DRBFM (Design Review by Failure Mode), FTA (Fault Tree Analysis) and and its extension ETA (Event Tree Analysis), HAZOP (Hazard & Operability Studies), HACCP (Hazard Analysis and Critical Control Points) and What-if/Checklist. However, the most used analysis techniques in the mechanical and electrical industry are FMEA and FTA. In FMEA, which is an inductive method, information about the consequences and effects of the failures is usually collected through interviews with experienced people, and with different knowledge i.e., cross-functional groups. The FMEA is used to capture potential failures/risks & impacts and prioritize them on a numeric scale called Risk Priority Number (RPN) which ranges from 1 to 1000. FTA is a deductive method i.e., a general system state is decomposed into chains of more basic events of components. The logical interrelationship of how such basic events depend on and affect each other is often described analytically in a reliability structure which can be visualized as a tree. Both methods are very time-consuming to be applied thoroughly, and this is why it is oftenly not done so. As a consequence possible failure modes may not be identified. To address these shortcomings, it is proposed to use a combination of FTA and FMEA.
Li, Xixi; He, Mei; Wang, Haiyan
2017-12-01
In this study, failure mode and effect analysis (FMEA), a proactive tool, was applied to reduce errors associated with the process which begins with assessment of patient and ends with treatment of complications. The aim of this study is to assess whether FMEA implementation will significantly reduce the incidence of catheter-related bloodstream infections (CRBSIs) in intensive care unit.The FMEA team was constructed. A team of 15 medical staff from different departments were recruited and trained. Their main responsibility was to analyze and score all possible processes of central venous catheterization failures. Failure modes with risk priority number (RPN) ≥100 (top 10 RPN scores) were deemed as high-priority-risks, meaning that they needed immediate corrective action. After modifications were put, the resulting RPN was compared with the previous one. A centralized nursing care system was designed.A total of 25 failure modes were identified. High-priority risks were "Unqualified medical device sterilization" (RPN, 337), "leukopenia, very low immunity" (RPN, 222), and "Poor hand hygiene Basic diseases" (RPN, 160). The corrective measures that we took allowed a decrease in the RPNs, especially for the high-priority risks. The maximum reduction was approximately 80%, as observed for the failure mode "Not creating the maximal barrier for patient." The averaged incidence of CRBSIs was reduced from 5.19% to 1.45%, with 3 months of 0 infection rate.The FMEA can effectively reduce incidence of CRBSIs, improve the security of central venous catheterization technology, decrease overall medical expenses, and improve nursing quality. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
2013-01-01
Background A multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to the actively scanned proton beam radiotherapy process implemented at CNAO (Centro Nazionale di Adroterapia Oncologica), aiming at preventing accidental exposures to the patient. Methods FMEA was applied to the treatment planning stage and consisted of three steps: i) identification of the involved sub-processes; ii) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, iii) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results Thirty-four sub-processes were identified, twenty-two of them were judged to be potentially prone to one or more failure modes. A total of forty-four failure modes were recognized, 52% of them characterized by an RPN score equal to 80 or higher. The threshold of 125 for RPN was exceeded in five cases only. The most critical sub-process appeared related to the delineation and correction of artefacts in planning CT data. Failures associated to that sub-process were inaccurate delineation of the artefacts and incorrect proton stopping power assignment to body regions. Other significant failure modes consisted of an outdated representation of the patient anatomy, an improper selection of beam direction and of the physical beam model or dose calculation grid. The main effects of these failures were represented by wrong dose distribution (i.e. deviating from the planned one) delivered to the patient. Additional strategies for risk mitigation, easily and immediately applicable, consisted of a systematic information collection about any known implanted prosthesis directly from each patient and enforcing a short interval time between CT scan and treatment start. Moreover, (i) the investigation of dedicated CT image reconstruction algorithms, (ii) further evaluation of treatment plan robustness and (iii) implementation of independent methods for dose calculation (such as Monte Carlo simulations) may represent novel solutions to increase patient safety. Conclusions FMEA is a useful tool for prospective evaluation of patient safety in proton beam radiotherapy. The application of this method to the treatment planning stage lead to identify strategies for risk mitigation in addition to the safety measures already adopted in clinical practice. PMID:23705626
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2013 CFR
2013-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2014 CFR
2014-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
14 CFR 417.309 - Flight safety system analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... system anomaly occurring and all of its effects as determined by the single failure point analysis and... termination system. (c) Single failure point. A command control system must undergo an analysis that... fault tree analysis or a failure modes effects and criticality analysis; (2) Identify all possible...
a New Method for Fmeca Based on Fuzzy Theory and Expert System
NASA Astrophysics Data System (ADS)
Byeon, Yoong-Tae; Kim, Dong-Jin; Kim, Jin-O.
2008-10-01
Failure Mode Effects and Criticality Analysis (FMECA) is one of most widely used methods in modern engineering system to investigate potential failure modes and its severity upon the system. FMECA evaluates criticality and severity of each failure mode and visualize the risk level matrix putting those indices to column and row variable respectively. Generally, those indices are determined subjectively by experts and operators. However, this process has no choice but to include uncertainty. In this paper, a method for eliciting expert opinions considering its uncertainty is proposed to evaluate the criticality and severity. In addition, a fuzzy expert system is constructed in order to determine the crisp value of risk level for each failure mode. Finally, an illustrative example system is analyzed in the case study. The results are worth considering in deciding the proper policies for each component of the system.
Bonnabry, P; Cingria, L; Sadeghipour, F; Ing, H; Fonzo-Christe, C; Pfister, R
2005-01-01
Background: Until recently, the preparation of paediatric parenteral nutrition formulations in our institution included re-transcription and manual compounding of the mixture. Although no significant clinical problems have occurred, re-engineering of this high risk activity was undertaken to improve its safety. Several changes have been implemented including new prescription software, direct recording on a server, automatic printing of the labels, and creation of a file used to pilot a BAXA MM 12 automatic compounder. The objectives of this study were to compare the risks associated with the old and new processes, to quantify the improved safety with the new process, and to identify the major residual risks. Methods: A failure modes, effects, and criticality analysis (FMECA) was performed by a multidisciplinary team. A cause-effect diagram was built, the failure modes were defined, and the criticality index (CI) was determined for each of them on the basis of the likelihood of occurrence, the severity of the potential effect, and the detection probability. The CIs for each failure mode were compared for the old and new processes and the risk reduction was quantified. Results: The sum of the CIs of all 18 identified failure modes was 3415 for the old process and 1397 for the new (reduction of 59%). The new process reduced the CIs of the different failure modes by a mean factor of 7. The CI was smaller with the new process for 15 failure modes, unchanged for two, and slightly increased for one. The greatest reduction (by a factor of 36) concerned re-transcription errors, followed by readability problems (by a factor of 30) and chemical cross contamination (by a factor of 10). The most critical steps in the new process were labelling mistakes (CI 315, maximum 810), failure to detect a dosage or product mistake (CI 288), failure to detect a typing error during the prescription (CI 175), and microbial contamination (CI 126). Conclusions: Modification of the process resulted in a significant risk reduction as shown by risk analysis. Residual failure opportunities were also quantified, allowing additional actions to be taken to reduce the risk of labelling mistakes. This study illustrates the usefulness of prospective risk analysis methods in healthcare processes. More systematic use of risk analysis is needed to guide continuous safety improvement of high risk activities. PMID:15805453
Bonnabry, P; Cingria, L; Sadeghipour, F; Ing, H; Fonzo-Christe, C; Pfister, R E
2005-04-01
Until recently, the preparation of paediatric parenteral nutrition formulations in our institution included re-transcription and manual compounding of the mixture. Although no significant clinical problems have occurred, re-engineering of this high risk activity was undertaken to improve its safety. Several changes have been implemented including new prescription software, direct recording on a server, automatic printing of the labels, and creation of a file used to pilot a BAXA MM 12 automatic compounder. The objectives of this study were to compare the risks associated with the old and new processes, to quantify the improved safety with the new process, and to identify the major residual risks. A failure modes, effects, and criticality analysis (FMECA) was performed by a multidisciplinary team. A cause-effect diagram was built, the failure modes were defined, and the criticality index (CI) was determined for each of them on the basis of the likelihood of occurrence, the severity of the potential effect, and the detection probability. The CIs for each failure mode were compared for the old and new processes and the risk reduction was quantified. The sum of the CIs of all 18 identified failure modes was 3415 for the old process and 1397 for the new (reduction of 59%). The new process reduced the CIs of the different failure modes by a mean factor of 7. The CI was smaller with the new process for 15 failure modes, unchanged for two, and slightly increased for one. The greatest reduction (by a factor of 36) concerned re-transcription errors, followed by readability problems (by a factor of 30) and chemical cross contamination (by a factor of 10). The most critical steps in the new process were labelling mistakes (CI 315, maximum 810), failure to detect a dosage or product mistake (CI 288), failure to detect a typing error during the prescription (CI 175), and microbial contamination (CI 126). Modification of the process resulted in a significant risk reduction as shown by risk analysis. Residual failure opportunities were also quantified, allowing additional actions to be taken to reduce the risk of labelling mistakes. This study illustrates the usefulness of prospective risk analysis methods in healthcare processes. More systematic use of risk analysis is needed to guide continuous safety improvement of high risk activities.
Türk, Murat; Aydoğdu, Müge; Gürsel, Gül
2018-01-01
Different outcomes and success rates of non-invasive positive pressure ventilation (NPPV) in patients with acute hypercapnic respiratory failure (AHRF) still pose a significant problem in intensive care units. Previous studies investigating different modes, body positioning, and obesity-associated hypoventilation in patients with chronic respiratory failure showed that these factors may affect ventilator mechanics to achieve a better minute ventilation. This study tried to compare pressure support (BiPAP-S) and average volume targeted pressure support (AVAPS-S) modes in patients with acute or acute-on-chronic hypercapnic respiratory failure. In addition, short-term effects of body position and obesity within both modes were analyzed. We conducted a randomized controlled study in a 7-bed intensive care unit. The course of blood gas analysis and differences in ventilation variables were compared between BiPAP-S (n=33) and AVAPS-S (n=29), and between semi-recumbent and lateral positions in both modes. No difference was found in the length of hospital stay and the course of PaCO2, pH, and HCO3 levels between the modes. There was a mean reduction of 5.7±4.1 mmHg in the PaCO2 levels in the AVAPS-S mode, and 2.7±2.3 mmHg in the BiPAP-S mode per session (p<0.05). Obesity didn't have any effect on the course of PaCO2 in both the modes. Body positioning had no notable effect in both modes. Although the decrease in the PaCO2 levels in the AVAPS-S mode per session was remarkably high, the course was similar in both modes. Furthermore, obesity and body positioning had no prominent effect on the PaCO2 response and ventilator mechanics. Post hoc power analysis showed that the sample size was not adequate to detect a significant difference between the modes.
NASA Astrophysics Data System (ADS)
Takahashi, Masakazu; Nanba, Reiji; Fukue, Yoshinori
This paper proposes operational Risk Management (RM) method using Failure Mode and Effects Analysis (FMEA) for drug manufacturing computerlized system (DMCS). The quality of drug must not be influenced by failures and operational mistakes of DMCS. To avoid such situation, DMCS has to be conducted enough risk assessment and taken precautions. We propose operational RM method using FMEA for DMCS. To propose the method, we gathered and compared the FMEA results of DMCS, and develop a list that contains failure modes, failures and countermeasures. To apply this list, we can conduct RM in design phase, find failures, and conduct countermeasures efficiently. Additionally, we can find some failures that have not been found yet.
Quantitative Approach to Failure Mode and Effect Analysis for Linear Accelerator Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Daniel, Jennifer C., E-mail: jennifer.odaniel@duke.edu; Yin, Fang-Fang
Purpose: To determine clinic-specific linear accelerator quality assurance (QA) TG-142 test frequencies, to maximize physicist time efficiency and patient treatment quality. Methods and Materials: A novel quantitative approach to failure mode and effect analysis is proposed. Nine linear accelerator-years of QA records provided data on failure occurrence rates. The severity of test failure was modeled by introducing corresponding errors into head and neck intensity modulated radiation therapy treatment plans. The relative risk of daily linear accelerator QA was calculated as a function of frequency of test performance. Results: Although the failure severity was greatest for daily imaging QA (imaging vsmore » treatment isocenter and imaging positioning/repositioning), the failure occurrence rate was greatest for output and laser testing. The composite ranking results suggest that performing output and lasers tests daily, imaging versus treatment isocenter and imaging positioning/repositioning tests weekly, and optical distance indicator and jaws versus light field tests biweekly would be acceptable for non-stereotactic radiosurgery/stereotactic body radiation therapy linear accelerators. Conclusions: Failure mode and effect analysis is a useful tool to determine the relative importance of QA tests from TG-142. Because there are practical time limitations on how many QA tests can be performed, this analysis highlights which tests are the most important and suggests the frequency of testing based on each test's risk priority number.« less
SU-E-T-420: Failure Effects Mode Analysis for Trigeminal Neuralgia Frameless Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, J
2015-06-15
Purpose: Functional radiosurgery has been used successfully in the treatment of trigeminal neuralgia but presents significant challenges to ensuring the high prescription dose is delivered accurately. A review of existing practice should help direct the focus of quality improvement for this treatment regime. Method: Failure modes and effects analysis was used to identify the processes in preparing radiosurgery treatment for TN. The map was developed by a multidisciplinary team including: neurosurgeon, radiation oncology, physicist and therapist. Potential failure modes were identified for each step in the process map as well as potential causes and end effect. A risk priority numbermore » was assigned to each cause. Results: The process map identified 66 individual steps (see attached supporting document). Corrective actions were developed for areas of high risk priority number. Wrong site treatment is at higher risk for trigeminal neuralgia treatment due to the lack of site specific pathologic imaging on MR and CT – additional site specific checks were implemented to minimize the risk of wrong site treatment. Failed collision checks resulted from an insufficient collision model in the treatment planning system and a plan template was developed to address this problem. Conclusion: Failure modes and effects analysis is an effective tool for developing quality improvement in high risk radiotherapy procedures such as functional radiosurgery.« less
Effects of soil-engineering properties on the failure mode of shallow landslides
McKenna, Jonathan Peter; Santi, Paul Michael; Amblard, Xavier; Negri, Jacquelyn
2012-01-01
Some landslides mobilize into flows, while others slide and deposit material immediately down slope. An index based on initial dry density and fine-grained content of soil predicted failure mode of 96 landslide initiation sites in Oregon and Colorado with 79% accuracy. These material properties can be used to identify potential sources for debris flows and for slides. Field data suggest that loose soils can evolve from dense soils that dilate upon shearing. The method presented herein to predict failure mode is most applicable for shallow (depth 8), with few to moderate fines (fine-grained content <18%), and with liquid limits <40.
Rodriguez-Gonzalez, Carmen Guadalupe; Martin-Barbero, Maria Luisa; Herranz-Alonso, Ana; Durango-Limarquez, Maria Isabel; Hernandez-Sampelayo, Paloma; Sanjurjo-Saez, Maria
2015-08-01
To critically evaluate the causes of preventable adverse drug events during the nurse medication administration process in inpatient units with computerized prescription order entry and profiled automated dispensing cabinets in order to prioritize interventions that need to be implemented and to evaluate the impact of specific interventions on the criticality index. This is a failure mode, effects and criticality analysis (FMECA) study. A multidisciplinary consensus committee composed of pharmacists, nurses and doctors evaluated the process of administering medications in a hospital setting in Spain. By analysing the process, all failure modes were identified and criticality was determined by rating severity, frequency and likelihood of failure detection on a scale of 1 to 10, using adapted versions of already published scales. Safety strategies were identified and prioritized. Through consensus, the committee identified eight processes and 40 failure modes, of which 20 were classified as high risk. The sum of the criticality indices was 5254. For the potential high-risk failure modes, 21 different potential causes were found resulting in 24 recommendations. Thirteen recommendations were prioritized and developed over a 24-month period, reducing total criticality from 5254 to 3572 (a 32.0% reduction). The recommendations with a greater impact on criticality were the development of an electronic medication administration record (-582) and the standardization of intravenous drug compounding in the unit (-168). Other improvements, such as barcode medication administration technology (-1033), were scheduled for a longer period of time because of lower feasibility. FMECA is a useful approach that can improve the medication administration process. © 2015 John Wiley & Sons, Ltd.
Failure Modes and Effects Analysis of bilateral same-day cataract surgery
Shorstein, Neal H.; Lucido, Carol; Carolan, James; Liu, Liyan; Slean, Geraldine; Herrinton, Lisa J.
2017-01-01
PURPOSE To systematically analyze potential process failures related to bilateral same-day cataract surgery toward the goal of improving patient safety. SETTING Twenty-one Kaiser Permanente surgery centers, Northern California, USA. DESIGN Retrospective cohort study. METHODS Quality experts performed a Failure Modes and Effects Analysis (FMEA) that included an evaluation of sterile processing, pharmaceuticals, perioperative clinic and surgical center visits, and biometry. Potential failures in human factors and communication (modes) were identified. Rates of endophthalmitis, toxic anterior segment syndrome (TASS), and unintended intraocular lens (IOL) implantation were assessed in eyes having bilateral same-day surgery from 2010 through 2014. RESULTS The study comprised 4754 eyes. The analysis identified 15 significant potential failure modes. These included lapses in instrument processing and compounding error of intracameral antibiotic that could lead to endophthalmitis or TASS and ambiguous documentation of IOL selection by surgeons, which could lead to unintended IOL implantation. Of the study sample, 1 eye developed endophthalmitis, 1 eye had unintended IOL implantation (rates, 2 per 10 000; 95% confidence intervals [CI] 0.1–12.0 per 10 000), and no eyes developed TASS (upper 95% CI, 8 per 10 000). Recommendations included improving oversight of cleaning and sterilization practices, separating lots of compounded drugs for each eye, and enhancing IOL verification procedures. CONCLUSIONS Potential failure modes and recommended actions in bilateral same-day cataract surgery were determined using a FMEA. These findings might help improve the reliability and safety of bilateral same-day cataract surgery based on current evidence and standards. PMID:28410711
Magnezi, Racheli; Hemi, Asaf; Hemi, Rina
2016-01-01
Background Risk management in health care systems applies to all hospital employees and directors as they deal with human life and emergency routines. There is a constant need to decrease risk and increase patient safety in the hospital environment. The purpose of this article is to review the laboratory testing procedures for parathyroid hormone and adrenocorticotropic hormone (which are characterized by short half-lives) and to track failure modes and risks, and offer solutions to prevent them. During a routine quality improvement review at the Endocrine Laboratory in Tel Hashomer Hospital, we discovered these tests are frequently repeated unnecessarily due to multiple failures. The repetition of the tests inconveniences patients and leads to extra work for the laboratory and logistics personnel as well as the nurses and doctors who have to perform many tasks with limited resources. Methods A team of eight staff members accompanied by the Head of the Endocrine Laboratory formed the team for analysis. The failure mode and effects analysis model (FMEA) was used to analyze the laboratory testing procedure and was designed to simplify the process steps and indicate and rank possible failures. Results A total of 23 failure modes were found within the process, 19 of which were ranked by level of severity. The FMEA model prioritizes failures by their risk priority number (RPN). For example, the most serious failure was the delay after the samples were collected from the department (RPN =226.1). Conclusion This model helped us to visualize the process in a simple way. After analyzing the information, solutions were proposed to prevent failures, and a method to completely avoid the top four problems was also developed. PMID:27980440
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
A bivariate model for analyzing recurrent multi-type automobile failures
NASA Astrophysics Data System (ADS)
Sunethra, A. A.; Sooriyarachchi, M. R.
2017-09-01
The failure mechanism in an automobile can be defined as a system of multi-type recurrent failures where failures can occur due to various multi-type failure modes and these failures are repetitive such that more than one failure can occur from each failure mode. In analysing such automobile failures, both the time and type of the failure serve as response variables. However, these two response variables are highly correlated with each other since the timing of failures has an association with the mode of the failure. When there are more than one correlated response variables, the fitting of a multivariate model is more preferable than separate univariate models. Therefore, a bivariate model of time and type of failure becomes appealing for such automobile failure data. When there are multiple failure observations pertaining to a single automobile, such data cannot be treated as independent data because failure instances of a single automobile are correlated with each other while failures among different automobiles can be treated as independent. Therefore, this study proposes a bivariate model consisting time and type of failure as responses adjusted for correlated data. The proposed model was formulated following the approaches of shared parameter models and random effects models for joining the responses and for representing the correlated data respectively. The proposed model is applied to a sample of automobile failures with three types of failure modes and up to five failure recurrences. The parametric distributions that were suitable for the two responses of time to failure and type of failure were Weibull distribution and multinomial distribution respectively. The proposed bivariate model was programmed in SAS Procedure Proc NLMIXED by user programming appropriate likelihood functions. The performance of the bivariate model was compared with separate univariate models fitted for the two responses and it was identified that better performance is secured by the bivariate model. The proposed model can be used to determine the time and type of failure that would occur in the automobiles considered here.
Giardina, M; Castiglia, F; Tomarchio, E
2014-12-01
Failure mode, effects and criticality analysis (FMECA) is a safety technique extensively used in many different industrial fields to identify and prevent potential failures. In the application of traditional FMECA, the risk priority number (RPN) is determined to rank the failure modes; however, the method has been criticised for having several weaknesses. Moreover, it is unable to adequately deal with human errors or negligence. In this paper, a new versatile fuzzy rule-based assessment model is proposed to evaluate the RPN index to rank both component failure and human error. The proposed methodology is applied to potential radiological over-exposure of patients during high-dose-rate brachytherapy treatments. The critical analysis of the results can provide recommendations and suggestions regarding safety provisions for the equipment and procedures required to reduce the occurrence of accidental events.
Application of failure mode and effects analysis (FMEA) to pretreatment phases in tomotherapy.
Broggi, Sara; Cantone, Marie Claire; Chiara, Anna; Di Muzio, Nadia; Longobardi, Barbara; Mangili, Paola; Veronese, Ivan
2013-09-06
The aim of this paper was the application of the failure mode and effects analysis (FMEA) approach to assess the risks for patients undergoing radiotherapy treatments performed by means of a helical tomotherapy unit. FMEA was applied to the preplanning imaging, volume determination, and treatment planning stages of the tomotherapy process and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system; and 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. A total of 74 failure modes were identified: 38 in the stage of preplanning imaging and volume determination, and 36 in the stage of planning. The threshold of 125 for RPN was exceeded in four cases: one case only in the phase of preplanning imaging and volume determination, and three cases in the stage of planning. The most critical failures appeared related to (i) the wrong or missing definition and contouring of the overlapping regions, (ii) the wrong assignment of the overlap priority to each anatomical structure, (iii) the wrong choice of the computed tomography calibration curve for dose calculation, and (iv) the wrong (or not performed) choice of the number of fractions in the planning station. On the basis of these findings, in addition to the safety strategies already adopted in the clinical practice, novel solutions have been proposed for mitigating the risk of these failures and to increase patient safety.
Independent Orbiter Assessment (IOA): Analysis of the landing/deceleration subsystem
NASA Technical Reports Server (NTRS)
Compton, J. M.; Beaird, H. G.; Weissinger, W. D.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Landing/Deceleration Subsystem hardware. The Landing/Deceleration Subsystem is utilized to allow the Orbiter to perform a safe landing, allowing for landing-gear deploy activities, steering and braking control throughout the landing rollout to wheel-stop, and to allow for ground-handling capability during the ground-processing phase of the flight cycle. Specifically, the Landing/Deceleration hardware consists of the following components: Nose Landing Gear (NLG); Main Landing Gear (MLG); Brake and Antiskid (B and AS) Electrical Power Distribution and Controls (EPD and C); Nose Wheel Steering (NWS); and Hydraulics Actuators. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Due to the lack of redundancy in the Landing/Deceleration Subsystems there is a high number of critical items.
NASA Technical Reports Server (NTRS)
Robinson, W. W.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the Electrical Power Distribution and Control (EPD and C)/Remote Manipulator System (RMS) hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained in the NASA FMEA/CIL documentation. This report documents the results of the independent analysis of the EPD and C/RMS (both port and starboard) hardware. The EPD and C/RMS subsystem hardware provides the electrical power and power control circuitry required to safely deploy, operate, control, and stow or guillotine and jettison two (one port and one starboard) RMSs. The EPD and C/RMS subsystem is subdivided into the four following functional divisions: Remote Manipulator Arm; Manipulator Deploy Control; Manipulator Latch Control; Manipulator Arm Shoulder Jettison; and Retention Arm Jettison. The IOA analysis process utilized available EPD and C/RMS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based on the severity of the effect for each failure mode.
Pilot performance in zero-visibility precision approach. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Ephrath, A. R.
1975-01-01
The pilot's short-term decisions regarding performance assessment and failure monitoring is examined. The performance of airline pilots who flew simulated zero-visibility landing approaches is reported. Results indicate that the pilot's mode of participation in the control task has a strong effect on his workload, the induced workload being lowest when the pilot acts as a monitor during a coupled approach and highest when the pilot is an active element in the control loop. A marked increase in workload at altitudes below 500 ft. is documented at all participation modes; this increase is inversely related to distance-to-go. The participation mode is shown to have a dominant effect on failure-detection performance, with a failure in a monitored (coupled) axis being detected faster than a comparable failure in a manually-controlled axis. Touchdown performance is also documented. It is concluded that the conventional instrument panel and its associated displays are inadequate for zero-visibility operations in the final phases of the landing approach.
Risk management of key issues of FPSO
NASA Astrophysics Data System (ADS)
Sun, Liping; Sun, Hai
2012-12-01
Risk analysis of key systems have become a growing topic late of because of the development of offshore structures. Equipment failures of offloading system and fire accidents were analyzed based on the floating production, storage and offloading (FPSO) features. Fault tree analysis (FTA), and failure modes and effects analysis (FMEA) methods were examined based on information already researched on modules of relex reliability studio (RRS). Equipment failures were also analyzed qualitatively by establishing a fault tree and Boolean structure function based on the shortage of failure cases, statistical data, and risk control measures examined. Failure modes of fire accident were classified according to the different areas of fire occurrences during the FMEA process, using risk priority number (RPN) methods to evaluate their severity rank. The qualitative analysis of FTA gave the basic insight of forming the failure modes of FPSO offloading, and the fire FMEA gave the priorities and suggested processes. The research has practical importance for the security analysis problems of FPSO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teixeira, Flavia C., E-mail: flavitiz@gmail.com; Almeida, Carlos E. de; Saiful Huq, M.
Purpose: The goal of this study was to evaluate the safety and quality management program for stereotactic radiosurgery (SRS) treatment processes at three radiotherapy centers in Brazil by using three industrial engineering tools (1) process mapping, (2) failure modes and effects analysis (FMEA), and (3) fault tree analysis. Methods: The recommendations of Task Group 100 of American Association of Physicists in Medicine were followed to apply the three tools described above to create a process tree for SRS procedure for each radiotherapy center and then FMEA was performed. Failure modes were identified for all process steps and values of riskmore » priority number (RPN) were calculated from O, S, and D (RPN = O × S × D) values assigned by a professional team responsible for patient care. Results: The subprocess treatment planning was presented with the highest number of failure modes for all centers. The total number of failure modes were 135, 104, and 131 for centers I, II, and III, respectively. The highest RPN value for each center is as follows: center I (204), center II (372), and center III (370). Failure modes with RPN ≥ 100: center I (22), center II (115), and center III (110). Failure modes characterized by S ≥ 7, represented 68% of the failure modes for center III, 62% for center II, and 45% for center I. Failure modes with RPNs values ≥100 and S ≥ 7, D ≥ 5, and O ≥ 5 were considered as high priority in this study. Conclusions: The results of the present study show that the safety risk profiles for the same stereotactic radiotherapy process are different at three radiotherapy centers in Brazil. Although this is the same treatment process, this present study showed that the risk priority is different and it will lead to implementation of different safety interventions among the centers. Therefore, the current practice of applying universal device-centric QA is not adequate to address all possible failures in clinical processes at different radiotherapy centers. Integrated approaches to device-centric and process specific quality management program specific to each radiotherapy center are the key to a safe quality management program.« less
NASA Technical Reports Server (NTRS)
Herrin, Stephanie; Iverson, David; Spukovska, Lilly; Souza, Kenneth A. (Technical Monitor)
1994-01-01
Failure Modes and Effects Analysis contain a wealth of information that can be used to create the knowledge base required for building automated diagnostic Expert systems. A real time monitoring and diagnosis expert system based on an actual NASA project's matrix failure modes and effects analysis was developed. This Expert system Was developed at NASA Ames Research Center. This system was first used as a case study to monitor the Research Animal Holding Facility (RAHF), a Space Shuttle payload that is used to house and monitor animals in orbit so the effects of space flight and microgravity can be studied. The techniques developed for the RAHF monitoring and diagnosis Expert system are general enough to be used for monitoring and diagnosis of a variety of other systems that undergo a Matrix FMEA. This automated diagnosis system was successfully used on-line and validated on the Space Shuttle flight STS-58, mission SLS-2 in October 1993.
Varzakas, Theodoros H; Arvanitoyannis, Ioannis S
2007-01-01
The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of corn curl manufacturing. A tentative approach of FMEA application to the snacks industry was attempted in an effort to exclude the presence of GMOs in the final product. This is of crucial importance both from the ethics and the legislation (Regulations EC 1829/2003; EC 1830/2003; Directive EC 18/2001) point of view. The Preliminary Hazard Analysis and the Fault Tree Analysis were used to analyze and predict the occurring failure modes in a food chain system (corn curls processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and the fishbone diagram). Finally, Pareto diagrams were employed towards the optimization of GMOs detection potential of FMEA.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.
2011-01-01
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.
2012-01-01
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments.
Failure detection system risk reduction assessment
NASA Technical Reports Server (NTRS)
Aguilar, Robert B. (Inventor); Huang, Zhaofeng (Inventor)
2012-01-01
A process includes determining a probability of a failure mode of a system being analyzed reaching a failure limit as a function of time to failure limit, determining a probability of a mitigation of the failure mode as a function of a time to failure limit, and quantifying a risk reduction based on the probability of the failure mode reaching the failure limit and the probability of the mitigation.
Independent Orbiter Assessment (IOA): Analysis of the Orbiter Experiment (OEX) subsystem
NASA Technical Reports Server (NTRS)
Compton, J. M.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Experiments hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The Orbiter Experiments (OEX) Program consists of a multiple set of experiments for the purpose of gathering environmental and aerodynamic data to develop more accurate ground models for Shuttle performance and to facilitate the design of future spacecraft. This assessment only addresses currently manifested experiments and their support systems. Specifically this list consists of: Shuttle Entry Air Data System (SEADS); Shuttle Upper Atmosphere Mass Spectrometer (SUMS); Forward Fuselage Support System for OEX (FFSSO); Shuttle Infrared Laced Temperature Sensor (SILTS); Aerodynamic Coefficient Identification Package (ACIP); and Support System for OEX (SSO). There are only two potential critical items for the OEX, since the experiments only gather data for analysis post mission and are totally independent systems except for power. Failure of any experiment component usually only causes a loss of experiment data and in no way jeopardizes the crew or mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F; Cao, N; Young, L
2014-06-15
Purpose: Though FMEA (Failure Mode and Effects Analysis) is becoming more widely adopted for risk assessment in radiation therapy, to our knowledge it has never been validated against actual incident learning data. The objective of this study was to perform an FMEA analysis of an SBRT (Stereotactic Body Radiation Therapy) treatment planning process and validate this against data recorded within an incident learning system. Methods: FMEA on the SBRT treatment planning process was carried out by a multidisciplinary group including radiation oncologists, medical physicists, and dosimetrists. Potential failure modes were identified through a systematic review of the workflow process. Failuremore » modes were rated for severity, occurrence, and detectability on a scale of 1 to 10 and RPN (Risk Priority Number) was computed. Failure modes were then compared with historical reports identified as relevant to SBRT planning within a departmental incident learning system that had been active for two years. Differences were identified. Results: FMEA identified 63 failure modes. RPN values for the top 25% of failure modes ranged from 60 to 336. Analysis of the incident learning database identified 33 reported near-miss events related to SBRT planning. FMEA failed to anticipate 13 of these events, among which 3 were registered with severity ratings of severe or critical in the incident learning system. Combining both methods yielded a total of 76 failure modes, and when scored for RPN the 13 events missed by FMEA ranked within the middle half of all failure modes. Conclusion: FMEA, though valuable, is subject to certain limitations, among them the limited ability to anticipate all potential errors for a given process. This FMEA exercise failed to identify a significant number of possible errors (17%). Integration of FMEA with retrospective incident data may be able to render an improved overview of risks within a process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, D. I.; Han, S. H.
A PSA analyst has been manually determining fire-induced component failure modes and modeling them into the PSA logics. These can be difficult and time-consuming tasks as they need much information and many events are to be modeled. KAERI has been developing the IPRO-ZONE (interface program for constructing zone effect table) to facilitate fire PSA works for identifying and modeling fire-induced component failure modes, and to construct a one top fire event PSA model. With the output of the IPRO-ZONE, the AIMS-PSA, and internal event one top PSA model, one top fire events PSA model is automatically constructed. The outputs ofmore » the IPRO-ZONE include information on fire zones/fire scenarios, fire propagation areas, equipment failure modes affected by a fire, internal PSA basic events corresponding to fire-induced equipment failure modes, and fire events to be modeled. This paper introduces the IPRO-ZONE, and its application results to fire PSA of Ulchin Unit 3 and SMART(System-integrated Modular Advanced Reactor). (authors)« less
Effect of σ2 on All Aspects of Failure in Rocks from Granite to Sandstone
NASA Astrophysics Data System (ADS)
Haimson, B. C.; Ma, X.
2014-12-01
We have studied the effect of σ2 on failure characteristics of two crystalline and three clastic rocks subjected to true triaxial stresses. Common to all rocks tested is the rise in both strain localization onset and σ1 at failure (σ1,peak) for a given σ3, as σ2 is elevated beyond its base level (σ2 = σ3). σ1,peak reaches a maximum at some level of σ2, beyond which it gradually declines, approaching its base magnitude when σ2 nears its own maximum. Failure-plane angle with respect to σ1 for a given σ3 also increases with σ2, at least until the maximum σ1,peak is reached. Westerly granite (Haimson and Chang, IJRMMS, 2000) and KTB amphibolite (Chang and Haimson, JGR, 2000), exhibited a dramatic σ2 effect: at low σ3 (20-30 MPa), higher σ2 lifted σ1,peak by up to 50% over its base level. At high σ3, the increase in σ1,peak was reduced, but even at σ3 = 100 MPa, maximum σ1,peak in both rocks was over 20% higher than its base level. Failure mode remained brittle throughout the stress range tested, but the onset of dilatancy rose with σ2, as did the failure-plane (shear-band) angle (by up to 20°). A gentler effect of σ2 on σ1, peak and failure-plane angle was observed in the clastics, and that effect subsided as porosity increased. In low porosity (φ = 7%) TCDP siltstone (Oku, et al, GRL, 2007), the maximum σ1,peak at σ3 = 25 MPa was about 30% larger than at σ2 = σ3 level, and only 12.5% larger at σ3 = 100 MPa. Failure mode stayed brittle throughout, but shear-band angle increase with σ2 was limited to about 10°, irrespective of σ3 level. An even smaller σ2 effect was observed in Coconino sandstone (φ = 17%) (Ma, PhD thesis, 2014). σ1,peak reached a maximum of about 10% higher than at σ2 = σ3 level; failure-plane angle rise with σ2 was less than 10°. The weakest σ2 effect was found in the high porosity (φ= 25%) Bentheim sandstone (Ma, PhD thesis, 2014). Here σ1, peak reached a maximum of well under 10% higher than its base magnitude, regardless of σ3 level; average failure-plane angle rise with σ2 was below 10°. Failure at σ3 = 150 MPa was along a compaction band(s) normal to σ1, regardless of σ2. Both Coconino and Bentheim underwent dilatant failure at low σ3, shifting to compactive failure at high σ3 levels. But σ2 also affected the failure mode: compactive failure at σ2 = σ3 gradually reverted to a dilatant mode as σ2 was raised.
NASA Astrophysics Data System (ADS)
Telesman, J.; Smith, T. M.; Gabb, T. P.; Ring, A. J.
2018-06-01
Cyclic near-threshold fatigue crack growth (FCG) behavior of two disk superalloys was evaluated and was shown to exhibit an unexpected sudden failure mode transition from a mostly transgranular failure mode at higher stress intensity factor ranges to an almost completely intergranular failure mode in the threshold regime. The change in failure modes was associated with a crossover of FCG resistance curves in which the conditions that produced higher FCG rates in the Paris regime resulted in lower FCG rates and increased ΔK th values in the threshold region. High-resolution scanning and transmission electron microscopy were used to carefully characterize the crack tips at these near-threshold conditions. Formation of stable Al-oxide followed by Cr-oxide and Ti-oxides was found to occur at the crack tip prior to formation of unstable oxides. To contrast with the threshold failure mode regime, a quantitative assessment of the role that the intergranular failure mode has on cyclic FCG behavior in the Paris regime was also performed. It was demonstrated that even a very limited intergranular failure content dominates the FCG response under mixed mode failure conditions.
AADL Fault Modeling and Analysis Within an ARP4761 Safety Assessment
2014-10-01
Analysis Generator 27 3.2.3 Mapping to OpenFTA Format File 27 3.2.4 Mapping to Generic XML Format 28 3.2.5 AADL and FTA Mapping Rules 28 3.2.6 Issues...PSSA), System Safety Assessment (SSA), Common Cause Analysis (CCA), Fault Tree Analysis ( FTA ), Failure Modes and Effects Analysis (FMEA), Failure...Modes and Effects Summary, Mar - kov Analysis (MA), and Dependence Diagrams (DDs), also referred to as Reliability Block Dia- grams (RBDs). The
Failure mechanisms of laminates transversely loaded by bolt push-through
NASA Technical Reports Server (NTRS)
Waters, W. A., Jr.; Williams, J. G.
1985-01-01
Stiffened composite panels proposed for fuselage and wing design utilize a variety of stiffener-to-skin attachment concepts including mechanical fasteners. The attachment concept is an important factor influencing the panel's strength and can govern its performance following local damage. Mechanical fasteners can be an effective method for preventing stiffener-skin separation. One potential failure mode for bolted panels occurs when the bolts pull through the stiffener attachment flange or skin. The resulting loss of support by the skin to the stiffener and by the stiffener to the skin can result in local buckling and subsequent panel collapse. The characteristic failure modes associated with bolt push-through failure are described and the results of a parametric study of the effects that different material systems, boundary conditions, and laminates have on the forces and displacements required to cause damage and bolt pushthrough failure are presented.
Niv, Yaron; Itskoviz, David; Cohen, Michal; Hendel, Hagit; Bar-Giora, Yonit; Berkov, Evgeny; Weisbord, Irit; Leviron, Yifat; Isasschar, Assaf; Ganor, Arian
Failure modes and effects analysis (FMEA) is a tool used to identify potential risks in health care processes. We used the FMEA tool for improving the process of consultation in an academic medical center. A team of 10 staff members-5 physicians, 2 quality experts, 2 organizational consultants, and 1 nurse-was established. The consultation process steps, from ordering to delivering, were computed. Failure modes were assessed for likelihood of occurrence, detection, and severity. A risk priority number (RPN) was calculated. An interventional plan was designed according to the highest RPNs. Thereafter, we compared the percentage of completed computer-based documented consultations before and after the intervention. The team identified 3 main categories of failure modes that reached the highest RPNs: initiation of consultation by a junior staff physician without senior approval, failure to document the consultation in the computerized patient registry, and asking for consultation on the telephone. An interventional plan was designed, including meetings to update knowledge of the consultation request process, stressing the importance of approval by a senior physician, training sessions for closing requests in the patient file, and reporting of telephone requests. The number of electronically documented consultation results and recommendations significantly increased (75%) after intervention. FMEA is an important and efficient tool for improving the consultation process in an academic medical center.
NASA Technical Reports Server (NTRS)
Arbet, J. D.; Duffy, R. E.; Barickman, K.; Saiidi, M. J.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Life Support and Airlock Support Systems (LSS and ALSS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. The discrepancies were flagged for potential future resolution. This report documents the results of that comparison for the Orbiter LSS and ALSS hardware. The IOA product for the LSS and ALSS analysis consisted of 511 failure mode worksheets that resulted in 140 potential critical items. Comparison was made to the NASA baseline which consisted of 456 FMEAs and 101 CIL items. The IOA analysis identified 39 failure modes, 6 of which were classified as CIL items, for components not covered by the NASA FMEAs. It was recommended that these failure modes be added to the NASA FMEA baseline. The overall assessment produced agreement on all but 301 FMEAs which caused differences in 111 CIL items.
Application of failure mode and effects analysis (FMEA) to pretreatment phases in tomotherapy
Broggi, Sara; Cantone, Marie Claire; Chiara, Anna; Muzio, Nadia Di; Longobardi, Barbara; Mangili, Paola
2013-01-01
The aim of this paper was the application of the failure mode and effects analysis (FMEA) approach to assess the risks for patients undergoing radiotherapy treatments performed by means of a helical tomotherapy unit. FMEA was applied to the preplanning imaging, volume determination, and treatment planning stages of the tomotherapy process and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system; and 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. A total of 74 failure modes were identified: 38 in the stage of preplanning imaging and volume determination, and 36 in the stage of planning. The threshold of 125 for RPN was exceeded in four cases: one case only in the phase of preplanning imaging and volume determination, and three cases in the stage of planning. The most critical failures appeared related to (i) the wrong or missing definition and contouring of the overlapping regions, (ii) the wrong assignment of the overlap priority to each anatomical structure, (iii) the wrong choice of the computed tomography calibration curve for dose calculation, and (iv) the wrong (or not performed) choice of the number of fractions in the planning station. On the basis of these findings, in addition to the safety strategies already adopted in the clinical practice, novel solutions have been proposed for mitigating the risk of these failures and to increase patient safety. PACS number: 87.55.Qr PMID:24036868
Using failure mode and effects analysis to plan implementation of smart i.v. pump technology.
Wetterneck, Tosha B; Skibinski, Kathleen A; Roberts, Tanita L; Kleppin, Susan M; Schroeder, Mark E; Enloe, Myra; Rough, Steven S; Hundt, Ann Schoofs; Carayon, Pascale
2006-08-15
Failure mode and effects analysis (FMEA) was used to evaluate a smart i.v. pump as it was implemented into a redesigned medication-use process. A multidisciplinary team conducted a FMEA to guide the implementation of a smart i.v. pump that was designed to prevent pump programming errors. The smart i.v. pump was equipped with a dose-error reduction system that included a pre-defined drug library in which dosage limits were set for each medication. Monitoring for potential failures and errors occurred for three months postimplementation of FMEA. Specific measures were used to determine the success of the actions that were implemented as a result of the FMEA. The FMEA process at the hospital identified key failure modes in the medication process with the use of the old and new pumps, and actions were taken to avoid errors and adverse events. I.V. pump software and hardware design changes were also recommended. Thirteen of the 18 failure modes reported in practice after pump implementation had been identified by the team. A beneficial outcome of FMEA was the development of a multidisciplinary team that provided the infrastructure for safe technology implementation and effective event investigation after implementation. With the continual updating of i.v. pump software and hardware after implementation, FMEA can be an important starting place for safe technology choice and implementation and can produce site experts to follow technology and process changes over time. FMEA was useful in identifying potential problems in the medication-use process with the implementation of new smart i.v. pumps. Monitoring for system failures and errors after implementation remains necessary.
Creating and evaluating a data-driven curriculum for central venous catheter placement.
Duncan, James R; Henderson, Katherine; Street, Mandie; Richmond, Amy; Klingensmith, Mary; Beta, Elio; Vannucci, Andrea; Murray, David
2010-09-01
Central venous catheter placement is a common procedure with a high incidence of error. Other fields requiring high reliability have used Failure Mode and Effects Analysis (FMEA) to prioritize quality and safety improvement efforts. To use FMEA in the development of a formal, standardized curriculum for central venous catheter training. We surveyed interns regarding their prior experience with central venous catheter placement. A multidisciplinary team used FMEA to identify high-priority failure modes and to develop online and hands-on training modules to decrease the frequency, diminish the severity, and improve the early detection of these failure modes. We required new interns to complete the modules and tracked their progress using multiple assessments. Survey results showed new interns had little prior experience with central venous catheter placement. Using FMEA, we created a curriculum that focused on planning and execution skills and identified 3 priority topics: (1) retained guidewires, which led to training on handling catheters and guidewires; (2) improved needle access, which prompted the development of an ultrasound training module; and (3) catheter-associated bloodstream infections, which were addressed through training on maximum sterile barriers. Each module included assessments that measured progress toward recognition and avoidance of common failure modes. Since introducing this curriculum, the number of retained guidewires has fallen more than 4-fold. Rates of catheter-associated infections have not yet declined, and it will take time before ultrasound training will have a measurable effect. The FMEA provided a process for curriculum development. Precise definitions of failure modes for retained guidewires facilitated development of a curriculum that contributed to a dramatic decrease in the frequency of this complication. Although infections and access complications have not yet declined, failure mode identification, curriculum development, and monitored implementation show substantial promise for improving patient safety during placement of central venous catheters.
A Summary of Taxonomies of Digital System Failure Modes Provided by the DigRel Task Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu T. L.; Yue M.; Postma, W.
2012-06-25
Recently, the CSNI directed WGRisk to set up a task group called DIGREL to initiate a new task on developing a taxonomy of failure modes of digital components for the purposes of PSA. It is an important step towards standardized digital I&C reliability assessment techniques for PSA. The objective of this paper is to provide a comparison of the failure mode taxonomies provided by the participants. The failure modes are classified in terms of their levels of detail. Software and hardware failure modes are discussed separately.
On a common critical state in localized and diffuse failure modes
NASA Astrophysics Data System (ADS)
Zhu, Huaxiang; Nguyen, Hien N. G.; Nicot, François; Darve, Félix
2016-10-01
Accurately modeling the critical state mechanical behavior of granular material largely relies on a better understanding and characterizing the critical state fabric in different failure modes, i.e. localized and diffuse failure modes. In this paper, a mesoscopic scale is introduced, in which the organization of force-transmission paths (force-chains) and cells encompassed by contacts (meso-loops) can be taken into account. Numerical drained biaxial tests using a discrete element method are performed with different initial void ratios, in order to investigate the critical state fabric on the meso-scale in both localized and diffuse failure modes. According to the displacement and strain fields extracted from tests, the failure mode and failure area of each specimen are determined. Then convergent critical state void ratios are observed in failure area of specimens. Different mechanical features of two kinds of meso-structures (force-chains and meso-loops) are investigated, to clarify whether there exists a convergent meso-structure inside the failure area of granular material, as the signature of critical state. Numerical results support a positive answer. Failure area of both localized and diffuse failure modes therefore exhibits the same fabric in critical state. Hence, these two failure modes prove to be homological with respect to the concept of the critical state.
Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE
NASA Technical Reports Server (NTRS)
Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.
1993-01-01
Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.
Decomposition-Based Failure Mode Identification Method for Risk-Free Design of Large Systems
NASA Technical Reports Server (NTRS)
Tumer, Irem Y.; Stone, Robert B.; Roberts, Rory A.; Clancy, Daniel (Technical Monitor)
2002-01-01
When designing products, it is crucial to assure failure and risk-free operation in the intended operating environment. Failures are typically studied and eliminated as much as possible during the early stages of design. The few failures that go undetected result in unacceptable damage and losses in high-risk applications where public safety is of concern. Published NASA and NTSB accident reports point to a variety of components identified as sources of failures in the reported cases. In previous work, data from these reports were processed and placed in matrix form for all the system components and failure modes encountered, and then manipulated using matrix methods to determine similarities between the different components and failure modes. In this paper, these matrices are represented in the form of a linear combination of failures modes, mathematically formed using Principal Components Analysis (PCA) decomposition. The PCA decomposition results in a low-dimensionality representation of all failure modes and components of interest, represented in a transformed coordinate system. Such a representation opens the way for efficient pattern analysis and prediction of failure modes with highest potential risks on the final product, rather than making decisions based on the large space of component and failure mode data. The mathematics of the proposed method are explained first using a simple example problem. The method is then applied to component failure data gathered from helicopter, accident reports to demonstrate its potential.
Independent Orbiter Assessment (IOA): Assessment of the EPD and C/remote manipulator system FMEA/CIL
NASA Technical Reports Server (NTRS)
Robinson, W. W.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Distribution and Control (EPD and C)/Remote Manipulator System (RMS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA analysis of the EPD and C/RMS hardware initially generated 345 failure mode worksheets and identified 117 Potential Critical Items (PCIs) before starting the assessment process. These analysis results were compared to the proposed NASA Post 51-L baseline of 132 FMEAs and 66 CIL items.
What Reliability Engineers Should Know about Space Radiation Effects
NASA Technical Reports Server (NTRS)
DiBari, Rebecca
2013-01-01
Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the current of a nearby Thermal Electric Cooler (turning the TEC into a heater). The elevated temperature caused the PIN diode to anneal and the device to recover. It was by lot qualification testing that NEAR knew the diode would recover when annealed. This paper will look at these effects on a variety of devices in a variety of applications. Single Event Effects (SEE): (1) In contrast to TID and displacement damage, Single Event Effects (SEE) resemble random failures. SEE modes can range from changes in device logic (single-event upset, or SEU). temporary disturbances (single-event transient) to catastrophic effects such as the destructive SEE modes, single-event latchup (SEL). single-event gate rupture (SEGR) and single-event burnout (SEB) (2) The consequences of nondestructive SEE modes such as SEU and SET depend critically on their application--and may range from trivial nuisance errors to catastrophic loss of mission. It is critical not just to ensure that potentially susceptible devices are well characterized for their susceptibility, but also to work with design engineers to understand the implications of each error mode. -For destructive SEE, the predominant risk mitigation strategy is to avoid susceptible parts, or if that is not possible. to avoid conditions under which the part may be susceptible. Destructive SEE mechanisms are often not well understood, and testing is slow and expensive, making rate prediction very challenging. (3) Because the consequences of radiation failure and degradation modes depend so critically on the application as well as the component technology, it is essential that radiation, component. design and system engineers work togetherpreferably starting early in the program to ensure critical applications are addressed in time to optimize the probability of mission success.
Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation
Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb
2015-01-01
It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445
Aging assessment of large electric motors in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villaran, M.; Subudhi, M.
1996-03-01
Large electric motors serve as the prime movers to drive high capacity pumps, fans, compressors, and generators in a variety of nuclear plant systems. This study examined the stressors that cause degradation and aging in large electric motors operating in various plant locations and environments. The operating history of these machines in nuclear plant service was studied by review and analysis of failure reports in the NPRDS and LER databases. This was supplemented by a review of motor designs, and their nuclear and balance of plant applications, in order to characterize the failure mechanisms that cause degradation, aging, and failuremore » in large electric motors. A generic failure modes and effects analysis for large squirrel cage induction motors was performed to identify the degradation and aging mechanisms affecting various components of these large motors, the failure modes that result, and their effects upon the function of the motor. The effects of large motor failures upon the systems in which they are operating, and on the plant as a whole, were analyzed from failure reports in the databases. The effectiveness of the industry`s large motor maintenance programs was assessed based upon the failure reports in the databases and reviews of plant maintenance procedures and programs.« less
Shabanpour, Reza; Mousavi, Niloufar; Ghodsi, Safoura; Alikhasi, Marzieh
2015-08-01
The purpose of the current study was to compare the fracture resistance and mode of failure of zirconia and titanium abutments with different diameters. Fourteen groups of abutments including prefabricated zirconia, copy-milled zirconia and titanium abutments of an implant system (XiVE, Dentsply) were prepared in different diameters. An increasing vertical load was applied to each specimen until failure occurred. Fracture resistance was measured in each group using the universal testing machine. Moreover, the failure modes were studied and categorized as abutment screw fracture, connection area fracture, abutment body fracture, abutment body distortion, screw distortion and connection area distortion. Groups were statistically compared using univariate and post-hoc tests. The level of statistical significance was set at 5%. Fabrication method (p = 0.03) and diameter (p < 0.001) had significant effect on the fracture resistance of abutments. Fracture resistance of abutments with 5.5 mm diameter was higher than other diameters (p < 0.001). The observed modes of failure were dependent on the abutment material as well. All of the prefabricated titanium abutments fractured within the abutment screw. Abutment screw distortion, connection area fracture, and abutment body fracture were the common failure type in other groups. Diameter had a significant effect on fracture resistance of implant abutments, as abutments with greater diameters were more resistant to static loads. Copy-milled abutments showed lower fracture resistance as compared to other experimental groups. Although zirconia abutments have received great popularity among clinicians and even patients selecting them for narrow implants should be with caution.
Reliability Coupled Sensitivity Based Design Approach for Gravity Retaining Walls
NASA Astrophysics Data System (ADS)
Guha Ray, A.; Baidya, D. K.
2012-09-01
Sensitivity analysis involving different random variables and different potential failure modes of a gravity retaining wall focuses on the fact that high sensitivity of a particular variable on a particular mode of failure does not necessarily imply a remarkable contribution to the overall failure probability. The present paper aims at identifying a probabilistic risk factor ( R f ) for each random variable based on the combined effects of failure probability ( P f ) of each mode of failure of a gravity retaining wall and sensitivity of each of the random variables on these failure modes. P f is calculated by Monte Carlo simulation and sensitivity analysis of each random variable is carried out by F-test analysis. The structure, redesigned by modifying the original random variables with the risk factors, is safe against all the variations of random variables. It is observed that R f for friction angle of backfill soil ( φ 1 ) increases and cohesion of foundation soil ( c 2 ) decreases with an increase of variation of φ 1 , while R f for unit weights ( γ 1 and γ 2 ) for both soil and friction angle of foundation soil ( φ 2 ) remains almost constant for variation of soil properties. The results compared well with some of the existing deterministic and probabilistic methods and found to be cost-effective. It is seen that if variation of φ 1 remains within 5 %, significant reduction in cross-sectional area can be achieved. But if the variation is more than 7-8 %, the structure needs to be modified. Finally design guidelines for different wall dimensions, based on the present approach, are proposed.
Joint Test Protocol: Environmentally Friendly Zirconium Oxide Pretreatment Demonstration
2013-12-01
coatings . Loss of paint adhesion is the primary failure mode on aluminum and steel. 3.7.3 Test Methodology The test methodology for pencil hardness...conversion pretreatment coatings . Loss of paint adhesion is the primary failure mode on aluminum and steel. 3.8.3 Test Methodology The test...SUPPLEMENTARY NOTES 14. ABSTRACT There is a need to implement innovative and cost- effective replacement technologies to address the multiple health, safety
Ashley, Laura; Armitage, Gerry; Taylor, Julie
2017-03-01
Failure Modes and Effects Analysis (FMEA) is a prospective quality assurance methodology increasingly used in healthcare, which identifies potential vulnerabilities in complex, high-risk processes and generates remedial actions. We aimed, for the first time, to apply FMEA in a social care context to evaluate the process for recognising and referring children exposed to domestic abuse within one Midlands city safeguarding area in England. A multidisciplinary, multi-agency team of 10 front-line professionals undertook the FMEA, using a modified methodology, over seven group meetings. The FMEA included mapping out the process under evaluation to identify its component steps, identifying failure modes (potential errors) and possible causes for each step and generating corrective actions. In this article, we report the output from the FMEA, including illustrative examples of the failure modes and corrective actions generated. We also present an analysis of feedback from the FMEA team and provide future recommendations for the use of FMEA in appraising social care processes and practice. Although challenging, the FMEA was unequivocally valuable for team members and generated a significant number of corrective actions locally for the safeguarding board to consider in its response to children exposed to domestic abuse. © 2016 John Wiley & Sons Ltd.
Development of GENOA Progressive Failure Parallel Processing Software Systems
NASA Technical Reports Server (NTRS)
Abdi, Frank; Minnetyan, Levon
1999-01-01
A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Kellas, Sotiris; Morton, John
1992-01-01
The feasibility of using scale model testing for predicting the full-scale behavior of flat composite coupons loaded in tension and beam-columns loaded in flexure is examined. Classical laws of similitude are applied to fabricate and test replica model specimens to identify scaling effects in the load response, strength, and mode of failure. Experiments were performed on graphite-epoxy composite specimens having different laminate stacking sequences and a range of scaled sizes. From the experiments it was deduced that the elastic response of scaled composite specimens was independent of size. However, a significant scale effect in strength was observed. In addition, a transition in failure mode was observed among scaled specimens of certain laminate stacking sequences. A Weibull statistical model and a fracture mechanics based model were applied to predict the strength scale effect since standard failure criteria cannot account for the influence of absolute specimen size on strength.
Prediction of mode of death in heart failure: the Seattle Heart Failure Model.
Mozaffarian, Dariush; Anker, Stefan D; Anand, Inder; Linker, David T; Sullivan, Mark D; Cleland, John G F; Carson, Peter E; Maggioni, Aldo P; Mann, Douglas L; Pitt, Bertram; Poole-Wilson, Philip A; Levy, Wayne C
2007-07-24
Prognosis and mode of death in heart failure patients are highly variable in that some patients die suddenly (often from ventricular arrhythmia) and others die of progressive failure of cardiac function (pump failure). Prediction of mode of death may facilitate decisions about specific medications or devices. We used the Seattle Heart Failure Model (SHFM), a validated prediction model for total mortality in heart failure, to assess the mode of death in 10,538 ambulatory patients with New York Heart Association class II to IV heart failure and predominantly systolic dysfunction enrolled in 6 randomized trials or registries. During 16,735 person-years of follow-up, 2014 deaths occurred, which included 1014 sudden deaths and 684 pump-failure deaths. Compared with a SHFM score of 0, patients with a score of 1 had a 50% higher risk of sudden death, patients with a score of 2 had a nearly 3-fold higher risk, and patients with a score of 3 or 4 had a nearly 7-fold higher risk (P<0.001 for all comparisons; 1-year area under the receiver operating curve, 0.68). Stratification of risk of pump-failure death was even more pronounced, with a 4-fold higher risk with a score of 1, a 15-fold higher risk with a score of 2, a 38-fold higher risk with a score of 3, and an 88-fold higher risk with a score of 4 (P<0.001 for all comparisons; 1-year area under the receiver operating curve, 0.85). The proportion of deaths caused by sudden death versus pump-failure death decreased from a ratio of 7:1 with a SHFM score of 0 to a ratio of 1:2 with a SHFM score of 4 (P trend <0.001). The SHFM score provides information about the likely mode of death among ambulatory heart failure patients. Investigation is warranted to determine whether such information might predict responses to or cost-effectiveness of specific medications or devices in heart failure patients.
Integrating FMEA in a Model-Driven Methodology
NASA Astrophysics Data System (ADS)
Scippacercola, Fabio; Pietrantuono, Roberto; Russo, Stefano; Esper, Alexandre; Silva, Nuno
2016-08-01
Failure Mode and Effects Analysis (FMEA) is a well known technique for evaluating the effects of potential failures of components of a system. FMEA demands for engineering methods and tools able to support the time- consuming tasks of the analyst. We propose to make FMEA part of the design of a critical system, by integration into a model-driven methodology. We show how to conduct the analysis of failure modes, propagation and effects from SysML design models, by means of custom diagrams, which we name FMEA Diagrams. They offer an additional view of the system, tailored to FMEA goals. The enriched model can then be exploited to automatically generate FMEA worksheet and to conduct qualitative and quantitative analyses. We present a case study from a real-world project.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Ayvazian, Talin; Brodie, Miles; Lingley, Zachary
2018-03-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to catastrophic optical damage (COD), it is especially crucial for space satellite applications to investigate reliability, failure modes, precursor signatures of failure, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we continued our physics of failure investigation by performing long-term life-tests followed by failure mode analysis (FMA) using nondestructive and destructive micro-analytical techniques. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs- AlGaAs strained QW lasers under ACC mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. We first employed electron beam induced current (EBIC) technique to identify failure modes of degraded SM lasers by observing dark line defects. All the SM failures that we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Keywor
Effects of surface preparation on the long-term durability of adhesively bonded composite joints
NASA Astrophysics Data System (ADS)
Bardis, Jason Dante
The long-term durability of adhesively bonded composite joints is critical to modern aircraft structures, which are increasingly adopting bonding as an alternative option to mechanical fastening. The effects of the surface preparation of the adherends are critical, affecting initial strength, long-term durability, fracture toughness, and failure modes of bonded joints. In this study, several potential factors are evaluated, with focus on the following: (1) Effects of possible chemical contamination from release fabrics, release films, and peel plies during adherend cure. (2) Chemical and mechanical effects of abrasion on the fracture toughness and failure mode. (3) Characterization of paste and film adhesives. There are several standard test methods used to evaluate specimen fracture, but the majority concentrate on bonded metals and interlaminar composite fracture. Testing concentrated on mode I tests; a custom double cantilever beam specimen was devised and utilized, and two forms of a wedge crack test (traveling and static) were also used. Additionally, single lap shear tests were run to contrast the mode I tests. Non-destructive testing included X-ray photography of crack fronts, energy dispersive spectroscopy and X-ray photoelectron spectroscopy surface chemistry analyses, and scanning electron microscope imaging of prepared surfaces. All mode I test methods tended to be in agreement in the ranking of different surface preparation methods. Test results revealed that release agents deposited on adherend surfaces during their cure cycle prevented proper adhesion. While mechanical abrasion did improve their fracture toughness and lower their contamination greatly, the test values did not reach the levels of samples that were not contaminated before bonding, and the interfacial modes of failure did not always change to desirable modes.
NASA Technical Reports Server (NTRS)
Garg, A.; Ishaei, O.
1983-01-01
Efforts to characterize and differentiate between two major failure processes in graphite/epoxy composites - transverse cracking and Mode I delamination are described. Representative laminates were tested in uniaxial tension and flexure. The failure processes were monitored and identified by acoustic emission (AE). The effect of moisture on AE was also investigated. Each damage process was found to have a distinctive AE output that is significantly affected by moisture conditions. It is concluded that AE can serve as a useful tool for detecting and identifying failure modes in composite structures in laboratory and in service environments.
Why Do Medial Unicompartmental Knee Arthroplasties Fail Today?
van der List, Jelle P; Zuiderbaan, Hendrik A; Pearle, Andrew D
2016-05-01
Failure rates are higher in medial unicompartmental knee arthroplasty (UKA) than total knee arthroplasty. To improve these failure rates, it is important to understand why medial UKA fail. Because individual studies lack power to show failure modes, a systematic review was performed to assess medial UKA failure modes. Furthermore, we compared cohort studies with registry-based studies, early with midterm and late failures and fixed-bearing with mobile-bearing implants. Databases of PubMed, EMBASE, and Cochrane and annual registries were searched for medial UKA failures. Studies were included when they reported >25 failures or when they reported early (<5 years), midterm (5-10 years), or late failures (>10 years). Thirty-seven cohort studies (4 level II studies and 33 level III studies) and 2 registry-based studies were included. A total of 3967 overall failures, 388 time-dependent failures, and 1305 implant design failures were identified. Aseptic loosening (36%) and osteoarthritis (OA) progression (20%) were the most common failure modes. Aseptic loosening (26%) was most common early failure mode, whereas OA progression was more commonly seen in midterm and late failures (38% and 40%, respectively). Polyethylene wear (12%) and instability (12%) were more common in fixed-bearing implants, whereas pain (14%) and bearing dislocation (11%) were more common in mobile-bearing implants. This level III systematic review identified aseptic loosening and OA progression as the major failure modes. Aseptic loosening was the main failure mode in early years and mobile-bearing implants, whereas OA progression caused most failures in late years and fixed-bearing implants. Copyright © 2016 Elsevier Inc. All rights reserved.
Mechanics of dual-mode dilative failure in subaqueous sediment deposits
NASA Astrophysics Data System (ADS)
You, Yao; Flemings, Peter; Mohrig, David
2014-07-01
We introduce dual-mode dilative failure with flume experiments. Dual-mode dilative failure combines slow and steady release of sediments by breaching with periodic sliding, which rapidly releases an internally coherent wedge of sediments. It occurs in dilative sandy deposits. This periodic slope failure results from cyclic evolution of the excess pore pressure in the deposit. Sliding generates large, transient, negative excess pore pressure that strengthens the deposit and allows breaching to occur. During breaching, negative excess pore pressure dissipates, the deposit weakens, and ultimately sliding occurs once again. We show that the sliding frequency is proportional to the coefficient of consolidation. We find that thicker deposits are more susceptible to dual-mode dilative failure. Discovery of dual-mode dilative failure provides a new mechanism to consider when interpreting the sedimentary deposits linked to submarine slope failures.
Common Cause Failures and Ultra Reliability
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2012-01-01
A common cause failure occurs when several failures have the same origin. Common cause failures are either common event failures, where the cause is a single external event, or common mode failures, where two systems fail in the same way for the same reason. Common mode failures can occur at different times because of a design defect or a repeated external event. Common event failures reduce the reliability of on-line redundant systems but not of systems using off-line spare parts. Common mode failures reduce the dependability of systems using off-line spare parts and on-line redundancy.
Independent Orbiter Assessment (IOA): Assessment of the Orbiter Experiment (OEX) subsystem
NASA Technical Reports Server (NTRS)
Compton, J. M.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbiter Experiments (OEX) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter OEX hardware are documented. The IOA product for the OEX analysis consisted of 82 failure mode worksheets that resulted in two potential critical items being identified.
Ultrasonic Spot Welding of a Rare-Earth Containing ZEK100 Magnesium Alloy: Effect of Welding Energy
NASA Astrophysics Data System (ADS)
Macwan, A.; Chen, D. L.
2016-04-01
Ultrasonic spot welding was used to join a low rare-earth containing ZEK100 Mg alloy at different levels of welding energy, and tensile lap shear tests were conducted to evaluate the failure strength in relation to the microstructural changes. It was observed that dynamic recrystallization occurred in the nugget zone; the grain size increased and microhardness decreased with increasing welding energy arising from the increasing interface temperature and strain rate. The weld interface experienced severe plastic deformation at a high strain rate from ~500 to ~2100 s-1 with increasing welding energy from 500 to 2000 J. A relationship between grain size and Zener-Hollomon parameter, and a Hall-Petch-type relationship between microhardness and grain size were established. The tensile lap shear strength and failure energy were observed to first increase with increasing welding energy, reach the maximum values at 1500 J, and then decrease with a further increase in the welding energy. The samples welded at a welding energy ≤1500 J exhibited an interfacial failure mode, while nugget pull-out occurred in the samples welded at a welding energy above 1500 J. The fracture surfaces showed typical shear failure. Low-temperature tests at 233 K (-40 °C) showed no significant effect on the strength and failure mode of joints welded at the optimal welding energy of 1500 J. Elevated temperature tests at 453 K (180 °C) revealed a lower failure load but a higher failure energy due to the increased deformability, and showed a mixed mode of partial interfacial failure and partial nugget pull-out.
Experimental Study On The Effect Of Micro-Cracks On Brazilian Tensile Strength
NASA Astrophysics Data System (ADS)
Wang, Xiangyu
2015-12-01
For coal mine ground control issues, it is necessary to propose a failure criteria accounting for the transversely isotropic behaviors of rocks. Hence, it is very helpful to provide experimental data for the validation of the failure criteria. In this paper, the method for preparing transversely isotropic specimens and the scheme of the Brazilian tensile strength test are presented. Results obtained from Brazilian split tests under dry and water-saturated conditions reflect the effect of the development direction β of the structural plane, such as the bedding fissure, on the tensile strength, ultimate displacement, failure mode, and the whole splitting process. The results show that the tensile strength decreases linearly with increasing β. The softening coefficient of the tensile strength shows a sinusoidal function. The values of the slope and inflection point for the curve vary at the different stages of the Brazilian test. The failure mode of the rock specimen presented in this paper generally coincides with the standard Brazilian splitting failure mode. Based on the test results, the major influencing factors for the Brazilian splitting strength are analyzed and a mathematical model for solving the Brazilian splitting strength is proposed. The findings in this paper would greatly benefit the coal mine ground control studies when the surrounding rocks of interest show severe transversely isotropic behaviors.
Minimizing treatment planning errors in proton therapy using failure mode and effects analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yuanshui, E-mail: yuanshui.zheng@okc.procure.com; Johnson, Randall; Larson, Gary
Purpose: Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. Methods: The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authorsmore » estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. Results: In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. Conclusions: The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.« less
Minimizing treatment planning errors in proton therapy using failure mode and effects analysis.
Zheng, Yuanshui; Johnson, Randall; Larson, Gary
2016-06-01
Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authors estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.
Intralaminar and Interlaminar Progressive Failure Analysis of Composite Panels with Circular Cutouts
NASA Technical Reports Server (NTRS)
Goyal, Vinay K.; Jaunky, Navin; Johnson, Eric R.; Ambur, Damodar
2002-01-01
A progressive failure methodology is developed and demonstrated to simulate the initiation and material degradation of a laminated panel due to intralaminar and interlaminar failures. Initiation of intralaminar failure can be by a matrix-cracking mode, a fiber-matrix shear mode, and a fiber failure mode. Subsequent material degradation is modeled using damage parameters for each mode to selectively reduce lamina material properties. The interlaminar failure mechanism such as delamination is simulated by positioning interface elements between adjacent sublaminates. A nonlinear constitutive law is postulated for the interface element that accounts for a multi-axial stress criteria to detect the initiation of delamination, a mixed-mode fracture criteria for delamination progression, and a damage parameter to prevent restoration of a previous cohesive state. The methodology is validated using experimental data available in the literature on the response and failure of quasi-isotropic panels with centrally located circular cutouts loaded into the postbuckling regime. Very good agreement between the progressive failure analyses and the experimental results is achieved if the failure analyses includes the interaction of intralaminar and interlaminar failures.
An efficient scan diagnosis methodology according to scan failure mode for yield enhancement
NASA Astrophysics Data System (ADS)
Kim, Jung-Tae; Seo, Nam-Sik; Oh, Ghil-Geun; Kim, Dae-Gue; Lee, Kyu-Taek; Choi, Chi-Young; Kim, InSoo; Min, Hyoung Bok
2008-12-01
Yield has always been a driving consideration during fabrication of modern semiconductor industry. Statistically, the largest portion of wafer yield loss is defective scan failure. This paper presents efficient failure analysis methods for initial yield ramp up and ongoing product with scan diagnosis. Result of our analysis shows that more than 60% of the scan failure dies fall into the category of shift mode in the very deep submicron (VDSM) devices. However, localization of scan shift mode failure is very difficult in comparison to capture mode failure because it is caused by the malfunction of scan chain. Addressing the biggest challenge, we propose the most suitable analysis method according to scan failure mode (capture / shift) for yield enhancement. In the event of capture failure mode, this paper describes the method that integrates scan diagnosis flow and backside probing technology to obtain more accurate candidates. We also describe several unique techniques, such as bulk back-grinding solution, efficient backside probing and signal analysis method. Lastly, we introduce blocked chain analysis algorithm for efficient analysis of shift failure mode. In this paper, we contribute to enhancement of the yield as a result of the combination of two methods. We confirm the failure candidates with physical failure analysis (PFA) method. The direct feedback of the defective visualization is useful to mass-produce devices in a shorter time. The experimental data on mass products show that our method produces average reduction by 13.7% in defective SCAN & SRAM-BIST failure rates and by 18.2% in wafer yield rates.
Probabilistic safety analysis of earth retaining structures during earthquakes
NASA Astrophysics Data System (ADS)
Grivas, D. A.; Souflis, C.
1982-07-01
A procedure is presented for determining the probability of failure of Earth retaining structures under static or seismic conditions. Four possible modes of failure (overturning, base sliding, bearing capacity, and overall sliding) are examined and their combined effect is evaluated with the aid of combinatorial analysis. The probability of failure is shown to be a more adequate measure of safety than the customary factor of safety. As Earth retaining structures may fail in four distinct modes, a system analysis can provide a single estimate for the possibility of failure. A Bayesian formulation of the safety retaining walls is found to provide an improved measure for the predicted probability of failure under seismic loading. The presented Bayesian analysis can account for the damage incurred to a retaining wall during an earthquake to provide an improved estimate for its probability of failure during future seismic events.
User's guide to the Reliability Estimation System Testbed (REST)
NASA Technical Reports Server (NTRS)
Nicol, David M.; Palumbo, Daniel L.; Rifkin, Adam
1992-01-01
The Reliability Estimation System Testbed is an X-window based reliability modeling tool that was created to explore the use of the Reliability Modeling Language (RML). RML was defined to support several reliability analysis techniques including modularization, graphical representation, Failure Mode Effects Simulation (FMES), and parallel processing. These techniques are most useful in modeling large systems. Using modularization, an analyst can create reliability models for individual system components. The modules can be tested separately and then combined to compute the total system reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a graphical user interface may be used to describe the system model. RML was designed to permit message passing between modules. This feature enables reliability modeling based on a run time simulation of the system wide effects of a component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck often found in large reliability models, REST was designed to take advantage of parallel processing on hypercube processors.
Using Failure Mode and Effects Analysis to design a comfortable automotive driver seat.
Kolich, Mike
2014-07-01
Given enough time and use, all designs will fail. There are no fail-free designs. This is especially true when it comes to automotive seating comfort where the characteristics and preferences of individual customers are many and varied. To address this problem, individuals charged with automotive seating comfort development have, traditionally, relied on iterative and, as a result, expensive build-test cycles. Cost pressures being placed on today's vehicle manufacturers have necessitated the search for more efficient alternatives. This contribution aims to fill this need by proposing the application of an analytical technique common to engineering circles (but new to seating comfort development), namely Design Failure Mode and Effects Analysis (DFMEA). An example is offered to describe how development teams can use this systematic and disciplined approach to highlight potential seating comfort failure modes, reduce their risk, and bring capable designs to life. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Le, Laetitia Minh Mai; Reitter, Delphine; He, Sophie; Bonle, Franck Té; Launois, Amélie; Martinez, Diane; Prognon, Patrice; Caudron, Eric
2017-12-01
Handling cytotoxic drugs is associated with chemical contamination of workplace surfaces. The potential mutagenic, teratogenic and oncogenic properties of those drugs create a risk of occupational exposure for healthcare workers, from reception of starting materials to the preparation and administration of cytotoxic therapies. The Security Failure Mode Effects and Criticality Analysis (FMECA) was used as a proactive method to assess the risks involved in the chemotherapy compounding process. FMECA was carried out by a multidisciplinary team from 2011 to 2016. Potential failure modes of the process were identified based on the Risk Priority Number (RPN) that prioritizes corrective actions. Twenty-five potential failure modes were identified. Based on RPN results, the corrective actions plan was revised annually to reduce the risk of exposure and improve practices. Since 2011, 16 specific measures were implemented successively. In six years, a cumulative RPN reduction of 626 was observed, with a decrease from 912 to 286 (-69%) despite an increase of cytotoxic compounding activity of around 23.2%. In order to anticipate and prevent occupational exposure, FMECA is a valuable tool to identify, prioritize and eliminate potential failure modes for operators involved in the cytotoxic drug preparation process before the failures occur. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of Weathering Depth and Fracture Intensity to Cut-slope Movements
NASA Astrophysics Data System (ADS)
Yoon, W. S.; Choi, J. W.; Jeong, U.; Kim, J. H.
2003-04-01
Generally, Failure modes in cut slopes are triggered by combination of various failure factors which have different effects on failure modes according to ground condition. It is, therefore, important to identify the behavioural characteristic of cut slope in that they reflect the failure mechanism. From the careful field investigation for 373 road cuts along the national highway in Korea, we analysed various types of failure modes for different ground conditions. The ground conditions which control failure modes of cut slopes and their related failure factors are dependent on weathering (or soil) depth and intensity of discontinuities in cut slopes. Firstly, the ratio of the soil depth and slope height (soil depth ratio; SR) is important parameter to classify ground conditions into soil-like masses and rock masses. When a SR value is greater than 0.4, sliding failures on discontinuities do not occur. In this case, weathering condition, slope gradient and external rainfall play a key role on failure factors of cut-slope. The proposed 0.4, therefore, is the critical SR value to identify the soil-like masses and rock masses. Secondly, Intensity of discontinuities is expressed by block size ratio (BR), which is defined by the ratio of block size index (Ib; ISRM (1978)) and slope height. For a rock slope (SR<0.4), when BR is greater than 0.01, key failure modes in a cut slope are wedge sliding, fall and topple. In this case, attitudes and shear strength of discontinuities play an important role on behaviour of cut-slope. When BR is less than 0.01, however, behaviour of cut slope shows circular sliding and surface failure like soil-like mass. To sum up, we could divide the ground conditions in cut-slope into 3 classes on the basis of SR (soil depth ratio) and BR (block size ratio); JRM (joint rock mass), HRM (highly fractured rock mass) and SLM (soil-like mass). Moreover, to evaluate the stability of cut-slope reasonably, it needs new evaluating categories having different weighting factors for each ground condition.
Failure mode analysis to predict product reliability.
NASA Technical Reports Server (NTRS)
Zemanick, P. P.
1972-01-01
The failure mode analysis (FMA) is described as a design tool to predict and improve product reliability. The objectives of the failure mode analysis are presented as they influence component design, configuration selection, the product test program, the quality assurance plan, and engineering analysis priorities. The detailed mechanics of performing a failure mode analysis are discussed, including one suggested format. Some practical difficulties of implementation are indicated, drawn from experience with preparing FMAs on the nuclear rocket engine program.
NASA Astrophysics Data System (ADS)
Lee, Tae-Hee; Park, Ka-Young; Kim, Ji-Tae; Seo, Yongho; Kim, Ki Buem; Song, Sun-Ju; Park, Byoungnam; Park, Jun-Young
2015-02-01
This study focuses on mechanisms and symptoms of several simulated failure modes, which may have significant influences on the long-term durability and operational stability of intermediate temperature-solid oxide fuel cells (IT-SOFCs), including fuel/oxidation starvation by breakdown of fuel/air supply components and wet and dry cycling atmospheres. Anode-supported IT-SOFCs consisting of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-Nd0.1Ce0.9O2-δ (NDC) composite cathode with an NDC electrolyte on a Ni-NDC anode substrate are fabricated via dry-pressings followed by the co-firing method. Comprehensive and systematic research based on the failure mode and effect analysis (FMEA) of anode-supported IT-SOFCs is conducted using various electrochemical and physiochemical analysis techniques to extend our understanding of the major mechanisms of performance deterioration under SOFC operating conditions. The fuel-starvation condition in the fuel-pump failure mode causes irreversible mechanical degradation of the electrolyte and cathode interface by the dimensional expansion of the anode support due to the oxidation of Ni metal to NiO. In contrast, the BSCF cathode shows poor stability under wet and dry cycling modes of cathode air due to the strong electroactivity of SrO with H2O. On the other hand, the air-depletion phenomena under air-pump failure mode results in the recovery of cell performance during the long-term operation without the visible microstructural transformation through the reduction of anode overvoltage.
Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode
NASA Astrophysics Data System (ADS)
Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun
2011-12-01
An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spirydovich, S; Huq, M
2014-06-15
Purpose: The improvement of quality in healthcare can be assessed by Failure Mode and Effects Analysis (FMEA). In radiation oncology, FMEA, as applied to the billing CPT code 77336, can improve both charge capture and, most importantly, quality of the performed services. Methods: We created an FMEA table for the process performed under CPT code 77336. For a given process step, each member of the assembled team (physicist, dosimetrist, and therapist) independently assigned numerical values for: probability of occurrence (O, 1–10), severity (S, 1–10), and probability of detection (D, 1–10) for every failure mode cause and effect combination. The riskmore » priority number, RPN, was then calculated as a product of O, S and D from which an average RPN was calculated for each combination mentioned above. A fault tree diagram, with each process sorted into 6 categories, was created with linked RPN. For processes with high RPN recommended actions were assigned. 2 separate R and V systems (Lantis and EMR-based ARIA) were considered. Results: We identified 9 potential failure modes and corresponding 19 potential causes of these failure modes all resulting in unjustified 77336 charge and compromised quality of care. In Lantis, the range of RPN was 24.5–110.8, and of S values – 2–10. The highest ranking RPN of 110.8 came from the failure mode described as “end-of-treatment check not done before the completion of treatment”, and the highest S value of 10 (RPN=105) from “overrides not checked”. For the same failure modes, within ARIA electronic environment with its additional controls, RPN values were significantly lower (44.3 for end-of-treatment missing check and 20.0 for overrides not checked). Conclusion: Our work has shown that when charge capture was missed that also resulted in some services not being performed. Absence of such necessary services may result in sub-optimal quality of care rendered to patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Chao Chung, E-mail: ho919@pchome.com.tw; Liao, Ching-Jong
Highlights: > This study is based on a real case in a regional teaching hospital in Taiwan. > We use Failure mode and effects analysis (FMEA) as the evaluation method. > We successfully identify the risk factors of infectious waste disposal. > We propose plans for the detection of exceptional cases of infectious waste. - Abstract: In recent times, the quality of medical care has been continuously improving in medical institutions wherein patient-centred care has been emphasized. Failure mode and effects analysis (FMEA) has also been promoted as a method of basic risk management and as part of total qualitymore » management (TQM) for improving the quality of medical care and preventing mistakes. Therefore, a study was conducted using FMEA to evaluate the potential risk causes in the process of infectious medical waste disposal, devise standard procedures concerning the waste, and propose feasible plans for facilitating the detection of exceptional cases of infectious waste. The analysis revealed the following results regarding medical institutions: (a) FMEA can be used to identify the risk factors of infectious waste disposal. (b) During the infectious waste disposal process, six items were scored over 100 in the assessment of uncontrolled risks: erroneous discarding of infectious waste by patients and their families, erroneous discarding by nursing staff, erroneous discarding by medical staff, cleaning drivers pierced by sharp articles, cleaning staff pierced by sharp articles, and unmarked output units. Therefore, the study concluded that it was necessary to (1) provide education and training about waste classification to the medical staff, patients and their families, nursing staff, and cleaning staff; (2) clarify the signs of caution; and (3) evaluate the failure mode and strengthen the effects.« less
Nucleation versus percolation: Scaling criterion for failure in disordered solids
NASA Astrophysics Data System (ADS)
Biswas, Soumyajyoti; Roy, Subhadeep; Ray, Purusattam
2015-05-01
One of the major factors governing the mode of failure in disordered solids is the effective range R over which the stress field is modified following a local rupture event. In a random fiber bundle model, considered as a prototype of disordered solids, we show that the failure mode is nucleation dominated in the large system size limit, as long as R scales slower than Lζ, with ζ =2 /3 . For a faster increase in R , the failure properties are dominated by the mean-field critical point, where the damages are uncorrelated in space. In that limit, the precursory avalanches of all sizes are obtained even in the large system size limit. We expect these results to be valid for systems with finite (normalizable) disorder.
CE dual-homing protection in layer 1 VPN
NASA Astrophysics Data System (ADS)
Du, Shu; Peng, Yunfeng; Long, Keping
2008-11-01
Layer 1 VPN (L1VPN) extends the notion of VPN to the optical domain to provide virtually dedicated circuit like leased lines, so that the security is more enhanced. Despite their secure gains from channel isolation, VPNs still suffer fragilities resulting from link-failures or node-failures. Extensive activities on survivability designs for wavelength-routed optical networks are proposed, including various protection and restoration schemes, but concerns on network edge are rare. Dual-homing is an effective skill to achieve survivability gains for L1VPNs. There are two dual-homing mode: Active/Standby mode and Load-Sharing mode In this paper, we investigate the problem of PE assignment, which is the key of dual-homing design and is NP-hard. We formulate it as an integer programming problem, and propose heuristic solutions. Simulation results show that the proposed solutions work in a correct and effective way and the Load-Sharing mode has higher bandwidth efficiency than Active/Standby mode.
TU-AB-BRD-02: Failure Modes and Effects Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huq, M.
2015-06-15
Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less
NASA Astrophysics Data System (ADS)
Sun, Zhi; Hu, Xiaozhi; Shi, Shanshan; Guo, Xu; Zhang, Yupeng; Chen, Haoran
2016-10-01
Edge delamination is frequently observed in carbon fiber reinforced plastic (CFRP) laminates after machining, due to the low fracture toughness of the resin interfaces between carbon fiber plies. In this study, the effects of incorporating tough aramid fibers into the brittle CFRP system are quantified by measuring the residual properties of bolted CFRP. By adding short-aramid-fiber interleaves in CFRP laminates, the residual tensile strength have been substantially increased by 14 % for twill-weave laminates and 45 % for unidirectional laminates respectively. Moreover, tensile failure was observed as the major mode of toughened laminates, in contrast to shear failure of plain laminates. The qualitative FEM results agreed well with the experimental results that edge delamination would cause relatively higher shear stress and therefore alter the failure mode from tensile failure to shear failure.
Ye, Qing; Pan, Hao; Liu, Changhua
2015-01-01
This research proposes a novel framework of final drive simultaneous failure diagnosis containing feature extraction, training paired diagnostic models, generating decision threshold, and recognizing simultaneous failure modes. In feature extraction module, adopt wavelet package transform and fuzzy entropy to reduce noise interference and extract representative features of failure mode. Use single failure sample to construct probability classifiers based on paired sparse Bayesian extreme learning machine which is trained only by single failure modes and have high generalization and sparsity of sparse Bayesian learning approach. To generate optimal decision threshold which can convert probability output obtained from classifiers into final simultaneous failure modes, this research proposes using samples containing both single and simultaneous failure modes and Grid search method which is superior to traditional techniques in global optimization. Compared with other frequently used diagnostic approaches based on support vector machine and probability neural networks, experiment results based on F 1-measure value verify that the diagnostic accuracy and efficiency of the proposed framework which are crucial for simultaneous failure diagnosis are superior to the existing approach. PMID:25722717
Comparison of mode of failure between primary and revision total knee arthroplasties.
Liang, H; Bae, J K; Park, C H; Kim, K I; Bae, D K; Song, S J
2018-04-01
Cognizance of common reasons for failure in primary and revision TKA, together with their time course, facilitates prevention. However, there have been few reports specifically comparing modes of failure for primary vs. revision TKA using a single prosthesis. The goal of the study was to compare the survival rates, modes of failure, and time periods associated with each mode of failure, of primary vs. revision TKA. The survival rates, modes of failure, time period for each mode of failure, and risk factors would differ between primary and revision TKA. Data from a consecutive cohort comprising 1606 knees (1174 patients) of primary TKA patients, and 258 knees (224 patients) of revision TKA patients, in all of whom surgery involved a P.F.C ® prosthesis (Depuy, Johnson & Johnson, Warsaw, IN), was retrospectively reviewed. The mean follow-up periods of primary and revision TKAs were 9.2 and 9.8 years, respectively. The average 10- and 15-year survival rates for primary TKA were 96.7% (CI 95%,±0.7%) and 85.4% (CI 95%,±2.0%), and for revision TKA 91.4% (CI 95%,±2.5%) and 80.5% (CI 95%,±4.5%). Common modes of failure included polyethylene wear, loosening, and infection. The most common mode of failure was polyethylene wear in primary TKA, and infection in revision TKA. The mean periods (i.e., latencies) of polyethylene wear and loosening did not differ between primary and revision TKAs, but the mean period of infection was significantly longer for revision TKA (1.2 vs. 4.8 years, P=0.003). Survival rates decreased with time, particularly more than 10 years post-surgery, for both primary and revision TKAs. Continuous efforts are required to prevent and detect the various modes of failure during long-term follow-up. Greater attention is necessary to detect late infection-induced failure following revision TKA. Case-control study, Level III. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Demasi, J. T.
1986-01-01
A methodology is established to predict thermal barrier coating life in a environment similar to that experienced by gas turbine airfoils. Experiments were conducted to determine failure modes of the thermal barrier coating. Analytical studies were employed to derive a life prediction model. A review of experimental and flight service components as well as laboratory post evaluations indicates that the predominant mode of TBC failure involves thermomechanical spallation of the ceramic coating layer. This ceramic spallation involves the formation of a dominant crack in the ceramic coating parallel to and closely adjacent to the topologically complex metal ceramic interface. This mechanical failure mode clearly is influenced by thermal exposure effects as shown in experiments conducted to study thermal pre-exposure and thermal cycle-rate effects. The preliminary life prediction model developed focuses on the two major damage modes identified in the critical experiments tasks. The first of these involves a mechanical driving force, resulting from cyclic strains and stresses caused by thermally induced and externally imposed mechanical loads. The second is an environmental driving force based on experimental results, and is believed to be related to bond coat oxidation. It is also believed that the growth of this oxide scale influences the intensity of the mechanical driving force.
NASA Technical Reports Server (NTRS)
Smart, Christian
1998-01-01
During 1997, a team from Hernandez Engineering, MSFC, Rocketdyne, Thiokol, Pratt & Whitney, and USBI completed the first phase of a two year Quantitative Risk Assessment (QRA) of the Space Shuttle. The models for the Shuttle systems were entered and analyzed by a new QRA software package. This system, termed the Quantitative Risk Assessment System(QRAS), was designed by NASA and programmed by the University of Maryland. The software is a groundbreaking PC-based risk assessment package that allows the user to model complex systems in a hierarchical fashion. Features of the software include the ability to easily select quantifications of failure modes, draw Event Sequence Diagrams(ESDs) interactively, perform uncertainty and sensitivity analysis, and document the modeling. This paper illustrates both the approach used in modeling and the particular features of the software package. The software is general and can be used in a QRA of any complex engineered system. The author is the project lead for the modeling of the Space Shuttle Main Engines (SSMEs), and this paper focuses on the modeling completed for the SSMEs during 1997. In particular, the groundrules for the study, the databases used, the way in which ESDs were used to model catastrophic failure of the SSMES, the methods used to quantify the failure rates, and how QRAS was used in the modeling effort are discussed. Groundrules were necessary to limit the scope of such a complex study, especially with regard to a liquid rocket engine such as the SSME, which can be shut down after ignition either on the pad or in flight. The SSME was divided into its constituent components and subsystems. These were ranked on the basis of the possibility of being upgraded and risk of catastrophic failure. Once this was done the Shuttle program Hazard Analysis and Failure Modes and Effects Analysis (FMEA) were used to create a list of potential failure modes to be modeled. The groundrules and other criteria were used to screen out the many failure modes that did not contribute significantly to the catastrophic risk. The Hazard Analysis and FMEA for the SSME were also used to build ESDs that show the chain of events leading from the failure mode occurence to one of the following end states: catastrophic failure, engine shutdown, or siccessful operation( successful with respect to the failure mode under consideration).
Use of failure mode effect analysis (FMEA) to improve medication management process.
Jain, Khushboo
2017-03-13
Purpose Medication management is a complex process, at high risk of error with life threatening consequences. The focus should be on devising strategies to avoid errors and make the process self-reliable by ensuring prevention of errors and/or error detection at subsequent stages. The purpose of this paper is to use failure mode effect analysis (FMEA), a systematic proactive tool, to identify the likelihood and the causes for the process to fail at various steps and prioritise them to devise risk reduction strategies to improve patient safety. Design/methodology/approach The study was designed as an observational analytical study of medication management process in the inpatient area of a multi-speciality hospital in Gurgaon, Haryana, India. A team was made to study the complex process of medication management in the hospital. FMEA tool was used. Corrective actions were developed based on the prioritised failure modes which were implemented and monitored. Findings The percentage distribution of medication errors as per the observation made by the team was found to be maximum of transcription errors (37 per cent) followed by administration errors (29 per cent) indicating the need to identify the causes and effects of their occurrence. In all, 11 failure modes were identified out of which major five were prioritised based on the risk priority number (RPN). The process was repeated after corrective actions were taken which resulted in about 40 per cent (average) and around 60 per cent reduction in the RPN of prioritised failure modes. Research limitations/implications FMEA is a time consuming process and requires a multidisciplinary team which has good understanding of the process being analysed. FMEA only helps in identifying the possibilities of a process to fail, it does not eliminate them, additional efforts are required to develop action plans and implement them. Frank discussion and agreement among the team members is required not only for successfully conducing FMEA but also for implementing the corrective actions. Practical implications FMEA is an effective proactive risk-assessment tool and is a continuous process which can be continued in phases. The corrective actions taken resulted in reduction in RPN, subjected to further evaluation and usage by others depending on the facility type. Originality/value The application of the tool helped the hospital in identifying failures in medication management process, thereby prioritising and correcting them leading to improvement.
Morphological features (defects) in fuel cell membrane electrode assemblies
NASA Astrophysics Data System (ADS)
Kundu, S.; Fowler, M. W.; Simon, L. C.; Grot, S.
Reliability and durability issues in fuel cells are becoming more important as the technology and the industry matures. Although research in this area has increased, systematic failure analysis, such as a failure modes and effects analysis (FMEA), are very limited in the literature. This paper presents a categorization scheme of causes, modes, and effects related to fuel cell degradation and failure, with particular focus on the role of component quality, that can be used in FMEAs for polymer electrolyte membrane (PEM) fuel cells. The work also identifies component defects imparted on catalyst-coated membranes (CCM) by manufacturing and proposes mechanisms by which they can influence overall degradation and reliability. Six major defects have been identified on fresh CCM materials, i.e., cracks, orientation, delamination, electrolyte clusters, platinum clusters, and thickness variations.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Presser, Nathan; Moss, Steven C.
2017-02-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both telecommunications and space satellite communications systems. However, little has been reported on failure modes and degradation mechanisms of high-power SM and MM InGaAs-AlGaAs strained QW lasers although it is crucial to understand failure modes and underlying degradation mechanisms in developing these lasers that meet lifetime requirements for space satellite systems, where extremely high reliability of these lasers is required. Our present study addresses the aforementioned issues by performing long-term life-tests followed by failure mode analysis (FMA) and physics of failure investigation. We performed long-term accelerated life-tests on state-of-the-art SM and MM InGaAs-AlGaAs strained QW lasers under ACC (automatic current control) mode. Our life-tests have accumulated over 25,000 test hours for SM lasers and over 35,000 test hours for MM lasers. FMA was performed on failed SM lasers using electron beam induced current (EBIC). This technique allowed us to identify failure types by observing dark line defects. All the SM failures we studied showed catastrophic and sudden degradation and all of these failures were bulk failures. Our group previously reported that bulk failure or COBD (catastrophic optical bulk damage) is the dominant failure mode of MM InGaAs-AlGaAs strained QW lasers. Since degradation mechanisms responsible for COBD are still not well understood, we also employed other techniques including focused ion beam (FIB) processing and high-resolution TEM to further study dark line defects and dislocations in post-aged lasers. Our long-term life-test results and FMA results are reported.
Availability Analysis of Dual Mode Systems
DOT National Transportation Integrated Search
1974-04-01
The analytical procedures presented define a method of evaluating the effects of failures in a complex dual-mode system based on a worst case steady-state analysis. The computed result is an availability figure of merit and not an absolute prediction...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J; Wang, J; P, J
2016-06-15
Purpose: To optimize the clinical processes of radiotherapy and to reduce the radiotherapy risks by implementing the powerful risk management tools of failure mode and effects analysis(FMEA) and PDCA(plan-do-check-act). Methods: A multidiciplinary QA(Quality Assurance) team from our department consisting of oncologists, physicists, dosimetrists, therapists and administrator was established and an entire workflow QA process management using FMEA and PDCA tools was implemented for the whole treatment process. After the primary process tree was created, the failure modes and Risk priority numbers(RPNs) were determined by each member, and then the RPNs were averaged after team discussion. Results: 3 of 9 failuremore » modes with RPN above 100 in the practice were identified in the first PDCA cycle, which were further analyzed to investigate the RPNs: including of patient registration error, prescription error and treating wrong patient. New process controls reduced the occurrence, or detectability scores from the top 3 failure modes. Two important corrective actions reduced the highest RPNs from 300 to 50, and the error rate of radiotherapy decreased remarkably. Conclusion: FMEA and PDCA are helpful in identifying potential problems in the radiotherapy process, which was proven to improve the safety, quality and efficiency of radiation therapy in our department. The implementation of the FMEA approach may improve the understanding of the overall process of radiotherapy while may identify potential flaws in the whole process. Further more, repeating the PDCA cycle can bring us closer to the goal: higher safety and accuracy radiotherapy.« less
Preventing blood transfusion failures: FMEA, an effective assessment method.
Najafpour, Zhila; Hasoumi, Mojtaba; Behzadi, Faranak; Mohamadi, Efat; Jafary, Mohamadreza; Saeedi, Morteza
2017-06-30
Failure Mode and Effect Analysis (FMEA) is a method used to assess the risk of failures and harms to patients during the medical process and to identify the associated clinical issues. The aim of this study was to conduct an assessment of blood transfusion process in a teaching general hospital, using FMEA as the method. A structured FMEA was recruited in our study performed in 2014, and corrective actions were implemented and re-evaluated after 6 months. Sixteen 2-h sessions were held to perform FMEA in the blood transfusion process, including five steps: establishing the context, selecting team members, analysis of the processes, hazard analysis, and developing a risk reduction protocol for blood transfusion. Failure modes with the highest risk priority numbers (RPNs) were identified. The overall RPN scores ranged from 5 to 100 among which, four failure modes were associated with RPNs over 75. The data analysis indicated that failures with the highest RPNs were: labelling (RPN: 100), transfusion of blood or the component (RPN: 100), patient identification (RPN: 80) and sampling (RPN: 75). The results demonstrated that mis-transfusion of blood or blood component is the most important error, which can lead to serious morbidity or mortality. Provision of training to the personnel on blood transfusion, knowledge raising on hazards and appropriate preventative measures, as well as developing standard safety guidelines are essential, and must be implemented during all steps of blood and blood component transfusion.
NASA Technical Reports Server (NTRS)
Ames, B. E.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA effort first completed an analysis of the Electrical Power Generation/Power Reactant Storage and Distribution (EPG/PRSD) subsystem hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baselines with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison are documented for the Orbiter EPG/PRSD hardware. The comparison produced agreement on all but 27 FMEAs and 9 CIL items. The discrepancy between the number of IOA findings and NASA FMEAs can be partially explained by the different approaches used by IOA and NASA to group failure modes together to form one FMEA. Also, several IOA items represented inner tank components and ground operations failure modes which were not in the NASA baseline.
NASA Astrophysics Data System (ADS)
Ataş, Akın; Gautam, Mayank; Soutis, Constantinos; Potluri, Prasad
2017-04-01
Experimental behaviour of bolted joints in triaxial braided (0°/±45°) carbon fibre/epoxy composite laminates with drilled and moulded-in fastener holes has been investigated in this paper. Braided laminates were manufactured by vacuum infusion process using 12 K T700S carbon fibres (for bias and axial tows) and Araldite LY-564 epoxy resin. Moulded-in fastener holes were formed using guide pins which were inserted in the braided structure prior to the vacuum infusion process. The damage mechanism of the specimens was investigated using ultrasonic C-Scan technique. The specimens were dimensioned to obtain a bearing mode of failure. The bearing strength of the specimens with moulded-in hole was reduced in comparison to the specimens with drilled hole, due to the increased fibre misalignment angle following the pin insertion procedure. An improvement on the bearing strength of moulded-in hole specimens might be developed if the specimen dimensions would be prepared for a net-tension mode of failure where the fibre misalignment would not have an effect as significant as in the case of bearing failure mode, but this mode should be avoided since it leads to sudden catastrophic failures.
Cycles till failure of silver-zinc cells with competing failure modes - Preliminary data analysis
NASA Technical Reports Server (NTRS)
Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.
1980-01-01
The data analysis of cycles to failure of silver-zinc electrochemical cells with competing failure modes is presented. The test ran 129 cells through charge-discharge cycles until failure; preliminary data analysis consisted of response surface estimate of life. Batteries fail through low voltage condition and an internal shorting condition; a competing failure modes analysis was made using maximum likelihood estimation for the extreme value life distribution. Extensive residual plotting and probability plotting were used to verify data quality and selection of model.
NASA Astrophysics Data System (ADS)
DELİCE, Yavuz
2015-04-01
Highways, Located in the city and intercity locations are generally prone to many kind of natural disaster risks. Natural hazards and disasters that may occur firstly from highway project making to construction and operation stages and later during the implementation of highway maintenance and repair stages have to be taken into consideration. And assessment of risks that may occur against adverse situations is very important in terms of project design, construction, operation maintenance and repair costs. Making hazard and natural disaster risk analysis is largely depending on the definition of the likelihood of the probable hazards on the highways. However, assets at risk , and the impacts of the events must be examined and to be rated in their own. With the realization of these activities, intended improvements against natural hazards and disasters will be made with the utilization of Failure Mode Effects Analysis (FMEA) method and their effects will be analyzed with further works. FMEA, is a useful method to identify the failure mode and effects depending on the type of failure rate effects priorities and finding the most optimum economic and effective solution. Although relevant measures being taken for the identified risks by this analysis method , it may also provide some information for some public institutions about the nature of these risks when required. Thus, the necessary measures will have been taken in advance in the city and intercity highways. Many hazards and natural disasters are taken into account in risk assessments. The most important of these dangers can be listed as follows; • Natural disasters 1. Meteorological based natural disasters (floods, severe storms, tropical storms, winter storms, avalanches, etc.). 2. Geological based natural disasters (earthquakes, tsunamis, landslides, subsidence, sinkholes, etc) • Human originated disasters 1. Transport accidents (traffic accidents), originating from the road surface defects (icing, signaling caused malfunctions and risks), fire or explosion etc.- In this study, with FMEA method, risk analysis of the urban and intercity motorways against natural disasters and hazards have been performed and found solutions were brought against these risks. Keywords: Failure Modes Effects Analysis (FMEA), Pareto Analyses (PA), Highways, Risk Management.
NASA Technical Reports Server (NTRS)
Becker, D. D.
1980-01-01
The orbiter subsystems and interfacing program elements which interact with the orbiter computer flight software are analyzed. The failure modes identified in the subsystem/element failure mode and effects analysis are examined. Potential interaction with the software is examined through an evaluation of the software requirements. The analysis is restricted to flight software requirements and excludes utility/checkout software. The results of the hardware/software interaction analysis for the forward reaction control system are presented.
Lee, Jung-Jin; Choi, Jung-Yun; Seo, Jae-Min
2017-04-01
The purpose of this study was to evaluate the effect of nano-structured alumina surface coating on shear bond strength between Y-TZP ceramic and various dual-cured resin cements. A total of 90 disk-shaped zirconia specimens (HASS CO., Gangneung, Korea) were divided into three groups by surface treatment method: (1) airborne particle abrasion, (2) tribochemicalsilica coating, and (3) nano-structured alumina coating. Each group was categorized into three subgroups of ten specimens and bonded with three different types of dual-cured resin cements. After thermocycling, shear bond strength was measured and failure modes were observed through FE-SEM. Two-way ANOVA and the Tukey's HSD test were performed to determine the effects of surface treatment method and type of cement on bond strength ( P <.05). To confirm the correlation of surface treatment and failure mode, the Chi-square test was used. Groups treated with the nanostructured alumina coating showed significantly higher shear bond strength compared to other groups treated with airborne particle abrasion or tribochemical silica coating. Clearfil SA Luting showed a significantly higher shear bond strength compared to RelyX ARC and RelyX Unicem. The cohesive failure mode was observed to be dominant in the groups treated with nano-structured alumina coating, while the adhesive failure mode was prevalent in the groups treated with either airborne particle abrasion or tribochemical silica coating. Nano-structured alumina coating is an effective zirconia surface treatment method for enhancing the bond strength between Y-TZP ceramic and various dual-cured resin cements.
Failure Mode and Effect Analysis for Delivery of Lung Stereotactic Body Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perks, Julian R., E-mail: julian.perks@ucdmc.ucdavis.edu; Stanic, Sinisa; Stern, Robin L.
2012-07-15
Purpose: To improve the quality and safety of our practice of stereotactic body radiation therapy (SBRT), we analyzed the process following the failure mode and effects analysis (FMEA) method. Methods: The FMEA was performed by a multidisciplinary team. For each step in the SBRT delivery process, a potential failure occurrence was derived and three factors were assessed: the probability of each occurrence, the severity if the event occurs, and the probability of detection by the treatment team. A rank of 1 to 10 was assigned to each factor, and then the multiplied ranks yielded the relative risks (risk priority numbers).more » The failure modes with the highest risk priority numbers were then considered to implement process improvement measures. Results: A total of 28 occurrences were derived, of which nine events scored with significantly high risk priority numbers. The risk priority numbers of the highest ranked events ranged from 20 to 80. These included transcription errors of the stereotactic coordinates and machine failures. Conclusion: Several areas of our SBRT delivery were reconsidered in terms of process improvement, and safety measures, including treatment checklists and a surgical time-out, were added for our practice of gantry-based image-guided SBRT. This study serves as a guide for other users of SBRT to perform FMEA of their own practice.« less
NASA Technical Reports Server (NTRS)
Chen, Dakai; Phan, Anthony; Kim, Hak; Swonger, James; Musil, Paul; LaBel, Kenneth
2013-01-01
We show examples of single event functional interrupt and destructive failure in modern POL devices. The increasing complexity and diversity of the design and process introduce hard SEE modes that are triggered by various mechanisms.
Nanowire failure: long = brittle and short = ductile.
Wu, Zhaoxuan; Zhang, Yong-Wei; Jhon, Mark H; Gao, Huajian; Srolovitz, David J
2012-02-08
Experimental studies of the tensile behavior of metallic nanowires show a wide range of failure modes, ranging from ductile necking to brittle/localized shear failure-often in the same diameter wires. We performed large-scale molecular dynamics simulations of copper nanowires with a range of nanowire lengths and provide unequivocal evidence for a transition in nanowire failure mode with change in nanowire length. Short nanowires fail via a ductile mode with serrated stress-strain curves, while long wires exhibit extreme shear localization and abrupt failure. We developed a simple model for predicting the critical nanowire length for this failure mode transition and showed that it is in excellent agreement with both the simulation results and the extant experimental data. The present results provide a new paradigm for the design of nanoscale mechanical systems that demarcates graceful and catastrophic failure. © 2012 American Chemical Society
Fassett, William E
2011-10-10
As colleges and schools of pharmacy develop core courses related to patient safety, course-level outcomes will need to include both knowledge and performance measures. Three key performance outcomes for patient safety coursework, measured at the course level, are the ability to perform root cause analyses and healthcare failure mode effects analyses, and the ability to generate effective safety communications using structured formats such as the Situation-Background-Assessment-Recommendation (SBAR) situational briefing model. Each of these skills is widely used in patient safety work and competence in their use is essential for a pharmacist's ability to contribute as a member of a patient safety team.
NASA Technical Reports Server (NTRS)
Raju, Ivatury S; Glaessgen, Edward H.; Mason, Brian H; Krishnamurthy, Thiagarajan; Davila, Carlos G
2005-01-01
A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. From the analyses conducted and presented in this paper, the following conclusions were drawn. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985-certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003- subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug from the PFA is greater than 1.98 times the limit load of the lugs. I.
Structural Analysis of the Right Rear Lug of American Airlines Flight 587
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Glaessgen, Edward H.; Mason, Brian H.; Krishnamurthy, Thiagarajan; Davila, Carlos G.
2006-01-01
A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985- certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003-subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug from the PFA is greater than 1.98 times the limit load of the lugs.
SU-E-T-87: A TG-100 Approach for Quality Improvement of Associated Dosimetry Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manger, R; Pawlicki, T; Kim, G
2015-06-15
Purpose: Dosimetry protocols devote so much time to the discussion of ionization chamber choice, use and performance that is easy to forget about the importance of the associated dosimetry equipment (ADE) in radiation dosimetry - barometer, thermometer, electrometer, phantoms, triaxial cables, etc. Improper use and inaccuracy of these devices may significantly affect the accuracy of radiation dosimetry. The purpose of this study is to evaluate the risk factors in the monthly output dosimetry procedure and recommend corrective actions using a TG-100 approach. Methods: A failure mode and effects analysis (FMEA) of the monthly linac output check procedure was performed tomore » determine which steps and failure modes carried the greatest risk. In addition, a fault tree analysis (FTA) was performed to expand the initial list of failure modes making sure that none were overlooked. After determining the failure modes with the highest risk priority numbers (RPNs), 11 physicists were asked to score corrective actions based on their ease of implementation and potential impact. The results were aggregated into an impact map to determine the implementable corrective actions. Results: Three of the top five failure modes were related to the thermometer and barometer. The two highest RPN-ranked failure modes were related to barometric pressure inaccuracy due to their high lack-of-detectability scores. Six corrective actions were proposed to address barometric pressure inaccuracy, and the survey results found the following two corrective actions to be implementable: 1) send the barometer for recalibration at a calibration laboratory and 2) check the barometer accuracy against the local airport and correct for elevation. Conclusion: An FMEA on monthly output measurements displayed the importance of ADE for accurate radiation dosimetry. When brainstorming for corrective actions, an impact map is helpful for visualizing the overall impact versus the ease of implementation.« less
Fault detection and diagnosis using neural network approaches
NASA Technical Reports Server (NTRS)
Kramer, Mark A.
1992-01-01
Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.
Independent Orbiter Assessment (IOA): Assessment of the active thermal control system
NASA Technical Reports Server (NTRS)
Sinclair, S. K.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Active Thermal Control System (ATCS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the available NASA FMEA/CIL data. Discrepancies from the comparison were documented, and where enough information was available, recommendations for resolution of the discrepancies were made. This report documents the results of that comparison for the Orbiter ATCS hardware. The IOA product for the ATCS independent analysis consisted of 310 failure mode worksheets that resulted in 101 potential critical items (PCI) being identified. A comparison was made to the available NASA data which consisted of 252 FMEAs and 109 CIL items.
Independent Orbiter Assessment (IOA): Assessment of the crew equipment subsystem
NASA Technical Reports Server (NTRS)
Saxon, H.; Richard, Bill; Sinclair, S. K.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Crew Equipment hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Crew Equipment hardware. The IOA product for the Crew Equipment analysis consisted of 352 failure mode worksheets that resulted in 78 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 351 FMEAs and 82 CIL items.
Independent Orbiter Assessment (IOA): FMEA/CIL assessment
NASA Technical Reports Server (NTRS)
Hinsdale, L. W.; Swain, L. J.; Barnes, J. E.
1988-01-01
The McDonnell Douglas Astronautics Company (MDAC) was selected to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). Direction was given by the Orbiter and GFE Projects Office to perform the hardware analysis and assessment using the instructions and ground rules defined in NSTS 22206. The IOA analysis featured a top-down approach to determine hardware failure modes, criticality, and potential critical items. To preserve independence, the analysis was accomplished without reliance upon the results contained within the NASA and Prime Contractor FMEA/CIL documentation. The assessment process compared the independently derived failure modes and criticality assignments to the proposed NASA post 51-L FMEA/CIL documentation. When possible, assessment issues were discussed and resolved with the NASA subsystem managers. Unresolved issues were elevated to the Orbiter and GFE Projects Office manager, Configuration Control Board (CCB), or Program Requirements Control Board (PRCB) for further resolution. The most important Orbiter assessment finding was the previously unknown stuck autopilot push-button criticality 1/1 failure mode. The worst case effect could cause loss of crew/vehicle when the microwave landing system is not active. It is concluded that NASA and Prime Contractor Post 51-L FMEA/CIL documentation assessed by IOA is believed to be technically accurate and complete. All CIL issues were resolved. No FMEA issues remain that have safety implications. Consideration should be given, however, to upgrading NSTS 22206 with definitive ground rules which more clearly spell out the limits of redundancy.
Kharmanda, Ghias; Kharma, Mohamed-Yaser
2017-06-01
The objective of this work is to integrate structural optimization and reliability concepts into mini-plate fixation strategy used in symphysis mandibular fractures. The structural reliability levels are next estimated when considering a single failure mode and multiple failure modes. A 3-dimensional finite element model is developed in order to evaluate the ability of reducing the negative effect due to the stabilization of the fracture. Topology optimization process is considered in the conceptual design stage to predict possible fixation layouts. In the detailed design stage, suitable mini-plates are selected taking into account the resulting topology and different anatomical considerations. Several muscle forces are considered in order to obtain realistic predictions. Since some muscles can be cut or harmed during the surgery and cannot operate at its maximum capacity, there is a strong motivation to introduce the loading uncertainties in order to obtain reliable designs. The structural reliability is carried out for a single failure mode and multiple failure modes. The different results are validated with a clinical case of a male patient with symphysis fracture. In this case while use of the upper plate fixation with four holes, only two screws were applied to protect adjacent vital structure. This behavior does not affect the stability of the fracture. The proposed strategy to optimize bone plates leads to fewer complications and second surgeries, less patient discomfort, and shorter time of healing.
Development of STS/Centaur failure probabilities liftoff to Centaur separation
NASA Technical Reports Server (NTRS)
Hudson, J. M.
1982-01-01
The results of an analysis to determine STS/Centaur catastrophic vehicle response probabilities for the phases of vehicle flight from STS liftoff to Centaur separation from the Orbiter are presented. The analysis considers only category one component failure modes as contributors to the vehicle response mode probabilities. The relevant component failure modes are grouped into one of fourteen categories of potential vehicle behavior. By assigning failure rates to each component, for each of its failure modes, the STS/Centaur vehicle response probabilities in each phase of flight can be calculated. The results of this study will be used in a DOE analysis to ascertain the hazard from carrying a nuclear payload on the STS.
Failure detection and recovery in the assembly/contingency subsystem
NASA Technical Reports Server (NTRS)
Gantenbein, Rex E.
1993-01-01
The Assembly/Contingency Subsystem (ACS) is the primary communications link on board the Space Station. Any failure in a component of this system or in the external devices through which it communicates with ground-based systems will isolate the Station. The ACS software design includes a failure management capability (ACFM) that provides protocols for failure detection, isolation, and recovery (FDIR). The the ACFM design requirements as outlined in the current ACS software requirements specification document are reviewed. The activities carried out in this review include: (1) an informal, but thorough, end-to-end failure mode and effects analysis of the proposed software architecture for the ACFM; and (2) a prototype of the ACFM software, implemented as a C program under the UNIX operating system. The purpose of this review is to evaluate the FDIR protocols specified in the ACS design and the specifications themselves in light of their use in implementing the ACFM. The basis of failure detection in the ACFM is the loss of signal between the ground and the Station, which (under the appropriate circumstances) will initiate recovery to restore communications. This recovery involves the reconfiguration of the ACS to either a backup set of components or to a degraded communications mode. The initiation of recovery depends largely on the criticality of the failure mode, which is defined by tables in the ACFM and can be modified to provide a measure of flexibility in recovery procedures.
Hazards/Failure Modes and Effects Analysis MK 1 MOD 0 LSO-HUD Console System.
1980-03-24
AsI~f~ ! 127 = 3gc Z Isre -0 -q ~sI I I ~~~ ~ _ _ 3_______ II! -0udC Z Z’ P4 12 d-U * ~s ’:i~i42 S- 60 -, Uh ~ U3l I OM -C ~ . - U 4~ dcd 8U-q Ali...8 VI SCOPE AND METHODOLOGY OF ANALYSIS ........ 1O FIGURE 1: H/ FMEA /(SSA) WORK SHEET FORMAT ........... 14 APPENDIX A: HAZARD/FAILURE MODES AND...EFFECTS ANALYSIS (H/ FMEA ) -- WORK SHEETS ......... 15(A-O) TABLE: SUBSYSTEM: UNIT I Heads-Up Display Console .............. 17(A-1) UNIT 2 Auxiliary
How to make the most of failure mode and effect analysis.
Stalhandske, Erik; DeRosier, Joseph; Patail, Bryanne; Gosbee, John
2003-01-01
Current accreditation standards issued by the Joint Commission for the Accreditation of Healthcare Organizations (JCAHO) require hospitals to carry out a proactive risk assessment on at least 1 high-risk activity each year for each accredited program. Because hospital risk managers and patient safety managers generally do not have the knowledge or level of comfort for conducting a proactive risk assessment, they will appreciate the expertise offered by biomedical equipment technicians (BMETs), occupational safety and health professionals, and others. The skills that have been developed by BMETs and others while conducting job safety analyses or failure mode effect analysis can now be applied to a health care proactive analysis. This article touches on the Health Care Failure Mode and Effect Analysis (HFMEA) model that the Department of Veterans Affairs (VA) National Center for Patient Safety developed for proactive risk assessment within the health care community. The goal of this article is to enlighten BMETs and others on the growth of proactive risk assessment within health care and also on the support documents and materials produced by the VA. For additional information on HFMEA, visit the VA website at www.patientsafety.gov/HFMEA.html.
Protein unfolding versus β-sheet separation in spider silk nanocrystals
NASA Astrophysics Data System (ADS)
Alam, Parvez
2014-03-01
In this communication a mechanism for spider silk strain hardening is proposed. Shear failure of β-sheet nanocrystals is the first failure mode that gives rise to the creation of smaller nanocrystals, which are of higher strength and stiffness. β-sheet unfolding requires more energy than nanocrystal separation in a shear mode of failure. As a result, unfolding occurs after the nanocrystals separate in shear. β-sheet unfolding yields a secondary strain hardening effect once the β-sheet conformation is geometrically stable and acts like a unidirectional fibre in a fibre reinforced composite. The mechanism suggested herein is based on molecular dynamics calculations of residual inter-β-sheet separation strengths against residual intra-β-sheet unfolding strengths.
NASA Astrophysics Data System (ADS)
Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.
2017-12-01
This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.
Independent Orbiter Assessment (IOA): Analysis of the extravehicular mobility unit
NASA Technical Reports Server (NTRS)
Raffaelli, Gary G.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Extravehicular Mobility Unit (EMU) hardware. The EMU is an independent anthropomorphic system that provides environmental protection, mobility, life support, and communications for the Shuttle crewmember to perform Extravehicular Activity (EVA) in Earth orbit. Two EMUs are included on each baseline Orbiter mission, and consumables are provided for three two-man EVAs. The EMU consists of the Life Support System (LSS), Caution and Warning System (CWS), and the Space Suit Assembly (SSA). Each level of hardware was evaluated and analyzed for possible failure modes and effects. The majority of these PCIs are resultant from failures which cause loss of one or more primary functions: pressurization, oxygen delivery, environmental maintenance, and thermal maintenance. It should also be noted that the quantity of PCIs would significantly increase if the SOP were to be treated as an emergency system rather than as an unlike redundant element.
Compendium of Mechanical Limit-States
NASA Technical Reports Server (NTRS)
Kowal, Michael
1996-01-01
A compendium was compiled and is described to provide a diverse set of limit-state relationships for use in demonstrating the application of probabilistic reliability methods to mechanical systems. The different limit-state relationships can be used to analyze the reliability of a candidate mechanical system. In determining the limit-states to be included in the compendium, a comprehensive listing of the possible failure modes that could affect mechanical systems reliability was generated. Previous literature defining mechanical modes of failure was studied, and cited failure modes were included. From this, classifications for failure modes were derived and are described in some detail.
Composite Interlaminar Shear Fracture Toughness, G(sub 2c): Shear Measurement of Sheer Myth?
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin
1997-01-01
The concept of G2c as a measure of the interlaminar shear fracture toughness of a composite material is critically examined. In particular, it is argued that the apparent G2c as typically measured is inconsistent with the original definition of shear fracture. It is shown that interlaminar shear failure actually consists of tension failures in the resin rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in fracture mechanics theory. Several strain energy release rate solutions are reviewed for delamination in composite laminates and structural components where failures have been experimentally documented. Failures typically occur at a location where the mode 1 component accounts for at least one half of the total G at failure. Hence, it is the mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service. Although apparent G2c measurements may prove useful for completeness of generating mixed-mode criteria, the accuracy of these measurements may have very little influence on the prediction of mixed-mode failures in most structural components.
Beeler, Remo; Schoenenberger, Andreas W; Bauer, Peter; Kobza, Richard; Bergner, Michael; Mueller, Xavier; Schlaepfer, Reinhard; Zuber, Michel; Erne, Susanne; Erne, Paul
2014-03-01
Device-based pacing-induced diaphragmatic stimulation (PIDS) may have therapeutic potential for chronic heart failure (HF) patients. We studied the effects of PIDS on cardiac function and functional outcomes. In 24 chronic HF patients with CRT, an additional electrode was attached to the left diaphragm. Randomized into two groups, patients received the following PIDS modes for 3 weeks in a different sequence: (i) PIDS off (control group); (ii) PIDS 0 ms mode (PIDS simultaneously with ventricular CRT pulse); or (iii) PIDS optimized mode (PIDS with optimized delay to ventricular CRT pulse). For PIDS optimization, acoustic cardiography was used. Effects of each PIDS mode on dyspnoea, power during exercise testing, and LVEF were assessed. Dyspnoea improved with the PIDS 0 ms mode (P = 0.057) and the PIDS optimized mode (P = 0.034) as compared with the control group. Maximal power increased from median 100.5 W in the control group to 104.0 W in the PIDS 0 ms mode (P = 0.092) and 109.5 W in the PIDS optimized mode (P = 0.022). Median LVEF was 33.5% in the control group, 33.0% in the PIDS 0 ms mode, and 37.0% in the PIDS optimized mode (P = 0.763 and P = 0.009 as compared with the control group, respectively). PIDS was asymptomatic in all patients. PIDS improves dyspnoea, working capacity, and LVEF in chronic HF patients over a 3 week period in addition to CRT. This pilot study demonstrates proof of principle of an innovative technology which should be confirmed in a larger sample. NCT00769678. © 2013 The Authors. European Journal of Heart Failure © 2013 European Society of Cardiology.
Stress Induced Degradation Modes in CIGSS Minimodules (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempe, M. D.; Terwilliger, K.; Tarrant, D.
2008-05-01
The experimental objectives of this report are: (1) compare the performance of modules exposed to high temperature and humidity; (2) determine the effects of different encapsulants on long term stability of CIGSS modules; and (3) analyze failure modes to determine areas in need of improvement.
Independent Orbiter Assessment (IOA): Analysis of the rudder/speed brake subsystem
NASA Technical Reports Server (NTRS)
Wilson, R. E.; Riccio, J. R.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Rudder/Speedbrake Actuation Mechanism is documented. The function of the Rudder/Speedbrake (RSB) is to provide directional control and to provide a means of energy control during entry. The system consists of two panels on a vertical hinge mounted on the aft part of the vertical stabilizer. These two panels move together to form a rudder but split apart to make a speedbrake. The Rudder/Speedbrake Actuation Mechanism consists of the following elements: (1) Power Drive Unit (PDU) which is composed of hydraulic valve module and a hydraulic motor-powered gearbox which contains differentials and mixer gears to provide PDU torque output; (2) four geared rotary actuators which apply the PDU generated torque to the rudder/speedbrake panels; and (3) ten torque shafts which join the PDU to the rotary actuators and interconnect the four rotary actuators. Each level of hardware was evaluated and analyzed for possible failures and causes. Criticality was assigned based upon the severity of the effect for each failure mode. Critical RSB failures which result in potential loss of vehicle control were mainly due to loss of hydraulic fluid, fluid contaminators, and mechanical failures in gears and shafts.
Delamination and Stitched Failure in Stitched Composite Joints
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.
1999-01-01
The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and finite element study. The experimental program was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The experimentally determined debond length vs. applied load was used as an input parameter in the finite element analysis of both configurations. The strain energy release rates at the debond from were calculated using plate finite elements. Nonlinear fastener elements were used to model the stitches and multipoint constraints were used to model the contact problem. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches were effective in reducing mode I to zero, but had less of an effect on modes II and III.
Failure Atlas for Rolling Bearings in Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tallian, T. E.
2006-01-01
This Atlas is structured as a supplement to the book: T.E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2nd edition, ASME Press New York, (1999). The content of the atlas comprises plate pages from the book that contain bearing failure images, application data, and descriptions of failure mode, image, and suspected failure causes. Rolling bearings are a critical component of the mainshaft system, gearbox and generator in the rapidly developing technology of power generating wind turbines. The demands for long service life are stringent; the design load, speed and temperature regimes are demanding and the environmental conditions including weather,more » contamination, impediments to monitoring and maintenance are often unfavorable. As a result, experience has shown that the rolling bearings are prone to a variety of failure modes that may prevent achievement of design lives. Morphological failure diagnosis is extensively used in the failure analysis and improvement of bearing operation. Accumulated experience shows that the failure appearance and mode of failure causation in wind turbine bearings has many distinguishing features. The present Atlas is a first effort to collect an interpreted database of specifically wind turbine related rolling bearing failures and make it widely available. This Atlas is structured as a supplement to the book: T. E. Tallian: Failure Atlas for Hertz Contact Machine Elements, 2d edition, ASME Press New York, (1999). The main body of that book is a comprehensive collection of self-contained pages called Plates, containing failure images, bearing and application data, and three descriptions: failure mode, image and suspected failure causes. The Plates are sorted by main failure mode into chapters. Each chapter is preceded by a general technical discussion of the failure mode, its appearance and causes. The Plates part is supplemented by an introductory part, describing the appearance classification and failure classification systems used, and by several indexes. The present Atlas is intended as a supplement to the book. It has the same structure but contains only Plate pages, arranged in chapters, each with a chapter heading page giving a short definition of the failure mode illustrated. Each Plate page is self contained, with images, bearing and application data, and descriptions of the failure mode, the images and the suspected causes. Images are provided in two resolutions: The text page includes 6 by 9 cm images. In addition, high resolution image files are attached, to be retrieved by clicking on their 'push pin' icon. While the material in the present Atlas is self-contained, it is nonetheless a supplement to the book and the complete interpretation of the terse image descriptions and of the system underlying the failure code presupposes familiarity with the book. Since this Atlas is a supplement to the book, its chapter numbering follows that of the book. Not all failure modes covered in the book have been found among the observed wind turbines. For that reason, and because of the omission of introductory matter, the chapter numbers in this Atlas are not a continuous sequence.« less
Socket position determines hip resurfacing 10-year survivorship.
Amstutz, Harlan C; Le Duff, Michel J; Johnson, Alicia J
2012-11-01
Modern metal-on-metal hip resurfacing arthroplasty designs have been used for over a decade. Risk factors for short-term failure include small component size, large femoral head defects, low body mass index, older age, high level of sporting activity, and component design, and it is established there is a surgeon learning curve. Owing to failures with early surgical techniques, we developed a second-generation technique to address those failures. However, it is unclear whether the techniques affected the long-term risk factors. We (1) determined survivorship for hips implanted with the second-generation cementing technique; (2) identified the risk factors for failure in these patients; and (3) determined the effect of the dominant risk factors on the observed modes of failure. We retrospectively reviewed the first 200 hips (178 patients) implanted using our second-generation surgical technique, which consisted of improvements in cleaning and drying the femoral head before and during cement application. There were 129 men and 49 women. Component orientation and contact patch to rim distance were measured. We recorded the following modes of failure: femoral neck fracture, femoral component loosening, acetabular component loosening, wear, dislocation, and sepsis. The minimum followup was 25 months (mean, 106.5 months; range, 25-138 months). Twelve hips were revised. Kaplan-Meier survivorship was 98.0% at 5 years and 94.3% at 10 years. The only variable associated with revision was acetabular component position. Contact patch to rim distance was lower in hips that dislocated, were revised for wear, or were revised for acetabular loosening. The dominant modes of failure were related to component wear or acetabular component loosening. Acetabular component orientation, a factor within the surgeon's control, determines the long-term success of our current hip resurfacing techniques. Current techniques have changed the modes of failure from aseptic femoral failure to wear or loosening of the acetabular component. Level III, prognostic study. See Guidelines for Authors for a complete description of levels of evidence.
75 FR 51931 - Airworthiness Directives; Dassault-Aviation Model FALCON 7X Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... root cause: A leakage failure mode of Transient Voltage Suppressor (TVS) diodes used on Power... condition is a leakage failure mode of TVS diodes used on PDCU cards or GCU cards in the PPDB, which in... discovery of a common root cause: A leakage failure mode of Transient Voltage Suppressor (TVS) diodes used...
Folded fabric tunes rock deformation and failure mode in the upper crust.
Agliardi, F; Dobbs, M R; Zanchetta, S; Vinciguerra, S
2017-11-10
The micro-mechanisms of brittle failure affect the bulk mechanical behaviour and permeability of crustal rocks. In low-porosity crystalline rocks, these mechanisms are related to mineralogy and fabric anisotropy, while confining pressure, temperature and strain rates regulate the transition from brittle to ductile behaviour. However, the effects of folded anisotropic fabrics, widespread in orogenic settings, on the mechanical behaviour of crustal rocks are largely unknown. Here we explore the deformation and failure behaviour of a representative folded gneiss, by combining the results of triaxial deformation experiments carried out while monitoring microseismicity with microstructural and damage proxies analyses. We show that folded crystalline rocks in upper crustal conditions exhibit dramatic strength heterogeneity and contrasting failure modes at identical confining pressure and room temperature, depending on the geometrical relationships between stress and two different anisotropies associated to the folded rock fabric. These anisotropies modulate the competition among quartz- and mica-dominated microscopic damage processes, resulting in transitional brittle to semi-brittle modes under P and T much lower than expected. This has significant implications on scales relevant to seismicity, energy resources, engineering applications and geohazards.
Zhao, Bo; Li, Chenghao; Liu, Derong; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.
Zhao, Bo; Li, Yuanchun
2015-01-01
This paper considers a decentralized fault tolerant control (DFTC) scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO). Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations. PMID:26181826
WE-G-BRC-02: Risk Assessment for HDR Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayadev, J.
2016-06-15
Failure Mode and Effects Analysis (FMEA) originated as an industrial engineering technique used for risk management and safety improvement of complex processes. In the context of radiotherapy, the AAPM Task Group 100 advocates FMEA as the framework of choice for establishing clinical quality management protocols. However, there is concern that widespread adoption of FMEA in radiation oncology will be hampered by the perception that implementation of the tool will have a steep learning curve, be extremely time consuming and labor intensive, and require additional resources. To overcome these preconceptions and facilitate the introduction of the tool into clinical practice, themore » medical physics community must be educated in the use of this tool and the ease in which it can be implemented. Organizations with experience in FMEA should share their knowledge with others in order to increase the implementation, effectiveness and productivity of the tool. This session will include a brief, general introduction to FMEA followed by a focus on practical aspects of implementing FMEA for specific clinical procedures including HDR brachytherapy, physics plan review and radiosurgery. A description of common equipment and devices used in these procedures and how to characterize new devices for safe use in patient treatments will be presented. This will be followed by a discussion of how to customize FMEA techniques and templates to one’s own clinic. Finally, cases of common failure modes for specific procedures (described previously) will be shown and recommended intervention methodologies and outcomes reviewed. Learning Objectives: Understand the general concept of failure mode and effect analysis Learn how to characterize new equipment for safety Be able to identify potential failure modes for specific procedures and learn mitigation techniques Be able to customize FMEA examples and templates for use in any clinic.« less
WE-G-BRC-01: Risk Assessment for Radiosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, G.
2016-06-15
Failure Mode and Effects Analysis (FMEA) originated as an industrial engineering technique used for risk management and safety improvement of complex processes. In the context of radiotherapy, the AAPM Task Group 100 advocates FMEA as the framework of choice for establishing clinical quality management protocols. However, there is concern that widespread adoption of FMEA in radiation oncology will be hampered by the perception that implementation of the tool will have a steep learning curve, be extremely time consuming and labor intensive, and require additional resources. To overcome these preconceptions and facilitate the introduction of the tool into clinical practice, themore » medical physics community must be educated in the use of this tool and the ease in which it can be implemented. Organizations with experience in FMEA should share their knowledge with others in order to increase the implementation, effectiveness and productivity of the tool. This session will include a brief, general introduction to FMEA followed by a focus on practical aspects of implementing FMEA for specific clinical procedures including HDR brachytherapy, physics plan review and radiosurgery. A description of common equipment and devices used in these procedures and how to characterize new devices for safe use in patient treatments will be presented. This will be followed by a discussion of how to customize FMEA techniques and templates to one’s own clinic. Finally, cases of common failure modes for specific procedures (described previously) will be shown and recommended intervention methodologies and outcomes reviewed. Learning Objectives: Understand the general concept of failure mode and effect analysis Learn how to characterize new equipment for safety Be able to identify potential failure modes for specific procedures and learn mitigation techniques Be able to customize FMEA examples and templates for use in any clinic.« less
WE-G-BRC-03: Risk Assessment for Physics Plan Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, S.
2016-06-15
Failure Mode and Effects Analysis (FMEA) originated as an industrial engineering technique used for risk management and safety improvement of complex processes. In the context of radiotherapy, the AAPM Task Group 100 advocates FMEA as the framework of choice for establishing clinical quality management protocols. However, there is concern that widespread adoption of FMEA in radiation oncology will be hampered by the perception that implementation of the tool will have a steep learning curve, be extremely time consuming and labor intensive, and require additional resources. To overcome these preconceptions and facilitate the introduction of the tool into clinical practice, themore » medical physics community must be educated in the use of this tool and the ease in which it can be implemented. Organizations with experience in FMEA should share their knowledge with others in order to increase the implementation, effectiveness and productivity of the tool. This session will include a brief, general introduction to FMEA followed by a focus on practical aspects of implementing FMEA for specific clinical procedures including HDR brachytherapy, physics plan review and radiosurgery. A description of common equipment and devices used in these procedures and how to characterize new devices for safe use in patient treatments will be presented. This will be followed by a discussion of how to customize FMEA techniques and templates to one’s own clinic. Finally, cases of common failure modes for specific procedures (described previously) will be shown and recommended intervention methodologies and outcomes reviewed. Learning Objectives: Understand the general concept of failure mode and effect analysis Learn how to characterize new equipment for safety Be able to identify potential failure modes for specific procedures and learn mitigation techniques Be able to customize FMEA examples and templates for use in any clinic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Failure Mode and Effects Analysis (FMEA) originated as an industrial engineering technique used for risk management and safety improvement of complex processes. In the context of radiotherapy, the AAPM Task Group 100 advocates FMEA as the framework of choice for establishing clinical quality management protocols. However, there is concern that widespread adoption of FMEA in radiation oncology will be hampered by the perception that implementation of the tool will have a steep learning curve, be extremely time consuming and labor intensive, and require additional resources. To overcome these preconceptions and facilitate the introduction of the tool into clinical practice, themore » medical physics community must be educated in the use of this tool and the ease in which it can be implemented. Organizations with experience in FMEA should share their knowledge with others in order to increase the implementation, effectiveness and productivity of the tool. This session will include a brief, general introduction to FMEA followed by a focus on practical aspects of implementing FMEA for specific clinical procedures including HDR brachytherapy, physics plan review and radiosurgery. A description of common equipment and devices used in these procedures and how to characterize new devices for safe use in patient treatments will be presented. This will be followed by a discussion of how to customize FMEA techniques and templates to one’s own clinic. Finally, cases of common failure modes for specific procedures (described previously) will be shown and recommended intervention methodologies and outcomes reviewed. Learning Objectives: Understand the general concept of failure mode and effect analysis Learn how to characterize new equipment for safety Be able to identify potential failure modes for specific procedures and learn mitigation techniques Be able to customize FMEA examples and templates for use in any clinic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Stephen J.; Broome, Scott Thomas; Choens, Charles
2015-09-14
Seven water-saturated triaxial extension experiments were conducted on four sedimentary rocks. This experimental condition was hypothesized more representative of that existing for downhole hydrofracture and thus it may improve our understanding of the phenomena. In all tests the pore pressure was 10 MPa and confirming pressure was adjusted to achieve tensile and transitional failure mode conditions. Using previous work in this LDRD for comparison, the law of effective stress is demonstrated in extension using this sample geometry. In three of the four lithologies, no apparent chemo-mechanical effect of water is apparent, and in the fourth lithology test results indicate somemore » chemo-mechanical effect of water.« less
High-throughput sequencing: a failure mode analysis.
Yang, George S; Stott, Jeffery M; Smailus, Duane; Barber, Sarah A; Balasundaram, Miruna; Marra, Marco A; Holt, Robert A
2005-01-04
Basic manufacturing principles are becoming increasingly important in high-throughput sequencing facilities where there is a constant drive to increase quality, increase efficiency, and decrease operating costs. While high-throughput centres report failure rates typically on the order of 10%, the causes of sporadic sequencing failures are seldom analyzed in detail and have not, in the past, been formally reported. Here we report the results of a failure mode analysis of our production sequencing facility based on detailed evaluation of 9,216 ESTs generated from two cDNA libraries. Two categories of failures are described; process-related failures (failures due to equipment or sample handling) and template-related failures (failures that are revealed by close inspection of electropherograms and are likely due to properties of the template DNA sequence itself). Preventative action based on a detailed understanding of failure modes is likely to improve the performance of other production sequencing pipelines.
Ahmad, Tariq; Fiuzat, Mona; Neely, Ben; Neely, Megan; Pencina, Michael J.; Kraus, William E.; Zannad, Faiez; Whellan, David J.; Donahue, Mark; Piña, Ileana L.; Adams, Kirkwood; Kitzman, Dalane W.; O’Connor, Christopher M.; Felker, G. Michael
2014-01-01
Objective To determine whether biomarkers of myocardial stress and fibrosis improve prediction of mode of death in patients with chronic heart failure. Background The two most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of mode of death may facilitate treatment decisions. The relationship between NT-proBNP, galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. Methods HF-ACTION was a randomized controlled trial of exercise training vs. usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (LVEF<35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox-proportional hazards modeling, and interaction testing was used to measure differential association between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. Results After a median follow up of 2.5 years, there were 155 deaths: 49 from pump failure 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk of both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death but this relationship was attenuated after adjustment for clinical risk factors. Clinical variables along with NT-proBNP levels were stronger predictors of pump failure (C statistic: 0.87) than sudden cardiac death (C statistic: 0.73). Addition of ST2 and galectin-3 led to improved net risk classification of 11% for sudden cardiac death, but not pump failure. Conclusions Clinical predictors along with NT-proBNP levels were strong predictors of pump failure risk, with insignificant incremental contributions of ST2 and galectin-3. Predictability of sudden cardiac death risk was less robust and enhanced by information provided by novel biomarkers. PMID:24952693
neutron-Induced Failures in semiconductor Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wender, Stephen Arthur
2017-03-13
Single Event Effects are a very significant failure mode in modern semiconductor devices that may limit their reliability. Accelerated testing is important for semiconductor industry. Considerable more work is needed in this field to mitigate the problem. Mitigation of this problem will probably come from Physicists and Electrical Engineers working together
Savannah River Site generic data base development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanton, C.H.; Eide, S.A.
This report describes the results of a project to improve the generic component failure data base for the Savannah River Site (SRS). A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear powermore » plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. This information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor) for each component failure mode.« less
The assessment of low probability containment failure modes using dynamic PRA
NASA Astrophysics Data System (ADS)
Brunett, Acacia Joann
Although low probability containment failure modes in nuclear power plants may lead to large releases of radioactive material, these modes are typically crudely modeled in system level codes and have large associated uncertainties. Conventional risk assessment techniques (i.e. the fault-tree/event-tree methodology) are capable of accounting for these failure modes to some degree, however, they require the analyst to pre-specify the ordering of events, which can vary within the range of uncertainty of the phenomena. More recently, dynamic probabilistic risk assessment (DPRA) techniques have been developed which remove the dependency on the analyst. Through DPRA, it is now possible to perform a mechanistic and consistent analysis of low probability phenomena, with the timing of the possible events determined by the computational model simulating the reactor behavior. The purpose of this work is to utilize DPRA tools to assess low probability containment failure modes and the driving mechanisms. Particular focus is given to the risk-dominant containment failure modes considered in NUREG-1150, which has long been the standard for PRA techniques. More specifically, this work focuses on the low probability phenomena occurring during a station blackout (SBO) with late power recovery in the Zion Nuclear Power Plant, a Westinghouse pressurized water reactor (PWR). Subsequent to the major risk study performed in NUREG-1150, significant experimentation and modeling regarding the mechanisms driving containment failure modes have been performed. In light of this improved understanding, NUREG-1150 containment failure modes are reviewed in this work using the current state of knowledge. For some unresolved mechanisms, such as containment loading from high pressure melt ejection and combustion events, additional analyses are performed using the accident simulation tool MELCOR to explore the bounding containment loads for realistic scenarios. A dynamic treatment in the characterization of combustible gas ignition is also presented in this work. In most risk studies, combustion is treated simplistically in that it is assumed an ignition occurs if the gas mixture achieves a concentration favorable for ignition under the premise that an adequate ignition source is available. However, the criteria affecting ignition (such as the magnitude, location and frequency of the ignition sources) are complicated. This work demonstrates a technique for characterizing the properties of an ignition source to determine a probability of ignition. The ignition model developed in this work and implemented within a dynamic framework is utilized to analyze the implications and risk significance of late combustion events. This work also explores the feasibility of using dynamic event trees (DETs) with a deterministic sampling approach to analyze low probability phenomena. The flexibility of this approach is demonstrated through the rediscretization of containment fragility curves used in construction of the DET to show convergence to a true solution. Such a rediscretization also reduces the computational burden introduced through extremely fine fragility curve discretization by subsequent refinement of fragility curve regions of interest. Another advantage of the approach is the ability to perform sensitivity studies on the cumulative distribution functions (CDFs) used to determine branching probabilities without the need for rerunning the simulation code. Through review of the NUREG-1150 containment failure modes using the current state of knowledge, it is found that some failure modes, such as Alpha and rocket, can be excluded from further studies; other failure modes, such as failure to isolate, bypass, high pressure melt ejection (HPME), combustion-induced failure and overpressurization are still concerns to varying degrees. As part of this analysis, scoping studies performed in MELCOR show that HPME and the resulting direct containment heating (DCH) do not impose a significant threat to containment integrity. Additional scoping studies regarding the effect of recovery actions on in-vessel hydrogen generation show that reflooding a partially degraded core do not significantly affect hydrogen generation in-vessel, and the NUREG-1150 assumption that insufficient hydrogen is generated in-vessel to produce an energetic deflagration is confirmed. The DET analyses performed in this work show that very late power recovery produces the potential for very energetic combustion events which are capable of failing containment with a non-negligible probability, and that containment cooling systems have a significant impact on core concrete attack, and therefore combustible gas generation ex-vessel. Ultimately, the overall risk of combustion-induced containment failure is low, but its conditional likelihood can have a significant effect on accident mitigation strategies. It is also shown in this work that DETs are particularly well suited to examine low probability events because of their ability to rediscretize CDFs and observe solution convergence.
Guyen, Olivier; Lewallen, David G; Cabanela, Miguel E
2008-07-01
The Osteonics constrained tripolar implant has been one of the most commonly used options to manage recurrent instability after total hip arthroplasty. Mechanical failures were expected and have been reported. The purpose of this retrospective review was to identify the observed modes of failure of this device. Forty-three failed Osteonics constrained tripolar implants were revised at our institution between September 1997 and April 2005. All revisions related to the constrained acetabular component only were considered as failures. All of the devices had been inserted for recurrent or intraoperative instability during revision procedures. Seven different methods of implantation were used. Operative reports and radiographs were reviewed to identify the modes of failure. The average time to failure of the forty-three implants was 28.4 months. A total of five modes of failure were observed: failure at the bone-implant interface (type I), which occurred in eleven hips; failure at the mechanisms holding the constrained liner to the metal shell (type II), in six hips; failure of the retaining mechanism of the bipolar component (type III), in ten hips; dislocation of the prosthetic head at the inner bearing of the bipolar component (type IV), in three hips; and infection (type V), in twelve hips. The mode of failure remained unknown in one hip that had been revised at another institution. The Osteonics constrained tripolar total hip arthroplasty implant is a complex device involving many parts. We showed that failure of this device can occur at most of its interfaces. It would therefore appear logical to limit its application to salvage situations.
NASA Technical Reports Server (NTRS)
McCarty, John P.; Lyles, Garry M.
1997-01-01
Propulsion system quality is defined in this paper as having high reliability, that is, quality is a high probability of within-tolerance performance or operation. Since failures are out-of-tolerance performance, the probability of failures and their occurrence is the difference between high and low quality systems. Failures can be described at 3 levels: the system failure (which is the detectable end of a failure), the failure mode (which is the failure process), and the failure cause (which is the start). Failure causes can be evaluated & classified by type. The results of typing flight history failures shows that most failures are in unrecognized modes and result from human error or noise, i.e. failures are when engineers learn how things really work. Although the study based on US launch vehicles, a sampling of failures from other countries indicates the finding has broad application. The parameters of the design of a propulsion system are not single valued, but have dispersions associated with the manufacturing of parts. Many tests are needed to find failures, if the dispersions are large relative to tolerances, which could contribute to the large number of failures in unrecognized modes.
A multidimensional anisotropic strength criterion based on Kelvin modes
NASA Astrophysics Data System (ADS)
Arramon, Yves Pierre
A new theory for the prediction of multiaxial strength of anisotropic elastic materials was proposed by Biegler and Mehrabadi (1993). This theory is based on the premise that the total elastic strain energy of an anisotropic material subjected to multiaxial stress can be decomposed into dilatational and deviatoric modes. A multidimensional strength criterion may thus be formulated by postulating that the failure would occur when the energy stored in one of these modes has reached a critical value. However, the logic employed by these authors to formulate a failure criterion based on this theory could not be extended to multiaxial stress. In this thesis, an alternate criterion is presented which redresses the biaxial restriction by reformulating the surfaces of constant modal energy as surfaces of constant eigenstress magnitude. The resulting failure envelope, in a multidimensional stress space, is piecewise smooth. Each facet of the envelope is expected to represent the locus of failure data by a particular Kelvin mode. It is further shown that the Kelvin mode theory alone provides an incomplete description of the failure of some materials, but that this weakness can be addressed by the introduction of a set of complementary modes. A revised theory which combines both Kelvin and complementary modes is thus proposed and applied seven example materials: an isotropic concrete, tetragonal paperboard, two orthotropic softwoods, two orthotropic hardwoods and an orthotropic cortical bone. The resulting failure envelopes for these examples were plotted and, with the exception of concrete, shown to produce intuitively correct failure predictions.
Model authoring system for fail safe analysis
NASA Technical Reports Server (NTRS)
Sikora, Scott E.
1990-01-01
The Model Authoring System is a prototype software application for generating fault tree analyses and failure mode and effects analyses for circuit designs. Utilizing established artificial intelligence and expert system techniques, the circuits are modeled as a frame-based knowledge base in an expert system shell, which allows the use of object oriented programming and an inference engine. The behavior of the circuit is then captured through IF-THEN rules, which then are searched to generate either a graphical fault tree analysis or failure modes and effects analysis. Sophisticated authoring techniques allow the circuit to be easily modeled, permit its behavior to be quickly defined, and provide abstraction features to deal with complexity.
1983-11-01
Isolation FIT Fault Isolation Test FMC Fully Mission Capable FMEA Failure Modes and Effects Analysis FMECA Failure Modes, Effects and Criticality...8217 ..* ,/- " , " A ’’"""¢ 9 % ’ k " . " ~ .[:, .- v," . , , .’ % , o4,o 100 92 88 0 80 76 PERCENT -- __ OF F-16 60 FLIGHTS WITHOUT NATO NATO RADAR HILL BASE BASE...to manage a growth program adequately. 822/1-13 IV-13 %. - 70 60 F-ill 50 F-1 5 40- CL. C.c 30 - IF-1 S20 ICIC p 10 I~* -. -. - - -____ F-5E -4 -3 -2
Failure analysis in the identification of synergies between cleaning monitoring methods.
Whiteley, Greg S; Derry, Chris; Glasbey, Trevor
2015-02-01
The 4 monitoring methods used to manage the quality assurance of cleaning outcomes within health care settings are visual inspection, microbial recovery, fluorescent marker assessment, and rapid ATP bioluminometry. These methods each generate different types of information, presenting a challenge to the successful integration of monitoring results. A systematic approach to safety and quality control can be used to interrogate the known qualities of cleaning monitoring methods and provide a prospective management tool for infection control professionals. We investigated the use of failure mode and effects analysis (FMEA) for measuring failure risk arising through each cleaning monitoring method. FMEA uses existing data in a structured risk assessment tool that identifies weaknesses in products or processes. Our FMEA approach used the literature and a small experienced team to construct a series of analyses to investigate the cleaning monitoring methods in a way that minimized identified failure risks. FMEA applied to each of the cleaning monitoring methods revealed failure modes for each. The combined use of cleaning monitoring methods in sequence is preferable to their use in isolation. When these 4 cleaning monitoring methods are used in combination in a logical sequence, the failure modes noted for any 1 can be complemented by the strengths of the alternatives, thereby circumventing the risk of failure of any individual cleaning monitoring method. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Global resilience analysis of water distribution systems.
Diao, Kegong; Sweetapple, Chris; Farmani, Raziyeh; Fu, Guangtao; Ward, Sarah; Butler, David
2016-12-01
Evaluating and enhancing resilience in water infrastructure is a crucial step towards more sustainable urban water management. As a prerequisite to enhancing resilience, a detailed understanding is required of the inherent resilience of the underlying system. Differing from traditional risk analysis, here we propose a global resilience analysis (GRA) approach that shifts the objective from analysing multiple and unknown threats to analysing the more identifiable and measurable system responses to extreme conditions, i.e. potential failure modes. GRA aims to evaluate a system's resilience to a possible failure mode regardless of the causal threat(s) (known or unknown, external or internal). The method is applied to test the resilience of four water distribution systems (WDSs) with various features to three typical failure modes (pipe failure, excess demand, and substance intrusion). The study reveals GRA provides an overview of a water system's resilience to various failure modes. For each failure mode, it identifies the range of corresponding failure impacts and reveals extreme scenarios (e.g. the complete loss of water supply with only 5% pipe failure, or still meeting 80% of demand despite over 70% of pipes failing). GRA also reveals that increased resilience to one failure mode may decrease resilience to another and increasing system capacity may delay the system's recovery in some situations. It is also shown that selecting an appropriate level of detail for hydraulic models is of great importance in resilience analysis. The method can be used as a comprehensive diagnostic framework to evaluate a range of interventions for improving system resilience in future studies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Reliability analysis of airship remote sensing system
NASA Astrophysics Data System (ADS)
Qin, Jun
1998-08-01
Airship Remote Sensing System (ARSS) for obtain the dynamic or real time images in the remote sensing of the catastrophe and the environment, is a mixed complex system. Its sensor platform is a remote control airship. The achievement of a remote sensing mission depends on a series of factors. For this reason, it is very important for us to analyze reliability of ARSS. In first place, the system model was simplified form multi-stage system to two-state system on the basis of the result of the failure mode and effect analysis and the failure tree failure mode effect and criticality analysis. The failure tree was created after analyzing all factors and their interrelations. This failure tree includes four branches, e.g. engine subsystem, remote control subsystem, airship construction subsystem, flying metrology and climate subsystem. By way of failure tree analysis and basic-events classing, the weak links were discovered. The result of test running shown no difference in comparison with theory analysis. In accordance with the above conclusions, a plan of the reliability growth and reliability maintenance were posed. System's reliability are raised from 89 percent to 92 percent with the reformation of the man-machine interactive interface, the augmentation of the secondary better-groupie and the secondary remote control equipment.
NASA Astrophysics Data System (ADS)
Yang, Zhou; Zhu, Yunpeng; Ren, Hongrui; Zhang, Yimin
2015-03-01
Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.
Investigation of advanced fault insertion and simulator methods
NASA Technical Reports Server (NTRS)
Dunn, W. R.; Cottrell, D.
1986-01-01
The cooperative agreement partly supported research leading to the open-literature publication cited. Additional efforts under the agreement included research into fault modeling of semiconductor devices. Results of this research are presented in this report which is summarized in the following paragraphs. As a result of the cited research, it appears that semiconductor failure mechanism data is abundant but of little use in developing pin-level device models. Failure mode data on the other hand does exist but is too sparse to be of any statistical use in developing fault models. What is significant in the failure mode data is that, unlike classical logic, MSI and LSI devices do exhibit more than 'stuck-at' and open/short failure modes. Specifically they are dominated by parametric failures and functional anomalies that can include intermittent faults and multiple-pin failures. The report discusses methods of developing composite pin-level models based on extrapolation of semiconductor device failure mechanisms, failure modes, results of temperature stress testing and functional modeling. Limitations of this model particularly with regard to determination of fault detection coverage and latency time measurement are discussed. Indicated research directions are presented.
Gear Crack Propagation Path Studies-- Guidelines Developed for Ultrasafe Design
NASA Technical Reports Server (NTRS)
Lewicki, David G.
2002-01-01
Effective gear designs balance strength, durability, reliability, size, weight, and cost. However, unexpected gear failures may occur even with adequate gear tooth design. To design an extremely safe system, the designer must ask and address the question "What happens when a failure occurs?" With regard to gear-tooth bending fatigue, tooth or rim fractures may occur. For aircraft, a crack that propagated through a rim would be catastrophic, leading to the disengagement of a rotor or propeller, the loss of an aircraft, and possible fatalities. This failure mode should be avoided. However, a crack that propagated through a tooth might or might not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode might be possible because of advances in modern diagnostic systems. An analysis was performed at the NASA Glenn Research Center to develop design guidelines to prevent catastrophic rim fracture failure modes in the event of gear-tooth bending fatigue. The finite element method was used with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear-tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth and rim fracture modes, including the effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant-pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 degree pressure angle teeth increased the occurrence of tooth fractures over rim fractures in comparison to 20 pressure angle teeth. For gears with a constant number of teeth or for gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.
Ahmad, Tariq; Fiuzat, Mona; Neely, Benjamin; Neely, Megan L; Pencina, Michael J; Kraus, William E; Zannad, Faiez; Whellan, David J; Donahue, Mark P; Piña, Ileana L; Adams, Kirkwood F; Kitzman, Dalane W; O'Connor, Christopher M; Felker, G Michael
2014-06-01
The aim of this study was to determine whether biomarkers of myocardial stress and fibrosis improve prediction of the mode of death in patients with chronic heart failure. The 2 most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of the mode of death may facilitate treatment decisions. The relationship between amino-terminal pro-brain natriuretic peptide (NT-proBNP), galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training) was a randomized controlled trial of exercise training versus usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (left ventricular ejection fraction ≤35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox proportional hazards modeling, and interaction testing was used to measure differential associations between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. After a median follow-up period of 2.5 years, there were 155 deaths: 49 from pump failure, 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk for both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death, but this relationship was attenuated after adjustment for clinical risk factors. Clinical variables along with NT-proBNP levels were stronger predictors of pump failure (C statistic: 0.87) than sudden cardiac death (C statistic: 0.73). Addition of ST2 and galectin-3 led to improved net risk classification of 11% for sudden cardiac death, but not pump failure. Clinical predictors along with NT-proBNP levels were strong predictors of pump failure risk, with insignificant incremental contributions of ST2 and galectin-3. Predictability of sudden cardiac death risk was less robust and enhanced by information provided by novel biomarkers. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Influence of surface finishing on fracture load and failure mode of glass ceramic crowns.
Mores, Rafael Tagliari; Borba, Márcia; Corazza, Pedro Henrique; Della Bona, Álvaro; Benetti, Paula
2017-10-01
Ceramic restorations often require adjustments using diamond rotary instruments, which damage the glazed surface. The effect of these adjustments on the fracture behavior of these restorations is unclear. The purpose of this in vitro study was to evaluate the influence of induced surface defects on the fracture load and mode of failure of lithium disilicate-based (LDS) glass ceramic restorations. Premolar crowns were obtained from LDS computer-aided design and computer-aided manufacturing blocks (n=60) and glazed. The crowns were bonded to dentin analog dies and divided into 5 groups (n=12), as follows: glaze; abrasion (diamond rotary instrument 2135); abrasion and reglaze; abrasion and polishing (diamond rotary instrument 2135F, 2135 FF, and polishing devices); and polishing. The topography of the crowns was examined by scanning electron microscopy, and roughness was measured. A compressive load (0.5 mm/min) was applied by a piston to the center of the lingual cusp until fracture. The fracture load was recorded and data were statistically analyzed by ANOVA and the Tukey HSD test (α=.05). Fractured crowns were examined to determine the fracture origin. Polishing and/or reglazing resulted in lower roughness than for the abraded group (P<.05), which did not affect the fracture loads (P=.696). Catastrophic fracture with origin at the intaglio surface was the mode of failure for all the crowns. The experiment design successfully submitted the crowns to a clinical stress state, resulting in a clinically relevant failure. Reglazing or polishing were effective in reducing surface defects. Surface treatments had no effect on the immediate catastrophic failure of LDS crowns. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Effect of Different Groundwater Levels on Seismic Dynamic Response and Failure Mode of Sandy Slope
Huang, Shuai; Lv, Yuejun; Peng, Yanju; Zhang, Lifang; Xiu, Liwei
2015-01-01
Heavy seismic damage tends to occur in slopes when groundwater is present. The main objectives of this paper are to determine the dynamic response and failure mode of sandy slope subjected simultaneously to seismic forces and variable groundwater conditions. This paper applies the finite element method, which is a fast and efficient design tool in modern engineering analysis, to evaluate dynamic response of the slope subjected simultaneously to seismic forces and variable groundwater conditions. Shaking table test is conducted to analyze the failure mode and verify the accuracy of the finite element method results. The research results show that dynamic response values of the slope have different variation rules under near and far field earthquakes. And the damage location and pattern of the slope are different in varying groundwater conditions. The destruction starts at the top of the slope when the slope is in no groundwater, which shows that the slope appears obvious whipping effect under the earthquake. The destruction starts at the toe of the slope when the slope is in the high groundwater levels. Meanwhile, the top of the slope shows obvious seismic subsidence phenomenon after earthquake. Furthermore, the existence of the groundwater has a certain effect of damping. PMID:26560103
Independent Orbiter Assessment (IOA): Assessment of the remote manipulator system FMEA/CIL
NASA Technical Reports Server (NTRS)
Tangorra, F.; Grasmeder, R. F.; Montgomery, A. D.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Remote Manipulator System (RMS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter RMS hardware are documented. The IOA product for the RMS analysis consisted of 604 failure mode worksheets that resulted in 458 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 45 FMEAs and 321 CIL items. This comparison produced agreement on all but 154 FMEAs which caused differences in 137 CIL items.
Independent Orbiter Assessment (IOA): Assessment of the hydraulics/water spray boiler subsystem
NASA Technical Reports Server (NTRS)
Bynum, M. C.; Duval, J. D.; Parkman, W. E.; Davidson, W. R.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Hydraulics/Water Spray Boiler (HYD/WSB) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter HYD/WSB hardware. The IOA product for the HYD/WSB analysis consisted of 447 failure mode worksheets that resulted in 183 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 364 FMEAs and 111 CIL items. This comparison produced agreement on all but 68 FMEAs which caused differences in 23 CIL items.
NASA Technical Reports Server (NTRS)
Mccants, C. N.; Bearrow, M.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Distribution and Control/Electrical Power Generation (EPD and C/EPG) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison was provided through additional analysis as required. The results of that comparison is documented for the Orbiter EPD and C/EPG hardware. The IOA product for the EPD and C/EPG analysis consisted of 263 failure mode worksheets that resulted in 42 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 211 FMEA and 47 CIL items.
Independent Orbiter Assessment (IOA): Assessment of the auxiliary power unit
NASA Technical Reports Server (NTRS)
Barnes, J. E.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Auxiliary Power Unit (APU) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter APU hardware. The IOA product for the APU analysis, covering both APU hardware and APU electrical components, consisted of 344 failure mode worksheets that resulted in 178 potential critical items being identified. A comparison was made of the IOA product to the NASA APU hardware FMEA/CIL baseline which consisted of 184 FMEAs and 57 CIL items. The comparison identified 72 discrepancies.
NASA Technical Reports Server (NTRS)
Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Drapela, L. J.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Guidance, Navigation, and Control System (GNC) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter GNC hardware is documented. The IOA product for the GNC analysis consisted of 141 failure mode worksheets that resulted in 24 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 148 FMEAs and 36 CIL items. This comparison produced agreement on all but 56 FMEAs which caused differences in zero CIL items.
Panel Stiffener Debonding Analysis using a Shell/3D Modeling Technique
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.
2008-01-01
A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out -of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer fo to, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.
Panel-Stiffener Debonding and Analysis Using a Shell/3D Modeling Technique
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.
2007-01-01
A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer foot, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.
Fractography of human intact long bone by bending.
Kimura, T; Ogawa, K; Kamiya, M
1977-05-27
Human intact tibiae were tested using the static bending method to learn about the relationship between the fracture surface and the failure mode. The bending test was applied to test pieces and to whole bones. The fracture surface was observed by scanning electron microscopy. The bone fracture is closely related to the architecture of the bone substance, especially to the direction of the Haversian canals and the lamellae. The failure mode and the sequence of the break line of the bone can be found out by the observation on the fracture surface. Hardly any crushing effects caused by the compressive force is seen. The mechanical properties of the fractured bone can be estimated to some extend by considering the direction of the break line and the failure mode. The strength calculated by the simple beam formula for elastic materials can not be obtained directly because of the plastic deformation of the bone. The results of the tensile test may be applied to the fracture using the static bending moment.
Independent Orbiter Assessment (IOA): Assessment of the body flap subsystem FMEA/CIL
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Body Flap (BF) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BF hardware. The IOA product for the BF analysis consisted of 43 failure mode worksheets that resulted in 19 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 34 FMEAs and 15 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.
Independent Orbiter Assessment (IOA): Assessment of the elevon actuator subsystem FMEA/CIL
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Elevon Subsystem hardware, generating draft failure modes, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Elevon hardware. The IOA product for the Elevon analysis consisted of 25 failure mode worksheets that resulted in 17 potential critical items being identified. Comparison was made to the NASA FMEA/CIL, which consisted of 23 FMEAs and 13 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.
Independent Orbiter Assessment (IOA): Assessment of instrumental subsystem FMEA/CIL
NASA Technical Reports Server (NTRS)
Gardner, J. R.; Addis, A. W.
1988-01-01
The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). The IOA effort first completed an analysis of the Instrumentation hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter Instrumentation hardware are documented. The IOA product for Instrumentation analysis consisted of 107 failure mode worksheets that resulted in 22 critical items being identified. Comparison was made to the Pre 51-L NASA baseline with 14 Post 51-L FMEAs added, which consists of 96 FMEAs and 18 CIL items. This comparison produced agreement on all but 25 FMEAs which caused differences in 5 CIL items.
Cycles till failure of silver-zinc cells with completing failures modes: Preliminary data analysis
NASA Technical Reports Server (NTRS)
Sidik, S. M.; Leibecki, H. F.; Bozek, J. M.
1980-01-01
One hundred and twenty nine cells were run through charge-discharge cycles until failure. The experiment design was a variant of a central composite factorial in five factors. Preliminary data analysis consisted of response surface estimation of life. Batteries fail under two basic modes; a low voltage condition and an internal shorting condition. A competing failure modes analysis using maximum likelihood estimation for the extreme value life distribution was performed. Extensive diagnostics such as residual plotting and probability plotting were employed to verify data quality and choice of model.
Jackson, Brian A; Faith, Kay Sullivan
2013-02-01
Although significant progress has been made in measuring public health emergency preparedness, system-level performance measures are lacking. This report examines a potential approach to such measures for Strategic National Stockpile (SNS) operations. We adapted an engineering analytic technique used to assess the reliability of technological systems-failure mode and effects analysis-to assess preparedness. That technique, which includes systematic mapping of the response system and identification of possible breakdowns that affect performance, provides a path to use data from existing SNS assessment tools to estimate likely future performance of the system overall. Systems models of SNS operations were constructed and failure mode analyses were performed for each component. Linking data from existing assessments, including the technical assistance review and functional drills, to reliability assessment was demonstrated using publicly available information. The use of failure mode and effects estimates to assess overall response system reliability was demonstrated with a simple simulation example. Reliability analysis appears an attractive way to integrate information from the substantial investment in detailed assessments for stockpile delivery and dispensing to provide a view of likely future response performance.
Independent Orbiter Assessment (IOA): Assessment of the mechanical actuation subsystem, volume 1
NASA Technical Reports Server (NTRS)
Bradway, M. W.; Slaughter, W. T.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine draft failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline that was available. A resolution of each discrepancy from the comparison was provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. This report documents the results of that comparison for the Orbiter Mechanical Actuation System (MAS) hardware. Specifically, the MAS hardware consists of the following components: Air Data Probe (ADP); Elevon Seal Panel (ESP); External Tank Umbilical (ETU); Ku-Band Deploy (KBD); Payload Bay Doors (PBD); Payload Bay Radiators (PBR); Personnel Hatches (PH); Vent Door Mechanism (VDM); and Startracker Door Mechanism (SDM). Criticality was assigned based upon the severity of the effect for each failure mode.
Researchers at NREL Find Fewer Failures of PV Panels and Different
10, 2017 Overall failure rates for photovoltaic (PV) solar panels have fallen dramatically when Failures of PV Panels and Different Degradation Modes in Systems Installed after 2000 Researchers at NREL Find Fewer Failures of PV Panels and Different Degradation Modes in Systems Installed after 2000 April
Random safety auditing, root cause analysis, failure mode and effects analysis.
Ursprung, Robert; Gray, James
2010-03-01
Improving quality and safety in health care is a major concern for health care providers, the general public, and policy makers. Errors and quality issues are leading causes of morbidity and mortality across the health care industry. There is evidence that patients in the neonatal intensive care unit (NICU) are at high risk for serious medical errors. To facilitate compliance with safe practices, many institutions have established quality-assurance monitoring procedures. Three techniques that have been found useful in the health care setting are failure mode and effects analysis, root cause analysis, and random safety auditing. When used together, these techniques are effective tools for system analysis and redesign focused on providing safe delivery of care in the complex NICU system. Copyright 2010 Elsevier Inc. All rights reserved.
Independent Orbiter Assessment (IOA): Assessment of the main propulsion subsystem FMEA/CIL, volume 3
NASA Technical Reports Server (NTRS)
Holden, K. A.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. Volume 3 continues the presentation of IOA worksheets and includes the potential critical items list.
Independent Orbiter Assessment (IOA): Assessment of the main propulsion subsystem FMEA/CIL, volume 2
NASA Technical Reports Server (NTRS)
Holden, K. A.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. Volume 2 continues the presentation of IOA worksheets for MPS hardware items.
NASA Technical Reports Server (NTRS)
Long, W. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 2 continues the presentation of IOA worksheets.
Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 3
NASA Technical Reports Server (NTRS)
Prust, Chet D.; Hartman, Dan W.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 3 continues the presentation of IOA worksheets.
Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 2
NASA Technical Reports Server (NTRS)
Prust, Chet D.; Hartman, Dan W.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 2 continues the presentation of IOA worksheets.
Mechanism of electromigration failure in Damascene processed copper interconnects
NASA Astrophysics Data System (ADS)
Michael, Nancy Lyn
2002-11-01
A major unresolved issue in Cu interconnect reliability is the interface role in the failure mechanism of real structures. The present study investigates failure in single-level damascene Cu interconnects with variations in interface condition, passivation and barrier, and linewidth. In the first phase, accelerated electromigration testing of 0.25mum Cu interconnects capped with SiN or SiCN, shows that lifetime and failure mode vary with capping layer. The first mode, seen primarily in SiN samples, is characterized by gradual resistance increase and extensive interface damage, believed to result from failure led by interface electromigration. The competing failure mode, found in SiCN capped samples, is characterized by abrupt resistance increase and localized voiding. The second phase fixes SiCN as the capping material and varies barrier material and line width. The three barrier materials, Ta, TaN, and Ta/TaN, produce similar lifetime statistics and failure is abrupt. Line width, however, does have a strong influence on failure time. The line width/grain size ratio ranged from 0.53 to 2.2 but does not correlate with mean time to failure (MTF). The strong dependence on interface fraction, combined with the conclusion from phase one that interface electromigration is not rate controlling, suggests another mechanism related to the interface is a controlling factor. The possibility that contamination and defects at the interface are key to this failure mode was investigated using electro-thermal fatigue (ETF). In ETF, where lines are simultaneously subjected to thermal cycling and constant current, damage caused by thermal stress is accelerated. Tests reveal that in 80 nm lines, transient failure occurs at times far below MTF in electromigration tests at higher temperatures. Failure found in ETF is clearly a result of damage growth due to thermal/mechanical stress rather than electromigration. At the stress levels created by the moderate ETF test conditions, the only place voids are likely to nucleate and grow is at pre-existing defects and impurities. In narrower lines, where smaller voids can cause catastrophic damage, defects have a greater effect on MTF. Results from this investigation suggest that impurities and defects in the Cu and at the interface, must be carefully controlled to make reliable narrow Cu interconnects.
NASA Astrophysics Data System (ADS)
Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu
2018-04-01
Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.
A novel approach for evaluating the risk of health care failure modes.
Chang, Dong Shang; Chung, Jenq Hann; Sun, Kuo Lung; Yang, Fu Chiang
2012-12-01
Failure mode and effects analysis (FMEA) can be employed to reduce medical errors by identifying the risk ranking of the health care failure modes and taking priority action for safety improvement. The purpose of this paper is to propose a novel approach of data analysis. The approach is to integrate FMEA and a mathematical tool-Data envelopment analysis (DEA) with "slack-based measure" (SBM), in the field of data analysis. The risk indexes (severity, occurrence, and detection) of FMEA are viewed as multiple inputs of DEA. The practicality and usefulness of the proposed approach is illustrated by one case of health care. Being a systematic approach for improving the service quality of health care, the approach can offer quantitative corrective information of risk indexes that thereafter reduce failure possibility. For safety improvement, these new targets of the risk indexes could be used for management by objectives. But FMEA cannot provide quantitative corrective information of risk indexes. The novel approach can surely overcome this chief shortcoming of FMEA. After combining DEA SBM model with FMEA, the two goals-increase of patient safety, medical cost reduction-can be together achieved.
Field failure mechanisms for photovoltaic modules
NASA Technical Reports Server (NTRS)
Dumas, L. N.; Shumka, A.
1981-01-01
Beginning in 1976, Department of Energy field centers have installed and monitored a number of field tests and application experiments using current state-of-the-art photovoltaic modules. On-site observations of module physical and electrical degradation, together with in-depth laboratory analysis of failed modules, permits an overall assessment of the nature and causes of early field failures. Data on failure rates are presented, and key failure mechanisms are analyzed with respect to origin, effect, and prospects for correction. It is concluded that all failure modes identified to date are avoidable or controllable through sound design and production practices.
Determination of Turbine Blade Life from Engine Field Data
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.
2013-01-01
It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.
Reliability of stiffened structural panels: Two examples
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson; Davis, D. Dale, Jr.; Maring, Lise D.; Krishnamurthy, Thiagaraja; Elishakoff, Isaac
1992-01-01
The reliability of two graphite-epoxy stiffened panels that contain uncertainties is examined. For one panel, the effect of an overall bow-type initial imperfection is studied. The size of the bow is assumed to be a random variable. The failure mode is buckling. The benefits of quality control are explored by using truncated distributions. For the other panel, the effect of uncertainties in a strain-based failure criterion is studied. The allowable strains are assumed to be random variables. A geometrically nonlinear analysis is used to calculate a detailed strain distribution near an elliptical access hole in a wing panel that was tested to failure. Calculated strains are used to predict failure. Results are compared with the experimental failure load of the panel.
Rezaei, Fatemeh; Yarmohammadian, Mohmmad H.; Haghshenas, Abbas; Fallah, Ali; Ferdosi, Masoud
2018-01-01
Background: Methodology of Failure Mode and Effects Analysis (FMEA) is known as an important risk assessment tool and accreditation requirement by many organizations. For prioritizing failures, the index of “risk priority number (RPN)” is used, especially for its ease and subjective evaluations of occurrence, the severity and the detectability of each failure. In this study, we have tried to apply FMEA model more compatible with health-care systems by redefining RPN index to be closer to reality. Methods: We used a quantitative and qualitative approach in this research. In the qualitative domain, focused groups discussion was used to collect data. A quantitative approach was used to calculate RPN score. Results: We have studied patient's journey in surgery ward from holding area to the operating room. The highest priority failures determined based on (1) defining inclusion criteria as severity of incident (clinical effect, claim consequence, waste of time and financial loss), occurrence of incident (time - unit occurrence and degree of exposure to risk) and preventability (degree of preventability and defensive barriers) then, (2) risks priority criteria quantified by using RPN index (361 for the highest rate failure). The ability of improved RPN scores reassessed by root cause analysis showed some variations. Conclusions: We concluded that standard criteria should be developed inconsistent with clinical linguistic and special scientific fields. Therefore, cooperation and partnership of technical and clinical groups are necessary to modify these models. PMID:29441184
Scanning electron microscope fractography of induced fatigue-damaged saline breast implants.
Brandon, H J; Jerina, K L; Savoy, T L; Wolf, C J
2006-01-01
Breast implant strength and durability is presently an important topic in biomaterials science. Research studies are being conducted to determine the mechanisms and rates of failure in order to assess the in vivo performance of breast implants. Fatigue life is a measure of breast implant durability since fatigue failure is a potential in vivo failure mechanism. This study describes the characterization of the fracture surface morphology of breast implant shell regions that have failed due to cyclic fatigue. Saline breast implants were fatigue tested to failure using a laboratory apparatus in which flat plates cyclically compressed the implants. The implants were unimplanted control devices of both textured and smooth saline implants. The failure surfaces of the fatigued shells were examined using scanning electron microscopy (SEM). The morphological features of the failure surfaces are described for implants with short and long fatigue lifetimes. The details of both the inside and outside surfaces of the shell at the failure location are described. Two different modes of failure were observed in both the textured and smooth shells. These modes depend on the magnitude of the cyclic load and corresponding number of fatigue cycles at failure. The first mode is a tear in the shell of about 18 mm in length, and the second mode is a pinhole approximately 1 mm in diameter. Details of the surface morphology for these two types of failure modes and shell thickness data are presented herein. There was no significant change in the crosslink density of the shell as a result of fatigue.
UAV Swarm Behavior Modeling for Early Exposure of Failure Modes
2016-09-01
Systems Center Atlantic, for his patience with me through this two-year process. He worked with my schedule and was very understanding of the...emergence of new failure modes? The MP modeling environment provides a breakdown of all potential event traces. Given that the research questions call...for the revelation of potential failure modes, MP was selected as the modeling environment because it provides a substantial set of results and data
Del Mazo-Barbara, Anna; Mirabel, Clémentine; Nieto, Valentín; Reyes, Blanca; García-López, Joan; Oliver-Vila, Irene; Vives, Joaquim
2016-09-01
Computerized systems (CS) are essential in the development and manufacture of cell-based medicines and must comply with good manufacturing practice, thus pushing academic developers to implement methods that are typically found within pharmaceutical industry environments. Qualitative and quantitative risk analyses were performed by Ishikawa and Failure Mode and Effects Analysis, respectively. A process for qualification of a CS that keeps track of environmental conditions was designed and executed. The simplicity of the Ishikawa analysis permitted to identify critical parameters that were subsequently quantified by Failure Mode Effects Analysis, resulting in a list of test included in the qualification protocols. The approach presented here contributes to simplify and streamline the qualification of CS in compliance with pharmaceutical quality standards.
WE-H-BRC-01: Failure Mode and Effects Analysis of Skin Electronic Brachytherapy Using Esteya Unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibanez-Rosello, B; Bautista-Ballesteros, J; Bonaque, J
Purpose: A failure mode and effect analysis (FMEA) of skin lesions treatment process using Esteya™ device (Elekta Brachyterapy, Veenendaal, The Netherlands) was performed, with the aim of increasing the quality of the treatment and reducing the likelihood of unwanted events. Methods: A multidisciplinary team with experience in the treatment process met to establish the process map, which outlines the flow of various stages for such patients undergoing skin treatment. Potential failure modes (FM) were identified and the value of severity (S), frequency of occurrence (O), and lack of detectability (D) of the proposed FM were scored individually, each on amore » scale of 1 to 10 following TG-100 guidelines of the AAPM. These failure modes were ranked according to our risk priority number (RPN) and S scores. The efficiency of existing quality management tools was analyzed through a reassessment of the O and D made by consensus. Results: 149 FM were identified, 43 of which had RPN ≥ 100 and 30 had S ≥ 7. After introduction of the tools of quality management, only 3 FM had RPN ≥ 100 and 22 FM had RPN ≥ 50. These 22 FM were thoroughly analyzed and new tools for quality management were proposed. The most common cause of highest RPN FM was associated with the heavy patient workload and the continuous and accurate applicator-patient skin contact during the treatment. To overcome this second item, a regular quality control and setup review by a second individual before each treatment session was proposed. Conclusion: FMEA revealed some of the FM potentials that were not predicted during the initial implementation of the quality management tools. This exercise was useful in identifying the need of periodic update of the FMEA process as new potential failures can be identified.« less
Development of Discrete Compaction Bands in Two Porous Sandstones
NASA Astrophysics Data System (ADS)
Tembe, S.; Baud, P.; Wong, T.
2003-12-01
Compaction band formation has been documented by recent field and laboratory studies as a localized failure mode occurring in porous sandstones. The coupling of compaction and localization may significantly alter the stress field and strain partitioning, and act as barriers within reservoirs. Two end-members of this failure mode that develop subperpendicular to the maximum principal stress have been identified: numerous discrete compaction bands with a thickness of only several grains, or a few diffuse bands that are significantly thicker. Much of what is known about discrete compaction bands derives from laboratory experiments performed on the relatively homogeneous Bentheim sandstone with 23% porosity. In this study we observe similar compaction localization behavior in the Diemelstadt sandstone, that has an initial porosity of 24.4% and a modal composition of 68% quartz, 26% feldspar, 4% oxides, and 2% micas. CT scans of the Diemelstadt sandstone indicate bedding corresponding to low porosity laminae. Saturated samples cored perpendicular to bedding were deformed at room temperature under drained conditions at a constant pore pressure of 10 MPa and a confining pressure range of 20-175 MPa. Acoustic emission activity and pore volume change were recorded continuously. Samples were deformed to axial strains of 1-4% and recovered from the triaxial cell for microstructural analysis. The mechanical data map the transition in failure mode from brittle faulting to compactive cataclastic flow. The brittle regime occurred at effective pressures up to 40 MPa, associated with failure by conjugate shear bands. At an effective pressure range of 60-175 MPa strain hardening and shear-enhanced compaction were accompanied by the development of discrete compaction bands, that was manifested by episodic surges of acoustic emission. Preliminary microstructural observations of the failed samples suggest that bedding influenced the band orientations which varies between 75-90\\deg relative to the maximum principle stress. Our study demonstrates that despite their different mineralogy, failure modes and development of the compaction localization are similar in the Diemelstadt and Benthiem sandstones.
Failure mode and effects analysis: too little for too much?
Dean Franklin, Bryony; Shebl, Nada Atef; Barber, Nick
2012-07-01
Failure mode and effects analysis (FMEA) is a structured prospective risk assessment method that is widely used within healthcare. FMEA involves a multidisciplinary team mapping out a high-risk process of care, identifying the failures that can occur, and then characterising each of these in terms of probability of occurrence, severity of effects and detectability, to give a risk priority number used to identify failures most in need of attention. One might assume that such a widely used tool would have an established evidence base. This paper considers whether or not this is the case, examining the evidence for the reliability and validity of its outputs, the mathematical principles behind the calculation of a risk prioirty number, and variation in how it is used in practice. We also consider the likely advantages of this approach, together with the disadvantages in terms of the healthcare professionals' time involved. We conclude that although FMEA is popular and many published studies have reported its use within healthcare, there is little evidence to support its use for the quantitative prioritisation of process failures. It lacks both reliability and validity, and is very time consuming. We would not recommend its use as a quantitative technique to prioritise, promote or study patient safety interventions. However, the stage of FMEA involving multidisciplinary mapping process seems valuable and work is now needed to identify the best way of converting this into plans for action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, M. W.
Type 308 CRE stainless steel weld specimens were subjected to metallographic and fractographic analysis after failure in elevated-temperature (593/sup 0/C) creep-fatigue tests. The failure mode for specimens tested under continuous-cycle fatigue conditions was predominantly transgranular. When the test cycle was modified to include a hold time at the maximum tensile strain, the failure mode became predominantly interphase. Sigma phase was observed within the delta-ferrite regions in the weld. However, the presence of sigma phase did not appear to affect the failure mode.
Project Delivery System Mode Decision Based on Uncertain AHP and Fuzzy Sets
NASA Astrophysics Data System (ADS)
Kaishan, Liu; Huimin, Li
2017-12-01
The project delivery system mode determines the contract pricing type, project management mode and the risk allocation among all participants. Different project delivery system modes have different characteristics and applicable scope. For the owners, the selection of the delivery mode is the key point to decide whether the project can achieve the expected benefits, it relates to the success or failure of project construction. Under the precondition of comprehensively considering the influence factors of the delivery mode, the model of project delivery system mode decision was set up on the basis of uncertain AHP and fuzzy sets, which can well consider the uncertainty and fuzziness when conducting the index evaluation and weight confirmation, so as to rapidly and effectively identify the most suitable delivery mode according to project characteristics. The effectiveness of the model has been verified via the actual case analysis in order to provide reference for the construction project delivery system mode.
Daniels, Lisa M; Barreto, Jason N; Kuth, John C; Anderson, Jeremy R; Zhang, Beilei; Majka, Andrew J; Morgenthaler, Timothy I; Tosh, Pritish K
2015-07-15
A failure mode and effects analysis (FMEA) was conducted to analyze the clinical and operational processes leading to above-target International Normalized Ratios (INRs) in warfarin-treated patients receiving concurrent antimicrobial therapy. The INRs of patients on long-term warfarin therapy who received a course of trimethoprim-sulfamethoxazole, metronidazole, fluconazole, miconazole, or voriconazole (highly potentiating antimicrobials, or HPAs) between September 1 and December 31, 2011, were compared with patients on long-term warfarin therapy who did not receive any antimicrobial during the same period. A multidisciplinary team of physicians, pharmacists, and a systems analyst was then formed to complete a step-by-step outline of the processes involved in warfarin management and concomitant HPA therapy, followed by an FMEA. Patients taking trimethoprim-sulfamethoxazole, metronidazole, or fluconazole demonstrated a significantly increased risk of having an INR of >4.5. The FMEA identified 134 failure modes. The most common failure modes were as follows: (1) electronic medical records did not identify all patients receiving warfarin, (2) HPA prescribers were unaware of recommended warfarin therapy when HPAs were prescribed, (3) HPA prescribers were unaware that a patient was taking warfarin and that the drug interaction is significant, and (4) warfarin managers were unaware that an HPA had been prescribed for a patient. An FMEA determined that the risk of adverse events caused by concomitantly administering warfarin and HPAs can be decreased by preemptively identifying patients receiving warfarin, having a care process in place, alerting providers about the patient's risk status, and notifying providers at the anticoagulation clinic. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
ALS rocket engine combustion devices design and demonstration
NASA Technical Reports Server (NTRS)
Arreguin, Steve
1989-01-01
Work performed during Phase one is summarized and the significant technical and programmatic accomplishments occurring during this period are documented. Besides a summary of the results, methodologies, trade studies, design, fabrication, and hardware conditions; the following are included: the evolving Maintainability Plan, Reliability Program Plan, Failure Summary and Analysis Report, and the Failure Mode and Effect Analysis.
Bending strength of delaminated aerospace composites.
Kinawy, Moustafa; Butler, Richard; Hunt, Giles W
2012-04-28
Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.
Instrumentation Cables Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muna, Alice Baca; LaFleur, Chris Bensdotter
A fire at a nuclear power plant (NPP) has the potential to damage structures, systems, and components important to safety, if not promptly detected and suppressed. At Browns Ferry Nuclear Power Plant on March 22, 1975, a fire in the reactor building damaged electrical power and control systems. Damage to instrumentation cables impeded the function of both normal and standby reactor coolant systems, and degraded the operators’ plant monitoring capability. This event resulted in additional NRC involvement with utilities to ensure that NPPs are properly protected from fire as intended by the NRC principle design criteria (i.e., general design criteriamore » 3, Fire Protection). Current guidance and methods for both deterministic and performance based approaches typically make conservative (bounding) assumptions regarding the fire-induced failure modes of instrumentation cables and those failure modes effects on component and system response. Numerous fire testing programs have been conducted in the past to evaluate the failure modes and effects of electrical cables exposed to severe thermal conditions. However, that testing has primarily focused on control circuits with only a limited number of tests performed on instrumentation circuits. In 2001, the Nuclear Energy Institute (NEI) and the Electric Power Research Institute (EPRI) conducted a series of cable fire tests designed to address specific aspects of the cable failure and circuit fault issues of concern1. The NRC was invited to observe and participate in that program. The NRC sponsored Sandia National Laboratories to support this participation, whom among other things, added a 4-20 mA instrumentation circuit and instrumentation cabling to six of the tests. Although limited, one insight drawn from those instrumentation circuits tests was that the failure characteristics appeared to depend on the cable insulation material. The results showed that for thermoset insulated cables, the instrument reading tended to drift and fluctuate, while the thermoplastic insulated cables, the instrument reading fell off-scale rapidly. From an operational point of view, the latter failure characteristics would likely be identified as a failure from the effects of fire, while the former may result in inaccurate readings.« less
Study on the effect of the infill walls on the seismic performance of a reinforced concrete frame
NASA Astrophysics Data System (ADS)
Zhang, Cuiqiang; Zhou, Ying; Zhou, Deyuan; Lu, Xilin
2011-12-01
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.
Human factors process failure modes and effects analysis (HF PFMEA) software tool
NASA Technical Reports Server (NTRS)
Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)
2011-01-01
Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.
NASA Technical Reports Server (NTRS)
1974-01-01
Future operational concepts for the space transportation system were studied in terms of space shuttle upper stage failure contingencies possible during deployment, retrieval, or space servicing of automated satellite programs. Problems anticipated during mission planning were isolated using a modified 'fault tree' technique, normally used in safety analyses. A comprehensive space servicing hazard analysis is presented which classifies possible failure modes under the catagories of catastrophic collision, failure to rendezvous and dock, servicing failure, and failure to undock. The failure contingencies defined are to be taken into account during design of the upper stage.
Determination of Turbine Blade Life from Engine Field Data
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.
2012-01-01
It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal mechanical fatigue as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) Thermal-mechanical fatigue, (2) Oxidation/Erosion, and (3) "Other." From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L(sub 10) blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to oxidation/erosion equaled that attributed to thermal-mechanical fatigue. The category that contributed most to blade failure was Other. If there were there no blade failures attributed to oxidation/erosion and thermal-mechanical fatigue, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.
Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Shah, A. R.; Chamis, C. C.
1996-01-01
A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.
A quality risk management model approach for cell therapy manufacturing.
Lopez, Fabio; Di Bartolo, Chiara; Piazza, Tommaso; Passannanti, Antonino; Gerlach, Jörg C; Gridelli, Bruno; Triolo, Fabio
2010-12-01
International regulatory authorities view risk management as an essential production need for the development of innovative, somatic cell-based therapies in regenerative medicine. The available risk management guidelines, however, provide little guidance on specific risk analysis approaches and procedures applicable in clinical cell therapy manufacturing. This raises a number of problems. Cell manufacturing is a poorly automated process, prone to operator-introduced variations, and affected by heterogeneity of the processed organs/tissues and lot-dependent variability of reagent (e.g., collagenase) efficiency. In this study, the principal challenges faced in a cell-based product manufacturing context (i.e., high dependence on human intervention and absence of reference standards for acceptable risk levels) are identified and addressed, and a risk management model approach applicable to manufacturing of cells for clinical use is described for the first time. The use of the heuristic and pseudo-quantitative failure mode and effect analysis/failure mode and critical effect analysis risk analysis technique associated with direct estimation of severity, occurrence, and detection is, in this specific context, as effective as, but more efficient than, the analytic hierarchy process. Moreover, a severity/occurrence matrix and Pareto analysis can be successfully adopted to identify priority failure modes on which to act to mitigate risks. The application of this approach to clinical cell therapy manufacturing in regenerative medicine is also discussed. © 2010 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw
Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposalmore » units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.« less
Rosen, M. A.; Sampson, J. B.; Jackson, E. V.; Koka, R.; Chima, A. M.; Ogbuagu, O. U.; Marx, M. K.; Koroma, M.; Lee, B. H.
2014-01-01
Background Anaesthesia care in developed countries involves sophisticated technology and experienced providers. However, advanced machines may be inoperable or fail frequently when placed into the austere medical environment of a developing country. Failure mode and effects analysis (FMEA) is a method for engaging local staff in identifying real or potential breakdowns in processes or work systems and to develop strategies to mitigate risks. Methods Nurse anaesthetists from the two tertiary care hospitals in Freetown, Sierra Leone, participated in three sessions moderated by a human factors specialist and an anaesthesiologist. Sessions were audio recorded, and group discussion graphically mapped by the session facilitator for analysis and commentary. These sessions sought to identify potential barriers to implementing an anaesthesia machine designed for austere medical environments—the universal anaesthesia machine (UAM)—and also engaging local nurse anaesthetists in identifying potential solutions to these barriers. Results Participating Sierra Leonean clinicians identified five main categories of failure modes (resource availability, environmental issues, staff knowledge and attitudes, and workload and staffing issues) and four categories of mitigation strategies (resource management plans, engaging and educating stakeholders, peer support for new machine use, and collectively advocating for needed resources). Conclusions We identified factors that may limit the impact of a UAM and devised likely effective strategies for mitigating those risks. PMID:24833727
NASA Astrophysics Data System (ADS)
Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan
2017-08-01
Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.
Effect of Buckling Modes on the Fatigue Life and Damage Tolerance of Stiffened Structures
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Bisagni, Chiara; Rose, Cheryl A.
2015-01-01
The postbuckling response and the collapse of composite specimens with a co-cured hat stringer are investigated experimentally and numerically. These specimens are designed to evaluate the postbuckling response and the effect of an embedded defect on the collapse load and the mode of failure. Tests performed using controlled conditions and detailed instrumentation demonstrate that the damage tolerance, fatigue life, and collapse loads are closely tied with the mode of the postbuckling deformation, which can be different between two nominally identical specimens. Modes that tend to open skin/stringer defects are the most damaging to the structure. However, skin/stringer bond defects can also propagate under shearing modes. In the proposed paper, the effects of initial shape imperfections on the postbuckling modes and the interaction between different postbuckling deformations and the propagation of skin/stringer bond defects under quasi-static or fatigue loads will be examined.
Independent Orbiter Assessment (IOA): Assessment of the main propulsion subsystem FMEA/CIL, volume 4
NASA Technical Reports Server (NTRS)
Slaughter, B. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Main Propulsion System (MPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to available data from the Rockwell Downey/NASA JSC FMEA/CIL review. Volume 4 contains the IOA analysis worksheets and the NASA FMEA to IOA worksheet cross reference and recommendations.
Model 0A wind turbine generator FMEA
NASA Technical Reports Server (NTRS)
Klein, William E.; Lalli, Vincent R.
1989-01-01
The results of Failure Modes and Effects Analysis (FMEA) conducted for the Wind Turbine Generators are presented. The FMEA was performed for the functional modes of each system, subsystem, or component. The single-point failures were eliminated for most of the systems. The blade system was the only exception. The qualitative probability of a blade separating was estimated at level D-remote. Many changes were made to the hardware as a result of this analysis. The most significant change was the addition of the safety system. Operational experience and need to improve machine availability have resulted in subsequent changes to the various systems which are also reflected in this FMEA.
Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 4
NASA Technical Reports Server (NTRS)
Prust, Chet D.; Hartman, Dan W.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 4 continues the presentation of IOA worksheets and contains the potential critical items list.
Independent Orbiter Assessment (IOA): Assessment of the nose wheel steering subsystem
NASA Technical Reports Server (NTRS)
Mediavilla, Anthony Scott
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Nose Wheel Steering (NWS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter NWS hardware.
Compression failure of angle-ply laminates
NASA Technical Reports Server (NTRS)
Peel, Larry D.; Hyer, Michael W.; Shuart, Mark J.
1991-01-01
The present work deals with modes and mechanisms of failure in compression of angle-ply laminates. Experimental results were obtained from 42 angle-ply IM7/8551-7a specimens with a lay-up of ((plus or minus theta)/(plus or minus theta)) sub 6s where theta, the off-axis angle, ranged from 0 degrees to 90 degrees. The results showed four failure modes, these modes being a function of off-axis angle. Failure modes include fiber compression, inplane transverse tension, inplane shear, and inplane transverse compression. Excessive interlaminar shear strain was also considered as an important mode of failure. At low off-axis angles, experimentally observed values were considerably lower than published strengths. It was determined that laminate imperfections in the form of layer waviness could be a major factor in reducing compression strength. Previously developed linear buckling and geometrically nonlinear theories were used, with modifications and enhancements, to examine the influence of layer waviness on compression response. The wavy layer is described by a wave amplitude and a wave length. Linear elastic stress-strain response is assumed. The geometrically nonlinear theory, in conjunction with the maximum stress failure criterion, was used to predict compression failure and failure modes for the angle-ply laminates. A range of wave length and amplitudes were used. It was found that for 0 less than or equal to theta less than or equal to 15 degrees failure was most likely due to fiber compression. For 15 degrees less than theta less than or equal to 35 degrees, failure was most likely due to inplane transverse tension. For 35 degrees less than theta less than or equal to 70 degrees, failure was most likely due to inplane shear. For theta less than 70 degrees, failure was most likely due to inplane transverse compression. The fiber compression and transverse tension failure modes depended more heavily on wave length than on wave amplitude. Thus using a single parameter, such as a ratio of wave amplitude to wave length, to describe waviness in a laminate would be inaccurate. Throughout, results for AS4/3502, studied previously, are included for comparison. At low off-axis angles, the AS4/3502 material system was found to be less sensitive to layer waviness than IM7/8551-7a. Analytical predictions were also obtained for laminates with waviness in only some of the layers. For this type of waviness, laminate compression strength could also be considered a function of which layers in the laminate were wavy, and where those wavy layers were. Overall, the geometrically nonlinear model correlates well with experimental results.
Microstructure-failure mode correlations in braided composites
NASA Technical Reports Server (NTRS)
Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly
1992-01-01
Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.
Chapter 3: Photovoltaic Module Stability and Reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Dirk; Kurtz, Sarah
2017-01-01
Profits realized from investment in photovoltaic will benefit from decades of reliable operation. Service life prediction through accelerated tests is only possible if indoor tests duplicate power loss and failure modes observed in fielded systems. Therefore, detailing and quantifying power loss and failure modes is imperative. In the first section, we examine recent trends in degradation rates, the gradual power loss observed for different technologies, climates and other significant factors. In the second section, we provide a summary of the most commonly observed failure modes in fielded systems.
Yamazaki, Hiroshi; O'Leary, Stephen; Moran, Michelle; Briggs, Robert
2014-04-01
Accurate diagnosis of cochlear implant failures is important for management; however, appropriate strategies to assess possible device failures are not always clear. The purpose of this study is to understand correlation between causes of device failure and the presenting clinical symptoms as well as results of in situ integrity testing and to propose effective strategies for diagnosis of device failure. Retrospective case review. Cochlear implant center at a tertiary referral hospital. Twenty-seven cases with suspected device failure of Cochlear Nucleus systems (excluding CI512 failures) on the basis of deterioration in auditory perception from January 2000 to September 2012 in the Melbourne cochlear implant clinic. Clinical presentations and types of abnormalities on in situ integrity testing were compared with modes of device failure detected by returned device analysis. Sudden deterioration in auditory perception was always observed in cases with "critical damage": either fracture of the integrated circuit or most or all of the electrode wires. Subacute or gradually progressive deterioration in auditory perception was significantly associated with a more limited number of broken electrode wires. Cochlear implant mediated auditory and nonauditory symptoms were significantly associated with an insulation problem. An algorithm based on the time course of deterioration in auditory perception and cochlear implant-mediated auditory and nonauditory symptoms was developed on the basis of these retrospective analyses, to help predict the mode of device failure. In situ integrity testing, which included close monitoring of device function in routine programming sessions as well as repeating the manufacturer's integrity test battery, was sensitive enough to detect malfunction in all suspected device failures, and each mode of device failure showed a characteristic abnormality on in situ integrity testing. Our clinical manifestation-based algorithm combined with in situ integrity testing may be useful for accurate diagnosis and appropriate management of device failure. Close monitoring of device function in routine programming sessions as well as repeating the manufacturer's integrity test battery is important if the initial in situ integrity testing is inconclusive because objective evidence of failure in the implanted device is essential to recommend explantation/reimplantation.
Peridynamics for failure and residual strength prediction of fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Colavito, Kyle
Peridynamics is a reformulation of classical continuum mechanics that utilizes integral equations in place of partial differential equations to remove the difficulty in handling discontinuities, such as cracks or interfaces, within a body. Damage is included within the constitutive model; initiation and propagation can occur without resorting to special crack growth criteria necessary in other commonly utilized approaches. Predicting damage and residual strengths of composite materials involves capturing complex, distinct and progressive failure modes. The peridynamic laminate theory correctly predicts the load redistribution in general laminate layups in the presence of complex failure modes through the use of multiple interaction types. This study presents two approaches to obtain the critical peridynamic failure parameters necessary to capture the residual strength of a composite structure. The validity of both approaches is first demonstrated by considering the residual strength of isotropic materials. The peridynamic theory is used to predict the crack growth and final failure load in both a diagonally loaded square plate with a center crack, as well as a four-point shear specimen subjected to asymmetric loading. This study also establishes the validity of each approach by considering composite laminate specimens in which each failure mode is isolated. Finally, the failure loads and final failure modes are predicted in a laminate with various hole diameters subjected to tensile and compressive loads.
Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands
NASA Astrophysics Data System (ADS)
Adelinet, M.; Fortin, J.; Schubnel, A.; Guéguen, Y.
2013-04-01
According to the stress state, deformation mode observed in rocks may be very different. Even in the brittle part of the crust a differential stress can induce shear failure but also localized compacting deformation, such as compaction bands in porous sedimentary rocks. The mode of deformation controls many hydrodynamic factors, such as permeability and porosity. We investigate in this paper two different modes of deformation in an Icelandic basalt by using laboratory seismological tools (elastic waves and acoustic emissions) and microstructural observations. First of all, we show that at low effective confining pressure (Peff = 5 MPa) an axial loading induces a shear failure in the basalt with an angle of about 30° with respect to the main stress direction. On the contrary, at high effective confining pressure (Peff ≥ 75 MPa and more) an increase of the axial stress induces a localization of the deformation in the form of subhorizontal bands again with respect to the main stress direction. In this second regime, focal mechanisms of the acoustic emissions reveal an important number of compression events suggesting pore collapse mechanisms. Microstructural observations confirm this assumption. Similar compaction structures are usually obtained for porous sedimentary rocks (20-25%). However, the investigated basalt has an initial total porosity of only about 10% so that compaction structures were not expected. The pore size and the ratio of pore to grain size are likely to be key factors for the particular observed mechanical behavior.
Gingold-Belfer, Rachel; Niv, Yaron; Horev, Nehama; Gross, Shuli; Sahar, Nadav; Dickman, Ram
2017-04-01
Failure modes and effects analysis (FMEA) is used for the identification of potential risks in health care processes. We used a specific FMEA - based form for direct referral for colonoscopy and assessed it for procedurerelated perforations. Ten experts in endoscopy evaluated and computed the entire referral process, modes of preparation for the endoscopic procedure, the endoscopic procedure itself and the discharge process. We used FMEA assessing for likelihood of occurrence, detection and severity and calculated the risk profile number (RPN) for each of the above points. According to the highest RPN results we designed a specific open access referral form and then compared the occurrence of colonic perforations (between 2010 and 2013) in patients who were referred through the open access arm (Group 1) to those who had a prior clinical consultation (non-open access, Group 2). Our experts in endoscopy (5 physicians and 5 nurses) identified 3 categories of failure modes that, on average, reached the highest RPNs. We identified 9,558 colonoscopies in group 1, and 12,567 in group 2. Perforations were identified in three patients from the open access group (1:3186, 0.03%) and in 10 from group 2 (1:1256, 0.07%) (p = 0.024). Direct referral for colonoscopy saved 9,558 pre-procedure consultations and the sum of $850,000. The FMEA tool-based specific referral form facilitates a safe, time and money saving open access colonoscopy service. Our form may be adopted by other gastroenterological clinics in Israel.
Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1988-01-01
A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.
Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading
NASA Technical Reports Server (NTRS)
Naik, R. A.; Crews, J. H., Jr.
1990-01-01
A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass loading in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.
Real-time diagnostics of the reusable rocket engine using on-line system identification
NASA Technical Reports Server (NTRS)
Guo, T.-H.; Merrill, W.; Duyar, A.
1990-01-01
A model-based failure diagnosis system has been proposed for real-time diagnosis of SSME failures. Actuation, sensor, and system degradation failure modes are all considered by the proposed system. In the case of SSME actuation failures, it was shown that real-time identification can effectively be used for failure diagnosis purposes. It is a direct approach since it reduces the detection, isolation, and the estimation of the extent of the failures to the comparison of parameter values before and after the failure. As with any model-based failure detection system, the proposed approach requires a fault model that embodies the essential characteristics of the failure process. The proposed diagnosis approach has the added advantage that it can be used as part of an intelligent control system for failure accommodation purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullum, Laura L; Symons, Christopher T
2011-01-01
Machine learning is used in many applications, from machine vision to speech recognition to decision support systems, and is used to test applications. However, though much has been done to evaluate the performance of machine learning algorithms, little has been done to verify the algorithms or examine their failure modes. Moreover, complex learning frameworks often require stepping beyond black box evaluation to distinguish between errors based on natural limits on learning and errors that arise from mistakes in implementation. We present a conceptual architecture, failure model and taxonomy, and failure modes and effects analysis (FMEA) of a semi-supervised, multi-modal learningmore » system, and provide specific examples from its use in a radiological analysis assistant system. The goal of the research described in this paper is to provide a foundation from which dependability analysis of systems using semi-supervised, multi-modal learning can be conducted. The methods presented provide a first step towards that overall goal.« less
Independent Orbiter Assessment (IOA): Assessment of the backup flight system FMEA/CIL
NASA Technical Reports Server (NTRS)
Prust, E. E.; Ewell, J. J., Jr.; Hinsdale, L. W.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Backup Flight System (BFS) hardware, generating draft failure modes and Potential Critical Items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed NASA Post 51-L FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter BFS hardware. The IOA product for the BFS analysis consisted of 29 failure mode worksheets that resulted in 21 Potential Critical Items (PCI) being identified. This product was originally compared with the proposed NASA BFS baseline and subsequently compared with the applicable Data Processing System (DPS), Electrical Power Distribution and Control (EPD and C), and Displays and Controls NASA CIL items. The comparisons determined if there were any results which had been found by the IOA but were not in the NASA baseline. The original assessment determined there were numerous failure modes and potential critical items in the IOA analysis that were not contained in the NASA BFS baseline. Conversely, the NASA baseline contained three FMEAs (IMU, ADTA, and Air Data Probe) for CIL items that were not identified in the IOA product.
Accelerated fatigue durability of a high performance composite
NASA Technical Reports Server (NTRS)
Rotem, A.
1982-01-01
The fatigue behavior of multidirectional graphite-epoxy laminates was analyzed theoretically and experimentally in an effort to establish an accelerated testing methodology. Analysis of the failure mechanism in fatigue of the laminates led to the determination of the failure mode governing fracture. The nonlinear, cyclic-dependent shear modulus was used to calculate the changing stress field in the laminate during the fatigue loading. Fatigue tests were performed at three different temperatures: 25 C, 74 C, and 114 C. The prediction of the S-N curves was made based on the artificial static strength artificial static strength at a reference temperature and the fatigue functions associated with them. The prediction of an S-N curve at other temperatures was performed using shifting factors determined for the specific failure mode. For multidirectional laminates, different S-N curves at different temperatures could be predicted using these shifting factors. Different S-N curves at different temperatures occur only when the fatigue failure mode is matrix dominated. It was found that whenever the fatigue failure mode is fiber dominated, temperature, over the range investigated, had no influence on the fatigue life. These results permit the prediction of long-time, low temperature fatigue behavior from data obtained in short time, high temperature testing, for laminates governed by a matrix failure mode.
Effect of ozone gas on the shear bond strength to enamel
PIRES, Patrícia Teixeira; FERREIRA, João Cardoso; OLIVEIRA, Sofia Arantes; SILVA, Mário Jorge; MELO, Paulo Ribeiro
2013-01-01
Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified. Objective: Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes. Material and Methods: Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15): Group G1 (Excite® with ozone) and group G3 (AdheSE® with ozone) were prepared with ozone gas from the HealOzone unit (Kavo®) for 20 s prior to adhesion, and groups G2 (Excite®) and G4 (AdheSE®) were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer's instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent) cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37º C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS) were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes. Results: Mean bond strength values and failure modes were as follows: G1- 26.85±6.18 MPa (33.3% of adhesive cohesive failure); G2 - 27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive); G3 - 15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive) and G4 - 13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive). Conclusions: Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas. PMID:23739859
Effect of ozone gas on the shear bond strength to enamel.
Pires, Patrícia Teixeira; Ferreira, João Cardoso; Oliveira, Sofia Arantes; Silva, Mário Jorge; Melo, Paulo Ribeiro
2013-01-01
Ozone is an important disinfecting agent, however its influence on enamel adhesion has not yet been clarified. Evaluate the influence of ozone pretreatment on the shear strength of an etch-and-rinse and a self-etch system to enamel and analyze the respective failure modes. Sixty sound bovine incisors were used. Specimens were randomly assigned to four experimental groups (n=15): Group G1 (Excite® with ozone) and group G3 (AdheSE® with ozone) were prepared with ozone gas from the HealOzone unit (Kavo®) for 20 s prior to adhesion, and groups G2 (Excite®) and G4 (AdheSE®) were used as control. Teeth were bisected and polished to simulate a smear layer just before the application of the adhesive systems. The adhesives were applied according to the manufacturer's instructions to a standardized 3 mm diameter surface, and a composite (Synergy D6, Coltene Whaledent) cylinder with 2 mm increments was build. Specimens were stored in 100% humidity for 24 h at 37°C and then subjected to a thermal cycling regimen of 500 cycles. Shear bond tests were performed with a Watanabe device in a universal testing machine at 5 mm/min. The failure mode was analyzed under scanning electron microscope. Means and standard deviation of shear bond strength (SBS) were calculated and difference between the groups was analyzed using ANOVA, Kolmogorov-Smirnov, Levene and Bonferroni. Chi-squared statistical tests were used to evaluate the failure modes. Mean bond strength values and failure modes were as follows: G1--26.85±6.18 MPa (33.3% of adhesive cohesive failure); G2--27.95±5.58 MPa (53.8% of adhesive failures between enamel and adhesive); G3--15.0±3.84 MPa (77.8% of adhesive failures between enamel and adhesive) and G4--13.1±3.68 MPa (36.4% of adhesive failures between enamel and adhesive). Shear bond strength values of both adhesives tested on enamel were not influenced by the previous application of ozone gas.
Clinical Risk Assessment in Intensive Care Unit
Asefzadeh, Saeed; Yarmohammadian, Mohammad H.; Nikpey, Ahmad; Atighechian, Golrokh
2013-01-01
Background: Clinical risk management focuses on improving the quality and safety of health care services by identifying the circumstances and opportunities that put patients at risk of harm and acting to prevent or control those risks. The goal of this study is to identify and assess the failure modes in the ICU of Qazvin's Social Security Hospital (Razi Hospital) through Failure Mode and Effect Analysis (FMEA). Methods: This was a qualitative-quantitative research by Focus Discussion Group (FDG) performed in Qazvin Province, Iran during 2011. The study population included all individuals and owners who are familiar with the process in ICU. Sampling method was purposeful and the FDG group members were selected by the researcher. The research instrument was standard worksheet that has been used by several researchers. Data was analyzed by FMEA technique. Results: Forty eight clinical errors and failure modes identified, results showed that the highest risk probability number (RPN) was in respiratory care “Ventilator's alarm malfunction (no alarm)” with the score 288, and the lowest was in gastrointestinal “not washing the NG-Tube” with the score 8. Conclusions: Many of the identified errors can be prevented by group members. Clinical risk assessment and management is the key to delivery of effective health care. PMID:23930171
Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.
Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah
2009-01-01
Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.
1984-10-26
test for independence; ons i ser, -, of the poduct life estimator; dependent risks; 119 ASRACT Coniinue on ’wme-se f nereiary-~and iaen r~f> by Worst...the failure times associated with different failure - modes when we really should use a bivariate (or multivariate) distribution, then what is the...dependencies may be present, then what is the magnitude of the estimation error? S The third specific aim will attempt to obtain bounds on the
Mukerji, A; Sarmiento, K; Lee, B; Hassall, K; Shah, V
2017-01-01
Non-invasive high-frequency ventilation (NIHFV), a relatively new modality, is gaining popularity despite limited data. We sought to evaluate the effectiveness of NIHFV versus bi-phasic continuous positive airway pressure (BP-CPAP) in preterm infants failing CPAP. Infants with BW<1250 g on CPAP were randomly assigned to NIHFV or BP-CPAP if they met pre-determined criteria for CPAP failure. Infants were eligible for randomization after 72 h age and until 2000 g. Guidelines for adjustment of settings and criteria for failure of assigned mode were implemented. The primary aim was to assess feasibility of a larger trial. In addition, failure of assigned non-invasive respiratory support (NRS) mode, invasive mechanical ventilation (MV) 72 h and 7 days post-randomization, and bronchopulmonary dysplasia (BPD) were assessed. Thirty-nine infants were randomized to NIHFV (N=16) or BP-CPAP (N=23). There were no significant differences in mean (s.d.) postmenstrual age (28.6 (1.5) versus 29.0 (2.3) weeks, P=0.47), mean (s.d.) weight at randomization (965.0 (227.0) versus 958.1 (310.4) g, P=0.94) or other baseline demographics between the groups. Failure of assigned NRS mode was lower with NIHFV (37.5 versus 65.2%, P=0.09), although not statistically significant. There were no differences in rates of invasive MV 72 h and 7 days post-randomization or BPD. NIHFV was not superior to BP-CPAP in this pilot study. Effectiveness of NIHFV needs to be proven in larger multi-center, appropriately powered trials before widespread implementation.
Failure modes and effects analysis for ocular brachytherapy.
Lee, Yongsook C; Kim, Yongbok; Huynh, Jason Wei-Yeong; Hamilton, Russell J
The aim of the study was to identify potential failure modes (FMs) having a high risk and to improve our current quality management (QM) program in Collaborative Ocular Melanoma Study (COMS) ocular brachytherapy by undertaking a failure modes and effects analysis (FMEA) and a fault tree analysis (FTA). Process mapping and FMEA were performed for COMS ocular brachytherapy. For all FMs identified in FMEA, risk priority numbers (RPNs) were determined by assigning and multiplying occurrence, severity, and lack of detectability values, each ranging from 1 to 10. FTA was performed for the major process that had the highest ranked FM. Twelve major processes, 121 sub-process steps, 188 potential FMs, and 209 possible causes were identified. For 188 FMs, RPN scores ranged from 1.0 to 236.1. The plaque assembly process had the highest ranked FM. The majority of FMs were attributable to human failure (85.6%), and medical physicist-related failures were the most numerous (58.9% of all causes). After FMEA, additional QM methods were included for the top 10 FMs and 6 FMs with severity values > 9.0. As a result, for these 16 FMs and the 5 major processes involved, quality control steps were increased from 8 (50%) to 15 (93.8%), and major processes having quality assurance steps were increased from 2 to 4. To reduce high risk in current clinical practice, we proposed QM methods. They mainly include a check or verification of procedures/steps and the use of checklists for both ophthalmology and radiation oncology staff, and intraoperative ultrasound-guided plaque positioning for ophthalmology staff. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Effects of Heavy Ion Exposure on Nanocrystal Nonvolatile Memory
NASA Technical Reports Server (NTRS)
Oldham, Timothy R.; Suhail, Mohammed; Kuhn, Peter; Prinz, Erwin; Kim, Hak; LaBel, Kenneth A.
2004-01-01
We have irradiated engineering samples of Freescale 4M nonvolatile memories with heavy ions. They use Silicon nanocrystals as the storage element, rather than the more common floating gate. The irradiations were performed using the Texas A&M University cyclotron Single Event Effects Test Facility. The chips were tested in the static mode, and in the dynamic read mode, dynamic write (program) mode, and dynamic erase mode. All the errors observed appeared to be due to single, isolated bits, even in the program and erase modes. These errors appeared to be related to the micro-dose mechanism. All the errors corresponded to the loss of electrons from a programmed cell. The underlying physical mechanisms will be discussed in more detail later. There were no errors, which could be attributed to malfunctions of the control circuits. At the highest LET used in the test (85 MeV/mg/sq cm), however, there appeared to be a failure due to gate rupture. Failure analysis is being conducted to confirm this conclusion. There was no unambiguous evidence of latchup under any test conditions. Generally, the results on the nanocrystal technology compare favorably with results on currently available commercial floating gate technology, indicating that the technology is promising for future space applications, both civilian and military.
Mechanical ventilation during extracorporeal membrane oxygenation.
Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol
2014-01-21
The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.
Mechanical ventilation during extracorporeal membrane oxygenation
2014-01-01
The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes. PMID:24447458
Failure mode effect analysis and fault tree analysis as a combined methodology in risk management
NASA Astrophysics Data System (ADS)
Wessiani, N. A.; Yoshio, F.
2018-04-01
There have been many studies reported the implementation of Failure Mode Effect Analysis (FMEA) and Fault Tree Analysis (FTA) as a method in risk management. However, most of the studies usually only choose one of these two methods in their risk management methodology. On the other side, combining these two methods will reduce the drawbacks of each methods when implemented separately. This paper aims to combine the methodology of FMEA and FTA in assessing risk. A case study in the metal company will illustrate how this methodology can be implemented. In the case study, this combined methodology will assess the internal risks that occur in the production process. Further, those internal risks should be mitigated based on their level of risks.
NASA Astrophysics Data System (ADS)
Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal
2013-07-01
The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.
NASA Astrophysics Data System (ADS)
Li, Xibing; Du, Kun; Li, Diyuan
2015-11-01
True triaxial tests have been carried out on granite, sandstone and cement mortar using cubic specimens with the process of unloading the minor principal stress. The strengths and failure modes of the three rock materials are studied in the processes of unloading σ 3 and loading σ 1 by the newly developed true triaxial test system under different σ 2, aiming to study the mechanical responses of the rock in underground excavation at depth. It shows that the rock strength increases with the raising of the intermediate principal stress σ 2 when σ 3 is unloaded to zero. The true triaxial strength criterion by the power-law relationship can be used to fit the testing data. The "best-fitting" material parameters A and n ( A > 1.4 and n < 1.0) are almost located in the same range as expected by Al-Ajmi and Zimmerman (Int J Rock Mech Min Sci 563 42(3):431-439, 2005). It indicates that the end effect caused by the height-to-width ratio of the cubic specimens will not significantly affect the testing results under true triaxial tests. Both the strength and failure modes of cubic rock specimens under true triaxial unloading condition are affected by the intermediate principal stress. When σ 2 increases to a critical value for the strong and hard rocks (R4, R5 and R6), the rock failure mode may change from shear to slabbing. However, for medium strong and weak rocks (R3 and R2), even with a relatively high intermediate principal stress, they tend to fail in shear after a large amount of plastic deformation. The maximum extension strain criterion Stacey (Int J Rock Mech Min Sci Geomech Abstr 651 18(6):469-474, 1981) can be used to explain the change of failure mode from shear to slabbing for strong and hard rocks under true triaxial unloading test condition.
Independent Orbiter Assessment (IOA): Assessment of the rudder/speed brake subsystem FMEA/CIL
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Rudder/Speed Brake (RSB) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline along with the proposed Post 51-L CIL updates included. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter RSB hardware. The IOA product for the RSB analysis consisted of 38 failure mode worksheets that resulted in 27 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 34 FMEAs and 18 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.
NASA Technical Reports Server (NTRS)
Schmeckpeper, K. R.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA first completed an analysis of the Electrical Power Distribution and Control (EPD and C) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EPD and C hardware. The IOA product for the EPD and C analysis consisted of 1671 failure mode analysis worksheets that resulted in 468 potential critical items being identified. Comparison was made to the proposed NASA Post 51-L baseline which consisted of FMEAs and 158 CIL items. Volume 1 contains the EPD and C subsystem description, analysis results, ground rules and assumptions, and some of the IOA worksheets.
Independent Orbiter Assessment (IOA): Assessment of the manned maneuvering unit
NASA Technical Reports Server (NTRS)
Huynh, M.; Duffy, R. E.; Saiidi, M. J.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Manned Maneuvering Unit (MMU) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contain within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Martin Marietta FMEA/CIL Post 51-L updates. A discussion of each discrepancy from the comparison is provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. The results of this comparison for the Orbiter MMU hardware are documented. The IOA product for the MMU analysis consisted of 204 failure mode worksheets that resulted in 95 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 179 FMEAs and 110 CIL items. This comparison produced agreement on all 121 FMEAs which caused differences in 92 CIL items.
Independent Orbiter Assessment (IOA): Analysis of the reaction control system, volume 1
NASA Technical Reports Server (NTRS)
Burkemper, V. J.; Haufler, W. A.; Odonnell, R. A.; Paul, D. J.
1987-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Reaction Control System (RCS). The purpose of the RCS is to provide thrust in and about the X, Y, Z axes for External Tank (ET) separation; orbit insertion maneuvers; orbit translation maneuvers; on-orbit attitude control; rendezvous; proximity operations (payload deploy and capture); deorbit maneuvers; and abort attitude control. The RCS is situated in three independent modules, one forward in the orbiter nose and one in each OMS/RCS pod. Each RCS module consists of the following subsystems: Helium Pressurization Subsystem; Propellant Storage and Distribution Subsystem; Thruster Subsystem; and Electrical Power Distribution and Control Subsystem. Of the failure modes analyzed, 307 could potentially result in a loss of life and/or loss of vehicle.
NASA Technical Reports Server (NTRS)
Odonnell, R. A.; Weissinger, D.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Landing/Deceleration (LDG/DEC) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter LDG/DEC hardware. The IOA product for the LDG/DEC analysis consisted of 259 failure mode worksheets that resulted in 124 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 267 FMEA's and 120 CIL items. This comparison produced agreement on all but 75 FMEA's which caused differences in 51 CIL items.
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Ascent Thrust Vector Control Actuator (ATVD) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter ATVC hardware. The IOA product for the ATVC actuator analysis consisted of 25 failure mode worksheets that resulted in 16 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 21 FMEAs and 13 CIL items. This comparison produced agreement on all CIL items. Based on the Pre 51-L baseline, all non-CIL FMEAs were also in agreement.
PV Degradation Curves: Non-Linearities and Failure Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Dirk C.; Silverman, Timothy J.; Sekulic, Bill
Photovoltaic (PV) reliability and durability have seen increased interest in recent years. Historically, and as a preliminarily reasonable approximation, linear degradation rates have been used to quantify long-term module and system performance. The underlying assumption of linearity can be violated at the beginning of the life, as has been well documented, especially for thin-film technology. Additionally, non-linearities in the wear-out phase can have significant economic impact and appear to be linked to different failure modes. In addition, associating specific degradation and failure modes with specific time series behavior will aid in duplicating these degradation modes in accelerated tests and, eventually,more » in service life prediction. In this paper, we discuss different degradation modes and how some of these may cause approximately linear degradation within the measurement uncertainty (e.g., modules that were mainly affected by encapsulant discoloration) while other degradation modes lead to distinctly non-linear degradation (e.g., hot spots caused by cracked cells or solder bond failures and corrosion). The various behaviors are summarized with the goal of aiding in predictions of what may be seen in other systems.« less
Rah, Jeong-Eun; Manger, Ryan P; Yock, Adam D; Kim, Gwe-Ya
2016-12-01
To examine the abilities of a traditional failure mode and effects analysis (FMEA) and modified healthcare FMEA (m-HFMEA) scoring methods by comparing the degree of congruence in identifying high risk failures. The authors applied two prospective methods of the quality management to surface image guided, linac-based radiosurgery (SIG-RS). For the traditional FMEA, decisions on how to improve an operation were based on the risk priority number (RPN). The RPN is a product of three indices: occurrence, severity, and detectability. The m-HFMEA approach utilized two indices, severity and frequency. A risk inventory matrix was divided into four categories: very low, low, high, and very high. For high risk events, an additional evaluation was performed. Based upon the criticality of the process, it was decided if additional safety measures were needed and what they comprise. The two methods were independently compared to determine if the results and rated risks matched. The authors' results showed an agreement of 85% between FMEA and m-HFMEA approaches for top 20 risks of SIG-RS-specific failure modes. The main differences between the two approaches were the distribution of the values and the observation that failure modes (52, 54, 154) with high m-HFMEA scores do not necessarily have high FMEA-RPN scores. In the m-HFMEA analysis, when the risk score is determined, the basis of the established HFMEA Decision Tree™ or the failure mode should be more thoroughly investigated. m-HFMEA is inductive because it requires the identification of the consequences from causes, and semi-quantitative since it allows the prioritization of high risks and mitigation measures. It is therefore a useful tool for the prospective risk analysis method to radiotherapy.
NASA Astrophysics Data System (ADS)
Simola, Kaisa; Laakso, Kari
1992-01-01
Eight years of operating experiences of 104 motor operated closing valves in different safety systems in nuclear power units were analyzed in a systematic way. The qualitative methods used were Failure Mode and Effect Analysis (FMEA) and Maintenance Effects and Criticality Analysis (MECA). These reliability engineering methods are commonly used in the design stage of equipment. The successful application of these methods for analysis and utilization of operating experiences was demonstrated.
Sounds of Failure: Passive Acoustic Measurements of Excited Vibrational Modes
NASA Astrophysics Data System (ADS)
Brzinski, Theodore A.; Daniels, Karen E.
2018-05-01
Granular materials can fail through spontaneous events like earthquakes or brittle fracture. However, measurements and analytic models which forecast failure in this class of materials, while of both fundamental and practical interest, remain elusive. Materials including numerical packings of spheres, colloidal glasses, and granular materials have been known to develop an excess of low-frequency vibrational modes as the confining pressure is reduced. Here, we report experiments on sheared granular materials in which we monitor the evolving density of excited modes via passive monitoring of acoustic emissions. We observe a broadening of the distribution of excited modes coincident with both bulk and local plasticity, and evolution in the shape of the distribution before and after bulk failure. These results provide a new interpretation of the changing state of the material on its approach to stick-slip failure.
Sounds of Failure: Passive Acoustic Measurements of Excited Vibrational Modes.
Brzinski, Theodore A; Daniels, Karen E
2018-05-25
Granular materials can fail through spontaneous events like earthquakes or brittle fracture. However, measurements and analytic models which forecast failure in this class of materials, while of both fundamental and practical interest, remain elusive. Materials including numerical packings of spheres, colloidal glasses, and granular materials have been known to develop an excess of low-frequency vibrational modes as the confining pressure is reduced. Here, we report experiments on sheared granular materials in which we monitor the evolving density of excited modes via passive monitoring of acoustic emissions. We observe a broadening of the distribution of excited modes coincident with both bulk and local plasticity, and evolution in the shape of the distribution before and after bulk failure. These results provide a new interpretation of the changing state of the material on its approach to stick-slip failure.
NASA Astrophysics Data System (ADS)
Li, Xibing; Feng, Fan; Li, Diyuan; Du, Kun; Ranjith, P. G.; Rostami, Jamal
2018-05-01
The failure modes and peak unloading strength of a typical hard rock, Miluo granite, with particular attention to the sample height-to-width ratio (between 2 and 0.5), and the intermediate principal stress was investigated using a true-triaxial test system. The experimental results indicate that both sample height-to-width ratios and intermediate principal stress have an impact on the failure modes, peak strength and severity of rockburst in hard rock under true-triaxial unloading conditions. For longer rectangular specimens, the transition of failure mode from shear to slabbing requires higher intermediate principal stress. With the decrease in sample height-to-width ratios, slabbing failure is more likely to occur under the condition of lower intermediate principal stress. For same intermediate principal stress, the peak unloading strength monotonically increases with the decrease in sample height-to-width. However, the peak unloading strength as functions of intermediate principal stress for different types of rock samples (with sample height-to-width ratio of 2, 1 and 0.5) all present the pattern of initial increase, followed by a subsequent decrease. The curves fitted to octahedral shear stress as a function of mean effective stress also validate the applicability of the Mogi-Coulomb failure criterion for all considered rock sizes under true-triaxial unloading conditions, and the corresponding cohesion C and internal friction angle φ are calculated. The severity of strainburst of granite depends on the sample height-to-width ratios and intermediate principal stress. Therefore, different supporting strategies are recommended in deep tunneling projects and mining activities. Moreover, the comparison of test results of different σ 2/ σ 3 also reveals the little influence of minimum principal stress on failure characteristics of granite during the true-triaxial unloading process.
Failure mechanism of hollow tree trunks due to cross-sectional flattening
Huang, Yan-San; Hsu, Fu-Lan; Lee, Chin-Mei
2017-01-01
Failure of hollow trees in urban areas is a worldwide concern, and it can be caused by different mechanisms, i.e. bending stresses or flattening-related failures. Here we derive a new analytical expression for predicting the bending moment for tangential cracking, and compare the breaking moment of various failure modes, including Brazier buckling, tangential cracking, shear failure and conventional bending failure, as a function of t/R ratio, where t and R are the trunk wall thickness and trunk radius, respectively, of a hollow tree. We use Taiwan red cypress as an example and show that its failure modes and the corresponding t/R ratios are: Brazier buckling (Mode I), tangential cracking followed by longitudinal splitting (Mode II) and conventional bending failure (Mode III) for 0 < t/R < 0.06, 0.06 < t/R < 0.27 and 0.27 < t/R < 1, respectively. The exact values of those ratios may vary within and among species, but the variation is much smaller than individual mechanical properties. Also, shear failure, another type of cracking due to maximum shear stress near the neutral axis of the tree trunk, is unlikely to occur since it requires much larger bending moments. Hence, we conclude that tangential cracking due to cross-sectional flattening, followed by longitudinal splitting, is dominant for hollow trunks. Our equations are applicable to analyse straight hollow tree trunks and plant stems, but are not applicable to those with side openings or those with only heart decay. Our findings provide insights for those managing trees in urban situations and those managing for conservation of hollow-dependent fauna in both urban and rural settings. PMID:28484616
Analysis of Factors Affecting the Performance of RLV Thrust Cell Liners
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Technical Monitor); Butler, Daniel T., Jr.; Pinders, Marek-Jerzy
2004-01-01
The reusable launch vehicle (RLV) thrust cell liner, or thrust chamber, is a critical component of the Space Shuttle Main Engine (SSME). It is designed to operate in some of the most severe conditions seen in engineering practice. This requirement, in conjunction with experimentally observed 'dog-house' failure modes characterized by bulging and thinning of the cooling channel wall, provides the motivation to study the factors that influence RLV thrust cell liner performance. Factors or parameters believed to be directly related to the observed characteristic deformation modes leading to failure under in-service loading conditions are identified, and subsequently investigated using the cylindrical version of the higher-order theory for functionally graded materials in conjunction with the Robinson's unified viscoplasticity theory and the power-law creep model for modeling the response of the liner s constituents. Configurations are analyzed in which specific modifications in cooling channel wall thickness or constituent materials are made to determine the influence of these parameters on the deformations resulting in the observed failure modes in the outer walls of the cooling channel. The application of thermal barrier coatings and functional grading are also investigated within this context. Comparison of the higher-order theory results based on the Robinson and power-law creep model predictions has demonstrated that, using the available material parameters, the power-law creep model predicts more precisely the experimentally observed deformation leading to the 'dog-house' failure mode for multiple short cycles, while also providing much improved computational efficiency. However, for a single long cycle, both models predict virtually identical deformations. Increasing the power-law creep model coefficients produces appreciable deformations after just one long cycle that would normally be obtained after multiple cycles, thereby enhancing the efficiency of the analysis. This provides a basis for the development of an accelerated modeling procedure to further characterize dog-house deformation modes in RLV thrust cell liners. Additionally, the results presented herein have demonstrated that the mechanism responsible for deformation leading to 'dog-house' failure modes is driven by pressure, creep/relaxation and geometric effects.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lopez, Osvaldo F.
1991-01-01
Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.
Wu, Fei; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2015-01-01
A self-developed rotary multi-cutter device cuts stainless steel wire ropes into segments to fabricate twisted wires. Stainless steel porous twisted wire materials (PTWMs) with a spatial composite intertexture structure are produced by the compaction and subsequent vacuum solid-phase sintering of twisted wires. The stainless steel PTWMs show two types of typical uniaxial tensile failure modes, i.e., a 45° angle fracture mode and an auxetic failure mode (the PTWMs expand along the direction perpendicular to the tension). The effects of the sintering parameters, porosities, wire diameters, and sampling direction on the tensile properties of the PTWMs are carefully investigated. By increasing the sintering temperature from 1130 °C to 1330 °C, the tensile strength of the PTWMs with 70% target porosity increased from 7.7 MPa to 28.6 MPa and the total failure goes down to 50%. When increasing the sintering time from 90 min to 150 min, the tensile strength increases from 12.4 MPa to 19.1 MPa and the total failure elongation drops to 78.6%. The tensile strength of the PTWMs increases from 28.9 MPa to 112.7 MPa with decreasing porosity from 69.5% to 46.0%, and the total failure elongation also increases from 14.8% to 40.7%. The tensile strength and the failure strain of the PTWMs with fine wires are higher than those of the PTWMs with coarse wires under the same porosity. Sampling direction has a small influence on the tensile properties of the PTWMs. PMID:28793526
Wu, Fei; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2015-08-27
A self-developed rotary multi-cutter device cuts stainless steel wire ropes into segments to fabricate twisted wires. Stainless steel porous twisted wire materials (PTWMs) with a spatial composite intertexture structure are produced by the compaction and subsequent vacuum solid-phase sintering of twisted wires. The stainless steel PTWMs show two types of typical uniaxial tensile failure modes, i.e. , a 45° angle fracture mode and an auxetic failure mode (the PTWMs expand along the direction perpendicular to the tension). The effects of the sintering parameters, porosities, wire diameters, and sampling direction on the tensile properties of the PTWMs are carefully investigated. By increasing the sintering temperature from 1130 °C to 1330 °C, the tensile strength of the PTWMs with 70% target porosity increased from 7.7 MPa to 28.6 MPa and the total failure goes down to 50%. When increasing the sintering time from 90 min to 150 min, the tensile strength increases from 12.4 MPa to 19.1 MPa and the total failure elongation drops to 78.6%. The tensile strength of the PTWMs increases from 28.9 MPa to 112.7 MPa with decreasing porosity from 69.5% to 46.0%, and the total failure elongation also increases from 14.8% to 40.7%. The tensile strength and the failure strain of the PTWMs with fine wires are higher than those of the PTWMs with coarse wires under the same porosity. Sampling direction has a small influence on the tensile properties of the PTWMs.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl (Compiler); Guo, Ten-Huei
2014-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Qualification and issues with space flight laser systems and components
NASA Astrophysics Data System (ADS)
Ott, Melanie N.; Coyle, D. B.; Canham, John S.; Leidecker, Henning W., Jr.
2006-02-01
The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.
Manzoor, Behzad; Suleiman, Mahmood; Palmer, Richard M
2013-01-01
The crestal bone level around a dental implant may influence its strength characteristics by offering protection against mechanical failures. Therefore, the present study investigated the effect of simulated bone loss on modes, loads, and cycles to failure in an in vitro model. Different amounts of bone loss were simulated: 0, 1.5, 3.0, and 4.5 mm from the implant head. Forty narrow-diameter (3.0-mm) implant-abutment assemblies were tested using compressive bending and cyclic fatigue testing. Weibull and accelerated life testing analysis were used to assess reliability and functional life. Statistical analyses were performed using the Fisher-Exact test and the Spearman ranked correlation. Compressive bending tests showed that the level of bone loss influenced the load-bearing capacity of implant-abutment assemblies. Fatigue testing showed that the modes, loads, and cycles to failure had a statistically significant relationship with the level of bone loss. All 16 samples with bone loss of 3.0 mm or more experienced horizontal implant body fractures. In contrast, 14 of 16 samples with 0 and 1.5 mm of bone loss showed abutment and screw fractures. Weibull and accelerated life testing analysis indicated a two-group distribution: the 0- and 1.5-mm bone loss samples had better functional life and reliability than the 3.0- and 4.5-mm samples. Progressive bone loss had a significant effect on modes, loads, and cycles to failure. In addition, bone loss influenced the functional life and reliability of the implant-abutment assemblies. Maintaining crestal bone levels is important in ensuring biomechanical sustainability and predictable long-term function of dental implant assemblies.
Qualification and Issues with Space Flight Laser Systems and Components
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.
2006-01-01
The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 1990's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.
Qualification and Issues with Space Flight Laser Systems and Components
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Coyle, D. Barry; Canham, John S.; Leidecker, Henning W.
2006-01-01
The art of flight quality solid-state laser development is still relatively young, and much is still unknown regarding the best procedures, components, and packaging required for achieving the maximum possible lifetime and reliability when deployed in the harsh space environment. One of the most important issues is the limited and unstable supply of quality, high power diode arrays with significant technological heritage and market lifetime. Since Spectra Diode Labs Inc. ended their involvement in the pulsed array business in the late 199O's, there has been a flurry of activity from other manufacturers, but little effort focused on flight quality production. This forces NASA, inevitably, to examine the use of commercial parts to enable space flight laser designs. System-level issues such as power cycling, operational derating, duty cycle, and contamination risks to other laser components are some of the more significant unknown, if unquantifiable, parameters that directly effect transmitter reliability. Designs and processes can be formulated for the system and the components (including thorough modeling) to mitigate risk based on the known failures modes as well as lessons learned that GSFC has collected over the past ten years of space flight operation of lasers. In addition, knowledge of the potential failure modes related to the system and the components themselves can allow the qualification testing to be done in an efficient yet, effective manner. Careful test plan development coupled with physics of failure knowledge will enable cost effect qualification of commercial technology. Presented here will be lessons learned from space flight experience, brief synopsis of known potential failure modes, mitigation techniques, and options for testing from the system level to the component level.
Arvanitoyannis, Ioannis S; Varzakas, Theodoros H
2009-08-01
Failure Mode and Effect Analysis (FMEA) has been applied for the risk assessment of snails manufacturing. A tentative approach of FMEA application to the snails industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (snails processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over snails processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Sterilization of tins, bioaccumulation of heavy metals, packaging of shells and poisonous mushrooms, were the processes identified as the ones with the highest RPN (280, 240, 147, 144, respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a snails processing industry is considered imperative.
NASA Astrophysics Data System (ADS)
Song, Lu-Kai; Wen, Jie; Fei, Cheng-Wei; Bai, Guang-Chen
2018-05-01
To improve the computing efficiency and precision of probabilistic design for multi-failure structure, a distributed collaborative probabilistic design method-based fuzzy neural network of regression (FR) (called as DCFRM) is proposed with the integration of distributed collaborative response surface method and fuzzy neural network regression model. The mathematical model of DCFRM is established and the probabilistic design idea with DCFRM is introduced. The probabilistic analysis of turbine blisk involving multi-failure modes (deformation failure, stress failure and strain failure) was investigated by considering fluid-structure interaction with the proposed method. The distribution characteristics, reliability degree, and sensitivity degree of each failure mode and overall failure mode on turbine blisk are obtained, which provides a useful reference for improving the performance and reliability of aeroengine. Through the comparison of methods shows that the DCFRM reshapes the probability of probabilistic analysis for multi-failure structure and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of multi-failure structure and thereby also enriches the theory and method of mechanical reliability design.
Autonomous diagnostics and prognostics of signal and data distribution systems
NASA Astrophysics Data System (ADS)
Blemel, Kenneth G.
2001-07-01
Wiring is the nervous system of any complex system and is attached to or services nearly every subsystem. Damage to optical wiring systems can cause serious interruptions in communication, command and control systems. Electrical wiring faults and failures due to opens, shorts, and arcing probably result in adverse effects to the systems serviced by the wiring. Abnormalities in a system usually can be detected by monitoring some wiring parameter such as vibration, data activity or power consumption. This paper introduces the mapping of wiring to critical functions during system engineering to automatically define the Failure Modes Effects and Criticality Analysis. This mapping can be used to define the sensory processes needed to perform diagnostics during system engineering. This paper also explains the use of Operational Modes and Criticality Effects Analysis in the development of Sentient Wiring Systems as a means for diagnostic, prognostics and health management of wiring in aerospace and transportation systems.
Post - SM4 Flux Calibration of the STIS Echelle Modes
NASA Astrophysics Data System (ADS)
Bostroem, Azalee; Aloisi, A.; Bohlin, R. C.; Proffitt, C. R.; Osten, R. A.; Lennon, D.
2010-07-01
Like all STIS spectroscopic modes, STIS echelle modes show a wavelength dependent decline in detector sensitivity with time. The echelle sensitivity is further affected by a time-dependent shift in the blaze function. To better correct the effects of the echelle sensitivity loss and the blaze function changes, we derive new baselines for echelle sensitivities from post-HST Servicing Mission 4 observations of the standard star G191-B2B. We present how these baseline sensitivities compare to pre-failure trends.
Automatic Monitoring System Design and Failure Probability Analysis for River Dikes on Steep Channel
NASA Astrophysics Data System (ADS)
Chang, Yin-Lung; Lin, Yi-Jun; Tung, Yeou-Koung
2017-04-01
The purposes of this study includes: (1) design an automatic monitoring system for river dike; and (2) develop a framework which enables the determination of dike failure probabilities for various failure modes during a rainstorm. The historical dike failure data collected in this study indicate that most dikes in Taiwan collapsed under the 20-years return period discharge, which means the probability of dike failure is much higher than that of overtopping. We installed the dike monitoring system on the Chiu-She Dike which located on the middle stream of Dajia River, Taiwan. The system includes: (1) vertical distributed pore water pressure sensors in front of and behind the dike; (2) Time Domain Reflectometry (TDR) to measure the displacement of dike; (3) wireless floating device to measure the scouring depth at the toe of dike; and (4) water level gauge. The monitoring system recorded the variation of pore pressure inside the Chiu-She Dike and the scouring depth during Typhoon Megi. The recorded data showed that the highest groundwater level insides the dike occurred 15 hours after the peak discharge. We developed a framework which accounts for the uncertainties from return period discharge, Manning's n, scouring depth, soil cohesion, and friction angle and enables the determination of dike failure probabilities for various failure modes such as overtopping, surface erosion, mass failure, toe sliding and overturning. The framework was applied to Chiu-She, Feng-Chou, and Ke-Chuang Dikes on Dajia River. The results indicate that the toe sliding or overturning has the highest probability than other failure modes. Furthermore, the overall failure probability (integrate different failure modes) reaches 50% under 10-years return period flood which agrees with the historical failure data for the study reaches.
Materials testing of the IUS techroll seal material
NASA Technical Reports Server (NTRS)
Nichols, R. L.; Hall, W. B.
1984-01-01
As a part of the investigation of the control system failure Inertial Upper Stage on IUS-1 flight to position a Tracking and Data Relay Satellite (TDRS) in geosynchronous orbit, the materials utilized in the techroll seal are evaluated for possible failure models. Studies undertaken included effect of temperature on the strength of the system, effect of fatigue on the strength of the system, thermogravimetric analysis, thermomechanical analysis, differential scanning calorimeter analysis, dynamic mechanical analysis, and peel test. The most likely failure mode is excessive temperature in the seal. In addition, the seal material is susceptible to fatigue damage which could be a contributing factor.
NASA Astrophysics Data System (ADS)
Faulconer, E. K.; Griffith, J.; Wood, B.; Acharyya, S.; Roberts, D.
2018-05-01
While the equivalence between online and traditional classrooms has been well-researched, very little of this includes college-level introductory Physics. Only one study explored Physics at the whole-class level rather than specific course components such as a single lab or a homework platform. In this work, we compared the failure rate, grade distribution, and withdrawal rates in an introductory undergraduate Physics course across several learning modes including traditional face-to-face instruction, synchronous video instruction, and online classes. Statistically significant differences were found for student failure rates, grade distribution, and withdrawal rates but yielded small effect sizes. Post-hoc pair-wise test was run to determine differences between learning modes. Online students had a significantly lower failure rate than students who took the class via synchronous video classroom. While statistically significant differences were found for grade distributions, the pair-wise comparison yielded no statistically significance differences between learning modes when using the more conservative Bonferroni correction in post-hoc testing. Finally, in this study, student withdrawal rates were lowest for students who took the class in person (in-person classroom and synchronous video classroom) than online. Students that persist in an online introductory Physics class are more likely to achieve an A than in other modes. However, the withdrawal rate is higher from online Physics courses. Further research is warranted to better understand the reasons for higher withdrawal rates in online courses. Finding the root cause to help eliminate differences in student performance across learning modes should remain a high priority for education researchers and the education community as a whole.
NASA Technical Reports Server (NTRS)
Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl
2017-01-01
The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.
The Need and Requirements for Validating Damage Detection Capability
2011-09-01
Testing of Airborne Equipment [11], 2) Materials / Structure Certification, 3) NDE (POD) Validation Procedures, 4) Failure Mode Effects and Criticality...Analysis (FMECA), and 5) Cost Benefits Analysis [12]. Existing procedures for environmental testing of airborne equipment ensure flight...e.g. ultrasound or eddy current), damage type or failure conditions to detect, criticality of the damage state (e.g. safety of flight), likelihood of
Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Knight, N. F., Jr.; Reddy, J. N.
1990-01-01
The influence of shear flexibility on overall postbuckling response was assessed, and transverse shear stress distributions in relation to panel failure were examined. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented analytically substantiate the experimentally observed failure mode.
Why do entrepreneurial mHealth ventures in the developing world fail to scale?
Sundin, Phillip; Callan, Jonathan; Mehta, Khanjan
Telemedicine is an increasingly common approach to improve healthcare access in developing countries with fledgling healthcare systems. Despite the strong financial, logistical and clinical support from non-governmental organisations (NGOs), government ministries and private actors alike, the majority of telemedicine projects do not survive beyond the initial pilot phase and achieve their full potential. Based on a review of 35 entrepreneurial telemedicine and mHealth ventures, and 17 reports that analyse their operations and challenges, this article provides a narrative review of recurring failure modes, i.e. factors that lead to failure of such venture pilots. Real-world examples of successful and failed ventures are examined for key take-away messages and practical strategies for creating commercial viable telemedicine operations. A better understanding of these failure modes can inform the design of sustainable and scalable telemedicine systems that effectively address the growing healthcare disparities in developing countries.
A dynamic integrated fault diagnosis method for power transformers.
Gao, Wensheng; Bai, Cuifen; Liu, Tong
2015-01-01
In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified.
A Dynamic Integrated Fault Diagnosis Method for Power Transformers
Gao, Wensheng; Liu, Tong
2015-01-01
In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841
Accelerated stress testing of terrestrial solar cells
NASA Technical Reports Server (NTRS)
Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.
1982-01-01
The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.
Raygot, C G; Chai, J; Jameson, D L
2001-01-01
This study was undertaken to characterize the fracture resistance and mode of fracture of endodontically treated incisors restored with cast post-and-core, prefabricated stainless steel post, or carbon fiber-reinforced composite post systems. Ten endodontically treated teeth restored with each technique were subjected to a compressive load delivered at a 130-degree angle to the long axis until the first sign of failure was noted. The fracture load and the mode of fracture were recorded. The failure loads registered in the three groups were not significantly different. Between 70%, and 80% of teeth from any of the three groups displayed fractures that were located above the simulated bone level. The use of carbon fiber-reinforced composite posts did not change the fracture resistance or the failure mode of endodontically treated central incisors compared to the use of metallic posts.
Analysis and design of ion-implanted bubble memory devices
NASA Astrophysics Data System (ADS)
Wullert, J. R., II; Kryder, M. H.
1987-04-01
4-μm period ion-implanted contiguous disk bubble memory circuits, designed and fabricated at AT&T Bell Laboratories, Murray Hill, NJ, have been investigated. Quasistatic testing has provided information about both the operational bias field ranges and the exact failure modes. A variety of major loop layouts were investigated and two turns found to severely limit bias field margins are discussed. The generation process, using a hairpin nucleator, was tested and several interesting failure modes were uncovered. Propagation on four different minor loop paths was observed and each was found to have characteristic failure modes. The transfer processes, both into and out of the minor loops, were investigated at higher frequencies to avoid local heating due to long transfer pulses at low frequencies. Again specific failure modes were identified. Overall bias margins for the chip were 9% at 50 Oe drive field and were limited by transfer-in.
Automated Mixed Traffic Vehicle (AMTV) technology and safety study
NASA Technical Reports Server (NTRS)
Johnston, A. R.; Peng, T. K. C.; Vivian, H. C.; Wang, P. K.
1978-01-01
Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard.
Size effects and realiability of barium strontium titanate thin films
NASA Astrophysics Data System (ADS)
Parker, Charles Bernard
Thin films of (Ba,Sr)TiO3 (BST) deposited by Liquid Source MOCVD were investigated. BST is a candidate dielectric for future-generation DRAM and as a tunable dielectric. Two areas of both scientific and commercial interest were investigated. The first area is the effect of decreasing dimension on ferroelectric properties. Several theories of size effects in ferroelectrics were evaluated. The dielectric response of a set of BST films of thicknesses from 15 to 580 nm was measured from 85 to 580 K. These films were extensively characterized and the boundary conditions that often influence size effects measurements were considered, including strain, finite screening length in the electrode, depolarization fields in the ferroelectric, atmospheric effects, control of stochiometry, and others. The data set was compared to the theoretical predictions and it was determined that Finite Size Scaling provided the best fit to the data. Using this theory, the predicted dielectric response was compared to the requirements of future generations of DRAM and was found to be sufficient, if film strain can be controlled. The second area is reliability. The types of lifetime-limiting electrical failure observed in BST are resistance degradation, time dependant dielectric breakdown (tddb), and noisy breakdown. Previous work on BST reliability has largely focused on resistance degradation at high temperature. This condition is only a small subset of experimental space. This work extends the understanding of BST failure into the low temperature regime and evaluates the effects of both DC and AC stress. It was found that tddb is the dominant failure mode at low temperature and resistance degradation is the dominant failure modes at high temperature. Synthesizing this work with previous work on resistance degradation allowed a failure framework to be developed. Rigorous extrapolation of resistance degradation and tddb lifetimes was compared to the requirements of future generations of DRAM and was found that while resistance degradation will not limit device lifetimes, tddb will. Refinement of BST processing will be necessary to reduce the defect causing tddb failure.
Independent Orbiter Assessment (IOA): Assessment of the reaction control system, volume 5
NASA Technical Reports Server (NTRS)
Prust, Chet D.; Hartman, Dan W.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the aft and forward Reaction Control System (RCS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter RCS hardware and EPD and C systems. Volume 5 contains detailed analysis and superseded analysis worksheets and the NASA FMEA to IOA worksheet cross reference and recommendations.
NASA Technical Reports Server (NTRS)
Long, W. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. Volume 3 continues the presentation of IOA worksheets and contains the potential critical items list, detailed analysis, and the NASA FMEA to IOA worksheet cross reference and recommendations.
Independent Orbiter Assessment (IOA): Assessment of the extravehicular mobility unit, volume 1
NASA Technical Reports Server (NTRS)
Raffaelli, Gary G.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort performed an independent analysis of the Extravehicular Mobility Unit (EMU) hardware and system, generating draft failure modes criticalities and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to the most recent proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EMU hardware.
Independent Orbiter Assessment (IOA): Assessment of the data processing system FMEA/CIL
NASA Technical Reports Server (NTRS)
Lowery, H. J.; Haufler, W. A.
1986-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Data Processing System (DPS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison is documented for the Orbiter DPS hardware.
Columbus safety and reliability
NASA Astrophysics Data System (ADS)
Longhurst, F.; Wessels, H.
1988-10-01
Analyses carried out to ensure Columbus reliability, availability, and maintainability, and operational and design safety are summarized. Failure modes/effects/criticality is the main qualitative tool used. The main aspects studied are fault tolerance, hazard consequence control, risk minimization, human error effects, restorability, and safe-life design.
Space Shuttle Hot Cabin Emergency Responses
NASA Technical Reports Server (NTRS)
Stepaniak, P.; Effenhauser, R. K.; McCluskey, R.; Gillis, D. B.; Hamilton, D.; Kuznetz, L. H.
2005-01-01
Methods: Human thermal tolerance, countermeasures, and thermal model data were reviewed and compared to existing shuttle ECS failure temperature and humidity profiles for each failure mode. Increases in core temperature associated with cognitive impairment was identified, as was metabolic heat generation of crewmembers, temperature monitoring, and communication capabilities after partial power-down and other limiting factors. Orbiter landing strategies and a hydration and salt replacement protocol were developed to put wheels on deck in each failure mode prior to development of significant cognitive impairment or collapse of crewmembers. Thermal tradeoffs for use of the Advanced Crew Escape Suit (ACES), Liquid Cooling Garment, integrated G-suit and Quick Don Mask were examined. candidate solutions involved trade-offs or conflicts with cabin oxygen partial pressure limits, system power-downs to limit heat generation, risks of alternate and emergency landing sites or compromise of Mode V-VIII scenarios. Results: Rehydration and minimized cabin workloads are required in all failure modes. Temperature/humidity profiles increase rapidly in two failure modes, and deorbit is recommended without the ACES, ICU and g-suit. This latter configuration limits several shuttle approach and landing escape modes and requires communication modifications. Additional data requirements were identified and engineering simulations were recommended to develop more current shuttle temperature and humidity profiles. Discussion: After failure of the shuttle ECS, there is insufficient cooling capacity of the ACES to protect crewmembers from rising cabin temperature and humidity. The LCG is inadequate for cabin temperatures above 76 F. Current shuttle future life policy makes it unlikely that major engineering upgrades necessary to address this problem will occur.
Space Shuttle Stiffener Ring Foam Failure Analysis, a Non-Conventional Approach
NASA Technical Reports Server (NTRS)
Howard, Philip M.
2015-01-01
The Space Shuttle Program made use of the excellent properties of rigid polyurethane foam for cryogenic tank insulation and as structural protection on the solid rocket boosters. When foam applications de-bond, classical methods of failure analysis did not provide root cause of the failure of the foam. Realizing that foam is the ideal media to document and preserve its own mode of failure, thin sectioning was seen as a logical approach for foam failure analysis to observe the three dimensional morphology of the foam cells. The cell foam morphology provided a much greater understanding of the failure modes than previously achieved.
16 CFR 1211.5 - General testing parameters.
Code of Federal Regulations, 2010 CFR
2010-01-01
... condition flow chart shown in figure 1 shall be used: (1) To conduct a failure-mode and effect analysis (FMEA); (2) In investigating the performance during the Environmental Stress Tests; and (3) During the...
Plastic Pipe Failure, Risk, and Threat Analysis
DOT National Transportation Integrated Search
2009-04-29
The three primary failure modes that may be exhibited by polyethylene (PE) gas pipe materials were described in detail. The modes are: ductile rupture, slow crack growth (SCG), and rapid crack propagation (RCP). Short term mechanical tests were evalu...
A failure modes and effects analysis study for gynecologic high-dose-rate brachytherapy.
Mayadev, Jyoti; Dieterich, Sonja; Harse, Rick; Lentz, Susan; Mathai, Mathew; Boddu, Sunita; Kern, Marianne; Courquin, Jean; Stern, Robin L
2015-01-01
To improve the quality of our gynecologic brachytherapy practice and reduce reportable events, we performed a process analysis after the failure modes and effects analysis (FMEA). The FMEA included a multidisciplinary team specifically targeting the tandem and ring brachytherapy procedure. The treatment process was divided into six subprocesses and failure modes (FMs). A scoring guideline was developed based on published FMEA studies and assigned through team consensus. FMs were ranked according to overall and severity scores. FM ranking >5% of the highest risk priority number (RPN) score was selected for in-depth analysis. The efficiency of each existing quality assurance to detect each FM was analyzed. We identified 170 FMs, and 99 were scored. RPN scores ranged from 1 to 192. Of the 13 highest-ranking FMs with RPN scores >80, half had severity scores of 8 or 9, with no mode having severity of 10. Of these FM, the originating process steps were simulation (5), treatment planning (5), treatment delivery (2), and insertion (1). Our high-ranking FM focused on communication and the potential for applicator movement. Evaluation of the efficiency and the comprehensiveness of our quality assurance program showed coverage of all but three of the top 49 FMs ranked by RPN. This is the first reported FMEA process for a comprehensive gynecologic brachytherapy procedure overview. We were able to identify FMs that could potentially and severely impact the patient's treatment. We continue to adjust our quality assurance program based on the results of our FMEA analysis. Published by Elsevier Inc.
Reusable Rocket Engine Maintenance Study
NASA Technical Reports Server (NTRS)
Macgregor, C. A.
1982-01-01
Approximately 85,000 liquid rocket engine failure reports, obtained from 30 years of developing and delivering major pump feed engines, were reviewed and screened and reduced to 1771. These were categorized into 16 different failure modes. Failure propagation diagrams were established. The state of the art of engine condition monitoring for in-flight sensors and between flight inspection technology was determined. For the 16 failure modes, the potential measurands and diagnostic requirements were identified, assessed and ranked. Eight areas are identified requiring advanced technology development.
Multisite Parent-Centered Risk Assessment to Reduce Pediatric Oral Chemotherapy Errors
Walsh, Kathleen E.; Mazor, Kathleen M.; Roblin, Douglas; Biggins, Colleen; Wagner, Joann L.; Houlahan, Kathleen; Li, Justin W.; Keuker, Christopher; Wasilewski-Masker, Karen; Donovan, Jennifer; Kanaan, Abir; Weingart, Saul N.
2013-01-01
Purpose: Observational studies describe high rates of errors in home oral chemotherapy use in children. In hospitals, proactive risk assessment methods help front-line health care workers develop error prevention strategies. Our objective was to engage parents of children with cancer in a multisite study using proactive risk assessment methods to identify how errors occur at home and propose risk reduction strategies. Methods: We recruited parents from three outpatient pediatric oncology clinics in the northeast and southeast United States to participate in failure mode and effects analyses (FMEA). An FMEA is a systematic team-based proactive risk assessment approach in understanding ways a process can fail and develop prevention strategies. Steps included diagram the process, brainstorm and prioritize failure modes (places where things go wrong), and propose risk reduction strategies. We focused on home oral chemotherapy administration after a change in dose because prior studies identified this area as high risk. Results: Parent teams consisted of four parents at two of the sites and 10 at the third. Parents developed a 13-step process map, with two to 19 failure modes per step. The highest priority failure modes included miscommunication when receiving instructions from the clinician (caused by conflicting instructions or parent lapses) and unsafe chemotherapy handling at home. Recommended risk assessment strategies included novel uses of technology to improve parent access to information, clinicians, and other parents while at home. Conclusion: Parents of pediatric oncology patients readily participated in a proactive risk assessment method, identifying processes that pose a risk for medication errors involving home oral chemotherapy. PMID:23633976
3D visualization of membrane failures in fuel cells
NASA Astrophysics Data System (ADS)
Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik
2017-03-01
Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.
Investigation of improving MEMS-type VOA reliability
NASA Astrophysics Data System (ADS)
Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.
2003-12-01
MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).
Investigation of improving MEMS-type VOA reliability
NASA Astrophysics Data System (ADS)
Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.
2004-01-01
MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).
Stress redistribution and damage in interconnects caused by electromigration
NASA Astrophysics Data System (ADS)
Chiras, Stefanie Ruth
Electromigration has long been recognized as a phenomenon that induces mass redistribution in metals which, when constrained, can lead to the creation of stress. Since the development of the integrated circuit, electromigration. in interconnects, (the metal lines which carry current between devices in integrated circuits), has become a reliability concern. The primary failure mechanism in the interconnects is usually voiding, which causes electrical resistance increases in the circuit. In some cases, however, another failure mode occurs, fracture of the surrounding dielectric driven by electromigration induced compressive stresses within the interconnect. It is this failure mechanism that is the focus of this thesis. To study dielectric fracture, both residual processing stresses and the development of electromigration induced stress in isolated, constrained interconnects was measured. The high-resolution measurements were made using two types of piezospectroscopy, complemented by finite element analysis (FEA). Both procedures directly measured stress in the underlying or neighboring substrate and used FEA to determine interconnect stresses. These interconnect stresses were related to the effected circuit failure mode through post-test scanning electron microscopy and resistance measurements taken during electromigration testing. The results provide qualitative evidence of electromigration driven passivation fracture, and quantitative analysis of the theoretical model of the failure, the "immortal" interconnect concept.
System safety in Stirling engine development
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1981-01-01
The DOE/NASA Stirling Engine Project Office has required that contractors make safety considerations an integral part of all phases of the Stirling engine development program. As an integral part of each engine design subtask, analyses are evolved to determine possible modes of failure. The accepted system safety analysis techniques (Fault Tree, FMEA, Hazards Analysis, etc.) are applied in various degrees of extent at the system, subsystem and component levels. The primary objectives are to identify critical failure areas, to enable removal of susceptibility to such failures or their effects from the system and to minimize risk.
Basic failure mechanisms in advanced composites
NASA Technical Reports Server (NTRS)
Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.
1972-01-01
Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.
Arvanitoyannis, Ioannis S; Varzakas, Theodoros H
2008-05-01
The Failure Mode and Effect Analysis (FMEA) model was applied for risk assessment of salmon manufacturing. A tentative approach of FMEA application to the salmon industry was attempted in conjunction with ISO 22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (salmon processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points were identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram and fishbone diagram). In this work, a comparison of ISO 22000 analysis with HACCP is carried out over salmon processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the RPN per identified processing hazard. Fish receiving, casing/marking, blood removal, evisceration, filet-making cooling/freezing, and distribution were the processes identified as the ones with the highest RPN (252, 240, 210, 210, 210, 210, 200 respectively) and corrective actions were undertaken. After the application of corrective actions, a second calculation of RPN values was carried out resulting in substantially lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO 22000 system of a salmon processing industry is anticipated to prove advantageous to industrialists, state food inspectors, and consumers.
Failure Modes in Capacitors When Tested Under a Time-Varying Stress
NASA Technical Reports Server (NTRS)
Liu, David (Donhang)
2011-01-01
Steady step surge testing (SSST) is widely applied to screen out potential power-on failures in solid tantalum capacitors. The test simulates the power supply's on and off characteristics. Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors for decoupling applications. On the other hand, the SSST can also be reviewed as an electrically destructive test under a time-varying stress. It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. Highly accelerated life testing (HALT) is usually a time-efficient method for determining the failure mechanism in capacitors; however, a destructive test under a time-varying stress like SSST is even more effective. It normally takes days to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating specific time-varying stress into a statistical model is significant in providing an alternative life test method for quickly revealing the failure modes in capacitors. In this paper, a time-varying stress has been incorporated into the Weibull model to characterize the failure modes. The SSST circuit and transient conditions to correctly test the capacitors is discussed. Finally, the SSST was applied for testing polymer aluminum capacitors (PA capacitors), Ta capacitors, and multi-layer ceramic capacitors with both precious metal electrode (PME) and base-metal-electrodes (BME). It appears that testing results are directly associated to the dielectric layer breakdown in PA and Ta capacitors and are independent on the capacitor values, the way the capacitors being built, and the manufactures. The testing results also reveal that ceramic capacitors exhibit breakdown voltages more than 20 times the rated voltage, and the breakdown voltages are inverse proportional to the dielectric layer thickness. The possibility of ceramic capacitors in front-end decoupling applications to block the surge noise from a power supply is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less
TU-AB-BRD-03: Fault Tree Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunscombe, P.
2015-06-15
Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palta, J.
2015-06-15
Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less
TU-AB-BRD-04: Development of Quality Management Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomadsen, B.
2015-06-15
Current quality assurance and quality management guidelines provided by various professional organizations are prescriptive in nature, focusing principally on performance characteristics of planning and delivery devices. However, published analyses of events in radiation therapy show that most events are often caused by flaws in clinical processes rather than by device failures. This suggests the need for the development of a quality management program that is based on integrated approaches to process and equipment quality assurance. Industrial engineers have developed various risk assessment tools that are used to identify and eliminate potential failures from a system or a process before amore » failure impacts a customer. These tools include, but are not limited to, process mapping, failure modes and effects analysis, fault tree analysis. Task Group 100 of the American Association of Physicists in Medicine has developed these tools and used them to formulate an example risk-based quality management program for intensity-modulated radiotherapy. This is a prospective risk assessment approach that analyzes potential error pathways inherent in a clinical process and then ranks them according to relative risk, typically before implementation, followed by the design of a new process or modification of the existing process. Appropriate controls are then put in place to ensure that failures are less likely to occur and, if they do, they will more likely be detected before they propagate through the process, compromising treatment outcome and causing harm to the patient. Such a prospective approach forms the basis of the work of Task Group 100 that has recently been approved by the AAPM. This session will be devoted to a discussion of these tools and practical examples of how these tools can be used in a given radiotherapy clinic to develop a risk based quality management program. Learning Objectives: Learn how to design a process map for a radiotherapy process Learn how to perform failure modes and effects analysis analysis for a given process Learn what fault trees are all about Learn how to design a quality management program based upon the information obtained from process mapping, failure modes and effects analysis and fault tree analysis. Dunscombe: Director, TreatSafely, LLC and Center for the Assessment of Radiological Sciences; Consultant to IAEA and Varian Thomadsen: President, Center for the Assessment of Radiological Sciences Palta: Vice President of the Center for the Assessment of Radiological Sciences.« less
Functional Fault Model Development Process to Support Design Analysis and Operational Assessment
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Maul, William A.; Hemminger, Joseph A.
2016-01-01
A functional fault model (FFM) is an abstract representation of the failure space of a given system. As such, it simulates the propagation of failure effects along paths between the origin of the system failure modes and points within the system capable of observing the failure effects. As a result, FFMs may be used to diagnose the presence of failures in the modeled system. FFMs necessarily contain a significant amount of information about the design, operations, and failure modes and effects. One of the important benefits of FFMs is that they may be qualitative, rather than quantitative and, as a result, may be implemented early in the design process when there is more potential to positively impact the system design. FFMs may therefore be developed and matured throughout the monitored system's design process and may subsequently be used to provide real-time diagnostic assessments that support system operations. This paper provides an overview of a generalized NASA process that is being used to develop and apply FFMs. FFM technology has been evolving for more than 25 years. The FFM development process presented in this paper was refined during NASA's Ares I, Space Launch System, and Ground Systems Development and Operations programs (i.e., from about 2007 to the present). Process refinement took place as new modeling, analysis, and verification tools were created to enhance FFM capabilities. In this paper, standard elements of a model development process (i.e., knowledge acquisition, conceptual design, implementation & verification, and application) are described within the context of FFMs. Further, newer tools and analytical capabilities that may benefit the broader systems engineering process are identified and briefly described. The discussion is intended as a high-level guide for future FFM modelers.
Faught, Jacqueline Tonigan; Balter, Peter A; Johnson, Jennifer L; Kry, Stephen F; Court, Laurence E; Stingo, Francesco C; Followill, David S
2017-11-01
The objective of this work was to assess both the perception of failure modes in Intensity Modulated Radiation Therapy (IMRT) when the linac is operated at the edge of tolerances given in AAPM TG-40 (Kutcher et al.) and TG-142 (Klein et al.) as well as the application of FMEA to this specific section of the IMRT process. An online survey was distributed to approximately 2000 physicists worldwide that participate in quality services provided by the Imaging and Radiation Oncology Core - Houston (IROC-H). The survey briefly described eleven different failure modes covered by basic quality assurance in step-and-shoot IMRT at or near TG-40 (Kutcher et al.) and TG-142 (Klein et al.) tolerance criteria levels. Respondents were asked to estimate the worst case scenario percent dose error that could be caused by each of these failure modes in a head and neck patient as well as the FMEA scores: Occurrence, Detectability, and Severity. Risk probability number (RPN) scores were calculated as the product of these scores. Demographic data were also collected. A total of 181 individual and three group responses were submitted. 84% were from North America. Most (76%) individual respondents performed at least 80% clinical work and 92% were nationally certified. Respondent medical physics experience ranged from 2.5 to 45 yr (average 18 yr). A total of 52% of individual respondents were at least somewhat familiar with FMEA, while 17% were not familiar. Several IMRT techniques, treatment planning systems, and linear accelerator manufacturers were represented. All failure modes received widely varying scores ranging from 1 to 10 for occurrence, at least 1-9 for detectability, and at least 1-7 for severity. Ranking failure modes by RPN scores also resulted in large variability, with each failure mode being ranked both most risky (1st) and least risky (11th) by different respondents. On average MLC modeling had the highest RPN scores. Individual estimated percent dose errors and severity scores positively correlated (P < 0.01) for each FM as expected. No universal correlations were found between the demographic information collected and scoring, percent dose errors or ranking. Failure modes investigated overall were evaluated as low to medium risk, with average RPNs less than 110. The ranking of 11 failure modes was not agreed upon by the community. Large variability in FMEA scoring may be caused by individual interpretation and/or experience, reflecting the subjective nature of the FMEA tool. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Koji, Yusuke; Kitamura, Yoshinobu; Kato, Yoshikiyo; Tsutsui, Yoshio; Mizoguchi, Riichiro
In conceptual design, it is important to develop functional structures which reflect the rich experience in the knowledge from previous design failures. Especially, if a designer learns possible abnormal behaviors from a previous design failure, he or she can add an additional function which prevents such abnormal behaviors and faults. To do this, it is a crucial issue to share such knowledge about possible faulty phenomena and how to cope with them. In fact, a part of such knowledge is described in FMEA (Failure Mode and Effect Analysis) sheets, function structure models for systematic design and fault trees for FTA (Fault Tree Analysis).
Failure of a laminated composite under tension-compression fatigue loading
NASA Technical Reports Server (NTRS)
Rotem, A.; Nelson, H. G.
1989-01-01
The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.
A review of the success and failure characteristics of resin-bonded bridges.
Miettinen, M; Millar, B J
2013-07-01
This literature review was designed to assess and compare the success rates and modes of failure of metal-framed, fibre-reinforced composite and all-ceramic resin-bonded bridges. A Medline search (Ovid), supplemented by hand searching, was conducted to identify prospective and retrospective cohort studies on different resin-bonded bridges within the last 16 years. A total of 49 studies met the pre-set inclusion criteria. Success rates of 25 studies on metal-framed, 17 studies on fibre-reinforced composite and 7 studies on all-ceramic resin-bonded bridges were analysed and characteristics of failures were identified. The analysis of the studies indicated an estimation of annual failure rates per year to be 4.6% (±1.3%, 95% CI) for metal-framed, 4.1% (±2.1%, 95% CI) for fibre-reinforced and 11.7% (±1.8%, 95% CI) for all-ceramic resin-bonded bridges. The most frequent complications were: debonding for metal-framed, resin-bonded bridges (93% of all failures); delamination of the composite veneering material for the fibre-reinforced bridges (41%) and fracture of the framework for the all-ceramic bridges (57%). All types of resin-bonded bridges provide an effective short- to medium-term option, with all-ceramic performing least well and having the least favourable mode of failure. The methods of failures were different for different bridges with metal frameworks performing the best over time.
NASA Astrophysics Data System (ADS)
Sin, Yongkun; Lingley, Zachary; Ayvazian, Talin; Brodie, Miles; Ives, Neil
2018-02-01
High-power single-mode (SM) and multi-mode (MM) InGaAs-AlGaAs strained quantum well (QW) lasers are critical components for both terrestrial and space satellite communications systems. Since these lasers predominantly fail by catastrophic and sudden degradation due to COD, it is especially crucial for space satellite applications to investigate reliability, failure modes, and degradation mechanisms of these lasers. Our group reported a new failure mode in MM and SM InGaAs-AlGaAs strained QW lasers in 2009 and 2016, respectively. Our group also reported in 2017 that bulk failure due to catastrophic optical bulk damage (COBD) is the dominant failure mode of both SM and MM lasers that were subject to long-term life-tests. For the present study, we report root causes investigation of COBD by performing long-term lifetests followed by failure mode analysis (FMA) using various micro-analytical techniques including electron beam induced current (EBIC), time-resolved electroluminescence (EL), focused ion beam (FIB), high-resolution transmission electron microscopy (TEM), and deep level transient spectroscopy (DLTS). Our life-tests with accumulated test hours of over 25,000 hours for SM lasers and over 35,000 hours for MM lasers generated a number of COBD failures with various failure times. EBIC techniques were employed to study dark line defects (DLDs) generated in SM COBD failures stressed under different test conditions. FIB and high-resolution TEM were employed to prepare cross sectional and plan view TEM specimens to study DLD areas (dislocations) in post-aged SM lasers. Time-resolved EL techniques were employed to study initiation and progressions of dark spots and dark lines in real time as MM lasers were aged. Lastly, to investigate precursor signatures of failure and degradation mechanisms responsible for COBD in both SM and MM lasers, we employed DLTS techniques to study a role that electron traps (non-radiative recombination centers) play in degradation of these lasers. Our in-depth root causes investigation results are reported.
Thermal barrier coating life prediction model
NASA Technical Reports Server (NTRS)
Pilsner, B. H.; Hillery, R. V.; Mcknight, R. L.; Cook, T. S.; Kim, K. S.; Duderstadt, E. C.
1986-01-01
The objectives of this program are to determine the predominant modes of degradation of a plasma sprayed thermal barrier coating system, and then to develop and verify life prediction models accounting for these degradation modes. The program is divided into two phases, each consisting of several tasks. The work in Phase 1 is aimed at identifying the relative importance of the various failure modes, and developing and verifying life prediction model(s) for the predominant model for a thermal barrier coating system. Two possible predominant failure mechanisms being evaluated are bond coat oxidation and bond coat creep. The work in Phase 2 will develop design-capable, causal, life prediction models for thermomechanical and thermochemical failure modes, and for the exceptional conditions of foreign object damage and erosion.
Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; Larko, Jeffrey M.; McNelis, Mark E.
2010-01-01
During the Space Transportation System mission STS-126, one of the main engine's flow control valves incurred an unexpected failure. A section of the valve broke off during liftoff. It is theorized that an acoustic mode of the flowing fuel, coupled with a structural mode of the valve, causing a high cycle fatigue failure. This report documents the analysis efforts conducted in an attempt to verify this theory. Hand calculations, computational fluid dynamics, and finite element methods are all implemented and analyses are performed using steady-state methods in addition to transient analysis methods. The conclusion of the analyses is that there is a critical acoustic mode that aligns with a structural mode of the valve
Outcomes of a Failure Mode and Effects Analysis for medication errors in pediatric anesthesia.
Martin, Lizabeth D; Grigg, Eliot B; Verma, Shilpa; Latham, Gregory J; Rampersad, Sally E; Martin, Lynn D
2017-06-01
The Institute of Medicine has called for development of strategies to prevent medication errors, which are one important cause of preventable harm. Although the field of anesthesiology is considered a leader in patient safety, recent data suggest high medication error rates in anesthesia practice. Unfortunately, few error prevention strategies for anesthesia providers have been implemented. Using Toyota Production System quality improvement methodology, a multidisciplinary team observed 133 h of medication practice in the operating room at a tertiary care freestanding children's hospital. A failure mode and effects analysis was conducted to systematically deconstruct and evaluate each medication handling process step and score possible failure modes to quantify areas of risk. A bundle of five targeted countermeasures were identified and implemented over 12 months. Improvements in syringe labeling (73 to 96%), standardization of medication organization in the anesthesia workspace (0 to 100%), and two-provider infusion checks (23 to 59%) were observed. Medication error reporting improved during the project and was subsequently maintained. After intervention, the median medication error rate decreased from 1.56 to 0.95 per 1000 anesthetics. The frequency of medication error harm events reaching the patient also decreased. Systematic evaluation and standardization of medication handling processes by anesthesia providers in the operating room can decrease medication errors and improve patient safety. © 2017 John Wiley & Sons Ltd.
Independent Orbiter Assessment (IOA): Assessment of the mechanical actuation subsystem, volume 2
NASA Technical Reports Server (NTRS)
Bradway, M. W.; Slaughter, W. T.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine draft failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline that was available. A resolution of each discrepancy from the comparison was provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. This report documents the results of that comparison for the Orbiter Mechanical Actuation System (MAS) hardware. Specifically, the MAS hardware consists of the following components: Air Data Probe (ADP); Elevon Seal Panel (ESP); External Tank Umbilical (ETU); Ku-Band Deploy (KBD); Payload Bay Doors (PBD); Payload Bay Radiators (PBR); Personnel Hatches (PH); Vent Door Mechanism (VDM); and Startracker Door Mechanism (SDM). Criticality was assigned based upon the severity of the effect for each failure mode. Volume 2 continues the presentation of IOA analysis worksheets and contains the potential critical items list, detailed analysis, and NASA FMEA/CIL to IOA worksheet cross reference and recommendations.
Failure mode and effects analysis of skin electronic brachytherapy using Esteya® unit
Bautista-Ballesteros, Juan Antonio; Bonaque, Jorge; Celada, Francisco; Lliso, Françoise; Carmona, Vicente; Gimeno-Olmos, Jose; Ouhib, Zoubir; Rosello, Joan; Perez-Calatayud, Jose
2016-01-01
Purpose Esteya® (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) is an electronic brachytherapy device used for skin cancer lesion treatment. In order to establish an adequate level of quality of treatment, a risk analysis of the Esteya treatment process has been done, following the methodology proposed by the TG-100 guidelines of the American Association of Physicists in Medicine (AAPM). Material and methods A multidisciplinary team familiar with the treatment process was formed. This team developed a process map (PM) outlining the stages, through which a patient passed when subjected to the Esteya treatment. They identified potential failure modes (FM) and each individual FM was assessed for the severity (S), frequency of occurrence (O), and lack of detection (D). A list of existing quality management tools was developed and the FMs were consensually reevaluated. Finally, the FMs were ranked according to their risk priority number (RPN) and their S. Results 146 FMs were identified, 106 of which had RPN ≥ 50 and 30 had S ≥ 7. After introducing the quality management tools, only 21 FMs had RPN ≥ 50. The importance of ensuring contact between the applicator and the surface of the patient’s skin was emphasized, so the setup was reviewed by a second individual before each treatment session with periodic quality control to ensure stability of the applicator pressure. Some of the essential quality management tools are already being implemented in the installation are the simple templates for reproducible positioning of skin applicators, that help marking the treatment area and positioning of X-ray tube. Conclusions New quality management tools have been established as a result of the application of the failure modes and effects analysis (FMEA) treatment. However, periodic update of the FMEA process is necessary, since clinical experience has suggested occurring of further new possible potential failure modes. PMID:28115958
NASA Technical Reports Server (NTRS)
Monaghan, Mark W.; Gillespie, Amanda M.
2013-01-01
During the shuttle era NASA utilized a failure reporting system called the Problem Reporting and Corrective Action (PRACA) it purpose was to identify and track system non-conformance. The PRACA system over the years evolved from a relatively nominal way to identify system problems to a very complex tracking and report generating data base. The PRACA system became the primary method to categorize any and all anomalies from corrosion to catastrophic failure. The systems documented in the PRACA system range from flight hardware to ground or facility support equipment. While the PRACA system is complex, it does possess all the failure modes, times of occurrence, length of system delay, parts repaired or replaced, and corrective action performed. The difficulty is mining the data then to utilize that data in order to estimate component, Line Replaceable Unit (LRU), and system reliability analysis metrics. In this paper, we identify a methodology to categorize qualitative data from the ground system PRACA data base for common ground or facility support equipment. Then utilizing a heuristic developed for review of the PRACA data determine what reports identify a credible failure. These data are the used to determine inter-arrival times to perform an estimation of a metric for repairable component-or LRU reliability. This analysis is used to determine failure modes of the equipment, determine the probability of the component failure mode, and support various quantitative differing techniques for performing repairable system analysis. The result is that an effective and concise estimate of components used in manned space flight operations. The advantage is the components or LRU's are evaluated in the same environment and condition that occurs during the launch process.
ERIC Educational Resources Information Center
Takalo, Salim Karimi; Abadi, Ali Reza Naser Sadr; Vesal, Seyed Mahdi; Mirzaei, Amir; Nawaser, Khaled
2013-01-01
In recent years, concurrent with steep increase in the growth of higher education institutions, improving of educational service quality with an emphasis on students' satisfaction has become an important issue. The present study is going to use the Failure Mode and Effect Analysis (FMEA) in order to evaluate the quality of educational services in…
NASA Technical Reports Server (NTRS)
Rotem, Assa
1990-01-01
Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.
Improving Strength of Postbuckled Panels Through Stitching
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2007-01-01
The behavior of blade-stiffened graphite-epoxy panels with impact damage is examined to determine the effect of adding through-the-thickness stitches in the stiffener flange-to-skin interface. The influence of stitches is evaluated by examining buckling and failure for panels with failure loads up to 3.5 times greater than buckling loads. Analytical and experimental results from four configurations of panel specimens are presented. For each configuration, two panels were manufactured with skin and flanges held together with through-the-thickness stitches introduced prior to resin infusion and curing and one panel was manufactured with no stitches holding the flange to the skin. No mechanical fasteners were used for the assembly of any of these panels. Panels with and without low-speed impact damage were loaded to failure in compression. Buckling and failure modes are discussed. Stitching had little effect on buckling loads but increased the failure loads of impact-damaged panels by up to 30%.
NASA Technical Reports Server (NTRS)
Hall, Steven R.; Walker, Bruce K.
1990-01-01
A new failure detection and isolation algorithm for linear dynamic systems is presented. This algorithm, the Orthogonal Series Generalized Likelihood Ratio (OSGLR) test, is based on the assumption that the failure modes of interest can be represented by truncated series expansions. This assumption leads to a failure detection algorithm with several desirable properties. Computer simulation results are presented for the detection of the failures of actuators and sensors of a C-130 aircraft. The results show that the OSGLR test generally performs as well as the GLR test in terms of time to detect a failure and is more robust to failure mode uncertainty. However, the OSGLR test is also somewhat more sensitive to modeling errors than the GLR test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J; Lukose, R; Bronson, J
2015-06-15
Purpose: To conduct a failure mode and effects analysis (FMEA) as per AAPM Task Group 100 on clinical processes associated with teletherapy, and the development of mitigations for processes with identified high risk. Methods: A FMEA was conducted on clinical processes relating to teletherapy treatment plan development and delivery. Nine major processes were identified for analysis. These steps included CT simulation, data transfer, image registration and segmentation, treatment planning, plan approval and preparation, and initial and subsequent treatments. Process tree mapping was utilized to identify the steps contained within each process. Failure modes (FM) were identified and evaluated with amore » scale of 1–10 based upon three metrics: the severity of the effect, the probability of occurrence, and the detectability of the cause. The analyzed metrics were scored as follows: severity – no harm = 1, lethal = 10; probability – not likely = 1, certainty = 10; detectability – always detected = 1, undetectable = 10. The three metrics were combined multiplicatively to determine the risk priority number (RPN) which defined the overall score for each FM and the order in which process modifications should be deployed. Results: Eighty-nine procedural steps were identified with 186 FM accompanied by 193 failure effects with 213 potential causes. Eighty-one of the FM were scored with a RPN > 10, and mitigations were developed for FM with RPN values exceeding ten. The initial treatment had the most FM (16) requiring mitigation development followed closely by treatment planning, segmentation, and plan preparation with fourteen each. The maximum RPN was 400 and involved target delineation. Conclusion: The FMEA process proved extremely useful in identifying previously unforeseen risks. New methods were developed and implemented for risk mitigation and error prevention. Similar to findings reported for adult patients, the process leading to the initial treatment has an associated high risk.« less
Failure mode and effects analysis: a comparison of two common risk prioritisation methods.
McElroy, Lisa M; Khorzad, Rebeca; Nannicelli, Anna P; Brown, Alexandra R; Ladner, Daniela P; Holl, Jane L
2016-05-01
Failure mode and effects analysis (FMEA) is a method of risk assessment increasingly used in healthcare over the past decade. The traditional method, however, can require substantial time and training resources. The goal of this study is to compare a simplified scoring method with the traditional scoring method to determine the degree of congruence in identifying high-risk failures. An FMEA of the operating room (OR) to intensive care unit (ICU) handoff was conducted. Failures were scored and ranked using both the traditional risk priority number (RPN) and criticality-based method, and a simplified method, which designates failures as 'high', 'medium' or 'low' risk. The degree of congruence was determined by first identifying those failures determined to be critical by the traditional method (RPN≥300), and then calculating the per cent congruence with those failures designated critical by the simplified methods (high risk). In total, 79 process failures among 37 individual steps in the OR to ICU handoff process were identified. The traditional method yielded Criticality Indices (CIs) ranging from 18 to 72 and RPNs ranging from 80 to 504. The simplified method ranked 11 failures as 'low risk', 30 as medium risk and 22 as high risk. The traditional method yielded 24 failures with an RPN ≥300, of which 22 were identified as high risk by the simplified method (92% agreement). The top 20% of CI (≥60) included 12 failures, of which six were designated as high risk by the simplified method (50% agreement). These results suggest that the simplified method of scoring and ranking failures identified by an FMEA can be a useful tool for healthcare organisations with limited access to FMEA expertise. However, the simplified method does not result in the same degree of discrimination in the ranking of failures offered by the traditional method. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Technical Reports Server (NTRS)
Long, W. C.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed and analysis of the Communication and Tracking hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison is provided through additional analysis as required. This report documents the results of that comparison for the Orbiter Communication and Tracking hardware. The IOA product for the Communication and Tracking consisted of 1,108 failure mode worksheets that resulted in 298 critical items being identified. Comparison was made to the NASA baseline which consists of 697 FMEAs and 239 CIL items. The comparison determined if there were any results which had been found by IOA but were not in the NASA baseline. This comparison produced agreement on all but 407 FMEAs which caused differences in 294 CIL items. Volume 1 contains the subsystem description, assessment results, ground rules and assumptions, and some of the IOA worksheets.
Delamination of Composite Cylinders
NASA Astrophysics Data System (ADS)
Davies, Peter; Carlsson, Leif A.
The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.
NASA Technical Reports Server (NTRS)
Prust, Chet D.; Haufler, W. A.; Marino, A. J.
1988-01-01
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Orbital Maneuvering System (OMS) hardware and Electrical Power Distribution and Control (EPD and C), generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. This report documents the results of that comparison for the Orbiter OMS hardware. The IOA analysis defined the OMS as being comprised of the following subsystems: helium pressurization, propellant storage and distribution, Orbital Maneuvering Engine, and EPD and C. The IOA product for the OMS analysis consisted of 284 hardware and 667 EPD and C failure mode worksheets that resulted in 160 hardware and 216 EPD and C potential critical items (PCIs) being identified. A comparison was made of the IOA product to the NASA FMEA/CIL baseline which consisted of 101 hardware and 142 EPD and C CIL items.
Compression failure mechanisms of uni-ply composite plates with a circular cutout
NASA Technical Reports Server (NTRS)
Khamseh, A. R.; Waas, A. M.
1992-01-01
The effect of circular-hole size on the failure mode of uniply graphite-epoxy composite plates is investigated experimentally and analytically for uniaxial compressive loading. The test specimens are sandwiched between polyetherimide plastic for nondestructive evaluations of the uniply failure mechanisms associated with a range of hole sizes. Finite-element modeling based on classical lamination theory is conducted for the corresponding materials and geometries to reproduce the experimental results analytically. The type of compressive failure is found to be a function of hole size, with fiber buckling/kinking at the hole being the dominant failure mechanism for hole diam/plate width ratios exceeding 0.062. The results of the finite-element analysis supported the experimental data for these failure mechanisms and for those corresponding to smaller hole sizes.
Debonding of Stitched Composite Joints: Testing and Analysis
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.
1999-01-01
The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation ofthe debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.
Varzakas, Theodoros H
2011-09-01
The Failure Mode and Effect Analysis (FMEA) model has been applied for the risk assessment of pastry processing. A tentative approach of FMEA application to the pastry industry was attempted in conjunction with ISO22000. Preliminary Hazard Analysis was used to analyze and predict the occurring failure modes in a food chain system (pastry processing plant), based on the functions, characteristics, and/or interactions of the ingredients or the processes, upon which the system depends. Critical Control points have been identified and implemented in the cause and effect diagram (also known as Ishikawa, tree diagram, and fishbone diagram). In this work a comparison of ISO22000 analysis with HACCP is carried out over pastry processing and packaging. However, the main emphasis was put on the quantification of risk assessment by determining the Risk Priority Number (RPN) per identified processing hazard. Storage of raw materials and storage of final products at -18°C followed by freezing were the processes identified as the ones with the highest RPN (225, 225, and 144 respectively) and corrective actions were undertaken. Following the application of corrective actions, a second calculation of RPN values was carried out leading to considerably lower values (below the upper acceptable limit of 130). It is noteworthy that the application of Ishikawa (Cause and Effect or Tree diagram) led to converging results thus corroborating the validity of conclusions derived from risk assessment and FMEA. Therefore, the incorporation of FMEA analysis within the ISO22000 system of a pastry processing industry is considered imperative.
A Reliability Model for Ni-BaTiO3-Based (BME) Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
The evaluation of multilayer ceramic capacitors (MLCCs) with base-metal electrodes (BMEs) for potential NASA space project applications requires an in-depth understanding of their reliability. The reliability of an MLCC is defined as the ability of the dielectric material to retain its insulating properties under stated environmental and operational conditions for a specified period of time t. In this presentation, a general mathematic expression of a reliability model for a BME MLCC is developed and discussed. The reliability model consists of three parts: (1) a statistical distribution that describes the individual variation of properties in a test group of samples (Weibull, log normal, normal, etc.), (2) an acceleration function that describes how a capacitors reliability responds to external stresses such as applied voltage and temperature (All units in the test group should follow the same acceleration function if they share the same failure mode, independent of individual units), and (3) the effect and contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size S. In general, a two-parameter Weibull statistical distribution model is used in the description of a BME capacitors reliability as a function of time. The acceleration function that relates a capacitors reliability to external stresses is dependent on the failure mode. Two failure modes have been identified in BME MLCCs: catastrophic and slow degradation. A catastrophic failure is characterized by a time-accelerating increase in leakage current that is mainly due to existing processing defects (voids, cracks, delamination, etc.), or the extrinsic defects. A slow degradation failure is characterized by a near-linear increase in leakage current against the stress time; this is caused by the electromigration of oxygen vacancies (intrinsic defects). The two identified failure modes follow different acceleration functions. Catastrophic failures follow the traditional power-law relationship to the applied voltage. Slow degradation failures fit well to an exponential law relationship to the applied electrical field. Finally, the impact of capacitor structure on the reliability of BME capacitors is discussed with respect to the number of dielectric layers in an MLCC unit, the number of BaTiO3 grains per dielectric layer, and the chip size of the capacitor device.
NASA Technical Reports Server (NTRS)
Ko, William L.
1999-01-01
Increasing use of curved sandwich panels as aerospace structure components makes it vital to fully understand their thermostructural behavior and identify key factors affecting the open-mode debonding failure. Open-mode debonding analysis is performed on a family of curved honeycomb-core sandwich panels with different radii of curvature. The curved sandwich panels are either simply supported or clamped, and are subjected to uniform heating on the convex side and uniform cryogenic cooling on the concave side. The finite-element method was used to study the effects of panel curvature and boundary condition on the open-mode stress (radial tensile stress) and displacement fields in the curved sandwich panels. The critical stress point, where potential debonding failure could initiate, was found to be at the midspan (or outer span) of the inner bonding interface between the sandwich core and face sheet on the concave side, depending on the boundary condition and panel curvature. Open-mode stress increases with increasing panel curvature, reaching a maximum value at certain high curvature, and then decreases slightly as the panel curvature continues to increase and approach that of quarter circle. Changing the boundary condition from simply supported to clamped reduces the magnitudes of open-mode stresses and the associated sandwich core depth stretching.
A review on mode-I interlaminar fracture toughness of fibre reinforced composites
NASA Astrophysics Data System (ADS)
Nasuha, N.; Azmi, A. I.; Tan, C. L.
2017-10-01
Composite material has been growing rapidly throughout the year for its unique properties in comparisons with metal. Recently, there has been a growth on studying the way to reduce the delamination failure, which is the primary challenge on laminated fibre composite. This failure can degrade the strength of composite materials, hence loses its function. In this review, database search was performed using the keywords search on “interlaminar fracture toughness”, “double cantilever beam”, “delamination resistance” and “Mode-I GIC”. The searches were performed on Google Scholar, Scopus and Web of Science with further cross-referencing with other databases. Most relevant studies were selected for review and referencing by the author. This review paper gives a brief explanation on Mode-I interlaminar fracture toughness of composite material. This fracture mode is the most common modes on studying the delamination failure.
Sghaireen, Mohd G
2015-06-01
The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p < .05). The highest fracture loads were associated with metal-ceramic crowns supported by titanium abutments (p = .000). IPS Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.
Comprehension and retrieval of failure cases in airborne observatories
NASA Technical Reports Server (NTRS)
Alvarado, Sergio J.; Mock, Kenrick J.
1995-01-01
This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.
Comprehension and retrieval of failure cases in airborne observatories
NASA Astrophysics Data System (ADS)
Alvarado, Sergio J.; Mock, Kenrick J.
1995-05-01
This paper describes research dealing with the computational problem of analyzing and repairing failures of electronic and mechanical systems of telescopes in NASA's airborne observatories, such as KAO (Kuiper Airborne Observatory) and SOFIA (Stratospheric Observatory for Infrared Astronomy). The research has resulted in the development of an experimental system that acquires knowledge of failure analysis from input text, and answers questions regarding failure detection and correction. The system's design builds upon previous work on text comprehension and question answering, including: knowledge representation for conceptual analysis of failure descriptions, strategies for mapping natural language into conceptual representations, case-based reasoning strategies for memory organization and indexing, and strategies for memory search and retrieval. These techniques have been combined into a model that accounts for: (a) how to build a knowledge base of system failures and repair procedures from descriptions that appear in telescope-operators' logbooks and FMEA (failure modes and effects analysis) manuals; and (b) how to use that knowledge base to search and retrieve answers to questions about causes and effects of failures, as well as diagnosis and repair procedures. This model has been implemented in FANSYS (Failure ANalysis SYStem), a prototype text comprehension and question answering program for failure analysis.
Using failure mode and effects analysis to improve the safety of neonatal parenteral nutrition.
Arenas Villafranca, Jose Javier; Gómez Sánchez, Araceli; Nieto Guindo, Miriam; Faus Felipe, Vicente
2014-07-15
Failure mode and effects analysis (FMEA) was used to identify potential errors and to enable the implementation of measures to improve the safety of neonatal parenteral nutrition (PN). FMEA was used to analyze the preparation and dispensing of neonatal PN from the perspective of the pharmacy service in a general hospital. A process diagram was drafted, illustrating the different phases of the neonatal PN process. Next, the failures that could occur in each of these phases were compiled and cataloged, and a questionnaire was developed in which respondents were asked to rate the following aspects of each error: incidence, detectability, and severity. The highest scoring failures were considered high risk and identified as priority areas for improvements to be made. The evaluation process detected a total of 82 possible failures. Among the phases with the highest number of possible errors were transcription of the medical order, formulation of the PN, and preparation of material for the formulation. After the classification of these 82 possible failures and of their relative importance, a checklist was developed to achieve greater control in the error-detection process. FMEA demonstrated that use of the checklist reduced the level of risk and improved the detectability of errors. FMEA was useful for detecting medication errors in the PN preparation process and enabling corrective measures to be taken. A checklist was developed to reduce errors in the most critical aspects of the process. Copyright © 2014 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Fatigue damage accumulation in various metal matrix composites
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1987-01-01
The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.
NASA Technical Reports Server (NTRS)
Bueno, R.; Chow, E.; Gershwin, S. B.; Willsky, A. S.
1975-01-01
The research is reported on the problems of failure detection and reliable system design for digital aircraft control systems. Failure modes, cross detection probability, wrong time detection, application of performance tools, and the GLR computer package are discussed.
NASA Astrophysics Data System (ADS)
Li, Hui; Ou, Jinping
2008-07-01
A number of researchers have been focused on structural vibration control in the past three decades over the world and fruit achievements have been made. This paper introduces the recent advances in structural vibration control including passive, active and semiactive control in mainland China. Additionally, the co-author extends the structural vibration control to failure mode control. The research on the failure mode control is also involved in this paper. For passive control, this paper introduces full scale tests of buckling-restrained braces conducted to investigate the performance of the dampers and the second-editor of the Code of Seismic Design for Buildings. For active control, this paper introduces the HMD system for wind-induced vibration control of the Guangzhou TV tower. For semiactive control, the smart damping devices, algorithms for semi-active control, design methods and applications of semi-active control for structures are introduced in this paper. The failure mode control for bridges is also introduced.
Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels
NASA Technical Reports Server (NTRS)
Raj, S. V.; Ghosn, L. J.
2007-01-01
A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, R.K.; Litton, R.W.; Cornell, C.A.
1996-12-31
The performance of more than 3,000 offshore platforms in the Gulf of Mexico was observed during the passage of Hurricane Andrew in August 1992. This event provided an opportunity to test the procedures used for platform analysis and design. A global bias was inferred for overall platform capacity and loads in the Andrew Joint Industry Project (JIP) Phase 1. It was predicted that the pile foundations of several platforms should have failed, but did not. These results indicated that the biases specific to foundation failure modes may be higher than those of jacket failure modes. The biases in predictions ofmore » foundation failure modes were therefore investigated further in this study. The work included capacity analysis and calibration of predictions with the observed behavior for 3 jacket platforms and 3 caissons using Bayesian updating. Bias factors for two foundation failure modes, lateral shear and overturning, were determined for each structure. Foundation capacity estimates using conventional methods were found to be conservatively biased overall.« less
NASA Technical Reports Server (NTRS)
Brown, K. L.; Bertsch, P. J.
1987-01-01
Results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Generation/Fuel Cell Powerplant (EPG/FCP) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Post 51-L NASA FMEA/CIL baseline. A resolution of each discrepancy from the comparison was provided through additional analysis as required. This report documents the results of that comparison for the Orbiter EPG/FCP hardware.
Effects of AEA Cell-Bypass-Switch Closure on Charged EOS-Aqua NiH2 Cell
NASA Technical Reports Server (NTRS)
Keys, Denney; Rao, Gopalakrishna M.; Sullivan, David; Wannemacher, Harry
2001-01-01
The nominal performance of AEA CBPD under simulated EOS-Aqua/Aura flight hardware configuration has been demonstrated. There is no evidence of cell rupture or excessive heat production during or after CBPD switch activation under simulated high cell impedance (open-circuit cell failure mode). Inadvertent CBPD switch activation with a charged cell (low impedance path) intermittently closes and opens up the switch, therefore the device may or may not provide protection against future open-circuit cell failure. Further testing with switches F01 and F02 may provide clarification. The formation of a continuous low impedance path (a homogeneous low melting point alloy), has been confirmed - which is the expected mode of operation.
Enhancing Induction Coil Reliability
NASA Astrophysics Data System (ADS)
Kreter, K.; Goldstein, R.; Yakey, C.; Nemkov, V.
2014-12-01
In induction hardening, thermal fatigue is one of the main copper failure modes of induction heat treating coils. There have been papers published that describe this failure mode and others that describe some good design practices. The variables previously identified as the sources of thermal fatigue include radiation from the part surface, frequency, current, concentrator losses, water pressure and coil wall thickness. However, there is very little quantitative data on the factors that influence thermal fatigue in induction coils is available in the public domain. By using finite element analysis software this study analyzes the effect of common design variables of inductor cooling, and quantifies the relative importance of these variables. A comprehensive case study for a single shot induction coil with Fluxtrol A concentrator applied is used for the analysis.
Carbon Fiber Strand Tensile Failure Dynamic Event Characterization
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; Reeder, James
2016-01-01
There are few if any clear, visual, and detailed images of carbon fiber strand failures under tension useful for determining mechanisms, sequences of events, different types of failure modes, etc. available to researchers. This makes discussion of physics of failure difficult. It was also desired to find out whether the test article-to-test rig interface (grip) played a part in some failures. These failures have nothing to do with stress rupture failure, thus representing a source of waste for the larger 13-00912 investigation into that specific failure type. Being able to identify or mitigate any competing failure modes would improve the value of the 13-00912 test data. The beginnings of the solution to these problems lay in obtaining images of strand failures useful for understanding physics of failure and the events leading up to failure. Necessary steps include identifying imaging techniques that result in useful data, using those techniques to home in on where in a strand and when in the sequence of events one should obtain imaging data.
Availability Simulation of AGT Systems
DOT National Transportation Integrated Search
1975-02-01
The report discusses the analytical and simulation procedures that were used to evaluate the effects of failure in a complex dual mode transportation system based on a worst case study-state condition. The computed results are an availability figure ...
Demonstration Advanced Avionics System (DAAS), Phase 1
NASA Technical Reports Server (NTRS)
Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.
1981-01-01
Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.
Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear
NASA Astrophysics Data System (ADS)
Chen, Zhikai; Zhu, Qinghai; Wang, Jing; Yun, Xiao; He, Bing; Luo, Jingshuai
2018-07-01
In present work, laser quenching had been carried out to improve the impact abrasive wear resistance of 40Cr steel. The distinct microstructure between original and quenched region was demonstrated after laser quenching. Since the effect of temperature and cooling rate, the phase combinations were apparently different for quenched layer in depth. The impact abrasive wear resistance of sample was experimentally investigated and the improved level was assessed in light of the average mass loss of three repetitive tests. Worn surface was detected by means of SEM, OM and EDS, and results showed that three typical failure modes were performed during the processing of impact abrasive wear, including abrasive wear, impact effect and rolling contact fatigue. Basing on the different worn surface profile, the mainly failure mode was respectively pointed out for matrix and quenched sample, which was significantly in accordance with the result of impact abrasive wear.
NASA Technical Reports Server (NTRS)
Dyer, M. K.; Little, D. G.; Hoard, E. G.; Taylor, A. C.; Campbell, R.
1972-01-01
An approach that might be used for determining the applicability of NASA management techniques to benefit almost any type of down-to-earth enterprise is presented. A study was made to determine the following: (1) the practicality of adopting NASA contractual quality management techniques to the U.S. Geological Survey Outer Continental Shelf lease management function; (2) the applicability of failure mode effects analysis to the drilling, production, and delivery systems in use offshore; (3) the impact on industrial offshore operations and onshore management operations required to apply recommended NASA techniques; and (4) the probable changes required in laws or regulations in order to implement recommendations. Several management activities that have been applied to space programs are identified, and their institution for improved management of offshore and onshore oil and gas operations is recommended.
Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert
2007-01-01
A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.
Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor
NASA Technical Reports Server (NTRS)
Russell, D. L.; Blacklock, K.; Langhenry, M. T.
1988-01-01
The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.
Processing Mode Causally Influences Emotional Reactivity
Watkins, Ed; Moberly, Nicholas J.; Moulds, Michelle L.
2008-01-01
Three studies are reported showing that emotional responses to stress can be modified by systematic prior practice in adopting particular processing modes. Participants were induced to think about positive and negative scenarios in a mode either characteristic of or inconsistent with the abstract-evaluative mind-set observed in depressive rumination, via explicit instructions (Experiments 1 and 2) and via implicit induction of interpretative biases (Experiment 3), before being exposed to a failure experience. In all three studies, participants trained into the mode antithetical to depressive rumination demonstrated less emotional reactivity following failure than participants trained into the mode consistent with depressive rumination. These findings provide evidence consistent with the hypothesis that processing mode modifies emotional reactivity and support the processing-mode theory of rumination. PMID:18540752
Microcircuit failure analysis using the SEM. [Scanning Electron Microscopes
NASA Technical Reports Server (NTRS)
Nicolas, D. P.
1974-01-01
The scanning electron microscope adds a new dimension to the knowledge that can be obtained from a failed microcircuit. When used with conventional techniques, SEM assists and clarifies the analysis, but it does not replace light microscopy. The most advantageous features for microcircuit analysis are long working distances and great depth of field. Manufacturer related failure modes of microcircuits are metallization defects, poor bonding, surface and particle contamination, and design and fabrication faults. User related failure modes are caused by abuse, such as overstress. The Physics of Failure Procedure followed by the Astrionics Laboratory in failure analysis is described, which is designed to obtain maximum information available from each step.
Use of Diuretics in the Treatment of Heart Failure in Older Adults.
Sica, Domenic A; Gehr, Todd W B; Frishman, William H
2017-07-01
Diuretics are the most commonly prescribed class of drugs in patients with heart failure, and in the short term they remain the most effective treatment for relief from fluid congestion. This article reviews the mode of action of the various diuretic classes and the physiologic adaptations that follow and sets up the basis for their use in the treatment of volume-retaining states, particularly as applies to the elderly. In addition, the article reviews the common side effects related to diuretics. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.
2004-01-01
The edge crack torsion (ECT) test is designed to initiate mode III delamination growth in composite laminates. The test has undergone several design changes during its development. The objective of this paper was to determine the suitability of the current ECT test design a mode III fracture test. To this end, ECT tests were conducted on specimens manufactured from IM7/8552 and S2/8552 tape laminates. Three-dimensional finite element analyses were performed. The analysis results were used to calculate the distribution of mode I, mode II, and mode III strain energy release rate along the delamination front. The results indicated that mode IIIdominated delamination growth would be initiated from the specimen center. However, in specimens of both material types, the measured values of GIIIc exhibited significant dependence on delamination length. Load-displacement response of the specimens exhibited significant deviation from linearity before specimen failure. X-radiographs of a sample of specimens revealed that damage was initiated in the specimens prior to failure. Further inspection of the failure surfaces is required to identify the damage and determine that mode III delamination is initiated in the specimens.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
SU-E-T-635: Process Mapping of Eye Plaque Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, J; Kim, Y
Purpose: To apply a risk-based assessment and analysis technique (AAPM TG 100) to eye plaque brachytherapy treatment of ocular melanoma. Methods: The role and responsibility of personnel involved in the eye plaque brachytherapy is defined for retinal specialist, radiation oncologist, nurse and medical physicist. The entire procedure was examined carefully. First, major processes were identified and then details for each major process were followed. Results: Seventy-one total potential modes were identified. Eight major processes (corresponding detailed number of modes) are patient consultation (2 modes), pretreatment tumor localization (11), treatment planning (13), seed ordering and calibration (10), eye plaque assembly (10),more » implantation (11), removal (11), and deconstruction (3), respectively. Half of the total modes (36 modes) are related to physicist while physicist is not involved in processes such as during the actual procedure of suturing and removing the plaque. Conclusion: Not only can failure modes arise from physicist-related procedures such as treatment planning and source activity calibration, but it can also exist in more clinical procedures by other medical staff. The improvement of the accurate communication for non-physicist-related clinical procedures could potentially be an approach to prevent human errors. More rigorous physics double check would reduce the error for physicist-related procedures. Eventually, based on this detailed process map, failure mode and effect analysis (FMEA) will identify top tiers of modes by ranking all possible modes with risk priority number (RPN). For those high risk modes, fault tree analysis (FTA) will provide possible preventive action plans.« less
Fatigue crack growth in an aluminum alloy-fractographic study
NASA Astrophysics Data System (ADS)
Salam, I.; Muhammad, W.; Ejaz, N.
2016-08-01
A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.
Probabilistic Risk Assessment: A Bibliography
NASA Technical Reports Server (NTRS)
2000-01-01
Probabilistic risk analysis is an integration of failure modes and effects analysis (FMEA), fault tree analysis and other techniques to assess the potential for failure and to find ways to reduce risk. This bibliography references 160 documents in the NASA STI Database that contain the major concepts, probabilistic risk assessment, risk and probability theory, in the basic index or major subject terms, An abstract is included with most citations, followed by the applicable subject terms.
Interlaminar shear stress effects on the postbuckling response of graphite-epoxy panels
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.; Knight, N. F., Jr.
1990-01-01
The objectives of the study are to assess the influence of shear flexibility on overall postbuckling response, and to examine transverse shear stress distributions in relation to panel failure. Nonlinear postbuckling results are obtained for finite element models based on classical laminated plate theory and first-order shear deformation theory. Good correlation between test and analysis is obtained. The results presented in this paper analytically substantiate the experimentally observed failure mode.
Freitas Soares, Eveline; Zago Naves, Lucas; Bertolazzo Correr, Américo; Costa, Ana Rosa; Consani, Simonides; Soares, Carlos José; Garcia-Godoy, Franklin; Correr-Sobrinho, Lourenço
2016-12-01
To investigate the effect of radiotherapy, doxycycline and adhesive systems on the microtensile bond strength (μTBS) of the dentin-composite interface. 60 human third molars were sectioned to expose middle dentin surface and distributed according to: (1) adhesive system (Adper Scotchbond MP and Clearfil SE Bond) applied, (2) application or not of doxycycline, and (3) submission to 60 Gy total radiation (2 Gy daily doses, 5 days/week for 6 weeks) before restoration procedure (RtRes); after restoration procedure (ResRt) or not submitted to radiotherapy (Control group). Specimens were tested for μTBS and mode of failure were evaluated under optical microscopy. The bonding interface was evaluated with a scanning electron microscope (SEM). Data was submitted to three-way ANOVA and Tukey's test (α= 0.05). There was no significant difference between the μTBS (MPa) of Adper Scotchbond MP (25.5±11.1) and Clearfil SE (27.6±9.1). Control (30.5±10.9) and ResRt (29.2±10.4) presented μTBS significantly higher than RtRes (23.1±7.2). Doxycycline (21.7±7.6) significantly reduced μTBS compared to groups without doxycycline application (33.6±8.6). Dentin cohesive failure mode was predominant for RtRes and mixed failure mode for ResRt. Mixed and adhesive failures were frequently observed in control groups. SEM showed adhesive penetration in dentin tubules in all groups, regardless of the radiotherapy and the application of doxycycline. The radiotherapy before composite restoration procedure decreased the μTBS. No statistical difference was observed between the adhesive systems. The doxycycline reduced μTBS regardless of the other conditions. Composite restoration procedure should be done before radiotherapy, regardless of the adhesive system used.
Roles of Shape and Internal Structure in Rotational Disruption of Asteroids
NASA Astrophysics Data System (ADS)
Hirabayashi, Masatoshi; Scheeres, Daniel Jay
2015-08-01
An active research area over the last decade has been to explore configuration changes of rubble pile asteroids due to rotationally induced disruption, initially driven by the remarkable fact that there is a spin period threshold of 2 hr for asteroids larger than a few hundred meters in size. Several different disruption modes due to rapid rotation can be identified, as surface shedding, fission and failure of the internal structure. Relevant to these discussions are many observations of asteroid shapes that have revealed a diversity of forms such as oblate spheroids with equatorial ridges, strongly elongated shapes and contact binaries, to say nothing of multi-body systems. With consideration that rotationally induced deformation is one of the primary drivers of asteroid evolution, we have been developing two techniques for investigating the structure of asteroids, while accounting for their internal mechanical properties through plastic theory. The first technique developed is an analytical model based on limit analysis, which provides rigorous bounds on the asteroid mechanical properties for their shapes to remain stable. The second technique applies finite element model analysis that accounts for plastic deformation. Combining these models, we have explored the correlation between unique shape features and failure modes. First, we have been able to show that contact binary asteroids preferentially fail at their narrow necks at a relatively slow spin period, due to stress concentration. Second, applying these techniques to the breakup event of active asteroid P/2013 R3, we have been able to develop explicit constraints on the cohesion within rubble pile asteroids. Third, by probing the effect of inhomogeneous material properties, we have been able to develop conditions for whether an oblate body will fail internally or through surface shedding. These different failure modes can be tested by measuring the density distribution within a rubble pile body through determination of its gravity field. This talk will explore these different modes of failure and motivate divergent theories of failure that depend on properties of rubble piles.
Unified continuum damage model for matrix cracking in composite rotor blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollayi, Hemaraju; Harursampath, Dineshkumar
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less
Weighting and Bayes Nets for Rollup of Surveillance Metrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henson, Kriste; Sentz, Kari; Hamada, Michael
2012-04-30
The LANL IKE team proposes that the surveillance metrics for several data stream that are used to detect the same failure mode be weighted. Similarly, the failure mode metrics are weighted to obtain a subsystem metric. E.g., if there n data streams (nodes 1-n), the failure mode (node 0) metric is obtained as M{sub 0} = w{sub 1}M{sub 1} + {hor_ellipsis} + w{sub n}M{sub n}, where {Sigma}{sub i=1}{sup n} w{sub i} = 1. This proposal has been implemented with Bayes Nets using the Netica/IKE software by specifying an appropriate conditional probability table (CPT). This CPT is calculated using the samemore » form as (1), where the data stream metrics for the true (T) and false (F) states are replaced by 1 and 0, respectively. Then using this CPT, the failure mode metric calculated by Netica/IKE equals (1). This result has two nice features. First, the rollup Bayes nets is doing can be easily explained. Second, because Bayes Nets can implement this rollup using Netica/IKE, then data marshalling (allocating next year's budget) can be studied. A proof that the claim 'failure mode metric calculated by Netica/IKE equals (1)' for n = 2 and n = 3 follows as well as the sketch of a proof by induction for general n.« less
Hung, Sheng-Hui; Wang, Pa-Chun; Lin, Hung-Chun; Chen, Hung-Ying; Su, Chao-Ton
2015-01-01
Specimen handling is a critical patient safety issue. Problematic handling process, such as misidentification (of patients, surgical site, and specimen counts), specimen loss, or improper specimen preparation can lead to serious patient harms and lawsuits. Value stream map (VSM) is a tool used to find out non-value-added works, enhance the quality, and reduce the cost of the studied process. On the other hand, healthcare failure mode and effect analysis (HFMEA) is now frequently employed to avoid possible medication errors in healthcare process. Both of them have a goal similar to Six Sigma methodology for process improvement. This study proposes a model that integrates VSM and HFMEA into the framework, which mainly consists of define, measure, analyze, improve, and control (DMAIC), of Six Sigma. A Six Sigma project for improving the process of surgical specimen handling in a hospital was conducted to demonstrate the effectiveness of the proposed model.